[go: up one dir, main page]

WO2020130104A1 - 有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ - Google Patents

有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ Download PDF

Info

Publication number
WO2020130104A1
WO2020130104A1 PCT/JP2019/049943 JP2019049943W WO2020130104A1 WO 2020130104 A1 WO2020130104 A1 WO 2020130104A1 JP 2019049943 W JP2019049943 W JP 2019049943W WO 2020130104 A1 WO2020130104 A1 WO 2020130104A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
organic semiconductor
ring
organic
Prior art date
Application number
PCT/JP2019/049943
Other languages
English (en)
French (fr)
Inventor
森貴裕
福田貴
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to EP19900118.1A priority Critical patent/EP3902023B1/en
Priority to US17/415,438 priority patent/US12101991B2/en
Priority to CN201980084707.6A priority patent/CN113196512A/zh
Publication of WO2020130104A1 publication Critical patent/WO2020130104A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/36Amides or imides
    • C08F122/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings

Definitions

  • the present invention relates to a composition containing an organic semiconductor, a solution for forming an organic semiconductor, an organic semiconductor layer, and an organic thin film transistor, and in particular, an organic semiconductor containing a low-molecular organic semiconductor excellent in coating properties applicable to a printing method.
  • the present invention relates to a layer forming solution, an organic semiconductor layer formed by using the solution, and an organic thin film transistor.
  • organic semiconductor devices represented by organic thin film transistors have attracted attention because they have characteristics such as energy saving, low cost, and flexibility that inorganic semiconductor devices do not have.
  • This organic semiconductor device is composed of several kinds of materials such as an organic semiconductor layer, a substrate, an insulating layer, and an electrode. Among them, the organic semiconductor layer responsible for carrier transfer of electric charge plays a central role in the device. Since the performance of the organic semiconductor device depends on the carrier mobility of the organic material forming the organic semiconductor layer, the advent of an organic material that gives high carrier mobility is desired.
  • Patent Document 1 an organic semiconductor having a dithienobenzodithiophene skeleton is disclosed (Patent Document 1). Also, a combination of such an organic semiconductor and a polymer other than the organic semiconductor has been reported (Patent Document 2). However, although the organic semiconductor layer described in Patent Document 1 has high mobility, higher coatability is required. Further, even if the organic semiconductor and the polymer are simply combined as in Patent Document 2, the characteristics of the organic thin film transistor are not yet sufficient, and there is a problem in the heat resistance of the polymer, and in terms of coatability, heat resistance, and carrier mobility. There was room for improvement.
  • the present invention has been made in view of the above problems, and its purpose is to provide a composition containing an organic semiconductor having excellent coatability and heat resistance, an organic semiconductor layer-forming solution, and a heat resistance obtained by using the same.
  • An object is to provide an organic semiconductor layer having excellent properties and an organic thin film transistor having high heat resistance and mobility.
  • the present inventors formed an organic semiconductor layer using a solution containing a composition of an organic semiconductor and a polymer having a specific structure, and thus an organic thin film transistor obtained was excellent. They have found that they have both electrical characteristics and high heat resistance, and have completed the present invention.
  • a composition comprising an organic semiconductor and a polymer (1) having at least one unit selected from the group consisting of the following formulas (1-a), (1-b) and (1-c).
  • R 1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 4 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, carbon
  • An organic group selected from the group consisting of an alkynyl group having 2 to 20 carbon atoms and a cycloalkyl group having 3 to 20 carbon atoms is shown.
  • the ring structures Ar 1 and Ar 5 each independently represent a ring selected from the group consisting of a thiophene ring, a thiazole ring, or a benzene ring.
  • the ring structures Ar 2 and Ar 4 are each independently.
  • a ring selected from the group consisting of a thiophene ring, a benzene ring, and a cyclobutene ring is shown.
  • a ring structure Ar 3 is a ring selected from the group consisting of a benzene ring, a thiophene ring, and a cyclobutene ring.
  • R 2 and R 5 Are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 4 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms.
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a trialkylsilylethynyl group. Represents a group selected from the group consisting of: m is an integer of 1 or 2, n is an integer of 0 to 2, o is an integer of 0 or 1. However, when the ring structure Ar 3 is a thiophene ring or a cyclobutene ring , O is 0.) [3] The composition according to [1] or [2], wherein the organic semiconductor is a compound represented by at least one of the following formula (3) and formula (4).
  • R 6 and R 9 may be the same or different.
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or tri Represents a group selected from the group consisting of alkylsilylethynyl groups, a represents an integer of 1 or 2, b represents an integer of 0 to 2, provided that when X is —CH ⁇ CH—, Y is ⁇ CH— Indicates.)
  • R 10 to R 17 which do not constitute each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, Or a group selected from the group consisting of aryl groups having 4 to 26 carbon atoms.
  • Y represents any one of CR 22 and a nitrogen atom.
  • R 18 to R 22 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 4 carbon atoms. A group selected from the group consisting of aryl groups of to 26).
  • An organic semiconductor layer forming solution containing the composition according to any one of [1] to [3] and an organic solvent.
  • [6] An organic thin film transistor including the organic semiconductor layer according to [5].
  • the present invention provides a composition comprising an organic semiconductor and a polymer having at least one unit of the group consisting of formula (1-a), formula (1-b) and formula (1-c), and an organic compound containing the composition.
  • the present invention relates to a solution for forming a semiconductor layer, an organic semiconductor layer formed using the solution, and an organic thin film transistor.
  • R 1 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 4 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, carbon
  • An organic group selected from the group consisting of an alkynyl group having 2 to 20 carbon atoms and a cycloalkyl group having 3 to 20 carbon atoms is shown.
  • composition of the present invention is characterized by containing an organic semiconductor and a polymer (1).
  • the polymer (1) which is a constituent component of the composition of the present invention is characterized by having a unit selected from the group consisting of formulas (1-a), (1-b) and (1-c).
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 4 carbon atoms. It represents one group selected from the group consisting of an aryl group having 20 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms.
  • halogen atom for R 1 examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms in R 1 is, for example, methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, isohexyl group, n-heptyl group.
  • n-octyl group n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl, 2-hexyl group
  • Examples include groups selected from the group consisting of linear or branched alkyl groups such as decyl groups.
  • the alkoxy group having 1 to 20 carbon atoms in R 1 is, for example, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isobutoxy group, n-pentyloxy group, n-hexyloxy group, isohexyloxy group, n-heptyloxy group.
  • n-octyloxy group n-nonyloxy group, n-decyloxy group, n-dodecyloxy group, n-tetradecyloxy group, 2-ethylhexyloxy group, 3-ethylheptyloxy group, 2-hexyldecyloxy group
  • other groups selected from the group consisting of linear or branched alkyl groups.
  • the aryl group having 4 to 20 carbon atoms in R 1 is, for example, phenyl group, p-tolyl group, p-(n-hexyl)phenyl group, p-(n-octyl)phenyl group, p-(2-ethylhexyl).
  • Alkyl-substituted phenyl group such as phenyl group; 2-furyl group; 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5-(n -Propyl)-2-furyl group, 5-(n-butyl)-2-furyl group, 5-(n-pentyl)-2-furyl group, 5-(n-hexyl)-2-furyl group, 5- (N-octyl)-2-furyl group, 5-(2-ethylhexyl)-2-furyl group, 5-fluoro-2-thienyl group, 5-methyl-2-thienyl group, 5-ethyl-2-thienyl group , 5-(n-propyl)-2-thienyl group, 5-(n-butyl)-2-thienyl group, 5-(n-pentyl)-2-thienyl group, 5-(
  • the alkenyl group having 2 to 20 carbon atoms in R 1 is, for example, an ethenyl group, an n-propenyl group, an n-butenyl group, an n-pentenyl group, an n-hexenyl group, an n-heptenyl group, an n-octenyl group, an n-octenyl group.
  • Examples thereof include a group selected from the group consisting of a nonel group, an n-decenyl group, an n-dodecenyl group and the like.
  • alkynyl group having 2 to 20 carbon atoms in R 1 examples include ethynyl group, n-propynyl group, n-butynyl group, n-pentynyl group, n-hexynyl group, n-heptinyl group, n-octynyl group, n- Examples thereof include groups selected from the group consisting of nonynyl groups, n-decynyl groups, n-dodecynyl groups and the like.
  • Examples of the cycloalkyl group having 3 to 20 carbon atoms in R 1 include a group selected from the group consisting of a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclononyl group, a cyclodecyl group, a cyclododecyl group and the like. ..
  • the polymer (1) in the present invention has at least one unit selected from the group consisting of formula (1-a), formula (1-b) and formula (1-c).
  • one kind of polymer can be used alone, or two or more kinds of polymers can be used as a mixture. Further, it is also possible to use one kind or a mixture of two or more kinds of polymers having different molecular weights. Also, it may be used as a copolymer of two or more kinds of polymers.
  • the glass transition point (Tg) of the polymer (1) in the composition of the present invention is preferably 95° C. or higher and 300° C. or lower, more preferably 110° C. or higher and 300° C. or lower, and further Is particularly preferably 120° C. or higher and 300° C. or lower.
  • the weight average molecular weight (Mw) of the polymer (1) in the composition of the present invention is preferably 10,000 to 1,000,000.
  • the molecular weight can be measured by gel permeation chromatography at 40°C.
  • the polymer (1) is a group consisting of (A-2), (A-3), (A-4), (A-5), (A-6), (A-9) and (A-12). Is preferably at least one, and more preferably at least one selected from the group consisting of (A-4), (A-6) and (A-12). This is advantageous in that high mobility and high heat resistance can be imparted to the organic semiconductor layer.
  • the organic semiconductor in the composition of the present invention is not particularly limited as long as it has semiconductor characteristics, and both low molecular semiconductors and polymer semiconductors can be used.
  • organic semiconductor is a low molecular weight semiconductor
  • examples of the organic semiconductor used in the present invention include compounds represented by the following formula (2).
  • the ring structures Ar 1 and Ar 5 each independently represent a ring selected from the group consisting of a thiophene ring, a thiazole ring, or a benzene ring.
  • the ring structures Ar 2 and Ar 4 are each independently.
  • a ring selected from the group consisting of a thiophene ring, a benzene ring, and a cyclobutene ring is shown.
  • a ring structure Ar 3 is a ring selected from the group consisting of a benzene ring, a thiophene ring, and a cyclobutene ring.
  • R 2 and R 5 Are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 4 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms.
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a trialkylsilylethynyl group. Represents a group selected from the group consisting of: m is an integer of 1 or 2, n is an integer of 0 to 2, o is an integer of 0 or 1. However, when the ring structure Ar 3 is a thiophene ring or a cyclobutene ring , O is 0.)
  • the ring structures Ar 1 and Ar 5 of the organic semiconductor each independently represent a ring selected from the group consisting of a thiophene ring, a thiazole ring, or a benzene ring.
  • a thiophene ring or a thiazole ring is preferable because the organic semiconductor exhibits higher mobility.
  • the ring structures Ar 2 and Ar 4 each independently represent a ring selected from the group consisting of a thiophene ring, a benzene ring and a cyclobutene ring.
  • a thiophene ring is preferred because the organic semiconductor exhibits higher oxidation resistance.
  • the ring structure Ar 3 represents a ring selected from the group consisting of a benzene ring, a thiophene ring, and a cyclobutene ring.
  • a benzene ring is preferred because the organic semiconductor exhibits higher heat resistance.
  • R 2 and R 5 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 4 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 2 to 20 carbon atoms. Is a group selected from the group consisting of From the viewpoint of solubility of the organic semiconductor in an organic solvent, an alkyl group having 1 to 20 carbon atoms is preferable.
