WO2020004021A1 - 双方向スイッチ素子 - Google Patents
双方向スイッチ素子 Download PDFInfo
- Publication number
- WO2020004021A1 WO2020004021A1 PCT/JP2019/023188 JP2019023188W WO2020004021A1 WO 2020004021 A1 WO2020004021 A1 WO 2020004021A1 JP 2019023188 W JP2019023188 W JP 2019023188W WO 2020004021 A1 WO2020004021 A1 WO 2020004021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- algan layer
- switch element
- bidirectional switch
- algan
- Prior art date
Links
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 346
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 230000002457 bidirectional effect Effects 0.000 claims description 139
- 239000000203 mixture Substances 0.000 claims description 59
- 230000007423 decrease Effects 0.000 claims description 6
- 230000000052 comparative effect Effects 0.000 description 19
- 239000007789 gas Substances 0.000 description 13
- 125000005842 heteroatom Chemical group 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 230000005533 two-dimensional electron gas Effects 0.000 description 11
- 239000012535 impurity Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000010292 electrical insulation Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/343—Gate regions of field-effect devices having PN junction gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/83—FETs having PN junction gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/602—Heterojunction gate electrodes for FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Definitions
- the present disclosure generally relates to a bidirectional switch element, and more particularly, to a bidirectional switch element including two gate electrodes.
- Patent Document 1 a bidirectional switch element that is a double gate (dual gate) semiconductor element has been proposed.
- a semiconductor layer laminate is formed on a conductive substrate made of silicon with a buffer layer made of AlN interposed therebetween.
- a first layer (GaN layer) made of undoped GaN and a second layer (first AlGaN layer) made of undoped AlGaN are sequentially stacked from below.
- a channel region which is a two-dimensional electron gas layer is generated.
- first source electrode On the semiconductor layer laminate, a first ohmic electrode (first source electrode) and a second ohmic electrode (second source electrode) are formed at an interval from each other.
- the first p-type nitride semiconductor layer was formed in the region between the first ohmic electrode and the second ohmic electrode on the semiconductor layer laminate, in order from the first ohmic electrode side, with the first p-type nitride semiconductor layer interposed therebetween.
- a first gate electrode and a second gate electrode formed with a second p-type nitride semiconductor layer interposed therebetween are arranged.
- ⁇ Object of the present disclosure is to provide a bidirectional switch element capable of suppressing current collapse.
- One embodiment of the bidirectional switch element according to the present disclosure includes a substrate, an Al z Ga 1-z N layer (here, 0 ⁇ z ⁇ 1), and an Al b Ga 1-b N layer (here, 0 ⁇ b ⁇ 1), a first source electrode, a first gate electrode, a second gate electrode, a second source electrode, and a p-type Al x1 Ga 1-x1 N layer (where 0 ⁇ x1 ⁇ 1), p-type Al x2 Ga 1-x2 N layer (here, 0 ⁇ x2 ⁇ 1), and Al y Ga 1-y N layer (where 0 ⁇ y ⁇ 1, and z ⁇ y ⁇ b) and an Al w Ga 1-w N layer (here, 0 ⁇ w ⁇ 1 and z ⁇ w ⁇ b).
- the Al z Ga 1 -zN layer is formed on the substrate.
- the Al b Ga 1-b N layer is formed on the Al z Ga 1-z N layer.
- the first source electrode, said first gate electrode, the second gate electrode, and the second source electrode is formed on the Al b Ga 1-b N layer.
- the p-type Al x1 Ga 1-x1 N layer is interposed between the first gate electrode and the Al b Ga 1-b N layer.
- the p-type Al x2 Ga 1-x2 N layer is interposed between the second gate electrode and the Al b Ga 1-b N layer.
- the Al y Ga 1-y N layer is interposed between the substrate and the Al z Ga 1-z N layer. It said Al w Ga 1-w N layer is interposed between the substrate and the Al y Ga 1-y N layer.
- the concentration of C in the Al w Ga 1-w N layer is higher than the concentration of C in the Al y Ga 1-y N layer.
- FIG. 1 is a sectional view of the bidirectional switch element according to the first embodiment.
- FIG. 2A is an ON resistance ratio-voltage characteristic diagram of the bidirectional switch element according to the first embodiment.
- FIG. 2B is an ON resistance ratio-voltage characteristic diagram of the bidirectional switch element according to the comparative example.
- FIG. 3 is a sectional view of a bidirectional switch element according to a modification of the first embodiment.
