[go: up one dir, main page]

WO2020085947A1 - Реакционно-регенерационный блок риформинга - Google Patents

Реакционно-регенерационный блок риформинга Download PDF

Info

Publication number
WO2020085947A1
WO2020085947A1 PCT/RU2019/000726 RU2019000726W WO2020085947A1 WO 2020085947 A1 WO2020085947 A1 WO 2020085947A1 RU 2019000726 W RU2019000726 W RU 2019000726W WO 2020085947 A1 WO2020085947 A1 WO 2020085947A1
Authority
WO
WIPO (PCT)
Prior art keywords
hopper
catalyst
reactor
coked catalyst
regeneration
Prior art date
Application number
PCT/RU2019/000726
Other languages
English (en)
French (fr)
Inventor
Михаил Андреевич ЛЕБЕДСКОЙ-ТАМБИЕВ
Дмитрий Александрович КАЛАБИН
Алла Дмитриевна ЕРМОЛЕНКО
Сергей Николаевич ШИШКИН
Алексей Сергеевич ЯБЛОКОВ
Денис Сергеевич АЛЕКСАНДРОВ
Константин Васильевич ДЬЯЧЕНКО
Original Assignee
Общество с ограниченной ответственностью "Институт по проектированию предприятий нефтеперерабатывающей и нефтехимической промышленности" (ООО "Ленгипронефтехим")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Институт по проектированию предприятий нефтеперерабатывающей и нефтехимической промышленности" (ООО "Ленгипронефтехим") filed Critical Общество с ограниченной ответственностью "Институт по проектированию предприятий нефтеперерабатывающей и нефтехимической промышленности" (ООО "Ленгипронефтехим")
Publication of WO2020085947A1 publication Critical patent/WO2020085947A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/10Catalytic reforming with moving catalysts

