[go: up one dir, main page]

WO2020135341A1 - 一种辅助小区激活的方法和通信装置 - Google Patents

一种辅助小区激活的方法和通信装置 Download PDF

Info

Publication number
WO2020135341A1
WO2020135341A1 PCT/CN2019/127468 CN2019127468W WO2020135341A1 WO 2020135341 A1 WO2020135341 A1 WO 2020135341A1 CN 2019127468 W CN2019127468 W CN 2019127468W WO 2020135341 A1 WO2020135341 A1 WO 2020135341A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
cell
quasi
terminal device
downlink
Prior art date
Application number
PCT/CN2019/127468
Other languages
English (en)
French (fr)
Inventor
王晓娜
管鹏
唐小勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19905642.5A priority Critical patent/EP3897046B1/en
Publication of WO2020135341A1 publication Critical patent/WO2020135341A1/zh
Priority to US17/360,123 priority patent/US12262313B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method and communication device for assisting cell activation.
  • CA carrier aggregation
  • the high-frequency auxiliary cell may only be used for data transmission offloading.
  • the high-frequency auxiliary cell may be deactivated when there is no data transmission in the high-frequency auxiliary cell.
  • the terminal equipment After the terminal equipment receives the high frequency auxiliary cell activation signaling issued by the network device, it will perform synchronous signal broadcast channel block (synchronous signal/PBCH block, SSB) signal discovery and measurement of the high frequency auxiliary cell. Since high-frequency communication is based on data reception and transmission of simulated narrow beams, the terminal device needs to scan and receive SSB signals using different receive beams without any beam measurement information until an SSB signal that meets a certain signal quality is detected, based on The detected SSB signal and radio resource control (RRC) configuration information complete the uplink and downlink timing synchronization and frequency synchronization of the terminal device in the high-frequency auxiliary cell, and complete the activation of the high-frequency auxiliary cell. When there are multiple receiving beams in the high-frequency auxiliary cell, the terminal device takes too much time to determine the receiving beam, which causes the activation delay of the auxiliary cell to be too long, which reduces the communication quality and reliability.
  • RRC radio resource control
  • the present application provides a method and a communication device for auxiliary cell activation, which can reduce the activation delay of the auxiliary cell.
  • a method for assisting cell activation is provided.
  • the method provided in the first aspect may be performed by a terminal device or a chip configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device receives activation signaling of the auxiliary cell sent by the network device, the activation signaling includes at least one first quasi-co-location indication information, and the terminal device activates the auxiliary cell according to the activation signaling .
  • the first quasi-co-location indication information includes a transmission configuration indication state identifier, a pilot resource set identifier, or spatial relationship indication information.
  • the method further includes: the terminal device uses the beam indicated by the first quasi-co-location indication information to receive a downlink physical channel and/or a downlink signal in the secondary cell, and/or, an uplink physical Channel and/or uplink signal transmission.
  • the terminal device receives the second quasi-co-location indication information sent by the network device, and further, the terminal device uses the beam indicated by the second quasi-co-location indication information to perform a downlink physical channel in the secondary cell And/or downlink signal reception, and/or, uplink physical channel and/or uplink signal transmission.
  • the activation signaling further includes indication information of a plurality of component carriers, each of the at least one first quasi-co-location indication information and the plurality of members respectively Corresponding to one or a group of component carriers in the carrier.
  • the first quasi-co-location indication information includes a transmission configuration indication state identifier, a pilot resource set identifier, or spatial relationship indication information.
  • the method before the terminal device receives the auxiliary cell activation signaling generated by the network device, the method further includes: the terminal device receives the first indication information sent by the network device, and the first indication information is used to indicate The downlink timing of the primary cell and the secondary cell is the same, or the time advance group TAG of the primary cell and the secondary cell is the same.
  • the terminal device performs activation of the auxiliary cell according to the activation signaling sent by the network device and including at least one first quasi-colocation indication information.
  • the activation delay of the auxiliary cell is reduced, and the communication quality and reliability are improved.
  • a method for assisting cell activation is provided.
  • the method provided in the second aspect may be performed by a network device or a chip configured in the network device, which is not limited in this application.
  • the method includes: the network device generates activation signaling of the auxiliary cell, the activation signaling includes at least one first quasi-co-location indication information, and the network device sends the activation signaling.
  • the first quasi-co-location indication information is used to instruct the terminal device to receive a downlink physical channel and/or a downlink signal and/or an uplink physical channel and/or an uplink signal during the activation phase of the secondary cell Send beam.
  • the method further includes: the network device sends first quasi-co-location indication information, where the first quasi-co-location indication information is used to indicate that the terminal device receives the first beam indication letter Downlink physical channel and/or downlink signal reception, and/or, uplink physical channel and/or uplink signal transmission.
  • the method further includes: the network device sends second quasi-co-location indication information, where the second quasi-co-location indication information is used to instruct the terminal device to use the second quasi-co-location indication information
  • the beam performs downlink physical channel and/or downlink signal reception and/or uplink physical channel and/or uplink signal transmission in the auxiliary cell.
  • the activation signaling further includes indication information of a plurality of component carriers, each of the at least one first quasi-co-location indication information and the plurality of members respectively Corresponding to one or a group of component carriers in the carrier.
  • the first quasi-co-location indication information includes a transmission configuration indication state identifier, a pilot resource set identifier, or spatial relationship indication information.
  • the method further includes: the network device sends first indication information, where the first indication information is used to indicate that the downlink timing of the primary cell and the secondary cell are the same, or the time between the primary cell and the secondary cell The group TAG is the same in advance.
  • a method for assisting cell activation is provided.
  • the method provided in the third aspect may be performed by a terminal device or a chip configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device receives radio resource control RRC configuration signaling, and the RRC configuration signaling includes: synchronous broadcast signal block SSB resource information and quasi-co-location indication information of the SSB resource; The address indication information is used to activate the auxiliary cell.
  • the terminal device receives activation signaling of the auxiliary cell; wherein, the terminal device performs activation of the auxiliary cell according to the quasi-co-location indication information, including: the terminal device according to the activation signaling and the The quasi-co-location indication information activates the secondary cell.
  • the terminal device receives second indication information, which is used to indicate that the downlink timing of the primary cell and the secondary cell are the same, and/or the time advance group TAG of the primary cell and the secondary cell the same.
  • a method for assisting cell activation is provided.
  • the method provided in the fourth aspect may be performed by a network device or a chip configured in the network device, which is not limited in this application.
  • the method includes: the network device generates radio resource control RRC configuration signaling, the RRC configuration signaling includes: synchronous broadcast signal block SSB resource information and quasi co-location indication information of the SSB resource; the network device sends the RRC configuration Signaling.
  • the method further includes: the network device sends activation signaling of the auxiliary cell.
  • the network device sends second indication information, which is used to indicate that the downlink timing of the primary cell and the secondary cell are the same, and/or the time advance group TAG of the primary cell and the secondary cell the same.
  • a communication device including a unit for performing each step in the method of the first aspect or any possible implementation manner of the first aspect, or including a third aspect or the third aspect A unit of each step in the method in any possible implementation manner.
  • a communication device including a unit for performing each step in the method of the second aspect or any possible implementation manner of the second aspect, or including performing the fourth aspect or the fourth aspect A unit of each step in the method in any possible implementation manner.
  • a communication device is provided.
  • the structure of the communication device includes a processor.
  • the processor is configured to support the communication device to perform the functions in the first to fourth aspects and various implementations thereof.
  • the communication device may further include a transceiver to support the communication device to receive Or send a message.
  • the communication device may further include a memory, which is used to couple with the processor and store necessary program instructions and data in the communication device.
  • the communication device includes a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device performs the first to fourth aspects and each of the above Any communication method in one implementation.
  • a computer program product includes a computer program, and when executed by a processor, the computer program is used to perform communication in any possible implementation manner of the first aspect to the fourth aspect Method The method in any possible implementation.
  • a computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed, it is used to execute any possible implementation manner in the first aspect to the fourth aspect.
  • the third aspect or any possible implementation of the third aspect In the third aspect or any possible implementation of the third aspect.
  • a computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed, it is used to execute the first aspect or any possible implementation manner of the first aspect.
  • Method, or perform the method in the second aspect or any possible implementation manner of the second aspect, or perform the method in the third aspect or any possible implementation manner of the third aspect, or perform the fourth aspect or fourth aspect In any possible implementation.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of this application
  • Figures 2 and 3 are two formats of existing MAC CE CE auxiliary cell activation signaling
  • FIG. 4 is a schematic flowchart of an auxiliary cell activation method provided by an embodiment of the present application.
  • 5 to 7 are three formats of MAC-CE auxiliary cell activation signaling provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an auxiliary cell activation method provided by another embodiment of the present application.
  • 9 to 11 are three formats of MAC-CE auxiliary cell activation signaling provided by another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for activating a secondary cell according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal device applicable to an embodiment of the present application.
  • 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a network device applicable to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communication networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • the terminal device and the like are not limited in this embodiment of the present application.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system for mobile (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile
  • CDMA code division multiple access
  • the base station (base transceiver) (BTS) in the system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system or the evolved base station (evoled) in the LTE system NodeB, eNB or eNodeB), or a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and future Network devices in a 5G network or network devices in a PLMN network that will evolve in the future are not limited in the embodiments of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as it can run the program that records the code of the method provided by the embodiments of the present application to provide according to the embodiments of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CDs), digital universal discs (digital discs, digital discs, DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 includes at least one network device 110 and at least one terminal device 120.
  • the terminal device and the network device can obtain one or more beam pairs with better communication through the beam management process.
  • the beam pairs are ⁇ Bx, B'x> and ⁇ By, B'y>, where Bx stands for The transmission beam of the network device, B'x represents the reception beam of the terminal device, By represents the transmission beam of the terminal device, and B'y represents the reception beam of the network device.
  • Bx stands for The transmission beam of the network device
  • B'x represents the reception beam of the terminal device
  • B'y represents the reception beam of the network device.
  • the transmission beam #1 of the network device and the reception beam #0 of the terminal device are one beam pair, and the transmission beam #2 of the network device and the reception beam #2 of the terminal device are one beam pair.
  • the transmission beam #0 of the terminal device and the reception beam #1 of the network device are one beam pair, and the transmission beam #1 of the terminal device and the reception beam #2 of the network device are one beam pair.
  • the beam alignment of the terminal device 120 and the network device 110 is required for normal communication. Since the terminal device and the network device can each face multiple beam directions, the prerequisite for communication is the correct beam indication. Specifically, in the downlink communication, the network device needs to inform the terminal device of what receive beam should be used to receive the signal sent by the next network device, or notify the terminal device of what signal will be sent by the network device next. In uplink communication, the network device needs to inform the terminal device what transmission beam should be used to transmit the uplink physical channel and/or downlink signal, or notify the terminal device what kind of receive beam the network device will use to receive the signal sent by the terminal.
  • the network device may notify the terminal device that the network device uses the transmit beam #1 for transmission, then the terminal device needs to use the receive beam #0 for reception. Or, the network device uses the transmission beam #1 for transmission, and notifies the terminal device to use the reception beam #0 for reception.
  • the network device may notify the terminal device to use the transmit beam #0 for transmission, then the network device will use the receive beam #1 for reception.
  • the network device may notify the network device that the receive beam used is receive beam #0, so that the terminal device needs to use transmit beam #0 for transmission.
  • a beam is a communication resource.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the technique of forming a beam may be beamforming (beamforming) or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics can be regarded as one beam.
  • One or more antenna ports can be included in a beam to transmit data channels, control channels, and sounding signals.
  • Beams can also be understood as space resources, which can refer to the transmission or reception of precoding vectors with energy transmission directivity.
  • Energy transmission directivity can refer to a certain spatial position, the signal received after the precoding vector for precoding processing has better received power, such as meeting the reception demodulation signal-to-noise ratio, etc.
  • energy transmission directivity can also refer to passing
  • the precoding vector receives the same signal sent from different spatial locations with different received power.
  • the same device (such as a network device or terminal device) can have different precoding vectors, and different devices can also have different precoding vectors, that is, corresponding to different beams.
  • a device can use it at the same time
  • One or more of multiple different precoding vectors that is, one beam or multiple beams can be formed at the same time. From the perspective of transmission and reception, the beam can be divided into a transmission beam and a reception beam.
  • Transmit beam refers to the beam forming technology that transmits beams with directivity through multiple antennas.
  • Receive beam refers to the direction of the received signal is also directed, as far as possible in the direction of the incoming beam of the transmit beam, to further improve the received signal-to-noise ratio and avoid interference between users.
  • the beam can also be called a spatial filter (spatial filter), or a spatial filter (spatial filter) or spatial parameters (spatial parameters).
  • the transmit beam can also be called a spatial domain transmit filter, and the receive beam can also be called a spatial domain receive filter. Device.
  • Beam pairing relationship that is, the pairing relationship between the transmitting beam and the receiving beam, that is, the pairing relationship between the space transmitting filter and the space receiving filter.
  • a large beamforming gain can be obtained by transmitting a signal between a transmission beam and a reception beam having a beam pairing relationship.
  • the sending end and the receiving end can obtain the beam pairing relationship through beam training.
  • the sending end may send the reference signal by beam scanning, and the receiving end may also receive the reference signal by beam scanning.
  • the transmitting end can form beams with different directivities in the space by means of beamforming, and can poll on multiple beams with different directivities to transmit reference signals through beams with different directivities, so that The power of the reference signal to transmit the reference signal in the direction pointed by the transmit beam can be maximized.
  • the receiving end can also form beams with different directivities in space through beamforming, and can poll on multiple beams with different directivities to receive reference signals through beams with different directivities, so that the receiving end receives The power of the reference signal can be maximized in the direction pointed by the receive beam.
  • the receiving end can perform channel measurement based on the received reference signal, and report the measurement result to the sending end through channel state information (Channel State Information, CSI).
  • channel state information Channel State Information
  • the receiving end may report a part of the reference signal resource with a larger reference signal receiving power (reference signal receiving power, RSRP) to the sending end, such as reporting the identifier of the reference signal resource, so that the sending end uses a channel when transmitting data or signaling Transmit and receive signals with better quality beam pairing.
  • RSRP reference signal receiving power
  • Reference signal and reference signal resources The reference signal can be used for channel measurement or channel estimation.
  • the reference signal resource can be used to configure the transmission properties of the reference signal, for example, the location of the time-frequency resource, the port mapping relationship, the power factor, and the scrambling code. For details, reference may be made to the prior art.
  • the transmitting end device may transmit the reference signal based on the reference signal resource, and the receiving end device may receive the reference signal based on the reference signal resource.
  • the channel measurement involved in this application also includes beam measurement, that is, beam quality information is obtained by measuring reference signals, and parameters used to measure beam quality include RSRP, but is not limited thereto.
  • the beam quality can also be based on reference signal reception quality (RSRQ), signal-noise ratio (SNR), signal-to-interference-noise ratio (signal to interference plus noise), SINR, or simply signal interference. Noise ratio) and other parameters.
  • RSRQ reference signal reception quality
  • SNR signal-noise ratio
  • SINR signal-to-interference-noise ratio
  • Noise ratio simply signal interference. Noise ratio
  • the reference signal may include, for example, channel state information reference signal (channel-state information reference (CSI-RS), synchronization signal block (synchronization signal block (SSB)), sounding reference signal (sounding reference signal (SRS), uplink control channel solution PUCCH de-modulation reference signal (PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking signal (phase noise tracking reference (PTRS), physical broadcast channel demodulation reference signal ( physical broadcast channel de-modulation reference (PBCH-DMRS), downlink control channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, cell signal (cell reference (CRS) (NR not available), Fine synchronization signal (tim/frequency tracking reference (TRS) (not LTE) etc.
  • the reference signal resources may include CSI-RS resources (CSI-RS resources), SSB resources (SSB resources), SRS resources (SRS resources), TRS resources, DMRS resources, CRS resources, and TRS resources.
  • SSB may also be referred to as synchronization signal/physical broadcast channel block (SS/PBCH block), and the corresponding SSB resource may also be referred to as synchronization signal/physical broadcast channel block resource.
  • SS/PBCH block resource which can be referred to as SSB resource.
  • each reference signal resource may correspond to an identifier of a reference signal resource, for example, CSI-RS resource identifier (CSI-RS resource indicator, CRI), SSB resource identifier (SSB resource indicator, SSBRI) , SRS resource index (SRS resource index, SRI), TRS resource index (TRS resource index, TRI), DMRS resource index (DMRS resource index, DRI), CRS resource index (CRS resource index, CRSRI).
  • CSI-RS resource identifier CSI-RS resource indicator, CRI
  • SSB resource identifier SSB resource indicator, SSBRI
  • SRS resource index SRS resource index, SRI
  • TRS resource index TRS resource index
  • TRI DMRS resource index
  • DRI DRI
  • CRS resource index CRS resource index
  • the SSB resource identifier may also be called an SSB identifier (SSB index).
  • Antenna port short for port.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to one reference signal port.
  • Antenna port is a logical concept. An antenna port can correspond to one physical transmit antenna or multiple physical transmit antennas. In both cases, the receiver of the terminal will not decompose the signal from the same antenna port.
  • the reference signal (reference) (RS) corresponding to this antenna port defines this antenna port
  • an antenna port corresponding to a de-modulation reference signal (DMRS) is a DMRS port
  • a terminal can obtain a channel estimate of the antenna port according to the reference signal.
  • Each antenna port corresponds to a time/frequency resource grid with its own reference signal.
  • An antenna port is a channel, and the terminal needs to perform channel estimation and data demodulation according to the reference signal corresponding to the antenna port.
