WO2020029028A1 - 正极材料的制备方法、正极材料及锂离子电池 - Google Patents
正极材料的制备方法、正极材料及锂离子电池 Download PDFInfo
- Publication number
- WO2020029028A1 WO2020029028A1 PCT/CN2018/099018 CN2018099018W WO2020029028A1 WO 2020029028 A1 WO2020029028 A1 WO 2020029028A1 CN 2018099018 W CN2018099018 W CN 2018099018W WO 2020029028 A1 WO2020029028 A1 WO 2020029028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- solution
- electrode material
- lithium
- material precursor
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 40
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 11
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 10
- 239000000243 solution Substances 0.000 claims abstract description 105
- 239000002243 precursor Substances 0.000 claims abstract description 65
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 24
- 239000002131 composite material Substances 0.000 claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011259 mixed solution Substances 0.000 claims abstract description 18
- 238000000975 co-precipitation Methods 0.000 claims abstract description 16
- 238000004448 titration Methods 0.000 claims abstract description 15
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 11
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 11
- 239000012670 alkaline solution Substances 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims abstract description 9
- 230000002378 acidificating effect Effects 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 239000010406 cathode material Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 238000004090 dissolution Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 10
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- WPUINVXKIPAAHK-UHFFFAOYSA-N aluminum;potassium;oxygen(2-) Chemical compound [O-2].[O-2].[Al+3].[K+] WPUINVXKIPAAHK-UHFFFAOYSA-N 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 claims description 4
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 description 28
- 150000002500 ions Chemical class 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 12
- 238000000576 coating method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 8
- 239000002344 surface layer Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 6
- 229910052808 lithium carbonate Inorganic materials 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011149 active material Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the technical field of lithium ion batteries, and in particular, to a method for preparing a positive electrode material, a positive electrode material, and a lithium ion battery.
- Ions dissolve and reduce the decomposition of the electrolyte, improving the cycling performance of lithium batteries.
- some cladding layers have better conductivity, can improve the conductivity of the electrode, and are beneficial to the rate performance of lithium batteries.
- a plurality of raw materials of a precursor and a coating material are directly mechanically mixed, and then heat treated to obtain an oxide-coated positive electrode material.
- this coating method cannot obtain a uniform, complete and efficient coating layer.
- the use of multiple raw materials has a high production cost, and the obtained single-oxide-coated positive electrode material has limited improvement in the electrochemical performance of the battery.
- the coating layer of the obtained positive electrode material can be tightly attached to the positive electrode material
- the surface of the substrate has good uniformity and strong binding force, which can effectively protect the positive electrode material, avoid contact with the electrolyte and cause side reactions, and the prepared lithium battery has good electrochemical performance.
- the technical solution provided by the present invention is: a method for preparing a positive electrode material, including the following steps:
- the lithium source and the coated positive electrode material precursor are mixed according to a preset lithium-to-metal ratio, and a composite oxide coated positive electrode material is obtained by sintering.
- the solvent is one of an aqueous solution or an ethanol solution, and during the dissolution process, the temperature of the aqueous solution or the ethanol solution is controlled to 25 ° C-80 ° C.
- stirring is performed simultaneously during the dissolution process, and the stirring speed is 200 rpm-450 rpm.
- the aluminum source includes one of sodium metaaluminate and potassium metaaluminate
- the zirconium source includes one of zirconium oxychloride, zirconium sulfate, and zirconium nitrate.
- the alkaline solution is one or a combination of a sodium hydroxide solution, a sodium metaaluminate solution, or an aqueous ammonia solution.
- the pH value of the pretreatment solution is 8-11, and the pH value is stabilized to a preset value during the co-precipitation process.
- a preset lithium-to-metal ratio of the lithium source to the coated cathode material precursor is 1.00 to 1.20
- a heat treatment temperature during the sintering process is 300 ° C. to 1000 ° C.
- a heat treatment time is 3 h to 24 h.
- the invention also provides a positive electrode material, which is prepared by the following method steps:
- the lithium source and the coated positive electrode material precursor are mixed according to a preset lithium-to-metal ratio, and a composite oxide coated positive electrode material is obtained by sintering.
- the solvent is one of an aqueous solution or an ethanol solution, and during the dissolution process, the temperature of the aqueous solution or the ethanol solution is controlled to 25 ° C-80 ° C.
- stirring is performed simultaneously during the dissolution process, and the stirring speed is 200 rpm-450 rpm.
- the aluminum source includes one of sodium metaaluminate and potassium metaaluminate
- the zirconium source includes one of zirconium oxychloride, zirconium sulfate, and zirconium nitrate.
- the alkaline solution is one or a combination of a sodium hydroxide solution, a sodium metaaluminate solution, or an aqueous ammonia solution.
- the pH value of the pretreatment solution is 8-11, and the pH value is stabilized to a preset value during the co-precipitation process.
- a preset lithium-to-metal ratio of the lithium source to the coated cathode material precursor is 1.00 to 1.20
- a heat treatment temperature during the sintering process is 300 ° C. to 1000 ° C.
- a heat treatment time is 3 h to 24 h.
- the present invention further provides a lithium-ion battery, which includes a positive electrode sheet formed by pressing the positive electrode material.
