[go: up one dir, main page]

WO2020145213A1 - 工作機械の制御装置および工作機械 - Google Patents

工作機械の制御装置および工作機械 Download PDF

Info

Publication number
WO2020145213A1
WO2020145213A1 PCT/JP2019/051601 JP2019051601W WO2020145213A1 WO 2020145213 A1 WO2020145213 A1 WO 2020145213A1 JP 2019051601 W JP2019051601 W JP 2019051601W WO 2020145213 A1 WO2020145213 A1 WO 2020145213A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
movement
feed
change point
phase
Prior art date
Application number
PCT/JP2019/051601
Other languages
English (en)
French (fr)
Inventor
一彦 三宮
尊一 中谷
Original Assignee
シチズン時計株式会社
シチズンマシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン時計株式会社, シチズンマシナリー株式会社 filed Critical シチズン時計株式会社
Priority to CN201980082031.7A priority Critical patent/CN113168156B/zh
Priority to EP19908109.2A priority patent/EP3851927A4/en
Priority to US17/291,414 priority patent/US12090596B2/en
Priority to KR1020217013396A priority patent/KR102834822B1/ko
Publication of WO2020145213A1 publication Critical patent/WO2020145213A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/02Arrangements for chip-breaking in turning-machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/54Arrangements or details not restricted to group B23Q5/02 or group B23Q5/22 respectively, e.g. control handles
    • B23Q5/58Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49384Control of oscillatory movement like filling a weld, weaving