  • Quasi-co-location or quasi-co-location.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port with the QCL relationship of the antenna port, or the two antenna ports have the same parameters Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameter can include one or more of the following: delay spread (delay spread), Doppler spread (doppler spread), Doppler frequency shift (doppler shift), average delay (average delay), average gain , Spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle) of departure (AOD), average angle of departure AOD, AOD extension, reception Antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be a decomposition value of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or, antenna ports with the same antenna port number to transmit or receive information within different time and/or frequency and/or code domain resources, and/or have different
  • the antenna port number is the antenna port that transmits or receives information in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: a CSI-RS resource identifier, or an SRS resource identifier, or an SSB resource identifier, or a resource identifier of a preamble sequence transmitted on a physical random access channel (PRACH), or a demodulation reference signal (
  • the demodulation reference (DMRS) resource identifier is used to indicate the beam on the resource.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread;
  • Type B Doppler frequency shift, Doppler expansion
  • Type C Doppler frequency shift, average delay
  • Type D space receiving parameter.
  • QCL The QCL involved in the embodiments of the present application is a type D QCL.
  • QCL can be understood as a QCL of type D, that is, a QCL defined based on spatial reception parameters.
  • the QCL relationship refers to a type D QCL relationship, it can be regarded as an airspace QCL.
  • the antenna port satisfies the spatial domain QCL relationship, between the downlink physical channel and/or downlink signal port and the downlink physical channel and/or downlink signal port, or the uplink physical channel and/or downlink signal port and the uplink physical channel and/or Or the QCL relationship between ports of the downlink signal may be that the two signals have the same AOA or AOD, which is used to indicate that they have the same receive beam or transmit beam.
  • the QCL relationship between the downlink physical channel and/or downlink signal and the uplink physical channel and/or downlink signal or between the uplink physical channel and/or downlink signal and the downlink physical channel and/or downlink signal port may be two signals AOA and AOD have a corresponding relationship, or AOD and AOA of two signals have a corresponding relationship, that is, beam reciprocity can be used to determine an uplink transmit beam according to a downlink receive beam, or a downlink receive beam based on an uplink transmit beam.
  • the two antenna ports are spatial QCL, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent.
  • the receiving end if the two antenna ports are QCL in the air domain, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam includes at least one of the following: the same receive beam, the same transmit beam, and the transmit beam corresponding to the receive beam (corresponding to reciprocal Scenario), the receive beam corresponding to the transmit beam (corresponding to a reciprocal scenario).
  • a signal transmitted on a port with a spatial QCL relationship can also be understood as using the same spatial filter to receive or send a signal.
  • the spatial filter may be at least one of the following: precoding, the weight of the antenna port, the phase deflection of the antenna port, and the amplitude gain of the antenna port.
  • a signal transmitted on a port with an airspace QCL relationship can also be understood as having a corresponding beam pair connection (BPL).
  • the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL
  • the corresponding upstream BPL corresponds to the downstream BPL.
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter indicating the direction information of the reception beam.
  • Quasi-co-location assumption It is assumed that there is a QCL relationship between two ports.
  • the quasi-co-location hypothesis configuration and indication can be used to help the receiver to receive and demodulate the signal.
  • the receiving end can assume that the A port and the B port have a QCL relationship, that is, the large-scale parameters of the signal measured on the A port can be used for signal measurement and demodulation on the B port.
  • the large-scale parameters may include the antenna port parameters described above.
  • Transmission configuration indicator (TCI) status can be used to indicate the QCL relationship between two reference signals.
  • Each TCI state may include the serving cell index (SCI), bandwidth part (BWP) identifier (ID) and reference signal resource identifier, where the reference signal resource identifier may be, for example, the following At least one item: non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS pilot resource set identifier (NZP-CSI-RS- ResourceSetId) or SSB index (SSB-Index).
  • NZP non-zero power
  • NZP-CSI-RS-ResourceId non-zero power CSI-RS reference signal resource identifier
  • NZP-CSI-RS-RS- ResourceSetId non-zero power CSI-RS pilot resource set identifier
  • SSB-Index SSB index
  • the serving cell index, BWP ID and reference signal resource identifier refer to the reference signal resource used during the beam training process and the corresponding serving cell and BWP.
  • the network device sends reference signals through different transmit beams based on different reference signal resources, so the reference signals sent through different transmit beams can be associated with different reference signal resources; the terminal device is based on different reference signal resources
  • the reference signals are received through different receiving beams, so the reference signals received through different receiving beams can also be associated with different reference signal resources.
  • the terminal device can maintain the corresponding relationship between the serving cell index, BWP ID and reference signal resource identifier and the receiving beam, and the network device can maintain the serving cell index, BWP ID and reference signal resource identifier and the transmitting beam Correspondence.
  • the signal resource identifier By referring to the signal resource identifier, the pairing relationship between the receiving beam and the transmitting beam can be established.
  • the terminal device may determine the receive beam based on the TCI state indicated by the network device, and the network device may determine the transmit beam based on the same TCI state.
  • TCI state can be globally configured. In the TCI states configured for different cells and different BWPs, if the indexes of the TCI states are the same, the corresponding configurations of the TCI states are also the same. 7. TCI: Can be used to indicate TCI status.
  • TCI Can be used to indicate TCI status.
  • the network device can configure the TCI state list for the terminal device through high-level signaling (such as RRC messages). For example, the network device can increase the mode list (tci-StatesToAddModList) through the TCI state in the RRC message. ) To configure the TCI status list for the terminal device.
  • the TCI state list may include multiple TCI states. For example, the network device may configure up to 64 TCI states for each BWP in each cell.
  • the structure of TCI is as follows:
  • the TCI may include various parameters, for example, cell number, bandwidth part number, reference signal identification, synchronization signal block identification, quasi-collocation (QCL) type, etc.
  • the network device can activate one or more TCI states through high-level signaling, such as medium access control (media access control element, MAC).
  • the activated TCI state is a subset of the TCI state list configured in the RRC message. For example, the network device may activate up to 8 TCI states for each BWP in each cell.
  • the network device may also indicate a selected TCI state through the TCI field in physical layer signaling (downlink control information (DCI)).
  • DCI downlink control information
  • the DCI can be applied to DCI scheduling physical downlink resources, for example.
  • the configuration information of a TCI state may include the identification of one or two reference signal resources, and the associated QCL type.
  • the terminal device can demodulate the PDCCH or physical downlink shared channel (PDSCH) according to the TCI status indication.
  • the terminal device can know which transmit beam the network device uses to send the signal, and then can determine which receive beam to use to receive the signal according to the beam pairing relationship determined by the channel measurement described above.
  • the terminal device may determine the receiving beam to receive the PDSCH according to the TCI field in the DCI on the physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the terminal device decides the receiving beam of the downlink physical channel and/or the downlink signal or the sending beam of the uplink physical channel and/or the uplink signal based on the TCI status indication; where the downlink physical channel and/or the downlink signal may be the following One or more: synchronization signal, broadcast channel, broadcast signal demodulation signal, synchronization signal broadcast channel block (synchronous signal/PBCH block, SSB), channel state information reference signal (channel state information reference signal (CSI-RS), Cell-specific reference signal (CS-RS), UE-specific reference signal (user-equipment specific reference signal, US-RS), downlink control channel demodulation reference signal (dedicated reference signal (DMRS), downlink data channel solution Adjust the reference signal, any one of the downlink phase noise tracking signal.
  • synchronization signal broadcast channel, broadcast signal demodulation signal, synchronization signal broadcast channel block (synchronous signal/PBCH block, SSB), channel state information reference signal (channel state information reference signal (CSI-RS), Cell-specific reference signal (CS-RS), UE-specific reference
  • the uplink physical channel and/or downlink signal may be one or more of the following: uplink random access sequence, uplink sounding reference signal (SRS), uplink control channel demodulation reference signal, and uplink data channel solution Adjust the reference signal, any one of the upstream phase noise tracking signal.
  • uplink random access sequence uplink sounding reference signal (SRS)
  • SRS uplink sounding reference signal
  • uplink control channel demodulation reference signal uplink control channel demodulation reference signal
  • uplink data channel solution Adjust the reference signal, any one of the upstream phase noise tracking signal.
  • the serving cell indicated in the TCI state and the serving cell scheduled to transmit downlink physical channels and/or downlink signals to the terminal device may not be the same serving cell, for example, the serving cell indicated in the TCI state For cell #0, the configured reference signal is NZP-CSI-RS-ResourceId#0, and the serving cell scheduled for the terminal device to transmit downlink physical channels and/or downlink signals is cell #1.
  • the terminal device can also be based on This TCI state determines the receive beam.
  • the transmission beam of NZP-CSI-RS-ResourceId#0 indicated by the TCI status is the transmission beam of the network device of cell #0, for example, denoted as transmission beam #0.
  • the terminal device may determine the reception beam of the downlink physical channel and/or downlink signal of cell 1# or the transmission beam of the uplink physical channel and/or uplink signal based on the downlink reception beam of cell 0#.
  • the terminal device may directly use the downlink receive beam of the pilot resource NZP-CSI-RS-ResourceId#0 that receives the serving cell 0# to receive the downlink physical channel and/or the downlink signal of the cell #1.
  • the terminal device may determine the downlink physical channel and/or downlink signal of cell #1 according to the direction of the downlink receive beam #0 of the pilot resource NZP-CSI-RS-ResourceId#0 that receives the serving cell 0#.
  • the receiving beam may be, for example, the same main beam pointing angle as receiving beam #0, or the same or similar coverage as the 3dB width of receiving beam #0 beam, or select an omnidirectional receiving beam to receive the downlink physical channel of cell #1 and/or Downlink signal.
  • the terminal device determines the transmission of the uplink physical channel and/or uplink signal of cell #1 according to the direction of the downlink receive beam #0 of the pilot resource NZP-CSI-RS-ResourceId#0 of the receiving service cell 0#
  • the beam may be, for example, the same main beam pointing angle as the receiving beam #0, or the same or similar coverage as the 3dB width of the receiving beam #0 beam, or select an omnidirectional transmission beam to transmit the uplink physical channel and/or downlink of the cell #1 signal.
  • Spatial relationship It can also be called uplink TCI (uplink TCI, UL TCI). Similar to the TCI described above, the spatial relationship can be used to determine the uplink physical channel and/or the transmit beam of the uplink signal. This spatial relationship can be determined by beam training.
  • the reference signal used for beam training may be, for example, an uplink reference signal, such as a sounding reference signal (SRS), or a downlink reference signal, such as the SSB or CSI-RS listed above.
  • SRS sounding reference signal
  • CSI-RS CSI-RS
  • Each spatial relationship may include the serving cell index (ServCellIndex) and the reference signal resource identification.
  • the reference signal resource identifier may be any one of the following: downlink BWP ID (downlink BWP ID) and SSB index (SSB-Index), downlink BWP ID and non-zero power CSI-RS reference signal resource identifier (NZP-CSI-RS- ResourceId), or upstream BWPID and SRS resource identifier (SRS-ResourceId).
  • the serving cell index, BWP ID and reference signal resource identifier refer to the reference signal resource used during the beam training process and the corresponding serving cell and BWP.
  • a spatial relationship is used to determine a transmit beam, that is, a serving cell index, a BWP ID, and a reference signal resource can be used to determine a transmit beam.
  • the terminal device can maintain the corresponding relationship between the serving cell index, BWP ID and reference signal resource identifier and the transmitted beam during the beam training process, and the network device can maintain the serving cell index, BWP ID and reference signal resource during the beam training process Correspondence between identification and receiving beam.
  • the pairing relationship between the transmission beam and the reception beam can be established.
  • the terminal device may determine the transmit beam based on the spatial relationship indicated by the network device, and the network device may determine the receive beam based on the same spatial relationship.
  • each spatial relationship may also include power control information.
  • the power control information may include, for example, at least one of the following: a desired received power, a path loss reference signal, and a path loss compensation parameter ⁇ .
  • the terminal device may determine what transmission power to use to transmit the uplink physical channel and/or the downlink signal based on the power control information.
  • the spatial relationship can be globally configured. In the spatial relations configured for different cells and different BWPs, if the identifiers of the spatial relations are the same, the corresponding configurations of the spatial relations are also the same.
  • the network device may configure a spatial relationship list for the terminal device through high-level signaling (such as RRC messages), and the spatial relationship list may include multiple spatial relationships.
  • the network device may provide each cell for each cell.
  • BWP is configured with up to 64 spatial relationships.
  • the network device can activate one or more spatial relationships through high-level signaling (such as MAC CE).
  • the activated spatial relationship is a subset of the spatial relationship list configured in the RRC message.
  • the network device may activate up to 8 TCI states for each BWP in each cell.
  • the specific way in which the network device activates the spatial relationship through the MAC is the same as the specific way in which the TCI state is activated.
  • the specific way in which the MAC activates the TCI state has been described in detail above. For the sake of brevity, it will not be repeated here.
  • the terminal device may determine the mapping relationship between the uplink physical channel and/or the downlink signal and at least one spatial relationship.
  • the network device may indicate a selected spatial relationship through the SRI (SRS resource) indicator field in physical layer signaling (such as DCI).
  • the DCI may be, for example, a DCI used for scheduling uplink grant resources (uplink grant, UL grant).
  • the terminal device may determine the selected spatial relationship based on the above-mentioned mapping relationship between the uplink physical channel and/or the downlink signal and at least one spatial relationship and the corresponding SRI.
  • the configuration information of a spatial relationship may include identification of one or two reference signal resources, and the terminal device may decide the uplink physical channel and/or uplink signal transmission beam, or the downlink physical channel and the downlink physical channel according to the spatial relationship indication information. /Or the receiving beam of the downlink signal.
  • the configuration information of a spatial relationship may include the identification of one or two reference signal resources, and the associated spatial filtering.
  • the terminal device may transmit signals through spatial filtering corresponding to the SSB index.
  • the spatial filter corresponding to the SSB index may be a spatial filter used to receive the SSB identified by the SSB index during beam training.
  • the terminal device may determine the transmit beam for sending a physical uplink shared channel (physical uplink shared channel, PUSCH) according to the SRI field in the DCI on the PDCCH.
  • a physical uplink shared channel physical uplink shared channel, PUSCH
  • the serving cell indicated in the spatial relationship and the serving cell scheduled for transmitting uplink physical channels and/or downlink signals to the terminal device are not the same serving cell, for example, the serving cell indicated in the spatial relationship is In cell #0, the configured pilot resource is the downlink physical channel and/or downlink signal 0-0# or the uplink physical channel and/or downlink signal 0-1# of cell 0#.
  • the serving cell scheduled for the terminal device to transmit the downlink physical channel and/or downlink signal is cell #1.
  • the terminal device may also determine the transmit beam of the uplink physical channel and/or downlink signal of cell 1#, or downlink based on the spatial relationship. The receiving beam of the physical channel and/or downlink signal.
  • the terminal device may directly use the downlink physical channel receiving the serving cell 0# and/or the downlink receiving beam of the downlink signal 0-0# to receive the downlink physical channel and/or the downlink signal of the cell #1.
  • the terminal device may determine the downlink physical channel and/or downlink signal of cell #1 according to the direction of the downlink physical channel receiving the serving cell 0# and/or the downlink receiving beam #0 of the downlink signal 0-0#.
  • the receiving beam may be, for example, the same main beam pointing angle as receiving beam #0, or the same or similar coverage as the 3dB width of receiving beam #0 beam, or select an omnidirectional receiving beam to receive the downlink physical channel of cell #1 and/or Downlink signal.
  • the terminal device determines the receiving beam of the downlink physical channel and/or downlink signal of cell #1 according to the direction of the sending physical channel 0# of the serving cell 0# and/or the sending beam 0# of the downlink signal 0-1# For example, it may be the same as the main beam pointing angle of transmit beam #0, or the same or close to the 3dB width coverage of transmit beam #0 beam, or select an omnidirectional receive beam to receive the downlink physical channel and/or downlink signal of cell #1 .
  • the terminal device may directly use the transmit beam receiving the uplink physical channel of the serving cell 0# and/or the downlink signal 0-1# to send the uplink physical channel and/or downlink signal of the cell #1.
  • the terminal device may determine the uplink physical channel and/or uplink signal of cell #1 according to the direction of the downlink physical channel of the serving cell 0# and/or the downlink receive beam #0 of the downlink signal 0-0#
  • the transmission beam may be, for example, the same main beam pointing angle as the reception beam #0, or the same or similar coverage as the 3dB width of the reception beam #0 beam, or select an omnidirectional transmission beam to transmit the uplink physical channel of the cell #1 and/or Downlink signal.
  • the terminal device may determine the transmission of the uplink physical channel and/or uplink signal of cell #1 according to the direction of the receiving physical channel #0 of the receiving cell 0# and/or the receiving beam #0 of the downlink signal 0-0#.
  • the beam may be, for example, the same main beam pointing angle as the receiving beam #0, or the same or similar coverage as the 3dB width of the receiving beam #0 beam, or select an omnidirectional transmission beam to transmit the uplink physical channel and/or downlink of the cell #1 signal. This application does not limit this.
  • Cell A cell is described by a higher layer from the perspective of resource management or mobility management or service unit.
  • the coverage of each network device can be divided into one or more serving cells, and the serving cell can be regarded as consisting of a certain frequency domain resource.
  • the cell may be replaced with a serving cell or CC.
  • “cell”, “serving cell” and “CC” are used interchangeably. When the difference is not emphasized, the meaning to be expressed is the same.
  • “Serving Cell Index”, “Serving Cell Identification (ID)”, “Cell Identification (cell ID)” and “CC Identification (CC ID)” are used interchangeably. The meaning is consistent.
  • the cell may be an area within the coverage of the wireless network of the network device.
  • different cells may correspond to different network devices.
  • the network device in cell #1 and the network device in cell #2 may be different network devices, such as base stations. That is to say, cell #1 and cell #2 can be managed by different base stations. In this case, it can be called that cell #1 and cell #2 are co-sited, or that they are co-sited.
  • the network device in cell #1 and the network device in cell #2 may also be different radio frequency processing units of the same base station, for example, a radio remote unit (RRU), that is, cell #1 and cell #2 can be managed by the same base station, has the same baseband processing unit and intermediate frequency processing unit, but has different radio frequency processing units. This application does not specifically limit this.
  • RRU radio remote unit
  • the cell can be divided into the following types:
  • Primary cell An MCG cell that works on the primary frequency band and is used by the UE to perform initial connection or reestablish connection.
  • Secondary Cell If the UE is configured with the CA function, a cell that provides additional wireless resources outside the special cell.
  • the special cell refers to the primary cell of the MCG or the primary and secondary cells of the SCG, otherwise, the special cell is the primary cell.
  • Primary and secondary cell For dual connectivity operation, the primary and secondary cell refers to the cell that sends random access when the UE performs synchronous reconfiguration.
  • Secondary Cell Group For UEs configured with dual connectivity, a subset of serving cells that includes PSCell and other secondary cells.
  • Carrier aggregation In order to efficiently use fragmented spectrum, the system supports aggregation between different carrier units. The technique of aggregating 2 or more carriers together to support a larger transmission bandwidth can be called carrier aggregation.
  • Carrier aggregation is specific to terminal equipment. Different terminal equipment can be configured with different CCs, and each CC can correspond to an independent cell. In the embodiment of the present application, one CC may be equivalent to one cell.
  • the primary cell corresponds to the primary CC (or primary carrier), which may be a cell for initial connection establishment for the terminal, or a cell for RRC connection reestablishment, or a primary cell designated during a handover.
  • the secondary cell corresponds to the secondary CC (or secondary carrier), and may be a cell added during RRC reconfiguration to provide additional wireless resources.
  • the terminal device For a terminal device in a connected state, if carrier aggregation is not configured, the terminal device has a serving cell; if carrier aggregation is configured, the terminal device may have multiple serving cells (serving cells), which may be called services Set of cells.