- the method for preparing a positive electrode material includes the following steps: dissolving a positive electrode material precursor in a solvent to obtain a mixed solution; and adding an alkaline solution dropwise to the mixed solution to obtain an alkaline pretreatment.
- Treatment solution simultaneous addition of a zirconium source acidic titration solution and an aluminum source alkaline titration solution to the pretreatment solution for co-precipitation to obtain a coated positive electrode material precursor; press the lithium source and the coated positive electrode material precursor according to The lithium is mixed with a predetermined metal ratio and sintered to obtain a composite oxide-coated positive electrode material.
- the invention adopts simultaneous titration to form a coprecipitation for coating, and then sintering to finally obtain a composite oxide-coated positive electrode material.
- the coating layer has the characteristics of good uniformity and strong binding force.
- the positive electrode material coating layer is in direct contact with the electrolyte, which effectively inhibits the dissolution of the active material of the positive electrode material, and reduces the decomposition of the electrolyte, thereby improving the cycle performance of the lithium ion battery.
- the method has simple steps, easy control, short preparation time, energy saving and low cost.
- FIG. 1 is a preparation flow chart of the cathode material of the present invention.
- FIG. 2 is an XRD pattern of the uncoated positive electrode material obtained in the first and second embodiments of the present invention.
- FIG. 3A is a SEM image of the positive electrode material obtained in the first and second embodiments in FIG. 2.
- FIG. 3B is an energy spectrum of the positive electrode material obtained in the first and second embodiments in FIG. 2.
- FIG. 4 is a first-time charge and discharge curve diagram of the cathode material shown in FIG. 2.
- FIG. 5 is a cycle characteristic curve diagram of a lithium ion battery using the cathode material shown in FIG. 2.
- Lithium-ion batteries have the advantages of high specific capacity, good cycling performance, good thermal stability, and environmental friendliness. They have been widely used in the field of mobile electronic equipment, energy storage equipment, electric vehicles, and hybrid electric vehicles. Ternary materials have become a hot topic in battery cathode materials because they have the advantages of high specific capacity, good safety performance, and lower cost than ordinary lithium batteries.
- the existing cathode materials are susceptible to corrosion due to side reactions with the electrolyte during the charge and discharge process. , Which causes its metal ions to dissolve and produce harmful substances, which seriously affects the performance of lithium-ion batteries and limits its applications.
- the method of the present invention includes the following steps:
- the solvent is one of an aqueous solution or an ethanol solution.
- the temperature of the aqueous solution or the ethanol solution is controlled to 25 ° C to 80 ° C.
- a fixed value within the temperature range is adopted and stabilized at this value ("stable" includes floating within an acceptable range, such as within ⁇ 1 ° C of the set value).
- stirring is performed at the same time, and the stirring speed is 200 rpm-450 rpm.
- the allowable error is also kept in practice.
- the alkaline solution is one or a combination of a sodium hydroxide solution, a sodium metaaluminate solution, or an ammonia solution.
- the pH value of the pretreatment solution is 8-11, and the pH value is stable to a preset value during the co-precipitation process.
- the aluminum source includes one of sodium metaaluminate and potassium metaaluminate;
- the zirconium source includes one of zirconium oxychloride, zirconium sulfate, and zirconium nitrate.
- the lithium source and the coated positive electrode material precursor at a preset lithium-to-metal ratio, and sinter to obtain a composite oxide-coated positive electrode material.
- the "lithium” in the preset lithium-to-metal ratio corresponds to the lithium element in the lithium source; the "metal” corresponds to the metal element in the precursor covering the positive electrode material; the ratio refers to the mass ratio.
- the preset lithium ratio of the lithium source to the coated cathode material precursor is 1.00-1.20, the temperature of the heat treatment during the sintering process is 300 ° C-1000 ° C, and the time of the heat treatment is 3h-24h.
- the following method is used as an example to prepare the positive electrode material and the lithium battery, and characterize the performance of the product obtained in the specific embodiment.
- a Zr source acidic titration solution that is, a Zr source acid coating precursor solution (referred to as a Zr solution) for later use; prepare a 0.05 mol / L Al source alkaline titration solution, that is, an Al source alkaline
- the coating precursor solution Al solution for short is reserved.
- the Zr solution is added dropwise to the pretreatment solution, wherein the amount of Zr element is calculated as 0.05% of the mass of the cathode material precursor, and the dropping speed is 8.5ml / min; meanwhile, the Al solution is added dropwise to the pretreatment
- the solution stabilizes its pH value close to 9, and the dropping rate is 10 ml / min.
- a co-precipitation reaction occurs.
- Zr ions and Al ions settle together to form nano-sized uniform zirconium hydroxide particles and hydroxide.
- Aluminum particles, two kinds of particles are evenly adsorbed on the surface layer of the positive electrode material precursor particles.
- an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain a composite hydroxide-coated positive electrode material precursor;
- the lithium carbonate and the coated positive electrode material precursor are mixed according to a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and held for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h.
- a composite oxide-coated positive electrode material that is, a finished ternary material.
- the Zr solution is added dropwise to the pretreatment solution, wherein the amount of Zr element is calculated as 0.05% of the mass of the cathode material precursor, and the dropping speed is 8.5ml / min; meanwhile, the Al solution is added dropwise to the pretreatment
- the solution stabilizes its pH value close to 9, and the dropping rate is 10 ml / min.
