WO2020065982A1 - 測定装置、および測定方法 - Google Patents
測定装置、および測定方法 Download PDFInfo
- Publication number
- WO2020065982A1 WO2020065982A1 PCT/JP2018/036487 JP2018036487W WO2020065982A1 WO 2020065982 A1 WO2020065982 A1 WO 2020065982A1 JP 2018036487 W JP2018036487 W JP 2018036487W WO 2020065982 A1 WO2020065982 A1 WO 2020065982A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- gas
- concentration
- measurement
- odor sensor
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 247
- 238000000691 measurement method Methods 0.000 title claims description 38
- 239000007789 gas Substances 0.000 claims description 497
- 238000000034 method Methods 0.000 claims description 72
- 238000001514 detection method Methods 0.000 claims description 45
- 239000013598 vector Substances 0.000 claims description 37
- 230000004044 response Effects 0.000 claims description 27
- 229920006395 saturated elastomer Polymers 0.000 claims description 16
- 238000010926 purge Methods 0.000 claims description 11
- 230000000295 complement effect Effects 0.000 claims description 8
- 235000019645 odor Nutrition 0.000 description 217
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 32
- 239000012159 carrier gas Substances 0.000 description 30
- 238000012545 processing Methods 0.000 description 23
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 238000009795 derivation Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000011259 mixed solution Substances 0.000 description 7
- 239000000052 vinegar Substances 0.000 description 6
- 235000021419 vinegar Nutrition 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000000630 rising effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 241000220225 Malus Species 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003169 complementation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
- G01N5/02—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
Definitions
- the present invention relates to a measuring device and a measuring method.
- Patent Document 1 describes a technique in which a gas sample containing moisture and an odor component is passed through an odor component collecting material to be supported, and then sent to a sensor by an inert gas.
- this document describes that the effect of moisture can be corrected by setting the amount of moisture carried on the odor component trapping material to a constant value.
- Patent Document 2 discloses a detection output when a carrier gas containing no sample component is supplied to an odor detection unit via a dehumidifying unit, and a carrier gas containing a sample component is supplied to the odor detection unit via a dehumidifying unit. It is described that an odor detection process is performed based on a difference from the detection output when the odor detection is performed.
- Patent Document 3 describes that a sterilization gas concentration is obtained by subtracting an amount corresponding to humidity from a detection value of a gas concentration sensor according to a detection value of a humidity sensor.
- Patent Document 4 discloses an odor measurement device including means for adjusting the amount of water vapor in a gas to be measured.
- Patent Documents 1 to 4 could not accurately exclude the influence of specific components.
- the amount of moisture carried on the odor component collecting material is not always constant.
- the carrier gas containing no sample component and the carrier gas containing the sample component may not be precisely matched in dehumidification.
- the detection current value of the gas concentration sensor corresponding to the humidity value sometimes fluctuates due to another condition element.
- the influence of moisture may not be sufficiently eliminated.
- An object of the present invention is to provide a technique for accurately eliminating the influence of a specific component in measurement with an odor sensor.
- the first measuring device of the present invention comprises: A measurement target gas containing a first component and a second component, and an odor sensor for detecting a component contained in a reference gas containing the second component; A first measuring means for measuring the concentration of the second component, one of the measurement target gas and the reference gas, A concentration control unit configured to control a concentration of the second component of at least the other of the measurement target gas and the reference gas based on a measurement result of the first measurement unit.
- the second measuring device of the present invention comprises: A measurement target gas containing a first component and a second component, and an odor sensor for detecting a component contained in a reference gas containing the second component; A concentration control unit that controls a concentration of the second component of at least one of the measurement target gas and the reference gas based on a detection result of the odor sensor.
- the first measuring method of the present invention comprises: A measurement target gas containing the first component and the second component, and a component contained in the reference gas containing the second component are detected by an odor sensor; One of the measurement target gas and the reference gas, the concentration of the second component is measured by a first measurement unit, Based on the measurement result of the first measuring means, at least the concentration of the second component of the other of the measurement target gas and the reference gas is controlled.
- the second measuring method of the present invention comprises: A measurement target gas containing the first component and the second component, and a component contained in the reference gas containing the second component are detected by an odor sensor; The concentration of the second component of at least one of the measurement target gas and the reference gas is controlled based on a detection result of the odor sensor.
- FIG. 2 is a diagram illustrating a configuration of a measuring device according to the first embodiment. It is a figure which illustrates an odor sensor. It is a figure which illustrates time series data.
- FIG. 9 is a diagram showing the results of Experimental Example 1 for confirming the differential characteristics of the feature amounts obtained from the output of the odor sensor.
- FIG. 9 is a diagram showing the results of Experimental Example 2 for confirming the linearity of the feature obtained from the output of the odor sensor.
- FIG. 3 is a diagram illustrating a computer for realizing a measuring device. It is a figure which illustrates the composition of the measuring device concerning a 2nd embodiment. It is a figure which illustrates the composition of the measuring device concerning a 3rd embodiment.
- the supply control unit 350, the derivation unit 360, and the concentration control unit 370 of the measuring device 30 are not shown in hardware units but in functional unit blocks unless otherwise specified. I have.
- the supply control means 350, the derivation means 360, and the concentration control means 370 of the measuring device 30 are a CPU of an arbitrary computer, a memory, a program for realizing the constituent elements of the drawing loaded in the memory, a hard disk for storing the program, and the like. It is realized by an arbitrary combination of hardware and software with a focus on a storage medium and a network connection interface. There are various modifications in the method and apparatus for realizing the method.
- FIG. 1 is a diagram illustrating a configuration of a measuring device 30 according to the first embodiment.
- the measurement device 30 includes the odor sensor 10, the first measurement unit 381, and the concentration control unit 370.
- the odor sensor 10 detects components contained in the gas to be measured and the reference gas.
- the measurement target gas includes the first component 110 and the second component 120
- the reference gas includes the second component 120.
- the first measuring unit 381 measures the concentration of the second component 120 of one of the measurement target gas and the reference gas.
- the concentration control means 370 controls the concentration of the second component 120, at least the other of the measurement target gas and the reference gas, based on the measurement result of the first measurement means 381. This will be described in detail below.
- the effect of the second component 120 on the measurement result can be reduced by making the concentration of the second component 120 in the reference gas close to the concentration of the second component 120 in the measurement target gas.
- the measurement target gas is not particularly limited, but is, for example, a gas containing a carrier gas, the first component 110, and the second component 120.
- the reference gas is not particularly limited, but is, for example, a gas containing a carrier gas and the second component 120. Note that the measurement target gas and the reference gas may each further include other components. However, it is preferable that all the components contained in the gas to be measured are obtained by adding the first component 110 to all the components contained in the reference gas.
- the first component 110 is a component to be measured in particular.
- the carrier gas is, for example, an inert gas such as nitrogen or air.
- the second component 120 may be a component included in the carrier gas, such as, for example, moisture in the air.
- the reference gas is, for example, a purge gas.
- the odor sensor 10 is purified by the purge gas. That is, the purge gas is a gas that can reduce the number of molecules of the first component 110 adsorbed on the functional portion (for example, the functional film) of the odor sensor 10 by supplying the gas to the odor sensor 10.
- the measurement target gas and the purge gas are sequentially supplied to the sensor.
- the order in which the measurement target gas and the purge gas are supplied to the sensor is not particularly limited. That is, the purge gas may be supplied following the measurement target gas, or the measurement target gas may be supplied following the purge gas.
- FIG. 2 is a diagram illustrating the odor sensor 10.
- the odor sensor 10 has a receptor to which a molecule is attached, and a detection value is changed according to attachment and detachment of the molecule at the receptor.
- the time series data of the detection values output from the odor sensor 10 is referred to as time series data 14.
- the time-series data 14 is also described as Y
- the detected value at the time t is also described as y (t).
- Y is a vector in which y (t) is enumerated.
- the odor sensor 10 is a membrane-type surface stress (MSS) sensor.
- the MSS sensor has, as a receptor, a functional film to which a molecule adheres, and the stress generated in a support member of the functional film changes due to the attachment and detachment of the molecule to and from the functional film.
- the MSS sensor outputs a detection value based on the change in the stress.
- the odor sensor 10 is not limited to the MSS sensor but relates to the viscoelasticity and dynamic characteristics (mass, moment of inertia, etc.) of the members of the odor sensor 10 that occur in response to the attachment and detachment of molecules to and from the receptor. Any sensor that outputs a detection value based on a change in physical quantity may be used, and various types of sensors such as a cantilever type, a film type, an optical type, a piezo, and a vibration response can be adopted.
- FIG. 3 is a diagram illustrating the time-series data 14.
- the time-series data 14 is time-series data in which the detection values output by the odor sensor 10 are arranged in the order in which the time output from the odor sensor 10 is earlier.
- the time-series data 14 may be data obtained by subjecting the time-series data of the detection values obtained from the odor sensor 10 to predetermined preprocessing.
- pre-processing for example, filtering for removing a noise component from the time-series data can be employed.
- the time series data 14 is obtained by an operation of exposing the odor sensor 10 to the gas to be measured and an operation of removing the gas to be measured from the odor sensor 10. Specifically, the time-series data 14 is obtained by sequentially supplying a measurement target gas and a reference gas to the same odor sensor 10.
- the operation of exposing the odor sensor 10 to the gas to be measured corresponds to the operation of supplying the gas to be measured to the odor sensor 10.
- the operation of removing the measurement target gas from the odor sensor 10 corresponds to the operation of supplying the reference gas to the odor sensor 10.
- data of the period P1 is obtained by supplying the gas to be measured to the odor sensor 10
- data of the period P2 is obtained by an operation of supplying the reference gas to the odor sensor 10.
- the supply of the gas to be measured and the supply of the reference gas to the odor sensor 10 may be repeated to obtain a plurality of time-series data 14. Further, it is preferable to supply the reference gas to the odor sensor 10 even before supplying the gas to be measured to the odor sensor 10 for the first time.
- the waveform of the time-series data 14 obtained in this manner includes a first state in which molecules in the gas to be measured are adsorbed to the functional part of the odor sensor 10 until a steady state (equilibrium state), and a reference gas in the functional part of the odor sensor 10. And the second state in which the molecules therein are adsorbed to a steady state (equilibrium state).
- the first state is a state of a steady part in the period P1
- the second state is a state of a steady part in the period P2.
- the rising portion at the beginning of the period P1 is a transition portion from the second state to the first state
- the falling portion at the beginning of the period P2 is a transition portion from the first state to the second state. Therefore, the shapes of the rising portion and the falling portion are determined by the difference between the first state and the second state. That is, the output of the odor sensor 10 has a differential characteristic.
- the output of the odor sensor 10 since the output of the odor sensor 10 has a differential characteristic, the measurement target gas including the first component 110 and the second component 120 and the reference gas including the second component 120 are sequentially transmitted to the same sensor. By supplying, the influence of the second component 120 on the measurement result of the odor sensor 10 can be reduced without performing special processing.
- the first component 110 is hardly contained in the reference gas, or even if it is contained, the partial pressure of the first component 110 contained in the reference gas is lower than the partial pressure of the first component 110 contained in the measurement target gas. It is preferred that the amount is relatively small.
- the partial pressure of the first component 110 included in the reference gas is preferably 10% or less of the partial pressure of the first component 110 included in the measurement target gas.
- the influence of the first component 110 on the measurement result of the odor sensor 10 is not reduced. That is, the difference between the partial pressure of the first component 110 in the measurement target gas and the partial pressure of the first component 110 in the reference gas indicates the magnitude of the relative influence of the first component 110 on the measurement result of the odor sensor 10. I have.
- the concentration of the second component 120 in the gas to be measured is particularly close to the concentration of the second component 120 in the reference gas. Is preferred. By doing so, the influence of the second component 120 on the measurement result of the odor sensor 10 can be further reduced. That is, the absolute value of the difference between the partial pressure of the second component 120 in the measurement target gas and the partial pressure of the second component 120 in the reference gas is the relative magnitude of the influence of the second component 120 on the measurement result of the odor sensor 10. It represents the degree.
- the influence of the first component 110 on the measurement result of the odor sensor 10 is sufficiently larger than the influence of the second component 120.
- the difference between the first saturated vapor pressure P saturation of the first component 110, as compared with the value obtained by dividing the first preferably smaller. That is, it is preferable that
- the measurement target gas contains the first component 110 at 25% or more of the saturated vapor pressure and the reference gas does not contain the first component 110
- / P saturation, second ⁇ 0.25 is preferably satisfied. That is, in this case, it is preferable that the second component 120 included in the reference gas falls within ⁇ 25 points as a percentage of the saturated vapor pressure as compared with the second component 120 included in the measurement target gas.
- the measurement target gas and the reference gas may include a plurality of components as the second component 120.
- the second component 120 is not particularly limited, but the measurement target gas and the reference gas can each contain, for example, at least one of moisture and alcohol as the second component 120.
- the first component 110 is not particularly limited.
- the measurement target gas may include a plurality of components as the first component 110.
- the influence of moisture at the time of measurement can be reduced by reducing the influence.
- the influence of moisture at the time of measurement can be reduced by reducing the influence.
- the influence of moisture and alcohol it is possible to accurately detect the aged aroma and fruit aroma.
- a feature amount based on the time-series data 14 can be used.
- the feature amount is, for example, the time series data 14, data obtained by differentiating the time series data 14, or a set ⁇ ⁇ of contribution values.
- a set ⁇ ⁇ of contribution values which is an example of a feature value, will be described below.
- the gas supplied to the odor sensor 10 is referred to as a target gas.
- the sensing by the odor sensor 10 is modeled as follows. (1) The odor sensor 10 is exposed to a target gas containing K kinds of molecules. (2) The concentration of each molecule k in the target gas is constant ⁇ k . (3) The odor sensor 10 can adsorb a total of N molecules. (4) The number of molecules k attached to the odor sensor 10 at time t is n k (t).
- the change over time of the number n k (t) of molecules k attached to the odor sensor 10 can be formulated as follows.
- the first and second terms on the right-hand side of the equation (1) indicate the increase amount (number of molecules k newly attached to the odor sensor 10) and the decrease amount (separate from the odor sensor 10) per unit time.
- ⁇ k and ⁇ k are a rate constant representing the rate at which the molecule k adheres to the odor sensor 10 and a rate constant representing the rate at which the molecule k separates from the odor sensor 10, respectively.
- the concentration ⁇ k is constant
- the number n k (t) of the numerator k at the time t can be formulated from the above equation (1) as follows.
- nk (t) is expressed as follows.
- the detection value of the odor sensor 10 is determined by a physical quantity related to viscoelasticity such as stress acting on the odor sensor 10 due to molecules contained in the target gas and dynamic characteristics. Then, it is considered that the physical quantity of the odor sensor 10 by a plurality of molecules can be represented by a linear sum of contributions of the individual molecules to the physical quantity. However, it is considered that the contribution of the molecule to the physical quantity differs depending on the type of the molecule. That is, it can be said that the contribution of the molecule to the detection value of the odor sensor 10 differs depending on the type of the molecule.
- the detection value y (t) of the odor sensor 10 can be formulated as follows.
- both ⁇ k and ⁇ k represent the contribution of the molecule k to the detection value of the odor sensor 10. Note that “rising” corresponds to the above-described period P1, and “falling” corresponds to the above-described period P2.
- the time-series data 14 obtained from the odor sensor 10 sensing the target gas can be decomposed as in the above equation (4), the types of molecules contained in the target gas and the types of molecules contained in the target gas are included.
- the rate of That is, by the decomposition shown in Expression (4), data representing the characteristics of the target gas (that is, the characteristic amount of the target gas) is obtained.
- the set of feature constants ⁇ may be predetermined or may be generated by the measurement device 30.
- i i is a contribution value representing the contribution of the characteristic constant ⁇ i to the detection value of the odor sensor 10.
- a contribution value ⁇ i representing the contribution of each feature constant ⁇ i to the time series data 14 is calculated.
- the ⁇ set of contribution value xi] i can be a feature quantity representing the feature of the target gas.
- the feature quantity of the target gas does not necessarily have to be represented as a vector.
- equation (5) can be expressed as follows.
- the set ⁇ ⁇ of the contribution values described above depends on the type of the molecule contained in the target gas and the mixture ratio thereof. It will be different depending on the situation. Therefore, the set ⁇ ⁇ of contribution values can be used as information that can distinguish a gas in which a plurality of types of molecules are mixed, that is, as a feature amount of the gas. Further, since the conversion from the time-series data 14 to the set ⁇ is a linear conversion, the differential described for the time-series data 14 is also maintained in the set ⁇ .
- Using the ⁇ set of contribution values ⁇ as the feature of the target gas has other advantages besides the advantage of being able to handle gases containing multiple types of molecules.
- the degree of similarity between gases can be easily grasped. For example, if the feature amount of the target gas is represented by a vector, the degree of similarity between the gases can be easily grasped based on the distance between the feature vectors.
- Using the ⁇ set of contribution values ⁇ as the feature quantity has the advantage that it is possible to make the time constant change and the change in the mixture ratio robust against the change in the mixture ratio.
- the “robustness” here is a property that “when the measurement environment or the measurement target slightly changes, the obtained feature amount also slightly changes”.
- the characteristic amount will also gradually change. This property can be seen from the fact that in equation (4), the contribution value ⁇ k is proportional to ⁇ k representing the gas concentration, so that a small change in the concentration appears as a small change in the contribution value.
- the deriving unit 360 generates a prediction model that predicts the detection value of the odor sensor 10 using all the contribution values i i (that is, the feature vector ⁇ ) as parameters.
- the feature vector ⁇ can be calculated by performing parameter estimation on the feature vector ⁇ using the time-series data 14 that is observation data.
- An example of a prediction model in the case of using the rate constant ⁇ as the feature constant can be expressed by Expression (6).
- an example of a prediction model when the time constant ⁇ is used as the feature constant can be expressed by Expression (7).