- FIG. 4 is a current-voltage characteristic diagram of the bidirectional switch element according to the first embodiment and the bidirectional switch element according to the comparative example.
- FIG. 5 is a cross-sectional view of the bidirectional switch element according to the second embodiment.
- FIG. 6 is a current-voltage characteristic diagram of the bidirectional switch element according to the second embodiment and the bidirectional switch element according to the comparative example.
- FIG. 7 is a cross-sectional view of the bidirectional switch element according to the third embodiment.
- FIGS. 1, 3, 5, and 7 described in the following embodiments and the like are schematic diagrams, and the ratio of the size and thickness of each component in FIGS. Does not necessarily reflect the dimensional ratio.
- the bidirectional switch element 1 can be used, for example, in a power converter such as a matrix converter that performs AC-AC power conversion, but is not limited to this. For example, it can be used in a relay, an AC switch for dimming a lighting device, or the like. Can also be used.
- the bidirectional switch element 1 is, for example, a dual-gate GaN-based GIT (Gate Injection Transistor).
- the bidirectional switch device 1 includes a substrate 2, a GaN layer 6, a first AlGaN layer 7, a first source electrode S1, a first gate electrode G1, a second gate electrode G2, and a second , A first p-type AlGaN layer 81, and a second p-type AlGaN layer 82.
- GaN layer 6 is formed on substrate 2.
- the first AlGaN layer 7 is formed on the GaN layer 6, and forms a first hetero junction HJ1 together with the GaN layer 6.
- a two-dimensional electron gas (Two-Dimensional Electron Gas) is generated near the first hetero junction HJ1.
- a region containing a two-dimensional electron gas (hereinafter, also referred to as a “two-dimensional electron gas layer”) can function as an n-channel layer (electron conductive layer).
- the first source electrode S1 is formed on the first AlGaN layer 7.
- the first gate electrode G1 is formed on the first AlGaN layer 7.
- the second gate electrode G2 is formed on the first AlGaN layer 7 at a position opposite to the first source electrode S1 when viewed from the first gate electrode G1.
- the second source electrode S2 is formed on the first AlGaN layer 7 at a position opposite to the first gate electrode G1 when viewed from the second gate electrode G2.
- the bidirectional switch element 1 in one direction along the surface 71 of the first AlGaN layer 7, the first source electrode S1, the first gate electrode G1, the second gate electrode G2, and the second The source electrodes S2 are arranged in this order.
- the first source electrode S1, the first gate electrode G1, the second gate electrode G2, and the second source electrode S2 are separated from each other in the one direction.
- the bidirectional switch element 1 is a normally-off bidirectional switch element, and includes the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 described above.
- the first p-type AlGaN layer 81 is interposed between the first gate electrode G1 and the first AlGaN layer 7.
- the second p-type AlGaN layer 82 is interposed between the second gate electrode G2 and the first AlGaN layer 7.
- a state in which a voltage equal to or higher than the first threshold voltage is not applied between the first gate electrode G1 and the first source electrode S1 is referred to as a state in which the first gate electrode G1 is in an off state.
- a state in which a voltage equal to or higher than a first threshold voltage is applied between the first gate electrode G1 and the first source electrode S1 with the first gate electrode G1 being on the high potential side is referred to as a first gate.
- the electrode G1 is also called an ON state.
- a state in which a voltage equal to or higher than the second threshold voltage is not applied between the second gate electrode G2 and the second source electrode S2 is also referred to as a state in which the second gate electrode G2 is off.
- a state in which a voltage equal to or higher than a second threshold voltage is applied between the second gate electrode G2 and the second source electrode S2 with the second gate electrode G2 being on the high potential side is referred to as a second gate.
- the electrode G2 is also called an ON state.
- the bidirectional switch element 1 realizes a normally-off transistor by including the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 described above.
- the first p-type AlGaN layer 81 forms a depletion layer between the first AlGaN layer 7 and the GaN layer 6 immediately below the first p-type AlGaN layer 81 when the first gate electrode G1 is off.
- the second p-type AlGaN layer 82 forms a depletion layer in the first AlGaN layer 7 and the GaN layer 6 immediately below the second p-type AlGaN layer 82 when the second gate electrode G2 is in the off state. .