- a co-precipitation reaction occurs.
- Zr ions and Al ions settle together to form nano-sized uniform zirconium hydroxide particles and hydroxide.
- Aluminum particles, two kinds of particles are evenly adsorbed on the surface layer of the positive electrode material precursor particles.
- an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain a composite hydroxide-coated positive electrode material precursor;
- the Zr solution is added dropwise to the pretreatment solution, wherein the amount of Zr element is calculated as 0.05% of the mass of the cathode material precursor, and the dropping speed is 8.5ml / min; meanwhile, the Al solution is added dropwise to the pretreatment
- the solution stabilizes its pH value close to 9, and the dropping rate is 10 ml / min.
- a co-precipitation reaction occurs.
- Zr ions and Al ions settle together to form nano-sized uniform zirconium hydroxide particles and hydroxide.
- Aluminum particles, two kinds of particles are evenly adsorbed on the surface layer of the positive electrode material precursor particles.
- an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain a composite hydroxide-coated positive electrode material precursor;
- the Zr solution is added dropwise to the pretreatment solution, wherein the amount of Zr element is calculated as 0.05% of the mass of the cathode material precursor, and the dropping speed is 8.5ml / min; meanwhile, the Al solution is added dropwise to the pretreatment
- the solution stabilizes its pH value close to 9, and the dropping rate is 10 ml / min.
- a co-precipitation reaction occurs.
- Zr ions and Al ions settle together to form nano-sized uniform zirconium hydroxide particles and hydroxide.
- Aluminum particles, two kinds of particles are evenly adsorbed on the surface layer of the positive electrode material precursor particles.
- an equal amount of constant temperature water at 60 ° C. is added, stirred for half an hour, and centrifuged to obtain a composite hydroxide-coated positive electrode material precursor;
- the lithium carbonate and the coated positive electrode material precursor are mixed according to a lithium-to-metal ratio of 1: 1.05, heated to 700 ° C at 3 ° C / min, and held for 3h, and then heated to 940 ° C at 3 ° C / min, and held for 12h.
- a composite oxide-coated positive electrode material that is, a finished ternary material.
- the Zr solution is added dropwise to the pretreatment solution, wherein the amount of Zr element is calculated as 0.05% of the mass of the cathode material precursor, and the dropping speed is 8.5ml / min; meanwhile, the Al solution is added dropwise to the pretreatment
- the solution stabilizes its pH value close to 9, and the dropping rate is 10 ml / min.
- a co-precipitation reaction occurs.
- Zr ions and Al ions settle together to form nano-sized uniform zirconium hydroxide particles and hydroxide.
- Aluminum particles, two kinds of particles are evenly adsorbed on the surface layer of the positive electrode material precursor particles.
- an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain a composite hydroxide-coated positive electrode material precursor;
- the lithium carbonate and the coated positive electrode material precursor were mixed according to a lithium-to-metal ratio of 1: 1.06, heated to 700 ° C at 3 ° C / min, and maintained for 3 hours, and then heated to 940 ° C at 3 ° C / min, and maintained for 12 hours.
- a composite oxide-coated positive electrode material that is, a finished ternary material.
- the Zr solution is added dropwise to the pretreatment solution, wherein the amount of Zr element is calculated as 0.05% of the mass of the cathode material precursor, and the dropping speed is 8.5ml / min; meanwhile, the Al solution is added dropwise to the pretreatment
- the solution stabilizes its pH value close to 9, and the dropping rate is 10 ml / min.
- a co-precipitation reaction occurs.
- Zr ions and Al ions settle together to form nano-sized uniform zirconium hydroxide particles and hydroxide.
- Aluminum particles, two kinds of particles are evenly adsorbed on the surface layer of the positive electrode material precursor particles.
- an equal amount of constant temperature water at 50 ° C is added, stirred for half an hour, and centrifuged to obtain a composite hydroxide-coated positive electrode material precursor;
- the lithium carbonate and the coated positive electrode material precursor were mixed according to a lithium-to-metal ratio of 1: 1.05, heated to 680 ° C at 3 ° C / min, and maintained for 3 hours, and then heated to 960 ° C at 3 ° C / min, and maintained for 15 hours.
- a composite oxide-coated positive electrode material that is, a finished ternary material.
- FIG. 2 shows XRD spectra of the coated positive electrode materials obtained in Example 1 and Example 2.
- the uncoated positive electrode material precursor has a typical ⁇ -M (OH) 2 (M is Ni, Co , Mn) layered structure, the strongest diffraction peak appears around 20 ° corresponding to the (001) crystal plane, in addition to (101), (100), (102), (110), (111) and other crystal planes also occur Diffraction peaks; the positions and relative intensities of the diffraction peaks in the XRD pattern of the positive electrode material obtained after coating in FIG.
- FIG. 2 are basically the same, indicating that the coating material does not damage the layered structure of the precursor.
- the coated particles have the same size and are gathered on the surface of the matrix particles (large particles) of the layered structure; as shown in FIG. 3B, aluminum is viewed from the energy spectrum.
- the distribution of the elements and zirconium elements coincide, and it can be seen that the composite oxide layer is uniformly and densely coated on the surface layer of the matrix particles.