- the deriving unit 360 described later estimates the parameter ⁇ ⁇ ⁇ by the maximum likelihood estimation using the predicted value obtained from the prediction model and the observation value obtained from the odor sensor 10 (that is, the time-series data 14).
- the maximum likelihood estimation for example, the least square method can be used.
- FIG. 4 is a diagram showing the results of Experimental Example 1 for confirming the differential characteristics of the feature amounts obtained from the output of the odor sensor 10.
- a set ⁇ ⁇ of contribution values is calculated from the time-series data 14 obtained by the odor sensor 10, and a first principal component analysis is performed.
- a feature amount vector having the feature amount and the second feature amount as elements was obtained.
- This figure is a graph in which the results of a plurality of combinations are plotted, with the horizontal axis representing the first feature value and the vertical axis representing the second feature value. The conditions of the gas to be measured and the reference gas are described in each plot in the form of (A, B).
- A is a value obtained by standardizing the ethanol concentration of the measurement target gas
- B is the type of the reference gas.
- the vapor of the aqueous ethanol solution was used as the gas to be measured.
- Air B is air
- water vapor B is H 2 O
- air was included in the measurement target gas and the reference gas even if not particularly described.
- the linearity of the output of the odor sensor 10 will be described.
- the concentration of each component in the gas is proportional to the concentration of each component. That is, the output of the odor sensor 10 has linearity with respect to the concentration of each component in the gas.
- FIG. 5 is a diagram showing the results of Experimental Example 2 for confirming the linearity of the characteristic amount obtained from the output of the odor sensor 10.
- Experimental Example 2 is an estimated concentration of acetic acid and ethanol calculated from a characteristic amount obtained by measuring the vapor of a mixed solution of vinegar and an aqueous ethanol solution in the same manner as in a second example described later.
- the horizontal axis is the estimated ethanol concentration calculated by the method described later from the derived feature amount.
- the vertical axis indicates the estimated acetic acid concentration calculated from the derived feature amount by a method described later.
- each plot in the graph shows a coefficient when the characteristic amount of the vapor of the mixed solution is represented as a linear sum of the characteristic amount of only ethanol and the characteristic amount of only acetic acid. That is, each plot shows the estimated value of the partial pressure of each component when the measurement target gas is a mixed gas of ethanol and acetic acid.
- the relative concentrations of ethanol (E) and vinegar (C) in the mixed solution are given in the form of (E, C).
- the mixed solution is a solution in which a 5% ethanol aqueous solution E, vinegar (about 5% acetic acid aqueous solution) C, and water H are mixed at a volume ratio of E: C: H.
- E + C + H 6.
- (6,0) shows the result of measuring only a 5% ethanol aqueous solution
- (2,1) shows the result of measuring a mixed solution obtained by mixing 2 mL of a 5% ethanol aqueous solution, 1 mL of vinegar, and 3 mL of water. Show. In this figure, the lattice is also shown.
- (E, C) is on a grid point at coordinates (E / 6, C / 6), it can be said that the density estimation is accurate.
- the characteristic amount of the mixed solution of vinegar and ethanol aqueous solution can be represented by a linear sum of the characteristic amount of vinegar only and the characteristic amount of ethanol only. It was also confirmed that the coefficient of the linear sum reflected the mixing ratio (concentration ratio) in the mixed solution.
- the measuring device 30 and the measuring method according to the present embodiment are not limited to Experimental Examples 1 and 2.
- the measuring device 30 further includes a first supply unit 310, a second supply unit 320, a supply control unit 350, and a derivation unit 360.
- the configuration of the measuring device 30 is not limited to the example of this drawing.
- the odor sensor 10 is contained in the container 101. Inside the container 101, one ends of a measurement target gas supply pipe 315 connected to the first supply means 310, a reference gas supply pipe 325 connected to the second supply means 320, and the exhaust pipe 102 are located. When the measurement target gas is supplied from the first supply unit 310 to the container 101 via the measurement target gas supply pipe 315, the odor sensor 10 is exposed to the measurement target gas. Further, when the reference gas is supplied from the second supply unit 320 to the container 101 via the reference gas supply pipe 325, the odor sensor 10 is exposed to the reference gas. The gas in the container 101 is discharged to the outside of the container 101 via the exhaust pipe 102.
- the first supply unit 310 includes an object 313 and a container 314 containing the object 313.
- the object 313 may be solid or liquid.
- the object 313 is, for example, a solution in which the first component 110 is a solute and the second component 120 is a solvent.
- a carrier gas supply pipe 312 is inserted into the container 314, and the carrier gas is supplied into the container 314 via the carrier gas supply pipe 312.
- the second component 120 may be mixed with the carrier gas in the container 314, or may be contained in the carrier gas and introduced into the container 314.
- the other end of the gas supply pipe 315 to be measured is located in the container 314, and the gas in the container 314 is supplied to the odor sensor 10 as the gas to be measured.
- a first pump 311 is provided in the middle of the gas supply pipe 315 for measurement, that is, between the first supply means 310 and the odor sensor 10.
- the first pump 311 switches the supply of the gas to be measured to the odor sensor 10.
- the first pump 311 may further adjust the supply amount of the gas to be measured to the odor sensor 10.
- the first measuring unit 381 measures the concentration of the second component 120 of one of the measurement target gas and the reference gas.
- the first measuring means 381 is a humidity sensor.
- the first measuring means 381 is provided in the middle of the measuring gas supply pipe 315, that is, between the first supplying means 310 and the odor sensor 10, and measures the concentration of the second component 120 of the measuring gas. I do.
- the first measurement unit 381 may be provided in the middle of the reference gas supply pipe 325, that is, between the second supply unit 320 and the odor sensor 10 to measure the concentration of the second component 120 of the reference gas.
- the concentration control unit 370 controls at least the concentration of the second component 120, which is the other of the measurement target gas and the reference gas, based on the measurement result of the first measurement unit 381. That is, when the first measuring unit 381 measures the concentration of the second component 120 of only one of the measurement target gas and the reference gas as in the present embodiment, the concentration control unit 370 determines the other of the measurement target gas and the reference gas. At least the concentration of the second component 120 is controlled. At this time, the concentration control means 370 performs control such that the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas are made close to each other.
- the first measuring means 381 measures the concentration of the second component 120 in the gas to be measured
- the concentration control means 370 controls the concentration of the second component 120 in the reference gas.
- the concentration of the second component 120 in the reference gas is controlled as described below.
- the second supply unit 320 includes a first adjustment gas supply unit 330 and a second adjustment gas supply unit 340.
- the second supply unit 320 supplies a mixed gas of the supply gas from the first adjustment gas supply unit 330 and the supply gas from the second adjustment gas supply unit 340 to the odor sensor 10 as a reference gas.
- the concentration control means 370 controls the concentration of the second component 120 of the reference gas by adjusting the mixing ratio of the supply gas from the first adjustment gas supply means 330 and the supply gas from the second adjustment gas supply means 340. It is possible.
- the first adjusting gas supply means 330 includes a second component absorbing material 333 for absorbing the second component 120 and a container 334 for accommodating the second component absorbing material 333. Further, a carrier gas supply pipe 332 is inserted into the container 334, and the carrier gas is supplied into the container 334 by the carrier gas supply pipe 332. In the first adjustment gas supply unit 330, at least a part of the second component 120 in the carrier gas is absorbed by the second component absorption material 333, and thus the second component 120 of the gas supplied from the first adjustment gas supply unit 330 is used. Is lower than the concentration of the second component 120 of the carrier gas supplied from the carrier gas supply pipe 332 to the container 334. When the second component 120 is water, the second component absorbent 333 is, for example, silica gel.
- the second adjustment gas supply means 340 includes a second component supply agent 343 for supplying the second component 120, and a container 344 for containing the second component supply agent 343. Further, a carrier gas supply pipe 342 is inserted into the container 344, and the carrier gas is supplied into the container 344 by the carrier gas supply pipe 342. Since the second component 120 is supplied to the carrier gas from the second component supply agent 343 in the second adjustment gas supply unit 340, the concentration of the second component 120 in the gas supplied from the second adjustment gas supply unit 340 is determined by the carrier. The concentration becomes higher than the concentration of the second component 120 of the carrier gas supplied from the gas supply pipe 342 to the container 344. When the second component 120 is water, the second component supply agent 343 is, for example, water. When the object 313 is a solution using the first component 110 as a solute and using the second component 120 as a solvent, the second component supply agent 343 is, for example, the solvent.
- the components and component ratios of the carrier gas introduced into each container of the first supply unit 310, the first adjustment gas supply unit 330, and the second adjustment gas supply unit 340 are the same.
- the reference gas supply pipe 325 is a pipe connecting the second supply means 320 and the container 101, and a reference gas is supplied from the second supply means 320 to the odor sensor 10 via the reference gas supply pipe 325.
- the reference gas supply pipe 325 branches into a reference gas supply pipe 325a and a reference gas supply pipe 325b on the second supply means 320 side.
- a first valve 371 is provided on the reference gas supply pipe 325a, and a second valve 372 is provided on the reference gas supply pipe 325b. The first valve 371 adjusts the amount of the supply gas from the first adjustment gas supply means 330 according to the first control value from the concentration control means 370.
- the second valve 372 adjusts the amount of the supply gas from the second adjustment gas supply means 340 according to the second control value from the concentration control means 370.
- the concentration control means 370 controls the first valve 371 and the second valve 372 to thereby adjust the mixing ratio of the reference gas to the supply gas from the first adjustment gas supply means 330 and the supply gas from the second adjustment gas supply means 340. To adjust. Then, the concentration control means 370 controls the concentration of the second component 120 of the reference gas.
- the concentration control unit 370 acquires the concentration of the second component 120 from the first measurement unit 381.
- the storage unit 390 accessible from the density control unit 370 stores first reference information indicating the relationship between the density of the second component 120, the first control value, and the second control value.
- the storage unit 390 may be provided in the measuring device 30 or may be provided outside the measuring device 30.
- the concentration control unit 370 controls the first valve 371 and the second valve 372 with the first control value and the second control value corresponding to the concentration acquired from the first measurement unit 381, respectively. By doing so, a reference gas having a concentration of the second component 120 close to the concentration measured by the first measuring unit 381 is supplied from the second supplying unit 320 to the odor sensor 10.
- the first reference information can be generated based on a previous experiment or calculation and stored in the storage unit 390.
- the first reference information is, for example, a mathematical expression or a table.
- This figure shows an example in which the concentration control unit 370 controls the concentration of the second component 120 of the reference gas as described above.
- the concentration control unit 370 may control the concentration of the second component 120 of the measurement target gas.
- the first supply means 310 includes at least one of the first adjustment gas supply means 330 and the second adjustment gas supply means 340, and the gas generated from the object 313 and the first adjustment gas supply means 330 and the second
- the concentration control unit 370 adjusts the mixing ratio with the gas supplied from at least one of the adjustment gas supply units 340.
- a carrier gas may be used as it is as the reference gas.
- a second pump 321 is provided in the middle of the reference gas supply pipe 325, that is, between the second supply means 320 and the odor sensor 10.
- the second pump 321 switches the supply of the reference gas to the odor sensor 10.
- the second pump 321 may further adjust the supply amount of the reference gas to the odor sensor 10.
- the supply control means 350 controls the first pump 311 and the second pump 321. Based on the control of the supply control unit 350, the supply timing of the measurement target gas to the odor sensor 10 and the supply timing of the reference gas are controlled. Specifically, the supply control unit 350 controls the first pump 311 and the second pump 321 to sequentially supply the measurement target gas and the reference gas to the odor sensor 10. For example, the supply control unit 350 alternately supplies the measurement target gas and the reference gas to the odor sensor 10 at a predetermined cycle.
- the deriving unit 360 may acquire a measurement result from the odor sensor 10 and acquire a signal indicating control timing of the first pump 311 and the second pump 321 from the supply control unit 350.
- the deriving unit 360 classifies the measurement result into first data, which is a result of detecting the measurement target gas, and second data, which is a result of detecting the reference gas, based on the acquired signal indicating the control timing. be able to.
- the configuration of the supply control means 350 is not limited to the example shown in FIG.
- a valve electromechanical valve
- the supply control unit 350 may control the supply of gas by controlling the opening and closing of these valves.
- a pump for sucking the target gas and the reference gas be separately provided in the container 101.
- the deriving unit 360 uses at least one of the first data that is the detection result of the gas to be measured by the odor sensor 10 and the second data that is the result of detection of the reference gas by the odor sensor 10 to include in the gas to be measured. Information about the first component 110 to be derived.
- the information on the first component 110 may be information indicating the type of the first component 110 or a label indicating the odor of the first component 110 (hereinafter, also referred to as an “odor label”). , Information on the concentration of the first component 110.
- an odor label indicates the name of the substance that generates the odor. Specifically, when the substance that generates the first component is an apple, the odor label “apple” is specified.
- the substance that emits an odor is not limited to foods such as apples, but may be any substance such as a machine, a building material, a medicine, a mold, a burn, or garbage.
- the odor label may represent an abstract concept such as a place or a situation where the odor is emitted.
- odor labels such as "Cafe Smell”, “Pool Smell”, “Blue Smell”, “Smell like Closet”, “Sweet Smell”, “Live Smell”, or “Smell on a Rainy Day” Conceivable.
- the information on the concentration of the first component 110 may be an absolute value of the concentration, a relative value with respect to some reference, or a standardized value.
- the configuration of the measuring device 30 according to the present embodiment is not limited to the example of FIG.
- the object 313 may not be stored in the container 314, and the measuring device 30 may not include the container 314.
- the end of the gas supply pipe 315 opposite to the odor sensor 10 side communicates with the external space, and the odor of the surrounding environment can be detected by the odor sensor 10.
- the first supply unit 310 is, for example, an intake port that inhales air in the environment to be measured, and the air in the environment to be measured is supplied to the odor sensor 10 as the gas to be measured.
- the measurement target gas does not need to further include a carrier gas.
- the carrier gas of the second supply unit 320 for example, air in an environment that is not easily affected by the measurement target, air collected in advance, or generated gas can be used.
- air collected in advance, or generated gas can be used as the carrier gas of the second supply unit 320 as the environment air that is not easily affected by the measurement target.
- An example of the generated gas is a mixed gas of pure nitrogen and oxygen.
- the concentration control unit 370 controls the humidity of the reference gas, for example, in order to remove the influence of humidity in the environment of the measurement target.
- the odor sensor 10 detects a measurement target gas including the first component 110 and the second component 120 and a component included in the reference gas including the second component 120.
- the concentration of the second component 120 of one of the measurement target gas and the reference gas is measured by the first measurement unit 381. Then, based on the measurement result of the first measurement unit 381, at least the concentration of the second component 120 of the other of the measurement target gas and the reference gas is controlled.
- This measurement method is realized by the measurement device 30.
- An operation example of the measuring device 30 will be described in detail below.
- the first measurement unit 381 measures the concentration of the second component 120 of the gas to be measured and the concentration control unit 370 controls the concentration of the second component 120 of the reference gas. Is not limited to this example.
- the supply control unit 350 controls the first pump 311 and the second pump 321 so that the measurement target gas and the reference gas are sequentially supplied to the same odor sensor 10. Is done.
- the gas to be measured is supplied from the first supply unit 310 to the odor sensor 10
- the concentration of the second component 120 of the gas to be measured is measured by the first measurement unit 381.
- the reference gas whose concentration of the second component 120 is controlled by the concentration control means 370 is supplied to the odor sensor 10.
- the measurement target gas and the reference gas in which the concentrations of the second components 120 are close to each other are supplied to the odor sensor 10.
- the odor sensor 10 By supplying the measurement target gas and the reference gas, the odor sensor 10 obtains, for example, the time-series data 14 as shown in FIG.
- the deriving unit 360 acquires the time series data 14 from the odor sensor 10 and acquires a signal indicating the drive timing of the first pump 311 and the second pump 321 from the supply control unit 350. Then, the deriving unit 360 divides the time-series data 14 into the first data and the second data based on the signal indicating the drive timing. Further, the deriving unit 360 converts at least one of the first data and the second data into a feature amount.
- the deriving means 360 can convert the first data and the second data into a set ⁇ ⁇ of contribution values, for example, by the method described above.
- the deriving means 360 may further perform principal component analysis to reduce the dimension of the feature amount.
- the deriving unit 360 derives information on the first component 110.
- the deriving means 360 derives the type or odor label of the first component 110.
- the deriving unit 360 derives information on the type of the first component 110 and the concentration of the first component 110.
- the deriving unit 360 uses the characteristic amount (hereinafter, also referred to as “the characteristic amount of the gas to be measured”) obtained from at least one of the first constant data and the second data and the odor information to measure.
- the odor label of the first component 110 in the gas is derived.
- the odor information is information in which the odor label is associated with the characteristic amount of the gas corresponding to the odor label, and is stored in advance in a storage device accessible from the deriving unit 360, for example.
- the odor information can be generated in advance from, for example, a result of a known measurement target gas.
- the deriving means 360 extracts odor information indicating a characteristic amount similar to the characteristic amount of the measurement target gas from the odor information. Further, the deriving unit 360 specifies the odor label associated with the extracted odor information as the odor label of the first component 110.
- the deriving unit 360 can calculate the similarity between the characteristic amount of the measurement target gas and the characteristic amount indicated in the odor information, and can extract the odor information based on the calculated similarity. For example, the deriving unit 360 may extract odor information associated with a feature amount having the highest similarity, or may extract one or more odors associated with a feature amount having a similarity equal to or greater than a predetermined threshold. Information may be extracted.
- the similarity is, for example, the distance between vectors.
- the deriving unit 360 derives information on the concentration of the first component 110 in the measurement target gas using the characteristic amount of the measurement target gas and the unit component information.
- the unit component information is information indicating a feature amount of each unit component, and is stored in advance in a storage device accessible from the deriving unit 360, for example.