  • serving cells serving cells
  • the primary cell and the secondary cell described above constitute a set of serving cells of the terminal device.
  • the serving cell set includes at least one primary cell and at least one secondary cell.
  • a terminal configured with carrier aggregation may be connected to one primary cell and multiple secondary cells.
  • Cross-carrier scheduling (cross-carrier scheduling): The network device sends a physical downlink control channel (PDCCH) on one CC to schedule data transmission on another CC, that is, transmitting PDSCH on another CC Or, transmit the physical uplink shared channel (physical uplink shared channel, PDCCH) on another CC. More specifically, the network device may send a PDCCH on the BWP of one CC to schedule the transmission of the PDSCH or PUSCH of the BWP on another CC. That is, the control channel is transmitted on one CC, and the corresponding data channel is transmitted on the other CC.
  • PDCCH physical downlink control channel
  • PDCCH physical uplink shared channel
  • the downlink control information (downlink control information, DCI) in the PDCCH may indicate the scheduled CC through a carrier indicator field (carrier indicator field, CIF) field. That is, the CIF can be used to specify the PDSCH/PUSCH resource of which cell the PDCCH corresponds to.
  • CIF carrier indicator field
  • BWP Bandwidth part
  • the terminal device transmits on its own BWP.
  • the BWP may be a continuous set of frequency domain resources on the carrier, and the frequency domain resources that different BWPs may occupy may partially overlap or may not overlap each other.
  • the bandwidth of the frequency domain resources occupied by different BWPs may be the same or different, which is not limited in this application.
  • numerology is a concept newly introduced in NR, which can be understood as a set of parameters used by the communication system, for example, it can include subcarrier spacing (SCS), symbol length, cyclic prefix (CP) length , The number of resource blocks (resource, block, RB), time slot length, frame format, etc.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • One cell can support one or more numerology
  • one BWP can support one numerology. It should be understood that the specific content contained in the numerology listed here is only an exemplary description, and should not constitute any limitation to this application.
  • numerology may also include other granularity parameters that can be supported in NR.
  • different BWP may be configured with different transmission bandwidths (for example, BWP contains different numbers of RBs), different subcarrier intervals, and different cyclic prefixes (CP).
  • BWP contains different numbers of RBs
  • CP cyclic prefixes
  • the network device Before transmitting data with the terminal device, the network device may schedule physical resources for the terminal device in advance.
  • the network device may schedule the PDSCH or PUSCH for the terminal device through, for example, PDCCH. If the network device configures carrier aggregation for the terminal device, the CC that the network device sends the PDCCH may be different from the CC that transmits the PDSCH or PUSCH.
  • the PDCCH is sent on CC#0, and the PDSCH or PUSCH is transmitted on CC#1, that is, the cross-carrier scheduling described above; or, the BWP that the network device sends the PDCCH is different from the BWP that transmits the PDSCH or PUSCH, for example, in The PDCCH is sent on BWP#0 in CC#0, and the PDSCH or PUSCH is transmitted on BWP#2 on CC#0; or, the CC and BWP that the network device sends the PDCCH are different from the CC that transmits PDSCH or PUSCH. For example, , The PDCCH is sent on BWP#0 in CC#0, and the PDSCH or PUSCH is transmitted on BWP#1 on CC#1.
  • the network device configures the activated TCI state for the terminal device based on each BWP in each CC. For example, the network device sends the PDCCH on BWP#0 in CC#0, and transmits the PDSCH on BWP#1 on CC#1. Then, the terminal device may receive the activated TCI state configured for BWP#0 in CC#0 and the activated TCI state configured for BWP#1 on CC#1 in advance.
  • the activated TCI state configured for BWP#0 in CC#0 includes TCI states 0 to 7
  • the activated TCI state configured for BWP#2 in CC#1 includes TCI state 0 and TCI states 4 to 6.
  • Table 1 is the mapping relationship configured for BWP#0 in CC#0, as follows:
  • TCI status 7 3-bit TCI field in DCI TCI state configured in RRC 000 TCI status 0 001 TCI status 1 010 TCI status 2 011 TCI status 3 100 TCI status 4 101 TCI status 5 110 TCI status 6 111 TCI status 7
  • Table 2 is the mapping relationship configured for BWP#1 in CC#1, as follows:
  • the TCI state indicated by the TCI field is not necessarily the same.
  • the TCI field is "010"
  • the TCI state 3 and the TCI state 5 are obtained by training based on different transmit beams and/or receive beams, and the transmit beam and the receive beam determined by the TCI state 3 and the TCI state 5 may be different.
  • Carrier (component carrier, CC), or called component carrier, component carrier, carrier component, etc.
  • Carrier aggregation is mainly to aggregate multiple carrier units (component carriers, CC, or component carriers, component carriers, carriers, etc.) into a carrier with a larger bandwidth, a downlink control channel (physical downlink control channel, PDCCH) and PDSCH In the same CC or different CCs.
  • a CC can be composed of one or more BWP.
  • the cell may be replaced with a serving cell or CC.
  • “cell”, “serving cell” and “CC” are used interchangeably. When the difference is not emphasized, the meaning to be expressed is the same.
  • “Serving Cell Index”, “Serving Cell Identification (ID)”, “Cell Identification (cell ID)” and “CC Identification (CC ID)” are used interchangeably. The meaning is consistent.
  • Beam management resources refer to resources used for beam management, and can also be embodied as resources used for calculating and measuring beam quality.
  • Beam quality includes layer 1 received reference signal power (layer 1 reference signal received power, L1-RSRP), layer 1 received reference signal quality (layer 1 reference signal received quality, L1-RSRQ), etc.
  • the beam management resources may include synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • Beam quality This application does not limit the measurement indicators to measure the beam quality. Possible indicators include reference signal received power (RSRP), block error rate (BLER), and reference signal reception quality (referencesignalreceived quality, RSRQ), reference signal received strength indicator (receivedsignal strength, indicator, RSSI), signal interference to noise ratio (signal to interference and noise ratio, SINR), signal quality indicator (channel quality indicator, CQI), related Sex and so on.
  • RSRP reference signal received power
  • BLER block error rate
  • RSRQ reference signal reception quality
  • reference signal received strength indicator reference signal received strength indicator
  • RSSI signal interference to noise ratio
  • SINR signal interference to noise ratio
  • SINR signal quality indicator
  • CQI channel quality indicator
  • Antenna panel panel
  • the signals of wireless communication need to be received and transmitted by the antenna, and multiple antenna elements can be integrated on a panel.
  • An RF link can drive one or more antenna elements.
  • the terminal device may include multiple antenna panels, and each antenna panel includes one or more beams.
  • the network device may also include multiple antenna panels, and each antenna panel includes one or more beams.
  • the antenna panel can be expressed as an antenna array or an antenna subarray.
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can be controlled by one or more oscillators.
  • the radio frequency link may also be called a receiving channel and/or a transmitting channel, a receiver branch (receiver branch), etc.
  • An antenna panel can be driven by one RF link or multiple RF links. Therefore, the antenna panel in this application can also be replaced with a radio frequency link or multiple radio frequency links driving one antenna panel or one or more radio frequency links controlled by a crystal oscillator.
  • Release 15 supports the first version of the 5G standard.
  • Release 15 supports two frequency ranges: frequency range 1 (that is, low frequency, referred to as FR1, 450MHz-6000MHz) and frequency range 2 (that is, high Frequency, referred to as FR2, 24250MHz-52600MHz).
  • frequency range 1 that is, low frequency, referred to as FR1, 450MHz-6000MHz
  • frequency range 2 that is, high Frequency, referred to as FR2, 24250MHz-52600MHz.
  • FR1 frequency band and the FR2 frequency band the base station uses different radio frequency channels.
  • the high-frequency antenna array has a large scale and the output analog beam is narrow; while the low-frequency antenna array has a small scale and the output analog beam is wide.
  • high frequency can only be used for data transmission offloading.
  • the high frequency auxiliary cell can be deactivated and a longer period of high frequency inactive state measurement is configured to save End device power consumption.
  • the base station When high-frequency data transmission is required, the base station issues auxiliary cell activation signaling through MAC CE signaling. After receiving the activation instruction, the base station configures the SSB machine type of communication (MTC) configuration based on the radio resource RRC, and detects the SSB signal within the corresponding time detection window.
  • MTC machine type of communication
  • 2 is a schematic diagram of a format of MAC CE auxiliary cell activation signaling in the prior art. As shown in the figure, an octet (Oct, octet) in the figure represents a byte composed of 8 bits.
  • R is reserved bit
  • C i in the MAC CE is used to indicate whether each CC is activated.
  • Each C i can occupy one bit, for example, the value of C i can be 1 or 0. 1 can represent that the CC is selected and activated, and 0 can represent that the CC is not selected and activated.
  • C 1 to C 7 are 7 activation instructions, corresponding to 7 CC1 to CC7 in sequence. If the value of C 1 is 1, it means that CC1 is activated; if the value of C 1 is 0, it means that CC1 is activated. ; If C 1 to C 7 all take the value 1, it means that CC1 to CC7 are activated.
  • FIG. 3 shows a schematic diagram of another format of MAC CE in the current technology.
  • Fig. 3 shows four MAC octet (Oct, octet) MAC CE auxiliary cell activation signaling formats.
  • the MAC CE auxiliary cell activation signaling can be equipped with a maximum of 32 activation indication information, where CC0 corresponding to C 0 is the primary cell, and CC1 to CC31 corresponding to C 1 to C 31 represent 31 auxiliary cells.
  • the network equipment Due to the activation phase, the network equipment has not configured any quasi-co-location indication information for the terminal equipment.
  • the terminal equipment needs to decide its own receiving beam to detect and receive SSB signals, to achieve uplink and downlink synchronization of the auxiliary cell, and complete the auxiliary cell activation.
  • the terminal equipment is equipped with multiple high-frequency panels, and different panels can cover multiple different directions
  • the terminal device needs to scan the receiving beam until a better receiving beam is found and successfully detected and received
  • the secondary cell activation is completed, and the entire activation process takes a long time.
  • users need a maximum of 25 SSB measurement measurement (SMTC) cycles to complete cell discovery and receive beam scanning, which reduces communication quality and reliability.
  • SMTC SSB measurement measurement
  • the present application provides a method for auxiliary cell activation, which can reduce the activation delay of the auxiliary cell when the auxiliary cell is activated, and improve the communication quality and reliability.
  • FIG. 4 is a schematic flowchart illustrating a method 400 of signal transmission from the perspective of device interaction. As shown in FIG. 4, the method 400 shown in FIG. 4 may include steps 410 to 430. The steps of the method 400 are described in detail below with reference to FIG. 4.
  • the terminal device and the network device are used as the execution subject of the method 400 as an example to describe the method 400.
  • the execution subject of the execution method 400 may also be a chip applied to a terminal device and a chip applied to a network device.
  • the network device generates activation signaling of the auxiliary cell, where the activation signaling includes at least one first quasi-co-location indication information.
  • the first quasi-co-location indication information is used to indicate secondary cell beam information.
  • the first quasi-co-location indication information may be used to instruct the terminal device to receive a downlink physical channel and/or a downlink signal reception beam and/or an uplink physical channel and/or an uplink signal transmission beam during the activation phase of the secondary cell .
  • the terminal device uses the first quasi-co-location indication information to instruct the beam to perform downlink physical channel and/or downlink signal reception and/or uplink physical channel and/or uplink signal transmission during the activation phase of the auxiliary cell.
  • the first quasi-co-location indication information may be determined based on the following principles.
  • LOS line-of-sight
  • the terminal device can perform beams in this receive direction Scan, detect and receive the SSB signal to complete the activation of the auxiliary cell, that is, use low-frequency information to assist the activation of the high-frequency auxiliary cell.
  • the network device may carry the first quasi-co-location indication information indicating the receive beam indicating the optimal low-frequency receive direction in the activation signaling of the high-frequency auxiliary cell.
  • the upstream situation is similar to the downstream situation, and for the sake of brevity, no more details will be given here.
  • frequency range 1 that is, low frequency, FR1 for short, 450MHz-6000MHz
  • frequency range 2 that is, high frequency, FR2 for short, 24250MHz-52600MHz
  • the first quasi-co-location indication information may include a transmission configuration indication state identifier TCI state ID, a pilot resource set identifier RS resource ID or spatial relationship indication information, which is not limited in the embodiments of the present application.
  • FIGS. 5 to 7 respectively show three formats of MAC CE auxiliary cell activation signaling carrying the first quasi-co-location indication information.
  • FIG. 5 shows an activation signaling format of N Oct MAC CE auxiliary cells.
  • the MAC CE auxiliary cell shown in FIG. 5 The activation signaling format carries at least one TCI state ID, such as TCI state ID0 and TCI state ID1 in FIG. 5.
  • the activation signaling format of the MAC CE auxiliary cell shown in FIG. 6 carries at least one TCI state ID.
  • C i in MAC CE is used to indicate whether each CC state is activated.
  • Each C i can occupy one bit, and the value of the TCI state ID corresponds to the i-th TCI state in the TCI state list configured by tci-StatesToAddModList in the RRC message above.
  • the terminal device obtains the TCI state corresponding to the value of the TCI State ID by querying the TCI state list.
  • the terminal device can maintain the correspondence between the serving cell index, BWP ID, and reference signal resource identifier and the receiving beam, and the network device can maintain the serving cell index, BWP ID, and reference signal resource identifier, and the transmitting beam.
  • the terminal device may determine the receive beam based on the TCI state indicated by the network device, and the network device may determine the transmit beam based on the same TCI state.
  • the activation signaling further includes indication information C i of multiple component carrier CCs, and at least one TCI state ID has a certain correspondence with the multiple CCs:
  • TCI status IDs correspond to the multiple CCs
  • TCI status ID and CC correspond to each other in sequence.
  • CC1 corresponds to TCI state ID0
  • CC2 corresponds to TCI state ID1
  • CC7 corresponds to TCI state ID6.
  • the activated CC corresponds to a TCI status ID
  • the activation signaling if only the indication information C 1 and C 3 takes the value 1, it means that only CC1 and CC3 corresponding to C 1 and C 3 are activated, and only the TCI state ID0 and the TCI state ID2 corresponding to CC1 and CC3 are configured.
  • all CCs are configured with TCI status ID0.
  • TCI status information corresponding to TCI status ID0 in the TCI status list configured by RRC, all CCs are activated according to the TCI status information; when TCI configuration information corresponding to TCI status ID0 does not exist in RRC configuration signaling, for example, TCI status If ID0 is -1 or other illegal value, the terminal equipment autonomously decides the receiving beam.
  • a group of CC corresponds to a TCI status ID
  • CC1, CC2, CC3, and CC4 corresponding to activation indication information C 1 , C 2 , C 3, and C 4 respectively are a group of CCs, and this group of CCs is configured with TCI state ID0.
  • the CCs corresponding to the activation instruction information C 1 , C 3 , C 5, and C 7 are a group of CCs, and the group of CCs is configured with TCI state ID1, and the rest are sequentially configured with TCI state ID2, TCI state ID3, and so on.
  • the CC grouping method may be a group of CCs having the same bandwidth, a group of CCs having the same frequency band, a group of CCs having the same receive beam, or a group of CCs having the same transmit beam.
  • Specific grouping methods also include other grouping methods, which are displayed through RRC configuration or implicit notification to the terminal device, which is not limited in this application.
  • the format of the MAC CE auxiliary cell activation signaling may also be as shown in FIG. 7, that is, 1 bit is reserved in the indication information of each CC, and the corresponding TCI status ID is configured.
  • the indication information of the CC does not include the corresponding TCI status ID, it means that the terminal device itself determines the reception beam of the CC to detect and receive the SSB signal, and completes the activation of the auxiliary cell.
  • the indication information of CC1 includes the corresponding TCI state ID0
  • the receiving beam is determined according to the corresponding TCI state in the TCI state list of the TCI state ID0, and the SSB signal is received through the receiving beam detection to complete the activation of the auxiliary cell.
  • FIGS. 5 to 7 only show three MAC auxiliary cell activation signaling formats in the embodiments of the present application, which is not limited in this application.
  • the network device sends the activation signaling of the auxiliary cell to the terminal device;
  • the network device sends the activation signaling including the first quasi-co-location indication information to the terminal device.
  • the activation signaling may be implemented by the network device sending the MAC to the terminal device through the primary cell.
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate that the primary cell and the auxiliary cell have the same downlink timing, Or the time advance group TAG of the primary cell and the secondary cell is the same.
  • the terminal device performs secondary cell activation according to the activation signaling.
  • the terminal device may determine the best receiving beam according to the first quasi-co-location indication information carried in the activation signaling, and perform beam scanning in the direction of the best receiving beam to receive and detect the SSB signal. Complete the activation of the auxiliary cell.
  • the specific decision method of the terminal device is not limited by the embodiments of the present application.
  • the terminal device determines the receiving beam according to the TCI state ID carried in the activation signaling, and utilizes the TCI state ID
  • the receiving beam determined by the corresponding TCI state detects the receiving SSB and completes the activation of the auxiliary cell.
  • the TCI state list corresponding to the TCI state ID carried in the activation signal of the secondary cell is "TCI-state--->QCL-Info--->referenceSignal" It can be a low-frequency SSB or RS resource.
  • the terminal device decides that the set of high-frequency receive beams is one or more receive beams with the same or similar strongest receiving direction of the low-frequency signal.
  • the SSB signal is detected and received in the one or more receive beams to realize the activation of the auxiliary cell.
  • the terminal device performs channel state information (CSI) measurement in the auxiliary cell according to the configuration of the base station, reports the CSI measurement result to the network device, and informs the network device that the auxiliary cell activation is successful, and data transmission can be performed.
  • the configuration of the base station can be periodic CSI-RS reporting configured by RRC, semi-persistent CSI-RS reporting configured by RRC and activated by MAC-CE, or RRC configured and selected by MAC-CE activation and DCI Aperiodic aperiodic CSI-RS reporting.
  • the terminal device uses the beam indicated by the first quasi-co-location indication information to receive downlink physical channels and/or downlink signals, and/or, transmit uplink physical channels and/or uplink signals in the auxiliary cell.
  • the terminal device may determine the downlink channel and/or the downlink physical channel and/or the downlink signal receiving beam according to the indication of the first quasi-co-location indication information, and/or the uplink channel and/or the uplink physical channel And/or uplink signals to transmit beams to receive downlink channels and/or downlink physical channels and/or downlink signals, and/or transmit uplink channels and/or uplink physical channels and/or downlink signals.
  • downlink control channel downlink data channel, etc. If the downlink control channel is pre-configured with quasi-co-location information, such as PDCCH TCI, the terminal can ignore the configuration and receive the downlink control channel according to the first quasi-co-location indication information.
  • the network device may also send second quasi-co-location indication information to the terminal device.
  • the second quasi-co-location indication information is used to instruct the terminal device to receive the downlink physical channel and/or downlink signal reception beam and/or the uplink physical channel and/or uplink signal transmission beam after receiving the second beam indication signal.
  • the terminal device uses the beam indicated by the second quasi-co-location indication information to perform a downlink physical channel and/or downlink signal reception beam, and/or an uplink physical channel and/or uplink signal transmission beam in the auxiliary cell.
  • the second quasi-co-location indication information is used after the time interval.
  • the first quasi-co-location indication information is also used to instruct the terminal device to receive the second quasi-co-location indication information after the activation of the secondary cell and/or the downlink physical channel and/or downlink signal receiving beam and/or The uplink physical channel and/or uplink signal transmission beam. That is to say, after the secondary cell is activated, without receiving the second quasi-co-location indication information, the terminal device continues to use the first quasi-co-location indication information to determine the receiving and/or transmitting beam.
  • the network device carries at least one first quasi-co-location indication information in the activation signaling of the secondary cell, and the terminal device completes the activation of the secondary cell according to the first quasi-co-location indication information. This can reduce the activation delay of the auxiliary cell without increasing the power consumption of the terminal device, thereby improving the system capacity and user service experience.
  • the initial access of the terminal device is mainly to receive the SSB signal through detection.
  • the SSB signal period is usually set to be longer.
  • the next beam scan cannot be performed until the start of the second cycle, which results in the beam scan taking too long. Therefore, when activating the secondary cell, you can use the detection and reception of other reference signals instead of the SSB signal with a longer detection period to complete the activation of the secondary cell, thereby reducing the activation delay of the secondary cell, reducing the detection power consumption of the terminal device, and improving communication. Quality and reliability.
  • the first quasi-co-location indication information may be a pilot resource set identifier.
  • FIG. 8 is a schematic flowchart illustrating a method 800 of signal transmission from the perspective of device interaction. As shown in FIG. 8, the method 800 shown in FIG. 8 may include steps 810 to 850. The steps of the method 800 will be described in detail below with reference to FIG. 8.