  • the halogen atom in R 2 and R 5 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms in R 2 and R 5 is, for example, methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl group, Examples thereof include groups selected from the group consisting of linear or branched alkyl groups such as 2-hexyldecyl group.
  • an organic semiconductor exhibits a high mobility, and the organic semiconductor has a high solubility in an organic solvent. Therefore, an alkyl group having 3 to 12 carbon atoms is preferable, and an n-propyl or n-butyl group is preferable. More preferred is a group selected from the group consisting of an n-pentyl group, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group and an n-decyl group.
  • the aryl group having 4 to 20 carbon atoms in R 2 and R 5 is, for example, phenyl group, p-tolyl group, p-(n-hexyl)phenyl group, p-(n-octyl)phenyl group, p-(2 -Ethylhexyl) alkyl-substituted phenyl group such as phenyl group; 2-furyl group; 2-thienyl group; 5-fluoro-2-furyl group, 5-methyl-2-furyl group, 5-ethyl-2-furyl group, 5 -(N-Propyl)-2-furyl group, 5-(n-butyl)-2-furyl group, 5-(n-pentyl)-2-furyl group, 5-(n-hexyl)-2-furyl group , 5-(n-octyl)-2-furyl group, 5-(2-ethylhexyl)-2-furyl
  • the alkenyl group having 2 to 20 carbon atoms in R 2 and R 5 is, for example, ethenyl group, n-propenyl group, n-butenyl group, n-pentenyl group, n-hexenyl group, n-heptenyl group, n-octenyl group. And a group selected from the group consisting of an n-nonel group, an n-decenyl group, an n-dodecenyl group and the like.
  • the alkynyl group having 2 to 20 carbon atoms in R 2 and R 5 is, for example, ethynyl group, n-propynyl group, n-butynyl group, n-pentynyl group, n-hexynyl group, n-heptynyl group, n-octynyl group. And a group selected from the group consisting of an n-nonynyl group, an n-decynyl group, an n-dodecynyl group and the like.
  • R 3 and R 4 each independently represent a group selected from the group consisting of a hydrogen atom, a trialkylsilylethynyl group, an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms.
  • a hydrogen atom is preferable because the organic semiconductor exhibits higher mobility.
  • the trialkylsilylethynyl group for R 3 and R 4 include a group selected from the group consisting of a trimethylsilylethynyl group, a triethylsilylethynyl group, a triisopropylsilylethynyl group, and the like.
  • the alkyl group having 1 to 20 carbon atoms in R 3 and R 4 is, for example, methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-pentyl group, n-hexyl group, isohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-tetradecyl group, n-octadecyl group, 2-ethylhexyl group, 3-ethylheptyl group, 3-ethyldecyl group, Examples thereof include groups selected from the group consisting of linear or branched alkyl groups such as 2-hexyldecyl group.
  • an alkyl group having 1 to 8 carbon atoms is preferable, in particular, an organic semiconductor exhibits high mobility and the organic semiconductor exhibits high solubility in an organic solvent, and therefore, a methyl group, an ethyl group, n- A group selected from the group consisting of a propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group and an n-octyl group is more preferred.
  • the alkoxy group having 1 to 20 carbon atoms in R 3 and R 4 is, for example, a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, an isobutoxy group, an n-pentyloxy group, an n-hexyloxy group, an isohexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group, n-tetradecyloxy group, 2-ethylhexyloxy group, 3-ethylheptyloxy group, 2-hexyl Examples thereof include groups selected from the group consisting of linear or branched alkyl groups such as desiloxy groups.
  • an organic semiconductor exhibits a high mobility, and the organic semiconductor exhibits a high solubility in an organic solvent. Therefore, an alkoxy group having 1 to 8 carbon atoms is preferable, and a methoxy group, an ethoxy group, n- A group selected from the group consisting of propoxy group, n-butoxy group, isobutoxy group, n-pentyloxy group, n-hexyloxy group, isohexyloxy group, n-heptyloxy group and n-octyloxy group is more preferable.
  • n represents an integer of 0 to 2. It is preferably 1 because the ⁇ stacking of the organic semiconductor becomes strong.
  • o represents an integer of 0 or 1. It is preferably 0 because the organic semiconductor exhibits high heat resistance.
  • Ar 3 is a thiophene ring or a cyclobutene ring, o is 0.
  • the organic semiconductor used in the present invention has a high melting point, a structure having 5 or more condensed rings is preferable.
  • the organic semiconductor used in the present invention has high symmetry and high mobility, it is preferably a compound represented by the following formula (3) or (4).
  • R 6 and R 9 may be the same or different.
  • R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or tri Represents a group selected from the group consisting of alkylsilylethynyl groups, a represents an integer of 1 or 2, b represents an integer of 0 to 2, provided that when X is —CH ⁇ CH—, Y is CH- is shown.)
  • R 10 to R 17 which do not constitute each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, Or a group selected from the group consisting of aryl groups having 4 to 26 carbon atoms.
  • Y represents any one of CR 22 and a nitrogen atom.
  • R 18 to R 22 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or 4 to 4 carbon atoms. A group selected from the group consisting of 26 aryl groups is shown.)]
  • (B-1), (B-4), (B-5), (B-7), (B-9), (B-10), ( B-11), (B-13), (B-14), (B-15), (B-17), (B-19), (B-20), (B-37), (B- 39), (B-41), (B-42), (B-43), and (B-44) are preferred, and (B-5), (B-7), (B- 9), (B-11), (B-13), (B-41), (B-42), (B-43) and (B-44) are more preferable.
  • the mixing composition ratio of the organic semiconductor and the polymer (1) is such that the content ratio of the organic semiconductor is 5 parts by weight or more and 90 parts by weight with respect to 100 parts by weight of the total of the organic semiconductor and the polymer (1). It is preferably not more than 10 parts by weight, more preferably not less than 10 parts by weight and not more than 80 parts by weight.
  • composition of the present invention may further contain an organic solvent.
  • another form of the present invention is an organic semiconductor layer forming solution containing an organic semiconductor, the polymer (1) and an organic solvent.
  • the organic solvent used as a constituent component of the organic semiconductor layer forming solution of the present invention may be one that dissolves the organic semiconductor and the polymer (1).
  • any organic solvent may be used as long as it can dissolve the organic semiconductor represented by the formula (2).
  • an organic solvent having a boiling point of 100° C. or higher at normal pressure is preferable because the drying rate of the organic solvent can be made more suitable.
  • organic solvent examples include toluene, tetralin, indane, mesitylene, o-xylene, isopropylbenzene, pentylbenzene, cyclohexylbenzene, 1,2,4-trimethylbenzene, anisole, and 2-methylanisole.
  • aromatic compounds are preferred because the organic semiconductors have high solubility in organic solvents.
  • it since it has an appropriate drying speed, it has toluene, tetralin, mesitylene, o-xylene, 1,2,4-trimethylbenzene, anisole, 2-methylanisole, 3-methylanisole, 2,3-dimethylanisole, 3, 4-dimethylanisole, 2,6-dimethylanisole, benzothiazole, 1,2-methylenedioxybenzene, 1,2-ethylenedioxybenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1 More preferably, at least one member of the group consisting of 4,4-dichlorobenzene.
  • organic solvent used in the present invention one kind of organic solvent can be used alone.
  • organic solvents having different properties such as boiling point, polarity, and solubility parameter.
  • the organic semiconductor layer forming solution of the present invention is prepared by mixing and dissolving the polymer (1), the organic semiconductor, and the organic solvent.
  • any method may be used as long as it can dissolve the polymer (1) and the organic semiconductor in an organic solvent.
  • examples thereof include a method of preparing a solution and a method of dissolving the polymer (1) in an organic solvent solution of an organic semiconductor.
  • the concentration of the organic semiconductor in the solution for forming an organic semiconductor layer of the present invention is in the range of 0.01% by weight or more and 20.0% by weight or less when the total of the organic semiconductor, the polymer (1) and the organic solvent is 100% by weight. Is preferred. Thereby, the handling of the solution becomes easier, and the efficiency in forming the organic semiconductor layer becomes more excellent. Further, when the viscosity of the organic semiconductor layer forming solution is in the range of 0.3 to 100 mPa ⁇ s, more suitable coatability is exhibited.
  • Examples of the coating method for forming the organic semiconductor layer using the organic semiconductor layer-forming solution of the present invention include simple coating methods such as spin coating, drop casting, dip coating, and cast coating; dispenser, inkjet, slit coating. Printing methods such as blade coating, flexographic printing, screen printing, gravure printing and offset printing. At this time, the substrate to be applied may be the one described below. In particular, the spin coating method and the inkjet method are more preferable, because the organic semiconductor layer can be formed particularly easily and efficiently.
  • the organic solvent When the organic solvent is dried and removed from the applied solution for forming an organic semiconductor layer, the organic solvent can be dried and removed under normal pressure or reduced pressure, for example.
  • the temperature at which the organic solvent is dried and removed from the applied organic semiconductor layer forming solution is 10 because the organic solvent can be efficiently removed by drying from the applied organic semiconductor layer and the organic semiconductor layer can be formed. It is preferably carried out in a temperature range of up to 150°C.
  • the crystal growth of the organic semiconductor can be controlled by adjusting the vaporization rate of the organic solvent to be removed.
  • the thickness of the organic semiconductor layer obtained by drying and removing the organic solvent from the applied organic semiconductor layer-forming solution is preferably 1 nm to 1 ⁇ m, more preferably 10 nm to 300 nm, because the thickness can be easily controlled. 20 nm to 100 nm is more preferable.
  • the obtained organic semiconductor layer can be subjected to thermal annealing treatment at 90 to 150° C. after forming the organic semiconductor layer. Since the organic semiconductor layer has high heat resistance, thermal annealing treatment can be performed at 95° C. or higher. It can be carried out. The thermal annealing treatment is preferably performed after removing the organic solvent from the coating film formed using the organic semiconductor layer forming solution.
  • the structure of the organic semiconductor layer and the polymer (1) obtained in the present invention is not particularly limited as long as the organic semiconductor layer according to the present invention can be obtained, and examples thereof include the following (a) to (d).
  • (A) A layer structure in which a layer made of an organic semiconductor is formed on the upper layer and a layer made of the polymer (1) is formed on the lower layer.
  • (B) A layer structure in which a layer made of the polymer (1) is formed on the upper layer and a layer made of an organic semiconductor is formed on the lower layer.
  • C A layer structure in which a layer made of an organic semiconductor is formed as an upper layer, a layer made of the polymer (1) is formed as an intermediate layer, and a layer made of an organic semiconductor is formed as a lower layer.
  • (D) A layer structure in which a layer made of the polymer (1) is formed on the upper layer, a layer made of an organic semiconductor is formed on the intermediate layer, and a layer made of the polymer (1) is formed on the lower layer.
  • organic semiconductor layer the layer including the organic semiconductor and the polymer (1) is collectively referred to as "organic semiconductor layer”.
  • the organic semiconductor layer formed from the organic semiconductor layer forming solution of the present invention can be used as an organic semiconductor device, particularly as an organic semiconductor layer of an organic thin film transistor.
  • An organic thin film transistor can be obtained by stacking an organic semiconductor layer having a source electrode and a drain electrode attached thereto and a gate electrode on a substrate with a gate insulating layer interposed therebetween.
  • an organic semiconductor layer formed by using the organic semiconductor layer forming solution of the present invention as the organic semiconductor layer an organic thin film transistor exhibiting excellent semiconductor/electrical characteristics can be produced.
  • Fig. 1 shows the structure of a general organic thin film transistor according to its cross-sectional shape.
  • (A) is a bottom gate-top contact type
  • (B) is a bottom gate-bottom contact type
  • (C) is a top gate-top contact type
  • (D) is a top gate-bottom contact type.
  • Reference numeral 1 is an organic semiconductor layer
  • 2 is a substrate
  • 3 is a gate electrode
  • 4 is a gate insulating layer
  • 5 is a source electrode
  • 6 is a drain electrode.
  • the organic semiconductor layer formed from the solution for forming an organic semiconductor layer of the present invention can be applied to any organic thin film transistor.