- the bidirectional switch element 1 when the first gate electrode G1 is on, the first gate electrode G1 and the first source electrode S1 can be connected with the two-dimensional electron gas (the first gate electrode G1). The two-dimensional electron gas is not blocked by the depletion layer between the electrode G1 and the first source electrode S1). Further, in the bidirectional switch element 1, when the second gate electrode G2 is in the ON state, the second gate electrode G2 and the second source electrode S2 can be connected with the two-dimensional electron gas (second electrode). The two-dimensional electron gas is not blocked by the depletion layer between the gate electrode G2 and the second source electrode S2).
- the first source electrode S1 and the second No current can flow in any direction between the source electrode S2 and the source electrode S2. More specifically, in the case of the first operation mode, a current flowing from the first source electrode S1 to the second source electrode S2 when the first source electrode S1 has a higher potential than the second source electrode S2. When the current is cut off and the second source electrode S2 has a higher potential than the first source electrode S1, the current flowing from the second source electrode S2 to the first source electrode S1 is cut off.
- the first source electrode S1 and the second A current can flow bidirectionally between the source electrode S2 and the source electrode S2. More specifically, in the case of the second operation mode, a current flows from the first source electrode S1 to the second source electrode S2 when the first source electrode S1 has a higher potential than the second source electrode S2. When the second source electrode S2 has a higher potential than the first source electrode S1, a current flows from the second source electrode S2 to the first source electrode S1.
- the bidirectional switch element 1 functions as a diode when the first gate electrode G1 is on and the second gate electrode G2 is off (in the third operation mode). More specifically, in the third operation mode, when the first source electrode S1 has a higher potential than the second source electrode S2, the current flowing from the first source electrode S1 to the second source electrode S2 is cut off. When the second source electrode S2 is at a higher potential than the first source electrode S1 by a second threshold voltage or higher, a current flows from the second source electrode S2 to the first source electrode S1.
- the bidirectional switch element 1 functions as a diode when the first gate electrode G1 is off and the second gate electrode G2 is on (fourth operation mode). More specifically, in the fourth operation mode, when the second source electrode S2 has a higher potential than the first source electrode S1, the current flowing from the second source electrode S2 to the first source electrode S1 is cut off. When the first source electrode S1 is higher than the second source electrode S2 by a first threshold voltage or higher and has a higher potential, a current flows from the first source electrode S1 to the second source electrode S2.
- the first threshold voltage and the second threshold voltage have the same value, but may have different values.
- the bidirectional switch element 1 further includes a second AlGaN layer 5 and a third AlGaN layer 4.
- the second AlGaN layer 5 is located between the substrate 2 and the GaN layer 6, and forms a second hetero junction HJ2 together with the GaN layer 6.
- Third AlGaN layer 4 is located between substrate 2 and second AlGaN layer 5.
- the bidirectional switch element 1 further includes a buffer layer 3 located between the substrate 2 and the third AlGaN layer 4. Therefore, the bidirectional switch element 1 includes the buffer layer 3, the third AlGaN layer 4, the second AlGaN layer 5, the GaN layer 6, the first AlGaN layer 7, the first p-type AlGaN layer 81, and the second The stacked body 10 includes the p-type AlGaN layer 82.
- the outer shape of the bidirectional switch element 1 in a plan view from the thickness direction of the bidirectional switch element 1 is, for example, a square shape.
- the outer peripheral shape of the bidirectional switch element 1 is not limited to a square shape, but may be, for example, a rectangular shape.
- the substrate 2 is a silicon substrate. Therefore, the substrate 2 is a kind of a conductive substrate.
- the substrate 2 has a first main surface 21 and a second main surface 22.
- the first main surface 21 and the second main surface 22 of the substrate 2 are orthogonal to the thickness direction of the substrate 2.
- the term “orthogonal” is not limited to the case of strictly orthogonal, but is substantially orthogonal (the angle between the thickness direction and the first main surface 21 or the second main surface 22 is, for example, 90 ° ⁇ 5 °). May be.
- the second main surface 22 is located on the opposite side of the first main surface 21 in the thickness direction of the substrate 2.
- the multilayer body 10 is formed on the first main surface 21 of the substrate 2.
- the first main surface 21 of the substrate 2 is, for example, a (111) plane.
- the first main surface 21 of the substrate 2 may be, for example, a crystal plane having an off angle (hereinafter, referred to as “first off angle”) from the (111) plane that is greater than 0 ° and 5 ° or less.
- first off angle is the inclination angle of the first main surface 21 with respect to the (111) plane. Therefore, if the off angle is 0 °, the first main surface 21 is a (111) plane.
- the (111) plane is a crystal plane represented by a Miller index (Miller Index) in which three indices are put in parentheses.