Definitions

  • the device relates to the field of oil refining and petrochemicals, namely, to devices for the processing of hydrocarbon materials during continuous reforming on a catalyst in a moving or fluidized bed.
  • Catalytic reforming is one of the most important processes for processing gasoline fractions in order to increase the detonation properties of gasolines and produce aromatic hydrocarbons.
  • one of the main problems encountered in its implementation is the problem of regeneration of the catalyst, which is deactivated due to the accumulation of coke deposits, as a result of which the catalyst becomes unsuitable for use in the process.
  • Such a deactivated catalyst must be regenerated and brought back to its original conditional quality before it can be reused in the reforming process.
  • Continuous reforming which is typically carried out using a catalyst in a moving bed, allows for more stringent operating conditions by maintaining the high catalytic activity of an almost fresh catalyst through regeneration cycles for several days.
  • the moving bed system has the advantage of not stopping production during removal or replacement of the catalyst.
  • Catalyst particles are continuously removed from the reaction zone to the regeneration zone to remove coke by high-temperature burning, typically by contact with an oxygen-containing gas.
  • the catalyst regeneration process is carried out, as a rule, in the regeneration zone outside the reactor.
  • the catalyst particles of the "in the moving layer” technology pass by gravity through one or more reactors and enter the continuous regeneration zone.
  • Continuous catalyst regeneration is usually carried out by passing the catalyst particles by gravity down in the moving bed through various treatment zones in the regeneration column.
  • Oxygen for coke combustion enters the combustion section of the regeneration zone with a regenerating gas, usually containing from 0.5 to 1.5% oxygen by volume.
  • Regeneration gases consisting of carbon monoxide, carbon dioxide, water, unreacted oxygen, chlorine, hydrogen chloride, nitrogen oxides, sulfur oxides and nitrogen are removed from the combustion section, while some of the gases are removed from the regeneration zone in the form of exhaust gas.
  • the residue is combined with a small amount of oxygen-containing fresh gas, usually air, in an amount of about 3% of the total gas content, in order to replenish the consumed oxygen and return to the combustion section as a regenerating gas [RU2 180 346, 2002; US3652231].
  • oxygen-containing fresh gas usually air
  • the rise of catalyst particles from one technological zone to another is carried out, as a rule, using some types of pneumatic transportation, in which a gas stream having a sufficient velocity, lifting the catalyst particles, transports them up to move and disconnect in a set of containers.
  • pneumatic transportation in which a gas stream having a sufficient velocity, lifting the catalyst particles, transports them up to move and disconnect in a set of containers.
  • Such systems use a plurality of elbow pipes and valve devices to guide and control the movement of catalyst particles.
  • damage to its particles occurs with the formation of a finely dispersed material. Fine particles resulting from such transportation not only interfere with the normal functioning of the catalyst, but can also lead to a drop in pressure in the gaseous medium passing through the tubular elements.
  • a significant pressure drop associated with the transportation of discrete material increase the operating costs of the process and may impede the maintenance of the necessary technological conditions [RU 2174145, 2001].
  • a catalyst regeneration unit consisting of a reactor, a regeneration column, a coked catalyst hopper, pipelines connecting the regeneration column to a coked catalyst hopper and through a halogenization and drying section with a reactor [US3854887, 1974].
  • the catalyst enters the column from above, and the regenerating gas is supplied from below.
  • the disadvantage of the installation is the lack of regeneration efficiency associated with a short contact time.
  • the technical problem solved by the authors was the creation of an installation that ensures the preservation of catalyst granules during its operation and during its regeneration.
  • the problem was solved by creating equipment that provides the possibility of combining the sequential movement of the active catalyst from top to bottom and multiple processing of its surface to eliminate coke from it during reverse movement - from bottom to top.