- the first charge-discharge curve (as shown in FIG. 4) and the cycle performance curve (as shown in FIG. 5) were further tested.
- FIG. 4 the first charge-discharge curve
- FIG. 5 the cycle performance curve
- FIG. 5 shows the first charge and discharge curves of the positive electrode materials in Examples 1 and 2 at the same current density (1C) in the range of 2.8V-4.4V.
- the materials all show a relatively obvious charge and discharge platform.
- the charging platform is Around 3.78V
- the discharge platform is about 3.68V
- the first discharge capacity of the two is about 165mAh / g.
- FIG. 6 compares the cycle performance of the lithium battery made of the positive electrode material in Example 1 and Example 2. It can be seen that the cycle characteristic curves of Example 1 and Example 2 have basically the same trend.
- the battery cycle in Example 1 After charging and discharging 100 times, the specific capacity is about 136.5mAh / g, which is equivalent to 90.7% of the initial specific capacity of 150.5mAh / g.
- Example 2 the specific capacity of the battery after charging and discharging 100 times is about 137.0mAh / g, which is equivalent to the initial The specific capacity is 91.3% of 150.0mAh / g, in short, the cycle performance of the battery is better.
- the structure and performance of the ternary materials obtained in Examples 3 to 6 were further verified and tested. The results are basically similar to those in Examples 1 and 2. Therefore, the method of the present invention can obtain a lithium battery anode material with better cycle performance. .
- the present invention forms two-component coated positive electrode materials of composite zirconia and alumina by co-precipitation of two coating precursors at the same time, and co-precipitation, drying, and sintering.
- the dissolution of metal ions and the reduction of the electrolytic solution make the cycle performance of the fabricated lithium battery significantly improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供一种正极材料的制备方法,包括以下步骤:将正极材料前驱体溶解于溶剂中得到混合溶液;滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;同时将锆源酸性滴定液和铝源碱性滴定液滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;锂源与所述包覆正极材料前驱体按预设配比混合,烧结制得复合氧化物包覆的正极材料。
Description
本发明涉及锂离子电池技术领域,特别是指一种正极材料的制备方法、正极材料及锂离子电池。
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
正级材料作为电极材料的关键组元,在锂电池充放电过程中,其与电解液直接接触,过渡金属氧化物型正极材料容易被溶解侵蚀,换句话说,容易导致过渡金属离子溶解;而且电解液氧化分解所生成自由基也可能导致电极材料溶解,发生的副反应同时也会产生有害物质。针对上述问题,常见的解决措施是对正极材料表面进行包覆处理,利用包覆层将电池中的活性物质(过渡金属离子)与电解液隔离,能够有效的减少副反应的发生,抑制过渡金属离子溶解和减少电解液的分解,提高锂电池的循环性能。不仅如此,一些包覆层具有较好的导电性能,能够提高电极的导电能力,对锂电池的倍率性能是有益的。现有的包覆技术中通常是将前驱体和包覆材料的多种原材料直接机械混合,然后经过热处理,得到一种氧化物包覆的正极材料。但是,这种包覆方式无法得到均匀的、完整的、高效的包覆层。同时,采用多种原材料其生产成本高,所得到的单种氧化物包覆的正极材料对电池电化学性能的提高十分有限。
发明内容
鉴于以上内容,有必要提供一种改进的正极材料的制备方法,通过同时滴定覆层前驱物溶液共沉淀原位生成包覆层,得到的正极材料的包覆层能够紧紧的依附在正极材料基体表面,均匀性好,结合力强, 可以有效地保护正极材料,避免与电解液的接触而发生副反应,制得的锂电池的电化学性能好。
本发明提供的技术方案为:一种正极材料的制备方法,包括以下步骤:
将正极材料前驱体溶解于溶剂中得到混合溶液;
滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
将锆源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得复合氧化物包覆的正极材料。