- the unit component information is information in which an identifier of the unit component is associated with a feature amount of the unit component.
- the feature amount of a unit component is a feature amount calculated for time-series data obtained by sensing a gas containing only the unit component with the odor sensor 10.
- the characteristic amount of the measurement target gas and the characteristic amount of each unit component are represented by a vector expression
- the characteristic amount of the measurement target gas can be represented by a linear sum of the characteristic amounts of the unit components included in the measurement target gas. It is conceivable that.
- the characteristic amount of the measurement target gas can be expressed as follows.
- i i is a feature amount vector of the unit component i
- a i is a concentration of the unit component i in the measurement target gas.
- derivation means 360 using the unit component information, the feature amount vector .XI g of the target gas, decomposed into a linear sum of the feature quantity vector .XI i of one or more unit components.
- the deriving unit 360 specifies one or more unit components included in the measurement target gas as the first component 110.
- various existing methods can be used as a method of decomposing a certain vector into a linear sum of known vectors (here, each feature amount vector indicated in unit component information). .
- a least-squares method with a non-negative constraint represented by the following objective function can be used.
- a vector A (a 1 , a 2 ,..., A k ) obtained by decomposition into the above-described linear sum is obtained as information representing the concentration of each unit component.
- the mixing ratio of the unit components can be represented by the ratio of these concentrations.
- the concentration of the unit component is a value represented by (concentration of gas in air) ⁇ (concentration ratio of unit component in gas). That is, it means the relative concentration of the unit component with respect to the concentration of the gas in the air.
- the concentration of the unit component as used herein can be regarded as a ratio of the partial pressure of the unit component to the air pressure.
- the deriving unit 360 may use both the first data and the second data, or only one of them, in order to derive information on the first component 110. However, it is preferable to use both in order to increase the derivation accuracy.
- the deriving means 360 When the deriving means 360 derives information on the first component 110 using both the first data and the second data, the deriving means 360 obtains the feature vector u u obtained from the first data and the feature vector u u obtained from the second data.
- one vector obtained by connecting the feature vector .XI d, may feature quantity of a measurement target gas.
- XI c ( ⁇ u1 , u u2 ,..., ⁇ un , d d1 , ⁇ d2 ,..., D dn ) are calculated as characteristic quantities of the gas to be measured.
- equation (4) since the definition of ⁇ is common between the rising and falling edges, the same feature amount is ideally obtained from the rising and falling time series data 14 and the falling time series data 14. Should be obtained, and the difference between ⁇ u and d d is considered to be due to measurement errors. Therefore, by calculating the average of u u and d d , the influence of the measurement error can be reduced.
- the deriving unit 360 may further perform data processing for reducing the influence of the second component 120 on the derivation result using the first data and the second data.
- the supply control unit 350, the derivation unit 360, and the concentration control unit 370 of the measurement device 30 are hardware (eg, a hard-wired electronic circuit) that implements each of the supply control unit 350, the derivation unit 360, and the concentration control unit 370. And the like, or may be realized by a combination of hardware and software (eg, a combination of an electronic circuit and a program that controls the electronic circuit).
- a case where the supply control unit 350, the derivation unit 360, and the concentration control unit 370 of the measurement device 30 are realized by a combination of hardware and software will be further described.
- FIG. 6 is a diagram exemplifying a computer 1000 for implementing the measuring device 30.
- the computer 1000 is an arbitrary computer.
- the computer 1000 is a stationary computer such as a personal computer (PC) or a server machine.
- the computer 1000 is a portable computer such as a smartphone or a tablet terminal.
- the computer 1000 may be a dedicated computer designed to implement the measuring device 30, or may be a general-purpose computer.
- the computer 1000 has a bus 1020, a processor 1040, a memory 1060, a storage device storage 1080, an input / output interface 1100, and a network interface 1120.
- the bus 1020 is a data transmission path through which the processor 1040, the memory 1060, the storage device storage 1080, the input / output interface 1100, and the network interface 1120 mutually transmit and receive data.
- a method for connecting the processors 1040 and the like to each other is not limited to a bus connection.
- the processor 1040 is various processors such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an FPGA (Field-Programmable Gate Array).
- the memory 1060 is a main storage device realized using a RAM (Random Access Memory) or the like.
- the storage device storage 1080 is an auxiliary storage device implemented using a hard disk, a solid state drive (SSD), a memory card, or a read only memory (ROM).
- the input / output interface 1100 is an interface for connecting the computer 1000 and an input / output device.
- an input device such as a keyboard and an output device such as a display device are connected to the input / output interface 1100.
- the odor sensor 10 is connected to the input / output interface 1100.
- the odor sensor 10 does not necessarily need to be directly connected to the computer 1000.
- the odor sensor 10 may store the time-series data 14 in a storage device shared with the computer 1000.
- the network interface 1120 is an interface for connecting the computer 1000 to a communication network.
- the communication network is, for example, a LAN (Local Area Network) or a WAN (Wide Area Network).
- the method by which the network interface 1120 connects to the communication network may be a wireless connection or a wired connection.
- the storage 1080 stores program modules for realizing the supply control unit 350, the derivation unit 360, and the concentration control unit 370.
- the processor 1040 realizes a function corresponding to each program module by reading out each of these program modules into the memory 1060 and executing them.
- the concentration of the second component 120 in the reference gas and the concentration of the second component 120 in the measurement target gas are brought close to each other based on the measurement result of the first measuring unit 381, so that the second component 120 A desired component can be detected in a state in which the influence of is reduced.
- FIG. 7 is a diagram illustrating a configuration of the measuring device 30 according to the second embodiment.
- the measuring device 30 according to the present embodiment is the same as the measuring device 30 according to the first embodiment except for the points described below.
- the first measuring unit 381 measures the concentration of the second component 120 of only one of the measurement target gas and the reference gas.
- the first measurement unit 381 further measures the concentration of the second component 120 of the other of the measurement target gas and the reference gas.
- the concentration control unit 370 controls the concentration of the other second component 120 further based on the concentration of the other second component 120 measured by the first measurement unit 381. This will be described in detail below.
- the first measuring unit 381 is provided, for example, in the container 101, so that both the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas are provided. Can be measured. That is, the first measuring unit 381 measures the concentration of the second component 120 of the measurement target gas when the measurement target gas is supplied to the odor sensor 10, and determines the reference when the reference gas is supplied to the odor sensor 10. The concentration of the second component 120 of the gas is measured.
- the concentration control unit 370 acquires the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas from the first measurement unit 381. Then, the concentration control unit 370 performs feedback control so that the difference between the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas becomes small. That is, the concentration control unit 370 calculates a difference between the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas, and sets at least the concentration of the measurement target gas and the reference gas such that the difference becomes small. The concentration of one second component 120 is adjusted. This figure shows an example in which the concentration controller 370 adjusts the concentration of the second component 120 of the reference gas.
- the concentrations of the second components 120 of both the measurement target gas and the reference gas can be brought closer to each other with higher accuracy.
- FIG. 8 is a diagram illustrating a configuration of the measuring device 30 according to the third embodiment.
- the measuring device 30 according to the present embodiment is the same as the measuring device 30 according to the first embodiment except for the points described below.
- the measurement device 30 further includes a second measurement unit 382 that measures the concentration of the second component 120, which is the other of the measurement target gas and the reference gas. Then, the concentration control unit 370 controls the concentration of the other second component 120 based on the measurement result of the second measurement unit 382. This will be described in detail below.
- the measuring device 30 includes a second measuring unit 382 separately from the first measuring unit 381.
- the second measuring unit 382 measures the concentration of the second component 120 of a gas different from the gas measured by the first measuring unit 381 among the measurement target gas and the reference gas.
- the second measuring means 382 is a humidity sensor.
- the second measuring means 382 is provided in the middle of the reference gas supply pipe 325, that is, between the second supply means 320 and the odor sensor 10, and measures the concentration of the second component 120 of the reference gas.
- the concentration control unit 370 acquires the concentration of the second component 120 of the measurement target gas from the first measurement unit 381, and acquires the concentration of the second component 120 of the reference gas from the second measurement unit 382. Then, the concentration control unit 370 performs feedback control so that the difference between the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas becomes small. That is, the concentration control unit 370 calculates a difference between the concentration of the second component 120 of the measurement target gas and the concentration of the second component 120 of the reference gas, and sets at least the concentration of the measurement target gas and the reference gas such that the difference becomes small. The concentration of one second component 120 is adjusted. This figure shows an example in which the concentration controller 370 adjusts the concentration of the second component 120 of the reference gas.
- FIG. 9 is a diagram illustrating a configuration of a measuring device 30 according to the fourth embodiment.
- the measuring device 30 according to the present embodiment is the same as the measuring device 30 except that the concentration control unit 370 controls the concentration of the second component 120 of at least one of the measurement target gas and the reference gas based on the detection result of the odor sensor 10. This is the same as the measuring device 30 according to the first embodiment. This will be described in detail below.
- the concentration of the second component 120 also affects the detection result of the odor sensor 10. That is, the odor sensor 10 can be used for detecting the concentration of the second component 120, and the odor sensor 10 can also serve as the first measuring unit 381 according to the second embodiment. In the present embodiment, the measuring device 30 may not include the first measuring unit 381 separate from the odor sensor 10.
- the concentration control unit 370 can make the concentrations of the second component 120 of the measurement target gas and the reference gas close to each other based on the detection result of the odor sensor 10.
- Examples of processing performed by the density control unit 370 according to the present embodiment include the following first processing example to third processing example.
- the concentration control unit 370 derives information on the concentration of the second component 120 of the measurement target gas based on the first data of the odor sensor 10, and based on the second data of the odor sensor 10, Information on the concentration of the second component 120 is derived. Then, feedback control is performed in the same manner as described in the second embodiment.
- the concentration control unit 370 acquires the time series data 14 from the odor sensor 10 and acquires a signal indicating the drive timing of the first pump 311 and the second pump 321 from the supply control unit 350. Then, the density control unit 370 divides 140 into first data and second data based on a signal indicating the drive timing. Further, the density control means 370 converts the first data and the second data into a feature amount. The density control means 370 can convert the first data and the second data into a set ⁇ ⁇ of contribution values, for example, by the method described in the first embodiment. The density control unit 370 may further perform principal component analysis to reduce the dimension of the feature amount.
- the concentration control means 370 obtains information indicating the concentration of the second component 120 of the gas to be measured using the characteristic amount obtained from the first data and the second reference information.
- the information indicating the concentration of the second component 120 of the reference gas is obtained using the second reference information.
- the information on the density may be an absolute value of the density, a relative value with respect to some reference, or a standardized value.
- the second reference information is information indicating a relationship between the feature amount and information indicating the density of the second component 120, and is stored in advance in, for example, a storage unit 390 accessible from the density control unit 370.
- the second reference information is, for example, a mathematical expression or a table.
- the second reference information can be generated in advance from, for example, a detection result of the odor sensor 10 for a known gas.
- the concentration control unit 370 determines the concentration of the second component 120 of the measurement target gas based on the information indicating the derived concentration of the second component 120 of the measurement target gas and the information indicating the concentration of the second component 120 of the reference gas. The difference from the concentration of the second component 120 of the reference gas is calculated. Then, the concentration of at least one of the second components 120 of the measurement target gas and the reference gas is adjusted so that the calculated difference becomes small.
- This figure shows an example in which the concentration controller 370 adjusts the concentration of the second component 120 of the reference gas.
- the concentration control unit 370 controls at least one of the second and third odor sensors 10 so that the amplitude of the output waveform of the odor sensor 10 when the measurement target gas and the reference gas are alternately supplied to the odor sensor 10 is reduced. Control the concentration x of component 120.
- the “output waveform” indicates an output waveform of the odor sensor 10 when the measurement target gas and the reference gas are alternately supplied to the odor sensor 10. This will be described in detail below.
- the output waveform is, for example, a waveform as shown in FIG.
- the output waveform of the odor sensor 10 has a differential characteristic. Therefore, by controlling the concentration x and reducing the amplitude of the output waveform, it is possible to reduce the difference between the above-described first state and the second state in which molecules are adsorbed to the functional portion of the odor sensor 10. This corresponds to reducing the number of adsorbed molecules of the second component 120 in the first state and the second state to each other, and reducing the influence of the second component 120 on the output waveform. As a result, the difference in the presence or absence of adsorption of the first component 110 can be made apparent in the output of the odor sensor 10.
- the concentration of the gas controlled by the concentration control means 370 is indicated by x.
- the output waveform of the odor sensor 10 when the concentration of the gas controlled by the concentration control means 370 is x is represented by the following vector y (x).
- the density control unit 370 may control the density x so as to reduce the effective value (Root Mean Square Value) of the output waveform as an example of the amount representing the amplitude of the output waveform.
- the amount representing the amplitude of the output waveform is not limited to the above-described effective value, and any reference can be used.
- a Peak to peak value can be used as the amplitude of the output waveform.
- the amplitude according to Peak-to peak value of the output waveform of the odor sensor 10 uses a time t 1 the value of the waveform is maximized, the time t 2 to the smallest,
- t 1 is the end time of the region P1 in Fig. 3
- t 2 is expected to be the end time of the region P2.
- the concentration control unit 370 detects the information indicating the response waveform of the odor sensor 10 to the first component 110 and the odor sensor 10 when the measurement target gas and the reference gas are alternately supplied to the odor sensor 10. Based on the output waveform, the concentration x of the second component 120 of one of the measurement target gas and the reference gas is controlled. This will be described in detail below.
- information indicating a response waveform of the odor sensor 10 to the first component 110 is stored in the storage unit 390 in advance.
- the response waveform of the odor sensor 10 to the first component 110 is hereinafter also referred to as “first response waveform”.
- Information indicating the first response waveform can be obtained, for example, by supplying a gas consisting of only the first component 110 to the odor sensor 10 and purifying the odor sensor 10 by reducing the pressure of the atmosphere.
- the information indicating the first response waveform indicates the response of the odor sensor 10 to only the first component 110 calculated based on the detection result obtained by the odor sensor 10 for the known measurement target gas including the first component 110. It may be information.
- the measurement target gas includes a plurality of components as the first component 110
- information indicating the first response waveform of each component is stored in the storage unit 390 as yj described later.
- the concentration control unit 370 can also serve as the derivation unit 360, and may output a j as information on the concentration of the first component 110.
- the density control unit 370 can control the density x using, for example, a method using complementation (complementary method), a gradient method, or a binary search.
- FIG. 10 is a flowchart of the processing performed by the density control unit 370 in the second processing example and the third processing example.
- the concentration control unit 370 first determines x in the initial state (step S100).
- the concentration control means 370 controls, for example, the concentration of the second component 120 of the reference gas so that the gas is supplied at the determined x. Then, the time series data 14 is obtained from the odor sensor 10 as y (x) (step S200).
- the density control means 370 determines the next x based on the obtained y (x) (step S300). How to determine the next x will be described later in detail.
- the density control means 370 determines whether or not the end condition is satisfied (step S400). If it is determined in step S400 that the termination condition is satisfied, the density control unit 370 terminates the process and fixes x. Then, the supply of the measurement target gas and the reference gas to the odor sensor 10 is continued using the fixed x, and the measurement is performed. In this case, the deriving means 360 may derive the information on the first component 110 using only at least one of the first data and the second data obtained after x is fixed, or over a period before and after x is fixed. , The first component 110 may be derived.
- the measurement device 30 may terminate the measurement.
- the termination conditions include, for example, that a termination command operation has been performed on the measuring device 30 by the user, that the difference between the current x and the next x is less than a predetermined reference, and that the number of repetitions of step S200 is For example, exceeding a predetermined number of times.
- step S400 If it is determined in step S400 that the termination condition is not satisfied, the density control unit 370 performs step S200 again using the next x determined in step S300.
- Step S300 is performed using, for example, a method using interpolation, a gradient method, or a binary search.
- a method using interpolation for example, a method using interpolation, a gradient method, or a binary search.
- FIG. 11 is a diagram for describing an example of a method of performing step S300 by the complement method.
- x 1 and x 2 respectively as extremes example.
- the minimum achievable x in the measuring device 30 and x 1 can be a maximum value and x 2.
- x used in the third and subsequent loops is determined as follows. First, it arranged x in the loop until it ascending, x 1, ⁇ ⁇ ⁇ , and x n. Then, y (x 1 ),..., Y (x n ) are complemented.
- the interpolation may be linear interpolation, or may be performed by another interpolation method such as a spline.
- the function obtained by complementation is defined as y c (x).
- x at which F (y c (x)) is minimized is defined as the next x.
- the storage unit 390 previously stores information indicating a response waveform of the odor sensor 10 to the second component 120.
- the response waveform of the odor sensor 10 to the second component 120 is also referred to as a “second response waveform” below.
- Information indicating the second response waveform can be obtained, for example, by supplying a gas consisting of only the second component 120 to the odor sensor 10 and purifying the odor sensor 10 by reducing the pressure of the atmosphere.
- the information indicating the second response waveform indicates the response of the odor sensor 10 to only the second component 120 calculated based on the detection result obtained by the odor sensor 10 for the known measurement target gas including the second component 120. It may be information.
- density control means 370 in step S200 of first loop and second loop, to obtain a y (x) using the lower limit x l and the upper limit x h as x, respectively.
- the minimum achievable x in the measuring device 30 and x l can be a maximum value and x h.
- the lower limit xl and the upper limit xh are not limited to this example.
- step S400 to become equal to or less than the reference interval between x l and x h is predetermined, it may be termination condition in step S400.
- a measurement target gas containing a first component and a second component, and an odor sensor for detecting a component contained in a reference gas containing the second component;
- a first measuring means for measuring the concentration of the second component, one of the measurement target gas and the reference gas,
- a measuring apparatus comprising: a concentration control unit configured to control a concentration of the second component of at least the other of the measurement target gas and the reference gas based on a measurement result of the first measurement unit.