- the thickness of the substrate 2 is, for example, not less than 100 ⁇ m and not more than 1000 ⁇ m.
- the stacked body 10 includes the buffer layer 3, the third AlGaN layer 4, the second AlGaN layer 5, the GaN layer 6, and the first AlGaN layer 7, as described above.
- the buffer layer 3, the third AlGaN layer 4, the second AlGaN layer 5, the GaN layer 6, and the first AlGaN layer 7 are arranged in this order from the substrate 2 side.
- the buffer layer 3 is formed directly on the substrate 2.
- the third AlGaN layer 4 is formed directly on the buffer layer 3.
- the second AlGaN layer 5 is formed directly on the third AlGaN layer 4.
- the GaN layer 6 is formed directly on the second AlGaN layer 5.
- the first AlGaN layer 7 is formed directly on the GaN layer 6.
- the stacked body 10 includes a first p-type AlGaN layer 81 and a second p-type AlGaN layer 82 formed directly on the first AlGaN layer 7.
- the multilayer body 10 is an epitaxial growth layer grown on the substrate 2 by, for example, MOVPE (Metal Organic Vapor Phase Epitaxy).
- MOVPE Metal Organic Vapor Phase Epitaxy
- TMAl trimethyl aluminum
- TMGa trimethylgallium
- NH 3 NH 3
- Cp 2 Mg Biscyclopentadienyl magnesium
- H 2 gas is preferably used as the carrier gas for each source gas.
- Each source gas is not particularly limited.
- triethyl gallium (TEGa) may be used as a source gas for Ga
- a hydrazine derivative may be used as a source gas for N.
- the buffer layer 3 is, for example, an undoped GaN layer.
- the buffer layer 3 is formed of the third AlGaN layer 4, the second AlGaN layer 5, the GaN layer 6, the first AlGaN layer 7, the first p-type AlGaN layer 81, and the crystallinity of the second p-type AlGaN layer 82. It is a layer provided for the purpose of improving.
- Buffer layer 3 is formed directly on first main surface 21 of substrate 2.
- the undoped GaN layer constituting the buffer layer 3 may contain impurities such as Mg, H, Si, C, and O which are inevitably mixed during the growth.
- the thickness of the buffer layer 3 is, for example, 100 nm or more and 3000 nm or less.
- GaN layer 6 is an undoped GaN layer.
- the undoped GaN layer constituting the GaN layer 6 may contain impurities such as Mg, H, Si, C and O which are inevitably mixed during the growth.
- the thickness of the GaN layer 6 is, for example, not less than 100 nm and not more than 700 nm.
- the first AlGaN layer 7 is an undoped AlGaN layer. As described above, the first AlGaN layer 7 and the GaN layer 6 constitute the first hetero junction HJ1. In the GaN layer 6, a two-dimensional electron gas is generated near the first hetero junction HJ1.
- the undoped AlGaN layer that forms the first AlGaN layer 7 may contain impurities such as Mg, H, Si, C, and O that are inevitably mixed during the growth.
- the composition ratio of Al in the undoped AlGaN layer forming the first AlGaN layer 7 is, for example, 0.20. In this specification, the Al composition ratio is the value of x when the AlGaN layer is represented by an Al x Ga 1-xN layer.
- the first AlGaN layer 7 is an undoped Al 0.20 Ga 0.80 N layer.
- the composition ratio is, for example, a value obtained by a composition analysis using EDX (Energy Dispersive X-ray Spectroscopy). In discussing the relative magnitude relationship between the composition ratios, the composition ratio is not limited to EDX, and may be a value obtained by, for example, a composition analysis by Auger Electron Spectroscopy or a SIMS.
- the thickness of the first AlGaN layer 7 is, for example, not less than 10 nm and not more than 100 nm.
- the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 cover only a part of the surface 71 of the first AlGaN layer 7. Therefore, the surface 71 of the first AlGaN layer 7 has a region covered by the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 and a region covered by the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82. and a region not covered by the p-type AlGaN layer 82.
- the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 are apart from each other.
- the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 are doped with Mg during their growth, and contain Mg.
- the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 are formed by forming a p-type AlGaN layer based on the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 by MOVPE. After being grown on one AlGaN layer 7, it is formed by patterning a p-type AlGaN layer using a photolithography technique and an etching technique.
- ⁇ Al composition ratio of the first p-type AlGaN layer 81 and Al composition ratio of the second p-type AlGaN layer 82 are the same.