  • the substrate include, for example, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polymethyl acrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, fluorinated cyclic polyolefin, polyimide, polycarbonate, polyvinylphenol, polyvinyl alcohol, poly( Plastic substrates such as diisopropyl fumarate), poly(diethyl fumarate), poly(diisopropyl maleate), polyether sulfone, polyphenylene sulfide, cellulose triacetate; glass, quartz, aluminum oxide, silicon, highly doped silicon, silicon oxide, dioxide Inorganic material substrates such as tantalum, tantalum pentoxide, and indium tin oxide; metal substrates such as gold, copper, chromium, titanium, aluminum, and the like can be given. When highly doped silicon is used as the substrate, the substrate can also serve as the gate electrode.
  • the gate electrode according to the present invention is not particularly limited, and examples thereof include aluminum, gold, silver, copper, highly doped silicon, tin oxide, indium oxide, indium tin oxide, chromium, titanium, tantalum, graphene, carbon nanotubes and the like.
  • Inorganic materials organic materials such as doped conductive polymers (eg PEDOT-PSS).
  • Examples of the method of forming the gate electrode include a vacuum vapor deposition method and a coating method.
  • a metal nanoparticle ink composed of the inorganic material and an organic solvent.
  • the above organic solvent is a polar solvent such as water, methanol, ethanol, 2-propanol, 1-butanol, and 2-butanol because of its moderate dispersibility; carbon number 6 such as hexane, heptane, octane, decane, dodecane, and tetradecane.
  • Aromatic hydrocarbon solvents having 7 to 14 carbon atoms such as 2,2-dimethylanisole, 2,3-dimethylanisole, and 3,4-dimethylanisole are preferable.
  • a coating method for forming a gate electrode using the metal nanoparticle ink for example, a simple coating method such as spin coating, drop casting, dip coating, or cast coating; dispenser, inkjet, slit coating, blade coating, flexo Printing methods such as printing, screen printing, gravure printing, offset printing and the like can be mentioned.
  • the gate electrode can be prepared by applying the metal nanoparticle ink and then removing the organic solvent by drying. After applying the metal nanoparticle ink and drying it, it is preferable to perform annealing treatment in a temperature range of 80° C. to 200° C. in order to improve conductivity.
  • the gate insulating layer according to the present invention is not particularly limited, and examples thereof include silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, titanium oxide, tantalum dioxide, tantalum pentoxide, indium tin oxide, tin oxide, vanadium oxide, and titanium.
  • Inorganic materials such as barium acid and bismuth titanate; polymethylmethacrylate, polymethylacrylate, polyimide, polycarbonate, polyvinylphenol, polyvinyl alcohol, poly(diisopropyl fumarate), poly(diethyl fumarate), polyethylene terephthalate, polyethylene naphthalate, Polyethylcinnamate, methyl polycinnamate, ethyl polycrotonate, polyethersulfone, polypropylene-co-1-butene, polyisobutylene, polypropylene, polycyclopentane, polycyclohexane, polycyclohexane-ethylene copolymer, polyfluorine Cyclopentane, polyfluorinated cyclohexane, polyfluorinated cyclohexane-ethylene copolymer, fluorinated cyclic polyolefin, BCB resin (trade name: Cycloten, manufactured by Dow Chemical Co.), Cytop (trade
  • the surface of these gate insulating layers may be formed, for example, by octadecyltrichlorosilane, decyltrichlorosilane, decyltrimethoxysilane, octyltrichlorosilane, octadecyltrimethoxysilane, ⁇ -phenethyltrichlorosilane, ⁇ -phenethyltrimethoxysilane, phenyltritrichlorosilane.
  • the silanes such as chlorosilane, phenyltrimethoxysilane and phenyltriethoxysilane; and those modified with silylamines such as hexamethyldisilazane can also be used.
  • the same material as the gate electrode can be used, and it may be the same as or different from the material of the gate electrode, or different materials may be laminated. Further, in order to increase the carrier injection efficiency, surface treatment may be performed on these electrode materials. Examples of the surface treatment agent used for the surface treatment include benzenethiol, pentafluorobenzenethiol, 4-fluorobenzenethiol, 4-methoxybenzenethiol and the like.
  • the carrier mobility of the organic thin film transistor obtained using the organic semiconductor layer forming solution of the present invention is preferably 0.5 cm 2 /V ⁇ s or more, and more preferably 1.0 cm 2 /V ⁇ s or more. This causes the transistor to have faster operability.
  • the current on/off ratio of the organic thin film transistor obtained using the organic semiconductor layer forming solution of the present invention is preferably 1.0 ⁇ 10 5 or more. This causes the transistor to have higher switching characteristics.
  • the organic semiconductor layer forming solution of the present invention and the organic semiconductor layer formed from the solution are used for organic thin film transistors such as electronic paper, organic EL displays, liquid crystal displays, IC tags (RFID tags), memories and sensors; organic EL displays.
  • Materials: Organic semiconductor laser materials; Organic thin film solar cell materials; Photonic crystal materials and other electronic materials, and organic semiconductors are crystalline thin films, and thus can be used as semiconductor layer applications for organic thin film transistors. preferable.
  • organic semiconductor layer forming solution of the present invention By using the organic semiconductor layer forming solution of the present invention, it is possible to provide an organic thin film transistor that exhibits high mobility, high coatability, and high heat resistance.
  • the weight average molecular weight of the polymer (1) was measured at 40° C. using a product name HLC-8320GPC (manufactured by Tosoh Corporation). For some commercially available products, the values listed in the catalog were used.
  • Organic semiconductor The structure of the organic semiconductor used in each example is shown below.
  • the above compound S-1 (2,7-di(n-hexyl)dithienobenzodithiophene) was synthesized according to the method described in JP 2012-209329 A by the method described in Synthesis Example 1 described later. did.
  • As the compound S-2 2-decyl-7-phenyl[1]benzothieno[3,2-b][1]benzothiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used.
  • the above compound S-3 (2,7-dioctyldithienobiphenylene) was synthesized by the methods described in Synthesis Examples 2 to 7 described later according to the method described in JP-A-2018-174322.
  • Polymer (1) The polymer (1) used in each example is shown below.
  • the polymer P-1 was synthesized by the method described in Synthesis Example 8 described later.
  • the polymer P-2 was synthesized by the method described in Synthesis Examples 9 to 10 described later.
  • the polymer P-3 was synthesized by the method described in Synthesis Examples 11 to 12 described later.
  • the polymer P-4 was synthesized by the method described in Synthesis Example 13 described later.
  • the polymer P-5 was synthesized by the method described in Synthesis Example 14 described later.
  • As the polymer P-6 polystyrene (manufactured by Sigma-Aldrich, average Mw to 280,000 by GPC) was used.
  • polystyrene resin polyethylmethacrylate (manufactured by Sigma-Aldrich, average Mw to 515,000 by GPC, powder) was used.
  • polymer P-8 polyisobutyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd., product code M0086, molecular weight 49,000) was used.
  • Triphenylphosphine)palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) (39.1 mg, 0.0338 mmol, 3.38 mol% based on 1,4-dibromo-2,5-difluorobenzene) and 10 ml of THF were added. After carrying out the reaction at 60° C. for 8 hours, the container was cooled with water and 3 ml of 3N hydrochloric acid was added to stop the reaction. It was extracted with toluene, the organic phase was washed with brine and dried over anhydrous sodium sulfate.
  • Synthesis Example 4 (Synthesis of 1,5-difluorobiphenylene) Under a nitrogen atmosphere, 395.5 mg (1.1 mmol) of 2,2′-dibromo-3,6′-difluorobiphenyl synthesized in Synthesis Example 3 and 20 ml of THF (dehydrated grade) were added to a 100 ml Schlenk reaction vessel. This mixture was cooled to ⁇ 78° C., and 2.9 ml (4.6 mmol) of a hexane solution of n-butyllithium (Kanto Kagaku, 1.6 M) was added dropwise. The mixture was aged at ⁇ 78° C. for 1 hour, then heated to ⁇ 40° C. over 10 minutes and aged for 1 hour.
  • THF dehydrated grade
  • Synthesis Example 5 Synthesis of biphenylene-1,5-bis(thioacetaldehyde dimethyl acetal)
  • Synthesis Example 4 In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 5,7.6 mg (0.31 mmol) of 1,5-difluorobiphenylene synthesized in Synthesis Example 4 and 398.0 mg of sodium sulfide nonahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 1.65 mmol) and 4 ml of NMP (Fuji Film Wako Pure Chemical Industries, Ltd.) were added. The mixture was stirred at 110° C. for 6 hours.
  • Synthesis Example 6 Synthesis of dithienobiphenylene derivative
  • a 50 ml Schlenk reaction vessel under a nitrogen atmosphere 57.7 mg (0.15 mmol) of biphenylene-1,5-bis(thioacetaldehyde dimethyl acetal) synthesized in Synthesis Example 5, polyphosphoric acid (manufactured by Fuji Film Wako Pure Chemical Industries) 109. 4 mg and 4 ml of chlorobenzene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added. The mixture was stirred at 130° C. for 5 hours. After cooling the obtained reaction mixture to room temperature, water and toluene were added.
  • Synthesis Example 7 (S-3,2,7-dioctyldithienobiphenylene synthesis) Under a nitrogen atmosphere, 22.5 mg (0.085 mmol) of the dithienobiphenylene derivative synthesized in Synthesis Example 6 and 4 ml of THF (dehydrated grade) were added to a 50 ml Schlenk reaction vessel. This mixture was cooled to 0° C., and 0.20 ml (0.32 mmol) of a hexane solution of n-butyllithium (Tokyo Kasei Kogyo Co., Ltd., 1.6 M) was added dropwise.
  • THF dehydrated grade
  • Synthesis Example 8 (synthesis of P-1) The polymer (P-1) was synthesized according to the following scheme.
  • Synthesis example 10 (synthesis of P-2) Synthesis was performed in the same manner as in Synthesis Example 8 except that the compound (M-2) obtained in Synthesis Example 9 and 1.35 g of N-hexylmaleimide were used in place of the compound (M-1), and the polymer (P -2) was obtained.
  • the obtained P-2 had a molecular weight of Mw 220,000 and a glass transition point of 150°C.
  • Synthesis Example 11 Synthesis of Monomer M-3 (raw material for Polymer P-3) Synthesis was performed in the same manner as in Synthesis Example 9 except that 92.7 g (0.5 mmol) of the compound dodecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of hexylamine, and the monomer (M-3) and N-dodecylmaleimide were used.
  • Synthesis Example 12 (synthesis of P-3) Synthesis was performed in the same manner as in Synthesis Example 8 except that the compound (M-3) obtained in Synthesis Example 10 and 1.99 g of N-dodecylmaleimide were used in place of the compound (M-1), and the polymer (P -3) was obtained.
  • the molecular weight of the obtained P-3 was Mw 29,000, and the glass transition point was 111°C.
  • Synthesis Example 13 (synthesis of P-4) The same synthesis as in Synthesis Example 8 was carried out except that 1.34 g of a commercially available compound (M-4) and N-cyclohexylmaleimide (manufactured by Tokyo Chemical Industry Co., Ltd.) were used instead of the compound (M-1), Poly N-cyclohexylmaleimide was obtained as a polymer (P-4). The molecular weight of the obtained P-4 was Mw 130,000 and the glass transition point was 277°C.
  • Synthesis Example 14 (synthesis of P-5) A polymer was prepared in the same manner as in Synthesis Example 8 except that 1.40 g of the compound (M-5) and N-benzylmaleimide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were used as the compound (M-1) and the polymerization initiator. (P-5) was obtained. The obtained P-5 had a molecular weight of Mw of 150,000 and a glass transition point of 178°C.
  • Example 1 DSC measurement of polymer
  • P-4 poly N-cyclohexylmaleimide
  • Tg Tg of the polymer was 277°C.
  • a solution was prepared. (Preparation of organic semiconductor layer and organic thin film transistor) Under air, on the bottom contact substrate shown in Table 1, 0.22 ml of the organic semiconductor layer-forming solution prepared by the above method was drop-cast at room temperature (25° C.) with a micropipettor. A thin film of an organic semiconductor layer having a film thickness of 50 nm was produced by naturally drying at room temperature (25° C.) for 24 hours and then heat drying at 40° C. for 3 hours. It was confirmed that the thin film had an organic semiconductor layer as an upper layer and a polymer (1) layer as a lower layer.
  • Examples 2-9 An organic thin film transistor was prepared by the same method as in Example 1 except that the polymer shown in Table 2 was used as the polymer, and the electrical properties were measured and the heat resistance was evaluated. The results are shown in Table 2. In each of the examples, it was confirmed that the thin film of the organic semiconductor composition had an organic semiconductor layer as an upper layer and a polymer (1) layer as a lower layer.
  • Comparative Examples 1 to 4 An organic thin film transistor was prepared by the same method as in Example 1 except that the polymer shown in Table 2 was used as the polymer, and the electrical properties were measured and the heat resistance was evaluated. The results are shown in Table 2.
  • an organic thin film transistor having both excellent electrical properties and high heat resistance can be produced, and therefore application as a semiconductor device material can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