- the concentration control means further controls the concentration of the other second component based on a measurement result of the second measurement means. 3. 1. In the measuring device described in the above, The first measuring means further measures the concentration of the other second component, A measuring device for controlling the concentration of the other second component based on the concentration of the other second component measured by the first measuring device. 4.
- a measurement device comprising: a concentration control unit configured to control a concentration of the second component of at least one of the measurement target gas and the reference gas based on a detection result of the odor sensor. 5. 4. In the measuring device described in the above, The concentration control unit is configured to reduce a concentration of the at least one second component so that an amplitude of an output waveform of the odor sensor when the measurement target gas and the reference gas are alternately supplied to the odor sensor is reduced. Measuring device to control. 6. 4.
- the concentration control means is configured to determine a response waveform of the odor sensor to the first component, and an output waveform of the odor sensor when the measurement target gas and the reference gas are alternately supplied to the odor sensor.
- the density control unit determines the value of F by the equation (11).
- the measuring device for controlling the concentration x by using a complementary method, a gradient method, or a binary search 9. 1. From 8. In the measurement device according to any one of, The measurement device, wherein the measurement target gas and the reference gas each contain moisture as the second component. 10. 1. To 9. In the measurement device according to any one of, A measuring device for controlling the concentration of the second component of the reference gas; 11. 1. To 10. In the measurement device according to any one of, The measuring device, wherein the reference gas is a purge gas. 12. 1. To 11.
- the gas contained in the gas to be measured is used.
- a measuring device further comprising a deriving unit for deriving information on the first component. 13. 1. To 12.
- the partial pressure of the second component contained in the measurement target gas is P target and second
- the partial pressure of the second component contained in the reference gas is P reference and second
- the partial pressure of the second component is
- the saturated vapor pressure is P saturated, second
- the partial pressure of the first component contained in the gas to be measured is P target, the first
- the partial pressure of the first component contained in the reference gas is P Reference, first , when the saturated vapor pressure of the first component is P saturation, first ,
- a measurement target gas containing the first component and the second component, and a component contained in the reference gas containing the second component are detected by an odor sensor;
- One of the measurement target gas and the reference gas, the concentration of the second component is measured by a first measurement unit, A measurement method for controlling at least the concentration of the second component of the other of the measurement target gas and the reference gas based on a measurement result of the first measurement unit.
- 15. 14 In the measurement method described in The concentration of the second component is further measured by second measuring means, A measuring method for controlling the concentration of the other second component based on the measurement result of the second measuring means. 16.
- the first measuring means further measures the concentration of the other second component
- a measuring method for controlling the concentration of the other second component based on the concentration of the other second component measured by the first measuring means. 17.
- a measurement target gas containing the first component and the second component, and a component contained in the reference gas containing the second component are detected by an odor sensor;
- 18. 17 In the measurement method described in A measurement method for controlling the concentration of the at least one second component such that the amplitude of the output waveform of the odor sensor when the measurement target gas and the reference gas are alternately supplied to the odor sensor is reduced. 19.
- the measurement target gas is measured based on information indicating a response waveform of the odor sensor to the first component and an output waveform of the odor sensor when the measurement target gas and the reference gas are alternately supplied to the odor sensor. And a measuring method for controlling the concentration x of the second component of one of the reference gases. 20. 19.
- a vector indicating the response waveform is y j
- a vector indicating the output waveform with respect to density x is y (x)
- a j is a coefficient, F (y (x)) represented by Expression (11)
- the measurement method Furthermore, by using at least one of the first data that is the detection result of the gas to be measured by the odor sensor and the second data that is the detection result of the reference gas by the odor sensor, it is included in the gas to be measured.
- the partial pressure of the second component contained in the measurement target gas is P target and second
- the partial pressure of the second component contained in the reference gas is P reference and second
- the partial pressure of the second component is
- the saturated vapor pressure is P saturated
- the partial pressure of the first component contained in the gas to be measured is P target, the first
- the partial pressure of the first component contained in the reference gas is P Reference, first , when the saturated vapor pressure of the first component is P saturation, first ,
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
測定装置(30)は、匂いセンサ(10)、第1測定手段(381)、および濃度制御手段(370)を備える。匂いセンサ(10)は、測定対象ガスおよび参照ガスに含まれる成分を検出する。ここで、測定対象ガスは第1成分(110)および第2成分(120)を含み、参照ガスは第2成分(120)を含む。第1測定手段(381)は、測定対象ガスおよび参照ガスの一方の、第2成分(120)の濃度を測定する。濃度制御手段(370)は、第1測定手段(381)の測定結果に基づいて、少なくとも測定対象ガスおよび参照ガスの他方の、第2成分(120)の濃度を制御する。
Description
本発明は測定装置、および測定方法に関する。
ガスをセンサで測定することにより、ガスに関する情報を得る技術が開発されている。また、ガスの測定においては、目的成分以外の成分の影響を低減する技術が検討されている。
特許文献1には、水分およびにおい成分を含む気体試料をにおい成分捕集材に通過させて担持させた後、不活性ガスによりセンサの方に送り出す技術が記載されている。また、本文献には、におい成分捕集材に担持させる水分量を一定値とすることで、水分による影響を補正できることが記載されている。
特許文献2には、試料成分を含まないキャリアガスを、除湿手段を介してにおい検出手段に供給したときの検出出力と、試料成分を含むキャリアガスを、除湿手段を介してにおい検出手段に供給したときの検出出力との差分に基づいて、においの検出処理を実行することが記載されている。
特許文献3には、ガス濃度センサの検出値から湿度センサの検出値に応じて湿度相当分を差し引くことにより滅菌ガス濃度を求めることが記載されている。
特許文献4には、被測定ガス中の水蒸気量を調整する手段を備えたことを特徴とする、におい測定装置が開示されている。
しかし、特許文献1~4の技術では、精度良く特定の成分の影響を除外することはできなかった。たとえば、特許文献1の技術では、におい成分捕集材に担持させる水分量が必ずしも一定とならなかった。特許文献2の技術では、試料成分を含まないキャリアガスと試料成分を含むキャリアガスとの除湿度合いを精密に揃えられない場合があった。特許文献3の技術では、湿度値に対応するガス濃度センサの検出電流値が他の条件要素により変動する場合があった。そして、特許文献4の技術では、水分の影響が充分に除けない場合があった。
本発明は、上記の課題に鑑みてなされたものである。本発明の目的は、匂いセンサでの測定において、精度良く特定の成分の影響を除外する技術を提供することにある。
本発明の第1の測定装置は、
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を測定する第1測定手段と、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する濃度制御手段とを備える。
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を測定する第1測定手段と、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する濃度制御手段とを備える。
本発明の第2の測定装置は、
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する濃度制御手段とを備える。
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する濃度制御手段とを備える。
本発明の第1の測定方法は、
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を第1測定手段で測定し、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する。
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を第1測定手段で測定し、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する。
本発明の第2の測定方法は、
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する。
第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する。
本発明によれば、匂いセンサでの測定において、精度良く特定の成分の影響を除外する技術を提供できる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
なお、以下に示す説明において、特に説明する場合を除き、測定装置30の供給制御手段350、導出手段360、および濃度制御手段370は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。測定装置30の供給制御手段350、導出手段360、および濃度制御手段370は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。
(第1の実施形態)
図1は、第1の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。測定装置30は、匂いセンサ10、第1測定手段381、および濃度制御手段370を備える。匂いセンサ10は、測定対象ガスおよび参照ガスに含まれる成分を検出する。ここで、測定対象ガスは第1成分110および第2成分120を含み、参照ガスは第2成分120を含む。第1測定手段381は、測定対象ガスおよび参照ガスの一方の、第2成分120の濃度を測定する。濃度制御手段370は、第1測定手段381の測定結果に基づいて、少なくとも測定対象ガスおよび参照ガスの他方の、第2成分120の濃度を制御する。以下に詳しく説明する。
図1は、第1の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。測定装置30は、匂いセンサ10、第1測定手段381、および濃度制御手段370を備える。匂いセンサ10は、測定対象ガスおよび参照ガスに含まれる成分を検出する。ここで、測定対象ガスは第1成分110および第2成分120を含み、参照ガスは第2成分120を含む。第1測定手段381は、測定対象ガスおよび参照ガスの一方の、第2成分120の濃度を測定する。濃度制御手段370は、第1測定手段381の測定結果に基づいて、少なくとも測定対象ガスおよび参照ガスの他方の、第2成分120の濃度を制御する。以下に詳しく説明する。
本実施形態に係る測定装置30においては、参照ガスにおける第2成分120の濃度と測定対象ガスにおける第2成分120の濃度とを近づけることにより、測定結果における第2成分120の影響を低減できる。
測定対象ガスは特に限定されないが、たとえば、キャリアガス、第1成分110、および第2成分120を含むガスである。また、参照ガスは特に限定されないが、たとえば、キャリアガスおよび第2成分120を含むガスである。なお、測定対象ガスおよび参照ガスはそれぞれさらに他の成分を含んでも良い。ただし、測定対象ガスに含まれる全成分は、参照ガスに含まれる全成分に対して第1成分110を加えたものであることが好ましい。第1成分110は特に測定の対象とする成分である。キャリアガスはたとえば、窒素等の不活性ガスまたは空気である。ただし、第2成分120は、たとえば空気中の水分等、キャリアガスに含まれる成分であっても良い。
参照ガスはたとえばパージガスである。匂いセンサ10はパージガスにより浄化される。すなわち、パージガスは、匂いセンサ10にそのガスを供給することにより、匂いセンサ10の官能部(たとえば官能膜)に吸着する第1成分110の分子の数を低減させることができるガスである。測定対象ガスとパージガスとは、順次センサに供給される。なお、測定対象ガスとパージガスとがセンサに供給される順番は特に限定されない。すなわち、測定対象ガスに続けてパージガスが供給されても良いし、パージガスに続けて測定対象ガスが供給されても良い。
図2は、匂いセンサ10を例示する図である。匂いセンサ10は、分子が付着する受容体を有し、その受容体における分子の付着と離脱に応じて検出値が変化するセンサである。また、匂いセンサ10から出力される検出値の時系列データを、時系列データ14と呼ぶ。ここで、必要に応じ、時系列データ14をYとも表記し、時刻tの検出値をy(t)とも表記する。Yは、y(t)が列挙されたベクトルとなる。
例えば匂いセンサ10は、膜型表面応力(Membrane-type Surface Stress; MSS)センサである。MSS センサは、受容体として、分子が付着する官能膜を有しており、その官能膜に対する分子の付着と離脱によってその官能膜の支持部材に生じる応力が変化する。MSS センサは、この応力の変化に基づく検出値を出力する。なお、匂いセンサ10は、MSS センサには限定されず、受容体に対する分子の付着と離脱に応じて生じる、匂いセンサ10の部材の粘弾性や動力学特性(質量や慣性モーメントなど)に関連する物理量の変化に基づいて検出値を出力するものであればよく、カンチレバー式、膜型、光学式、ピエゾ、振動応答などの様々なタイプのセンサを採用することができる。