Definitions

  • the present invention relates to a machine tool control device and a machine tool.
  • Patent Document 1 a feed means for feeding a relatively rotating tool and a material is provided, and a forward feed movement of the material in the machining direction by the tool and a counter machining direction different from the machining direction are provided.
  • a technique of vibrating cutting which is capable of reciprocating the tool with respect to the material by combining return movement and cutting chips during cutting.
  • Patent Document 1 Lets that the tool returns to a predetermined position according to a predetermined feed amount of the tool when the tool returns in the opposite processing direction due to the reciprocating movement of the tool. However, there is a problem that it is not easy to perform the cutting process accompanied by the vibration.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a machine tool control device and a machine tool that can easily perform cutting accompanied by vibration according to the feed amount. ..
  • the present invention firstly comprises a feed means for feeding a relatively rotating tool and a material, and a control means for controlling the rotation and the operation of the feed means, the control means comprising the tool.
  • a feed means for feeding a relatively rotating tool and a material
  • a control means for controlling the rotation and the operation of the feed means, the control means comprising the tool.
  • the cutting processing is performed while vibrating the tool with respect to the material.
  • a return position calculating means for calculating a return position of the tool at the completion of one vibration based on a predetermined number of vibrations and a feed amount for one rotation of the tool or the material.
  • a forward feed setting means for setting the forward feed movement based on a change point set value that determines a change point from the machining direction to the counter machining direction, and making the tool reach the predetermined change point, one vibration completion
  • a return movement setting means for setting a pulse-like signal output as a command for the return movement so that the tool reaches the calculated return position.
  • a pulse-shaped signal consisting of a command for moving the tool and a command for the return movement, and the forward path feed setting means moves in the machining direction based on the return movement setting means and the forward path feed movement.
  • the composite movement of causes the tool to reach the change point, the pulse-shaped signal is formed in a sine wave shape having an inflection point, and the phase of the inflection point for reaching the change point is , A value different from the phase of the change point is set.
  • the number of vibrations is 1 or more.
  • the number of vibrations is less than 1.
  • the present invention can obtain the following effects.
  • the cutting tool can be fed with the vibration by the combined movement of the forward movement and the returning movement.
  • the vibration of the cutting tool can be automatically set according to a predetermined feed amount by the return position calculation means, the forward feed setting means, and the return movement setting means, and the vibration according to the feed amount is involved.
  • the cutting process can be easily performed.
  • the pulsed signal can be made into a sine wave which is a command for both the movement in the machining direction and the return movement.
  • the phase of the inflection point in the pulse-shaped signal is set to the same value as the phase of the change point, the tool locus may be displaced at the change point from the machining direction to the non-machining direction.
  • the tool reaches the change point at a predetermined phase and An inflectional sinusoidal tool trajectory can be obtained.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. 6 is a diagram illustrating generation of a vibration waveform of Reference Example 1.
  • FIG. It is a figure explaining the vibration waveform of the reference example 2.
  • FIG. 9 is a diagram illustrating generation of a vibration waveform of Reference Example 2.
  • FIG. 9 is a diagram illustrating generation of a vibration waveform of Reference Example 2.
  • FIG. 9 is a diagram illustrating generation of a vibration waveform of Reference Example 2.
  • FIG. 9 is a diagram illustrating generation of a vibration waveform of Reference Example 2.
  • FIG. 9 is a diagram illustrating generation of a vibration waveform of Reference Example 2. It is a figure explaining the vibration waveform of the reference example 3.
  • the machine tool 100 includes a spindle 110, a cutting tool 130 such as a cutting tool for machining a work W, and a controller 180.
  • a chuck 120 is provided at the tip of the spindle 110, and the work W is held by the spindle 110 via the chuck 120.
  • the spindle 110 is rotatably supported by the spindle stock 110A and is rotated by the power of a spindle motor (for example, a built-in motor) provided between the spindle stock 110A and the spindle 110, for example.
  • the headstock 110A is installed in the Z-axis direction feed mechanism 160.
  • the Z-axis feed mechanism 160 includes a base 161 that is integral with the bed, and a Z-axis guide rail 162 that slidably supports the Z-axis feed table 163.
  • the Z-axis direction feed table 163 is driven by the linear servomotor 165 to move along the illustrated Z-axis direction that coincides with the rotation axis direction of the workpiece W, the headstock 110A moves in the Z-axis direction.
  • the linear servomotor 165 has a mover 165a and a stator 165b, the mover 165a is provided on the Z-axis direction feed table 163, and the stator 165b is provided on the base 161.
  • the cutting tool 130 is mounted on the tool base 130A, and the tool base 130A is installed on the X-axis direction feed mechanism 150.
  • the X-axis direction feed mechanism 150 includes a base 151 integrated with the bed, and an X-axis direction guide rail 152 that slidably supports the X-axis direction feed table 153.
  • the X-axis direction feed table 153 is driven by the linear servomotor 155 to move along the X-axis direction orthogonal to the illustrated Z-axis direction, the tool base 130A moves in the X-axis direction.
  • the linear servomotor 155 has a mover 155a and a stator 155b, the mover 155a is provided on the X-axis direction feed table 153, and the stator 155b is provided on the base 151.
  • the Y-axis direction feed mechanism may be provided in the machine tool 100.
  • the Y-axis direction is a direction orthogonal to the illustrated Z-axis direction and X-axis direction.
  • the Y-axis direction feed mechanism may have the same structure as the Z-axis direction feed mechanism 160 or the X-axis direction feed mechanism 150.
  • the cutting tool 130 can be moved in the Y-axis direction in addition to the X-axis direction by a combination of the X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism as conventionally known.
  • the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism have been described by taking an example using a linear servo motor, but a known ball screw and a servo motor may be used.
  • the controller 180 controls the rotation of the main shaft 110 and the movement of the Z-axis direction feed mechanism 160 and the like.
  • the control device 180 has a control unit 181, a numerical value setting unit 182, and a storage unit 183, which are connected via a bus.
  • the control unit 181 includes a CPU and the like, loads various programs and data stored in, for example, the ROM of the storage unit 183 into the RAM, and executes the programs. Thereby, the operation of the machine tool 100 can be controlled based on the program.
  • the control unit 181 can control the rotation of the main shaft 110 and the feed of the Z-axis direction feed mechanism 160, and includes a motor control unit 190 that controls the operation of each motor.
  • the control device 180 drives the spindle motor to rotate the work W with respect to the cutting tool 130 and drives the Z-axis direction feed mechanism 160 to move the work W to the cutting tool 130 in the Z-axis.
  • the X-axis direction feed mechanism 150 is driven to move the cutting tool 130 in the X-axis direction with respect to the work W.
  • the cutting tool 130 By moving the cutting tool 130 and the work W relative to each other, the cutting tool 130 is moved with respect to the work W, the cutting tool 130 is fed in a predetermined machining feed direction with respect to the work W, and the work W is processed by the cutting tool 130. can do.
  • the control device 180 moves the cutting tool 130 with respect to the work W along the machining feed direction by a predetermined forward amount in the machining direction that is the traveling direction of the machining feed (forward movement).
  • the Z-axis direction feed mechanism 160 or the X-axis direction feed mechanism 150 is driven to move so as to move (backward) by a predetermined retreat amount in the opposite machining direction opposite to the machining direction.
  • the control unit 181 causes the cutting tool 130 to reciprocate and vibrate by the movement of the headstock 110A or the tool rest 130A by the movement drive of the Z-axis direction feed mechanism 160 or the X-axis direction feed mechanism 150, and the forward and backward amounts. Can be sent to the work W.
  • the peripheral surface of the work W is processed into a wavy shape according to the phase of the spindle 110.
  • FIG. 4 shows an example in which the number of reciprocating movements of the cutting tool 130 in one rotation of the work W is the vibration frequency D, and the vibration frequency D is 1.5 (times/r).
  • An imaginary line (one-dot chain line) passing through the valley of the wavy waveform is a feed straight line indicating the feed amount, and the position of the spindle phase of 360° on the feed straight line corresponds to the feed amount F per rotation of the work W.
  • the cutting edge path of the cutting tool 130 at the nth rotation of the spindle 110 (workpiece W) (shown by the solid line in FIG. 4) and the cutting edge path at the n+1th rotation (shown by the broken line in FIG. 4). And are shifted in the main axis phase direction (the horizontal axis direction in the graph of FIG. 4), and during cutting, duplication occurs in the blade path of the cutting tool 130.
  • the cutting tool 130 and the work W do not contact in the processing feed direction because the cutting has already been performed by the processing of the nth rotation.
  • the idling period in which the cutting tool 130 does not substantially cut the work W is reached, and the chips generated on the work W are divided into chips.
  • the work W can be smoothly machined while cutting the chips by vibrating machining in which the work W is machined by the cutting tool 130 while vibrating due to the reciprocating movement of the machining tool 130 with respect to the work W.
  • the n-th blade edge path and the n+1 blade edge path are reversed by 180°.
  • the n-th blade edge path and the n+1 blade edge path do not have to match (in phase), and the n-th blade edge path and the n+1 blade edge path may be displaced in the spindle phase direction.
  • the feed amount F is increased while keeping the magnitude of the amplitude constant, the period in which the blade path of the n+1th rotation is included in the blade path of the nth rotation is decreased, and the blade path of the n+1th rotation is rotated n times. If it does not reach the blade edge path, the idling period does not occur.
  • the feed amount F is set so that an idle period occurs. It is configured to set the amplitude of the vibration waveform proportionally.
  • the spindle rotational speed and the feed amount F are designated in advance by designation in a machining program.
  • the control unit 181 is configured to set the amplitude ratio to the feed amount F as the amplitude feed ratio Q and multiply the feed amount F by the amplitude feed ratio Q to set the amplitude as Q*F.
  • the amplitude feed ratio Q can be specified as a value (argument Q) following Q in a machining program, for example.
  • the number of vibrations D can be specified by a value (argument D) following D in the machining program.
  • the control unit 181 includes a return position calculation unit 191, a forward feed setting unit 192, and a return movement setting unit 193 in order to move the cutting tool 130 with respect to the work W while vibrating the cutting tool 130.
  • the control unit 181 corresponds to the control unit of the present invention
  • the return position calculation unit 191, the outward feed setting unit 192, and the return movement setting unit 193 include the return position calculation unit, the outward feed setting unit, and the return movement setting of the present invention. Each corresponds to a means.
  • the feed straight line is determined as shown in FIG.
  • this straight line of feed is referred to as a substantial feed line G
  • the substantial feed line G makes the phase of the main spindle 110 the horizontal axis direction and processes the cutting tool 130. It is shown by the alternate long and short dash line in FIG.
  • the cutting tool 130 reaches the actual feed line G at the completion of one vibration, switches from the backward movement to the forward movement, and vibrates 1.5 times for one rotation of the work W, that is, three times for two rotations of the work W.
  • the return position calculation unit 191 calculates the position on the actual feed line G where the cutting tool 130 is located at the completion of one vibration as the return position based on the number of vibrations D and the feed amount F.
  • the return position in three vibrations is shown as direction change points B1, B2, B3 at which the backward movement is switched to the forward movement.
  • the vibration waveform of FIG. 5 is represented on the basis of the work
  • the return position of the cutting tool 130 at the time of completion of one vibration is on the substantial feed line G indicated by the one-dot chain line in FIG. 6A.
  • the spindle phase at the returning position of the cutting tool 130 is a phase obtained by multiplying the angle (360°) of one rotation of the work W by the reciprocal number (2/3) of the vibration frequency D.
  • the change point B1 is at the position of the spindle phase 240°.
  • each change point is a position on the actual feed line G with one interval being a value obtained by multiplying the angle of one rotation of the work W by the reciprocal of the vibration frequency D.
  • B2 is at the position of the spindle phase of 480° and B3 is at the position of the spindle phase of 720°.
  • the return position calculation unit 191 can calculate each return position based on the feed amount F and the number of vibrations D.
  • the direction change point A1 at which the forward movement is switched to the backward movement is a straight line (amplitude line) obtained by offsetting the actual feed line G by the amplitude Q*F. QF).
  • the main axis phase of the changing point A1 is a phase (120) obtained by multiplying the main axis phase 240° of the changing point B1 by the reciprocal number (1/2) of the numerator of the reciprocal number (2/3) of the vibration frequency D. °). As shown in FIG.
  • the change point A1 is set from the intersection of the amplitude line QF and the vertical line passing through the main axis phase 120°. After that, each change point A becomes a position on the amplitude line QF with a value obtained by multiplying the angle between adjacent change points B by 1/2 as one interval.
  • the change point A2 is The spindle phase 240° at the change point B1 to the spindle phase 480° at the change point B2 is at a half value (spindle phase 360°), and the change point A3 becomes the change point B2 at the spindle phase 480. There is a half value (main shaft phase 540°) from the main shaft phase 720° to the change point B3.
  • the change point A1 is defined by using the feed amount F, the amplitude feed ratio Q, and the number of vibrations D as parameters (change point set values).
  • the forward feed setting unit 192 sets a straight line passing through the main shaft phase 0° and the change point A1 for the forward feed movement, and the control unit 181 outputs a forward feed command for moving the blade edge along the forward feed movement.
  • the return movement setting unit 193 is configured to output a movement command for moving the cutting tool 130 in the opposite machining direction as a pulse signal P at predetermined intervals.
  • the pulse signal P has the feed direction (vertical direction of the graph of FIG. 6C so that the cutting edge returns from the change point A1 to the change point B1. It is set as a signal output as a movement command for moving a downwardly convex waveform (shown by a two-dot chain line in the figure) that is opposite to the (axial direction) in the anti-machining direction.
  • the cutting edge is periodically moved back in the counter-machining direction.
  • the size of the convex shape of the pulse signal P can be determined according to the distance between A1 and B1 viewed in the feed direction, and the return movement setting unit 193 uses the combined movement of the forward feed movement and the return movement to cause the cutting edge to move.
