WO2020085947A1 - Bloc de réaction et de régénération de reformage - Google Patents
Bloc de réaction et de régénération de reformage Download PDFInfo
- Publication number
- WO2020085947A1 WO2020085947A1 PCT/RU2019/000726 RU2019000726W WO2020085947A1 WO 2020085947 A1 WO2020085947 A1 WO 2020085947A1 RU 2019000726 W RU2019000726 W RU 2019000726W WO 2020085947 A1 WO2020085947 A1 WO 2020085947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hopper
- catalyst
- reactor
- coked catalyst
- regeneration
- Prior art date
Links
- 238000002407 reforming Methods 0.000 title claims abstract description 7
- 238000000034 method Methods 0.000 title abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 115
- 238000011069 regeneration method Methods 0.000 claims abstract description 63
- 239000007789 gas Substances 0.000 claims abstract description 62
- 230000008929 regeneration Effects 0.000 claims abstract description 61
- 238000010926 purge Methods 0.000 claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 238000011084 recovery Methods 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 238000007670 refining Methods 0.000 abstract description 2
- 238000005235 decoking Methods 0.000 abstract 1
- 239000000571 coke Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000001354 calcination Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000001172 regenerating effect Effects 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 7
- 230000032258 transport Effects 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 5
- 230000001174 ascending effect Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/10—Catalytic reforming with moving catalysts
Definitions
- the device relates to the field of oil refining and petrochemicals, namely, to devices for the processing of hydrocarbon materials during continuous reforming on a catalyst in a moving or fluidized bed.
- Catalytic reforming is one of the most important processes for processing gasoline fractions in order to increase the detonation properties of gasolines and produce aromatic hydrocarbons.
- one of the main problems encountered in its implementation is the problem of regeneration of the catalyst, which is deactivated due to the accumulation of coke deposits, as a result of which the catalyst becomes unsuitable for use in the process.
- Such a deactivated catalyst must be regenerated and brought back to its original conditional quality before it can be reused in the reforming process.
- Continuous reforming which is typically carried out using a catalyst in a moving bed, allows for more stringent operating conditions by maintaining the high catalytic activity of an almost fresh catalyst through regeneration cycles for several days.
- the moving bed system has the advantage of not stopping production during removal or replacement of the catalyst.
- Catalyst particles are continuously removed from the reaction zone to the regeneration zone to remove coke by high-temperature burning, typically by contact with an oxygen-containing gas.
- the catalyst regeneration process is carried out, as a rule, in the regeneration zone outside the reactor.
- the catalyst particles of the "in the moving layer” technology pass by gravity through one or more reactors and enter the continuous regeneration zone.
- Continuous catalyst regeneration is usually carried out by passing the catalyst particles by gravity down in the moving bed through various treatment zones in the regeneration column.
- Oxygen for coke combustion enters the combustion section of the regeneration zone with a regenerating gas, usually containing from 0.5 to 1.5% oxygen by volume.
- Regeneration gases consisting of carbon monoxide, carbon dioxide, water, unreacted oxygen, chlorine, hydrogen chloride, nitrogen oxides, sulfur oxides and nitrogen are removed from the combustion section, while some of the gases are removed from the regeneration zone in the form of exhaust gas.
- the residue is combined with a small amount of oxygen-containing fresh gas, usually air, in an amount of about 3% of the total gas content, in order to replenish the consumed oxygen and return to the combustion section as a regenerating gas [RU2 180 346, 2002; US3652231].
- oxygen-containing fresh gas usually air
- the rise of catalyst particles from one technological zone to another is carried out, as a rule, using some types of pneumatic transportation, in which a gas stream having a sufficient velocity, lifting the catalyst particles, transports them up to move and disconnect in a set of containers.
- pneumatic transportation in which a gas stream having a sufficient velocity, lifting the catalyst particles, transports them up to move and disconnect in a set of containers.
- Such systems use a plurality of elbow pipes and valve devices to guide and control the movement of catalyst particles.
- damage to its particles occurs with the formation of a finely dispersed material. Fine particles resulting from such transportation not only interfere with the normal functioning of the catalyst, but can also lead to a drop in pressure in the gaseous medium passing through the tubular elements.
- a significant pressure drop associated with the transportation of discrete material increase the operating costs of the process and may impede the maintenance of the necessary technological conditions [RU 2174145, 2001].