  • the terminal device and the network device are used as the execution subject of the method 800 as an example to describe the method 800.
  • the execution subject of the execution method 800 may also be a chip applied to a terminal device and a chip applied to a network device.
  • the terminal device receives the first indication information sent by the network device.
  • the first indication information is used to indicate that the terminal device configures that the primary cell and the secondary cell have the same downlink timing, or the same timing advance group (timing advance group, TAG).
  • the terminal device configures the primary cell and the secondary cell to have the same downlink timing or the same TAG according to the first indication information.
  • the primary cell and the secondary cell By configuring the primary cell and the secondary cell to have the same downlink timing or the same TAG, downlink timing synchronization is achieved.
  • the network device generates activation signaling of the auxiliary cell, where the activation signaling includes at least one first quasi-co-location indication information.
  • the first quasi-co-location indication information may be a pilot resource set identifier (RS resource) ID, where the RS may be zero power (ZP) CSI-RS, NZP CSI-RS, tracking reference signal TRS, downlink control channel demodulation reference signal (dedicated reference signal (DMRS) or uplink sounding reference signal (sounding reference signal, SRS), which is not limited in this application.
  • RS resource pilot resource set identifier
  • ZP zero power
  • NZP CSI-RS tracking reference signal TRS
  • DMRS downlink control channel demodulation reference signal
  • SRS sounding reference signal
  • the at least one first quasi-co-location indication information is used to instruct the terminal device to receive a downlink physical channel and/or a downlink signal receiving beam and/or an uplink physical channel and/or an uplink signal during the activation phase of the secondary cell Beam.
  • the network device sends the activation signaling of the auxiliary cell to the terminal device.
  • the activation signaling may be sent by the network device to the terminal device through MAC CE.
  • 9 to 11 are formats of MAC-CE assisted cell activation signaling in embodiments of the present application, and they are different from FIGS. 5 to 7 in that the first quasi co-location carried in activation signaling in the embodiments of the present application
  • the indication information is the RS resource set ID.
  • the at least one RS resource set ID also has a certain correspondence with the multiple CCs included in the activation signaling.
  • the correspondence is consistent with the correspondence between the TCI status ID and the multiple CCs. For the sake of brevity, no further description is provided here.
  • the reference signal associated with the RS resource combined with the ID may be SSB or RS (NZP, CSI-RS, ZP, CSI-RS, TRS, DMRS, SRS) resources.
  • the reference signal may be sent periodically , Triggered transmission or semi-static transmission. The specific sending method is not limited by comparison in the embodiments of the present application, as long as the beam can be quickly scanned.
  • the network device may explicitly or implicitly deactivate the reference signal resource indicated by the RS resource set ID. In an explicit manner, the network device sends deactivation signaling to the terminal device to instruct the terminal device to deactivate based on the reference signal resource.
  • the specific implicit method is to make decisions through other signaling or by judging whether the predefined conditions are met.
  • Method 1 The agreement is agreed in advance. After the network device sends the auxiliary cell activation signaling to the terminal device, after receiving the CSI measurement report for activating the auxiliary cell for the first time, the above-mentioned reference signal resource transmission will be activated.
  • Method 2 The agreement is agreed in advance, and the reference signal resource indicated by the auxiliary cell activation signaling is only sent within a specific time period. For example, from the time when the network device sends activation signaling to the terminal device to the end of the maximum activation delay defined by the protocol.
  • the terminal device performs auxiliary cell activation according to the activation signaling.
  • the ID indicating the RS resource corresponding to the best receiving beam set is carried as the first quasi-co-location indication information in the activation instruction of the secondary cell, and the network device sends the activation to the terminal device instruction.
  • the terminal device After receiving the activation instruction, the terminal device determines the corresponding RS resource set according to the RS resource set ID, and the terminal device detects and receives the reference signal according to the RS resource set to complete the secondary cell activation.
  • the terminal device After receiving the activation signaling of the auxiliary cell, the terminal device detects and receives a corresponding reference signal at the time-frequency domain resource position indicated by the RS resource set ID to complete the activation of the auxiliary cell.
  • the network device sends a downlink reference signal according to the activation signaling and the configuration information in the first indication information, and the terminal device sends an uplink reference signal according to the configuration indication information.
  • the terminal device uses the beam indicated by the first quasi-co-location indication information to receive downlink physical channels and/or downlink signals, and/or, transmit uplink physical channels and/or uplink signals in the auxiliary cell.
  • the terminal device may determine the downlink channel and/or the downlink physical channel and/or the downlink signal receiving beam according to the indication of the first quasi-co-location indication information, and/or the uplink channel and/or the uplink physical channel And/or uplink signals to transmit beams to receive downlink channels and/or downlink physical channels and/or downlink signals, and/or transmit uplink channels and/or uplink physical channels and/or downlink signals.
  • downlink control channel downlink data channel, etc. If the downlink control channel is pre-configured with quasi-co-location information, such as PDCCH TCI, the terminal can ignore the configuration and receive the downlink control channel according to the first quasi-co-location indication information.
  • the network device may also send second quasi-co-location indication information to the terminal device.
  • the second quasi-co-location indication information is used to instruct the terminal device to receive the downlink physical channel and/or downlink signal reception beam and/or the uplink physical channel and/or uplink signal transmission beam after receiving the second beam indication signal.
  • the terminal device uses the beam indicated by the second quasi-co-location indication information to perform downlink physical channel and/or downlink signal reception, and/or uplink physical channel and/or uplink signal transmission in the auxiliary cell.
  • the method for activating a secondary cell replaces the detection of SSB signals with a longer reception cycle by detecting the reception of other reference signals, and by continuously transmitting the reference signals, the reception beam scanning can be completed in a shorter time, reducing The activation delay of the small auxiliary cell improves the system capacity and user service experience.
  • the network device when the secondary cell is activated, the network device does not configure any quasi-co-location indication information for the terminal device.
  • the terminal device can only perform blind detection, determine the best receiving beam, and detect and receive the SSB signal.
  • the auxiliary cell which causes the activation delay of the auxiliary cell to be too large.
  • the primary cell since the primary cell is generally low frequency, the primary cell can only be in an activated state and cannot be deactivated.
  • the high frequency SSB can be used to refer to the low frequency reference signal, and the low frequency measurement assistance can be used to activate the high frequency auxiliary cell.
  • FIG. 12 is a schematic flowchart illustrating a signal transmission method 1200 from the perspective of device interaction. As shown in FIG. 12, the method 1200 shown in FIG. 12 may include steps 1210 to 1260. The steps of the method 1200 are described in detail below with reference to FIG. 12.
  • the terminal device and the network device are used as the execution subject of the method 1200 as an example to describe the method 1200.
  • the execution subject of the execution method 1200 may also be a chip applied to a terminal device and a chip applied to a network device.
  • the terminal device receives RRC configuration signaling sent by the network device.
  • the RRC configuration signaling includes: synchronous broadcast signal block SSB resource information and quasi co-location QCL indication information of the SSB resource.
  • the terminal device After receiving the RRC configuration signaling, the terminal device receives the SSB of the secondary cell according to the quasi-co-location indication information indicated by the RRC configuration signaling.
  • the network device indicates the channel quality of the SSB (Channel Quality) through "CSI-MeasConfig---->csi-SSB-ResourceSetToAddModList---->CSI-SSB-ResourceSet” Information (CQI) information is allocated to terminal equipment.
  • CQI Channel Quality
  • the network device defines the QCL indication of the SSB through TCI-StateId, where the "TCI-state--->QCL-Info--->referenceSignal" indicated by the TCI-StateId may be the SSB of the low-frequency cell, or RS (NZP CSI-RS, ZP, CSI-RS, TRS, DMRS, and SRS) signals can also be SSB of high-frequency cells, or RS (NZP, CSI-RS, ZP, CSI-RS, TRS, DMRS, and SRS) signals.
  • the specific signaling is as follows:
  • the terminal device receives second indication information, and the second indication information is used to instruct the terminal device to configure the primary cell and the secondary cell to have the same downlink timing or the same time advance group TAG.
  • S1220 The network device sends second indication information.
  • the terminal device receives the second indication information, where the second indication information is used to indicate that the primary cell and the secondary cell have the same downlink timing, and/or the primary cell and the secondary cell have the same time advance group TAG.
  • the terminal device configures the primary cell and the secondary cell to have the same downlink timing or the same TAG according to the second indication information. This step is optional.
  • the terminal device configures the primary cell and the secondary cell to have the same downlink timing or the same TAG according to the second instruction information to achieve the same high and low frequency downlink timing.
  • the network device generates activation signaling of the auxiliary cell.
  • the activation signaling format may be the same as the existing auxiliary cell activation signaling format. For details, refer to FIG. 2 and FIG. 3. For brevity, details are not described here.
  • the network device sends the activation signaling of the auxiliary cell to the terminal device.
  • the activation signaling can be sent to the terminal device through MAC CE.
  • the terminal device performs secondary cell activation according to the activation signaling and the quasi-co-location indication information.
  • SSB is periodic and has a time offset. Therefore, after obtaining the low-frequency timing, it is possible to know on which symbols the SSB may be transmitted, and the terminal device may decide to receive the beam, detect and receive the SSB signal when the SSB is transmitted, and realize the activation of the auxiliary cell.
  • the RRC configuration signaling configuration has the same high- and low-frequency TAGs, it can be determined that the SSB appears in the first symbol to the fourth symbol according to the SSB period and the current low-frequency timing, so that the terminal device can be located in the first symbol to the fourth symbol
  • the symbol uses the receive beam to receive and detect the SSB signal to complete the auxiliary cell activation.
  • the TAGs of the high and low frequency cells are configured by RRC configuration signaling to be the same to achieve the same downlink timing, and the low frequency channel reference signal is used as the QCL reference of the SSB
  • the auxiliary terminal device determines the reception beam of the high-frequency SSB, detects the received SSB signal, and realizes the activation of the auxiliary cell.
  • the first, second, etc. are merely to indicate that a plurality of objects are different.
  • the first quasi-co-location indication information and the second quasi-co-location indication information are only for distinguishing different quasi-co-location indication information. It should not have any impact on the co-location indication information itself, and the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
  • pre-set and pre-defined may be achieved by pre-storing corresponding codes, tables or other information that can be used to indicate related information in devices (for example, including terminal devices and network devices)
  • devices for example, including terminal devices and network devices
  • the specific implementation method is not limited in this application.
  • the terminal device and the network device include hardware structures and/or software modules corresponding to performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the communication device provided by the present application will be described below.
  • FIG. 13 is a schematic diagram of the communication device 10 provided by the present application. As shown in FIG. 13, the communication device 10 includes a communication unit 110 and a processing unit 120.
  • the communication apparatus 10 may be a terminal device corresponding to the method 400 or 800.
  • the communication unit 110 is configured to receive activation signaling of the auxiliary cell sent by the network device, where the activation signaling includes at least one first quasi-co-location indication information.
  • the processing unit 120 is configured to activate the auxiliary cell according to the activation signaling.
  • the communication device 10 corresponds to the terminal device in the method embodiment, and the corresponding unit of the communication device 10 is used to execute the corresponding steps performed by the terminal device in the method embodiment shown in FIGS. 4 to 12.
  • the communication apparatus 10 may be a terminal device corresponding to the method 1200.
  • the communication unit 110 is configured to receive radio resource control RRC configuration signaling.
  • the RRC configuration signaling includes: synchronous broadcast signal block SSB resource information and quasi co-location indication information of the SSB resource
  • the processing unit 120 is configured to activate the auxiliary cell according to the quasi-co-location indication information.
  • the communication device 10 corresponds to the terminal device in the method embodiment, and the corresponding unit of the communication device 10 is used to perform the corresponding steps performed by the terminal device in the method embodiment shown in FIG. 12.
  • the communication unit 110 may be a receiver
  • the processing unit 120 may be a processor
  • FIG. 14 is a schematic structural diagram of a terminal device 20 suitable for an embodiment of the present application.
  • the terminal device 20 can be applied to the system shown in FIG. 1.
  • FIG. 14 shows only the main components of the terminal device.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and input/output devices.
  • the processor is used to control the antenna and the input and output devices to send and receive signals.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program from the memory to perform the corresponding process executed by the terminal device in the communication method proposed in this application and/or Or operation. I won't repeat them here.
  • FIG. 14 only shows one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • FIG. 15 is a schematic diagram of the communication device 30 proposed by the present application. As shown in FIG. 15, the device 30 includes a processing unit 320 and a communication unit 310.
  • the communication device 30 may be a network device corresponding to the method 400 or 800.
  • the processing unit 320 is configured to generate activation signaling of the auxiliary cell, where the activation signaling includes at least one first quasi-co-location indication information.
  • the communication unit 310 is used to send the activation signaling.
  • the device 30 corresponds exactly to the network device in the method embodiment, and the corresponding unit of the device 30 is used to perform the corresponding steps performed by the network device in the method embodiment shown in FIGS. 4 to 12.
  • the communication device 30 may be a network device corresponding to the method 1200.
  • the processing unit 320 is configured to receive radio resource control RRC configuration signaling.
  • the RRC configuration signaling includes: synchronous broadcast signal block SSB resource information and quasi-co-location indication information of the SSB resource.
  • the communication unit 310 is configured to send the RRC configuration signaling.
  • the device 30 corresponds exactly to the network device in the method embodiment, and the corresponding unit of the device 30 is used to perform the corresponding steps performed by the network device in the method embodiment shown in FIG. 12.
  • FIG. 16 is a schematic structural diagram of a network device 40 applicable to an embodiment of the present application, and may be used to implement the functions of the network device in the above communication method.
  • it can be a schematic structural diagram of a base station.
  • the network device can be applied to the system shown in FIG.
  • the network device 40 may include one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBU).
  • the baseband unit may also be referred to as a digital unit (DU) 402.
  • the RRU 401 may be called a transceiver unit, and corresponds to the communication unit 310 in FIG. 15.
  • the transceiver unit 401 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
  • the transceiver unit 401 may include a communication unit and a communication unit.
  • the communication unit may correspond to a receiver (or receiver, receiving circuit), and the communication unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 401 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending the control information described in the above embodiment to the terminal device.
  • the BBU 402 part is mainly used for baseband processing and controlling the base station.
  • the RRU 401 and the BBU 402 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 402 is a control center of a network device, and may also be referred to as a processing unit, which may correspond to the processing unit 320 in FIG. 15 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spread spectrum.
  • the BBU (processing unit) 402 may be used to control the network device 40 to perform the operation flow on the network device in the above method embodiment, for example, to determine the length of the symbol carrying the control information of the terminal device.
  • the BBU 402 may be composed of one or more boards, and the plurality of boards may jointly support a wireless access network of a single access standard (for example, an LTE system or a 5G system), or may be supported separately. Wireless access networks with different access standards.
  • the BBU 402 also includes a memory 4021 and a processor 4022.
  • the memory 4021 is used to store necessary instructions and data.
  • the memory 4021 stores the codebook and the like in the above embodiment.
  • the processor 4022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow on the network device in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 may serve one or more single boards. In other words, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be equipped with necessary circuits.
  • the network device 40 shown in FIG. 16 can implement the network device functions involved in the method embodiments of FIGS. 4 to 12.
  • the operations and/or functions of each unit in the network device 40 are respectively for implementing the corresponding processes executed by the network device in the method embodiments of the present application. To avoid repetition, detailed description is omitted here as appropriate.
  • the structure of the network device illustrated in FIG. 16 is only one possible form, and should not constitute any limitation to the embodiments of the present application. This application does not exclude the possibility of other forms of network equipment structure that may appear in the future.
  • An embodiment of the present application further provides a communication system, which includes the foregoing network device and one or more terminal devices.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions run on the computer, the computer is allowed to perform the network device in the method shown in FIG. 4 to FIG. 12 Steps performed.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium has instructions stored therein, and when the instructions run on the computer, the computer is allowed to execute the terminal device in the method shown in FIGS. 4 to 12 Steps performed.
  • the present application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer is allowed to perform various steps performed by the network device in the method shown in FIGS. 4 to 12.
  • the present application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer is caused to perform various steps performed by the terminal device in the method shown in FIGS. 4 to 12.
  • the present application also provides a chip, including a processor.
  • the processor is used to read and run the computer program stored in the memory to perform the corresponding operations and/or processes performed by the terminal device in the communication method provided by the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input-output interface.
  • the present application also provides a chip, including a processor.
  • the processor is used to call and run the computer program stored in the memory to perform the corresponding operation and/or process performed by the network device in the communication method provided by the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input-output interface.
  • the processor may be a central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more technologies used to control the application Integrated circuits for program execution.
  • the processor may be a digital signal processor device, a microprocessor device, an analog-to-digital converter, a digital-to-analog converter, or the like.
  • the processor may allocate the functions of control and signal processing of the terminal device or the network device among these devices according to their respective functions.
  • the processor may have a function of operating one or more software programs, and the software programs may be stored in the memory.
  • the functions of the processor may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the memory may be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or other types of information and instructions that can be stored
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), read-only compact disc (compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage ( (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store the desired program code in the form of instructions or data structures Any other media accessed by the computer, etc.
  • EEPROM electrically erasable programmable read-only memory
  • compact disc compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs,
  • the memory and the memory involved in the foregoing embodiments may be physically independent units, or the memory may be integrated with the processor.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate the presence of A alone, A and B, and B alone. A and B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • At least one of the following” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic, for example, the division of units is only a logical function division, and there may be other division manners in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may not be physically separated, and the components displayed as units may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Part or all of the units may be selected according to actual needs to achieve the purpose of the technical solution of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种辅助小区激活的方法和通信装置。该方法包括:终端设备接收网络设备发送的辅助小区的激活信令,其中,该激活信令包括至少一个第一准共址指示信息,终端设备根据该激活信令进行辅助小区的激活。本申请提供的技术方案能够减小辅助小区激活时延。