  • the pulse signal P is set so as to perform the backward movement F′′ connecting the change point A1 and the change point B1.
  • the pulse signal of the movement command to be moved in the anti-machining direction which is a periodic pulsed command by the return movement setting unit 193, has a cycle such that the backward movement F′′ starts from each change point A, and ,
  • the blade edge changes from the change point A1 to the change point B1 (the position of the spindle phase 240°) by the command of the movement in the opposite machining direction (the downward convex portion of the pulse signal).
  • Perform the return F
  • the blade edge simply moves from the change point B to the change point A along the outward feed movement when there is no command to move in the opposite processing direction by the return movement setting unit 193, and as shown in FIG.
  • the cutting tool 130 can be fed while being accompanied by the vibration by the combined movement of the forward feeding movement and the returning movement.
  • the vibration of the cutting tool 130 can be automatically set according to the predetermined feed amount F by the return position calculation unit 191, the forward feed setting unit 192, and the return movement setting unit 193. It is possible to easily perform the cutting process accompanied by the vibration.
  • the vibration frequency D can be set to less than 1.
  • FIG. 8 shows an example in which the vibration frequency D is 0.5 (times/r). Also in this cutting process, the spindle rotational speed and the feed amount F are designated in advance by designation in the machining program. When the feed amount F is designated, the actual feed line G is determined as shown in FIG. 8 (indicated by a chain line in FIG. 8). The cutting tool 130 reaches the substantial feed line G at the completion of one vibration, and switches from the backward movement to the forward movement.
  • the spindle 110 is cut for a plurality of rotations (two rotations in this example).
  • the tool 130 vibrates once.
  • the movement trajectory of the cutting tool 130 is such that the forward movement and the backward movement are constant speeds, and the first rotation of the spindle 110 moves forward and moves forward, and the last one rotation of the plurality of rotations of the spindle 110 (in this example, the spindle).
  • the forward movement is switched to the backward movement, and the vehicle substantially retreats toward the feed line G.
  • the spindle rotation amount during the forward and backward movements of the cutting tool 130 is defined as the spindle rotation amount E per one tool vibration. Further, the amount of rotation of the spindle while the cutting tool 130 is retracting, in other words, the amount of rotation of the spindle required to reach the actual feed line G from the time when the cutting tool 130 is switched from the forward movement to the backward movement, It is the spindle rotation amount R at the time of retreating (returning).
  • a value following R designates the amount of spindle rotation at the time of retreat
  • a value following E designates the amount of spindle rotation per tool vibration in advance.
  • the spindle rotation amount E per one tool vibration is the reciprocal of the number of vibrations D, and is 2.0 (r/cycle) in the example of FIG.
  • the return position calculation unit 191 calculates the position of the spindle phase corresponding to the main spindle rotation amount E on the actual feed line G as the return position based on the main spindle rotation amount E and the feed amount F at the completion of one vibration.
  • Fig. 8 shows the return positions in the two vibrations as direction change points B1 and B2 at which the backward movement is switched to the forward movement.
  • the return position of the cutting tool 130 at the completion of one vibration is the angle (360°) for one rotation of the main spindle on the substantial feed line G indicated by the alternate long and short dash line in FIG. 9A.
  • the change point B1 is at the position of the main axis phase of 720°.
  • each change point becomes a position on the actual feed line G with an angle of two rotations of the work W as one interval, and in the case of Reference Example 2, the change point B2 on the actual feed line G has a spindle phase of 1440°.
  • the return position calculation unit 191 can calculate each return position based on the spindle rotation amount E and the feed amount F when one vibration is completed.
  • the spindle rotation amount R at the time of retreat is 0.5 (rotation), and rotation of 180° is required from the start to the end of the backward movement. Therefore, as shown in FIG. 9B, the direction change point A1 at which the forward movement is changed to the backward movement is returned from the spindle phase at the return position (720°) by the angle corresponding to the spindle rotation amount R at the spindle phase (540°). It is in.
  • the forward feed setting unit 192 sets the line C having the spindle phase of 540° as the axis of symmetry and the point that is line-symmetric with respect to the change point B1.
  • the straight line passing through the main shaft phase 0° and the symmetric point B1′ is set as the forward feed movement, and the control unit 181 outputs the forward feed command for moving the blade along the forward feed movement.
  • the change point A1 is located at the position of the spindle phase 540° on a straight line passing through the spindle phase 0° and the symmetry point B1′.
  • the change point A1 is the feed amount F, when the backward movement is performed.
  • the main spindle rotation amount R and the main spindle rotation amount E at the time of completion of one vibration are set as parameters (change point set values), and the outward path feed setting unit 192 sets the outward path feed movement based on the change point set values.
  • each symmetry point B′ corresponds to each change point A corresponding to each change point B.
  • the line of the main axis phase is set as a symmetrical axis with respect to each change point B with the axis of symmetry as the axis of symmetry.
  • the symmetry point B2′ is at a position 360° before the spindle phase 1440° which becomes the change point B2 (position of the spindle phase 1080°), and for example, the change point A2 is the change point B2.
  • the main axis phase 1260° At a position 180° before the main axis phase 1440° (main axis phase 1260°).
  • the pulse signal P of the movement command to move in the opposite machining direction which is a periodic pulse-like command of the return movement setting unit 193.
  • the size of the convex shape of the pulse signal P can be determined according to the distance between A1 and B1 viewed in the feed direction.
  • the return movement setting unit 193 sets a pulse signal that is set by the combined movement of the forward feed movement and the return movement so that the blade edge makes a backward movement F′′ connecting the change point A1 and the change point B1 as shown in FIG. 9D. It is configured with P.
  • the pulse signal has a cycle such that the backward movement F′′ starts from each change point A, and at the timing of the spindle phase of 540°, the cutting edge is commanded to move in the anti-machining direction (the pulse signal is projected downward.
  • the reciprocal movement F′′ from the change point A1 to the change point B1 (the position of the main shaft phase 720°) is performed by the shape portion).
  • the chips are cut by the backward movement F′′ intersecting the forward movement F′ at the change point B1.
  • the blade edge simply moves from the change point B to the change point A along the forward feed movement when there is no command to move in the opposite processing direction by the return movement setting unit 193, so as shown in FIG. 10A,
  • the forward movement F′ from the change point B1 to the change point A2 position of the spindle phase 1260°
  • the movement in the counter-machining direction is commanded at the timing of the spindle phase 1260°, and as shown in FIG. 10B, the backward movement F′′ passing through the change point A2 and the change point B2 (the position of the spindle phase 1440°) is performed.
  • the chips are cut by the backward movement F′′ intersecting the forward movement F′ at the change point B2.
  • the cutting tool 130 can be fed while being accompanied by the vibration by the combined movement of the forward feed movement and the return movement.
  • the vibration of the cutting tool 130 can be automatically set according to the predetermined feed amount F by the return position calculation unit 191, the forward feed setting unit 192, and the return movement setting unit 193. It is possible to easily perform the cutting process accompanied by the vibration.
  • the present invention is not limited to this example.
  • the spindle 110 rotates and sends the cutting tool 130 in the Z-axis direction, or when the cutting tool 130 rotates and sends the spindle 110 in the Z-axis direction, the spindle 110 is fixed and the cutting tool 130 is rotated,
  • the same effect can be obtained when feeding in the Z-axis direction.
  • the Z-axis direction feed mechanism corresponds to the feed means of the present invention.
  • the spindle rotation amount E per one tool vibration in Reference Example 2 is not limited to an integral number of rotations such as 2 rotations and 3 rotations, but may be set to a number corresponding to a rotation angle exceeding 1 rotation (360 degrees). it can.
  • the pulse signal P of the return movement setting unit 193 repeats a command to move the cutting tool 130 in the machining direction up to the spindle phase of the change point A and a command to move from the spindle phase of the change point A in the opposite machining direction. It can also be a signal.
  • the outward feed setting unit 192 moves the blade edge in the machining direction based on the pulse signal P (moves in the machining direction according to a command to move the machining point to the spindle phase of the change point A) and a predetermined outward feed command.
  • the forward feed movement can be set so that the combined movement with the movement in the machining direction due to the forward feed movement.
  • the predetermined forward path feed command can be, for example, a forward path feed command for moving the cutting edge onto the substantial feed line G.
  • FIG. 11A shows an example in which the vibration frequency D is 0.5 (times/r).
  • the feed amount F is designated
  • the actual feed line G is determined (indicated by a chain line in the figure, which corresponds to the feed line of the tool of the present invention).
  • the return position (change point B1) on the actual feed line G is calculated based on the spindle rotation amount E and the feed amount F per one tool vibration.
  • the spindle rotation amount R when the cutting tool 130 is retracted (during backward movement) is 0.5 (rotation)
  • the direction change point A1 at which the forward movement is changed to the backward movement is at the spindle phase 540°.
  • the predetermined forward feed command is a forward feed command for moving the cutting edge onto the substantial feed line G, as shown in FIG. 11B, at the position of the spindle phase 540°, between the actual feed line G and the change point A1.
  • the pulse signal P has an upwardly convex waveform (FIG. 11C) that is forward in the feed direction (vertical axis direction of the graph of FIG. 11B) so as to return to the substantial feed line G after obtaining this positional shift C′. Is indicated by a two-dot chain line).
  • the forward feed setting unit 192 moves in the machining direction according to a command to move the changing point A1 of the pulse signal P in the machining direction up to the spindle phase 540°, and moves in the machining direction determined by the feed amount F (actual feed).
  • the combined movement with the line G) is referred to as a forward movement (shown by F′).
  • the pulse signal P has a cycle such that a straight line passing from the spindle phase 0° to the spindle phase 0° and the symmetry point B1′ is started, and the cutting edge has the spindle phase 0° at the timing of the spindle phase 0°.
  • the forward movement F′ from 0° to the change point A1 is performed, and the backward movement F′′ from the change point A1 on the forward movement F′ is performed at the timing of the spindle phase 540°.
  • the change point B is changed by the pulse signal P.
  • the command to move in the machining direction from the spindle phase to the spindle phase at the change point A and the command to move in the opposite machining direction from the spindle phase at the change point A to the spindle phase at the change point B are repeated.
  • the movement in the machining direction by the command to move the pulse signal P in the machining direction and the movement in the machining direction by the forward feed command can be any movement as long as the forward feed movement is obtained by combining them.
  • the substantial feed line G has a feed amount F at the time of general cutting without vibration (during conventional cutting). Since it is the same as the line determined, the forward movement F′ can be obtained by adding the pulse signal P to the conventional cutting.
  • the change point A1 is described as an example in which it is determined from the feed amount F, the spindle rotation amount R at the time of retreat, and the spindle rotation amount E at the time of completion of vibration, but the pulse signal P is changed at the change point A1. It is naturally applicable to the case where is determined from the feed amount F, the amplitude feed ratio Q, and the vibration frequency D.
  • the pulse signal P of the return movement setting unit 193 can also be formed in a sine wave shape.
  • FIG. 12A shows an example in which the vibration frequency D is 1.5 (times/r).
  • the actual feed line G is determined (indicated by a chain line in the figure, which corresponds to the feed line of the tool of the present invention).
  • the return position (change point B1) on the actual feed line G is the spindle phase 240°, and the direction change point A1 at which the forward movement is changed to the backward movement is The main shaft phase becomes 120°.
  • the predetermined forward feed command is a forward feed command for moving the cutting edge onto the substantial feed line G, as shown in FIG. 12B, at the main spindle phase 120° position, the actual feed line G There is a positional shift C'with the change point A1.
  • the pulse signal P is set to have a sinusoidal waveform (shown by a chain double-dashed line in FIG. 12C) so as to return to the substantial feed line G after obtaining the positional shift C′.
  • the actual feed line G and a sinusoidal curve having irregularities are combined.
  • the inflection point (sinusoidal curve changes from convex to concave as shown in FIG. 12C so that the cutting edge reaches the top of the convex shape on the sine curve at the main axis phase 120° of the change point A1 and then moves toward the bottom of the concave shape.
  • the changing point (the point where the sign of the curvature of the curve changes from positive to negative) a1 is set to a value different from the main axis phase 120° of the changing point A1 shown in FIG. 12A (for example, a value smaller than 120°). ing. Further, the inflection point shown in FIG.
  • the forward feed setting unit 192 moves in the machining direction according to a command to move the change point A1 in the sinusoidal waveform in the machining direction up to the spindle phase 120°, and moves in the machining direction determined by the feed amount F (substantially).
  • the combined movement with the feed line G) is referred to as a forward movement (shown by F′ in FIG. 12A).
  • the pulse signal P has a cycle such that this sinusoidal concave shape starts from a position which is ( ⁇ -240)° later than the spindle phase 0°, and the cutting edge has a spindle phase 0°.
  • the forward movement (movement of the concave right side portion (movement of the convex left side portion)) F′ from the main spindle phase 0° to the change point A1 is performed at the timing, and the forward movement F′ is performed at the timing of the main spindle phase 120°.
  • a backward movement (movement of the right side portion of the convex shape (movement of the left side portion of the concave shape)) F′′ is performed from the change point A1.
  • This F′′ indicates a concave shape on the sine curve at the main axis phase 240° of the change point B1. Reach the bottom.
  • Machine tool 110 ⁇ Spindle 110A ⁇ Spindle stock 120 ⁇ Chuck 130 ⁇ Cutting tool 130A ⁇ Tool pedestal 150 ⁇ X-axis direction feed mechanism 151 ⁇ Base 152 ⁇ ... X-axis direction guide rail 153 ... X-axis direction feed table 155 ... Linear servo motor 155a ... Mover 155b ... Stator 160 ... Z-axis direction feed mechanism 161 ... Base 162 ⁇ Z axis direction guide rail 163 ⁇ Z axis direction feed table 165 ⁇ Linear servo motor 165a ⁇ Mover 165b ⁇ Stator 180 ⁇ Control device 181 ⁇ Control unit 182 ⁇ .. Numerical value setting unit 183.. Storage unit 190... Motor control unit 191.. Return position calculation unit 192... Forward feed setting unit 193.. Return movement setting unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