図3は、時系列データ14を例示する図である。時系列データ14は、匂いセンサ10が出力した検出値を、匂いセンサ10から出力された時刻が早い順に並べた時系列のデータである。ただし、時系列データ14は、匂いセンサ10から得られた検出値の時系列データに対して、所定の前処理が加えられたものであってもよい。前処理としては、例えば、時系列のデータからノイズ成分を除去するフィルタリングなどを採用することができる。
時系列データ14は、匂いセンサ10を測定対象ガスに曝す操作と、匂いセンサ10から測定対象ガスを取り除く操作とで得られる。具体的には時系列データ14は、同一の匂いセンサ10に測定対象ガスと参照ガスとを順次供給することにより得られる。
匂いセンサ10を測定対象のガスに曝す操作は、測定対象ガスを匂いセンサ10に供給する操作に対応する。一方、匂いセンサ10から測定対象ガスを取り除く操作は、参照ガスを匂いセンサ10に供給する操作に対応する。本図の例において、測定対象ガスを匂いセンサ10に供給することで期間P1のデータが得られ、参照ガスを匂いセンサ10に供給する操作により期間P2のデータが得られる。なお、匂いセンサ10による測定対象ガスの測定においては、匂いセンサ10に対する測定対象ガスの供給と参照ガスの供給とを繰り返し行い、複数の時系列データ14を得ても良い。また、初めて測定対象ガスを匂いセンサ10に供給する前にも参照ガスを匂いセンサ10に供給することが好ましい。
このように得られる時系列データ14の波形は、匂いセンサ10の官能部に測定対象ガス中の分子が定常状態(平衡状態)まで吸着した第1状態と、匂いセンサ10の官能部に参照ガス中の分子が定常状態(平衡状態)まで吸着した第2状態とに依存する。具体的には、第1状態は、期間P1のうち定常部分の状態であり、第2状態は期間P2のうち定常部分の状態である。そして、期間P1の冒頭にある立ち上がり部分は第2状態から第1状態への移行部分であり、期間P2の冒頭にある立ち下がり部分は第1状態から第2状態への移行部分である。したがって、立ち上がり部分および立ち下がり部分の形状は、第1状態と第2状態との差によって定まる。すなわち匂いセンサ10の出力は差動性を有する。
このように、匂いセンサ10の出力が差動性を有することから、第1成分110および第2成分120を含む測定対象ガスと、第2成分120を含む参照ガスとを、同一のセンサに順次供給することにより、匂いセンサ10の測定結果における第2成分120の影響を、特別な処理を行わずに低減することができる。なお、第1成分110は、参照ガスにほとんど含まれないか、含まれたとしても、参照ガスに含まれる第1成分110の分圧は測定対象ガスに含まれる第1成分110の分圧に比して少量であることが好ましい。具体的には、参照ガスに含まれる第1成分110の分圧は、測定対象ガスに含まれる第1成分110の分圧の10%以下であることが好ましい。そうすることで、匂いセンサ10が差動性を有する場合においても、匂いセンサ10の測定結果における第1成分110の影響は低減されることがない。すなわち、測定対象ガスにおける第1成分110の分圧と参照ガスにおける第1成分110の分圧との差が匂いセンサ10の測定結果における第1成分110の相対的な影響の大きさを表している。
匂いセンサ10の出力はガス中の各成分の濃度に対して差動性を有することから、特に測定対象ガスにおける第2成分120の濃度と、参照ガスにおける第2成分120の濃度とが互いに近いことが好ましい。そうすることで、匂いセンサ10の測定結果における第2成分120の影響をより低減することができる。すなわち、測定対象ガスにおける第2成分120の分圧と参照ガスにおける第2成分120の分圧との差の絶対値が、匂いセンサ10の測定結果における第2成分120の影響の相対的な大きさを表している。
つまり、匂いセンサ10の測定結果における第1成分110の影響が、第2成分120の影響に比して、十分に大きいことが好ましい。具体的には、測定対象ガスに含まれる第2成分120の分圧P対象,第2と参照ガスに含まれる第2成分120の分圧P参照,第2との差の絶対値を第2成分120の飽和蒸気圧P飽和,第2で除した値が、測定対象ガスに含まれる第1成分110の分圧P対象,第1と参照ガスに含まれる第1成分110の分圧P参照,第1との差を第1成分110の飽和蒸気圧P飽和,第1で除した値に比して、小さいことが好ましい。すなわち、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つことが好ましい。
例えば、測定対象ガスに第1成分110が飽和蒸気圧の25%以上含まれることが想定され、参照ガスには第1成分110が含まれない場合、|P対象,第2-P参照,第2|/P飽和,第2<0.25が成り立つことが好ましい。すなわち、この場合、参照ガスに含まれる第2成分120は、測定対象ガスに含まれる第2成分120に比して、飽和蒸気圧に対する百分率で±25ポイントに収まっていることが好ましい。
なお、測定対象ガスおよび参照ガスには、複数の成分が第2成分120として含まれてもよい。この場合、第2成分120として含まれる各成分について、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つことが好ましい。
第2成分120は特に限定されないが、測定対象ガスおよび参照ガスはそれぞれ、たとえば水分およびアルコールの少なくともいずれかを第2成分120として含むことができる。また、第1成分110は特に限定されない。測定対象ガスは、第1成分110として複数の成分を含んでもよい。
たとえば測定対象ガスおよび参照ガスがそれぞれ第2成分120として水分を含む場合、その影響を低減することで、測定時の湿気の影響を低減することができる。また、たとえば酒の蒸気を匂いセンサ10で測定し、解析する際に、水分およびアルコールの影響を低減することにより、熟成香や果実香等を精度よく検出できる。
匂いセンサ10の検出結果から、ガスの成分を解析する処理においては、たとえば、時系列データ14に基づく特徴量を用いることができる。特徴量はたとえば、時系列データ14、時系列データ14を微分したデータ、または寄与値の集合Ξが挙げられる。
特徴量の一例である寄与値の集合Ξについて以下に説明する。集合Ξの説明において、匂いセンサ10に供給するガスを対象ガスと呼ぶ。ここで、説明のため、匂いセンサ10によるセンシングを以下のようにモデル化する。
(1)匂いセンサ10は、K種類の分子を含む対象ガスに曝されている。
(2)対象ガスにおける各分子kの濃度は一定のρkである。
(3)匂いセンサ10には、合計N個の分子が吸着可能である。
(4)時刻tにおいて匂いセンサ10に付着している分子kの数はnk(t)個である。
(1)匂いセンサ10は、K種類の分子を含む対象ガスに曝されている。
(2)対象ガスにおける各分子kの濃度は一定のρkである。
(3)匂いセンサ10には、合計N個の分子が吸着可能である。
(4)時刻tにおいて匂いセンサ10に付着している分子kの数はnk(t)個である。
式(1)の右辺の第1項と第2項はそれぞれ、単位時間当たりの分子kの増加量(新たに匂いセンサ10に付着する分子kの数)と減少量(匂いセンサ10から離脱する分子kの数)を表している。また、αkとβkはそれぞれ、分子kが匂いセンサ10に付着する速度を表す速度定数と、分子kが匂いセンサ10から離脱する速度を表す速度定数である。
匂いセンサ10の検出値は、対象ガスに含まれる分子によって匂いセンサ10に働く応力などの粘弾性や動力学特性に関連する物理量によって定まる。そして、複数の分子による匂いセンサ10の物理量は、個々の分子による物理量への寄与の線形和で表すことができると考えられる。ただし、分子による物理量への寄与は、分子の種類によって異なると考えられる。すなわち、匂いセンサ10の検出値に対する分子の寄与は、その分子の種類によって異なると言える。
そこで、匂いセンサ10の検出値y(t)は、以下のように定式化できる。
ここで、γkとξkはいずれも、匂いセンサ10の検出値に対する分子kの寄与を表す。なお、「立ち上がり」は上記した期間P1に相当し、「立ち下がり」は上記した期間P2に相当する。
ここで、対象ガスをセンシングした匂いセンサ10から得た時系列データ14を上述の式(4)のように分解できれば、対象ガスに含まれる分子の種類や、各種類の分子が対象ガスに含まれる割合を把握することができる。すなわち、式(4)に示す分解によって、対象ガスの特徴を表すデータ(すなわち、対象ガスの特徴量)が得られる。
そこで匂いセンサ10によって出力された時系列データ14は、特徴定数の集合Θ={θ1,θ2,...,θm}を用いて、以下の式(5)に示すように分解される。なお、特徴定数の集合Θは、予め定められていてもよいし、測定装置30によって生成されてもよい。
ここで、ξiは、匂いセンサ10の検出値に対する特徴定数θiの寄与を表す寄与値である。
このような分解により、時系列データ14に対する各特徴定数θiの寄与を表す寄与値ξiが算出される。寄与値ξiの集合Ξを、対象ガスの特徴を表す特徴量とすることができる。寄与値ξiの集合は、例えば、ξiを列挙した特徴ベクトルΞ=(ξ1,ξ2,...,ξm)で表される。ただし、対象ガスの特徴量は、必ずベクトルとして表現しなければならないわけではない。
ここで、特徴定数θとしては、前述した速度定数βや、速度定数の逆数である時定数τを採用することができる。θとしてβとτを使う場合それぞれについて、式(5)は、以下のように表すことができる。
前述したように、匂いセンサ10の検出値に対する分子の寄与は、その分子の種類によって異なると考えられるため、上述した寄与値の集合Ξは、対象ガスに含まれる分子の種類やその混合比率に応じて異なるものになると考えられる。よって、寄与値の集合Ξは、複数種類の分子が混合されているガスを互いに区別することができる情報、すなわちガスの特徴量として利用することができる。また、時系列データ14から集合Ξへの変換は線形変換であるため、集合Ξにおいても時系列データ14について説明した差動性が保たれる。
寄与値の集合Ξを対象ガスの特徴量として利用することには、複数種類の分子を含むガスを扱えるという利点以外の利点もある。まず、ガス同士の類似度合いを容易に把握することができるという利点がある。例えば、対象ガスの特徴量をベクトルで表現すれば、ガス同士の類似度合いを特徴ベクトル間の距離に基づいて容易に把握することができる。
また、寄与値の集合Ξを特徴量とすることには、混合比変化に対して時定数変化や混合比変化についてロバストにすることができるという利点がある。ここでいう「ロバスト性」とは、「測定環境や測定対象が少しだけ変化したとき、得られる特徴量も少しだけ変化する」という性質である。
混合比変化についてロバストであれば、例えば、2種類のガスを混合させた混合ガスについて、ガスの混合比を徐々に変化させていくと、特徴量も徐々に変化していくことになる。この性質は、式(4)において、寄与値ξkがガスの濃度を表すρkに比例しているため、濃度の小さな変化が寄与値の小さな変化として現れるということからわかる。
各特徴定数θiの寄与値ξiの算出方法の例を説明する。たとえば導出手段360は、全ての寄与値ξi(すなわち、特徴ベクトルΞ)をパラメータとして、匂いセンサ10の検出値を予測する予測モデルを生成する。この予測モデル生成する際、観測データである時系列データ14を利用して特徴ベクトルΞについてパラメータ推定を行うことにより、特徴ベクトルΞを算出することができる。特徴定数として速度定数βを使う場合の予測モデルの一例は、式(6)で表すことができる。また、特徴定数として時定数τを使う場合の予測モデルの一例は、式(7)で表すことができる。
たとえば後述する導出手段360は、予測モデルから得られる予測値と、匂いセンサ10から得られた観測値(すなわち、時系列データ14)とを用いた最尤推定により、パラメータΞを推定する。最尤推定には、例えば最小二乗法を用いることができる。
図4は、匂いセンサ10の出力から得られる特徴量の差動性を確認するための実験例1の結果を示す図である。本実験例では測定対象ガスおよび参照ガスの複数の組み合わせのそれぞれについて、匂いセンサ10で得られた時系列データ14から寄与値の集合Ξを算出し、さらに主成分分析を行って、第1の特徴量および第2の特徴量を要素とする特徴量ベクトルを得た。本図は、横軸を第1の特徴量とし、縦軸を第2の特徴量として、複数の組み合わせの結果をプロットしたグラフである。測定対象ガスおよび参照ガスの条件は各プロットに(A,B)の形式で記した。ここで、Aは測定対象ガスのエタノール濃度を規格化した値であり、Bは参照ガスの種類である。測定対象ガスとしてはエタノール水溶液の蒸気を用いた。また、参照ガスとしては空気(Bはair)または水蒸気(BはH2O)を用いた。なお、特に記載しない場合にも、測定対象ガスおよび参照ガスには空気が含まれた。
本図のグラフに示した3つのベクトルF1、F2およびF3の間には、F2=F1-F3の関係があることが分かる。すなわち、特徴量ベクトルをf(測定対象ガスの成分,参照ガスの成分)と書き表すとすると、f(エタノール+水,水)=f(エタノール+水,空気)-f(水,空気)という関係が成り立つことが確かめられた。すなわち、匂いセンサ10の出力から得られる特徴量が差動性を有することが確かめられた。
次に、匂いセンサ10の出力の線形性について説明する。第1の状態および第2の状態のそれぞれにおいて、匂いセンサ10の吸着サイトの数が、吸着分子の数に対して充分に大きいとき、各成分の吸着分子の数は他の成分の濃度等に影響されない。したがって、匂いセンサ10の出力は各成分の濃度に対し線形である。ここで、ガス中の各成分の濃度はそれぞれ各成分の濃度に比例する。すなわち、匂いセンサ10の出力はガス中の各成分の濃度に対して線形性を有する。
図5は、匂いセンサ10の出力から得られる特徴量の線形性を確認するための実験例2の結果を示す図である。実験例2では、食酢とエタノール水溶液の混合溶液の蒸気を測定して得た特徴量から後述の第2例と同様の方法で算出された、酢酸およびエタノールの推定濃度である。本図のグラフにおいて、横軸は、導出された特徴量から後述の方法で算出された推定エタノール濃度である。また、縦軸は、導出された特徴量から後述の方法で算出された推定酢酸濃度である。グラフ中の各プロットは、混合溶液の蒸気の特徴量を、エタノールのみの特徴量と酢酸のみの特徴量との線形和として表した場合の係数を示している。すなわち、各プロットは測定対象ガスがエタノールと酢酸の混合ガスであるとした場合の各成分の分圧の推定値を示している。なお、各プロットには、混合溶液におけるエタノール(E)と食酢(C)の相対的な濃度を(E,C)の形式で付した。具体的には混合溶液は、5%のエタノール水溶液Eと、食酢(約5%の酢酸水溶液)Cと、水Hとを、体積比E:C:Hで混合した溶液である。ただしE+C+H=6とした。たとえば、(6,0)は5%エタノール水溶液のみを測定した結果を示し、(2,1)は5%エタノール水溶液2mLと、食酢1mLと、水3mLとを混ぜた混合溶液を測定した結果を示す。また、本図には格子を合わせて示した。(E,C)が、座標(E/6,C/6)にある格子点上にある場合に、濃度推定が精確であるといえる。
本実験例では、各プロットが、本図に合わせて示した格子点に近いことが確かめられた。したがって、ある程度の誤差が含まれているものの、濃度の推定ができたと言える。
以上の結果より、食酢とエタノール水溶液の混合溶液の特徴量が、食酢のみの特徴量と、エタノールのみの特徴量の線形和で表せることが確かめられた。また、線形和の係数が混合溶液における混合比(濃度比)を反映していることが確かめられた。
なお、本実施形態に係る測定装置30および測定方法は実験例1および2に何ら限定されるものではない。
図1を参照し、本実施形態に係る測定装置30の構成について以下に詳しく説明する。本図の例において、測定装置30は第1供給手段310、第2供給手段320、供給制御手段350、および導出手段360をさらに備える。ただし、測定装置30の構成は本図の例に限定されない。
匂いセンサ10は、容器101に納められている。容器101の内部には第1供給手段310に繋がる測定対象ガス供給管315、および第2供給手段320に繋がる参照ガス供給管325、および排気管102の各一端が位置する。容器101に測定対象ガス供給管315を介して第1供給手段310から測定対象ガスが供給されることにより、匂いセンサ10が測定対象ガスに曝される。また、容器101に参照ガス供給管325を介して第2供給手段320から参照ガスが供給されることにより、匂いセンサ10が参照ガスに曝される。また、容器101内のガスは排気管102を介して容器101の外部に排出される。
第1供給手段310は、対象物313、および対象物313を納めた容器314を備える。対象物313は固体でも良いし液体でも良い。対象物313が液体である場合、対象物313はたとえば第1成分110を溶質とし、第2成分120を溶媒とする溶液である。また、容器314にはキャリアガス供給管312が挿入されており、キャリアガス供給管312を介して容器314内にキャリアガスが供給される。容器314内においてキャリアガスに少なくとも第1成分110が混合されることにより、第1供給手段310は測定対象ガスを発生させる。第2成分120は容器314内でキャリアガスに混合されても良いし、キャリアガスに含まれて容器314内に導入されても良い。容器314には測定対象ガス供給管315の他端が位置しており、容器314内のガスは測定対象ガスとして匂いセンサ10に供給される。
測定対象ガス供給管315の途中、すなわち第1供給手段310と匂いセンサ10との間には第1ポンプ311が設けられている。第1ポンプ311は匂いセンサ10への測定対象ガスの供給の有無を切り替える。第1ポンプ311はさらに匂いセンサ10への測定対象ガスの供給量を調整しても良い。
上記した通り第1測定手段381は、測定対象ガスおよび参照ガスの一方の、第2成分120の濃度を測定する。たとえば第2成分120が水分である場合、第1測定手段381は湿度センサである。本図の例において、第1測定手段381は測定対象ガス供給管315の途中、すなわち第1供給手段310と匂いセンサ10との間に設けられ、測定対象ガスの第2成分120の濃度を測定する。ただし、第1測定手段381は参照ガス供給管325の途中、すなわち第2供給手段320と匂いセンサ10との間に設けられ、参照ガスの第2成分120の濃度を測定してもよい。
上記した通り濃度制御手段370は、第1測定手段381の測定結果に基づいて、少なくとも測定対象ガスおよび参照ガスの他方の、第2成分120の濃度を制御する。すなわち、本実施形態のように第1測定手段381が測定対象ガスおよび参照ガスの一方のみの第2成分120の濃度を測定する場合、濃度制御手段370は測定対象ガスおよび参照ガスのうちの他方の第2成分120の濃度を少なくとも制御する。このとき、濃度制御手段370は測定対象ガスの第2成分120の濃度と参照ガスの第2成分120の濃度とを近づけるよう、制御を行う。
本図の例において、第1測定手段381は測定対象ガスにおける第2成分120の濃度を測定し、濃度制御手段370は、参照ガスにおける第2成分120の濃度を制御する。具体的には、たとえば以下の様にして、参照ガスにおける第2成分120の濃度が制御される。第2供給手段320は、第1調整ガス供給手段330および第2調整ガス供給手段340を含む。第2供給手段320は、第1調整ガス供給手段330からの供給ガスと第2調整ガス供給手段340からの供給ガスとの混合ガスを、参照ガスとして匂いセンサ10に供給する。ここで、第1調整ガス供給手段330からの供給ガスにおける第2成分120の濃度は第2調整ガス供給手段340からの供給ガスにおける第2成分120の濃度よりも低い。したがって、濃度制御手段370は第1調整ガス供給手段330からの供給ガスと第2調整ガス供給手段340からの供給ガスの混合比を調整することにより、参照ガスの第2成分120の濃度を制御可能である。
第1調整ガス供給手段330は第2成分120を吸収する第2成分吸収材333、および第2成分吸収材333を収容する容器334を備える。また、容器334にはキャリアガス供給管332が挿入されており、キャリアガス供給管332によりキャリアガスが容器334内に供給される。第1調整ガス供給手段330ではキャリアガス中の少なくとも一部の第2成分120が第2成分吸収材333に吸収されるため、第1調整ガス供給手段330から供給されるガスの第2成分120の濃度は、キャリアガス供給管332から容器334に供給されるキャリアガスの第2成分120の濃度よりも低くなる。第2成分120が水分である場合、第2成分吸収材333はたとえばシリカゲルである。
第2調整ガス供給手段340は第2成分120を供給する第2成分供給剤343、および第2成分供給剤343を収容する容器344を備える。また、容器344にはキャリアガス供給管342が挿入されており、キャリアガス供給管342によりキャリアガスが容器344内に供給される。第2調整ガス供給手段340では第2成分供給剤343からキャリアガスに第2成分120が供給されるため、第2調整ガス供給手段340から供給されるガスの第2成分120の濃度は、キャリアガス供給管342から容器344に供給されるキャリアガスの第2成分120の濃度よりも高くなる。第2成分120が水分である場合、第2成分供給剤343はたとえば水である。対象物313が、第1成分110を溶質とし、第2成分120を溶媒とする溶液である場合、第2成分供給剤343はたとえばその溶媒である。
なお、第1供給手段310、第1調整ガス供給手段330および第2調整ガス供給手段340の各容器に導入されるキャリアガスの成分および成分比は互いに同じであることが好ましい。
参照ガス供給管325は第2供給手段320と容器101とを繋ぐ配管であり、参照ガス供給管325を介して第2供給手段320から匂いセンサ10に参照ガスが供給される。参照ガス供給管325は第2供給手段320側で参照ガス供給管325aと参照ガス供給管325bとに分岐している。そして、参照ガス供給管325aには第1バルブ371が設けられ、参照ガス供給管325bには第2バルブ372が設けられている。第1バルブ371は濃度制御手段370からの第1制御値に応じて第1調整ガス供給手段330からの供給ガスの量を調整する。第2バルブ372は濃度制御手段370からの第2制御値に応じて第2調整ガス供給手段340からの供給ガスの量を調整する。濃度制御手段370は第1バルブ371と第2バルブ372を制御することにより、参照ガスにおける第1調整ガス供給手段330からの供給ガスと第2調整ガス供給手段340からの供給ガスとの混合比を調整する。そうして、濃度制御手段370は参照ガスの第2成分120の濃度を制御する。
濃度制御手段370が行う処理を具体的に説明する。濃度制御手段370は、第1測定手段381から第2成分120の濃度を取得する。また、濃度制御手段370からアクセス可能な記憶手段390には第2成分120の濃度と、第1制御値と、第2制御値との関係を示す第1参照情報が予め保持されている。ここで、記憶手段390は測定装置30に備えられていても良いし、測定装置30の外部に設けられていても良い。濃度制御手段370は、第1測定手段381から取得した濃度に対応する第1制御値および第2制御値で第1バルブ371および第2バルブ372をそれぞれ制御する。そうすることで、第1測定手段381で測定された濃度に近い第2成分120の濃度を有する参照ガスが第2供給手段320から匂いセンサ10に供給される。第1参照情報は、事前の実験や計算に基づき生成し、記憶手段390に保持させておくことができる。第1参照情報はたとえば、数式、またはテーブルである。