- a catalyst regeneration unit consisting of a reactor, a regeneration column, a coked catalyst hopper, pipelines connecting the regeneration column to a coked catalyst hopper and through a halogenization and drying section with a reactor [US3854887, 1974].
- the catalyst enters the column from above, and the regenerating gas is supplied from below.
- the disadvantage of the installation is the lack of regeneration efficiency associated with a short contact time.
- the technical problem solved by the authors was the creation of an installation that ensures the preservation of catalyst granules during its operation and during its regeneration.
- the problem was solved by creating equipment that provides the possibility of combining the sequential movement of the active catalyst from top to bottom and multiple processing of its surface to eliminate coke from it during reverse movement - from bottom to top.
- the technical result is achieved by creating a reactive regeneration unit containing a reactor unit, a regeneration column with a catalyst preparation unit, a gas preparation system and pipelines.
- the reactor assembly includes a reactor and purge hopper and coked catalyst hopper located at the outlet of the reactor and connected in series, wherein the reactor, purge hopper and coked catalyst hopper are arranged vertically one below the other.
- the reactor unit as a rule, consists of two parallel connected structures containing a reactor, a purge hopper and a coked catalyst hopper.
- the coked catalyst preparation hopper is connected to the gas mixture filtering system, the upper part of the regeneration column and the coked catalyst hopper, and the coked catalyst hopper and the coked catalyst preparation hopper are connected by a pipeline to the lower part of which comes the nitrogen-air mixture with an oxygen content of 0, 5-2, 0% vol.
- the features of the proposed solution is the vertical arrangement of the main elements of the block, as a result of which the catalyst activated in the regeneration column passes from the regeneration column to the exit from the reactor unit under the action of gravity, which reduces the abrasion of the catalyst granules and reduces its contact time in the working area, reducing coking its surface.
- pretreatment of the catalyst with a gas stream in a purge hopper that removes sorbed hydrocarbons from it, and then burning surface coke during its transportation to the regeneration column with a nitrogen-air mixture with a small amount of oxygen makes it possible to use fairly mild conditions for burning it, while maintaining its crystalline structure.
- Regeneration column 11 a - the first burnout zone, 11 b - the second burnout zone, 11c - the oxychlorination zone, 11g - the calcination zone.
- the catalyst moves countercurrent to the flow of the ascending hydrogen-containing gas (HSG).
- HSG ascending hydrogen-containing gas
- the design of the purge hopper 4 ensures the complete removal of hydrocarbons from the coked catalyst stream. Wash from the purge hopper 4, through the piping of the catalyst, enters the reaction column 1.
- the catalyst moves countercurrent to the flow of ascending inert gas. When this occurs, the blasting of the Wash carried away with the catalyst from the purge hopper 4. Inert gas from the gate hopper 6, through the catalyst pipe, enters the purge hopper 4.
- the catalyst moves countercurrent to the ascending Wash flow.
- the purge hopper 5 ensures the complete removal of hydrocarbons from the coked stream catalyst. Wash from the purge hopper 5, through the piping of the catalyst, enters the reaction column 2.
- the catalyst moves countercurrent to the flow of ascending inert gas. When this occurs, the blasting of the Wash carried away with the catalyst from the purge hopper 5. Inert gas from the shutter hopper 7, through the catalyst pipe, enters the purge hopper 5.
- the catalyst carried away from the transport gas stream enters through the pipeline for transporting and regenerating the coked catalyst 9 to the coked catalyst preparation hopper 10.
- the gas supplied to the coked catalyst hopper 8 for transporting the catalyst is an inert gas or a mixture of inert gas and oxygen (with an oxygen content of 0.5-2.0% vol.).
- a flow of circulation gases is supplied.
- the quantity and composition of the circulation gases provide an optimal pneumatic transport mode (the gas phase velocity in the transport pipeline is 180 200% of the rate of transport of the transported catalyst) in the pipeline for transporting and regenerating the coked catalyst 9, and also provide the required oxygen concentration in the gas phase at the beginning of the vertical section of the pipeline for transportation and regeneration of coked catalyst 9.
- the presence of oxygen in the transport gas in the pipeline for transporting and regenerating the coked catalyst 9 provides for full or partial burning of coke from the surface of the catalyst, depending on the intended operating mode of the reactor regeneration unit.