Description

一种辅助小区激活的方法和通信装置
本申请要求于2018年12月29日提交中国专利局、申请号为201811647479.2、申请名称为“一种辅助小区激活的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种辅助小区激活的方法和通信装置。
背景技术
近年来,随着无线通信技术的快速进步,移动通信系统已经跨代发展。为了满足业务需求的爆炸式增长,包括载波聚合(carrier aggregation,CA)的各种技术已经被引入到通信系统中。在大多数情况下,在终端设备和网络设备(例如,基站)之间的通信中使用单载波。当采用载波聚合时,主载波和一个或多个辅助载波可以被使用在终端设备和网络设备之间的通信中,相比于只使用主载波,可以显著地提高数据传输速率。
在高低频辅助小区协作的场景下,高频辅助小区可以只用作数据传输分流(offloading),为了节省终端设备功耗,在高频辅助小区无数据传输时,可以去激活高频辅助小区。
终端设备收到网络设备下发的高频辅助小区激活信令后,会进行高频辅助小区的同步信号广播信道块(synchronous signal/PBCH block,SSB)信号发现和测量。由于高频通信基于模拟窄波束的数据接收和发送,因此终端设备在没有任何波束测量信息的前提下,需要使用不同的接收波束扫描接收SSB信号,直到检测到满足一定信号质量的SSB信号,基于检测到的SSB信号和无线资源控制(radio resource control,RRC)配置信息,完成终端设备在高频辅助小区的上下行定时同步、频点同步,完成高频辅助小区激活。当高频辅助小区有多个接收波束时,终端设备决策接收波束的耗时太大,导致辅助小区激活时延过长,降低了通信质量和可靠性。
因此,如何减小辅助小区激活时延,提升通信质量和可靠性成为亟待解决的问题。
发明内容
有鉴于此,本申请提供一种辅助小区激活的方法和通信装置,能够减小辅助小区的激活时延。
第一方面,提供了一种辅助小区激活的方法,第一方面提供的方法可以由终端设备执行,也可以由配置于终端设备中的芯片执行,本申请对此不做限定。
具体地,该方法包括:终端设备接收网络设备发送的辅助小区的激活信令,该激活信令包括至少一个第一准共址指示信息,该终端设备根据该激活信令进行该辅助小区的激活。
在一些可能的实现方式中,该第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
在一些可能的实现方式中,该方法还包括:该终端设备采用该第一准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号的接收,和/或,上行物理信道和/或上行信号的发送。
在一些可能的实现方式中,该终端设备接收该网络设备发送的第二准共址指示信息,进一步,该终端设备采用该第二准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
在一些可能的实现方式中,该激活信令还包括多个成员载波的指示信息,该至少一个该第一准共址指示信息中的每一个第一准共址指示信息分别与该多个成员载波中一个或一组成员载波对应。在一些可能的实现方式中,该第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
在一些可能的实现方式中,在该终端设备接收网络设备生成的辅助小区激活信令之前,该方法还包括:该终端设备接收该网络设备发送第一指示信息,该第一指示信息用于指示主小区与该辅助小区的下行定时相同,或主小区与该辅助小区的时间提前组TAG相同。
本申请实施例的辅助小区激活的方法,终端设备根据网络设备发送的包括至少一个第一准共址指示信息的激活信令,根据该激活信令进行辅助小区的激活。减小了辅助小区激活时延,提升通信质量和可靠性。
第二方面,提供了一种辅助小区激活的方法,第二方面提供的方法可以由网络设备执行,也可以由配置于网络设备中的芯片执行,本申请对此不做限定。
具体地,该方法包括:网络设备生成辅助小区的激活信令,该激活信令包括至少一个第一准共址指示信息,该网络设备发送该激活信令。
在一些可能的实现方式中,该第一准共址指示信息用于指示终端设备在该辅助小区的激活阶段的下行物理信道和/或下行信号接收波束和/或上行物理信道和/或上行信号发送波束。
在一些可能的实现方式中,该方法还包括:该网络设备发送第一准共址指示信息,其中,该第一准共址指示信息用于指示终端设备收到该第一波束指示信后的下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
在一些可能的实现方式中,该方法还包括:该网络设备发送第二准共址指示信息,该第二准共址指示信息用于指示该终端设备采用该第二准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
在一些可能的实现方式中,该激活信令还包括多个成员载波的指示信息,该至少一个该第一准共址指示信息中的每一个第一准共址指示信息分别与该多个成员载波中一个或一组成员载波对应。在一些可能的实现方式中,该第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
在一些可能的实现方式中,该方法还包括:该网络设备发送第一指示信息,该第一指示信息用于指示主小区与该辅助小区的下行定时相同,或主小区与该辅助小区的时间提前组TAG相同。
第三方面,提供了一种辅助小区激活的方法,第三方面提供的方法可以由终端设备执行,也可以由配置于终端设备中的芯片执行,本申请对此不做限定。
具体地,该方法包括:终端设备接收无线资源控制RRC配置信令,该RRC配置信令包括:同步广播信号块SSB资源信息和该SSB资源的准共址指示信息;该终端设备根据该准共址指示信息进行辅助小区的激活。
在一些可能的实现方式中,该终端设备接收该辅助小区的激活信令;其中,该终端设备根据该准共址指示信息进行辅助小区的激活,包括:该终端设备根据该激活信令和该准共址指示信息进行该辅助小区的激活。
在一些可能的实现方式中,该终端设备接收第二指示信息,该第二指示信息用于指示主小区与该辅助小区的下行定时相同,和/或主小区与该辅助小区的时间提前组TAG相同。
第四方面,提供了一种辅助小区激活的方法,第四方面提供的方法可以由网络设备执行,也可以由配置于网络设备中的芯片执行,本申请对此不做限定。
具体地,该方法包括:网络设备生成无线资源控制RRC配置信令,该RRC配置信令包括:同步广播信号块SSB资源信息和该SSB资源的准共址指示信息;该网络设备发送该RRC配置信令。
在一些可能的实现方式中,该方法还包括:该网络设备发送辅助小区的激活信令。
在一些可能的实现方式中,该网络设备发送第二指示信息,该第二指示信息用于指示主小区与该辅助小区的下行定时相同,和/或主小区与该辅助小区的时间提前组TAG相同。
第五方面,提供了一种通信装置,该装置包括用于执行第一方面或第一方面任意可能的实现方式中的方法中各个步骤的单元,或者包括用于执行第三方面或第三方面任意可能的实现方式中的方法中各个步骤的单元。
第六方面,提供了一种通信装置,该装置包括用于执行第二方面或第二方面任意可能的实现方式中的方法中各个步骤的单元,或者包括用于执行第四方面或第四方面任意可能的实现方式中的方法中各个步骤的单元。
第七方面,提供了一种通信设备,通信设备的结构中包括处理器。该处理器被配置为支持通信设备执行上述第一方面至第四方面及其各种实现方式中的功能,在一个可能的设计中,该通信设备还可以包括收发器,用于支持通信设备接收或发送信息。
在一个可能的设计中,该通信设备还可以包括存储器,该存储器用于与处理器耦合,保存通信设备中必要的程序指令和数据。
或者说,该通信设备包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信设备执行上述第一方面至第四方面中及其各种实现方式中的任一种通信方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面至第四方面中任一种可能实现方式中的通信方法任意可能的实现方式中的方法。
第九方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面至第四方面中的任意可能的实现方式中的方法,或者执行第三方面或第三方面的任意可能的实现方式中的方法。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程 序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法,或者执行第三方面或第三方面的任意可能的实现方式中的方法,或者执行第四方面或第四方面的任意可能的实现方式中的方法。
附图说明
图1是本申请实施例的应用场景的示意图;
图2和图3是现有MAC CE辅助小区激活信令的两种格式;
图4是本申请一个实施例提供的辅助小区激活方法的示意性流程图;
图5至图7是本申请一个实施例提供的MAC CE辅助小区激活信令的三种格式;
图8是本申请另一个实施例提供的辅助小区激活方法的示意性流程图;
图9至图11是本申请另一个实施例提供的MAC CE辅助小区激活信令的三种格式;
图12是本申请又一个实施例提供的辅助小区激活方法的示意性流程图;
图13是本申请实施例提供的一种通信装置的结构示意图。
图14是适用于本申请实施例的终端设备的结构示意图。
图15是本申请实施例提供的另一种通信装置的结构示意图。
图16是适用于本申请实施例的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分 多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的通信系统100的示意图。如图1所示,该通信系统100包括至少一个网络设备110和至少一个终端设备120。在通信系统100中,终端设备和网络设备可以通过波束管理过程获得通信较优的一个或多个波束对,波束对为<Bx,B’x>以及<By,B’y>,其中Bx代表网络设备的发送波束,B’x代表终端设备的接收波束,By代表终端设备的发送波束,B’y代表网络设备的接收波束。例如,参见图1,网络设备的发送波束#1和终端设备的接收波束#0为一个波束对,网络设备的发送波束#2和终端设备的接收波束#2为一个波束对。终端设备的发送波束#0和网络设备的接收波束#1为一个波束对,终端设备的发送波束#1和网络设备的接收波束#2为一个波束对。
在通信系统100中需要终端设备120和网络设备110的波束对齐才能进行正常的通信。由于终端设备和网络设备都能各自朝向多个波束方向,因此进行通信的前提是需要有正确的波束指示。具体来讲,在下行通信中,网络设备需要通知终端设备应该使用什么接收波束接收接下来网络设备发送的信号,或者通知终端设备接下来网络设备发送的信号是使用什么发送波束发送的。在上行通信中,网络设备需要通知终端设备应该使用什么发送波束发送上行物理信道和/或下行信号,或者通知终端设备网络设备会使用什么样的接收波束来接收终端发出的信号。比如,在下行传输中,网络设备可以通知终端设备该网络设 备使用发送波束#1进行传输,那么终端设备需要使用接收波束#0进行接收。或者,网络设备使用发送波束#1进行传输,并且通知终端设备使用接收波束#0进行接收。再如,在上行传输中,网络设备可以通知终端设备使用发送波束#0进行传输,那么网络设备将使用接收波束#1进行接收。或者,网络设备可以通知该网络设备使用的接收波束为接收波束#0,从而终端设备需要使用发送波束#0进行传输。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束:波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术(beamforming)或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。
波束,也可以理解为空间资源,可以是指具有能量传输指向性的发送或接收预编码向量。能量传输指向性可以指在一定空间位置内,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等,能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。同一设备(例如网络设备或终端设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束,针对设备的配置或者能力,一个设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。从发射和接收两个角度出发,波束可以分为发射波束和接收波束。
发射波束:是指通过多天线采用波束成形技术发射具有方向性的波束。
接收波束:是指接收信号的方向上也具有指向性,尽可能指向发射波束的来波方向,以进一步提高接收信噪比并避免用户间的干扰。
波束也可以称为空域滤波器(spatial filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameters),发射波束也可以称为空域发射滤波器,接收波束也可以称为空域接收滤波器。
2、波束配对关系:即,发射波束与接收波束之间的配对关系,也就是空间发射滤波器与空间接收滤波器之间的配对关系。在具有波束配对关系的发射波束和接收波束之间传输信号可以获得较大的波束赋形增益。
在一种实现方式中,发送端和接收端可以通过波束训练来获得波束配对关系。具体地,发送端可通过波束扫描的方式发送参考信号,接收端也可通过波束扫描的方式接收参考信号。具体地,发送端可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束将参考信号发射出去,使得参考信号在发射波束所指向的方向上发射参考信号的功率可以达到最大。接收端也可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束接收参考信号,使得该接收端接收参考信号的功率在接收波束所指向的方向上可以达到最大。
通过遍历各发射波束和接收波束,接收端可基于接收到的参考信号进行信道测量,并将测量得到的结果通过信道状态信息(Channel State Information,CSI)上报发送端。例如, 接收端可以将参考信号接收功率(reference signal receiving power,RSRP)较大的部分参考信号资源上报给发送端,如上报参考信号资源的标识,以便发送端在传输数据或信令时采用信道质量较好的波束配对关系来收发信号。
3、参考信号与参考信号资源:参考信号可用于信道测量或者信道估计等。参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。
本申请中涉及的信道测量也包括波束测量,即通过测量参考信号获得波束质量信息,用于衡量波束质量的参数包括RSRP,但不限于此。例如,波束质量也可以通过参考信号接收质量(reference signal receiving quality,RSRQ),信噪比(signal-noise ratio,SNR),信号与干扰噪声比(signal to interference plus noise ratio,SINR,简称信干噪比)等参数衡量。本申请实施例中,为方便说明,在未作出特别说明的情况下,所涉及的信道测量可以视为波束测量。
其中,参考信号例如可以包括信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号块(synchronization signal block,SSB)以及探测参考信号(sounding reference signal,SRS)、上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、物理广播信道解调参考信号(physical broadcast channel de-modulation reference signal,PBCH-DMRS)、下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS、小区信号(cell reference signal,CRS)(NR没有),精同步信号(tim/frequency tracking reference signal,TRS)(LTE没有)等。与此对应地,参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SSB资源(SSB resource)、SRS资源(SRS resource)、TRS资源、DMRS资源、CRS资源、TRS资源。
需要说明的是,上述SSB也可以称为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block),所对应的SSB资源也可以称为同步信号/物理广播信道块资源(SS/PBCH block resource),可简称为SSB resource。
为了区分不同的参考信号资源,每个参考信号资源可对应于一个参考信号资源的标识,例如,CSI-RS资源标识(CSI-RS resource indicator,CRI)、SSB资源标识(SSB resource indicator,SSBRI)、SRS资源索引(SRS resource index,SRI)、TRS资源索引(TRS resource index,TRI)、DMRS资源索引(DMRS resource index,DRI)、CRS资源索引(CRS resource index,CRSRI)。
其中,SSB资源标识也可以称为SSB标识(SSB index)。
应理解,上文中列举的参考信号以及相应的参考信号资源仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
4、天线端口(antenna port):简称端口。被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。天线端口是 逻辑上的概念,一个天线端口可以对应一个物理发射天线,也可以对应多个物理发射天线。在这两种情况下,终端的接收机(receiver)都不会去分解来自同一个天线端口的信号。因为从终端的角度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(reference signal,RS)就定义了这个天线端口,例如,对应解调参考信号(de-modulation reference signal,简称DMRS)的天线端口即DMRS端口,终端都可以根据这个参考信号得到这个天线端口的信道估计。每个天线端口对应一个时频资源网格(time/frequency resource grid),有其独自的参考信号。一个天线端口就是一个信道,终端需要根据这个天线端口对应的参考信号进行信道估计和数据解调。
5、准共址(quasi-co-location,QCL):或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,该参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(doppler spread),多普勒频移(doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或SRS资源标识,或SSB资源标识,或物理随机接入信道(physical random access channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
本申请实施例所涉及的QCL为类型D的QCL。下文中在没有特别说明的情况下,QCL可以理解为类型D的QCL,即,基于空间接收参数定义的QCL。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,下行物理信道和/或下行信号的端口和下行物理信道和/或下行信号的端口之间,或上行物理信道和/或下行信号的端口和上行物理信道和/或下行信号的端口之间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如对于下行物理信道和/或下行信号和上行物理信道和/或下行信号间或上行物理信道和/或下行信号与下行物理信道和/或下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可 以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
6、准同位假设(QCL assumption):是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如接收端能假设A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。大尺度参数可以包括上述的天线端口的参数。
7、传输配置指示(transmission configuration indicator,TCI)状态:可用于指示两种参考信号之间的QCL关系。每个TCI状态中可以包括服务小区的索引(serve cell index,SCI)、带宽部分(band width part,BWP)标识(identifier,ID)和参考信号资源标识,其中,参考信号资源标识例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功率CSI-RS导频资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。
其中,服务小区的索引、BWP ID以及参考信号资源标识指的是在波束训练过程中所使用的参考信号资源以及所对应的服务小区和BWP。由于在波束训练过程中,网络设备基于不同的参考信号资源通过不同的发射波束发送参考信号,因此通过不同的发射波束发送的参考信号可以关联不同的参考信号资源;终端设备基于不同的参考信号资源通过不同的接收波束接收参考信号,因此通过不同的接收波束接收的参考信号也可以关联不同的参考信号资源。因此,在波束训练过程中,终端设备可以维护服务小区的索引、BWP ID以及参考信号资源标识与接收波束的对应关系,网络设备可以维护服务小区的索引、BWP ID以及参考信号资源标识与发射波束的对应关系。通过参考信号资源标识,便可以建立接收波束和发射波束之间的配对关系。
在此后的通信过程中,终端设备可以基于网络设备所指示的TCI状态确定接收波束,网络设备可以基于同一TCI状态确定发射波束。
此外,TCI状态可以是全局配置的。在为不同的小区、不同的BWP配置的TCI状态中,若TCI状态的索引相同,则所对应的TCI状态的配置也相同。7、TCI:可用于指示 TCI状态。
8、TCI:可用于指示TCI状态。
在一种实现方式中,网络设备可通过高层信令(如RRC消息)为终端设备配置TCI状态(TCI state)列表,例如,网络设备可以通过RRC消息中的TCI状态增加模式列表(tci-StatesToAddModList)来为终端设备配置TCI状态列表。该TCI状态列表中可以包括多个TCI状态,例如,网络设备可以为每个小区中的每个BWP配置最多64个TCI状态。示例性的,TCI的结构如下:
Figure PCTCN2019127468-appb-000001
TCI中可以包括多种参数,例如,小区编号,带宽部分编号,参考信号标识,同步信号块标识,准共址(quasi collocation,QCL)类型等。
此后,网络设备可以通过高层信令,如媒体访问控制(medium access control control element,MAC CE)激活一个或多个TCI状态。被激活的TCI状态为上述RRC消息所配置的TCI状态列表的一个子集。例如,网络设备可以为每个小区中的每个BWP激活最多8个TCI状态。
此后,网络设备还可以通过物理层信令(如下行控制信息(downlink control information,DCI))中的TCI字段指示一个被选择的TCI状态。该DCI例如可以适用于调度物理下行资源的DCI。
其中,一个TCI状态的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的QCL类型。当QCL关系配置为类型A、或B、或C中的一种时,终端设备可以根据TCI状态的指示,解调PDCCH或物理下行共享信道(physical downlink shared channel,PDSCH)。当QCL关系配置为类型D时,终端设备可以知道网络设备使用哪个发射波束发送信号,进而可以根据前文该的信道测量确定的波束配对关系确定使用哪个接收波束接 收信号。终端设备可以根据物理下行控制信道(physical downlink control channel,PDCCH)上DCI中的TCI字段来确定接收PDSCH的接收波束。
终端设备基于该TCI状态指示决策下行物理信道和/或下行信号的接收波束,或决策上行物理信道和/或上行信号的发送波束;其中,下行物理信道和/或下行信号可以是下述中的一种或多种:同步信号、广播信道、广播信号解调信号、同步信号广播信道块(synchronous signal/PBCH block,SSB)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号(dedicated reference signal,DMRS),下行数据信道解调参考信号,下行相位噪声跟踪信号中任意一种。上行物理信道和/或下行信号可以是下述中的一种或多种:上行随机接入序列,上行探测参考信号(sounding reference signal,SRS),上行控制信道解调参考信号,上行数据信道解调参考信号,上行相位噪声跟踪信号任意一种。
需要说明的是,当TCI状态中指示的服务小区与被调度用于给终端设备传输下行物理信道和/或下行信号的服务小区可以不是同一个服务小区时,如,TCI状态中指示的服务小区为小区#0,所配置的参考信号为NZP-CSI-RS-ResourceId#0,而被调度用于终端设备传输下行物理信道和/或下行信号的服务小区为小区#1,终端设备也可以基于该TCI状态确定接收波束。TCI状态所指示的NZP-CSI-RS-ResourceId#0的发射波束是小区#0的网络设备的发射波束,例如记作发射波束#0。终端设备可以基于小区0#的下行接收波束来确定小区1#下行物理信道和/或下行信号的接收波束,或上行物理信道和/或上行信号的发送波束。
一种具体的实现方法,终端设备可以直接使用接收服务小区0#的导频资源NZP-CSI-RS-ResourceId#0的下行接收波束来接收小区#1的下行物理信道和/或下行信号。
一种具体的实现方法,终端设备可以根据接收服务小区0#的导频资源NZP-CSI-RS-ResourceId#0的下行接收波束#0的方向确定小区#1下行物理信道和/或下行信号的接收波束,例如可以是与接收波束#0主瓣指向角度相同、或与接收波束#0波束3dB宽度覆盖相同或相近,或选择全向的接收束来接收小区#1的下行物理信道和/或下行信号。
一种具体的实现方法,终端设备根据接收服务小区0#的导频资源NZP-CSI-RS-ResourceId#0的下行接收波束#0的方向确定小区#1上行物理信道和/或上行信号的发送波束,例如可以是与接收波束#0主瓣指向角度相同、或与接收波束#0波束3dB宽度覆盖相同或相近,或选择全向的发送波束来发送小区#1的上行物理信道和/或下行信号。
9、空间关系(spatial relation,SR):也可以称为上行TCI(uplink TCI,UL TCI)。与上文所介绍的TCI相似,空间关系可以用于确定上行物理信道和/或上行信号的发送波束。该空间关系可以由波束训练确定。用于波束训练的参考信号例如可以是上行参考信号,如探测参考信号(sounding reference signal,SRS),也可以是下行参考信号,如上文所列举的SSB或CSI-RS。
每个空间关系可以包括服务小区的索引(ServCellIndex)和参考信号资源标识。其中参考信号资源标识例如可以为以下任意一项:下行BWP ID(downlinkBWP ID)和SSB索引(SSB-Index)、下行BWP ID和非零功率CSI-RS参考信号资源标识 (NZP-CSI-RS-ResourceId),或上行BWP ID和SRS资源标识(SRS-ResourceId)。