进一步地,所述正极材料前驱体具有下列化学式表示其组成:Ni
xCo
yMn
z(OH)
2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
进一步地,所述溶剂为水溶液或乙醇溶液中的一种,且在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。
进一步地,在溶解过程中同时进行搅拌,搅拌速度为200rpm-450rpm。
进一步地,铝源包括偏铝酸钠、偏铝酸钾中的一种;锆源包括氯氧化锆、硫酸锆、硝酸锆中的一种。
进一步地,所述碱性溶液为氢氧化钠溶液、偏铝酸钠溶液或氨水溶液中的一种或组合。
进一步地,所述预处理溶液的PH值为8-11,共沉淀过程中PH值稳定为预设值。
进一步地,所述锂源与所述包覆正极材料前驱体的预设锂比金属配比为1.00-1.20,烧结过程中热处理的温度为300℃-1000℃,热处理的时间为3h-24h。
本发明还提供一种正极材料,采用以下方法步骤制得:
将正极材料前驱体溶解于溶剂中得到混合溶液;
滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
将锆源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
将锂源与包覆正极材料前驱体按预设锂比金属配比混合,烧结制得复合氧化物包覆的正极材料。
进一步地,所述正极材料前驱体具有下列化学式表示其组成:Ni
xCo
yMn
z(OH)
2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
进一步地,所述溶剂为水溶液或乙醇溶液中的一种,且在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。
进一步地,在溶解过程中同时进行搅拌,搅拌速度为200rpm-450rpm。
进一步地,铝源包括偏铝酸钠、偏铝酸钾中的一种;锆源包括氯氧化锆、硫酸锆、硝酸锆中的一种。
进一步地,所述碱性溶液为氢氧化钠溶液、偏铝酸钠溶液或氨水溶液中的一种或组合。
进一步地,所述预处理溶液的PH值为8-11,共沉淀过程中PH值稳定为预设值。
进一步地,所述锂源与所述包覆正极材料前驱体的预设锂比金属配比为1.00-1.20,烧结过程中热处理的温度为300℃-1000℃,热处理的时间为3h-24h。
本发明进一步提供一种锂离子电池,包括由上述正极材料压制成型的正极片。
与现有技术相比,本发明提供的正极材料的制备方法,包括以下步骤:将正极材料前驱体溶解于溶剂中得到混合溶液;滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;将锆源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得复合氧化物包覆的正极材料。本发明采用同时滴定形成共沉淀进行包覆,然后烧结最终得到复合氧化物包覆的正极材料, 其包覆层具有均匀性好,结合力强等特点。制成的锂离子电池中正极材料包覆层与电解液直接接触,有效抑制正极材料活性物质的溶解,且减少电解液的分解,从而改善锂离子电池的循环性能。而且该方法步骤简单,易于控制,制备时间短,节约能源,低成本。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明的正极材料的制备流程图。
图2为未包覆、本发明的第一实施方式和第二实施方式得到的正极材料的XRD图。
图3A为图2中的第一、第二实施方式得到的正极材料的SEM图。
图3B为图2中的第一、第二实施方式得到的正极材料的能谱图。
图4为图2中所示的正极材料的首次充电、放电曲线图。
图5为采用图2中所示的正极材料制成的锂离子电池的循环特性曲线图。
附图标记说明:
无。
如下具体实施方式将结合上述附图进一步说明本发明实施例。
为了能够更清楚地理解本发明实施例的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实 施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
锂离子电池具有比容量高、循环性能好、热稳定性能好,对环境友好等优点,在移动电子设备领域、储能设备以及电动车、混合动力电动汽车领域得到了广泛的应用。三元材料因为具有比容量高,安全性能好,成本较普通锂电池低等优点,成为电池正极材料研究的热点,但现有的正极材料在充放电过程易与电解液产生副反应而被腐蚀,导致其金属离子溶解并产生有害物质,严重影响锂离子电池的性能,限制其应用。
下面结合图1对本发明提供的一种正极材料的制备方法进行详细阐述。
本发明的所述方法,包括以下步骤:
101:将正极材料前驱体溶解于溶剂中得到混合溶液;
其中,
所述正极材料前驱体具有下列化学式表示其组成:Ni
xCo
yMn
z(OH)
2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
所述溶剂为水溶液或乙醇溶液中的一种。
在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。实际操作时采用温度区间内的一个固定值,并稳定在该数值(“稳定”包括可接受范围内浮动,如设定值的±1℃以内)。
溶解过程中同时进行搅拌,搅拌速度为200rpm-450rpm。实际操作时也同样保留允许误差。
102:滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;
其中,
所述碱性溶液为氢氧化钠溶液、偏铝酸钠溶液或氨水溶液中的一种或组合。
所述预处理溶液的PH值为8-11,共沉淀过程中PH值稳定为预设值。该预设值为预设范围内一固定值,如PH=8、9、10、11等。
103:将锆源酸性滴定液和铝源碱性滴定液同步滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;
其中,
铝源包括偏铝酸钠、偏铝酸钾中的一种;锆源包括氯氧化锆、硫酸锆、硝酸锆中的一种。
104:将锂源与所述包覆正极材料前驱体按预设锂比金属配比混合,烧结制得复合氧化物包覆的正极材料。预设锂比金属配比中“锂”对应锂源中的锂元素;“金属”对应包覆正极材料前驱体中的金属元素;配比是指质量比。
其中,
所述锂源与所述包覆正极材料前驱体的预设锂配比为1.00-1.20,烧结过程中热处理的温度为300℃-1000℃,热处理的时间为3h-24h。
下面举例应用上述方法制备正极材料和锂电池,并对具体实施方式的所得产物的性能进行表征。
首先,配制0.05mol/L的Zr源酸性滴定液,也即Zr源酸性覆层前驱物溶液(简称Zr溶液)备用;配制0.05mol/L的Al源碱性滴定液,也即Al源碱性覆层前驱物溶液(简称Al溶液)备用。
实施例1
称取正极材料前驱体(Ni
5Co
2Mn
3(OH)
2),将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理 溶液;