送り量に応じた振動を伴う切削加工を容易に行うことができる工作機械の制御装置および工作機械を提供する。 工具と材料の相対的な回転および送り動作を制御する制御部181とを備え、制御部が、工具による材料の加工方向への往路送り移動と反加工方向への戻し移動とを合成することによって、材料に対して工具を振動させながら切削加工させる工作機械の制御装置180である。戻し移動設定部193は、加工方向に工具を移動させる指令と、戻し移動の指令とからなるパルス状の信号を設定する。往路送り設定部192は、戻し移動設定部に基づく加工方向への移動と往路送り移動との合成移動によって、工具を前記変化点に到達させる。パルス状の信号が、変曲点を有する正弦波状に形成されており、変化点に到達させるための変曲点の位相が、変化点の位相とは異なる値に設定される。

Description

工作機械の制御装置および工作機械
 本発明は、工作機械の制御装置および工作機械に関する。
 例えば特許文献1には、相対的に回転する工具と材料とを送り動作させる送り手段を備え、前記工具による前記材料の加工方向への往路送り移動と前記加工方向とは異なる反加工方向への戻し移動とを合成することによって、前記工具を前記材料に対して往復移動させ、切削加工に際して切屑を分断することができる振動切削加工の技術が開示されている。
特開昭48-52083号公報
 特許文献1に記載の振動切削加工は、前記工具の往復移動により、前記工具が反加工方向に戻る際、予め定められる工具の送り量に応じた所定の位置に前記工具が戻ることを考慮して前記振動を伴う切削加工を行うことは容易ではないという問題点があった。
 本発明は、上述のような実情に鑑みてなされたもので、送り量に応じた振動を伴う切削加工を容易に行うことができる工作機械の制御装置および工作機械を提供することを目的とする。
 本発明は、第1に、相対的に回転する工具と材料とを送り動作させる送り手段と、前記回転と前記送り手段の動作とを制御する制御手段とを備え、該制御手段が、前記工具による前記材料の加工方向への往路送り移動と前記加工方向とは異なる反加工方向への戻し移動とを合成することによって、前記材料に対して前記工具を振動させながら切削加工を行うように制御を行う工作機械の制御装置において、前記工具あるいは材料の、1回転に対して予め定められる振動回数および送り量に基づいて、1振動完了時における前記工具の戻り位置を算出する戻り位置算出手段と、前記加工方向から前記反加工方向への変化点を定める変化点設定値に基づいて前記往路送り移動を設定し、前記工具を前記定めた変化点に到達させる往路送り設定手段と、1振動完了時の前記工具が前記算出した戻り位置に到達するように、前記戻し移動の指令として出力されるパルス状の信号を設定する戻し移動設定手段とを備え、前記戻し移動設定手段は、前記加工方向に工具を移動させる指令と、前記戻し移動の指令とからなるパルス状の信号を設定し、前記往路送り設定手段は、前記戻し移動設定手段に基づく前記加工方向への移動と前記往路送り移動との合成移動によって、前記工具を前記変化点に到達させ、前記パルス状の信号が、変曲点を有する正弦波状に形成されており、前記変化点に到達させるための前記変曲点の位相が、前記変化点の位相とは異なる値に設定されることを特徴とする。
 第2に、前記振動回数が1以上であることを特徴とする。
 第3に、前記振動回数が1未満であることを特徴とする。
 第4に、上記いずれかの工作機械の制御装置を備えた工作機械であることを特徴とする。
 本発明は以下の効果を得ることができる。
(1)切削工具を、往路送り移動と戻し移動との合成移動によって前記振動を伴いながら送ることができる。特に戻り位置算出手段、往路送り設定手段、戻し移動設定手段により、切削工具の前記振動を、予め定められる送り量に応じて自動的に設定することができ、送り量に応じた前記振動を伴う切削加工を容易に行うことができる。パルス状の信号を、加工方向への移動と戻し移動の双方の移動に対する指令とした正弦波状にすることができる。
 また、パルス状の信号における変曲点の位相を変化点の位相と同じ値に設定した場合、工具の軌跡は、加工方向から反加工方向への変化点に位置ズレが生ずる場合がある。しかし、正弦波状における変曲点の位相を、この変曲点に対応した変化点の位相とは異なる値に設定することによって、工具を予め定められた位相で変化点に到達させ、変化点において変曲する正弦曲線の工具軌跡を得ることができる。
(2)材料あるいは工具の1回転で、工具あるいは材料を1回以上振動させる振動切削を行うことができる。
(3)工具あるいは材料の1振動で、材料あるいは工具を1回転以上回転させる振動切削を行うことができる。
(4)送り量に応じた振動を伴う切削加工を容易に行える工作機械を提供することができる。
本発明の一実施例による工作機械の概略を示す図である。 制御装置の構成図である。 切削工具の往復移動および位置を説明する図である。 主軸のn回転目、n+1回転目、n+2回転目の刃先経路を示す図である。 参考例1の振動波形を説明する図である。 参考例1の振動波形の生成を説明する図である。 参考例1の振動波形の生成を説明する図である。 参考例1の振動波形の生成を説明する図である。 参考例1の振動波形の生成を説明する図である。 参考例1の振動波形の生成を説明する図である。 参考例1の振動波形の生成を説明する図である。 参考例2の振動波形を説明する図である。 参考例2の振動波形の生成を説明する図である。 参考例2の振動波形の生成を説明する図である。 参考例2の振動波形の生成を説明する図である。 参考例2の振動波形の生成を説明する図である。 参考例2の振動波形の生成を説明する図である。 参考例2の振動波形の生成を説明する図である。 参考例3の振動波形を説明する図である。 参考例3の振動波形を説明する図である。 参考例3の振動波形を説明する図である。 本実施例の振動波形を説明する図である。 本実施例の振動波形を説明する図である。 本実施例の振動波形を説明する図である。
 以下、図面を参照しながら本発明の工作機械の制御装置および工作機械について説明する。図1に示すように、工作機械100は、主軸110と、ワークWを加工するバイト等の切削工具130と、制御装置180とを備えている。
 主軸110の先端にはチャック120が設けられており、ワークWはチャック120を介して主軸110に保持されている。主軸110は、主軸台110Aに回転自在に支持され、例えば主軸台110Aと主軸110との間に設けられた主軸モータ(例えばビルトインモータ)の動力によって回転する。主軸台110AはZ軸方向送り機構160に設置されている。
 Z軸方向送り機構160は、ベッドと一体のベース161と、Z軸方向送りテーブル163をスライド自在に支持するZ軸方向ガイドレール162とを備えている。Z軸方向送りテーブル163が、リニアサーボモータ165の駆動によって、ワークWの回転軸線方向に一致する図示のZ軸方向に沿って移動すると、主軸台110AがZ軸方向に移動する。リニアサーボモータ165は可動子165aおよび固定子165bを有し、可動子165aはZ軸方向送りテーブル163に設けられ、固定子165bはベース161に設けられている。
 切削工具130は工具台130Aに装着され、工具台130Aは、X軸方向送り機構150に設置される。
 X軸方向送り機構150は、ベッドと一体のベース151と、X軸方向送りテーブル153をスライド自在に支持するX軸方向ガイドレール152とを備えている。X軸方向送りテーブル153が、リニアサーボモータ155の駆動によって図示のZ軸方向に対して直交するX軸方向に沿って移動すると、工具台130AがX軸方向に移動する。リニアサーボモータ155は可動子155aおよび固定子155bを有し、可動子155aはX軸方向送りテーブル153に設けられ、固定子155bはベース151に設けられている。
 Y軸方向送り機構を工作機械100に設けてもよい。Y軸方向は図示のZ軸方向およびX軸方向に直交する方向である。Y軸方向送り機構は、Z軸方向送り機構160またはX軸方向送り機構150と同様の構造とすることができる。従来公知のようにX軸方向送り機構150とY軸方向送り機構の組み合わせにより、切削工具130をX軸方向に加えてY軸方向にも移動させることができる。
 Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構は、リニアサーボモータを用いた例を挙げて説明したが、公知のボールネジとサーボモータを用いた構造としてもよい。
 主軸110の回転、および、Z軸方向送り機構160等の移動は、制御装置180で制御される。
 図2に示すように、制御装置180は、制御部181、数値設定部182、記憶部183を有し、これらはバスを介して接続される。
 制御部181は、CPU等からなり、記憶部183の例えばROMに格納されている各種のプログラムやデータをRAMにロードし、このプログラムを実行する。これにより、プログラムに基づいて工作機械100の動作を制御できる。
 制御部181は、主軸110の回転やZ軸方向送り機構160の送りを制御可能であり、各モータの作動を制御するモータ制御部190を有する。
 図1の例では、制御装置180は、主軸モータを駆動してワークWを切削工具130に対して回転させ、Z軸方向送り機構160を駆動してワークWを切削工具130に対してZ軸方向に移動させ、X軸方向送り機構150を駆動して切削工具130をワークWに対してX軸方向に移動させる。切削工具130とワークWとの相対的な移動によって切削工具130をワークWに対して移動させ、切削工具130をワークWに対して所定の加工送り方向に送り、ワークWを切削工具130で加工することができる。
 制御装置180は、図3に示すように、切削工具130をワークWに対し、加工送り方向に沿って、加工送りの進行方向となる加工方向に向けて所定の前進量で移動(往動)させた後、前記加工方向の反対方向となる反加工方向に向けて所定の後退量で移動(復動)させるようにZ軸方向送り機構160又はX軸方向送り機構150を移動駆動する。制御部181は、Z軸方向送り機構160又はX軸方向送り機構150の移動駆動による主軸台110A又は工具台130Aの移動によって、切削工具130を往復移動させて振動させ、前進量と後退量との差(進行量)だけワークWに対して送ることができる。切削工具130によってワークWの外周を切削すると、主軸110の位相に応じて、ワークWの周面は波状に加工される。
 ワークWの1回転分となる、主軸位相0°から360°まで変化する間の上記進行量の合計が工具の送り量Fになる。図4は、ワークWの1回転における切削工具130の往復移動の回数を振動回数Dとし、振動回数Dが1.5(回/r)の例を示す。波状の波形の谷を通過する仮想線(1点鎖線)が前記送り量を示す送りの直線となり、該送りの直線における主軸位相360°の位置がワークW1回転あたりの送り量Fに相当する。