- the movement of the catalyst in a rarefied stream (with a volumetric concentration of the solid phase of not more than 0.5% vol.) In the pipeline for transporting and regenerating coked catalyst 9 provides a gentle and efficient mode of coke burning due to the absence of external diffusion inhibition of the coke burning process, a uniform temperature profile and oxygen concentration in each horizontal section of the pipeline for transportation and regeneration coked catalyst 9, as well as the absence of local overheating of the catalyst particles.
- the catalyst In the preparation hopper of the coked catalyst 10, the catalyst is separated from the flow of circulation gases and, under the action of gravity, enters the first burnout zone 11a of the regeneration column 11.
- a part of the circulation gas stream is separated and sent through the exhaust gas heat exchangers 18 and 20 for neutralization to the exhaust gas neutralization unit 21.
- the remaining circulation gas stream is separated and flows to the beginning of the pipeline for transporting and regenerating the coked catalyst 9, and as a transport gas to the coked catalyst hopper 8.
- replenishment of the prepared air in an amount that provides the required oxygen content in the circulation gas at the beginning of the vertical section of the pipeline for transportation and regeneration of the coked catalyst 9.
- the catalyst entering the first burnout zone 11a of the recovery column 11 is in contact with the flow of regeneration gas. In this case, complete or partial burning of coke from the surface of the catalyst occurs.
- the first burnout zone 11a From the first burnout zone 11a, under the action of gravity, it enters the second burnout zone 116 of the regeneration column 11, where it contacts the regeneration gas stream. In this case, the residual coke is completely burned from the catalyst surface.
- Regeneration gases after contact with the catalyst in the first burnout zone 11a, are discharged from the regeneration column 11, mixed with a feed stream of prepared air, and then return to the second burnout zone 116 of the regeneration column 11. Regeneration gases, after contact with the catalyst in the second burn zone 116, are removed from the regeneration column 11 to the regeneration gas unit 15.
- a part of the regeneration gas stream is separated and sent through the exhaust gas heat exchangers 18 and 20 for neutralization to the exhaust gas neutralization unit 21.
- the remaining regeneration gas stream is directed to the first burn zone 11a of the regeneration column 11.
- the regenerated catalyst from the second burn zone 116 of the regeneration column 11 passes through the oxychlorination zones 11b and calcination 11 g, after which it leaves the regeneration column 11.
- the air passes sequentially the air drying system 17 and the exhaust gas heat exchanger 18, after which it is divided into two streams: part of the air enters the site of oxychlorination and calcination gases 16, the other part - to the site of circulation gases 14.
- the air flow entering the calcination zone 11g of the regeneration column 11 passes countercurrently through the downward flow of the catalyst and enters the oxychlorination zone 11c of the regeneration column 11, where, together with the oxychlorination gas, is discharged from the regeneration column 11 and sent to the oxychlorination and calcination gas unit 16.
- Part of the air from the site of oxychlorination and calcination gases 16 is directed to feed the regeneration gases entering the second burnout zone 11bw of the regeneration column 11.
- the catalyst under the action of gravity, from the calcination zone 11g of the regeneration column 11 enters the gate hopper 12.
- inert gas enters the gate hopper 12.
- the VSG flows in two streams to the purge bins 4 and 5.