将Zr溶液滴加入所述预处理溶液中,其中Zr元素的加入量按正极材料前驱体的质量的0.05%计算,滴加的速度为8.5ml/min;同时将Al溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度为10ml/min;Zr溶液、Al溶液滴加后发生共沉淀反应,Zr离子、Al离子一起沉降形成纳米级均匀的氢氧化锆颗粒和氢氧化铝颗粒,两种颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到复合氢氧化物包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到复合氧化物包覆的正极材料,即成品三元材料。
实施例2
称取正极材料前驱体(Ni
5Co
2Mn
3(OH)
2),将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近10的预处理溶液;
将Zr溶液滴加入所述预处理溶液中,其中Zr元素的加入量按正极材料前驱体的质量的0.05%计算,滴加的速度为8.5ml/min;同时将Al溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度为10ml/min;Zr溶液、Al溶液滴加后发生共沉淀反应,Zr离子、Al离子一起沉降形成纳米级均匀的氢氧化锆颗粒和氢氧化铝颗粒,两种颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到复合氢氧化物包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体中金属元素按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以2℃/min 升温至940℃,保温12h,得到复合氧化物包覆的正极材料,即成品三元材料。
实施例3
称取正极材料前驱体Ni
5Co
2Mn
3(OH)
2,将其置于50℃恒温的水溶液中,并以400rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Zr溶液滴加入所述预处理溶液中,其中Zr元素的加入量按正极材料前驱体的质量的0.05%计算,滴加的速度为8.5ml/min;同时将Al溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度为10ml/min;Zr溶液、Al溶液滴加后发生共沉淀反应,Zr离子、Al离子一起沉降形成纳米级均匀的氢氧化锆颗粒和氢氧化铝颗粒,两种颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到复合氢氧化物包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到复合氧化物包覆的正极材料,即成品三元材料。
实施例4
称取正极材料前驱体Ni
5Co
2Mn
3(OH)
2,将其置于60℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Zr溶液滴加入所述预处理溶液中,其中Zr元素的加入量按正极材料前驱体的质量的0.05%计算,滴加的速度为8.5ml/min;同时将Al溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度 为10ml/min;Zr溶液、Al溶液滴加后发生共沉淀反应,Zr离子、Al离子一起沉降形成纳米级均匀的氢氧化锆颗粒和氢氧化铝颗粒,两种颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量60℃恒温水,搅拌半小时,离心干燥得到复合氢氧化物包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到复合氧化物包覆的正极材料,即成品三元材料。
实施例5
称取正极材料前驱体Ni
5Co
2Mn
3(OH)
2,将其置于50℃恒温的水溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Zr溶液滴加入所述预处理溶液中,其中Zr元素的加入量按正极材料前驱体的质量的0.05%计算,滴加的速度为8.5ml/min;同时将Al溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度为10ml/min;Zr溶液、Al溶液滴加后发生共沉淀反应,Zr离子、Al离子一起沉降形成纳米级均匀的氢氧化锆颗粒和氢氧化铝颗粒,两种颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到复合氢氧化物包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.06混料,以3℃/min升温至700℃,保温3h,再以3℃/min升温至940℃,保温12h,得到复合氧化物包覆的正极材料,即成品三元材料。
实施例6
称取正极材料前驱体Ni
5Co
2Mn
3(OH)
2,将其置于50℃恒温的水 溶液中,并以300rpm的速度搅拌得到混合溶液;
滴加质量浓度为32%的氢氧化钠溶液得到PH值接近9的预处理溶液;
将Zr溶液滴加入所述预处理溶液中,其中Zr元素的加入量按正极材料前驱体的质量的0.05%计算,滴加的速度为8.5ml/min;同时将Al溶液滴加入所述预处理溶液中稳定其PH值接近9,滴加的速度为10ml/min;Zr溶液、Al溶液滴加后发生共沉淀反应,Zr离子、Al离子一起沉降形成纳米级均匀的氢氧化锆颗粒和氢氧化铝颗粒,两种颗粒均匀吸附于所述正极材料前驱体颗粒的表层,化学反应结束后加等量50℃恒温水,搅拌半小时,离心干燥得到复合氢氧化物包覆正极材料前驱体;
将所述碳酸锂与包覆正极材料前驱体按照锂比金属比为1:1.05混料,以3℃/min升温至680℃,保温3h,再以3℃/min升温至960℃,保温15h,得到复合氧化物包覆的正极材料,即成品三元材料。
下面将上述实施例1和实施例2获得正极材料进行性能测试,包括物相组成、微观形貌、首次充放电性能及循环性能的测试。首先,图2示出了实施例1与实施例2得到包覆后正极材料的XRD谱图,其中未包覆的正极材料前驱体具有典型的β-M(OH)
2(M为Ni、Co、Mn)层状结构,最强衍射峰出现在20°附近对应(001)晶面,此外还有(101)、(100)、(102)、(110)、(111)等晶面也产生衍射峰;图2中包覆后得到的正极材料的XRD图中各衍射峰的位置、相对强度基本一致,说明包覆物质不会破坏前驱体的层状结构。结合图3A示出的正极材料的扫描照片,可以看出包覆颗粒大小一致,聚集在层状结构的基体颗粒(大颗粒)的表面上;如图3B所示,从能谱图上看铝元素和锆元素的分布相重合,可以看出复合氧化物层均匀且密实地包覆在基体颗粒的表层。为表征上述正极材料的电性能,进一步测试了首次充放电曲线(如图4所示)和循环性能曲线(如图5所示)。 图5显示实施例1和实施例2中的正极材料在2.8V-4.4V范围内同一电流密度(1C)下的首次充放电曲线,材料均表现出了比较明显的充放电平台,充电平台为3.78V左右,放电平台为3.68V左右,两者的首次放电容量为165mAh/g左右。图6对比了实施例1和实施例2中的正极材料制成的锂电池的循环性能,可以看出,实施例1与实施例2的循环特性曲线变化趋势基本一致,实施例1中电池循环充放电100次后比容量约为136.5mAh/g,相当于初始比容量150.5mAh/g的90.7%;实施例2中电池循环充放电100次后比容量约为137.0mAh/g,相当于初始比容量150.0mAh/g的91.3%,总之电池的循环性能较好。进一步验证测试实施例3至实施例6获得的三元材料的结构和性能,其结果与实施例1、实施例2基本接近,所以通过本发明的方法能够获得循环性能较佳的锂电池正极材料。在其他实施方式中,所述正极材料前驱体不限定为Ni