其中,服务小区的索引、BWP ID以及参考信号资源标识指的是在波束训练过程中所使用的参考信号资源以及所对应的服务小区和BWP。一个空间关系用于确定一个发送波束,也就是一个服务小区的索引、一个BWP ID和一个参考信号资源可以用于确定一个发射波束。终端设备可以在波束训练的过程中维护服务小区的索引、BWP ID以及参考信号资源标识与发射波束的对应关系,网络设备可以在波束训练的过程中维护服务小区的索引、BWP ID以及参考信号资源标识与接收波束的对应关系。通过参考信号资源标识,便可以建立起发射波束和接收波束之间的配对关系。
在此后的通信过程中,终端设备可以基于网络设备所指示的空间关系确定发射波束,网络设备可以基于同一空间关系确定接收波束。
此外,每个空间关系还可以包括功率控制信息。该功率控制信息例如可以包括以下至少一项:期望的接收功率、路损参考信号和路损补偿参数α。终端设备可以基于该功率控制信息确定使用怎样的发送功率发送上行物理信道和/或下行信号。
另外,空间关系可以是全局配置的。在为不同的小区、不同的BWP配置的空间关系中,若空间关系的标识相同,则所对应的空间关系的配置也相同。
Figure PCTCN2019127468-appb-000002
在一种实现方式中,网络设备可通过高层信令(如RRC消息)为终端设备配置空间关系列表,该空间关系列表中可以包括多个空间关系,例如,网络设备可以为每个小区每个BWP配置最多64个空间关系。
此后,网络设备可以通过高层信令(如MAC CE)激活一个或多个空间关系。被激活的空间关系为上述RRC消息所配置的空间关系列表的一个子集。例如,网络设备可以为每个小区中的每个BWP激活最多8个TCI状态。网络设备通过MAC CE激活空间关系的具体方式与激活TCI状态的具体方式相同,上文中已经对MAC CE激活TCI状态的具体 方式做了详细说明,为了简洁,这里不再赘述。基于MAC CE的激活,终端设备可以确定上行物理信道和/或下行信号与至少一个空间关系的映射关系。
此后,网络设备可以通过物理层信令(如DCI)中的SRI(SRS resource indicator)字段指示一个被选择的空间关系。该DCI例如可以是用于调度上行授权资源(uplink grant,UL grant)的DCI。终端设备可以基于上文该的上行物理信道和/或下行信号与至少一个空间关系的映射关系以及相应的SRI确定被选择的空间关系。
与下行TCI相似地,一个空间关系的配置信息可以包括一个或两个参考信号资源的标识,终端设备可以根据空间关系指示信息,决策上行物理信道和/或上行信号发送波束,或下行物理信道和/或下行信号的接收波束。
此外,一个空间关系的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的空间滤波。例如,当一个空间关系中配置有一个SSB索引,则终端设备可以通过与该SSB索引对应的空间滤波传输信号。其中,与该SSB索引对应的空间滤波器可以是波束训练过程中用于接收该SSB索引所标识的SSB的空间滤波。
终端设备可以根据PDCCH上DCI中的SRI字段来确定发送物理上行共享信道(physical uplink shared channel,PUSCH)的发射波束。
需要说明的是,当空间关系中指示的服务小区与被调度用于给终端设备传输上行物理信道和/或下行信号的服务小区不是同一个服务小区时,如,空间关系中指示的服务小区为小区#0,所配置的导频资源为小区0#的下行物理信道和/或下行信号0-0#或上行物理信道和/或下行信号0-1#。而被调度用于终端设备传输下行物理信道和/或下行信号的服务小区为小区#1,终端设备也可以基于该空间关系确定小区1#上行物理信道和/或下行信号的发射波束,或下行物理信道和/或下行信号的接收波束。
一种具体的实现方法,终端设备可以直接使用接收服务小区0#的下行物理信道和/或下行信号0-0#的下行接收波束来接收小区#1的下行物理信道和/或下行信号。
一种具体的实现方法,终端设备可以根据接收服务小区0#的下行物理信道和/或下行信号0-0#的下行接收波束#0的方向确定小区#1下行物理信道和/或下行信号的接收波束,例如可以是与接收波束#0主瓣指向角度相同、或与接收波束#0波束3dB宽度覆盖相同或相近,或选择全向的接收束来接收小区#1的下行物理信道和/或下行信号。
一种具体的实现方法,终端设备根据发送服务小区0#的上行物理信道和/或下行信号0-1#的发送波束0#的方向确定小区#1下行物理信道和/或下行信号的接收波束,例如可以是与发送波束#0主瓣指向角度相同、或与发送波束#0波束3dB宽度覆盖相同或相近,或选择全向的接收波束来接收小区#1的下行物理信道和/或下行信号。
一种具体的实现方法,终端设备可以直接使用接收服务小区0#的上行物理信道和/或下行信号0-1#的发送波束来发送小区#1的上行物理信道和/或下行信号。
一种具体的实现方法,终端设备可以根据接收服务小区0#的下行物理信道和/或下行信号0-0#的下行接收波束#0的方向确定小区#1上行物理信道和/或上行信号的发送波束,例如可以是与接收波束#0主瓣指向角度相同、或与接收波束#0波束3dB宽度覆盖相同或相近,或选择全向的发送波束来发送小区#1的上行物理信道和/或下行信号。
一种具体的实现方法,终端设备可以根据接收服务小区0#的下行物理信道和/或下行信号0-0#的接收波束#0的方向确定小区#1上行物理信道和/或上行信号的发送波束,例如 可以是与接收波束#0主瓣指向角度相同、或与接收波束#0波束3dB宽度覆盖相同或相近,或选择全向的发送波束来发送小区#1的上行物理信道和/或下行信号。本申请对此不做限定。
10、小区(cell):小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个服务小区,且该服务小区可以看作由一定频域资源组成。在本申请实施例中,小区可以替换为服务小区或CC。在本申请实施例中,“小区”、“服务小区”和“CC”交替使用,在不强调其区别时,其所要表达的含义是一致的。相似地,“服务小区的索引”、“服务小区的标识(ID)”“小区标识(cell ID)”和“CC标识(CC ID)”交替使用,在不强调其区别时,其所要表达的含义是一致的。
需要说明的是,小区可以网络设备的无线网络的覆盖范围内的区域。在本申请实施例中,不同的小区可以对应不同的网络设备。例如,小区#1中的网络设备和小区#2中的网络设备可以是不同的网络设备,如,基站。也就是说,小区#1和小区#2可以由不同的基站来管理,这种情况下,可以称为小区#1和小区#2共站,或者说,同站。小区#1中的网络设备和小区#2中的网络设备也可以是同一基站的不同的射频处理单元,例如,射频拉远单元(radio remote unit,RRU),也就是说,小区#1和小区#2可以由同一基站管理,具有相同的基带处理单元和中频处理单元,但具有不同的射频处理单元。本申请对此不做特别限定。
小区可以分为以下几种:
主小区(Primary Cell,PCell):一个MCG小区,工作在主频段上,UE用来执行初始连接或者重建连接。
辅助小区(Secondary Cell):如果UE配置了CA功能,在特殊小区之外提供额外的无线资源的小区。
特殊小区(Special Cell):对于双连接操作,特殊小区指MCG的主小区或者SCG的主辅小区,否则,特殊小区为主小区。
主辅小区(Primary SCG Cell):对于双连接操作,主辅小区指UE执行同步重配时发送随机接入的小区。
辅小区组(Secondary Cell Group):对于配置了双连接的UE,一个包含PSCell和其他辅小区的服务小区的子集。
11、载波聚合(carrier aggregation,CA):为了高效地利用零碎的频谱,系统支持不同载波单元之间的聚合。将2个或2个以上的载波聚合在一起以支持更大的传输带宽的技术可以称为载波聚合。
载波聚合是终端设备特定的,不同终端设备可以配置不同的CC,每个CC可以对应于一个独立的小区。在本申请实施例中,可以将一个CC等同于一个小区。例如,主小区对应主CC(或者称,主载波),可以是为终端进行初始连接建立的小区,或进行RRC连接重建的小区,或是在切换(handover)过程中指定的主小区。辅助小区对应辅CC(或者称,辅助载波),可以是在RRC重配置时添加的,用于提供额外的无线资源的小区。
对于处于连接态的终端设备来说,若未配置载波聚合,则该终端设备有一个服务小区;若配置了载波聚合,则该终端设备可以有多个服务小区(serving cell),可以称为服务小区集合。例如,上文该的主小区和辅小区组成了该终端设备的服务小区(serving cell)集 合。换句话说,服务小区集合包括至少一个主小区和至少一个辅小区。或者说,配置了载波聚合的终端可与1个主小区和多个辅助小区相连。
12、跨载波调度(cross-carrier scheduling):网络设备在一个CC上发送物理下行控制信道(physical downlink control channel,PDCCH)来调度另一个CC上的数据传输,即,在另一个CC上传输PDSCH,或者,在另一个CC上传输物理上行共享信道(physical uplink shared channel,PDCCH)。更具体地,网络设备可以在一个CC的BWP上发送PDCCH来调度另一个CC上的BWP的PDSCH或PUSCH的传输。即,控制信道在一个CC上传输,而对应的数据信道在另一个CC上传输。
该PDCCH中的下行控制信息(downlink control information,DCI)可以通过载波指示域(carrier indicator field,CIF)域指示被调度的CC。即,CIF可以用于指定该PDCCH对应哪个小区的PDSCH/PUSCH资源。
13、带宽部分(BWP):由于NR中同一小区中不同终端设备的发射或者接收能力可能是不同的,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在自己的BWP上传输。BWP可以是载波上一组连续的频域资源,不同的BWP可以占用的频域资源可以部分重叠,也可以互不重叠。不同的BWP占用的频域资源的带宽可以相同,也可以不同,本申请对此不作限定。
针对不同的终端设备,系统可以配置不同的BWP。为了支持不同的业务,不同的BWP可能会支持不同的配置参数(numerology)。其中,numerology是在NR中新引入的一个概念,具体可理解为通信系统所用的一套参数,例如可包括子载波间隔(subcarrier spacing,SCS)、符号长度、循环前缀(cyclic prefix,CP)长度、资源块(resource block,RB)数、时隙长度、帧格式等。一个小区可以支持一种或者多种numerology,一个BWP可以支持一种numerology。应理解,这里所列举的numerology所包含的具体内容仅为示例性说明,不应对本申请构成任何限定。例如,numerology还可包括NR中所能支持的其他粒度的参数。
综上,不同的BWP可能会配置不同的传输带宽(如,BWP包含的RB数不同)、不同的子载波间隔、不同的循环前缀(cyclic prefix,CP)等。
网络设备在与终端设备传输数据之前,可以预先为终端设备调度物理资源。网络设备可以通过例如PDCCH为终端设备调度PDSCH或PUSCH。若网络设备为终端设备配置了载波聚合,则网络设备发送PDCCH的CC与传输PDSCH或PUSCH的CC可能会不同。例如,在CC#0上发送PDCCH,在CC#1上传输PDSCH或PUSCH,即上文所说的跨载波调度;或者,网络设备发送PDCCH的BWP与传输PDSCH或PUSCH的BWP不同,例如,在CC#0中的BWP#0上发送PDCCH,在CC#0上的BWP#2上传输PDSCH或PUSCH;或者,网络设备发送PDCCH的CC和BWP与传输PDSCH或PUSCH的CC也BWP都不同,例如,在CC#0中的BWP#0上发送PDCCH,在CC#1上的BWP#1上传输PDSCH或PUSCH。
以下行传输为例,网络设备会基于每个CC中的每个BWP为终端设备配置激活的TCI状态。例如,网络设备在CC#0中的BWP#0上发送PDCCH,在CC#1上的BWP#1上传输PDSCH。则终端设备可能预先接收到为CC#0中的BWP#0配置的激活的TCI状态以及为CC#1上的BWP#1配置的激活的TCI状态。
例如,为CC#0中的BWP#0配置的激活的TCI状态包括TCI状态0至7,为CC#1中的BWP#2配置的激活的TCI状态包括TCI状态0、TCI状态4至6。则可以得到表1和表2的映射关系。其中,表1是配置给CC#0中的BWP#0的映射关系,具体如下:
表1
DCI中的3比特TCI字段 RRC中配置的TCI状态
000 TCI状态0
001 TCI状态1
010 TCI状态2
011 TCI状态3
100 TCI状态4
101 TCI状态5
110 TCI状态6
111 TCI状态7
表2是配置给CC#1中的BWP#1的映射关系,具体如下:
表2
DCI中的3比特TCI字段 RRC中配置的TCI状态
000 TCI状态0
001 TCI状态4
010 TCI状态5
011 TCI状态6
可以看到,当所使用的映射关系不同时,TCI字段所指示的TCI状态也不一定相同。例如,TCI字段为“010”时,在表1中对应TCI状态3,在表2中对应TCI状态5。可以理解,TCI状态3和TCI状态5是基于不同的发射波束和/或接收波束训练得到的,由TCI状态3和TCI状态5所确定的发射波束和接收波束都有可能是不同的。
14、载波(component carrier,CC),或者称为成员载波、组成载波、载波分量等。载波聚合主要是将多个载波单元(component carrier,CC,或者称,成员载波、组成载波、载波等)汇聚成一个具有较大带宽的载波,下行控制信道(physical downlink control channel,PDCCH)和PDSCH在相同的CC或不同的CC中。一个CC可以由一个或者多个BWP组成。在本申请实施例中,小区可以替换为服务小区或CC。在本申请实施例中,“小区”、“服务小区”和“CC”交替使用,在不强调其区别时,其所要表达的含义是一致的。相似地,“服务小区的索引”、“服务小区的标识(ID)”、“小区标识(cell ID)”和“CC标识(CC ID)”交替使用,在不强调其区别时,其所要表达的含义是一致的。
15、波束管理资源:指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量包括层一接收参考信号功率(layer 1reference signal received power,L1-RSRP),层一接收参考信号质量(layer 1reference signal received quality,L1-RSRQ)等。具体的,波束管理资源可以包括同步信号,广播信道,下行信道测量参考信号,跟踪信号,下行控制信道解调参考信号,下行共享信道解调参考信号,上行探测参考信号,上行随机接入信号等。
16、波束质量:本申请中不限制衡量波束质量的度量指标,可能的指标包括参考信号接收功率(reference signal received power,RSRP),块误码率(block error rate,BLER), 参考信号接收质量(reference signal received quality,RSRQ),参考信号接收强度指示(received signal strength indicator,RSSI),信号干扰噪声比(signal to interference and noise ratio,SINR),信号质量指示(channel quality indicator,CQI),相关性等。
17、天线面板(panel):无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个面板(panel)上。一个射频链路可以驱动一个或多个天线单元。在本申请实施例中,终端设备可以包括多个天线面板,每个天线面板包括一个或者多个波束。网络设备也可以包括多个天线面板,每个天线面板包括一个或者多个波束。天线面板又可表示为天线阵列(antenna array)或者天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以有一个或多个晶振(oscillator)控制。射频链路又可以称为接收通道和/或发送通道,接收机支路(receiver branch)等。一个天线面板可以由一个射频链路驱动,也可以由多个射频链路驱动。因此本申请中的天线面板也可以替换为射频链路或者驱动一个天线面板的多个射频链路或者由一个晶振控制的一个或多个射频链路。
作为5G标准的第一个版本,Release 15支持作为5G标准的第一个版本,Release 15支持两种频率范围:频率范围1(即低频,简称FR1,450MHz-6000MHz)以及频率范围2(即高频,简称FR2,24250MHz-52600MHz)。针对FR1频段和FR2频段,基站使用不同的射频通道。通过高频天线阵列规模较大,输出的模拟波束较窄;而低频天线阵列规模较小,输出的模拟波束较宽。
在高低频协作场景下,高频可以只用作数据传输分流(offloading),当高频没有数据传输时,可以去激活高频辅助小区,配置较长的高频非激活状态测量周期,进而节省终端设备功耗。
在需要高频进行数据传输时,基站通过MAC CE信令下发辅助小区激活信令。基站接收到该激活指令后,基于无线资源RRC配置SSB机器类通信(machine type of communication,MTC)配置,在相应的时间检测窗内检测SSB信号。图2是现有技术中的MAC CE辅助小区激活信令的一种格式的示意图。如图所示,图中的一个八位组(Oct,octet)表示8比特(bits)构成的一个字节(byte)。R为预留比特,C i为激活指示信息,对应RRC配置的成员载波(component carrier,CC)索引,当C i取值为1时,表示激活相应的CC;当C i取值为0时,表示去激活对应的CC,i=0,2…7。
具体地,该MAC CE中C i用于指示各CC是否被激活。每一个C i可以占用一个比特,例如,C i的值可以是1或0。1可以代表CC被选中激活,0可以代表该CC未被选中激活。值为1的C i最多可以有7个(8个CC,其中一个为主CC,即主小区,一直处于激活状态)。
例如,图2中C 1至C 7为7个激活指示信息,依次对应7个CC1至CC7,若C 1取值为1时,表示激活CC1;若C 1取值为0时,表示激活CC1;若C 1至C 7均取值为1时,则表示激活CC1至CC7。
图3示出了目前技术中MAC CE的另一种格式的示意图。图3中示出了四个八位组(Oct,octet)的MAC CE辅助小区激活信令格式。该MAC CE辅助小区激活信令最多可以配32个激活指示信息,其中C 0对应的CC0为主小区,C 1至C 31对应的CC1至CC31表示31个辅助小区。
由于激活阶段,网络设备没有为终端设备配置任何准共址指示信息,终端设备需要自 己决策接收波束来检测与接收SSB信号,实现辅助小区的上下行同步,完成辅助小区激活。当终端设备装备的多个高频面板时,不同面板可以覆盖多个不同的方向,则在高频辅助小区激活时,需要进行终端设备接收波束扫描,直到找到较好的接收波束成功检测并接收到SSB信号,完成辅助小区激活,整个激活过程耗时较大。按照现有的时延定义,用户最长需要25个SSB时间测量配置(SSB measurement timing configurations,SMTC)周期才能完成小区发现和接收波束扫描,降低了通信质量和可靠性。
有鉴于此,本申请提供一种辅助小区激活的方法,能够在进行辅助小区的激活时,减小辅助小区的激活时延,提高通信质量和可靠性。
下面将结合附图详细说明本申请实施例。
图4是从设备交互的角度示出信号传输的方法400的示意性流程图。如图4所示,图4中示出的方法400可以包括步骤410至步骤430。下面结合图4详细说明方法400中的各个步骤。
应理解,在本申请实施例中,以终端设备和网络设备作为执行方法400的执行主体为例,对方法400进行说明。作为示例而非限定,执行方法400的执行主体也可以是应用于终端设备的芯片和应用于网络设备的芯片。
S410,网络设备生成辅助小区的激活信令,该激活信令包括至少一个第一准共址指示信息。
第一准共址指示信息用于指示辅助小区波束信息。可选地,该第一准共址指示信息可以用于指示该终端设备在该辅助小区的激活阶段的下行物理信道和/或下行信号接收波束和/或上行物理信道和/或上行信号发送波束。终端设备在该辅助小区的激活阶段采用该第一准共址指示信息指示波束进行下行物理信道和/或下行信号接收和/或上行物理信道和/或上行信号发送。
可选地,第一准共址指示信息可以基于以下原则确定。在直视镜(line-of-sight,LOS)场景下,可认为高低频信道具有一致性,即通过信道测量确定低频接收波束的最佳接收方向后,终端设备可以在该接收方向上进行波束扫描,检测并接收SSB信号,完成辅助小区的激活,即利用低频信息辅助高频辅助小区的激活。在确定低频最佳接收波束方向后,网络设备可以将指示低频最佳接收方向的接收波束的第一准共址指示信息携带在高频辅助小区的激活信令中。上行情况与下行类似,为了简洁,不再赘述。
应说明,频率范围1(即低频,简称FR1,450MHz-6000MHz)以及频率范围2(即高频,简称FR2,24250MHz-52600MHz)。
可选地,该第一准共址指示信息可以包括传输配置指示状态标识TCI状态ID、导频资源集标识RS resource set ID或空间关系指示信息,本申请实施例对此不作限定。
以第一准共址指示信息为TCI状态ID为例,图5至图7分别示出了三种携带第一准共址指示信息的MAC CE辅助小区激活信令的格式。图5示出了N个Oct的MAC CE辅助小区的激活信令格式,与图2所示的现有的MAC CE辅助小区激活信令的格式相比,图5所示的MAC CE辅助小区的激活信令格式中携带了至少一个TCI状态ID,如图5中的TCI状态ID0、TCI状态ID1等。类似地,图6与图3相比较,图6所示的MAC CE辅助小区的激活信令格式中携带了至少一个TCI状态ID。MAC CE中C i用于指示各CC状态是否被激活。每一个C i可以占用一个比特,TCI状态ID的值对应上文通过RRC消 息中的tci-StatesToAddModList配置的TCI状态列表中的第i个TCI状态。终端设备通过查询TCI状态列表,获取该TCI State ID的值相应的TCI状态。由于在波束训练过程中,终端设备可以维护服务小区的索引、BWP ID以及参考信号资源标识与接收波束的对应关系,网络设备可以维护服务小区的索引、BWP ID以及参考信号资源标识与发射波束的对应关系。终端设备可以基于网络设备所指示的TCI状态确定接收波束,网络设备可以基于同一TCI状态确定发射波束。
可选地,该激活信令还包括多个组成载波CC的指示信息C i,至少一个TCI状态ID与该多个CC具有一定的对应关系:
1、多个TCI状态ID与该多个CC一一对应
TCI状态ID与CC按顺序一一对应。如图5所示的MAC CE辅助小区激活信令的格式中,按编号大小依次配置CC1与TCI状态ID0对应,CC2与TCI状态ID1,以此类推,CC7与TCI状态ID6对应。
2、激活的CC对应一个TCI状态ID
激活信令中,如果只指示信息C 1和C 3取值为1,表示只激活C 1和C 3对应的CC1和CC3,则只配置CC1和CC3所对应的TCI状态ID0和TCI状态ID2。
3、所有CC对应一个TCI状态ID
例如,激活信令中,所有CC都配置TCI状态ID0。当RRC配置的TCI状态列表中存在TCI状态ID0对应的TCI状态信息,则根据该TCI状态信息激活所有的CC;当RRC配置信令里不存在TCI状态ID0对应的TCI配置信息,例如,TCI状态ID0取-1或其它非法值,则终端设备自主决策接收波束。
4、一组CC对应一个TCI状态ID
例如,激活信令中,激活指示信息C 1、C 2、C 3与C 4分别对应的CC1、CC2、CC3及CC4为一组CC,则这一组CC配置TCI状态ID0。又例如,激活指示信息C 1、C 3、C 5与C 7分别对应的CC为一组CC,则这一组CC配置TCI状态ID1,其余依次按顺序配置TCI状态ID2、TCI状态ID3等。
其中,该CC分组方式可以为具有相同带宽的CC为一组、具有相同频带的CC为一组、具有相同接收波束的CC为一组或者具有相同发送波束的CC为一组。
具体分组方式还包括其它分组方式,通过RRC显示配置或隐式通知给终端设备,本申请对此不作限定。
应说明,上述四种对应关系仅仅是举例说明,本申请对此不作限定。
可选地,该MAC CE辅助小区激活信令的格式还可以如图7所示,即在每个CC的指示信息预留1bit,配置相应的TCI状态ID。如果该CC的指示信息中不包括相应的TCI状态ID,则表示终端设备自己决策该CC的接收波束来检测接收SSB信号,完成辅助小区的激活。例如,当CC1的指示信息中包括相应的TCI状态ID0,则根据该TCI状态ID0在TCI状态列表中对应的TCI状态确定接收波束,通过该接收波束检测接收SSB信号,完成辅助小区的激活。
应说明,图5至图7为了便于说明仅示出了本申请实施例的三种MAC CE辅助小区激活信令格式,本申请对此并不作限定。
S420,网络设备向终端设备发送辅助小区的激活信令;
网络设备向终端设备发送该包括第一准共址指示信息的激活信令。该激活信令可以由网络设备通过主小区向终端设备发送MAC CE来实现。
可选地,在终端设备接收网络设备生成的辅助小区激活信令之前,该终端设备接收网络设备发送第一指示信息,该第一指示信息用于指示主小区与该辅助小区的下行定时相同,或主小区与该辅助小区的时间提前组TAG相同。
S430,终端设备根据该激活信令进行辅助小区激活。
终端设备接收到激活信令后,可以根据该激活信令中携带的第一准共址指示信息决策最佳接收波束,并在最佳接收波束的方向上进行波束扫描,接收并检测SSB信号,完成辅助小区的激活。终端设备的具体决策方法,本申请实施例不作限定。
可选地,在该第一准共址指示信息为TCI状态ID时,终端设备接收到辅助小区的激活信令后,根据该激活信令中携带的TCI状态ID决策接收波束,利用TCI状态ID对应的TCI状态确定的接收波束检测接收SSB,完成辅助小区的激活。
例如,若当前主小区为低频,辅助小区为高频,该辅助小区激活信令中携带的TCI状态ID对应的TCI状态列表中“TCI-state--->QCL-Info--->referenceSignal”可以为低频SSB或RS资源,终端设备基于该低频SSB或RS信号最强接收方向,决策高频接收波束集合为该低频信号最强接收方向相同或近似的一个或多个接收波束,终端设备在这一个或多个接收波束中检测接收SSB信号,实现辅助小区的激活。
可选的,终端设备根据基站的配置在该辅助小区进行信道状态信息(channel state information,CSI)测量,将该CSI测量结果上报网络设备,告知网络设备辅助小区激活成功,进而可以进行数据传输。基站的配置可以是RRC配置的周期性的CSI-RS上报,也可以是RRC配置并由MAC-CE激活的半持续的CSI-RS上报,也可以RRC配置并由MAC-CE激活和DCI选择的非周期性的非周期CSI-RS上报。
可选地,该终端设备采用该第一准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号的接收,和/或,上行物理信道和/或上行信号的发送。
可选地,辅助小区激活后,终端设备可以按照第一准共址指示信息的指示确定下行信道和/或下行物理信道和/或下行信号接收波束,和/或上行信道和/或上行物理信道和/或上行信号发送波束,来接收下行信道和/或下行物理信道和/或下行信号,和/或发送上行信道和/或上行物理信道和/或下行信号。例如下行控制信道,下行数据信道等。如果下行控制信道预先配置了准共址信息,例如PDCCH TCI,终端可以忽略该配置,而按照第一准共址指示信息的接收下行控制信道。
另外,辅助小区激活后,网络设备还可以向终端设备发送第二准共址指示信息。该第二准共址指示信息用于指示终端设备收到该第二波束指示信后的下行物理信道和/或下行信号接收波束和/或上行物理信道和/或上行信号发送波束。该终端设备采用该第二准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号接收波束,和/或,上行物理信道和/或上行信号发送波束。
终端设备收到第二准共址指示信息与使用第二准共址指示信息之间可能会有一定的时间时隔,需要考虑波束切换时延、和/或天线面板切换时延、和/或RF通道启动时延等。在这种情况下,在该时间间隔后使用第二准共址指示信息。
可选地,该第一准共址指示信息还用于指示终端设备在辅助小区完成激活后到收到该 第二准共址指示信息时的下行物理信道和/或下行信号接收波束和/或上行物理信道和/或上行信号发送波束。也就是说,辅助小区激活后,在未收到该第二准共址指示信息的情况下,终端设备继续使用该第一准共址指示信息确定接收和/或发送波束。