本図では上記のように、濃度制御手段370が、参照ガスの第2成分120の濃度を制御する例を示している。濃度制御手段370が参照ガスの第2成分120の濃度を制御することで、測定対象ガスの状態を変えることなく測定を行うことができる。ただし、第1測定手段381が参照ガスの第2成分120の濃度を測定する場合、濃度制御手段370は測定対象ガスの第2成分120の濃度を制御しても良い。その場合、たとえば第1供給手段310が第1調整ガス供給手段330および第2調整ガス供給手段340の少なくとも一方を備え、対象物313から発生するガスと、第1調整ガス供給手段330および第2調整ガス供給手段340の少なくとも一方から供給されるガスとの混合比を濃度制御手段370が調整する。この場合、参照ガスとしてはたとえばキャリアガスをそのまま用いても良い。
参照ガス供給管325の途中、すなわち第2供給手段320と匂いセンサ10との間には第2ポンプ321が設けられている。第2ポンプ321は匂いセンサ10への参照ガスの供給の有無を切り替える。第2ポンプ321はさらに、匂いセンサ10への参照ガスの供給量を調整しても良い。
供給制御手段350は、第1ポンプ311および第2ポンプ321を制御する。供給制御手段350の制御に基づき、匂いセンサ10への測定対象ガスの供給タイミングと参照ガスの供給タイミングとが制御される。具体的には供給制御手段350は、匂いセンサ10に測定対象ガスおよび参照ガスを順に供給するよう第1ポンプ311および第2ポンプ321を制御する。たとえば供給制御手段350は、予め定められた周期で匂いセンサ10に測定対象ガスと参照ガスとを交互に供給する。導出手段360は、匂いセンサ10から測定結果を取得すると共に、供給制御手段350から第1ポンプ311および第2ポンプ321の制御タイミングを示す信号を取得してもよい。その場合、導出手段360は、取得した制御タイミングを示す信号に基づき、測定結果を、測定対象ガスを検出した結果である第1データと参照ガスを検出した結果である第2データとに分類することができる。
なお、供給制御手段350の構成は本図の例に限定されない。たとえば、第1ポンプ311と第2ポンプ321の代わりにバルブ(電磁弁)が設けられており、供給制御手段350はこれらのバルブの開閉を制御することでガスの供給を制御しても良い。この場合、容器101に対象ガスおよび参照ガスを吸引するためのポンプが別途設けられていることが好ましい。
導出手段360は、匂いセンサ10による測定対象ガスの検出結果である第1データと、匂いセンサ10による参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、測定対象ガスに含まれる第1成分110に関する情報を導出する。
第1成分110に関する情報は、第1成分110の種類を示す情報であっても良いし、第1成分110の匂いを表すラベル(以下、「匂いラベル」とも呼ぶ。)であってもよいし、第1成分110の濃度に関する情報であっても良い。
たとえば匂いラベルは、その匂いを発生させる物質の名称を示す。具体的には、第1成分を発生させる物質がリンゴである場合、「リンゴ」という匂いラベルが特定される。匂いを発生させる物質は、リンゴの様な食品には限定されず、機械、建材、薬品、カビ、焦げ、又は生ゴミなどといった任意の物とすることができる。
その他にも例えば、匂いラベルは、その匂いがする場所や状況などといった抽象的な概念を表すものであってもよい。例えば、「カフェの匂い」、「プールの匂い」、「青臭い匂い」、「押し入れのような匂い」、「甘い匂い」、「生臭い匂い」、又は「雨の日の匂い」などといった匂いラベルが考えられる。
一方、第1成分110の濃度に関する情報は、濃度の絶対値であってもよいし、何らかの基準に対する相対値であってもよいし、規格化された値であってもよい。
導出手段360で行われる処理については詳しく後述する。
なお、本実施形態に係る測定装置30の構成は図1の例に限定されない。たとえば、対象物313が容器314に格納されていなくても良く、測定装置30は容器314を備えていなくても良い。その場合、たとえば測定対象ガス供給管315の匂いセンサ10側とは反対側の端部は外部空間に通じており、周囲の環境の匂いを匂いセンサ10で検出することができる。具体的には、第1供給手段310はたとえば測定対象の環境の空気を吸入する吸入口であり、測定対象の環境の空気が測定対象ガスとして匂いセンサ10に供給される。この場合、測定対象ガスはキャリアガスをさらに含む必要は無い。また、第2供給手段320のキャリアガスとしてはたとえば、測定対象の影響を受けにくい環境の空気、予め収集された空気、または生成されたガスを用いることができる。たとえば、測定対象が屋内の煙草の匂いである場合、測定対象の影響を受けにくい環境の空気として屋外の空気を第2供給手段320のキャリアガスとして用いることができる。また、生成されたガスの例としては、純粋な窒素と酸素との混合ガスが挙げられる。その上で、濃度制御手段370は、たとえば測定対象の環境における湿度の影響を取り除くために、参照ガスの湿度を制御する。
本実施形態に係る測定方法について以下に説明する。本測定方法では、第1成分110と第2成分120とを含む測定対象ガス、および第2成分120を含む参照ガスに含まれる成分を匂いセンサ10で検出する。また、測定対象ガスおよび参照ガスの一方の、第2成分120の濃度を第1測定手段381で測定する。そして、第1測定手段381の測定結果に基づいて、少なくとも測定対象ガスおよび参照ガスの他方の、第2成分120の濃度を制御する。
本測定方法は測定装置30により実現される。測定装置30の動作例について以下に詳しく説明する。なお、以下では第1測定手段381が測定対象ガスの第2成分120の濃度を測定し、濃度制御手段370が参照ガスの第2成分120の濃度を制御する例について説明するが、本実施形態は本例に限定されない。
測定装置30に対し測定の開始操作が行われると、供給制御手段350が第1ポンプ311および第2ポンプ321を制御することにより、同一の匂いセンサ10に対し測定対象ガスおよび参照ガスが順次供給される。ここで、第1供給手段310から匂いセンサ10に測定対象ガスが供給されると、第1測定手段381で測定対象ガスの第2成分120の濃度が測定される。次いで、濃度制御手段370により第2成分120の濃度が制御された参照ガスが、匂いセンサ10に供給される。そうすることにより、匂いセンサ10には第2成分120の濃度が互いに近い状態の測定対象ガスおよび参照ガスが供給される。
測定対象ガスおよび参照ガスが供給されることにより、匂いセンサ10ではたとえば図3に示したような時系列データ14が得られる。導出手段360は匂いセンサ10から時系列データ14を取得すると共に供給制御手段350から第1ポンプ311および第2ポンプ321の駆動タイミングを示す信号を取得する。そして、導出手段360は駆動タイミングを示す信号に基づき時系列データ14を第1データと第2データに分割する。また、導出手段360は第1データおよび第2データの少なくとも一方を特徴量に変換する。導出手段360はたとえば上記した方法により、第1データおよび第2データを寄与値の集合Ξに変換できる。導出手段360はさらに主成分分析を行って特徴量の次元を削減してもよい。
以下では導出手段360が第1成分110に関する情報を導出する方法の第1例と第2例について説明する。第1例では、導出手段360は第1成分110の種類または匂いラベルを導出する。第2例では、導出手段360は、第1成分110の種類と第1成分110の濃度に関する情報を導出する。
まず、第1例について説明する。第1例において導出手段360は、第1定データおよび第2データの少なくとも一方から得られた特徴量(以下、「測定対象ガスの特徴量」とも呼ぶ。)と匂い情報とを用いて測定対象ガス中の第1成分110の匂いラベルを導出する。匂い情報は匂いラベルと、その匂いラベルに対応するガスの特徴量を対応づけた情報であり、たとえば導出手段360からアクセス可能な記憶装置に予め保持されている。匂い情報は、たとえば既知の測定対象ガスに対する結果から予め生成することができる。
導出手段360は、匂い情報の中から、測定対象ガスの特徴量に類似する特徴量を示す匂い情報を抽出する。さらに導出手段360は、抽出した匂い情報に対応づけられた匂いラベルを、第1成分110の匂いラベルとして特定する。
具体的には導出手段360は、測定対象ガスの特徴量と、匂い情報に示された特徴量との類似度を算出し、算出した類似度に基づいて匂い情報を抽出することができる。たとえば、導出手段360は、最も類似度が高い特徴量に対応づけられた匂い情報を抽出しても良いし、予め定められた閾値以上の類似度の特徴量に対応づけられた一以上の匂い情報を抽出しても良い。類似度を求めようとする二つの特徴量がいずれも集合Ξであり、特徴定数の集合が互いに同じである場合、類似度はたとえばベクトル間の距離である。
次に、第2例について説明する。第2例において導出手段360は、測定対象ガスの特徴量と単位成分情報とを用いて測定対象ガス中の第1成分110の濃度に関する情報を導出する。単位成分情報は、単位成分それぞれについての特徴量を表す情報であり、たとえば導出手段360からアクセス可能な記憶装置に予め保持されている。単位成分情報は、単位成分の識別子と、その単位成分の特徴量とを対応づけた情報である。単位成分の特徴量は、その単位成分のみを含むガスを匂いセンサ10でセンシングすることで得られる時系列データについて算出される特徴量である。
ここで、測定対象ガスの特徴量と各単位成分の特徴量とにおいて、特徴定数の集合が共通であるとする。この場合、測定対象ガスの特徴量と各単位成分の特徴量をベクトル表現で表せば、測定対象ガスの特徴量は、測定対象ガスに含まれる単位成分の特徴量の線形和で表すことができると考えられる。例えば測定対象ガスに単位成分1からkが含まれている場合、測定対象ガスの特徴量は、以下のように表すことができると考えられる。
ここで、Ξiは単位成分iの特徴量ベクトルであり、aiは測定対象ガスにおける単位成分iの濃度である。また、測定対象ガスが1種類の単位成分のみで構成される場合は、k=1であるため、Ξg=Ξ1となる。
そこで導出手段360は、単位成分情報を利用して、対象ガスの特徴量ベクトルΞgを、1つ以上の単位成分の特徴量ベクトルΞiの線形和に分解する。こうすることで、導出手段360は、測定対象ガスに含まれる1つ以上の単位成分を第1成分110として特定する。ここで、或る1つのベクトルを既知のベクトル(ここでは、単位成分情報に示されている各特徴量ベクトル)の線形和に分解する方法には、種々の既存の手法を利用することができる。例えば、以下の目的関数で表される非負制約付きの最小二乗法を利用することができる。
また、単位成分の濃度を特定する場合、上述した線形和への分解によって得られるベクトルA=(a1,a2,...,ak)を、各単位成分の濃度を表す情報として得ることができる。単位成分の混合比率は、これらの濃度の比で表すことができる。なお、ここでいう単位成分の濃度とは、(空気中のガスの濃度)×(ガス中の単位成分の濃度比)で表される値である。すなわち、空気中のガスの濃度に対する単位成分の相対的な濃度を意味する。また、ここでいう単位成分の濃度は、空気圧に占める単位成分の分圧の割合ととらえることもできる。
なお、導出手段360は、第1成分110に関する情報を導出するために、第1データと第2データの両方を用いても良いし、一方のみを用いても良い。ただし、導出精度を高めるため、両方を用いることが好ましい。
導出手段360が第1データと第2データの両方を用いて第1成分110に関する情報を導出する場合、導出手段360は、第1データから得られる特徴ベクトルΞuと、第2データから得られる特徴ベクトルΞdとを連結することで得られる1つのベクトルを、測定対象ガスの特徴量としてもよい。例えばこの場合、導出手段360は、Ξu=(ξu1,ξu2,...,ξun)とΞd=(ξd1,ξd2,...,ξdn)を連結したΞc=(ξu1,ξu2,...,ξun,ξd1,ξd2,...,ξdn)を、測定対象ガスの特徴量として算出する。
また、導出手段360は、第1データから得られる特徴量と、第2データから得られる特徴量との平均を、測定対象ガスの特徴量として算出してもよい。すなわち、Ξavg=((ξu1+ξd1)/2,(ξu2+ξd2)/2,...,(ξun+ξdn)/2)を、測定対象ガスの特徴量とする。ここで、式(4)において、立ち上がりと立ち下がりでξの定義が共通していることから、理想的には、立ち上がりと時系列データ14と立ち下がりの時系列データ14からは同じ特徴量が得られるはずであり、ΞuとΞdの差異は測定誤差に起因するものであると考えられる。そこで、ΞuとΞdの平均を算出することで、測定誤差の影響を減らすことができる。
また、導出手段360は、第1データと第2データとを用いて、導出結果における第2成分120の影響を低減するデータ処理をさらに行ってもよい。
測定装置30の供給制御手段350、導出手段360、および濃度制御手段370は、供給制御手段350、導出手段360、および濃度制御手段370のそれぞれを実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、測定装置30の供給制御手段350、導出手段360、および濃度制御手段370がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
図6は、測定装置30を実現するための計算機1000を例示する図である。計算機1000は任意の計算機である。例えば計算機1000は、Personal Computer(PC)やサーバマシンなどの据え置き型の計算機である。その他にも例えば、計算機1000は、スマートフォンやタブレット端末などの可搬型の計算機である。計算機1000は、測定装置30を実現するために設計された専用の計算機であってもよいし、汎用の計算機であってもよい。
計算機1000は、バス1020、プロセッサ1040、メモリ1060、ストレージデバイスストレージ1080、入出力インタフェース1100、及びネットワークインタフェース1120を有する。バス1020は、プロセッサ1040、メモリ1060、ストレージデバイスストレージ1080、入出力インタフェース1100、及びネットワークインタフェース1120が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1040などを互いに接続する方法は、バス接続に限定されない。
プロセッサ1040は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field-Programmable Gate Array)などの種々のプロセッサである。メモリ1060は、RAM(Random Access Memory)などを用いて実現される主記憶装置である。ストレージデバイスストレージ1080は、ハードディスク、SSD(Solid State Drive)、メモリカード、又は ROM(Read Only Memory)などを用いて実現される補助記憶装置である。
入出力インタフェース1100は、計算機1000と入出力デバイスとを接続するためのインタフェースである。例えば入出力インタフェース1100には、キーボードなどの入力装置や、ディスプレイ装置などの出力装置が接続される。その他にも例えば、入出力インタフェース1100には、匂いセンサ10が接続される。ただし、匂いセンサ10は必ずしも計算機1000と直接接続されている必要はない。例えば匂いセンサ10は、計算機1000と共有している記憶装置に時系列データ14を記憶させてもよい。
ネットワークインタフェース1120は、計算機1000を通信網に接続するためのインタフェースである。この通信網は、例えば LAN(Local Area Network)や WAN(Wide Area Network)である。ネットワークインタフェース1120が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
ストレージデバイスストレージ1080は、供給制御手段350、導出手段360、および濃度制御手段370を実現するプログラムモジュールを記憶している。プロセッサ1040は、これら各プログラムモジュールをメモリ1060に読み出して実行することで、各プログラムモジュールに対応する機能を実現する。
次に、本実施形態の作用および効果について説明する。本実施形態に係る測定装置30によれば、第1測定手段381の測定結果に基づいて参照ガスにおける第2成分120と測定対象ガスにおける第2成分120の濃度を近づけることにより、第2成分120の影響を低減した状態で所望の成分を検出することができる。
(第2の実施形態)
図7は、第2の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。本実施形態に係る測定装置30は、以下に説明する点を除いて第1の実施形態に係る測定装置30と同じである。第1の実施形態において、第1測定手段381は測定対象ガスおよび参照ガスの一方のみの第2成分120の濃度を測定していた。それに対し本実施形態では、第1測定手段381は、測定対象ガスおよび参照ガスの他方の第2成分120の濃度をさらに測定する。そして、濃度制御手段370は、第1測定手段381で測定された他方の第2成分120の濃度にさらに基づいて、他方の第2成分120の濃度を制御する。以下に詳しく説明する。
図7は、第2の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。本実施形態に係る測定装置30は、以下に説明する点を除いて第1の実施形態に係る測定装置30と同じである。第1の実施形態において、第1測定手段381は測定対象ガスおよび参照ガスの一方のみの第2成分120の濃度を測定していた。それに対し本実施形態では、第1測定手段381は、測定対象ガスおよび参照ガスの他方の第2成分120の濃度をさらに測定する。そして、濃度制御手段370は、第1測定手段381で測定された他方の第2成分120の濃度にさらに基づいて、他方の第2成分120の濃度を制御する。以下に詳しく説明する。
本実施形態に係る測定装置30では、第1測定手段381はたとえば容器101内に設けられることにより、測定対象ガスの第2成分120の濃度と、参照ガスの第2成分120の濃度との両方を測定することができる。すなわち第1測定手段381は、匂いセンサ10に測定対象ガスが供給されている時に、測定対象ガスの第2成分120の濃度を測定し、匂いセンサ10に参照ガスが供給されている時に、参照ガスの第2成分120の濃度を測定する。
そして、濃度制御手段370は、第1測定手段381から測定対象ガスの第2成分120の濃度と、参照ガスの第2成分120の濃度とを取得する。そして濃度制御手段370は、測定対象ガスの第2成分120の濃度と、参照ガスの第2成分120の濃度との差が小さくなるようにフィードバック制御を行う。すなわち濃度制御手段370は、測定対象ガスの第2成分120の濃度と、参照ガスの第2成分120の濃度との差を算出し、この差が小さくなるように測定対象ガスおよび参照ガスの少なくとも一方の第2成分120の濃度を調整する。本図では、濃度制御手段370が参照ガスの第2成分120の濃度を調整する例を示している。
次に、本実施形態の作用および効果について説明する。本実施形態においては第1の実施形態と同様の作用および効果が得られる。くわえて、測定対象ガスと参照ガスの両方の第2成分120の濃度を測定して制御することにより、より高い精度でこれらのガスの第2成分120の濃度を互いに近づけることができる。
(第3の実施形態)
図8は、第3の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。本実施形態に係る測定装置30は、以下に説明する点を除いて第1の実施形態に係る測定装置30と同じである。本実施形態において、測定装置30は、測定対象ガスと参照ガスの他方の、第2成分120の濃度を測定する第2測定手段382をさらに備える。そして濃度制御手段370は、第2測定手段382の測定結果にさらに基づいて、他方の第2成分120の濃度を制御する。以下に詳しく説明する。
図8は、第3の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。本実施形態に係る測定装置30は、以下に説明する点を除いて第1の実施形態に係る測定装置30と同じである。本実施形態において、測定装置30は、測定対象ガスと参照ガスの他方の、第2成分120の濃度を測定する第2測定手段382をさらに備える。そして濃度制御手段370は、第2測定手段382の測定結果にさらに基づいて、他方の第2成分120の濃度を制御する。以下に詳しく説明する。
本実施形態に係る測定装置30は、第1測定手段381とは別途第2測定手段382を備えている。第2測定手段382は測定対象ガスおよび参照ガスのうち、第1測定手段381が測定するガスとは異なるガスの第2成分120の濃度を測定する。たとえば第2成分120が水分である場合、第2測定手段382は湿度センサである。本図の例において、第2測定手段382は参照ガス供給管325の途中、すなわち第2供給手段320と匂いセンサ10との間に設けられ、参照ガスの第2成分120の濃度を測定する。
本実施形態において濃度制御手段370は、第1測定手段381から測定対象ガスの第2成分120の濃度を取得し、第2測定手段382から参照ガスの第2成分120の濃度を取得する。そして濃度制御手段370は、測定対象ガスの第2成分120の濃度と、参照ガスの第2成分120の濃度との差が小さくなるようにフィードバック制御を行う。すなわち濃度制御手段370は、測定対象ガスの第2成分120の濃度と、参照ガスの第2成分120の濃度との差を算出し、この差が小さくなるように測定対象ガスおよび参照ガスの少なくとも一方の第2成分120の濃度を調整する。本図では、濃度制御手段370が参照ガスの第2成分120の濃度を調整する例を示している。
次に、本実施形態の作用および効果について説明する。本実施形態においては第2の実施形態と同様の作用および効果が得られる。
(第4の実施形態)
図9は、第4の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。本実施形態に係る測定装置30は、濃度制御手段370が匂いセンサ10の検出結果に基づいて、測定対象ガスおよび参照ガスの少なくとも一方の、第2成分120の濃度を制御する点を除いて第1の実施形態に係る測定装置30と同じである。以下に詳しく説明する。