  • the technical result is achieved by creating a reactive regeneration unit containing a reactor unit, a regeneration column with a catalyst preparation unit, a gas preparation system and pipelines.
  • the reactor assembly includes a reactor and purge hopper and coked catalyst hopper located at the outlet of the reactor and connected in series, wherein the reactor, purge hopper and coked catalyst hopper are arranged vertically one below the other.
  • the reactor unit as a rule, consists of two parallel connected structures containing a reactor, a purge hopper and a coked catalyst hopper.
  • the coked catalyst preparation hopper is connected to the gas mixture filtering system, the upper part of the regeneration column and the coked catalyst hopper, and the coked catalyst hopper and the coked catalyst preparation hopper are connected by a pipeline to the lower part of which comes the nitrogen-air mixture with an oxygen content of 0, 5-2, 0% vol.
  • the features of the proposed solution is the vertical arrangement of the main elements of the block, as a result of which the catalyst activated in the regeneration column passes from the regeneration column to the exit from the reactor unit under the action of gravity, which reduces the abrasion of the catalyst granules and reduces its contact time in the working area, reducing coking its surface.
  • pretreatment of the catalyst with a gas stream in a purge hopper that removes sorbed hydrocarbons from it, and then burning surface coke during its transportation to the regeneration column with a nitrogen-air mixture with a small amount of oxygen makes it possible to use fairly mild conditions for burning it, while maintaining its crystalline structure.
  • Regeneration column 11 a - the first burnout zone, 11 b - the second burnout zone, 11c - the oxychlorination zone, 11g - the calcination zone.
  • the catalyst moves countercurrent to the flow of the ascending hydrogen-containing gas (HSG).
  • HSG ascending hydrogen-containing gas
  • the design of the purge hopper 4 ensures the complete removal of hydrocarbons from the coked catalyst stream. Wash from the purge hopper 4, through the piping of the catalyst, enters the reaction column 1.
  • the catalyst moves countercurrent to the flow of ascending inert gas. When this occurs, the blasting of the Wash carried away with the catalyst from the purge hopper 4. Inert gas from the gate hopper 6, through the catalyst pipe, enters the purge hopper 4.
  • the catalyst moves countercurrent to the ascending Wash flow.
  • the purge hopper 5 ensures the complete removal of hydrocarbons from the coked stream catalyst. Wash from the purge hopper 5, through the piping of the catalyst, enters the reaction column 2.
  • the catalyst moves countercurrent to the flow of ascending inert gas. When this occurs, the blasting of the Wash carried away with the catalyst from the purge hopper 5. Inert gas from the shutter hopper 7, through the catalyst pipe, enters the purge hopper 5.
  • the catalyst carried away from the transport gas stream enters through the pipeline for transporting and regenerating the coked catalyst 9 to the coked catalyst preparation hopper 10.
  • the gas supplied to the coked catalyst hopper 8 for transporting the catalyst is an inert gas or a mixture of inert gas and oxygen (with an oxygen content of 0.5-2.0% vol.).
  • a flow of circulation gases is supplied.
  • the quantity and composition of the circulation gases provide an optimal pneumatic transport mode (the gas phase velocity in the transport pipeline is 180 200% of the rate of transport of the transported catalyst) in the pipeline for transporting and regenerating the coked catalyst 9, and also provide the required oxygen concentration in the gas phase at the beginning of the vertical section of the pipeline for transportation and regeneration of coked catalyst 9.
  • the presence of oxygen in the transport gas in the pipeline for transporting and regenerating the coked catalyst 9 provides for full or partial burning of coke from the surface of the catalyst, depending on the intended operating mode of the reactor regeneration unit.
  • the movement of the catalyst in a rarefied stream (with a volumetric concentration of the solid phase of not more than 0.5% vol.) In the pipeline for transporting and regenerating coked catalyst 9 provides a gentle and efficient mode of coke burning due to the absence of external diffusion inhibition of the coke burning process, a uniform temperature profile and oxygen concentration in each horizontal section of the pipeline for transportation and regeneration coked catalyst 9, as well as the absence of local overheating of the catalyst particles.