在本申请提供的辅助小区激活的方法中,网络设备在辅助小区的激活信令中携带至少一个第一准共址指示信息,终端设备根据该第一准共址指示信息完成辅助小区的激活,这样可以在不提升终端设备功耗的前提下,减小辅助小区的激活时延,进而提升系统容量和用户业务体验。
目前的技术中,终端设备的初始接入,主要是通过检测接收SSB信号。为了降低终端设备的开销,通常设置SSB信号周期较长。在进行波束扫描时,如果一个周期未结束,只有到第二个周期开始时,才能进行下一个波束扫描,导致波束扫描耗时太长。因此,在激活辅助小区时,可以利用检测接收其它参考信号代替检测周期较长的SSB信号,完成辅助小区的激活,从而减小辅助小区的激活时延,降低终端设备的检测功耗,提高通信质量和可靠性。
作为另一个实施例,该第一准共址指示信息可以为导频资源集标识。图8是从设备交互的角度示出信号传输的方法800的示意性流程图。如图8所示,图8中示出的方法800可以包括步骤810至步骤850。下面结合图8详细说明方法800中的各个步骤。
应理解,在本申请实施例中,以终端设备和网络设备作为执行方法800的执行主体为例,对方法800进行说明。作为示例而非限定,执行方法800的执行主体也可以是应用于终端设备的芯片和应用于网络设备的芯片。
S810,终端设备接收网络设备发送的第一指示信息。
该第一指示信息用于指示该终端设备配置主小区与辅助小区的下行定时相同,或时间提前组(timing advance group,TAG)相同。
S820,终端设备根据该第一指示信息配置主小区与辅助小区下行定时相同或TAG相同。
通过配置主小区与辅助小区下行定时相同或TAG相同,实现下行定时同步。
S830,网络设备生成辅助小区的激活信令,该激活信令包括至少一个第一准共址指示信息。
具体地,在本申请实施例中,该第一准共址指示信息可以为导频资源集标识(RS resource set ID),其中,该RS可以为零功率(zero power,ZP)CSI-RS、NZP CSI-RS,跟踪参考信号TRS、下行控制信道解调参考信号(dedicated reference signal,DMRS)或上行探测参考信号(sounding reference signal,SRS),本申请对此不作限定。
可选地,该至少一个第一准共址指示信息用于指示该终端设备在该辅助小区的激活阶段的下行物理信道和/或下行信号接收波束和/或上行物理信道和/或上行信号发送波束。
S840,网络设备向终端设备发送辅助小区的激活信令。
该激活信令可以由网络设备通过MAC CE向终端设备发送。图9至图11为本申请实施例中的MAC CE辅助小区激活信令的格式,它们与图5至图7的不同之处在于本申请实施例中激活信令中携带的第一准共址指示信息为RS资源集合ID。相关描述可以参考前述实施例,为了简洁,在此不加赘述。
该至少一个RS资源集合ID与该激活信令包括的多个CC也具有一定的对应关系,该 对应关系和上述TCI状态ID与多个CC的对应关系一致,为了简洁,在此不加赘述。
应说明,该RS资源结合ID关联的参考信号可以为SSB、或RS(NZP CSI-RS、ZP CSI-RS、TRS、DMRS、SRS)资源,为了加快辅助小区激活,该参考信号可以周期性发送、触发式发送或者半静态的发送。具体发送方式,本申请实施例对比不作限定,只要能实现波束快速扫描即可。
另外,该网络设备在向终端设备发送辅助小区激活信令后,可以显式的或隐式的去激活RS资源集合ID所指示的参考信号资源。显式方式则通过网络设备向终端设备发送去激活信令指示终端设备基于上述参考信号资源去激活。
具体的隐式方法是通过其他信令或通过判断是否满足预定义的条件来决策。下面举例说明:
方法一:协议事先约定好,网络设备向终端设备发送辅助小区激活信令后,第一次收到激活辅助小区的CSI测量上报后,会激活上述参考信号资源的发送。
方法二:协议事先约定好,辅助小区激活信令所指示的参考信号资源只在特定的时间段内发送。比如,从网络设备向终端设备发送激活信令开始到协议定义的最大激活时延结束这段时间内发送。
方法三:辅助小区激活信令所指示的参考信号资源只发送一次。比如,从网络设备向终端设备发送激活信令的第n+k(k>=0)个slot发送一次该参考信号资源。
应理解,上述去激活参考信号资源隐式发送方法仅仅是举例说明,本申请对此不作限定。
S850,终端设备根据该激活信令进行辅助小区激活。
在低频信道根据参考信号确定最佳接收波束后,指示最佳接收波束集合对应的RS资源的ID作为第一准共址指示信息携带在辅助小区的激活指令中,网络设备向终端设备发送该激活指令。终端设备接收到该激活指令后,根据该RS资源集合ID确定相应的RS资源集合,终端设备根据该RS资源集合检测接收参考信号,完成辅助小区激活。
例如,终端设备在接收到辅助小区的激活信令后,在RS资源集合ID所指示的时频域资源位置检测并接收相应的参考信号,完成辅助小区激活。
网络设备根据该激活信令和第一指示信息中的配置信息发送下行参考信号,终端设备根据该配置指示信息发送上行参考信号。
可选地,该终端设备采用该第一准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号的接收,和/或,上行物理信道和/或上行信号的发送。
可选地,辅助小区激活后,终端设备可以按照第一准共址指示信息的指示确定下行信道和/或下行物理信道和/或下行信号接收波束,和/或上行信道和/或上行物理信道和/或上行信号发送波束,来接收下行信道和/或下行物理信道和/或下行信号,和/或发送上行信道和/或上行物理信道和/或下行信号。例如下行控制信道,下行数据信道等。如果下行控制信道预先配置了准共址信息,例如PDCCH TCI,终端可以忽略该配置,而按照第一准共址指示信息的接收下行控制信道。
另外,辅助小区激活后,网络设备还可以向终端设备发送第二准共址指示信息。该第二准共址指示信息用于指示终端设备收到该第二波束指示信后的下行物理信道和/或下行信号接收波束和/或上行物理信道和/或上行信号发送波束。该终端设备采用该第二准共址指示信息指示的波束在该辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物 理信道和/或上行信号发送。
本申请实施例提供的辅助小区的激活的方法,用检测接收其它参考信号代替检测接收周期较长的SSB信号,通过持续性地发送参考信号,能够在较短的时间内完成接收波束扫描,减小辅助小区的激活时延,提升系统容量和用户业务体验。
目前的技术中,在激活辅助小区时,网络设备没有给终端设备配置任何准共址指示信息,终端设备在激活辅助小区时,只能进行盲检,自己决策最佳接收波束,检测接收SSB信号,实现辅助小区激活,这造成辅助小区激活时延过大。在高低频共站址的场景下,由于主小区一般为低频,而主小区只能处于激活状态,不能被去激活。因此,在高低频下行定时相同或TAG相同时,在做高频辅助小区激活时,可以利用高频SSB参考低频的参考信号,利用低频测量辅助实现高频辅助小区的激活。
图12是从设备交互的角度示出信号传输的方法1200的示意性流程图。如图12所示,图12中示出的方法1200可以包括步骤1210至步骤1260。下面结合图12详细说明方法1200中的各个步骤。
应理解,在本申请实施例中,以终端设备和网络设备作为执行方法1200的执行主体为例,对方法1200进行说明。作为示例而非限定,执行方法1200的执行主体也可以是应用于终端设备的芯片和应用于网络设备的芯片。
S1210,终端设备接收网络设备发送的RRC配置信令。
该RRC配置信令包括:同步广播信号块SSB资源信息和该SSB资源的准共址QCL指示信息。
该终端设备在接收到该RRC配置信令后,根据该RRC配置信令指示的准共址指示信息接收该辅助小区的SSB。
例如,在终端设备接收到激活信令之前,网络设备通过“CSI-MeasConfig---->csi-SSB-ResourceSetToAddModList---->CSI-SSB-ResourceSet”将SSB相应的信道质量指示(Channel Quality Information,CQI)信息配置给终端设备。
另外,网络设备通过TCI-StateId定义SSB的QCL指示,其中,TCI-StateId所指示的“TCI-state--->QCL-Info--->referenceSignal”可以是低频cell的SSB、或RS(NZP CSI-RS、ZP CSI-RS、TRS、DMRS、SRS)信号,也可以是高频cell的SSB、或RS(NZP CSI-RS、ZP CSI-RS、TRS、DMRS、SRS)信号。具体信令如下:
Figure PCTCN2019127468-appb-000003
可选地,该终端设备接收第二指示信息,该第二指示信息用于指示该终端设备配置主小区与该辅助小区的的下行定时相同或时间提前组TAG相同。
S1220,网络设备发送第二指示信息。
终端设备接收该第二指示信息,该第二指示信息用于指示主小区与该辅助小区的下行定时相同,和/或主小区与该辅助小区的时间提前组TAG相同。
S1230,终端设备根据该第二指示信息配置主小区与辅助小区下行定时相同或TAG相同。该步骤可选。
终端设备根据第二指示信息配置主小区与辅助小区下行定时相同或TAG相同,实现高低频下行定时相同。
S1240,网络设备生成辅助小区的激活信令。
该激活信令格式可以与现有辅助小区激活信令格式相同,具体可参考图2和图3,为了简洁,此处不再赘述。
S1250,网络设备向终端设备发送辅助小区的激活信令。
该激活信令可以通过MAC CE发送给终端设备。
S1260,终端设备根据该激活信令和该准共址指示信息进行辅助小区激活。
由于SSB是周期性的,并具有时间偏移量。因此在得到低频定时后,可以知道SSB可能会在哪几个符号上发送,终端设备可以决策接收波束,在SSB发送时去检测并接收SSB信号,实现辅助小区的激活。
例如,由于RRC配置信令配置高低频TAG相同,则根据SSB周期和当前低频定时可确定SSB在第1个符号至第4个符号内出现,从而终端设备可以在第1个符号至第4个符号利用接收波束接收检测SSB信号,完成辅助小区激活。
本申请实施例中,在高低频共站址的场景下,在辅助小区激活之前,通过RRC配置信令配置高低频小区的TAG相同,实现下行定时相同,将低频信道参考信号作为SSB的QCL参考,基于低频信道的测量辅助终端设备决策高频SSB的接收波束,检测接收SSB信号,实现辅助小区的激活。
应理解,在本申请的各个实施例中,第一、第二等只是为了表示多个对象是不同的。例如第一准共址指示信息和第二准共址指示信息只是为了区别出不同的准共址指示信息。而不应该对准共址指示信息本身产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本申请实施例中,“预先设定”、“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上文详细介绍了本申请提供的信号传输的方法示例。可以理解的是,终端设备设备和 网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
下面将介绍本申请提供的通信装置。
参见图13,图13是本申请提供的通信装置10的示意图。如图13所示,通信装置10包括通信单元110、处理单元120。
在一些可能的实现方式中,通信装置10可以是方法400或800对应的终端设备。
通信单元110,用于接收网络设备发送的辅助小区的激活信令,该激活信令包括至少一个第一准共址指示信息。
处理单元120,用于根据该激活信令进行该辅助小区的激活。
通信装置10和方法实施例中的终端设备完全对应的相应,通信装置10的相应单元用于执行图4至图12中所示的方法实施例中由终端设备执行的相应步骤。
在一些可能的实现方式中,通信装置10可以是方法1200对应的终端设备。
通信单元110,用于接收无线资源控制RRC配置信令,该RRC配置信令包括:同步广播信号块SSB资源信息和该SSB资源的准共址指示信息
处理单元120,用于根据该准共址指示信息进行辅助小区的激活。
通信装置10和方法实施例中的终端设备完全对应的相应,通信装置10的相应单元用于执行图12中所示的方法实施例中由终端设备执行的相应步骤。
可选地,通信单元110可以是接收器,处理单元120可以是处理器。
参见图14,图14是适用于本申请实施例的终端设备20的结构示意图。该终端设备20可应用于图1所示出的系统中。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的通信方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图15,图15是本申请提出的通信装置30的示意图。如图15所示,装置30包括处理单元320以及通信单元310。
在一些可能的实现方式中,通信装置30可以是方法400或800对应的网络设备。
处理单元320,用于生成辅助小区的激活信令,该激活信令包括至少一个第一准共址指示信息。
通信单元310,用于发送该激活信令。
装置30和方法实施例中的网络设备完全对应,装置30的相应单元用于执行图4至图12所示的方法实施例中由网络设备执行的相应步骤。
在一些可能的实现方式中,通信装置30可以是方法1200对应的网络设备。
处理单元320,用于接收无线资源控制RRC配置信令,该RRC配置信令包括:同步广播信号块SSB资源信息和该SSB资源的准共址指示信息。
通信单元310,用于发送该RRC配置信令。
装置30和方法实施例中的网络设备完全对应,装置30的相应单元用于执行图12所示的方法实施例中由网络设备执行的相应步骤。
参见图16,图16是适用于本申请实施例的网络设备40的结构示意图,可以用于实现上述通信方法中的网络设备的功能。如可以为基站的结构示意图。如图16所示,该网络设备可应用于如图1所示的系统中。
网络设备40可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(base band unit,BBU)。基带单元也可称为数字单元(digital unit,DU)402。该RRU 401可以称为收发单元,与图15中的通信单元310对应。可选地,该收发单元401还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线4011和射频单元4012。可选地,收发单元401可以包括通信单元和通信单元,通信单元可以对应于接收器(或称接收机、接收电路),通信单元可以对应于发射器(或称发射机、发射电路)。该RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如,用于向终端设备发送上述实施例中所述的控制信息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为网络设备的控制中心,也可以称为处理单元,可以与图15中的处理单元320对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等。例如该BBU(处理单元)402可以用于控制网络设备40执行上述方法实施例中关于网络设备的操作流程,例如,确定承载终端设备的控制信息的符号的长度。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如,LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图16所示的网络设备40能够实现图4至图12的方法实施例中涉及的网络设备功能。网络设备40中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图16示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
本申请实施例还提供了一种通信系统,其包括前述的网络设备和一个或多个终端设备。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当 该指令在计算机上运行时,使得计算机执行上述如图4至图12所示的方法中网络设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4至图12所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4至图12所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4至图12所示的方法中终端设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的通信方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请提供的通信方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
以上各实施例中,处理器可以为中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。例如,处理器可以是数字信号处理器设备、微处理器设备、模数转换器、数模转换器等。处理器可以根据这些设备各自的功能而在这些设备之间分配终端设备或网络设备的控制和信号处理的功能。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。处理器的所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
可选的,上述实施例中涉及的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元也可以不是物理上分开的,作为单元显示的部件也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请技术方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种辅助小区激活的方法,其特征在于,包括:
    终端设备接收网络设备发送的辅助小区的激活信令,所述激活信令包括至少一个第一准共址指示信息;
    所述终端设备根据所述激活信令进行所述辅助小区的激活。
  2. 根据权利要求1所述的方法,其特征在于,所述第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,进一步包括:所述终端设备采用所述第一准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号的接收,和/或,上行物理信道和/或上行信号的发送。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二准共址指示信息;
    所述终端设备采用所述第二准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述激活信令还包括多个成员载波的指示信息,所述至少一个所述第一准共址指示信息中的每一个第一准共址指示信息分别与所述多个成员载波中一个或一组成员载波对应。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述终端设备接收网络设备生成的辅助小区激活信令之前,所述方法还包括:
    所述终端设备接收所述网络设备发送第一指示信息,所述第一指示信息用于指示主小区与所述辅助小区的下行定时相同,或主小区与所述辅助小区的时间提前组TAG相同。
  7. 一种辅助小区激活的方法,其特征在于,包括:
    网络设备生成辅助小区的激活信令,所述激活信令包括至少一个第一准共址指示信息;
    所述网络设备发送所述激活信令。
  8. 根据权利要求7所述的方法,其特征在于,所述第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
  9. 根据权利要求7或8所述的方法,其特征在于,进一步包括:所述终端设备采用所述第一准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号的接收,和/或,上行物理信道和/或上行信号的发送。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二准共址指示信息,所述第二准共址指示信息用于指示所述终端设备采用所述第二准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述激活信令还包括多个成员载波的指示信息,所述至少一个所述第一准共址指示信息中的每一个第一准共址指示信息分别与所述多个成员载波中一个或一组成员载波对应。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示主小区与所述辅助小区的下行定时相同,或主小区与所述辅助小区的时间提前组TAG相同。
  13. 一种辅助小区激活的方法,其特征在于,包括:
    终端设备接收无线资源控制RRC配置信令,所述RRC配置信令包括:同步广播信号块SSB资源信息和所述SSB资源的准共址指示信息;
    所述终端设备根据所述准共址指示信息进行辅助小区的激活。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述辅助小区的激活信令;
    所述终端设备根据所述准共址指示信息进行辅助小区的激活,包括:
    所述终端设备根据所述激活信令和所述准共址指示信息进行所述辅助小区的激活。
  15. 根据权利要求13或14所述的方法,其特征在于,所述终端设备接收第二指示信息,所述第二指示信息用于指示主小区与所述辅助小区的下行定时相同,和/或主小区与所述辅助小区的时间提前组TAG相同。
  16. 一种辅助小区激活的方法,其特征在于,包括:
    网络设备生成无线资源控制RRC配置信令,所述RRC配置信令包括:同步广播信号块SSB资源信息和所述SSB资源的准共址指示信息;
    所述网络设备发送所述RRC配置信令。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送辅助小区的激活信令。
  18. 根据权利要求16或17所述的方法,其特征在于,所述网络设备发送第二指示信息,所述第二指示信息用于指示主小区与所述辅助小区的下行定时相同,和/或主小区与所述辅助小区的时间提前组TAG相同。
  19. 一种通信装置,其特征在于,包括:
    通信单元,用于接收网络设备发送的辅助小区的激活信令,所述激活信令包括至少一个第一准共址指示信息;
    处理单元,用于根据所述激活信令进行所述辅助小区的激活。
  20. 根据权利要求19所述的装置,其特征在于,所述第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
  21. 根据权利要求19或20所述的装置,其特征在于,所述通信单元还用于:
    采用所述第一准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号的接收,和/或上行物理信道和/或上行信号的发送。
  22. 根据权利要求19至21中任一项所述的装置,其特征在于,所述通信单元还用于接收所述网络设备发送的第二准共址指示信息;
    采用所述第二准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述激活信令还包括多个成员载波的指示信息,所述至少一个所述第一准共址指示信息中的每一个第一准共址指示信息分别与所述多个成员载波中一个或一组成员载波对应。
  24. 根据权利要求19至23中任一项所述的装置,其特征在于,所述通信单元还用于:
    接收所述网络设备发送第一指示信息,所述第一指示信息用于指示主小区与所述辅助小区的下行定时相同,或主小区与所述辅助小区的时间提前组TAG相同。
  25. 一种通信装置,其特征在于,包括:
    处理单元,用于生成辅助小区的激活信令,所述激活信令包括至少一个第一准共址指示信息;
    通信单元,用于发送所述激活信令。
  26. 根据权利要求25所述的装置,其特征在于,所述第一准共址指示信息包括传输配置指示状态标识、导频资源集标识或空间关系指示信息。
  27. 根据权利要求25或26所述的装置,其特征在于,所述通信单元还用于:
    采用所述第一准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号的接收,和/或,上行物理信道和/或上行信号的发送。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述通信单元还用于:
    发送第二准共址指示信息,所述第二准共址指示信息用于指示所述终端设备采用所述第二准共址指示信息指示的波束在所述辅助小区进行下行物理信道和/或下行信号接收,和/或,上行物理信道和/或上行信号发送。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,所述激活信令还包括多个成员载波的指示信息,所述至少一个所述第一准共址指示信息中的每一个第一准共址指示信息分别与所述多个成员载波中一个或一组成员载波对应。
  30. 根据权利要求25至29中任一项所述的装置,其特征在于,所述通信单元还用于:
    发送第一指示信息,所述第一指示信息用于指示主小区与所述辅助小区的下行定时相同,或主小区与所述辅助小区的时间提前组TAG相同。
  31. 一种通信装置,其特征在于,包括:
    通信单元,用于接收无线资源控制RRC配置信令,所述RRC配置信令包括:同步广播信号块SSB资源信息和所述SSB资源的准共址指示信息;
    处理单元,用于根据所述准共址指示信息进行辅助小区的激活。
  32. 根据权利要求31所述的装置,其特征在于,所述通信单元还用于接收所述辅助小区的激活信令;
    所述处理单元具体用于根据所述激活信令和所述准共址指示信息进行所述辅助小区的激活。
  33. 根据权利要求31或32所述的装置,其特征在于,所述通信单元还用于:
    接收第二指示信息,所述第二指示信息用于指示主小区与所述辅助小区的下行定时相同,和/或主小区与所述辅助小区的时间提前组TAG相同。
  34. 一种通信装置,其特征在于,包括:
    处理单元,用于生成无线资源控制RRC配置信令,所述RRC配置信令包括:同步广播信号块SSB资源信息和所述SSB资源的准共址指示信息;
    通信单元,用于发送所述RRC配置信令。
  35. 根据权利要求34所述的装置,其特征在于,所述通信单元还用于发送辅助小区的激活信令。
  36. 根据权利要求34或35所述的装置,其特征在于,所述通信单元还用于:
    发送第二指示信息,所述第二指示信息用于指示主小区与所述辅助小区的下行定时相同,和/或主小区与所述辅助小区的时间提前组TAG相同。
  37. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述设备执行如权利要求1至18中任一项所述的方法。
  38. 一种计算机可读介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2019/127468 2018-12-29 2019-12-23 一种辅助小区激活的方法和通信装置 WO2020135341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19905642.5A EP3897046B1 (en) 2018-12-29 2019-12-23 Secondary cell activation method and communication apparatus
US17/360,123 US12262313B2 (en) 2018-12-29 2021-06-28 Secondary cell activation method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811647479.2 2018-12-29
CN201811647479.2A CN111385078B (zh) 2018-12-29 2018-12-29 一种辅助小区激活的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,123 Continuation US12262313B2 (en) 2018-12-29 2021-06-28 Secondary cell activation method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020135341A1 true WO2020135341A1 (zh) 2020-07-02