図9は、第4の実施形態に係る測定装置30の構成を例示する図である。本図において、データおよび信号の経路は破線で示されている。本実施形態に係る測定装置30は、濃度制御手段370が匂いセンサ10の検出結果に基づいて、測定対象ガスおよび参照ガスの少なくとも一方の、第2成分120の濃度を制御する点を除いて第1の実施形態に係る測定装置30と同じである。以下に詳しく説明する。
第2成分120の濃度は、匂いセンサ10の検出結果にも影響を及ぼす。すなわち、匂いセンサ10を第2成分120の濃度の検出に用いることができ、匂いセンサ10は第2の実施形態に係る第1測定手段381を兼ねることができる。本実施形態において、測定装置30は匂いセンサ10とは別途の第1測定手段381を備えていなくて良い。濃度制御手段370は、匂いセンサ10の検出結果に基づいて、測定対象ガスと参照ガスの第2成分120の濃度を近づけることができる。
本実施形態に係る濃度制御手段370で行われる処理として、以下の第1の処理例から第3の処理例が挙げられる。
第1の処理例において、濃度制御手段370は、匂いセンサ10の第1データに基づき測定対象ガスの第2成分120の濃度に関する情報を導出し、匂いセンサ10の第2データに基づき参照ガスの第2成分120の濃度に関する情報を導出する。そして、第2の実施形態で説明したのと同様に、フィードバック制御を行う。
具体的には、濃度制御手段370は、匂いセンサ10から時系列データ14を取得すると共に供給制御手段350から第1ポンプ311および第2ポンプ321の駆動タイミングを示す信号を取得する。そして、濃度制御手段370は駆動タイミングを示す信号に基づき140を第1データと第2データに分割する。また、濃度制御手段370は第1データおよび第2データを特徴量に変換する。濃度制御手段370はたとえば第1の実施形態で説明した方法により、第1データおよび第2データを寄与値の集合Ξに変換できる。濃度制御手段370はさらに主成分分析を行って特徴量の次元を削減してもよい。
さらに濃度制御手段370は、第1データから得た特徴量と第2参照情報とを用いて測定対象ガスの第2成分120の濃度を示す情報を得、第2データから得た特徴量と第2参照情報とを用いて参照ガスの第2成分120の濃度を示す情報を得る。なお、濃度に関する情報は、濃度の絶対値であってもよいし、何らかの基準に対する相対値であってもよいし、規格化された値であってもよい。第2参照情報は特徴量と第2成分120の濃度を示す情報との関係を示す情報であり、たとえば濃度制御手段370からアクセス可能な記憶手段390に予め保持されている。第2参照情報はたとえば、数式、またはテーブルである。第2参照情報は、たとえば既知のガスに対する匂いセンサ10の検出結果から予め生成することができる。
次いで濃度制御手段370は、導出した測定対象ガスの第2成分120の濃度を示す情報と、参照ガスの第2成分120の濃度を示す情報に基づき、測定対象ガスの第2成分120の濃度と参照ガスの第2成分120の濃度との差を算出する。そして算出した差が小さくなるように測定対象ガスおよび参照ガスの少なくとも一方の第2成分120の濃度を調整する。本図では、濃度制御手段370が参照ガスの第2成分120の濃度を調整する例を示している。
第2の処理例では、濃度制御手段370は、測定対象ガスと参照ガスとを交互に匂いセンサ10に供給したときの匂いセンサ10の出力波形の振幅が小さくなるように、少なくとも一方の第2成分120の濃度xを制御する。なお、以下において特に説明する場合を除き、「出力波形」とは、測定対象ガスと参照ガスとを交互に匂いセンサ10に供給したときの匂いセンサ10の出力波形を示す。以下に詳しく説明する。
出力波形は、たとえば図3に示したような波形である。第1の実施形態で説明した通り、匂いセンサ10の出力波形は差動性を有する。したがって、濃度xを制御して出力波形の振幅を小さくすることにより、上記した第1状態と第2状態における、匂いセンサ10の官能部への分子の吸着状態の差を小さくすることができる。これは、第1状態と第2状態における第2成分120の吸着分子の数を互いに近づけ、出力波形における第2成分120の影響を低減することに相当する。ひいては、第1成分110の吸着の有無の違いを匂いセンサ10の出力において顕在化させることができる。
説明のために、濃度制御手段370が制御を行うガスの濃度をxで示す。また、濃度制御手段370が制御されたガスの濃度をxとした時の匂いセンサ10の出力波形を以下のベクトルy(x)で示す。
ここで、濃度制御手段370は、出力波形の振幅を表す量の一例として、出力波形の実効値(Root Mean Square Value)を小さくなるように濃度xを制御してもよい。この場合、匂いセンサ10の出力波形の振幅の二乗はF(y(x))=||y(x)||2のように表される。そして、このF(y(x))が小さくなるようにxを制御することで、測定対象ガスの第2成分120の濃度と参照ガスの第2成分120の濃度とを互いに近づけることができる。F(y(x))が小さくなるようにxを制御する方法については詳しく後述する。
なお、出力波形の振幅を表す量は、前述の実効値に限らず、任意の基準を用いることができる。例えば、出力波形の振幅として、Peak to peak値を用いることができる。この場合、匂いセンサ10の出力波形のPeak to peak 値による振幅は、波形の値が最大となる時刻t1と、最小となる時刻t2を用いて、|yt1(x)-yt2(x)|として表される。特に、t1は、図3における領域P1の終了時刻、t2は領域P2の終了時刻となることが期待される。ここで、出力波形を式(10)の代わりにスカラー値(1次元ベクトル)y(x)=yt1(x)-yt2(x)とすれば、peak to peak 値による振幅の二乗はF(y(x))=||y(x)||2のように前述のF(y(x))と同じ形で表されるため、振幅として実効値を用いる場合と同様の方法によってxを制御することができる。
第3の処理例では、濃度制御手段370は、第1成分110に対する匂いセンサ10の応答波形を示す情報と、測定対象ガスおよび参照ガスを交互に匂いセンサ10に供給したときの匂いセンサ10の出力波形とに基づいて、測定対象ガスおよび参照ガスの一方の、第2成分120の濃度xを制御する。以下に詳しく説明する。
本処理例において、記憶手段390には予め、第1成分110に対する匂いセンサ10の応答波形を示す情報が保持されている。なお、第1成分110に対する匂いセンサ10の応答波形を、以下では「第1応答波形」とも呼ぶ。第1応答波形を示す情報はたとえば、第1成分110のみからなるガスの匂いセンサ10への供給と、雰囲気の減圧による匂いセンサ10の浄化とを行うことにより得ることができる。または、第1応答波形を示す情報は、第1成分110を含む既知の測定対象ガスについて匂いセンサ10で得られる検出結果に基づき算出された、第1成分110のみに対する匂いセンサ10の応答を示す情報であっても良い。なお、測定対象ガスが第1成分110として複数の成分を含むとき、各成分の第1応答波形を示す情報が後述するyjとして、記憶手段390に保持される。
本処理例において濃度制御手段370は、匂いセンサ10の出力波形が、既知の第1応答波形の線形和でなるべく表されるように濃度xを制御する。すなわち濃度制御手段370は、以下の式(11)で表されるF(y(x))が小さくなるように濃度xを制御する。なお、第1応答波形を示すベクトルをyj(j=1,2,・・・,J)とし、濃度xに対する匂いセンサ10の出力波形を示すベクトルをy(x)とし、ajを係数とする。
本方法では、最終的に得られるajが第1成分110の濃度に関する情報に相当する。したがって、濃度制御手段370は導出手段360を兼ねることができ、ajを第1成分110の濃度に関する情報として出力しても良い。
なお、span{y1,・・・,yJ}の直交補空間への射影演算子をPとすると、F(y(x))=||Py(x)||2が成り立つ。
また、第2の処理例は、本処理例においてJ=0とした場合に相当する。
上記した第2の処理例および第3の処理例において、F(y(x))が小さくなるようにxを制御する方法について、以下に説明する。濃度制御手段370はたとえば、補完を用いる方法(補完法)、勾配法、または二分探索を用いて濃度xを制御することができる。
図10は、第2の処理例および第3の処理例において濃度制御手段370が行う処理のフローチャートである。測定装置30に対し測定の開始操作が行われると、濃度制御手段370はまず、初期状態のxを決める(ステップS100)。初期状態のxは任意であり、たとえばx=0とすることができる。
次いで濃度制御手段370は、決定したxでガスの供給が行われるよう、たとえば参照ガスの第2成分120の濃度を制御する。そして匂いセンサ10から時系列データ14をy(x)をとして取得する(ステップS200)。
次いで濃度制御手段370は、得られたy(x)に基づき次のxを決める(ステップS300)。次のxの決め方については詳しく後述する。
次いで濃度制御手段370は終了条件を満たすか否かを判定する(ステップS400)。ステップS400において、終了条件を満たすと判定された場合、濃度制御手段370は処理を終了してxを固定する。そして、固定されたxを用いて測定対象ガスおよび参照ガスの匂いセンサ10への供給が続けられ、測定が行われる。この場合、導出手段360はxが固定された後に得られる第1データおよび第2データの少なくとも一方のみを用いて第1成分110に関する情報を導出しても良いし、xが固定される前後にわたり、第1成分110に関する情報を導出してもよい。
ただし、ステップS400において、終了条件を満たすと判定された場合、測定装置30が測定を終了しても良い。
終了条件としてはたとえば、ユーザーによる測定装置30への終了指令操作がされたこと、現在のxと次のxとの差が予め定められた基準を下回ること、および、ステップS200の反復回数が予め定められた回数を超えること等が挙げられる。
ステップS400において、終了条件を満たさないと判定された場合、濃度制御手段370は、ステップS300で決定された次のxを用いて再度ステップS200を行う。
ステップS300はたとえば、補完を用いる方法、勾配法、または二分探索を用いて行われる。以下に各方法について詳しく説明する。
図11は、補完法でステップS300を行う方法の例を説明するための図である。補完法では、濃度制御手段370は1回目のループと2回目のループのステップS200において、両極端な例としてx1およびx2をそれぞれ用いる。たとえば測定装置30で実現可能なxの最小値をx1とし、最大値をx2とすることができる。
次いで、3回目以降のループで用いるxは以下のように定められる。まず、それまでのループにおけるxを昇順に並べ、x1,・・・,xnとする。そして、y(x1),・・・,y(xn)を補完する。補完は線形補完であっても良いし、スプライン等の他の補完方法で行われても良い。補完して得られた関数をyc(x)とする。そしてF(yc(x))が最小となるxを次のxとする。
具体的には、たとえば線形補完を用い、次のxとしてxn+1を決める場合、F((1-t)y(xp)-t(xp+1))を最小にする(p,t)(p=1,・・・,n-1,0≦t<1)を求め、次のxをxn+1=(1-t)xp+txp+1とすればよい。
次に、勾配法でステップS300を行う方法の例について以下に説明する。
本例において、記憶手段390には予め、第2成分120に対する匂いセンサ10の応答波形を示す情報が保持されている。なお、第2成分120に対する匂いセンサ10の応答波形を、以下では「第2応答波形」とも呼ぶ。第2応答波形を示す情報はたとえば、第2成分120のみからなるガスの匂いセンサ10への供給と、雰囲気の減圧による匂いセンサ10の浄化とを行うことにより得ることができる。または、第2応答波形を示す情報は、第2成分120を含む既知の測定対象ガスについて匂いセンサ10で得られる検出結果に基づき算出された、第2成分120のみに対する匂いセンサ10の応答を示す情報であっても良い。
第2応答波形を示す情報をベクトルzとすると、xの小さな変化に対して以下の式(12)が成り立つことが期待される。
このとき、F(y(x+Δx))は以下の式(13)のように表される。つまり、F(y(x))の傾きは2z・Py(x)で近似される。したがって、ある定数ηを用い、xn+1=xn-η2z・Py(xn)により、次のxを決定する。なお、定数ηは予め定めておくことができる。
次に、二分探索でステップS300を行う方法の例について以下に説明する。
上記した勾配法は、z・Py(x)が正なら次のxは減少、z・Py(x)が負なら次のxは増加する方法であった。つまり、z・Py(x)が正のときは目的のxは現在のxよりも小さく、z・Py(x)が負のときは目的のxは現在のxよりも大きいと考えられる。この考え方を用いて二分探索を行う。
二分探索を用いる本例において、濃度制御手段370は1回目のループと2回目のループのステップS200において、下限xlおよび上限xhをそれぞれxとして用いてy(x)を取得する。ここで、下限xlと上限xhとの間隔を充分広くしておく。たとえば測定装置30で実現可能なxの最小値をxlとし、最大値をxhとすることができる。ただし下限xlと上限xhはこの例に限定されない。
取得されたy(x)について、z・Py(xl)は負、z・Py(xh)は正となることが期待される。もしそうならなかった場合、下限xlと上限xhとの間隔をさらに広げて再度y(x)を取得する。
次いで、3回目以降のループで用いるxは下限xlと上限xhとの中点とする。すなわち、x=(xl+xh)/2で得られるxを次のxとする。そしてステップS200においてさらにy(x)が取得される。また、濃度制御手段370は取得したy(x)を用いてz・Py(x)の値を算出し、z・Py(x)が正である場合、そのxを新しい上限xhとする。一方、z・Py(x)が負である場合、そのxを新しい下限xlとする。次のステップS300では、新しいxlとxhとに基づき、x=(xl+xh)/2の関係から次のxが決定される。
本例においては、xlとxhとの間隔が予め定められた基準以下となることを、ステップS400の終了条件としてもよい。
次に、本実施形態の作用および効果について説明する。本実施形態においては第1の実施形態と同様の作用および効果が得られる。くわえて、第1測定手段381を匂いセンサ10と別途設ける必要が無い。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上述の各実施形態は、内容が相反しない範囲で組み合わせることができる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
1. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を測定する第1測定手段と、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する濃度制御手段とを備える測定装置。
2. 1.に記載の測定装置において、
前記他方の、前記第2成分の濃度を測定する第2測定手段をさらに備え、
前記濃度制御手段は、前記第2測定手段の測定結果にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定装置。
3. 1.に記載の測定装置において、
前記第1測定手段は、前記他方の前記第2成分の濃度をさらに測定し、
前記濃度制御手段は、前記第1測定手段で測定された前記他方の前記第2成分の濃度にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定装置。
4. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する濃度制御手段とを備える測定装置。
5. 4.に記載の測定装置において、
前記濃度制御手段は、前記測定対象ガスと前記参照ガスとを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形の振幅が小さくなるように、前記少なくとも一方の前記第2成分の濃度を制御する測定装置。
6. 4.に記載の測定装置において、
前記濃度制御手段は、前記第1成分に対する前記匂いセンサの応答波形を示す情報と、前記測定対象ガスおよび前記参照ガスを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形とに基づいて、前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度xを制御する測定装置。
7. 6.に記載の測定装置において、
前記応答波形を示すベクトルをyjとし、濃度xに対する前記出力波形を示すベクトルをy(x)とし、ajを係数としたとき、前記濃度制御手段は、式(11)で表されるF(y(x))が小さくなるように濃度xを制御する測定装置。
8. 7.に記載の測定装置において、
前記濃度制御手段は、補完法、勾配法、または二分探索を用いて濃度xを制御する測定装置。
9. 1.から8.のいずれか一つに記載の測定装置において、
前記測定対象ガスおよび前記参照ガスはそれぞれ前記第2成分として水分を含む測定装置。
10. 1.から9.のいずれか一つに記載の測定装置において、
前記濃度制御手段は、前記参照ガスの前記第2成分の濃度を制御する測定装置。
11. 1.から10.のいずれか一つに記載の測定装置において、
前記参照ガスはパージガスである測定装置。
12. 1.から11.のいずれか一つに記載の測定装置において、
前記匂いセンサによる前記測定対象ガスの検出結果である第1データと、前記匂いセンサによる前記参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、前記測定対象ガスに含まれる前記第1成分に関する情報を導出する導出手段をさらに備える測定装置。
13. 1.から12.のいずれか一つに記載の測定装置において、
前記測定対象ガスに含まれる前記第2成分の分圧がP対象,第2であり、前記参照ガスに含まれる前記第2成分の分圧がP参照,第2であり、前記第2成分の飽和蒸気圧がP飽和,第2であり、前記測定対象ガスに含まれる前記第1成分の分圧がP対象,第1であり、前記参照ガスに含まれる前記第1成分の分圧がP参照,第1であり、前記第1成分の飽和蒸気圧がP飽和,第1であるとき、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つ測定装置。
14. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を第1測定手段で測定し、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する測定方法。
15. 14.に記載の測定方法において、
前記他方の、前記第2成分の濃度を第2測定手段でさらに測定し、
前記第2測定手段の測定結果にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定方法。
16. 14.に記載の測定方法において、
前記第1測定手段で、前記他方の前記第2成分の濃度をさらに測定し、
前記第1測定手段で測定された前記他方の前記第2成分の濃度にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定方法。
17. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する測定方法。
18. 17.に記載の測定方法において、
前記測定対象ガスと前記参照ガスとを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形の振幅が小さくなるように、前記少なくとも一方の前記第2成分の濃度を制御する測定方法。
19. 17.に記載の測定方法において、
前記第1成分に対する前記匂いセンサの応答波形を示す情報と、前記測定対象ガスおよび前記参照ガスを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形とに基づいて、前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度xを制御する測定方法。
20. 19.に記載の測定方法において、
前記応答波形を示すベクトルをyjとし、濃度xに対する前記出力波形を示すベクトルをy(x)とし、ajを係数としたとき、式(11)で表されるF(y(x))が小さくなるように濃度xを制御する測定方法。
21. 20.に記載の測定方法において、
補完法、勾配法、または二分探索を用いて濃度xを制御する測定方法。
22. 14.から21.のいずれか一つに記載の測定方法において、
前記測定対象ガスおよび前記参照ガスはそれぞれ前記第2成分として水分を含む測定方法。
23. 14.から22.のいずれか一つに記載の測定方法において、
前記参照ガスの前記第2成分の濃度を制御する測定方法。
24. 14.から23.のいずれか一つに記載の測定方法において、
前記参照ガスはパージガスである測定方法。
25. 14.から24.のいずれか一つに記載の測定方法において、
さらに、前記匂いセンサによる前記測定対象ガスの検出結果である第1データと、前記匂いセンサによる前記参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、前記測定対象ガスに含まれる前記第1成分に関する情報を導出する測定方法。
26. 14.から25.のいずれか一つに記載の測定方法において、
前記測定対象ガスに含まれる前記第2成分の分圧がP対象,第2であり、前記参照ガスに含まれる前記第2成分の分圧がP参照,第2であり、前記第2成分の飽和蒸気圧がP飽和,第2であり、前記測定対象ガスに含まれる前記第1成分の分圧がP対象,第1であり、前記参照ガスに含まれる前記第1成分の分圧がP参照,第1であり、前記第1成分の飽和蒸気圧がP飽和,第1であるとき、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つ測定方法。
1. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を測定する第1測定手段と、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する濃度制御手段とを備える測定装置。
2. 1.に記載の測定装置において、
前記他方の、前記第2成分の濃度を測定する第2測定手段をさらに備え、
前記濃度制御手段は、前記第2測定手段の測定結果にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定装置。
3. 1.に記載の測定装置において、
前記第1測定手段は、前記他方の前記第2成分の濃度をさらに測定し、
前記濃度制御手段は、前記第1測定手段で測定された前記他方の前記第2成分の濃度にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定装置。
4. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する濃度制御手段とを備える測定装置。
5. 4.に記載の測定装置において、
前記濃度制御手段は、前記測定対象ガスと前記参照ガスとを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形の振幅が小さくなるように、前記少なくとも一方の前記第2成分の濃度を制御する測定装置。
6. 4.に記載の測定装置において、
前記濃度制御手段は、前記第1成分に対する前記匂いセンサの応答波形を示す情報と、前記測定対象ガスおよび前記参照ガスを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形とに基づいて、前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度xを制御する測定装置。
7. 6.に記載の測定装置において、
前記応答波形を示すベクトルをyjとし、濃度xに対する前記出力波形を示すベクトルをy(x)とし、ajを係数としたとき、前記濃度制御手段は、式(11)で表されるF(y(x))が小さくなるように濃度xを制御する測定装置。
8. 7.に記載の測定装置において、
前記濃度制御手段は、補完法、勾配法、または二分探索を用いて濃度xを制御する測定装置。
9. 1.から8.のいずれか一つに記載の測定装置において、
前記測定対象ガスおよび前記参照ガスはそれぞれ前記第2成分として水分を含む測定装置。
10. 1.から9.のいずれか一つに記載の測定装置において、
前記濃度制御手段は、前記参照ガスの前記第2成分の濃度を制御する測定装置。
11. 1.から10.のいずれか一つに記載の測定装置において、
前記参照ガスはパージガスである測定装置。
12. 1.から11.のいずれか一つに記載の測定装置において、
前記匂いセンサによる前記測定対象ガスの検出結果である第1データと、前記匂いセンサによる前記参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、前記測定対象ガスに含まれる前記第1成分に関する情報を導出する導出手段をさらに備える測定装置。
13. 1.から12.のいずれか一つに記載の測定装置において、
前記測定対象ガスに含まれる前記第2成分の分圧がP対象,第2であり、前記参照ガスに含まれる前記第2成分の分圧がP参照,第2であり、前記第2成分の飽和蒸気圧がP飽和,第2であり、前記測定対象ガスに含まれる前記第1成分の分圧がP対象,第1であり、前記参照ガスに含まれる前記第1成分の分圧がP参照,第1であり、前記第1成分の飽和蒸気圧がP飽和,第1であるとき、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つ測定装置。
14. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を第1測定手段で測定し、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する測定方法。
15. 14.に記載の測定方法において、
前記他方の、前記第2成分の濃度を第2測定手段でさらに測定し、
前記第2測定手段の測定結果にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定方法。
16. 14.に記載の測定方法において、
前記第1測定手段で、前記他方の前記第2成分の濃度をさらに測定し、
前記第1測定手段で測定された前記他方の前記第2成分の濃度にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定方法。
17. 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する測定方法。
18. 17.に記載の測定方法において、
前記測定対象ガスと前記参照ガスとを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形の振幅が小さくなるように、前記少なくとも一方の前記第2成分の濃度を制御する測定方法。
19. 17.に記載の測定方法において、
前記第1成分に対する前記匂いセンサの応答波形を示す情報と、前記測定対象ガスおよび前記参照ガスを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形とに基づいて、前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度xを制御する測定方法。
20. 19.に記載の測定方法において、
前記応答波形を示すベクトルをyjとし、濃度xに対する前記出力波形を示すベクトルをy(x)とし、ajを係数としたとき、式(11)で表されるF(y(x))が小さくなるように濃度xを制御する測定方法。
21. 20.に記載の測定方法において、
補完法、勾配法、または二分探索を用いて濃度xを制御する測定方法。
22. 14.から21.のいずれか一つに記載の測定方法において、
前記測定対象ガスおよび前記参照ガスはそれぞれ前記第2成分として水分を含む測定方法。
23. 14.から22.のいずれか一つに記載の測定方法において、
前記参照ガスの前記第2成分の濃度を制御する測定方法。
24. 14.から23.のいずれか一つに記載の測定方法において、
前記参照ガスはパージガスである測定方法。
25. 14.から24.のいずれか一つに記載の測定方法において、
さらに、前記匂いセンサによる前記測定対象ガスの検出結果である第1データと、前記匂いセンサによる前記参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、前記測定対象ガスに含まれる前記第1成分に関する情報を導出する測定方法。
26. 14.から25.のいずれか一つに記載の測定方法において、
前記測定対象ガスに含まれる前記第2成分の分圧がP対象,第2であり、前記参照ガスに含まれる前記第2成分の分圧がP参照,第2であり、前記第2成分の飽和蒸気圧がP飽和,第2であり、前記測定対象ガスに含まれる前記第1成分の分圧がP対象,第1であり、前記参照ガスに含まれる前記第1成分の分圧がP参照,第1であり、前記第1成分の飽和蒸気圧がP飽和,第1であるとき、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つ測定方法。
Claims (26)
- 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を測定する第1測定手段と、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する濃度制御手段とを備える測定装置。 - 請求項1に記載の測定装置において、
前記他方の、前記第2成分の濃度を測定する第2測定手段をさらに備え、
前記濃度制御手段は、前記第2測定手段の測定結果にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定装置。 - 請求項1に記載の測定装置において、
前記第1測定手段は、前記他方の前記第2成分の濃度をさらに測定し、
前記濃度制御手段は、前記第1測定手段で測定された前記他方の前記第2成分の濃度にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定装置。 - 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を検出する匂いセンサと、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する濃度制御手段とを備える測定装置。 - 請求項4に記載の測定装置において、
前記濃度制御手段は、前記測定対象ガスと前記参照ガスとを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形の振幅が小さくなるように、前記少なくとも一方の前記第2成分の濃度を制御する測定装置。 - 請求項4に記載の測定装置において、
前記濃度制御手段は、前記第1成分に対する前記匂いセンサの応答波形を示す情報と、前記測定対象ガスおよび前記参照ガスを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形とに基づいて、前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度xを制御する測定装置。 - 請求項7に記載の測定装置において、
前記濃度制御手段は、補完法、勾配法、または二分探索を用いて濃度xを制御する測定装置。 - 請求項1から8のいずれか一項に記載の測定装置において、
前記測定対象ガスおよび前記参照ガスはそれぞれ前記第2成分として水分を含む測定装置。 - 請求項1から9のいずれか一項に記載の測定装置において、
前記濃度制御手段は、前記参照ガスの前記第2成分の濃度を制御する測定装置。 - 請求項1から10のいずれか一項に記載の測定装置において、
前記参照ガスはパージガスである測定装置。 - 請求項1から11のいずれか一項に記載の測定装置において、
前記匂いセンサによる前記測定対象ガスの検出結果である第1データと、前記匂いセンサによる前記参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、前記測定対象ガスに含まれる前記第1成分に関する情報を導出する導出手段をさらに備える測定装置。 - 請求項1から12のいずれか一項に記載の測定装置において、
前記測定対象ガスに含まれる前記第2成分の分圧がP対象,第2であり、前記参照ガスに含まれる前記第2成分の分圧がP参照,第2であり、前記第2成分の飽和蒸気圧がP飽和,第2であり、前記測定対象ガスに含まれる前記第1成分の分圧がP対象,第1であり、前記参照ガスに含まれる前記第1成分の分圧がP参照,第1であり、前記第1成分の飽和蒸気圧がP飽和,第1であるとき、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つ測定装置。 - 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度を第1測定手段で測定し、
前記第1測定手段の測定結果に基づいて、少なくとも前記測定対象ガスおよび前記参照ガスの他方の、前記第2成分の濃度を制御する測定方法。 - 請求項14に記載の測定方法において、
前記他方の、前記第2成分の濃度を第2測定手段でさらに測定し、
前記第2測定手段の測定結果にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定方法。 - 請求項14に記載の測定方法において、
前記第1測定手段で、前記他方の前記第2成分の濃度をさらに測定し、
前記第1測定手段で測定された前記他方の前記第2成分の濃度にさらに基づいて、前記他方の前記第2成分の濃度を制御する測定方法。 - 第1成分と第2成分とを含む測定対象ガス、および前記第2成分を含む参照ガスに含まれる成分を匂いセンサで検出し、
前記匂いセンサの検出結果に基づいて、前記測定対象ガスおよび前記参照ガスの少なくとも一方の、前記第2成分の濃度を制御する測定方法。 - 請求項17に記載の測定方法において、
前記測定対象ガスと前記参照ガスとを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形の振幅が小さくなるように、前記少なくとも一方の前記第2成分の濃度を制御する測定方法。 - 請求項17に記載の測定方法において、
前記第1成分に対する前記匂いセンサの応答波形を示す情報と、前記測定対象ガスおよび前記参照ガスを交互に前記匂いセンサに供給したときの前記匂いセンサの出力波形とに基づいて、前記測定対象ガスおよび前記参照ガスの一方の、前記第2成分の濃度xを制御する測定方法。 - 請求項20に記載の測定方法において、
補完法、勾配法、または二分探索を用いて濃度xを制御する測定方法。 - 請求項14から21のいずれか一項に記載の測定方法において、
前記測定対象ガスおよび前記参照ガスはそれぞれ前記第2成分として水分を含む測定方法。 - 請求項14から22のいずれか一項に記載の測定方法において、
前記参照ガスの前記第2成分の濃度を制御する測定方法。 - 請求項14から23のいずれか一項に記載の測定方法において、
前記参照ガスはパージガスである測定方法。 - 請求項14から24のいずれか一項に記載の測定方法において、
さらに、前記匂いセンサによる前記測定対象ガスの検出結果である第1データと、前記匂いセンサによる前記参照ガスの検出結果である第2データとの少なくとも一方を用いることにより、前記測定対象ガスに含まれる前記第1成分に関する情報を導出する測定方法。 - 請求項14から25のいずれか一項に記載の測定方法において、
前記測定対象ガスに含まれる前記第2成分の分圧がP対象,第2であり、前記参照ガスに含まれる前記第2成分の分圧がP参照,第2であり、前記第2成分の飽和蒸気圧がP飽和,第2であり、前記測定対象ガスに含まれる前記第1成分の分圧がP対象,第1であり、前記参照ガスに含まれる前記第1成分の分圧がP参照,第1であり、前記第1成分の飽和蒸気圧がP飽和,第1であるとき、|P対象,第2-P参照,第2|/P飽和,第2<(P対象,第1-P参照,第1)/P飽和,第1が成り立つ測定方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/036487 WO2020065982A1 (ja) | 2018-09-28 | 2018-09-28 | 測定装置、および測定方法 |
JP2020547850A JP7180683B2 (ja) | 2018-09-28 | 2018-09-28 | 測定装置、および測定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/036487 WO2020065982A1 (ja) | 2018-09-28 | 2018-09-28 | 測定装置、および測定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020065982A1 true WO2020065982A1 (ja) | 2020-04-02 |
Family
ID=69952516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/036487 WO2020065982A1 (ja) | 2018-09-28 | 2018-09-28 | 測定装置、および測定方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7180683B2 (ja) |
WO (1) | WO2020065982A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024014200A1 (ja) * | 2022-07-12 | 2024-01-18 | ソニーセミコンダクタソリューションズ株式会社 | 電気化学センサ回路、匂い成分識別用電気化学センサ回路、及び匂い識別システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572094A (ja) * | 1991-09-10 | 1993-03-23 | Amenitec:Kk | 公害ガスの連続測定システム |
JPH05273170A (ja) * | 1992-03-27 | 1993-10-22 | Tokyo Inst Of Technol | 能動型化学センシング装置 |
JPH0868732A (ja) * | 1994-08-30 | 1996-03-12 | Yokogawa Electric Corp | ガス濃度測定装置 |
JPH09243537A (ja) * | 1996-03-08 | 1997-09-19 | Yokogawa Electric Corp | ガス測定装置 |
JP2011505554A (ja) * | 2007-11-29 | 2011-02-24 | エッセアチエンメイ・ コーペラティヴァ・メカニチ・イモラ・ソシエタ・コーペラティヴァ | 気体混合物の組成を検出するための方法及び装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07174674A (ja) * | 1993-12-20 | 1995-07-14 | Yokogawa Electric Corp | 校正用標準ガス発生装置 |
-
2018
- 2018-09-28 JP JP2020547850A patent/JP7180683B2/ja active Active
- 2018-09-28 WO PCT/JP2018/036487 patent/WO2020065982A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572094A (ja) * | 1991-09-10 | 1993-03-23 | Amenitec:Kk | 公害ガスの連続測定システム |
JPH05273170A (ja) * | 1992-03-27 | 1993-10-22 | Tokyo Inst Of Technol | 能動型化学センシング装置 |
JPH0868732A (ja) * | 1994-08-30 | 1996-03-12 | Yokogawa Electric Corp | ガス濃度測定装置 |
JPH09243537A (ja) * | 1996-03-08 | 1997-09-19 | Yokogawa Electric Corp | ガス測定装置 |
JP2011505554A (ja) * | 2007-11-29 | 2011-02-24 | エッセアチエンメイ・ コーペラティヴァ・メカニチ・イモラ・ソシエタ・コーペラティヴァ | 気体混合物の組成を検出するための方法及び装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024014200A1 (ja) * | 2022-07-12 | 2024-01-18 | ソニーセミコンダクタソリューションズ株式会社 | 電気化学センサ回路、匂い成分識別用電気化学センサ回路、及び匂い識別システム |
Also Published As
Publication number | Publication date |
---|---|
JP7180683B2 (ja) | 2022-11-30 |
JPWO2020065982A1 (ja) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Laref et al. | On the optimization of the support vector machine regression hyperparameters setting for gas sensors array applications | |
WO2019163966A1 (ja) | ニオイ検出装置、ニオイ検出方法、及びコンピュータ読み取り可能な記録媒体 | |
WO2020105566A1 (ja) | 情報処理装置、情報処理装置の制御方法、プログラム、算出装置、及び算出方法 | |
Kim et al. | Quantitative analysis of fragrance and odorants released from fresh and decaying strawberries | |
Ahmadou et al. | Reduction of drift impact in gas sensor response to improve quantitative odor analysis | |
CN111458395B (zh) | 一种改变q值的卡尔曼滤波方法、装置及可读存储介质 | |
WO2020065982A1 (ja) | 測定装置、および測定方法 | |
WO2018097197A1 (ja) | 化学センサ測定による試料識別方法、試料識別装置、及び入力パラメータ推定方法 | |
Morichetti et al. | Predicted future changes in the mean seasonal carbon cycle due to climate change | |
JP4013705B2 (ja) | におい測定装置 | |
JP4736911B2 (ja) | におい評価装置 | |
WO2020065981A1 (ja) | データ処理装置、測定システム、データ処理方法、測定方法、およびプログラム | |
WO2023282272A1 (ja) | ガス識別方法及びガス識別システム | |
WO2020026327A1 (ja) | 情報処理装置、制御方法、及びプログラム | |
Zubieta Rico et al. | Efficient sampling of free energy landscapes with functions in Sobolev spaces | |
Siadat et al. | Detection optimization using a transient feature from a metal oxide gas sensor array | |
JP2002350312A (ja) | におい識別装置 | |
JP6796857B2 (ja) | 化学センサによる試料識別方法及び装置 | |
AU2020321043B2 (en) | Continuous wave sonic analyzer | |
WO2020065983A1 (ja) | 情報処理装置、制御方法、及びプログラム | |
JP2024048694A (ja) | モニタリングシステム | |
WO2020026326A1 (ja) | 情報処理装置、制御方法、及びプログラム | |
CN104850753A (zh) | 一种烟用纸张材料识别方法及装置 | |
Mamat et al. | The design and testing of an Electronic Nose prototype for classification problem | |
CN117368505A (zh) | 一种血药浓度分析仪的检测控制方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18935627 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547850 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18935627 Country of ref document: EP Kind code of ref document: A1 |