- the Al composition ratio of the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 is the same as the Al composition ratio of the first AlGaN layer 7 (for example, 0.20). May be different from the Al composition ratio of the AlGaN layer 7.
- the thickness of the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82 is, for example, not less than 50 nm and not more than 300 nm.
- the first source electrode S1 and the second source electrode S2 are formed in a region of the surface 71 of the first AlGaN layer 7 that is not covered by the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82. Have been.
- the first source electrode S1 and the second source electrode S2 are separated from each other.
- the first source electrode S1 and the second source electrode S2 are electrically connected to the first hetero junction HJ1.
- “electrically connected” means that they are in ohmic contact.
- Each of the first source electrode S1 and the second source electrode S2 contains, for example, Ti and Al.
- the first gate electrode G1 is formed on the first AlGaN layer 7 via the first p-type AlGaN layer 81. Further, the second gate electrode G2 is formed on the first AlGaN layer 7 via the second p-type AlGaN layer 82. The distance between the first gate electrode G1 and the second gate electrode G2 is longer than the distance between the first p-type AlGaN layer 81 and the second p-type AlGaN layer 82. Each of the first gate electrode G1 and the second gate electrode G2 is separated from the corresponding first source electrode S1 and the corresponding second source electrode S2 in a direction along the surface 71 of the first AlGaN layer 7. ing.
- the first gate electrode G1 and the second gate electrode G2 are in ohmic contact with, for example, a first p-type AlGaN layer 81 and a second p-type AlGaN layer 82, respectively.
- Each of the first gate electrode G1 and the second gate electrode G2 includes, for example, Pd and Au.
- the second AlGaN layer 5 constitutes the second heterojunction HJ2 together with the GaN layer 6.
- the second AlGaN layer 5 is located on the side opposite to the first AlGaN layer 7 side in the thickness direction of the GaN layer 6.
- the second AlGaN layer 5 faces the first AlGaN layer 7 with the GaN layer 6 interposed therebetween. Therefore, the bidirectional switch element 1 has a double hetero structure including the first AlGaN layer 7, the GaN layer 6, and the second AlGaN layer 5.
- the band gap of each of the first AlGaN layer 7 and the second AlGaN layer 5 is larger than the band gap of the GaN layer 6.
- the second AlGaN layer 5 is an undoped AlGaN layer.
- the undoped AlGaN layer that forms the second AlGaN layer 5 may contain impurities such as Mg, H, Si, C, and O that are inevitably mixed during the growth.
- the Al composition ratio of the second AlGaN layer 5, in other words, the Al composition ratio y of the Al y Ga 1-y N layer corresponding to the second AlGaN layer 5 is, for example, 0.02. That is, the second AlGaN layer 5 is an undoped Al 0.02 Ga 0.98 N layer.
- the concentration of C in the Al y Ga 1-y N layer constituting the second AlGaN layer 5 was, for example, 7 ⁇ 10 16 cm ⁇ 3 , but is not limited to this value.
- the concentration of C in the Al y Ga 1-y N layer is preferably, for example, 3 ⁇ 10 17 cm ⁇ 3 or less.
- the concentration of C is a value measured by SIMS (Secondary Ion Mass Spectroscopy).
- the thickness of the second AlGaN layer 5 is, for example, 100 nm or more and 500 ⁇ m or less.
- Third AlGaN layer 4 is located between substrate 2 and second AlGaN layer 5.
- the Al composition ratio of the third AlGaN layer 4 in other words, the Al composition ratio w of the Al w Ga 1 -wN layer corresponding to the third AlGaN layer 4 is the Al composition ratio of the second AlGaN layer 5. It is preferably the same as the ratio (Al composition ratio y of the Al y Ga 1-y N layer corresponding to the second AlGaN layer 5), for example, 0.02. That is, the third AlGaN layer 4 is an Al 0.02 Ga 0.98 N layer.
- the third AlGaN layer 4 has a higher C concentration than the second AlGaN layer 5.
- the concentration of C in the third AlGaN layer 4 is, for example, not less than 5 ⁇ 10 18 cm ⁇ 3 and not more than 5 ⁇ 10 19 cm ⁇ 3 .
- the third AlGaN layer 4 is intentionally doped with C during its growth. More specifically, by setting the growth conditions of the third AlGaN layer 4 such that the growth rate of the third AlGaN layer 4 is faster than the growth rate of the second AlGaN layer 5, 4 is higher than the C concentration of the second AlGaN layer 5.