塗工性に優れた有機半導体層形成用溶液、それを用いて作成した、高い耐熱性を持つ有機半導体および該有機半導体を含む層、および高い電気物性を発現する有機薄膜トランジスタを提供する。 有機半導体と、式(1-a)、式(1-b)及び(1-c)からなる群の少なくとも1つの単位を有するポリマー(1)を含む組成物。有機半導体、ポリマー(1)と有機溶媒とを含む組成物は有機半導体層形成用溶液として好適に用いることができる。

Description

有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
 本発明は、有機半導体を含む組成物、有機半導体形成用溶液、有機半導体層、および有機薄膜トランジスタに関するものであり、特に印刷法に適用可能な塗工性に優れた低分子有機半導体を含む有機半導体層形成溶液、これを用いて形成した有機半導体層、及び有機薄膜トランジスタに関するものである。
 有機薄膜トランジスタに代表される有機半導体デバイスは、省エネルギー、低コストおよびフレキシブルといった無機半導体デバイスにはない特徴を有することから近年注目されている。この有機半導体デバイスは、有機半導体層、基板、絶縁層、電極等の数種類の材料から構成され、中でも電荷のキャリア移動を担う有機半導体層は該デバイスの中心的な役割を有している。そして、有機半導体デバイス性能は、この有機半導体層を構成する有機材料のキャリア移動度により左右されることから、高キャリア移動度を与える有機材料の出現が所望されている。
 有機材料として、ジチエノベンゾジチオフェン骨格を有する有機半導体が開示されている(特許文献1)。
 また、このような有機半導体と有機半導体以外のポリマーとを併用したものも報告されている(特許文献2)。
 しかし、特許文献1に記載された有機半導体層は、高移動度であるものの、より高い塗工性が求められている。また、特許文献2のように有機半導体とポリマーとを単に組み合わせても、有機薄膜トランジスタの特性は未だ十分ではなく、ポリマーの耐熱性にも課題があり、塗工性、耐熱性、キャリア移動度において改善の余地があった。
日本国特開2012-209329号公報。 日本国特表2004-525501号公報。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、塗工性及び耐熱性に優れた有機半導体を含む組成物、有機半導体層形成用溶液、それを用いることにより得られる耐熱性に優れた有機半導体層および高い耐熱性及び移動度を有する有機薄膜トランジスタを提供することにある。
 本発明者らは上記課題を解決するため鋭意検討の結果、有機半導体と特定の構造を有するポリマーの組成物を含む溶液を用いて有機半導体層を形成することで、得られる有機薄膜トランジスタが優れた電気特性および高い耐熱性を併せ持つことを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]乃至[6]に存する。
[1] 有機半導体と、下記式(1-a)、式(1-b)及び(1-c)からなる群の少なくとも1つの単位を有するポリマー(1)を含む組成物。
Figure JPOXMLDOC01-appb-C000006
(ここで、Rは水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基及び炭素数3~20のシクロアルキル基からなる群より選択される有機基を示す。)
[2] 有機半導体が下記式(2)で示される化合物である[1]に記載の組成物。
Figure JPOXMLDOC01-appb-C000007
(ここで、環構造Ar及びArは、それぞれ独立してチオフェン環、チアゾール環、又はベンゼン環からなる群より選択される環を示す。環構造Ar及びArは、それぞれ独立してチオフェン環、ベンゼン環、又はシクロブテン環からなる群より選択される環を示す。環構造Arはベンゼン環、チオフェン環、又はシクロブテン環からなる群より選択される環を示す。R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、又は炭素数2~20のアルキニル基からなる群より選択される基を示す。RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又はトリアルキルシリルエチニル基からなる群より選択される基を示す。mは1又は2の整数、nは0~2の整数、oは0又は1の整数を示す。但し、環構造Arがチオフェン環又はシクロブテン環の場合、oは0である。)
[3] 有機半導体が下記式(3)または式(4)の少なくともいずれかで示される化合物である[1]または[2]に記載の組成物。
Figure JPOXMLDOC01-appb-C000008
(ここで、Xは硫黄原子又は -CH=CH- のいずれか1つを示す。Yは =CH- 又は窒素原子のいずれか1つを示す。R及びRは、同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、又は炭素数2~20のアルキニル基からなる群より選択される基を示す。RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又はトリアルキルシリルエチニル基からなる群より選択される基を示す。aは1又は2の整数、bは0~2の整数を示す。但し、Xが -CH=CH- の場合、Yは =CH- を示す。)
Figure JPOXMLDOC01-appb-C000009
[(ここで、R10~R17の隣接する二つからなる組合せの内、1組~3組が下記式(5)を構成し、5又は6員環を形成する。下記式(5)を構成しなかったR10~R17は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群より選択される基を示す。)
Figure JPOXMLDOC01-appb-C000010
(ここで、Xは酸素原子、硫黄原子、セレン原子、CR19=CR20、又はNR21からなる群より選択される1つを示す。YはCR22又は窒素原子のいずれか1つを示す。R18~R22は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群より選択される基を示す。)]
[4] [1]乃至[3]いずれかに記載の組成物と、有機溶媒を含む有機半導体層形成用溶液。
[5] [1]乃至[3]いずれかに記載の組成物を含む有機半導体層。
[6] [5]に記載の有機半導体層を備える有機薄膜トランジスタ。
 本発明は、有機半導体と、式(1-a)、式(1-b)及び式(1-c)からなる群の少なくとも1つの単位を有するポリマーを含む組成物、当該組成物を含む有機半導体層形成用溶液、それを用いて形成した有機半導体層、並びに有機薄膜トランジスタに関するものである。
Figure JPOXMLDOC01-appb-C000011
(ここで、Rは水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基及び炭素数3~20のシクロアルキル基からなる群より選択される有機基を示す。)
 以下に、本発明をより詳細に説明する。
 本発明の組成物は、有機半導体およびポリマー(1)を含むことを特徴とする。
 本発明の組成物の構成成分であるポリマー(1)は、式(1-a)、(1-b)又は(1-c)からなる群より選択される単位を有することを特徴とする。
 式(1-a)、(1-b)及び(1-c)中、Rは水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基及び炭素数3~20のシクロアルキル基からなる群より選択される1つの基を表す。
 Rにおけるハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rにおける炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基等の直鎖又は分岐アルキル基からなる群より選択される基が挙げられる。
 Rにおける炭素数1~20のアルコキシ基は、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、n-ペンチロキシ基、n-ヘキシリキシ基、イソヘキシロキシ基、n-ヘプチロキシ基、n-オクチロオキシ基、n-ノニロキシ基、n-デシロキシ基、n-ドデシロキシ基、n-テトラデシロキシ基、2-エチルヘキシロキシ基、3-エチルヘプチロキシ基、2-ヘキシルデシロキシ基等の直鎖又は分岐アルキル基からなる群より選択される基が挙げられる。
 Rにおける炭素数4~20のアリール基は、例えば、フェニル基、p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基;2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換カルコゲノフェン基からなる群より選択される基を挙げられる。
 Rにおける炭素数2~20のアルケニル基は、例えば、エテニル基、n-プロペニル基、n-ブテニル基、n-ペンテニル基、n-ヘキセニル基、n-ヘプテニル基、n-オクテニル基、n-ノネル基、n-デセニル基、n-ドデセニル基等からなる群より選択される基が挙げられる。
 Rにおける炭素数2~20のアルキニル基は、例えば、エチニル基、n-プロピニル基、n-ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等からなる群より選択される基が挙げられる。
 Rにおける炭素数3~20のシクロアルキル基は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロノニル基、シクロデシル基、シクロドデシル基等からなる群より選択される基が挙げられる。
 本発明におけるポリマー(1)は、式(1-a)、式(1-b)及び式(1-c)からなる群の少なくとも1つの単位を有する。
 本発明で用いるポリマー(1)は、1種類のポリマーを単独で使用、または2種類以上のポリマーの混合物として使用することが可能である。更に、1種類または2種類以上の異なる分子量のポリマーを混合して使用することも可能である。また、2種類以上のポリマーの共重合体として使用しても良い。
 有機半導体を用いたフレキシブル電子デバイスの製造工程において、有機半導体層を形成後に温度90℃以上で加熱する工程があり、該工程において有機半導体層の性能低下を抑制する必要がある。このため、本発明の組成物におけるポリマー(1)のガラス転移点(Tg)は95℃以上300℃以下であることが好ましく、さらには110℃以上300℃以下であることがより好ましく、またさらには120℃以上300℃以下の範囲であることが特に好ましい。
 本発明の組成物におけるポリマー(1)の重量平均分子量(Mw)は1万~100万であることが好ましい。分子量は、40℃におけるゲル・パーミエーション・クロマトグラフィーにより測定することができる。
 ポリマー(1)が有する構成単位の具体例として、以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000012
 ポリマー(1)は、(A-2)、(A-3)、(A-4)、(A-5)、(A-6)、(A-9)、(A-12)からなる群の少なくとも1種が好ましく、(A-4)、(A-6)、(A-12)からなる群の少なくとも1種がより好ましい。これにより有機半導体層に高い移動度と高い耐熱性を付与できる点で有利である。
 本発明の組成物における有機半導体は、半導体特性を有するものであれば特に制限はなく、低分子半導体、高分子半導体のいずれも使用することができる。
 本発明で用いる有機半導体は、有機半導体が低分子半導体の場合、例えば、下記式(2)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(ここで、環構造Ar及びArは、それぞれ独立してチオフェン環、チアゾール環、又はベンゼン環からなる群より選択される環を示す。環構造Ar及びArは、それぞれ独立してチオフェン環、ベンゼン環、又はシクロブテン環からなる群より選択される環を示す。環構造Arはベンゼン環、チオフェン環、又はシクロブテン環からなる群より選択される環を示す。R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、又は炭素数2~20のアルキニル基からなる群より選択される基を示す。RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又はトリアルキルシリルエチニル基からなる群より選択される基を示す。mは1又は2の整数、nは0~2の整数、oは0又は1の整数を示す。但し、環構造Arがチオフェン環又はシクロブテン環の場合、oは0である。)
 該有機半導体の環構造Ar及びArは、それぞれ独立してチオフェン環、チアゾール環、又はベンゼン環からなる群より選択される環を示す。有機半導体がより高移動度を発現するためチオフェン環、チアゾール環のいずれかが好ましい。
 環構造Ar及びArは、それぞれ独立してチオフェン環、ベンゼン環、又はシクロブテン環からなる群より選択される環を示す。有機半導体がより高い耐酸化性を発現するため、チオフェン環が好ましい。
 環構造Arはベンゼン環、チオフェン環、又はシクロブテン環からなる群より選択される環を示す。有機半導体がより高い耐熱性を発現するためベンゼン環が好ましい。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基からなる群から選ばれる基である。有機半導体の有機溶媒への溶解性の観点から炭素数1~20のアルキル基であることが好ましい。
 R及びRにおけるハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R及びRにおける炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基等の直鎖又は分岐アルキル基からなる群より選択される基が挙げられる。そして、その中でも特に有機半導体が高移動度を発現し、有機半導体が有機溶媒に対して高溶解性を示すことから、炭素数3~12のアルキル基が好ましく、n-プロピル、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基からなる群より選択される基がさらに好ましい。