 振動回数Dが整数とは異なるため、主軸110(ワークW)のn回転目における切削工具130の刃先経路(図4に実線で示す)とn+1回転目の刃先経路(図4に破線で示す)とが、主軸位相方向(図4のグラフの横軸方向)でずれ、切削加工時、切削工具130の刃先経路に重複が発生する。
 n+1回転目の刃先経路がn回転目の刃先経路に含まれる刃先経路重複の期間は、既にn回転目の加工によって切削済みであるため、切削工具130とワークWが加工送り方向で接触せず、切削工具130がワークWを実質上切削しない空振り期間になり、ワークWに生じた切屑が分断されて切粉になる。切削工具130のワークWに対する往復移動による振動を伴いながら切削工具130によってワークWを加工する振動切削加工により、切屑を分断しながらワークWを円滑に加工することができる。
 図4の例では、n回目の刃先経路とn+1の刃先経路が180°反転している。空振り期間を得るためには、n回目の刃先経路とn+1の刃先経路が一致(同位相)しなければよく、n回目の刃先経路とn+1の刃先経路が主軸位相方向でずれていればよい。
 ただし、振幅の大きさを一定に維持して送り量Fを増やした場合、n+1回転目の刃先経路がn回転目の刃先経路に含まれる期間は減少し、n+1回転目の刃先経路がn回転目の刃先経路に到達しない場合には、空振り期間が生じなくなる。
 n+1回転目の刃先経路がn回転目の刃先経路に含まれる期間は、送り量Fと振動波形の振幅に応じて変化するため、制御部181では、空振り期間が生ずるように、送り量Fに比例して振動波形の振幅を設定するように構成されている。切削加工に際しては、加工プログラムでの指定等により、主軸回転数や、送り量Fが予め指定される。制御部181は、送り量Fに対する振幅の比率を振幅送り比率Qとして、送り量Fに振幅送り比率Qを乗じて振幅をQ*Fと設定するように構成されている。振幅送り比率Qは、例えば加工プログラムで、Qに続く値(引数Q)として指定することができる。なお同様に振動回数Dも、加工プログラムで、Dに続く値(引数D)で指定することができる。
 制御部181は、切削工具130を振動させながらワークWに対して移動させるために、戻り位置算出部191、往路送り設定部192、戻し移動設定部193を有する。なお、制御部181が本発明の制御手段に相当し、戻り位置算出部191、往路送り設定部192、戻し移動設定部193が、本発明の戻り位置算出手段、往路送り設定手段、戻し移動設定手段にそれぞれ相当する。
 送り量Fが指定されると、図5に示されるように、送りの直線が定まる。以下この送りの直線を実質送りラインGと称し、実質送りラインGは、振動回数Dが1.5(回/r)の場合に、主軸110の位相を横軸方向とし、切削工具130の加工送り方向の位置を縦軸としたグラフの図5に1点鎖線で示される。切削工具130は、1振動完了時に実質送りラインG上に到達し、復動から往動に切り替わり、ワークWの1回転で1.5回、つまり、ワークWの2回転で3回振動するように、ワークWに対して送られる。
 戻り位置算出部191は、振動回数Dおよび送り量Fに基づいて、1振動完了時における切削工具130が位置する実質送りラインG上の位置を戻り位置として算出する。
 図5に、3回の振動における戻り位置を、復動から往動に切り替わる方向変化点B1,B2,B3として示す。図5の振動波形をワーク基準で表すと、1振動完了時における切削工具130の戻り位置は、図6Aに1点鎖線で示した実質送りラインG上にある。そして、この切削工具130の戻り位置の主軸位相は、ワークWの1回転分の角度(360°)に振動回数Dの逆数(2/3)を乗じた位相となる。図6Bに示すように、参考例1において変化点B1は主軸位相240°の位置にある。以降、各変化点は、ワークWの1回転分の角度に振動回数Dの逆数を乗じた値を1間隔とした実質送りラインG上の位置となり、参考例1の場合、実質送りラインG上の変化点B2は主軸位相480°の位置にあり、変化点B3は主軸位相720°の位置にある。戻り位置算出部191は以上のように、送り量Fと振動回数Dとに基づいて各戻り位置の算出を行うことができる。
 一方、送り量Fに振幅送り比率Qを乗じて振幅が設定されるため、往動から復動に切り替わる方向変化点A1は、実質送りラインGを振幅Q*Fだけオフセットさせた直線(振幅ラインQF)上にある。そして、参考例1の場合、変化点A1の主軸位相は、変化点B1の主軸位相240°に振動回数Dの逆数(2/3)の分子の逆数(1/2)を乗じた位相(120°)となる。図6Bに示すように、振幅ラインQFと主軸位相120°を通る垂直線との交点から、変化点A1が設定される。以降、各変化点Aは、隣り合う変化点B間の角度に1/2を乗じた値を1間隔とした振幅ラインQF上の位置となり、例えば、参考例1の場合、変化点A2は、変化点B1になる主軸位相240°から変化点B2になる主軸位相480°までの1/2の値(主軸位相360°)の位置にあり、変化点A3は、変化点B2になる主軸位相480°から変化点B3になる主軸位相720°までの1/2の値(主軸位相540°)の位置にある。上記のように変化点A1は、送り量F、振幅送り比率Q、振動回数Dをパラメータ(変化点設定値)として定められる。往路送り設定部192は、主軸位相0°と変化点A1とを通る直線を往路送り移動に設定し、制御部181は刃先を往路送り移動に沿って移動させる往路送り指令を出力する。
 戻し移動設定部193は、切削工具130を前記反加工方向に移動させる移動指令を所定の間隔でパルス信号Pとして出力するように構成されている。図6Cに示すように、方向変化点B1が主軸位相240°の位置にあるため、パルス信号Pは、刃先が変化点A1から変化点B1に戻るように、送り方向(図6Cのグラフの縦軸方向)に対して逆向きとなる下向きに凸形状の波形(図中に2点鎖線で示す)を前記反加工方向に移動させる移動指令として出力する信号として設定される。
 パルス信号Pにより、周期的に刃先が前記反加工方向に移動する戻し移動が行われる。パルス信号Pの凸形状の大きさは、送り方向で見たA1,B1間の距離に応じて定めることができ、戻し移動設定部193は、往路送り移動と戻し移動との合成移動によって、刃先が図6Dに示すように、変化点A1と変化点B1とを結ぶ復動F”を行うように設定するパルス信号Pを備えて構成されている。
 戻し移動設定部193による周期的なパルス状の指令となる前記反加工方向に移動させる移動指令のパルス信号は、各変化点Aから復動F”が開始されるような周期を有し、まず、主軸位相120°のタイミングで、刃先は、反加工方向への移動の指令(パルス信号の下向きに凸形状の部分)によって、変化点A1から変化点B1(主軸位相240°の位置)への復動F”を行う。
 一方、刃先は、戻し移動設定部193による反加工方向への移動の指令がない場合は、単に往路送り移動に沿って変化点Bから変化点Aに移動するため、図7Aに示すように、変化点B1から変化点A2(主軸位相360°の位置)への往動F’を行う。
 次いで、主軸位相360°のタイミングで反加工方向への移動が指令され、変化点A2と変化点B2(主軸位相480°の位置)とを通る復動F”が行われる。変化点A1と変化点B2が一致することによって、空振り動作になって切屑が切断される。
 以上が繰り返され、図7Bに示すように、変化点B2と変化点A3(主軸位相540°の位置)とを通る往動F’と、変化点A3と変化点B3(主軸位相720°の位置)とを通る復動F”が行われ、変化点A2と変化点B3が一致すると、切屑が切断される。
 以上により、切削工具130を、往路送り移動と戻し移動との合成移動によって前記振動を伴いながら送ることができる。特に戻り位置算出部191、往路送り設定部192、戻し移動設定部193により、切削工具130の前記振動を、予め定められる送り量Fに応じて自動的に設定することができ、送り量Fに応じた前記振動を伴う切削加工を容易に行うことができる。
 振動回数Dは1未満に設定可能である。図8は、振動回数Dが0.5(回/r)の例を示す。この切削加工に際しても、加工プログラムでの指定等により、主軸回転数や、送り量Fが予め指定される。
 送り量Fが指定されると、図8に示されるように、実質送りラインGが定まる(図8に1点鎖線で示す)。切削工具130は、1振動完了時に実質送りラインG上に到達し、復動から往動に切り替わる。
 主軸110の位相を横軸方向とし、切削工具130の加工送り方向の位置を縦軸としたグラフの図8に示した例では、主軸110の複数回転(この例では2回転)に対して切削工具130が1回振動している。切削工具130の移動軌跡は、往動と復動とを等速とし、主軸110の1回転目では往動して前進し、主軸110の複数回転のうちの最後の1回転(この例では主軸110の2回転目)のうちの180°の位置で往動から復動に切り替わり、実質送りラインGに向けて後退する。切削工具130が前進・後退する間の主軸回転量を、工具1振動あたりの主軸回転量Eとする。また、切削工具130が後退する間の主軸回転量、換言すると、切削工具130が往動から復動に切り替わった時点から実質送りラインGに到達するまでに要する主軸回転量を、切削工具130の後退時(復動時)の主軸回転量Rとする。
 振動の条件として、例えば加工プログラムで、Rに続く値(引数R)で後退時の主軸回転量を指定し、Eに続く値(引数E)で工具1振動あたりの主軸回転量を予め指定することができる。
 工具1振動あたりの主軸回転量Eは、振動回数Dの逆数であり、図8の例では2.0(r/回)である。戻り位置算出部191は、1振動完了時の主軸回転量Eおよび送り量Fに基づいて、実質送りラインG上の主軸回転量Eに応じた主軸位相の位置を戻り位置として算出する。
 図8に、2回の振動における戻り位置を、復動から往動に切り替わる方向変化点B1,B2として示す。図8の振動波形をワーク基準で表すと、1振動完了時における切削工具130の戻り位置は、図9Aに1点鎖線で示した実質送りラインG上の主軸1回転分の角度(360°)に主軸回転量Eを乗じた主軸位相の位置にある。図9Bに示すように、参考例2において変化点B1は主軸位相720°の位置にある。以降、各変化点は、ワークWの2回転分の角度を1間隔とした実質送りラインG上の位置となり、参考例2の場合、実質送りラインG上の変化点B2は主軸位相1440°の位置にある。戻り位置算出部191は以上のように、1振動完了時の主軸回転量Eと送り量Fとに基づいて各戻り位置の算出を行うことができる。
 参考例2では、後退時の主軸回転量Rは0.5(回転)であり、復動の開始から終了までに180°の回転を要する。このため、往動から復動に切り替わる方向変化点A1は、図9Bに示すように、戻り位置の主軸位相(720°)から主軸回転量Rに相当する角度分戻った主軸位相(540°)にある。