  • the catalyst In the preparation hopper of the coked catalyst 10, the catalyst is separated from the flow of circulation gases and, under the action of gravity, enters the first burnout zone 11a of the regeneration column 11.
  • a part of the circulation gas stream is separated and sent through the exhaust gas heat exchangers 18 and 20 for neutralization to the exhaust gas neutralization unit 21.
  • the remaining circulation gas stream is separated and flows to the beginning of the pipeline for transporting and regenerating the coked catalyst 9, and as a transport gas to the coked catalyst hopper 8.
  • replenishment of the prepared air in an amount that provides the required oxygen content in the circulation gas at the beginning of the vertical section of the pipeline for transportation and regeneration of the coked catalyst 9.
  • the catalyst entering the first burnout zone 11a of the recovery column 11 is in contact with the flow of regeneration gas. In this case, complete or partial burning of coke from the surface of the catalyst occurs.
  • the first burnout zone 11a From the first burnout zone 11a, under the action of gravity, it enters the second burnout zone 116 of the regeneration column 11, where it contacts the regeneration gas stream. In this case, the residual coke is completely burned from the catalyst surface.
  • Regeneration gases after contact with the catalyst in the first burnout zone 11a, are discharged from the regeneration column 11, mixed with a feed stream of prepared air, and then return to the second burnout zone 116 of the regeneration column 11. Regeneration gases, after contact with the catalyst in the second burn zone 116, are removed from the regeneration column 11 to the regeneration gas unit 15.
  • a part of the regeneration gas stream is separated and sent through the exhaust gas heat exchangers 18 and 20 for neutralization to the exhaust gas neutralization unit 21.
  • the remaining regeneration gas stream is directed to the first burn zone 11a of the regeneration column 11.
  • the regenerated catalyst from the second burn zone 116 of the regeneration column 11 passes through the oxychlorination zones 11b and calcination 11 g, after which it leaves the regeneration column 11.
  • the air passes sequentially the air drying system 17 and the exhaust gas heat exchanger 18, after which it is divided into two streams: part of the air enters the site of oxychlorination and calcination gases 16, the other part - to the site of circulation gases 14.
  • the air flow entering the calcination zone 11g of the regeneration column 11 passes countercurrently through the downward flow of the catalyst and enters the oxychlorination zone 11c of the regeneration column 11, where, together with the oxychlorination gas, is discharged from the regeneration column 11 and sent to the oxychlorination and calcination gas unit 16.
  • Part of the air from the site of oxychlorination and calcination gases 16 is directed to feed the regeneration gases entering the second burnout zone 11bw of the regeneration column 11.
  • the catalyst under the action of gravity, from the calcination zone 11g of the regeneration column 11 enters the gate hopper 12.
  • inert gas enters the gate hopper 12.
  • the VSG flows in two streams to the purge bins 4 and 5.
  • a temperature of 470-540 ° C and a pressure of 0.4-0.5 MPa it was possible to reduce the abrasion of the catalyst by 19.5% and reduce the coke burning time by 10-20%. In this case, the efficiency of the process does not deteriorate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к области нефтепереработки и нефтехимии. Реакционно- регенерационный блок установки риформинга содержит реакторный узел, включающий реактор и расположенный на выходе из реактора бункер закоксованного катализатора, регенерационную колонну, систему подготовки газов и трубопроводы. Дополнительно содержит бункер продувки между выходом реактора и бункером закоксованного катализатора, а также бункер подготовки закоксованного катализатора, связанный системой фильтрования газовой смеси с верхней частью регенерационной колонны и бункером закоксованного катализатора. Причем бункер подготовки закоксованного катализатора, регенерационная колонна, реактор, бункер продувки и бункер закоксованного катализатора размещены друг под другом по вертикали. Бункер закоксованного катализатора и бункер подготовки закоксованного катализатора связаны между собой трубопроводом, в нижнюю часть которого поступает азотно-воздушная смесь с содержанием кислорода 0, 5-2,0% об. Изобретение обеспечивает снижение истираемости катализатора и снижение времени выжига кокса на 10-20% при сохранении эффективности процесса.