 R及びRにおける炭素数4~20のアリール基は、例えば、フェニル基、p-トリル基、p-(n-ヘキシル)フェニル基、p-(n-オクチル)フェニル基、p-(2-エチルヘキシル)フェニル基等のアルキル置換フェニル基;2-フリル基;2-チエニル基;5-フルオロ-2-フリル基、5-メチル-2-フリル基、5-エチル-2-フリル基、5-(n-プロピル)-2-フリル基、5-(n-ブチル)-2-フリル基、5-(n-ペンチル)-2-フリル基、5-(n-ヘキシル)-2-フリル基、5-(n-オクチル)-2-フリル基、5-(2-エチルヘキシル)-2-フリル基、5-フルオロ-2-チエニル基、5-メチル-2-チエニル基、5-エチル-2-チエニル基、5-(n-プロピル)-2-チエニル基、5-(n-ブチル)-2-チエニル基、5-(n-ペンチル)-2-チエニル基、5-(n-ヘキシル)-2-チエニル基、5-(n-オクチル)-2-チエニル基、5-(2-エチルヘキシル)-2-チエニル基等のアルキル置換カルコゲノフェン基からなる群より選択される基を挙げられる。
 R及びRにおける炭素数2~20のアルケニル基は、例えば、エテニル基、n-プロペニル基、n-ブテニル基、n-ペンテニル基、n-ヘキセニル基、n-ヘプテニル基、n-オクテニル基、n-ノネル基、n-デセニル基、n-ドデセニル基等からなる群より選択される基が挙げられる。
 R及びRにおける炭素数2~20のアルキニル基は、例えば、エチニル基、n-プロピニル基、n-ブチニル基、n-ペンチニル基、n-ヘキシニル基、n-ヘプチニル基、n-オクチニル基、n-ノニニル基、n-デシニル基、n-ドデシニル基等からなる群より選択される基が挙げられる。
 R及びRは、それぞれ独立して水素原子、トリアルキルシリルエチニル基、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基からなる群より選択される基を示す。有機半導体がより高移動度を発現するため水素原子であることが好ましい。
 R及びRにおけるトリアルキルシリルエチニル基は、例えば、トリメチルシリルエチニル基、トリエチルシリルエチニル基、トリイソプロピルシリルエチニル基等からなる群より選択される基が挙げられる。
 R及びRにおける炭素数1~20のアルキル基は、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-テトラデシル基、n-オクタデシル基、2-エチルヘキシル基、3-エチルヘプチル基、3-エチルデシル、2-ヘキシルデシル基等の直鎖又は分岐アルキル基からなる群より選択される基が挙げられる。そして、その中でも特に有機半導体が高移動度を発現し、有機半導体が有機溶媒に対して高溶解性を示すことから、炭素数1~8のアルキル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基からなる群より選択される基がさらに好ましい。
 R及びRにおける炭素数1~20のアルコキシ基は、例えば、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、n-ペンチロキシ基、n-ヘキシリキシ基、イソヘキシロキシ基、n-ヘプチロキシ基、n-オクチロオキシ基、n-ノニロキシ基、n-デシロキシ基、n-ドデシロキシ基、n-テトラデシロキシ基、2-エチルヘキシロキシ基、3-エチルヘプチロキシ基、2-ヘキシルデシロキシ基等の直鎖又は分岐アルキル基からなる群より選択される基が挙げられる。そして、その中でも特に有機半導体が高移動度を発現し、有機半導体が有機溶媒に対して高溶解性を示すことから、炭素数1~8のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、n-ペンチロキシ基、n-ヘキシロキシ基、イソヘキシロキシ基、n-ヘプチロキシ基、n-オクチロキシ基からなる群より選択される基がさらに好ましい。
 mは1又は2の整数である。有機半導体が有機溶媒に対して高溶解性を示すため、1であることが好ましい。
 nは0~2の整数を示す。有機半導体のπスタッキングが強固となるため、1であることが好ましい。
 oは0又は1の整数を示す。有機半導体が高い耐熱性を発現するため、0であることが好ましい。なお、環構造Arがチオフェン環又はシクロブテン環の場合、oは0である。
 本発明で用いられる有機半導体は高融点のため、5個以上の縮合環を持つ構造が好ましい。
 本発明で用いられる有機半導体は、対称性が高く高移動度となるため、下記式(3)または(4)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
(ここで、Xは硫黄原子又は -CH=CH- のいずれか1つを示す。Yは =CH- 又は窒素原子のいずれか1つを示す。R及びRは、同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、又は炭素数2~20のアルキニル基からなる群より選択される基を示す。RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又はトリアルキルシリルエチニル基からなる群より選択される基を示す。aは1又は2の整数を示す。bは0~2の整数を示す。但し、Xが -CH=CH- の場合、Yは =CH- を示す。)
Figure JPOXMLDOC01-appb-C000015
[(ここで、R10~R17の隣接する二つからなる組合せの内、1組~3組が下記式(5)を構成し、5又は6員環を形成する。下記式(5)を構成しなかったR10~R17は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群より選択される基を示す。)
Figure JPOXMLDOC01-appb-C000016
(ここで、Xは酸素原子、硫黄原子、セレン原子、CR19=CR20、又はNR21からなる群より選択される基を示す。YはCR22又は窒素原子のいずれか1つを示す。R18~R22は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群より選択される基を示す。)]
 本発明で用いられる有機半導体の具体例として、以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 有機半導体は、より高い移動度を発現することから(B-1)、(B-4)、(B-5)、(B-7)、(B-9)、(B-10)、(B-11)、(B-13)、(B-14)、(B-15)、(B-17)、(B-19)、(B-20)、(B-37)、(B-39)、(B-41)、(B-42)、(B-43)、(B-44)からなる群の1種が好ましく、(B-5)、(B-7)、(B-9)、(B-11)、(B-13)、(B-41)、(B-42)、(B-43)、(B-44)がさらに好ましい。
 本発明の組成物において、有機半導体とポリマー(1)の混合組成比は、有機半導体とポリマー(1)との合計100質量部に対して、有機半導体の含有割合が、5重量部以上90質量部以下であることが好ましく、10重量部以上80質量部以下の範囲であることが更に好ましい。
 本発明の組成物はさらに有機溶媒を含む組成物であってもよい。この場合、本発明の別の形態として、有機半導体、ポリマー(1)及び有機溶媒を含む有機半導体層形成用溶液を挙げることができる。
 本発明の有機半導体層形成用溶液の構成成分として用いる有機溶媒としては、有機半導体とポリマー(1)を溶解させるものを挙げることができる。特に式(2)で示される有機半導体を溶解することが可能な有機溶媒であれば如何なる有機溶媒を使用してもよい。有機半導体層を形成する際、有機溶媒の乾燥速度をより適したものとすることができることから、常圧での沸点が100℃以上である有機溶媒が好ましい。
 本発明で用いることが可能な有機溶媒として、例えば、トルエン、テトラリン、インダン、メシチレン、o-キシレン、イソプロピルベンゼン、ペンチルベンゼン、シクロヘキシルベンゼン、1,2,4-トリメチルベンゼン、アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソール、ベンゾチアゾール、エチルフェニルエーテル、ブチルフェニルエーテル、1,2-メチレンジオキシベンゼン、1,2-エチレンジオキシベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼン等の芳香族化合物、シクロヘキサノン、イソホロン、メチルエチルケトン等のケトン類、オクタン、ノナン、デカン、ドデカン、デカリン等の飽和脂肪族化合物、フェニルアセテート、シクロヘキシルアセテート等のエステル類、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコール類、トリアセチレンからなる群の少なくとも1種を挙げられることができる。その中でも有機半導体が有機溶媒に対して高溶解性となるため芳香族化合物が好ましい。特に適度な乾燥速度を持つことからはトルエン、テトラリン、メシチレン、o-キシレン、1,2,4-トリメチルベンゼン、アニソール、2-メチルアニソール、3-メチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール、2,6-ジメチルアニソール、ベンゾチアゾール、1,2-メチレンジオキシベンゼン、1,2-エチレンジオキシベンゼン、クロロベンゼン、1,2-ジクロロベンゼン、1,3-ジクロロベンゼン、1,4-ジクロロベンゼンからなる群の少なくとも1種がさらに好ましい。
 なお、本発明で用いる有機溶媒は、1種類の有機溶媒を単独で使用することができる。または沸点、極性、溶解度パラメータなど性質の異なる有機溶媒を2種類以上混合して使用することが可能である。
 本発明の有機半導体層形成用溶液は、ポリマー(1)、有機半導体、および有機溶媒を混合、溶解することで調製する。
 有機半導体形成用溶液を調製する方法については、ポリマー(1)と有機半導体を有機溶媒に溶解することが可能な方法であれば、如何なる方法を用いてもよい。例えば、ポリマー(1)と有機半導体の混合物を同時に有機溶媒に溶解して有機半導体層形成用溶液を調製する方法、ポリマー(1)の有機溶媒溶液に有機半導体を溶解して有機半導体層形成用溶液を調製する方法、有機半導体の有機溶媒溶液にポリマー(1)を溶解する方法などを挙げることができる。
 本発明の有機半導体層形成用溶液における有機半導体の濃度は、有機半導体、ポリマー(1)及び有機溶媒の合計を100重量%とした際に0.01重量%以上20.0重量%以下の範囲であることが好ましい。これにより、該溶液の取り扱いがより容易になり、有機半導体層を形成する際の効率により優れるものとなる。また、有機半導体層形成用溶液の粘度が0.3~100mPa・sの範囲であると、より好適な塗工性を発現するものとなる。
 本発明の有機半導体層形成用溶液を用いて有機半導体層を形成する際の塗布方法としては、例えば、スピンコート、ドロップキャスト、ディップコート、キャストコート等の簡易塗工法;ディスペンサー、インクジェット、スリットコート、ブレードコート、フレキソ印刷、スクリーン印刷、グラビア印刷、オフセット印刷等の印刷法を挙げることができる。この際、塗布する基板は後述のものを使用すればよい。特に容易に効率よく有機半導体層とすることが可能となることから、スピンコート法、インクジェット法であることがさらに好ましい。
 本発明の有機半導体層形成用溶液を塗布後、該塗布層から有機溶媒を乾燥除去することにより有機半導体層を形成することが可能である。
 塗布した有機半導体層形成用溶液から有機溶媒を乾燥除去する際、例えば、常圧下、又は減圧下で有機溶媒の乾燥除去を行うことが可能である。
 塗布した有機半導体層形成用溶液から有機溶媒を乾燥除去する温度は、効率よく塗布した有機半導体層から有機溶媒を乾燥除去することができ、有機半導体層を形成することが可能であるため、10~150℃の温度範囲で行うことが好ましい。
 塗布した有機半導体層形成用溶液から有機溶媒を乾燥除去する際、除去する有機溶媒の気化速度を調節することで、有機半導体の結晶成長を制御することが可能である。
 塗布した有機半導体層形成用溶液から有機溶媒を乾燥除去することで得られる有機半導体層の膜厚は、膜厚の制御のし易さのため1nm~1μmが好ましく、10nm~300nmがより好ましく、20nm~100nmがさらに好ましい。
 また、得られる有機半導体層は、該有機半導体層を形成後、90~150℃で熱アニール処理を行うことができ、該有機半導体層は高耐熱性のため、95℃以上で熱アニール処理を行うことができる。熱アニール処理は、有機半導体層形成用溶液を用いて形成された塗布膜から有機溶媒を除去後に行うことが好ましい。
 本発明で得られる有機半導体層とポリマー(1)の構成としては、本発明にかかる有機半導体層が得られる限り特に制限はなく、例えば以下の(a)~(d)が挙げられる。
(a)上層に有機半導体からなる層が形成され、下層にポリマー(1)からなる層が形成される層の構成。
(b)上層にポリマー(1)からなる層が形成され、下層に有機半導体からなる層が形成される層の構成。
(c)上層に有機半導体からなる層が形成され、中間層にポリマー(1)からなる層が形成され、下層に有機半導体からなる層が形成される層の構成。
(d)上層にポリマー(1)からなる層が形成され、中間層に有機半導体からなる層が形成され、下層にポリマー(1)からなる層が形成される層の構成。
 以下、有機半導体とポリマー(1)を備えた層を併せて、「有機半導体層」という。
 本発明の有機半導体層形成用溶液より形成される有機半導体層は、有機半導体デバイス、特に有機薄膜トランジスタの有機半導体層として使用することが可能である。
 有機薄膜トランジスタは、基板上に、ソース電極およびドレイン電極が付設された有機半導体層と、ゲート電極とを、ゲート絶縁層を介し積層することにより得ることができる。該有機半導体層として、本発明の有機半導体層形成用溶液を使用することにより形成された有機半導体層を用いることにより、優れた半導体・電気特性を発現する有機薄膜トランジスタを作製することができる。
 図1に一般的な有機薄膜トランジスタの断面形状による構造を示す。ここで、(A)は、ボトムゲート―トップコンタクト型、(B)は、ボトムゲート―ボトムコンタクト型、(C)は、トップゲート―トップコンタクト型、(D)は、トップゲート―ボトムコンタクト型の有機薄膜トランジスタである。1は有機半導体層、2は基板、3はゲート電極、4はゲート絶縁層、5はソース電極、6はドレイン電極を示す。本発明の有機半導体層形成用溶液より形成される有機半導体層は、いずれの有機薄膜トランジスタにも適用することが可能である。