 参考例2においては、往動と復動が等速であるため、往路送り設定部192は、主軸位相540°のラインCを対称の軸とし、変化点B1に対して線対称となる点を対称点B1’として設定し、主軸位相0°と対称点B1’とを通る直線を往路送り移動に設定し、制御部181は刃先を往路送り移動に沿って移動させる往路送り指令を出力する。
 図9Bに示すように、変化点A1は、主軸位相0°と対称点B1’とを通る直線上の主軸位相540°の位置にあり、換言すると変化点A1は、送り量F、後退時の主軸回転量R、1振動完了時の主軸回転量Eをパラメータ(変化点設定値)として定められ、往路送り設定部192は、前記変化点設定値に基づいて往路送り移動の設定を行う。
 以降、各変化点Aは、1振動完了時の主軸回転量Eに応じた角度毎の主軸位相の位置にあるため、各対称点B’は、各変化点Bに対応する各変化点Aの主軸位相のラインを対称の軸とし、各変化点Bに対して線対称となる点に定められる。参考例2の場合、例えば、対称点B2’は、変化点B2になる主軸位相1440°から360°前の位置(主軸位相1080°の位置)にあり、例えば、変化点A2は、変化点B2になる主軸位相1440°から180°前の位置(主軸位相1260°の位置)にある。
 図9Cに示すように、方向変化点B1が主軸位相720°の位置にあるため、戻し移動設定部193の周期的なパルス状の指令となる前記反加工方向に移動させる移動指令のパルス信号Pは、刃先が変化点A1から変化点B1に戻るように、送り方向(図9Cのグラフの縦軸方向)に対して逆向きとなる下向きに凸形状の波形(図中に2点鎖線で示す)を前記反加工方向に移動させる移動指令として出力する信号として設定される。パルス信号Pの凸形状の大きさは、送り方向で見たA1,B1間の距離に応じて定めることができる。
 戻し移動設定部193は、往路送り移動と戻し移動との合成移動によって、刃先が図9Dに示すように、変化点A1と変化点B1とを結ぶ復動F”を行うように設定するパルス信号Pを備えて構成されている。
 パルス信号は、各変化点Aから復動F”が開始されるような周期を有し、主軸位相540°のタイミングで、刃先は、反加工方向への移動の指令(パルス信号の下向きに凸形状の部分)によって、変化点A1から変化点B1(主軸位相720°の位置)への復動F”を行う。復動F”が変化点B1で往動F’に交差することによって、切屑が切断される。
 一方、刃先は、戻し移動設定部193による反加工方向への移動の指令がない場合は、単に往路送り移動に沿って変化点Bから変化点Aに移動するため、図10Aに示すように、変化点B1から変化点A2(主軸位相1260°の位置)への往動F’を行う。
 次いで、主軸位相1260°のタイミングで反加工方向への移動が指令され、図10Bに示すように、変化点A2と変化点B2(主軸位相1440°の位置)とを通る復動F”が行われる。復動F”が変化点B2で往動F’に交差することによって、切屑が切断される。
 以上により、切削工具130を、往路送り移動と戻し移動との合成移動によって前記振動を伴いながら送ることができる。特に戻り位置算出部191、往路送り設定部192、戻し移動設定部193により、切削工具130の前記振動を、予め定められる送り量Fに応じて自動的に設定することができ、送り量Fに応じた前記振動を伴う切削加工を容易に行うことができる。
 上記参考例1,2では、主軸110を回転させ、かつ、Z軸方向に送る例を挙げて説明した。しかし、本発明はこの例に限定されるものではない。例えば、主軸110が回転し、切削工具130をZ軸方向に送る場合や、切削工具130が回転し、主軸110をZ軸方向に送る場合、主軸110を固定し、切削工具130を回転させ、かつ、Z軸方向に送る場合等にも同様の効果を得ることができる。Z軸方向送り機構が本発明の送り手段に相当する。また参考例2の工具1振動あたりの主軸回転量Eは、必ずしも2回転、3回転等の整数回転数だけでなく、1回転(360度)を超える回転角度に相当する数に設定することもできる。
 なお戻し移動設定部193のパルス信号Pは、切削工具130を、変化点Aの主軸位相まで加工方向に移動させる指令と変化点Aの主軸位相から反加工方向に移動させる指令とを繰り返すような信号とすることもできる。この場合往路送り設定部192は、パルス信号Pに基づく刃先の加工方向への移動(上記変化点Aの主軸位相まで加工方向に移動させる指令による加工方向への移動)と、所定の往路送り指令による加工方向への移動との合成移動が往路送り移動となるように、往路送り移動を設定することができる。所定の往路送り指令は、例えば刃先を実質送りラインG上に移動させる往路送り指令とすることができる。
 具体的には、図11Aは、振動回数Dが0.5(回/r)の例を示す。送り量Fが指定されると、実質送りラインGが定まる(図中に1点鎖線で示す。本発明の工具の送りラインに相当する)。また、工具1振動あたりの主軸回転量Eおよび送り量Fに基づいて、実質送りラインG上の戻り位置(変化点B1)が算出される。
 切削工具130の後退時(復動時)の主軸回転量Rが0.5(回転)の場合、往動から復動に切り替わる方向変化点A1は主軸位相540°にある。この主軸位相540°のラインCを対称の軸とし、変化点B1に対して線対称となる対称点B1’が設定されると、主軸位相0°と対称点B1’とを通る直線が往路送り移動に設定される。
 所定の往路送り指令を、刃先を実質送りラインG上に移動させる往路送り指令とすると、図11Bに示すように、主軸位相540°の位置において、実質送りラインGと変化点A1との間には、位置ずれC’がある。パルス信号Pは、この位置ずれC’分を得てから実質送りラインGに戻るように、送り方向(図11Bのグラフの縦軸方向)に順向きとなる上向きに凸形状の波形(図11Cに2点鎖線で示す)に設定される。
 往路送り設定部192は、このパルス信号Pのうち変化点A1の主軸位相540°までの加工方向に移動させる指令による加工方向への移動と、送り量Fで定まる加工方向への移動(実質送りラインG)との合成移動を往路送り移動(F’で示す)とする。
 パルス信号Pは、主軸位相0°から、この主軸位相0°と対称点B1’とを通る直線が開始されるような周期を有しており、刃先は、主軸位相0°のタイミングで主軸位相0°から変化点A1への往動F’を行い、主軸位相540°のタイミングで往動F’上の変化点A1から復動F”を行う。以降、パルス信号Pによって、変化点Bの主軸位相から変化点Aの主軸位相まで加工方向に移動させる指令と、変化点Aの主軸位相から変化点Bの主軸位相まで反加工方向に移動させる指令とが繰り返される。
 パルス信号Pの加工方向に移動させる指令による加工方向への移動と、往路送り指令による加工方向への移動は、合成することによって往路送り移動となれば、いかなる移動とすることもできるが、往路送り指令を、刃先を実質送りラインG上に移動させる往路送り指令とすることによって、実質送りラインGは前記振動の伴うことのない一般的な切削加工時(慣用切削時)の送り量Fで定まるラインと同一となるため、慣用切削に、パルス信号Pを加えることにより、往動F’を得ることができる。
 なお、参考例3では、変化点A1を送り量F、後退時の主軸回転量R、1振動完了時の主軸回転量Eから定める例を挙げて説明したが、パルス信号Pは、変化点A1を送り量F、振幅送り比率Q、振動回数Dから定める場合にも当然に適用可能である。
(本実施例)
 また戻し移動設定部193のパルス信号Pは、正弦波状に形成することもできる。
 具体的には、図12Aは、振動回数Dが1.5(回/r)の例を示す。送り量Fが指定されると、実質送りラインGが定まる(図中に1点鎖線で示す。本発明の工具の送りラインに相当する)。また、振動回数Dが1.5(回/r)の場合、実質送りラインG上の戻り位置(変化点B1)は主軸位相240°であり、往動から復動に切り替わる方向変化点A1は主軸位相120°になる。
 参考例3と同様に、所定の往路送り指令を、刃先を実質送りラインG上に移動させる往路送り指令とすると、図12Bに示すように、主軸位相120°の位置において、実質送りラインGと変化点A1との間には、位置ずれC’がある。パルス信号Pは、この位置ずれC’分を得てから実質送りラインGに戻るように、正弦波状の波形(図12Cに2点鎖線で示す)に設定される。
 本実施例は、実質送りラインGと、凹凸を有した正弦波状の曲線との合成である。刃先が変化点A1の主軸位相120°で正弦曲線上の凸形状の頂上に到達してから凹形状の底に向かうように、図12Cに示す変曲点(正弦波状の曲線が凸から凹に変わる点(曲線の曲率の符号が正から負に変わる点))a1の主軸位相α°を図12Aに示す変化点A1の主軸位相120°とは異なる値(例えば120°よりも小さな値)にしている。さらに、刃先が変化点B1の主軸位相240°で正弦曲線上の凹形状の底に到達してから凸形状の頂上に向かうように、図12Cに示す変曲点(正弦波状の曲線が凹から凸に変わる点(曲線の曲率の符号が負から正に変わる点))b1の主軸位相β°を図12Aに示す変化点B1の主軸位相240°とは異なる値(例えば240°よりも大きな値)にしている。
 往路送り設定部192は、この正弦波状の波形のうち変化点A1の主軸位相120°までの加工方向に移動させる指令による加工方向への移動と、送り量Fで定まる加工方向への移動(実質送りラインG)との合成移動を往路送り移動(図12AにF’で示す)とする。
 またパルス信号Pは、主軸位相0°よりも(β-240)°だけ遅い位置から、この正弦波状の凹形状が開始されるような周期を有しており、刃先は、主軸位相0°のタイミングで主軸位相0°から変化点A1への往動(凹形状の右側部分の移動(凸形状の左側部分の移動))F’を行い、主軸位相120°のタイミングで往動F’上の変化点A1から復動(凸形状の右側部分の移動(凹形状の左側部分の移動))F”を行う。このF”は、変化点B1の主軸位相240°で正弦曲線上の凹形状の底に到達する。以降、パルス信号Pによって、変化点Bの主軸位相から変化点Aの主軸位相まで加工方向に移動させる指令と、変化点Aの主軸位相から変化点Bの主軸位相まで反加工方向に移動させる指令とが繰り返される。
100 ・・・ 工作機械
110 ・・・ 主軸
110A・・・ 主軸台
120 ・・・ チャック
130 ・・・ 切削工具
130A・・・ 工具台
150 ・・・ X軸方向送り機構
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
180 ・・・ 制御装置
181 ・・・ 制御部
182 ・・・ 数値設定部
183 ・・・ 記憶部
190 ・・・ モータ制御部
191 ・・・ 戻り位置算出部
192 ・・・ 往路送り設定部
193 ・・・ 戻し移動設定部