- a temperature of 470-540 ° C and a pressure of 0.4-0.5 MPa it was possible to reduce the abrasion of the catalyst by 19.5% and reduce the coke burning time by 10-20%. In this case, the efficiency of the process does not deteriorate.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Catalysts (AREA)
Abstract
L'invention concerne des domaines de transformation du pétrole et de pétrochimie. Le bloc de réaction et de régénération d'une installation de reformage comprend une unité réacteur qui comprend le réacteur et une trémie pour catalyseur cokéfié disposée à la sortie du réacteur, une colonne de régénération, un système de préparation de gaz et des canalisations. En outre, il contient une trémie de soufflage entre la sortie du réacteur et la trémie pour catalyseur cokéfié, ainsi qu'une trémie de préparation de catalyseur cokéfié reliée par un système de filtrage de mélange de gaz à la partie supérieure de la colonne de régénération et la trémie pour catalyseur cokéfié. La trémie de préparation de catalyseur cokéfié, la colonne de régénération, le réacteur, la trémie de soufflage et la trémie de catalyseur cokéfié sont disposés l'un sur l'autre verticalement. La trémie de catalyseur cokéfié et la trémie de préparation de catalyseur cokéfié sont reliés entre eux par une canalisation dans la partie inférieure de laquelle est injecté un mélange air-azote avec un teneur d'oxygène de 0,5-2,0% en volume. L'invention permet d'assurer une baisse de friabilité du catalyseur et une baisse du temps de brûlage de coke à 10-20% tout en préservant l'efficacité du processus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018137650 | 2018-10-24 | ||
RU2018137650 | 2018-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085947A1 true WO2020085947A1 (fr) | 2020-04-30 |
Family
ID=70332030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2019/000726 WO2020085947A1 (fr) | 2018-10-24 | 2019-10-14 | Bloc de réaction et de régénération de reformage |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020085947A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3854887A (en) * | 1973-02-20 | 1974-12-17 | Universal Oil Prod Co | Reactor system for gravity-flowing catalyst particles |
RU3225U1 (ru) * | 1994-09-16 | 1996-12-16 | Товарищество с ограниченной ответственностью - Научно-производственное объединение "Ленар" | Реакторно-регенерационный блок установки каталитической конверсии углеводородов |
US9708551B2 (en) * | 2014-09-10 | 2017-07-18 | IFP Energies Nouvelles | Regenerator for catalysts |
-
2019
- 2019-10-14 WO PCT/RU2019/000726 patent/WO2020085947A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3854887A (en) * | 1973-02-20 | 1974-12-17 | Universal Oil Prod Co | Reactor system for gravity-flowing catalyst particles |
RU3225U1 (ru) * | 1994-09-16 | 1996-12-16 | Товарищество с ограниченной ответственностью - Научно-производственное объединение "Ленар" | Реакторно-регенерационный блок установки каталитической конверсии углеводородов |
US9708551B2 (en) * | 2014-09-10 | 2017-07-18 | IFP Energies Nouvelles | Regenerator for catalysts |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HU206643B (en) | Method for gas-circulating regenerating zone of movable-bed catalyzer | |
CN1038044C (zh) | 制备热纯气流的部分氧化法 | |
US5032252A (en) | Process and apparatus for hot catalyst stripping in a bubbling bed catalyst regenerator | |
PL77702B1 (en) | Continuous reforming-regeneration process[us3647680a] | |
JP2004131736A (ja) | 軽質オレフィンfcc流出物からの触媒回収 | |
JP2004131735A (ja) | 中心ウエルを有する触媒再生器 | |
RU186090U1 (ru) | Реакционно-регенерационный блок риформинга | |
US4146464A (en) | Temporary shutdown of co-combustion devices | |
US3843330A (en) | Regeneration apparatus | |
TWI388376B (zh) | 包含接收轉移催化劑之反應區的烴轉化單元 | |
CN100577614C (zh) | 用于催化转化含氧物并再生和汽提催化剂的方法和系统 | |
JPS60220124A (ja) | 移動床を用いたガス処理方法 | |
CN103028450B (zh) | 催化转化催化剂再生方法 | |
JPH02290259A (ja) | リフォーミング触媒または芳香族炭化水素製造触媒の再生方法 | |
WO2020085947A1 (fr) | Bloc de réaction et de régénération de reformage | |
US4473658A (en) | Moving bed catalytic cracking process with platinum group metal or rhenium supported directly on the cracking catalyst | |
KR100215628B1 (ko) | 촉매적 분해기에서 유출된 가스 유출물을 처리하는 방법 및 장치 | |
JPH03207795A (ja) | 統合されたパラフィン改善方法及び接触分解方法 | |
RU2727887C1 (ru) | Установка каталитического риформинга с непрерывной регенерацией катализатора | |
RU3225U1 (ru) | Реакторно-регенерационный блок установки каталитической конверсии углеводородов | |
SU620214A3 (ru) | Способ каталитического крекинга нефт ного сырь | |
RU2747527C1 (ru) | Способ каталитического риформинга с непрерывной регенерацией катализатора | |
RU185080U1 (ru) | Установка для регенерации катализатора риформинга | |
RU2700049C2 (ru) | Способ адсорбции хлорида водорода из выходящего газа регенерации | |
WO2020009612A1 (fr) | Installation de régénération de catalyseur de reformage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876379 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19876379 Country of ref document: EP Kind code of ref document: A1 |