 基板の具体例としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、セルローストリアセテート等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン、アルミニウム等の金属基板等を挙げることができる。なお、ハイドープシリコンを基板に用いた場合、その基板はゲート電極を兼ねることができる。
 本発明に係るゲート電極としては特に制限はなく、例えば、アルミニウム、金、銀、銅、ハイドープシリコン、スズ酸化物、酸化インジウム、インジウムスズ酸化物、クロム、チタン、タンタル、グラフェン、カーボンナノチューブ等の無機材料;ドープされた導電性高分子(例えばPEDOT-PSS)等の有機材料を挙げることができる。
 上記ゲート電極を形成する方法としては、例えば、真空蒸着法、塗布法などがあげられる。
 上記ゲート電極を塗布法で作製する場合は、上記無機材料と、有機溶媒とからなる金属ナノ粒子インクを用いることが好ましい。
 上記有機溶媒は、適度の分散性のため、水、メタノール、エタノール、2-プロパノール、1-ブタノール、2-ブタノール等の極性溶媒;ヘキサン、ヘプタン、オクタン、デカン、ドデカン、テトラデカン等の炭素数6~14の脂肪族炭化水素溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、オクチルベンゼン、シクロヘキシルベンゼン、テトラリン、インダン、アニソール、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,2-ジメチルアニソール、2,3-ジメチルアニソール、3,4-ジメチルアニソール等の炭素数7~14の芳香族炭化水素溶媒であることが好ましい。
 上記金属ナノ粒子インクを用いてゲート電極を形成する際の塗布方法としては、例えば、スピンコート、ドロップキャスト、ディップコート、キャストコート等の簡易塗工法;ディスペンサー、インクジェット、スリットコート、ブレードコート、フレキソ印刷、スクリーン印刷、グラビア印刷、オフセット印刷等の印刷法を挙げることができ、該金属ナノ粒子インクを塗布後、有機溶媒を乾燥除去することによりゲート電極を作製することができる。
 該金属ナノ粒子インクを塗布し乾燥させた後、導電性向上のため、80℃~200℃の温度範囲でアニール処理することが好ましい。
 本発明に係るゲート絶縁層としては特に制限はなく、例えば、酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウム、酸化チタン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物、酸化スズ、酸化バナジウム、チタン酸バリウム、チタン酸ビスマス等の無機材料;ポリメチルメタクリレート、ポリメチルアクリレート、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリけい皮酸エチル、ポリけい皮酸メチル、ポリクロトン酸エチル、ポリエーテルスルホン、ポリプロピレン-コ-1-ブテン、ポリイソブチレン、ポリプロピレン、ポリシクロペンタン、ポリシクロヘキサン、ポリシクロヘキサン-エチレン共重合体、ポリフッ素化シクロペンタン、ポリフッ素化シクロヘキサン、ポリフッ素化シクロヘキサン-エチレン共重合体、フッ素化環状ポリオレフィン、BCB樹脂(商品名:サイクロテン、ダウ・ケミカル社製)、Cytop(商標)、Teflon(商標)、パリレンC等のパリレン(商標)類のポリマー絶縁材料を挙げることができる。
 また、これらのゲート絶縁層の表面は、例えば、オクタデシルトリクロロシラン、デシルトリクロロシラン、デシルトリメトキシシラン、オクチルトリクロロシラン、オクタデシルトリメトキシシラン、β-フェネチルトリクロロシラン、β-フェネチルトリメトキシシラン、フェニルトリクロロシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のシラン類;ヘキサメチルジシラザン等のシリルアミン類で修飾処理したものであっても使用することができる。
 ソース電極およびドレイン電極の材料としては、ゲート電極と同様の材料を用いることができ、ゲート電極の材料と同じであっても異なっていてもよく、異種材料を積層してもよい。また、キャリアの注入効率を上げるために、これらの電極材料に表面処理を実施することもできる。表面処理に用いる表面処理剤としては、例えば、ベンゼンチオール、ペンタフルオロベンゼンチオール、4-フルオロベンゼンチオール、4-メトキシベンゼンチオール等を挙げることができる。
 本発明の有機半導体層形成用溶液を用いて得られる有機薄膜トランジスタのキャリア移動度は0.5cm/V・s以上、さらには1.0cm/V・s以上であることが好ましい。これにより、該トランジスタがより速い動作性を有する。
 本発明の有機半導体層形成用溶液を用いて得られる有機薄膜トランジスタの電流オン・オフ比は1.0×10以上であることが好ましい。これにより、該トランジスタがより高いスイッチ特性を有する。
 本発明の有機半導体層形成用溶液およびそれより形成される有機半導体層は、電子ペーパー、有機ELディスプレイ、液晶ディスプレイ、ICタグ(RFIDタグ)、メモリー、センサー用等の有機薄膜トランジスタ用途;有機ELディスプレイ材料;有機半導体レーザー材料;有機薄膜太陽電池材料;フォトニック結晶材料等の電子材料に利用することができ、有機半導体が結晶性の薄膜となるため、有機薄膜トランジスタの半導体層用途として用いられることが好ましい。
 本発明の有機半導体層形成用溶液を用いることで、高い移動度、高い塗工性、及び高い耐熱性を発現する有機薄膜トランジスタを提供することが可能となる。
有機薄膜トランジスタの断面形状による構造を示す。
 以下実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例により限定されるものではない。
(合成物の化学構造)
 合成例で得られた物質の化学構造解析として、製品名 JEOL  GSX-270WB(日本電子製)を用い、270MHzの条件でH-NMRスペクトルを測定した。さらに、製品名 JEOL  JMS-700(日本電子製)を用い、試料を直接導入し、電子衝突(EI)法(70エレクトロンボルト)により有機半導体のマススペクトル(MS)を測定した。
(有機トランジスタの構成)
 実施例中、有機半導体層形成用溶液の評価で作製した有機トランジスタの構造は、ボトムゲート-ボトムコンタクト型であり、各構成部材の材質及び製膜方法を以下の表に示した。
Figure JPOXMLDOC01-appb-T000021
(有機トランジスタの評価)
 実施例中、作製された有機トランジスタの電気物性については、半導体パラメータアナライザー(ケースレー社製4200SCS)を用い、ドレイン電圧(Vd=-20V)、ゲート電圧(Vg)を+10~-20Vまで0.5V刻みで走査し、伝達特性(Id-Vg)の評価を行った。評価結果に基づき、移動度及びオン・オフ比を計算した。
(ポリマー(1)のガラス転移点の測定)
 実施例中、ポリマー(1)のガラス転移点(Tg)については、製品名 EXSTAR6000 DSC6226(SII製)を用い、窒素雰囲気化にて昇温速度10℃/分で昇温し、熱量分析を行った。
(ポリマー(1)の分子量)
 実施例中、ポリマー(1)の重量平均分子量については、製品名 HLC-8320GPC(東ソー製)を用い、40℃で測定した。一部市販品に関してはカタログ記載の値を用いた。
(有機半導体)
 各例に用いた有機半導体の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000022
 上記化合物S-1(2,7-ジ(n-ヘキシル)ジチエノベンゾジチオフェン)は、特開2012-209329号公報に記載の方法に準じて、後述する合成例1に記載の方法により合成した。
 上記化合物S-2は、2-デシル-7-フェニル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(東京化成工業製)を用いた。
 上記化合物S-3(2,7-ジオクチルジチエノビフェニレン)は、特開2018―174322号広報に記載の方法に準じて、後述する合成例2~7に記載の方法により合成した。
(ポリマー(1))
 各例に用いたポリマー(1)を以下に示す。
Figure JPOXMLDOC01-appb-C000023
 上記ポリマー P-1は、後述する合成例8に記載の方法により合成した。
 上記ポリマー P-2は、後述する合成例9~10に記載の方法により合成した。
 上記ポリマー P-3は、後述する合成例11~12に記載の方法により合成した。
 上記ポリマー P-4は、後述する合成例13に記載の方法により合成した。
 上記ポリマー P-5は、後述する合成例14に記載の方法により合成した。
 上記ポリマー P-6として、ポリスチレン(シグマアルドリッチ製、average Mw ~280,000 by GPC)を用いた。
 上記ポリマー P-7として、ポリメタクリル酸エチル(シグマアルドリッチ製、average Mw ~515,000 by GPC、 powder)を用いた。
 上記ポリマー P-8として、ポリメタクリル酸イソブチル(東京化成工業製、製品コードM0086、分子量4.9万)を用いた。
 合成例1(S-1、2,7-ジ(n-ヘキシル)ジチエノベンゾジチオフェンの合成)
 窒素雰囲気下、100mlシュレンク反応容器にイソプロピルマグネシウムブロマイド(東京化成工業製、0.80M)のTHF溶液4.5ml(3.6mmol)及びTHF10mlを添加した。この混合物を-75℃に冷却し、2,3-ジブロモチオフェン(富士フィルム和光純薬製)873mg(3.61mmol)を滴下した。-75℃で30分間熟成後、塩化亜鉛(アルドリッチ製、1.0M)のジエチルエーテル溶液3.6ml(3.6mmol)を滴下した。徐々に室温まで昇温した後、生成した白色スラリー液を減圧濃縮し、10mlの軽沸分を留去した。得られた白色スラリー液(3-ブロモチエニル-2-ジンククロライド)に、1,4-ジブロモ-2,5-ジフルオロベンゼン(富士フィルム和光純薬製)272mg(1.00mmol)、触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)39.1mg(0.0338mmol、1,4-ジブロモ-2,5-ジフルオロベンゼンに対し3.38モル%)及びTHF10mlを添加した。60℃で8時間反応を実施した後、容器を水冷し3N塩酸3mlを添加することで反応を停止させた。トルエンで抽出し、有機相を食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサンからヘキサン/ジクロロメタン=10/1)、さらにヘキサン/トルエン=6/4から再結晶精製し、1,4-ジ(3-ブロモチエニル)-2,5-ジフルオロベンゼンの薄黄色固体227mgを得た(収率52%)。
 H-NMR(CDCl3,21℃):δ=7.44(d,J=5.4Hz,2H),
 7.39(t,J=7.8Hz,2H),7.11(d,J=5.4Hz,2H)。
 MS  m/z:  436(M+,100%),276(M+-2Br,13)。
 さらに、窒素雰囲気下、100mlシュレンク反応容器に、1,4-ジ(3-ブロモチエニル)-2,5-ジフルオロベンゼン200mg(0.458mmol)、NMP10ml、及び硫化ナトリウム・9水和物(富士フィルム和光純薬製)240mg(1.00mmol)を添加した。得られた混合物を170℃で6時間加熱し、得られた反応混合物を室温に冷却した。トルエンと水を添加後、分相し、有機相を2回水洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮後、得られた残渣をヘキサンで洗浄を2回実施し、ジチエノベンゾジチオフェンの淡黄色固体95mgを得た(収率69%)。
 H-NMR(CDCl3,60℃):δ=8.28(s,2H),
 7.51(d,J=5.2Hz,2H),7.30(d,J=5.2Hz,2H)。
 MS  m/z:  302(M+,100%),270(M+-S,5),
 151(M+/2,10)。
 合成例2 (2-ブロモ-1-フルオロ-3-ヨードベンゼンの合成)
 窒素雰囲気下、500mlシュレンク反応容器に、ジイソプロピルアミン5.76g(56.9mmol)及びTHF(脱水グレード)115.0mlを添加した。この溶液を-50℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液34.0ml(54.4mmol)を滴下し、LDAを調製した。この混合物を-78℃に冷却し、1-フルオロ-3-ヨードベンゼン(東京化成工業)11.5g(51.8mmol)を添加し、-78℃で2時間保持した。ここへ、-78℃下、テトラブロモメタン(東京化成工業)34.4g(103.6mmol)をTHF(脱水グレード)160.0mlに溶解した溶液を滴下し、室温まで徐々に昇温した。得られた反応混合物に水及びトルエンを添加し、分相した。有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒:ヘキサン)。メタノール(富士フィルム和光純薬製)3.0gを加え、50℃に昇温して再結晶することで2-ブロモ-1-フルオロ-3-ヨードベンゼンの白色固体7.43gを得た(収率43.3%)。
 MS m/z: 302(M+2、75%)、300(M、78%)、175(M+2-I、38%)、173(M-I、39%)、94(M-BrI、100%)。
 H NMR(CDCl):δ=7.68~7.64(m,1H),7.12~7.08(m,1H),7.05~7.00(m,1H)
 合成例3 (2,2’-ジブロモ-3,6’-ジフルオロビフェニルの合成)
 窒素雰囲気下、200mlシュレンク反応容器に、1-ブロモ-3-フルオロ-2-ヨードベンゼン(東京化成工業)4.89g(16.3mmol)及びTHF(脱水グレード)50.0mlを添加した。この溶液を0℃に冷却し、エチルマグネシウムクロライド(アルドリッチ、2.0M)のTHF溶液8.4ml(19.8mmol)を滴下した。この混合物を0℃で20分間熟成し、1-ブロモ-3-フルオロフェニル-2-マグネシウムクロライドを調製した。