Claims (4)

  1.  相対的に回転する工具と材料とを送り動作させる送り手段と、前記回転と前記送り手段の動作とを制御する制御手段とを備え、該制御手段が、前記工具による前記材料の加工方向への往路送り移動と前記加工方向とは異なる反加工方向への戻し移動とを合成することによって、前記材料に対して前記工具を振動させながら切削加工を行うように制御を行う工作機械の制御装置において、
     前記工具あるいは材料の、1回転に対して予め定められる振動回数および送り量に基づいて、1振動完了時における前記工具の戻り位置を算出する戻り位置算出手段と、
     前記加工方向から前記反加工方向への変化点を定める変化点設定値に基づいて前記往路送り移動を設定し、前記工具を前記定めた変化点に到達させる往路送り設定手段と、
     1振動完了時の前記工具が前記算出した戻り位置に到達するように、前記戻し移動の指令として出力されるパルス状の信号を設定する戻し移動設定手段と
    を備え、
     前記戻し移動設定手段は、前記加工方向に工具を移動させる指令と、前記戻し移動の指令とからなるパルス状の信号を設定し、前記往路送り設定手段は、前記戻し移動設定手段に基づく前記加工方向への移動と前記往路送り移動との合成移動によって、前記工具を前記変化点に到達させ、
     前記パルス状の信号が、変曲点を有する正弦波状に形成されており、前記変化点に到達させるための前記変曲点の位相が、前記変化点の位相とは異なる値に設定される、工作機械の制御装置。
  2.  前記振動回数が1以上である、請求項1に記載の工作機械の制御装置。
  3.  前記振動回数が1未満である、請求項1に記載の工作機械の制御装置。
  4.  請求項1~3のいずれか一項に記載の工作機械の制御装置を備えた工作機械。
PCT/JP2019/051601 2019-01-10 2019-12-27 工作機械の制御装置および工作機械 WO2020145213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980082031.7A CN113168156B (zh) 2019-01-10 2019-12-27 机床的控制装置以及机床
EP19908109.2A EP3851927A4 (en) 2019-01-10 2019-12-27 CONTROL DEVICE FOR MACHINE TOOL AND MACHINE TOOL
US17/291,414 US12090596B2 (en) 2019-01-10 2019-12-27 Control device for machine tool and machine tool
KR1020217013396A KR102834822B1 (ko) 2019-01-10 2019-12-27 공작 기계의 제어 장치 및 공작 기계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019002685A JP7264643B2 (ja) 2019-01-10 2019-01-10 工作機械の制御装置および工作機械
JP2019-002685 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020145213A1 true WO2020145213A1 (ja) 2020-07-16

Family

ID=71521485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051601 WO2020145213A1 (ja) 2019-01-10 2019-12-27 工作機械の制御装置および工作機械

Country Status (6)

Country Link
US (1) US12090596B2 (ja)
EP (1) EP3851927A4 (ja)
JP (1) JP7264643B2 (ja)
CN (1) CN113168156B (ja)
TW (1) TWI808294B (ja)
WO (1) WO2020145213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4338869A4 (en) * 2021-05-12 2024-11-13 Star Micronics Co., Ltd. Machine tool