5Co
2Mn
3(OH)
2,所述溶剂不限定为水,可以是乙醇;所述水溶液的稳定不限定为50℃、60℃,可以是25℃-80℃之间任意数值,包括本数;所述搅拌速度也不限定为本实施方式,可以为200rpm-450rpm之间的任意数值;所述Zr源还可以是氯氧化锆或硝酸锆;所述铝源还可以是偏铝酸钾。在其他实施方式中,所述锂比金属比、热处理温度、热处理时间、溶液PH值,所述锂源不限定为本实施方式。
综上,本发明通过同时滴定两种覆层前驱体,经共沉淀、干燥、烧结等形成复合氧化锆、氧化铝的双组分包覆的正极材料,其中复合包覆层共同作用抑制基体中金属离子的溶解、减少电解液的分解,使得制成的锂电池的循环性能得到明显改善。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。
Claims (10)
- 一种正极材料的制备方法,其特征在于:包括以下步骤:将正极材料前驱体溶解于溶剂中得到混合溶液;滴加碱性溶液至所述混合溶液中得到碱性的预处理溶液;同时将锆源酸性滴定液和铝源碱性滴定液滴加到所述预处理溶液中进行共沉淀得到包覆正极材料前驱体;将锂源与所述包覆正极材料前驱体按锂比金属配比混合,烧结制得复合氧化物包覆的正极材料。
- 根据权利要求1所述的正极材料的制备方法,其特征在于:所述正极材料前驱体具有下列化学式表示其组成:Ni xCo yMn z(OH) 2(x+y+z=1,0≤x≤1,0≤y≤1,0≤z≤1)。
- 根据权利要求1所述的正极材料的制备方法,其特征在于:所述溶剂为水溶液或乙醇溶液中的一种,且在溶解过程中,所述水溶液或所述乙醇溶液的温度控制为25℃-80℃。
- 根据权利要求3所述的正极材料的制备方法,其特征在于:在溶解过程中同时进行搅拌,搅拌速度为200rpm-450rpm。
- 根据权利要求1所述的正极材料的制备方法,其特征在于:铝源包括偏铝酸钠、偏铝酸钾中的一种;锆源包括氯氧化锆、硫酸锆、硝酸锆中的一种。
- 根据权利要求1所述的正极材料的制备方法,其特征在于:所述碱性溶液为氢氧化钠溶液、偏铝酸钠溶液或氨水溶液中的一种或组合。
- 根据权利要求1所述的正极材料的制备方法,其特征在于:所述预处理溶液的PH值为8-11,共沉淀过程中PH值稳定为预设值。
- 根据权利要求1所述的正极材料的制备方法,其特征在于:所述锂源与所述包覆正极材料前驱体的锂比金属配比为1.00-1.20,烧结过程中热处理的温度为300℃-1000℃,热处理的时间为3h-24h。
- 一种正极材料,其特征在于:采用如权利要求1至8中任一项 所述的方法得到。
- 一种锂离子电池,其特征在于:包括由如权利要求9所述的材料压制成型的正极片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880001592.5A CN111095619B (zh) | 2018-08-06 | 2018-08-06 | 正极材料的制备方法、正极材料及锂离子电池 |
PCT/CN2018/099018 WO2020029028A1 (zh) | 2018-08-06 | 2018-08-06 | 正极材料的制备方法、正极材料及锂离子电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/099018 WO2020029028A1 (zh) | 2018-08-06 | 2018-08-06 | 正极材料的制备方法、正极材料及锂离子电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020029028A1 true WO2020029028A1 (zh) | 2020-02-13 |
Family
ID=69413954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099018 WO2020029028A1 (zh) | 2018-08-06 | 2018-08-06 | 正极材料的制备方法、正极材料及锂离子电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111095619B (zh) |
WO (1) | WO2020029028A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114229921A (zh) * | 2021-12-22 | 2022-03-25 | 西南科技大学 | Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法 |
CN114566393A (zh) * | 2022-03-23 | 2022-05-31 | 上海奥威科技开发有限公司 | 一种用于锂离子电容器的复合正极材料及其应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114644368B (zh) * | 2020-12-18 | 2024-03-26 | 中国石油化工股份有限公司 | 正极材料前驱体及其制备方法和正极材料及其应用 |
CN114804225A (zh) * | 2022-03-15 | 2022-07-29 | 远景动力技术(江苏)有限公司 | 三元材料前驱体及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672275A (zh) * | 2002-07-23 | 2005-09-21 | 日矿马铁利亚股份有限公司 | 锂二次电池用正极材料的制造方法 |
CN102299299A (zh) * | 2011-08-04 | 2011-12-28 | 深圳市天骄科技开发有限公司 | 锂离子电池正极材料包覆铝的制备方法 |
CN105047864A (zh) * | 2015-06-09 | 2015-11-11 | 中国科学院大学 | 锆酸锂包覆锂离子电池三元层状正极材料的制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777647B (zh) * | 2010-02-11 | 2012-02-15 | 东莞新能源科技有限公司 | 锂离子电池表面包覆正极材料及其制备方法 |
CN103531779A (zh) * | 2013-10-29 | 2014-01-22 | 重庆特瑞电池材料股份有限公司 | 用于锂离子电池的层状镍钴锰酸锂正极材料及其制备方法 |