 一方、窒素雰囲気下、別の300mlシュレンク反応容器に、塩化亜鉛(富士フィルム和光純薬製)3.28g(24.1mmol)及びTHF(脱水グレード)30mlを添加し、0℃に冷却した。この得られた白色微スラリー溶液中に、先に調製した1-ブロモ-3-フルオロフェニル-2-マグネシウムクロライド溶液をテフロン(登録商標)キャヌラーを用いて滴下し、さらにTHF(脱水グレード)2mlを用いて100mlシュレンク反応容器及びテフロン(登録商標)キャヌラーを洗浄しながら投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。生成した1-ブロモ-3-フルオロフェニル-2-亜鉛クロライドのスラリー液に、合成例2で合成した2-ブロモ-1-フルオロ-3-ヨードベンゼン3.51g(11.7mmol)及び触媒としてテトラキス(トリフェニルホスフィン)パラジウム(東京化成工業)1.40g(1.2mmol、2-ブロモ-1-フルオロ-3-ヨードベンゼンに対し10モル%)を添加した。60℃で3時間反応を実施した後、容器を水冷し1M塩酸を添加することで反応を停止させた。トルエンを添加し、有機相を分相し、有機相を無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒:ヘキサン)。2,2’-ジブロモ-3,6’-ジフルオロビフェニルの無色固体2.90gを得た(収率71.3%)。
 H NMR(CDCl):δ=7.50(d,J=8.2Hz,1H),7.42~7.36(m,1H),7.33~7.26(m,1H),7.23~7.18(m,1H),7.17~7.12(m,1H),7.05~6.96(d,J=7.3Hz1H)。
 合成例4 (1,5-ジフルオロビフェニレンの合成)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例3で合成した2,2’-ジブロモ-3,6’-ジフルオロビフェニル395.5mg(1.1mmol)及びTHF(脱水グレード)20mlを添加した。この混合物を-78℃に冷却し、n-ブチルリチウム(関東化学、1.6M)のヘキサン溶液2.9ml(4.6mmol)を滴下した。この混合物を-78℃で1時間熟成した後、-40℃に10分かけて昇温し1時間熟成させた。ここへ、N-フルオロベンゼンスルホンイミド(東京化成工業)1.50g(4.8mmol)を投入した。得られた混合物を室温まで徐々に昇温しながら攪拌した。反応混合物に1M塩酸を添加後、トルエンを添加し分相した。有機相を無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン)。1,5-ジフルオロビフェニレンの淡黄色固体130.0mgを得た(収率51.7%)。
 MS m/z: 188(M、100%)、168(M-HF、15%)94(M-CF、15%)。
 H NMR(CDCl):δ=6.80(ddd,2H)δ=6.56~6.50(m,4H)。
 合成例5 (ビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)の合成)
 窒素雰囲気下、100mlシュレンク反応容器に、合成例4で合成した1,5-ジフルオロビフェニレン57.6mg(0.31mmol)、硫化ナトリウム・9水和物(富士フィルム和光純薬製)398.0mg(1.65mmol)、及びNMP(富士フィルム和光純薬製)4mlを添加した。混合物を110℃で、6時間攪拌した。得られた反応混合物に2-ブロモアセトアルデヒドジメチルアセタール(東京化成工業)578.2mg(3.42mmol)を添加し、100℃で、3時間加熱攪拌した。得られた反応混合物を室温に冷却後、水及びトルエンを添加した。分相後、有機相を無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/酢酸エチル=10/1~10/2)。さらに低沸分を減圧除去し、ビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)の黄色固体65.4mgを得た(収率64.7%)。
 H NMR(CDCl):δ=6.70(d,J=5.5Hz,2H),6.69(d,J=1.4Hz,2H),6.54(dd,J=5.5Hz,1.4Hz,2H),4.53(t,J=5.9Hz,2H),3.38(s,12H),3.10(d,J=5.9,Hz,4H)。
 合成例6 (ジチエノビフェニレン誘導体の合成)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例5で合成したビフェニレン-1,5-ビス(チオアセトアルデヒドジメチルアセタール)57.7mg(0.15mmol)、ポリリン酸(富士フィルム和光純薬製)109.4mg、及びクロロベンゼン(富士フィルム和光純薬製)4mlを添加した。混合物を130℃で、5時間攪拌した。得られた反応混合物を室温に冷却後、水及びトルエンを添加した。分相後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製した(溶媒;ヘキサン/酢酸エチル=10/1~10/2)、ジチエノビフェニレン誘導体の黄色固体22.5mgを得た(収率55%)。
 MS m/z: 264(M)。
 合成例7 (S-3、2,7-ジオクチルジチエノビフェニレンの合成)
 窒素雰囲気下、50mlシュレンク反応容器に、合成例6で合成したジチエノビフェニレン誘導体22.5mg(0.085mmol)及びTHF(脱水グレード)4mlを添加した。この混合物を0℃に冷却し、n-ブチルリチウム(東京化成工業、1.6M)のヘキサン溶液0.20ml(0.32mmol)を滴下した。この混合物を60℃で2時間熟成した後、1-ヨードオクタン(富士フィルム和光純薬製)136mg(0.567mmol)を投入した。得られた混合物を60℃で7時間、攪拌した。反応混合物氷冷し、1M塩酸を添加後、トルエンを添加し分相した。有機相を水洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、2,7-ジオクチルジチエノビフェニレン(S-3)の黄色固体17mgを得た(収率41%)。
 MS(APCI) m/z: 489(M+H)。
 合成例8(P-1の合成)
 ポリマー(P-1)は、下記スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000024
 1.04g(7.5mmol)の化合物(M-1)、N―プロピルマレイミド(アルドリッチ製)と、6.1mg(0.0375mmol)の重合開始剤2,2‘-アゾビス(イソブチロニトリル)(東京化成工業製)と、1.04gのトルエンとを混合し、窒素雰囲気下でアンプル管に封入した。アンプル管を60℃で12時間加熱振盪した後、室温まで放冷した。
 上記反応溶液を、200gのメタノール中に滴下し、ポリマーを沈殿させ、ろ過した。100gのメタノールを用いて、ろ過した固体のかけ洗いを行った。その後、洗浄後の固体を減圧乾燥に供して、0.85gのポリマー(P-1)を得た。得られたP-1の分子量はMw1.7万、ガラス転移点は209℃であった。
 合成例9(モノマーM-2(P-2の原料)の合成)
 モノマー(M-2)、N-ヘキシルマレイミドの合成は、以下のスキームに従って合成した。
Figure JPOXMLDOC01-appb-C000025
(A1工程)
 窒素雰囲気下、1000mL三口フラスコに、49.0g(0.50mmol)の無水マレイン酸(東京化成工業製)、50.6g(0.50mmol)のヘキシルアミン(東京化成工業製)、及び500mlのジクロロメタン(富士フィルム和光純薬製、試薬特級)を添加した。この混合物を25℃で2時間撹拌した。
 上記反応溶液を氷浴にて冷却し、固体を析出させ、ろ過した。その後、固体を減圧乾燥に供して、95.3gのN-ヘキシルマレアミド酸の白色固体を得た(収率95.7%)。
(A2工程)
 窒素雰囲気下、1000mL三口フラスコに、46.9g(0.24mmol)のN-ヘキシルマレアミド酸、6.4g(0.08mmol)の酢酸ナトリウム(東京化成工業製)、150mLの無水酢酸(富士フィルム和光純薬製、試薬特級)を添加した。この混合物を100℃で1.5時間撹拌した後、室温まで放冷した。反応液に水を添加後、ジエチルエーテルを添加し分相した。有機層を3M水酸化カリウム水溶液および水で洗浄し、無水硫酸ナトリウムで乾燥した。有機層を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製することでN-ヘキシルマレイミドの無色液体を20.3g得た(収率46.7%)。
H NMR(CDCl,25℃):δ=0.84(t,J=6.78Hz,3H),1.14-1.31(m,6H),1.47(quin,J=7.01Hz,2H),3.38(t,J=7.01Hz,2H),7.01(s,2H)
 合成例10(P-2の合成)
 化合物(M-1)に代えて、合成例9で得られた化合物(M-2)、N-ヘキシルマレイミド 1.35gを使用したこと以外は合成例8と同様の合成を行い、ポリマー(P-2)を得た。得られたP-2の分子量はMw22万、ガラス転移点は150℃であった。
 合成例11(モノマーM-3(ポリマーP-3の原料)の合成)
 ヘキシルアミンに代えて92.7g(0.5mmol)の化合物ドデシルアミン(東京化成工業製)を使用したこと以外は合成例9と同様の合成を行い、モノマー(M-3)、N-ドデシルマレイミドを得た。
H NMR(CDCl,25℃):δ=0.88(t,J=6.40Hz,3H),1.21-1.34(m,18H),1.51-1.64(m,3H),3.50(t,J=7.32Hz,2H),6.68(s,2H))
 合成例12(P-3の合成)
 化合物(M-1)に代えて、合成例10で得られた化合物(M-3)、N-ドデシルマレイミド 1.99gを使用したこと以外は合成例8と同様の合成を行い、ポリマー(P-3)を得た。得られたP-3の分子量はMw2.9万、ガラス転移点は111℃であった。
 合成例13(P-4の合成)
 化合物(M-1)に代えて、市販されている化合物(M-4)、N-シクロヘキシルマレイミド(東京化成工業製)1.34gを使用したこと以外は合成例8と同様の合成を行い、ポリマー(P-4)としてポリN-シクロヘキシルマレイミドを得た。得られたP-4の分子量はMw13万、ガラス転移点は277℃であった。
 合成例14(P-5の合成)
 化合物(M-1)と重合開始剤にさらに、化合物(M-5)、N-ベンジルマレイミド(東京化成工業製) 1.40gを使用したこと以外は合成例8と同様の合成を行い、ポリマー(P-5)を得た。得られたP-5の分子量はMw15万、ガラス転移点は178℃であった。
 実施例1
(ポリマーのDSC測定)
 空気下、アルミナパンに、ポリマー(P-4)(ポリN-シクロヘキシルマレイミド)10.0mgを秤量した。前記アルミナパンの熱量分析から、前記ポリマーのTgは277℃であった。
(有機半導体層形成用溶液の調製)
 空気下、2mlサンプル管に、トルエン(沸点110℃)2.5g、2,7-ジ(n-
ヘキシル)ジチエノベンゾジチオフェン、化合物(S-1)5mg、ポリN-シクロヘキシルマレイミド、ポリマー(P-4)1.25mgを加え、40℃に加熱して溶解させることで、有機半導体層形成用溶液の調製を行った。
(有機半導体層及び有機薄膜トランジスタの作製)
 空気下、上記表1で示したボトムコンタクト基板に、上述の方法で調製した有機半導体層形成用溶液0.22mlをマイクロピペッターにて室温下(25℃)でドロップキャストした。室温下(25℃)で24時間自然乾燥し、その後40℃で3時間加熱乾燥することで膜厚50nmの有機半導体層の薄膜を作製した。該薄膜は、上層に有機半導体からなる層が形成され、下層にポリマー(1)からなる層が形成されていることが確認された。
(電気物性の測定)
 上述の方法で作製した有機薄膜トランジスタ(チャネル長/チャネル幅=100μm/500μm)の電気物性を測定し、移動度およびオン・オフ比を下記評価基準により評価した。
(移動度の評価基準)
  A:移動度が1.0cm/V・s以上である場合
  B:移動度が0.01cm/V・s以上1.0cm/V・s未満である場合
  C:移動度が0.01cm/V・s未満である場合
(オン・オフ比の評価基準)
  A:オン・オフ比が1.0×10以上である場合
  B:オン・オフ比が1.0×10以上1.0×10未満である場合
  C:オン・オフ比が1.0×10未満である場合
(耐熱性の評価)
 ポリマー(1)添加による有機半導体層の耐熱性向上の評価として、上述の電気物性の測定を行った有機薄膜トランジスタにさらに120℃で10分間加熱処理を行った。加熱処理後のトランジスタに対し再び電気特性を測定し、
 移動度減少量= 加熱処理前の移動度 - 加熱処理後の移動度 
を算出した。移動度減少量に対し、下記評価基準により評価した。
(移動度減少量の評価基準)
  A:移動度減少量が0.1cm/V・s未満である場合
  B:移動度減少量が0.1cm/V・s以上0.5cm/V・s未満である場合
  C:移動度減少量が0.5cm/V・s以上である場合
  D:動作しなくなる場合
 実施例2~9
 ポリマーとして表2に示したポリマーを用いた以外は実施例1と同様の方法により有機薄膜トランジスタを作製し、電気物性の測定および耐熱性の評価を行った。結果を表2に示した。いずれの実施例も有機半導体組成物の薄膜は、上層に有機半導体からなる層が形成され、下層にポリマー(1)からなる層が形成されていることが確認された。
 比較例1~4
 ポリマーとして表2に示したポリマーを用いた以外は実施例1と同様の方法により有機薄膜トランジスタを作製し、電気物性の測定および耐熱性の評価を行った。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 本発明を詳細に、また特定の実施様態を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2018年12月20日に出願された日本特許出願2018-238175号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明の有機半導体層形成用溶液を用いることで、優れた電気物性と高い耐熱性を併せ持つ有機薄膜トランジスタを作製することができるため、半導体デバイス材料としての適用が期待できる。