Family

ID=71125716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127468 WO2020135341A1 (zh) 2018-12-29 2019-12-23 一种辅助小区激活的方法和通信装置

Country Status (4)

Country Link
US (1) US12262313B2 (zh)
EP (1) EP3897046B1 (zh)
CN (1) CN111385078B (zh)
WO (1) WO2020135341A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339793A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 信息传输方法、终端及网络侧设备
WO2022087397A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Reference signal configuration for secondary cell activation

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11570796B2 (en) * 2019-09-04 2023-01-31 Qualcomm Incorporated Triggering reference signals in wireless networks
WO2021087991A1 (en) * 2019-11-08 2021-05-14 Qualcomm Incorporated Transmission configuration indicator state updates for multiple component carriers
US11943795B2 (en) * 2019-11-20 2024-03-26 Qualcomm Incorporated Common default beam per component carrier group
US11864036B2 (en) * 2020-02-04 2024-01-02 Comcast Cable Communications, Llc Resource management and control for wireless communications
US11362723B2 (en) * 2020-05-15 2022-06-14 Samsung Electronics Co., Ltd. Method and apparatus for beam management
US11606762B2 (en) * 2020-07-17 2023-03-14 Qualcomm Incorporated Synchronization signal block-level sleep mode
US11889464B2 (en) * 2020-07-21 2024-01-30 Qualcomm Incorporated Reliable paging and short message transmission with repetition
CN114071664B (zh) * 2020-08-06 2025-05-09 维沃移动通信有限公司 指示响应方法、装置、终端和存储介质
CN111934837B (zh) * 2020-08-07 2024-12-13 中兴通讯股份有限公司 一种信令处理、发送方法、设备及存储介质
CN115804040A (zh) * 2020-08-07 2023-03-14 Oppo广东移动通信有限公司 Ssb确定方法、装置、设备及存储介质
CN116134864A (zh) * 2020-08-07 2023-05-16 华为技术有限公司 通信方法及装置
CN114339890A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 通信资源激活方法、终端及网络侧设备
WO2022067697A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 一种触发trs激活的方法及装置、终端设备、网络设备
US11985648B2 (en) * 2020-10-09 2024-05-14 Qualcomm Incorporated Secondary cell activation using temporary reference signals and beam selection
WO2022082678A1 (zh) * 2020-10-22 2022-04-28 Oppo广东移动通信有限公司 辅小区激活方法、终端设备和网络设备
WO2022110048A1 (zh) * 2020-11-27 2022-06-02 Oppo广东移动通信有限公司 一种信息指示方法及装置、终端设备、网络设备
US20240063979A1 (en) * 2020-12-29 2024-02-22 Beijing Xiaomi Mobile Software Co., Ltd. Beam indication method, beam indication apparatus and storage medium
EP4266730A4 (en) * 2021-01-14 2024-02-28 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR REPORTING AND RECEIVING BEAM INFORMATION
US12052187B2 (en) 2021-01-14 2024-07-30 Apple Inc. Systems, methods, and devices for secondary cell activation with UE-specific reference signal
WO2022165747A1 (en) * 2021-02-05 2022-08-11 Qualcomm Incorporated Transmission configuration indicator indication for non-serving cell information
WO2023039910A1 (zh) * 2021-09-18 2023-03-23 北京小米移动软件有限公司 一种临时参考信号传输方法、装置及存储介质
CN116171623A (zh) * 2021-09-24 2023-05-26 苹果公司 基于跨分量载波参考信号的辅小区激活
US20240356706A1 (en) * 2021-09-30 2024-10-24 Qualcomm Incorporated Transmission configuration indicator state indications
CN116418467A (zh) * 2021-12-29 2023-07-11 维沃移动通信有限公司 探测参考信号的配置方法、装置、终端及网络侧设备
CN116418471A (zh) * 2021-12-30 2023-07-11 华为技术有限公司 一种路损参考信号确定方法及相关装置
CN117119431A (zh) * 2022-05-16 2023-11-24 维沃移动通信有限公司 辅小区SCell激活方法及设备
US20250142659A1 (en) * 2022-05-18 2025-05-01 Nec Corporation Method, device and computer storage medium of communication
CN117279002A (zh) * 2022-06-15 2023-12-22 维沃移动通信有限公司 一种波束选择的方法、终端及网络侧设备
WO2024031393A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 一种激活辅小区的方法、装置、设备以及可读存储介质
CN115397023B (zh) * 2022-08-15 2024-06-18 中国联合网络通信集团有限公司 通信方法、网络设备及存储介质
US20240098530A1 (en) * 2022-09-21 2024-03-21 Qualcomm Incorporated Primary cell beam-based secondary cell beam indication
US20240106617A1 (en) * 2022-09-23 2024-03-28 Apple Inc. Tci indication based continuation of multiple-cell activation
WO2024216457A1 (en) * 2023-04-17 2024-10-24 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses and computer-readable medium for communication
CN120302324A (zh) * 2023-05-08 2025-07-11 中国电信股份有限公司北京研究院 激活辅小区的方法、装置、终端和存储介质
CN119485459A (zh) * 2023-08-11 2025-02-18 华为技术有限公司 通信方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812625A (zh) * 2012-11-07 2014-05-21 上海贝尔股份有限公司 一种用于基于载波聚合确定下行控制信息的方法和设备
CN103814543A (zh) * 2011-05-02 2014-05-21 瑞典爱立信有限公司 在无线通信系统中新激活的辅助小区上禁止探测参考信号传输的方法和装置
CN106105333A (zh) * 2014-03-24 2016-11-09 瑞典爱立信有限公司 用于激活和去激活多个辅助小区的系统和方法
US20180124687A1 (en) * 2016-11-03 2018-05-03 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5g) new radio
CN108370290A (zh) * 2017-09-20 2018-08-03 北京小米移动软件有限公司 同步块的指示及确定方法、装置、基站、用户设备
CN109788564A (zh) * 2017-09-20 2019-05-21 华硕电脑股份有限公司 无线通信系统中波束决定的方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10694392B2 (en) * 2014-11-06 2020-06-23 Sharp Kabushiki Kaisha Terminal device, base station device, and method
US10567145B2 (en) * 2018-01-05 2020-02-18 Ofinno, Llc Beam reports with multiple cells
US11490334B2 (en) * 2018-09-19 2022-11-01 Ofinno, Llc Power saving in a wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814543A (zh) * 2011-05-02 2014-05-21 瑞典爱立信有限公司 在无线通信系统中新激活的辅助小区上禁止探测参考信号传输的方法和装置
CN103812625A (zh) * 2012-11-07 2014-05-21 上海贝尔股份有限公司 一种用于基于载波聚合确定下行控制信息的方法和设备
CN106105333A (zh) * 2014-03-24 2016-11-09 瑞典爱立信有限公司 用于激活和去激活多个辅助小区的系统和方法
US20180124687A1 (en) * 2016-11-03 2018-05-03 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5g) new radio
CN108370290A (zh) * 2017-09-20 2018-08-03 北京小米移动软件有限公司 同步块的指示及确定方法、装置、基站、用户设备
CN109788564A (zh) * 2017-09-20 2019-05-21 华硕电脑股份有限公司 无线通信系统中波束决定的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3897046A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339793A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 信息传输方法、终端及网络侧设备
EP4195739A4 (en) * 2020-09-29 2024-02-21 Vivo Mobile Communication Co., Ltd. Information transmission method, terminal, and network side device
WO2022087397A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Reference signal configuration for secondary cell activation

Also Published As

Publication number Publication date
EP3897046B1 (en) 2024-10-16
US20210329546A1 (en) 2021-10-21
EP3897046A4 (en) 2022-02-23
US12262313B2 (en) 2025-03-25
CN111385078A (zh) 2020-07-07
CN111385078B (zh) 2021-08-13
EP3897046A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
US12262313B2 (en) Secondary cell activation method and communication apparatus
US20240072963A1 (en) Method for transmitting sounding reference signal for user equipment with asymmetric transmit/receive
US11737082B2 (en) Signal transmission method and communications apparatus
US11337203B2 (en) Transmission configuration indication (TCI) state switching for 5G NR
JP7144118B2 (ja) 信号送受信方法および通信機器
US11343037B2 (en) Transmission configuration indication states with quasi-collocation groups
US20210135821A1 (en) Signal Transmission Method and Communications Apparatus
US20220060302A1 (en) Communication method and communications apparatus
CN111107630B (zh) 通信方法和通信装置
CN111294891A (zh) 一种天线面板及波束的管理方法和设备
US12028880B2 (en) Beam indications for multiple uplink or downlink channels and reference signals
US11963205B2 (en) Resource management method and apparatus
WO2022120710A1 (zh) 一种通信方法、装置及系统
US20220394701A1 (en) Communication method and apparatus
US20240032023A1 (en) Reference signal port association determination for single frequency network uplink
US12284533B2 (en) Techniques for adaptive scheduling in idle mode
US20250175976A1 (en) Uplink transmit occasion uplink control information for a cell discontinuous communication cycle
US20250106767A1 (en) Beamforming configuration of synchronization signals
US20250142475A1 (en) Techniques for on-demand synchronization signal block transmission
WO2025059915A1 (en) Multiple timing advance physical random access channel power control
US20250097981A1 (en) Terminal, radio communication method, and base station
WO2021147116A1 (en) Uplink adaptation in carrier aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905642

Country of ref document: EP

Effective date: 20210714