Description

РЕАКЦИОННО-РЕГЕНЕРАЦИОННЫЙ БЛОК РИФОРМИНГА
Область техники
Устройство относиться к области нефтепереработки и нефтехимии, а именно, к устройствам для переработки углеводородного сырья в ходе непрерывного риформинга на катализаторе в подвижном или псевдоожиженном слое.
Предшествующий уровень техники
Каталитический риформинг является одним из важнейших процессов переработки бензиновых фракций с целью повышения детонационных свойств бензинов и получения ароматических углеводородов. При этом одной из основных проблем, с которой сталкиваются при его осуществлении, является проблема регенерации катализатора, который дезактивируется из-за накопления коксовых отложений в результате чего катализатор становится непригодным для использования в процессе. Такой дезактивированный катализатор должен быть регенерирован и доведен до первоначального кондиционного качества, прежде чем его можно повторно применять в процессе риформинга.
Непрерывный риформинг, который как правило, проводится с использованием катализатора в подвижном слое, допускает более жесткие рабочие условия путем поддержания высокой каталитической активности почти свежего катализатора через посредство регенерационных циклов в течение нескольких дней. При этом система с подвижным слоем имеет преимущество, состоящее в отсутствии необходимости остановки производства во время удаления или замены катализатора. Частицы катализатора непрерывно удаляются из реакционной зоны в зону регенерации для удаления кокса посредством высокотемпературного выжига, как правило, при контакте с кислородосодержащим газом.
В современных установках процесс регенерации катализатора осуществляют, как правило, в регенерационной зоне за пределами реактора. Частицы катализатора технологии «в подвижном слое» проходят самотеком через один или несколько реакторов и поступают в зону непрерывной регенерации. Непрерывную регенерацию катализатора осуществляют обычно путем пропускания частиц катализатора самотеком вниз в подвижном слое через различные зоны обработки в регенерационной колонне. Кислород для сгорания кокса поступает в секцию горения зоны регенерации с регенерирующим газом, содержащим обычно от 0,5 до 1,5% кислорода по объему. Газы регенерации, состоящие из монооксида углерода, диоксида углерода, воды, непрореагировавшего кислорода, хлора, хлористого водорода, оксидов азота, оксидов серы и азота, выводятся из секции горения, при этом часть газов удаляют из зоны регенерации в виде отходящего газа. Остаток соединяют с небольшим количеством кислородсодержащего свежего газа, обычно воздуха, в количестве примерно 3% от общего содержания газа, для того, чтобы восполнить израсходованный кислород и возвращают в секцию горения в виде регенерирующего газа [RU2 180 346, 2002; US3652231].
Подъем частиц катализатора из одной технологической зоны в другую осуществляют, как правило, с помощью некоторых видов пневматической транспортировки, при которой имеющий достаточную скорость газовый поток, поднимающий частицы катализатора, транспортирует их вверх для перемещения и разъединения в комплекте емкостей. Такие системы используют множество коленчатых труб и клапанных устройств для направления и регулирования перемещения частиц катализатора. По мере транспортировки катализатора возникают повреждения его частиц с образованием мелкодисперсного материала. Возникшие при такой транспортировке мелкодисперсные частицы не только препятствуют нормальному функционированию катализатора, но могут также приводить к падению давления в газовой среде, проходящей через трубчатые элементы. Существенное падение давления, связанное с транспортировкой дискретного материала, повышают эксплуатационные затраты процесса и могут препятствовать поддержанию необходимых технологических режимов [RU 2174145, 2001]. В этой связи в ходе регенерации катализатора необходимо сочетать максимальное удаление кокса с поверхности гранул при минимизации истирания гранул, так как при их разрушении существенно падает эффективность процесса.
Наиболее близким к заявляемому решению является установка для регенерации катализатора, состоящая из реактора, регенерационной колонны, бункера закоксованного катализатора, трубопроводов соединяющих регенерационную колонну с бункером закоксованного катализатора и через секцию галоидизирования и сушки с реактором [US3854887, 1974]. В ходе регенерации, катализатор поступает в колонну сверху, а регенерирующий газ подается снизу. Недостатком установки является недостаточная эффективность регенерации, связанная с малым временем контакта.
Технической задачей, решаемой авторами, являлось создание установки, обеспечивающей сохранение гранул катализатора в ходе его работы и при его регенерации. Задача решалась за счет создания оборудования, обеспечивающего возможность сочетания последовательного движения активного катализатора сверху вниз и многократной обработке его поверхности для устранения с нее кокса при обратном движении - снизу вверх.
Сущность изобретения