Claims (6)

  1. 有機半導体と、下記式(1-a)、式(1-b)及び(1-c)からなる群の少なくとも1つの単位を有するポリマー(1)を含む組成物。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、Rは水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基及び炭素数3~20のシクロアルキル基からなる群より選択される有機基を示す。)
  2. 有機半導体が下記式(2)で示される化合物である請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (ここで、環構造Ar及びArは、それぞれ独立してチオフェン環、チアゾール環、又はベンゼン環からなる群より選択される環を示す。環構造Ar及びArは、それぞれ独立してチオフェン環、ベンゼン環、又はシクロブテン環からなる群より選択される環を示す。環構造Arはベンゼン環、チオフェン環、又はシクロブテン環からなる群より選択される環を示す。R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、又は炭素数2~20のアルキニル基からなる群より選択される基を示す。RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又はトリアルキルシリルエチニル基からなる群より選択される基を示す。mは1又は2の整数、nは0~2の整数、oは0又は1の整数を示す。但し、環構造Arがチオフェン環又はシクロブテン環の場合、oは0である。)
  3. 有機半導体が下記式(3)または式(4)で示される化合物である請求項1または2に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    (ここで、Xは硫黄原子又は -CH=CH- のいずれか1つを示す。Yは =CH- 又は窒素原子のいずれか1つを示す。R及びRは、同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数4~20のアリール基、炭素数2~20のアルケニル基、又は炭素数2~20のアルキニル基からなる群より選択される基を示す。RおよびRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又はトリアルキルシリルエチニル基からなる群より選択される基を示す。aは1又は2の整数、bは0~2の整数を示す。但し、Xが -CH=CH- の場合、Yは =CH-を 示す。)
    Figure JPOXMLDOC01-appb-C000004
    [(ここで、R10~R17の隣接する二つからなる組合せの内、1組~3組が下記式(5)を構成し、5又は6員環を形成する。下記式(5)を構成しなかったR10~R17は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群より選択される基を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (ここで、Xは酸素原子、硫黄原子、セレン原子、CR19=CR20、又はNR21からなる群より選択される1つを示す。YはCR22又は窒素原子のいずれか1つを示す。R18~R22は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、または炭素数4~26のアリール基からなる群より選択される基を示す。)]
  4. 請求項1乃至3いずれか一項に記載の組成物と、有機溶媒を含む有機半導体層形成用溶液。
  5. 請求項1乃至3いずれか一項に記載の組成物を含む有機半導体層。
  6. 請求項5に記載の有機半導体層を備える有機薄膜トランジスタ。
PCT/JP2019/049943 2018-12-20 2019-12-19 有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ WO2020130104A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19900118.1A EP3902023B1 (en) 2018-12-20 2019-12-19 Composition containing organic semiconductor, solution for forming organic semiconductor layer, organic semiconductor layer, and organic thin film transistor
US17/415,438 US12101991B2 (en) 2018-12-20 2019-12-19 Composition containing organic semiconductor, solution for forming organic semiconductor layer, organic semiconductor layer, and organic thin film transistor
CN201980084707.6A CN113196512A (zh) 2018-12-20 2019-12-19 含有有机半导体的组合物、有机半导体层形成用溶液、有机半导体层以及有机薄膜晶体管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-238175 2018-12-20
JP2018238175 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020130104A1 true WO2020130104A1 (ja) 2020-06-25

Family

ID=71101362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049943 WO2020130104A1 (ja) 2018-12-20 2019-12-19 有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ

Country Status (5)

Country Link
US (1) US12101991B2 (ja)
EP (1) EP3902023B1 (ja)
JP (1) JP7443747B2 (ja)
CN (1) CN113196512A (ja)
WO (1) WO2020130104A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162378A1 (ja) * 2023-02-01 2024-08-08 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060558A (ja) * 2006-08-04 2008-03-13 Mitsubishi Chemicals Corp 絶縁層、電子デバイス、電界効果トランジスタ及びポリビニルチオフェノール
JP2012209329A (ja) 2011-03-29 2012-10-25 Tosoh Corp ジチエノベンゾジチオフェン誘導体溶液及び有機半導体層
JP2013014750A (ja) * 2011-06-09 2013-01-24 Sumitomo Chemical Co Ltd 着色組成物
JP2014112510A (ja) * 2012-11-02 2014-06-19 Nitto Denko Corp 透明導電性フィルム
JP2018137442A (ja) * 2017-02-22 2018-08-30 東ソー株式会社 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
JP2018174322A (ja) 2017-03-31 2018-11-08 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0028867D0 (en) 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor
EP1438757A2 (en) * 2001-10-01 2004-07-21 Koninklijke Philips Electronics N.V. Composition, method and electronic device
US8207524B2 (en) 2006-08-04 2012-06-26 Mitsubishi Chemical Corporation Insulating layer, electronic device, field effect transistor, and polyvinylthiophenol
JP2016155328A (ja) * 2015-02-25 2016-09-01 株式会社日本触媒 透明導電性フィルム
WO2018181462A1 (ja) * 2017-03-31 2018-10-04 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
CN108774311A (zh) 2018-04-13 2018-11-09 福建师范大学 含闭环噻吩马来酰亚胺的聚合物制备及其在电存储器件上应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060558A (ja) * 2006-08-04 2008-03-13 Mitsubishi Chemicals Corp 絶縁層、電子デバイス、電界効果トランジスタ及びポリビニルチオフェノール
JP2012209329A (ja) 2011-03-29 2012-10-25 Tosoh Corp ジチエノベンゾジチオフェン誘導体溶液及び有機半導体層
JP2013014750A (ja) * 2011-06-09 2013-01-24 Sumitomo Chemical Co Ltd 着色組成物
JP2014112510A (ja) * 2012-11-02 2014-06-19 Nitto Denko Corp 透明導電性フィルム
JP2018137442A (ja) * 2017-02-22 2018-08-30 東ソー株式会社 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
JP2018174322A (ja) 2017-03-31 2018-11-08 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902023A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162378A1 (ja) * 2023-02-01 2024-08-08 東ソー株式会社 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ

Also Published As

Publication number Publication date
EP3902023A1 (en) 2021-10-27
US12101991B2 (en) 2024-09-24
US20220059768A1 (en) 2022-02-24
EP3902023A4 (en) 2022-10-12
JP2020102624A (ja) 2020-07-02
JP7443747B2 (ja) 2024-03-06
EP3902023B1 (en) 2024-04-24
CN113196512A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
JP2011079827A (ja) ベンゾジチオフェンを製造する方法および半導体ポリマを製造する方法
JP2011201874A (ja) 多環式化合物及び有機半導体デバイス
CN101421862B (zh) 作为有机半导体的醌型体系
JP6274529B2 (ja) 有機半導体素子及びその製造方法、有機半導体膜形成用組成物、並びに、有機半導体膜の製造方法
JP7494456B2 (ja) ビフェニレン誘導体、有機半導体層、及び有機薄膜トランジスタ
WO2018181462A1 (ja) 芳香族化合物、有機半導体層、及び有機薄膜トランジスタ
WO2020130104A1 (ja) 有機半導体を含む組成物、有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
KR101822888B1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 전자 소자
EP4116304A1 (en) Aromatic compound, organic semiconductor layer and organic thin film transistor
JP6252032B2 (ja) ベンゾジフラン誘導体及び有機薄膜トランジスタ
JP6252264B2 (ja) 高分子化合物およびそれを用いた有機半導体素子
JP6962090B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP6413863B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP6399956B2 (ja) ヘテロアセン誘導体、その製造方法、有機半導体層、及び有機薄膜トランジスタ
JP6364876B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2018008885A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
CN115210239B (zh) 芳香族化合物、有机半导体层和有机薄膜晶体管
JP6421429B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2018137442A (ja) 有機半導体層形成用溶液、有機半導体層、および有機薄膜トランジスタ
JP6686559B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP5252508B2 (ja) 有機半導体材料およびその製造方法、並びに有機半導体材料の利用
JP6780365B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP6364878B2 (ja) 有機薄膜トランジスタ
JP6551163B2 (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ
JP2017226629A (ja) ヘテロアセン誘導体、有機半導体層、及び有機薄膜トランジスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900118

Country of ref document: EP

Effective date: 20210720