CN106058188A (zh) * | 2016-07-14 | 2016-10-26 | 中南大学 | 一种具有核壳结构的锂离子电池复合正极材料LiNi1‑x‑yMxAlyO2及其制备方法 |
CN106654237B (zh) * | 2017-02-17 | 2019-06-21 | 中国科学院过程工程研究所 | 一种镍钴铝锂离子电池正极材料及其制备方法和应用 |
-
2018
- 2018-08-06 CN CN201880001592.5A patent/CN111095619B/zh active Active
- 2018-08-06 WO PCT/CN2018/099018 patent/WO2020029028A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672275A (zh) * | 2002-07-23 | 2005-09-21 | 日矿马铁利亚股份有限公司 | 锂二次电池用正极材料的制造方法 |
CN102299299A (zh) * | 2011-08-04 | 2011-12-28 | 深圳市天骄科技开发有限公司 | 锂离子电池正极材料包覆铝的制备方法 |
CN105047864A (zh) * | 2015-06-09 | 2015-11-11 | 中国科学院大学 | 锆酸锂包覆锂离子电池三元层状正极材料的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114229921A (zh) * | 2021-12-22 | 2022-03-25 | 西南科技大学 | Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法 |
CN114229921B (zh) * | 2021-12-22 | 2023-09-15 | 西南科技大学 | Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法 |
CN114566393A (zh) * | 2022-03-23 | 2022-05-31 | 上海奥威科技开发有限公司 | 一种用于锂离子电容器的复合正极材料及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111095619A (zh) | 2020-05-01 |
CN111095619B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113161548B (zh) | 一种无钴的镍锰正极材料及其制备方法和应用 | |
TWI398033B (zh) | 用於鋰二次電池之高安全陰極活性材料與製備該材料及包含該材料之鋰二次電池之方法 | |
JP5742935B2 (ja) | 正極活物質粒子、並びにそれを用いた正極及び全固体電池 | |
CN103413930B (zh) | 锂离子导体Li2MO3(M=Ti、Si、Zr)包覆改性的LiNi1/2Mn3/2O4正极材料及制备方法 | |
US6372385B1 (en) | Active material for positive electrode used in lithium secondary battery and method of manufacturing same | |
KR102759857B1 (ko) | 리튬 이온 배터리용 복합 캐소드 재료, 리튬 이온 배터리, 및 차량 | |
Zhang et al. | Enhanced electrochemical performances of Li1. 2Ni0. 2Mn0. 6O2 cathode materials by coating LiAlO2 for lithium-ion batteries | |
CN103928673B (zh) | 一种复合多元锂离子电池正极材料及其制备方法 | |
KR101429531B1 (ko) | 코어-쉘 이중층 구조를 갖는 리튬이차전지 양극활물질 및 제조방법 그리고, 그 양극활물질을 포함한 리튬이차전지 | |
CN113488626B (zh) | 锂二次电池用锂复合氧化物及其制备方法 | |
CN107681151A (zh) | 锂二次电池用锂复合氧化物及其制备方法 | |
WO2020029028A1 (zh) | 正极材料的制备方法、正极材料及锂离子电池 | |
CN105932250B (zh) | 一种金属掺杂尖晶石结构快离子导体包覆含镍正极材料的制备方法及应用 | |
CN110034274B (zh) | 改性三元正极材料、其制备方法及锂离子电池 | |
CN105932251B (zh) | 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用 | |
CN105938899A (zh) | 一种快离子导体包覆改性锂离子电池正极材料的制备方法及应用 | |
CN111762768A (zh) | 尖晶石型锰酸锂-磷酸盐复合正极材料及其制备方法 | |
CN106602024A (zh) | 一种表面原位修饰型富锂材料及其制备方法 | |
Zhang et al. | Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials for Li-ion batteries | |
EP4369440A1 (en) | High-nickel ternary positive electrode material, preparation method therefor and use thereof, and lithium battery | |
Heo et al. | Enhanced electrochemical performance of ionic-conductor coated Li [Ni0. 7Co0. 15Mn0. 15] O2 | |
CN112310353A (zh) | 一种锂离子电池复合正极材料及其制备方法 | |
CN116632190A (zh) | 正极材料及其制备方法、二次电池和用电装置 | |
Tang et al. | La doping and coating enabled by one-step method for high performance Li1. 2Mn0. 54Ni0. 13Co0. 13O2 Li-rich cathode | |
WO2020029029A1 (zh) | 正极材料的制备方法、正极材料及锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18929127 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18929127 Country of ref document: EP Kind code of ref document: A1 |