Технический результат достигается созданием реакционно- регенерационного блока, содержащего реакторный узел, регенерационную колонну с блоком подготовки катализатора, систему подготовки газов и трубопроводы. Реакторный узел включает в себя реактор и расположенные на выходе из реактора и последовательно соединенные бункер продувки и бункер закоксованного катализатора, причем реактор, бункер продувки и бункер закоксованного катализатора размещены друг под другом по вертикали. Реакторный узел, как правило, состоит из двух параллельно включенных структур, содержащих реактор, продувочный бункер и бункер закоксованного катализатора. Бункер подготовки закоксованного катализатора, связан с системой фильтрования газовой смеси, верхней частью регенерационной колонны и бункером закоксованного катализатора, причем бункер закоксованного катализатора и бункер подготовки закоксованного катализатора связанны между собой трубопроводом, в нижнюю часть которого поступает азотно-воздушная смесь с содержанием кислорода 0, 5-2, 0 % об.
Особенностями заявляемого решения является размещение основных элементов блока по вертикали, в результате чего активированный в регенерационной колонне катализатор проходит путь от регенерационной колонны до выхода из реакторного узла под действием силы тяжести, что снижает истираемость гранул катализатора и снижает время его контакта в рабочей зоне, уменьшая закоксованность его поверхности. В этих условиях предварительная обработка катализатора газовым потоком в бункере продувки, убирающим из него сорбированные углеводороды, а затем выжигание поверхностного кокса в ходе его транспортировки наверх регенерационной колонны азотно-воздушной смесью с малым количеством кислорода, обеспечивает возможность использовать для его выжигания достаточно мягкие условия, сохраняя его кристаллическую структуру.
Краткое описание фигур чертежа
Изобретение иллюстрируется следующими чертежами. Общий вид реакторно-регенерационного блока приведен на фиг.1, где используются следующие обозначения.
1. Реакционная колонна.
2. Реакционная колонна.
3. Узел восстановления.
4. Продувочный бункер.
5. Продувочный бункер.
6. Затворный бункер.
7. Затворный бункер.
8. Бункер закоксованного катализатора.
9. Трубопровод для транспортировки и регенерации закоксованного катализатора.
10. Бункер подготовки закоксованного катализатора.
11. Регенерационная колонна: 11 а - первая зона выжига, 11 б - вторая зона выжига, 11в- зона оксихлорирования, 11г— зона прокалки.
12. Затворный бункер.
13. Система удаления катализаторной мелочи.
14. Узел газов циркуляции. 15. Узел газов регенерации.
16. Узел газов оксихлорирования и прокалки.
17. Система осушки воздуха.
18. Теплообменник отходящих газов.
19. Нагреватель азота.
20. Теплообменник отходящих газов.
21. Узел нейтрализации отходящих газов.
Промышленная применимость Устройство работает следующим образом
Из регенерационной колонны 11 под действием силы тяжести, катализатор двумя равными потоками поступает в реакционные колонны 1 и 2.
Из реакционной колонны 1, через продувочный бункер 4 и затворный бункер 6 катализатор поступает в бункер закоксованного катализатора 8.
В продувочном бункере 4 катализатор движется противотоком потоку восходящего водородсодержащего газа (ВСГ). При этом из пор катализатора происходит отдув углеводородов, уносимых с катализатором из зоны реакции. Конструкция продувочного бункера 4 обеспечивает полное удаление углеводородов из потока закоксованного катализатора. ВСГ из продувочного бункера 4, через трубопроводы катализатора, поступает в реакционную колонну 1.
В затворном бункере 6 катализатор движется противотоком потоку восходящего инертного газа. При этом происходит отдув ВСГ, уносимого с катализатором из продувочного бункера 4. Инертный газ из затворного бункера 6, через трубопровод катализатора, поступает в продувочный бункер 4.
Из реакционной колонны 2, через продувочный бункер 5 и затворный бункер 7 катализатор поступает в бункер закоксованного катализатора 8.
В продувочном бункере 5 катализатор движется противотоком потоку восходящего ВСГ. При этом из пор катализатора происходит отдув углеводородов, уносимых с катализатором из зоны реакции. Конструкция продувочного бункера 5 обеспечивает полное удаление углеводородов из потока закоксованного катализатора. ВСГ из продувочного бункера 5, через трубопроводы катализатора, поступает в реакционную колонну 2.
В затворном бункере 7 катализатор движется противотоком потоку восходящего инертного газа. При этом происходит отдув ВСГ, уносимого с катализатором из продувочного бункера 5. Инертный газ из затворного бункера 7, через трубопровод катализатора, поступает в продувочный бункер 5.
Из бункера закоксованного катализатора 8, уносимый с потоком транспортного газа катализатор, поступает через трубопровод для транспортировки и регенерации закоксованного катализатора 9 в бункер подготовки закоксованного катализатора 10.
Газ, подаваемый в бункер закоксованного катализатора 8 для транспортировки катализатора, представляет собой инертный газ либо смесь инертного газа и кислорода (с содержанием кислорода 0,5- 2,0 % об.).
В начало вертикального участка трубопровода для транспортировки и регенерации закоксованного катализатора 9 подводится поток газов циркуляции. Количество и состав газов циркуляции обеспечивают оптимальный режим пневмотранспорта (скорость газовой фазы в транспортном трубопроводе составляет 180 200 % скорости витания транспортируемого катализатора) в трубопроводе для транспортировки и регенерации закоксованного катализатора 9, а также обеспечивают требуемую концентрацию кислорода в газовой фазе в начале вертикального участка трубопровода для транспортировки и регенерации закоксованного катализатора 9.