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195110B2 (ja) * 2018-10-26 2022-12-23 シチズン時計株式会社 工作機械及び制御装置
JP7214568B2 (ja) * 2019-05-29 2023-01-30 シチズン時計株式会社 工作機械及びこの工作機械の制御装置
JP7516035B2 (ja) * 2019-12-10 2024-07-16 シチズン時計株式会社 加工装置、加工方法および切削工具
US20220355387A1 (en) * 2021-04-27 2022-11-10 Northwestern University Precision Freeform Structuring for the Fabrication of Coded Lenses
WO2023281627A1 (ja) 2021-07-06 2023-01-12 Dmg森精機株式会社 表示装置、工作機械、および表示方法
US12311449B2 (en) * 2022-03-30 2025-05-27 Iscar, Ltd. Method for cutting a thread on a rotating workpiece
KR20240018148A (ko) * 2022-08-02 2024-02-13 한화정밀기계 주식회사 가공칩 분절을 위한 가공 제어장치 및 이의 제어방법
WO2025027766A1 (ja) 2023-07-31 2025-02-06 三菱電機株式会社 数値制御装置および数値制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852083A (ja) 1971-11-04 1973-07-21
JPS5823082B2 (ja) * 1976-11-30 1983-05-13 松下電工株式会社 ヒ−タ
JP2006312223A (ja) * 2005-05-09 2006-11-16 Toyota Motor Corp 切削加工装置、及び方法
US20090107308A1 (en) * 2007-10-16 2009-04-30 Woody Bethany A Methods and systems for chip breaking in turning applications using cnc toolpaths
WO2015146945A1 (ja) * 2014-03-26 2015-10-01 シチズンホールディングス株式会社 工作機械の制御装置及びこの制御装置を備えた工作機械
WO2016031897A1 (ja) * 2014-08-29 2016-03-03 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
WO2019026768A1 (ja) * 2017-08-01 2019-02-07 シチズン時計株式会社 工作機械の制御装置および工作機械

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050401A (fr) * 1951-02-05 1954-01-07 Motch Merryweather Machinery Ensemble combiné de dispositif de vérification et de machine-outil
GB732279A (en) * 1953-02-28 1955-06-22 Herbert Ltd A Control means for a machine tool which is to operate on a predetermined cycle
GB1478313A (en) * 1973-06-11 1977-06-29 Cranfield Inst Of Tech Machine tools
GB2082346B (en) * 1980-07-04 1984-05-16 Komatsu Mfg Co Ltd Method and device for automatically retreating and returning a tool in a machine tool
GB8316428D0 (en) * 1983-06-16 1983-07-20 Ae Plc Machine tools
JP2539688B2 (ja) * 1989-11-02 1996-10-02 東芝機械株式会社 移動体の早送り速度制御方法
JPH0463668A (ja) * 1990-07-03 1992-02-28 Brother Ind Ltd 超音波加工機の振幅制御装置
JPH1015701A (ja) * 1996-07-04 1998-01-20 Mitsubishi Materials Corp 振動バイトによる切削方法
JP3558508B2 (ja) * 1997-10-28 2004-08-25 東芝機械株式会社 Nc工作機械の制御装置
JP2001150201A (ja) * 1999-11-22 2001-06-05 Mitsubishi Materials Corp 振動工具による切削方法及び切削装置
JP4503148B2 (ja) * 2000-07-04 2010-07-14 東芝機械株式会社 数値制御工作機械の送り機構の補正装置および数値制御工作機械
JP2005144580A (ja) * 2003-11-13 2005-06-09 Hideyuki Ohashi 加工方法及び装置
JP2008126391A (ja) * 2006-11-24 2008-06-05 Towa Corp 構造物の加工方法及び装置
JP5493871B2 (ja) * 2008-02-20 2014-05-14 ブラザー工業株式会社 送り駆動装置のバックラッシ量検知方法、及び送り駆動装置のバックラッシ量検知装置
JP5183399B2 (ja) * 2008-09-29 2013-04-17 三菱電機株式会社 数値制御装置
JP4563507B1 (ja) * 2010-02-10 2010-10-13 西島株式会社 丸鋸切断機
JP5594685B2 (ja) * 2010-03-30 2014-09-24 国立大学法人名古屋大学 工具軌跡生成装置、工具軌跡算出方法および工具軌跡生成プログラム
JP5033929B1 (ja) * 2011-11-10 2012-09-26 ハリキ精工株式会社 工作機械
JP6158730B2 (ja) * 2014-03-03 2017-07-05 Dmg森精機株式会社 表面形状測定装置およびそれを備えた工作機械
WO2015146946A1 (ja) * 2014-03-26 2015-10-01 シチズンホールディングス株式会社 工作機械の制御装置及びこの制御装置を備えた工作機械
EP2957972B1 (en) * 2014-04-23 2018-06-13 Mitsubishi Electric Corporation Numerical control apparatus
WO2016038687A1 (ja) * 2014-09-09 2016-03-17 三菱電機株式会社 数値制御装置
ES2813968T3 (es) * 2014-09-22 2021-03-25 Citizen Watch Co Ltd Máquina herramienta y aparato de conrol de la máquina herramienta
JP6470085B2 (ja) * 2015-03-26 2019-02-13 シチズン時計株式会社 工作機械及びこの工作機械の制御装置
JP2016194860A (ja) * 2015-04-01 2016-11-17 東芝機械株式会社 振動切削加工装置および振動切削加工方法
TWI693120B (zh) * 2015-09-10 2020-05-11 日商西鐵城時計股份有限公司 工具機的控制裝置以及工具機
WO2017051745A1 (ja) * 2015-09-24 2017-03-30 シチズン時計株式会社 工作機械の制御装置及びこの制御装置を備えた工作機械
US10744611B2 (en) * 2015-09-24 2020-08-18 Citizen Watch Co., Ltd. Machine tool control device and machine tool equipped with said control device
JP6732567B2 (ja) * 2016-06-29 2020-07-29 シチズン時計株式会社 工作機械の制御装置および工作機械
JP6744815B2 (ja) * 2016-12-15 2020-08-19 シチズン時計株式会社 工作機械の制御装置および工作機械
JP6967357B2 (ja) * 2017-03-01 2021-11-17 シチズン時計株式会社 工作機械の制御装置および工作機械
JP6994838B2 (ja) * 2017-03-27 2022-01-14 シチズン時計株式会社 工作機械の制御装置および工作機械
KR20190134697A (ko) * 2017-03-29 2019-12-04 시티즌 도케이 가부시키가이샤 공작 기계의 제어 장치 및 공작 기계
JP6503000B2 (ja) * 2017-04-18 2019-04-17 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP6503001B2 (ja) * 2017-04-18 2019-04-17 ファナック株式会社 揺動切削を行う工作機械の制御装置
US20190388977A1 (en) * 2018-06-25 2019-12-26 Hamilton Sundstrand Corporation Hard turning systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852083A (ja) 1971-11-04 1973-07-21
JPS5823082B2 (ja) * 1976-11-30 1983-05-13 松下電工株式会社 ヒ−タ
JP2006312223A (ja) * 2005-05-09 2006-11-16 Toyota Motor Corp 切削加工装置、及び方法
US20090107308A1 (en) * 2007-10-16 2009-04-30 Woody Bethany A Methods and systems for chip breaking in turning applications using cnc toolpaths
WO2015146945A1 (ja) * 2014-03-26 2015-10-01 シチズンホールディングス株式会社 工作機械の制御装置及びこの制御装置を備えた工作機械
WO2016031897A1 (ja) * 2014-08-29 2016-03-03 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
WO2019026768A1 (ja) * 2017-08-01 2019-02-07 シチズン時計株式会社 工作機械の制御装置および工作機械

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4338869A4 (en) * 2021-05-12 2024-11-13 Star Micronics Co., Ltd. Machine tool

Also Published As

Publication number Publication date
US20210370455A1 (en) 2021-12-02
US12090596B2 (en) 2024-09-17
TW202027905A (zh) 2020-08-01
CN113168156B (zh) 2024-01-02
EP3851927A4 (en) 2022-06-08
TWI808294B (zh) 2023-07-11
JP7264643B2 (ja) 2023-04-25
EP3851927A1 (en) 2021-07-21
KR20210113158A (ko) 2021-09-15
JP2020112985A (ja) 2020-07-27
CN113168156A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2020145213A1 (ja) 工作機械の制御装置および工作機械
JP6416217B2 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
JP7161349B2 (ja) 工作機械の制御装置および工作機械
JP6343676B2 (ja) 工作機械及びこの工作機械の制御装置
JP6470085B2 (ja) 工作機械及びこの工作機械の制御装置
WO2015146946A1 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
WO2017051745A1 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
JP6289766B2 (ja) 工作機械の制御装置、工作機械
JP6621696B2 (ja) 工作機械及びその制御装置
JP6732494B2 (ja) 工作機械とその制御装置
JP6994838B2 (ja) 工作機械の制御装置および工作機械
JP2021194721A (ja) 工作機械の制御装置および工作機械
JP6517060B2 (ja) 工作機械及びこの工作機械の制御装置
KR102834822B1 (ko) 공작 기계의 제어 장치 및 공작 기계
JP2020013355A (ja) 工作機械の制御装置および工作機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019908109

Country of ref document: EP

Effective date: 20210415

NENP Non-entry into the national phase

Ref country code: DE