Наличие кислорода в транспортном газе в трубопроводе для транспортировки и регенерации закоксованного катализатора 9 обеспечивает полный или частичный выжиг кокса с поверхности катализатора в зависимости от предусмотренного режима работы реакторно-регенерационного блока. Движение катализатора в разреженном потоке (с объемной концентрацией твердой фазы не более 0,5 % об.) в трубопроводе для транспортировки и регенерации закоксованного катализатора 9, обеспечивает бережный и эффективный режим выжига кокса за счет отсутствия внешнего диффузионного торможения процесса выжига кокса, равномерного профиля температуры и концентрации кислорода в каждом горизонтальном сечении трубопровода для транспортировки и регенерации закоксованного катализатора 9, а также отсутствии локального перегрева частиц катализатора.
В бункере подготовки закоксованного катализатора 10 катализатор отделяется от потока газов циркуляции и под действием силы тяжести поступает в первую зону выжига 11а регенерационной колонны 11.
Газы циркуляции из бункера подготовки закоксованного катализатора 10 через систему удаления катализаторной мелочи 13, поступают в узел газов циркуляции 14.
В системе удаления катализаторной мелочи 13 от потока газов циркуляции отделяются механические примеси - катализаторная мелочь, образующаяся в процессе механического износа частиц катализатора.
Из узла газов циркуляции 14 часть потока газов циркуляции отделяется и направляется через теплообменники отходящих газов 18 и 20 на нейтрализацию в узел нейтрализации отходящих газов 21. Остальной поток газов циркуляции разделяется и поступает в начало трубопровода для транспортировки и регенерации закоксованного катализатора 9, и в качестве транспортного газа в бункер закоксованного катализатора 8.
В узел газов циркуляции вводится подпитка подготовленного воздуха в количестве, обеспечивающем требуемое содержание кислорода в газе циркуляции в начале вертикального участка трубопровода для транспортировки и регенерации закоксованного катализатора 9.
Катализатор, поступающий в первую зону выжига11а регенерационной колонны11, контактирует с потоком газа регенерации. При этом происходит полный или частичный выжиг кокса с поверхности катализатора.
Из первой зоны выжига 11а, под действием силы тяжести, поступает во вторую зону выжига 116 регенерационной колонны 11, где контактирует с потоком газа регенерации. При этом происходит полный выжиг остаточного кокса с поверхности катализатора.
Газы регенерации, после контакта с катализатором в первой зоне выжига 11а, отводятся из регенерационной колонны 11, смешиваются с подпиточным потоком подготовленного воздуха, после чего возвращаются во вторую зону выжига 116 регенерационной колонны 11. Газы регенерации, после контакта с катализатором во второй зоне выжига 116 отводятся из регенерационной колонны 11в узел газов регенерации 15.
Из узла газов регенерации 15 часть потока газов регенерации отделяется и направляется через теплообменники отходящих газов 18 и 20 на нейтрализацию в узел нейтрализации отходящих газов 21. Остальной поток газов регенерации направляется в первую зону выжига 11а регенерационной колонны 11.
Регенерированный катализатор из второй зоны выжига 116 регенерационной колонны 11, под действием силы тяжести, проходит зоны оксихлорирования 11в и прокалки 11 г, после чего покидает регенерационную колонну 11.
Воздух проходит последовательно систему осушки воздуха 17 и теплообменник отходящих газов 18, после чего разделяется на два потока: часть воздуха поступает в узел газов оксихлорирования и прокалки 16, другая часть - в узел газов циркуляции 14.
Поток воздуха, поступающий в зону прокалки 11г регенерационной колонны 11, проходит противотоком через нисходящий поток катализатора и поступает в зону оксихлорирования 11в регенерационной колонны 11, откуда совместно с газом оксихлорирования отводится из регенерационной колонны 11 и направляется в узел газов оксихлорирования и прокалки 16.
Часть воздуха из узла газов оксихлорирования и прокалки 16 направляется на подпитку газов регенерации, поступающих во вторую зону выжига 11бв регенерационную колонну 11.
Катализатор, под действием силы тяжести, из зоны прокалки 11г регенерационной колонны 11 поступает в затворный бункер 12.
Для исключения возможности перетока кислородсодержащего газа из зоны прокалки 11г регенерационной колонны 11 в узел восстановления 3 и отдува кислородсодержащего газа из потока катализатора в затворный бункер 12 поступает инертный газ.
Катализатор из затворного бункера 12 под действием силы тяжести поступает в узелвосстановления 3, где восстанавливается в токе горячего ВСГ.
Из узла восстановления 3 ВСГ двумя потоками поступает в продувочные бункеры 4 и 5. В результате предложенной оптимизации схемы блока регенерации при условиях его работы: температуре - 470-540°С и давлении 0,4-0, 5 МПа удалось на 19,5% снизить истираемость катализатора и на 10-20% снизить время выжига кокса. При этом эффективность процесса не ухудшается.

Claims

ФОРМУЛА 1. Реакционно-регенерационный блок установки риформинга, содержащий ре- акторный узел, включающий реактор и расположенный на выходе из реакго- ра бункер закоксованного катализатора, регенерационную колонну, систему подготовки газов и трубопроводы, отличающееся тем, что он дополнитель- но содержит бункер продувки между выходом реактора и бункером закоксо- ванного катализатора, а также бункер подготовки закоксованного катализа- тора, связанный системой фильтрования газовой смеси, с верней частью ре- генерационной колонны и бункером закоксованного катализатора, причем бункер подготовки закоксованного катализатора, регенерационная колонна, реактор, бункер продувки и бункер закоксованного катализатора размещены друг под другом по вертикали, а бункер закоксованного катализатора и бун- кер подготовки закоксованного катализатора связаны между собой трубо- проводом, в нижнюю часть которого поступает азотно-воздушная смесь с содержанием кислорода 0, 5-2,0 % об.
2. Реакционно-регенерационный блок по п.1, отличающийся тем, что реактор- ный узел состоит из двух параллельно включенных структур, содержащих реактор, продувочный бункер и бункер закоксованного катализатора.
PCT/RU2019/000726 2018-10-24 2019-10-14 Реакционно-регенерационный блок риформинга WO2020085947A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018137650 2018-10-24
RU2018137650 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020085947A1 true WO2020085947A1 (ru) 2020-04-30

Family

ID=70332030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2019/000726 WO2020085947A1 (ru) 2018-10-24 2019-10-14 Реакционно-регенерационный блок риформинга

Country Status (1)

Country Link
WO (1) WO2020085947A1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854887A (en) * 1973-02-20 1974-12-17 Universal Oil Prod Co Reactor system for gravity-flowing catalyst particles
RU3225U1 (ru) * 1994-09-16 1996-12-16 Товарищество с ограниченной ответственностью - Научно-производственное объединение "Ленар" Реакторно-регенерационный блок установки каталитической конверсии углеводородов
US9708551B2 (en) * 2014-09-10 2017-07-18 IFP Energies Nouvelles Regenerator for catalysts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854887A (en) * 1973-02-20 1974-12-17 Universal Oil Prod Co Reactor system for gravity-flowing catalyst particles
RU3225U1 (ru) * 1994-09-16 1996-12-16 Товарищество с ограниченной ответственностью - Научно-производственное объединение "Ленар" Реакторно-регенерационный блок установки каталитической конверсии углеводородов
US9708551B2 (en) * 2014-09-10 2017-07-18 IFP Energies Nouvelles Regenerator for catalysts

Similar Documents

Publication Publication Date Title
HU206643B (en) Method for gas-circulating regenerating zone of movable-bed catalyzer
CN1038044C (zh) 制备热纯气流的部分氧化法
US5032252A (en) Process and apparatus for hot catalyst stripping in a bubbling bed catalyst regenerator
PL77702B1 (en) Continuous reforming-regeneration process[us3647680a]
JP2004131736A (ja) 軽質オレフィンfcc流出物からの触媒回収
JP2004131735A (ja) 中心ウエルを有する触媒再生器
RU186090U1 (ru) Реакционно-регенерационный блок риформинга
US4146464A (en) Temporary shutdown of co-combustion devices
US3843330A (en) Regeneration apparatus
TWI388376B (zh) 包含接收轉移催化劑之反應區的烴轉化單元
CN100577614C (zh) 用于催化转化含氧物并再生和汽提催化剂的方法和系统
JPS60220124A (ja) 移動床を用いたガス処理方法
CN103028450B (zh) 催化转化催化剂再生方法
JPH02290259A (ja) リフォーミング触媒または芳香族炭化水素製造触媒の再生方法
WO2020085947A1 (ru) Реакционно-регенерационный блок риформинга
US4473658A (en) Moving bed catalytic cracking process with platinum group metal or rhenium supported directly on the cracking catalyst
KR100215628B1 (ko) 촉매적 분해기에서 유출된 가스 유출물을 처리하는 방법 및 장치
JPH03207795A (ja) 統合されたパラフィン改善方法及び接触分解方法
RU2727887C1 (ru) Установка каталитического риформинга с непрерывной регенерацией катализатора
RU3225U1 (ru) Реакторно-регенерационный блок установки каталитической конверсии углеводородов
SU620214A3 (ru) Способ каталитического крекинга нефт ного сырь
RU2747527C1 (ru) Способ каталитического риформинга с непрерывной регенерацией катализатора
RU185080U1 (ru) Установка для регенерации катализатора риформинга
RU2700049C2 (ru) Способ адсорбции хлорида водорода из выходящего газа регенерации
WO2020009612A1 (ru) Установка для регенерации катализатора риформинга

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876379

Country of ref document: EP

Kind code of ref document: A1