- the third AlGaN layer 4 has higher electrical insulation than the second AlGaN layer 5, and functions as an electrical insulation layer. Thereby, it is possible to suppress a current from flowing in the thickness direction of the GaN layer 6.
- the growth condition of the third AlGaN layer 4 and the growth condition of the second AlGaN layer 5 may be set as appropriate, for example, the substrate temperature, the V / III ratio, the supply amount of each source gas, the growth pressure, and the like.
- the “substrate temperature” for example, the temperature of a susceptor that supports a wafer on which the substrate 2 is based can be substituted.
- the temperature of the susceptor measured by a thermocouple can be used as the substrate temperature.
- the “V / III ratio” is the ratio of the molar supply amount [ ⁇ mol / min] of the group V element source gas to the molar supply amount [ ⁇ mol / min] of the group III element source gas.
- the “growth pressure” is a pressure in the reaction furnace in a state where each raw material gas and each carrier gas are supplied into the reaction furnace of the MOVPE apparatus.
- the thickness of the third AlGaN layer 4 is larger than the thickness of the second AlGaN layer 5. Thereby, the withstand voltage of the bidirectional switch element 1 can be further increased.
- the thickness of the third AlGaN layer 4 is, for example, not less than 600 nm and not more than 3000 nm.
- the inventors of the present application evaluate the time change of the on-resistance (Ron) when the bidirectional switch element 1 is turned on with the substrate 2 electrically floating in the bidirectional switch element 1 according to the first embodiment. did.
- the substrate 2 is in an electrically floating state means that the substrate 2 is connected to any of the first source electrode S1, the second source electrode S2, the first gate electrode G1, and the second gate electrode G2. Means electrically insulated.
- the inventors of the present application also turned on the bidirectional switch element according to the comparative example of the comparative example of the bidirectional switch element 1 according to the first embodiment with the substrate floating. Was evaluated with respect to the time change of the on-resistance.
- the bidirectional switch element according to the comparative example does not include the second AlGaN layer 5 of the bidirectional switch element 1 according to the first embodiment.
- the bidirectional switch element according to the comparative example has a total thickness of the thickness of the GaN layer 6 and the thickness of the second AlGaN layer 5 instead of the GaN layer 6 of the bidirectional switch element 1 according to the first embodiment.
- the first GaN layer is an undoped GaN layer. That is, the bidirectional switch element according to the comparative example employs a single heterostructure instead of the double heterostructure of the bidirectional switch element 1 according to the first embodiment.
- the on-resistance-time characteristics when the current value of the current flowing through the bidirectional switch element 1 according to the first embodiment and the bidirectional switch element according to the comparative example was 10 A were evaluated.
- the voltage of the DC power supply connected between both ends (between the first source electrode S1 and the second source electrode S2) of each of the bidirectional switch element 1 and the bidirectional switch of the comparative example is set to Vdd, and the on-resistance is set. Is a value obtained by calculation of Vdd / 10 according to Ohm's law. Note that, for the bidirectional switch element 1, the actual measured value of the on-resistance before the switch operation is performed when no current collapse occurs is 30 m ⁇ .
- 2A and 2B show the ratio of the on-resistance of the bidirectional switch element 1 according to the first embodiment and the bidirectional switch element of the comparative example when the on-resistance when no current collapse occurs is 1 (in other words, The relationship between Vdd and the standardized ON resistance) is shown.
- 2A and 2B show the relationship between the on-resistance ratio and Vdd when the substrate 2 is in an electrically floating state.
- the bidirectional switch element 1 includes a substrate 2, a GaN layer 6, a first AlGaN layer 7, a first source electrode S1, a first gate electrode G1, and a second gate electrode.
- G2 a second source electrode S2, a first p-type AlGaN layer 81, a second p-type AlGaN layer 82, a second AlGaN layer 5, and a third AlGaN layer 4.
- the GaN layer 6 is formed on the substrate 2.
- the first AlGaN layer 7 is formed on the GaN layer 6.
- the first source electrode S1, the first gate electrode G1, the second gate electrode G2, and the second source electrode S2 are formed on the first AlGaN layer 7.
- the first p-type AlGaN layer 81 is interposed between the first gate electrode G1 and the first AlGaN layer 7.
- the second p-type AlGaN layer 82 is interposed between the second gate electrode G2 and the first AlGaN layer 7.
- the second AlGaN layer 5 is interposed between the substrate 2 and the GaN layer 6.
- the third AlGaN layer 4 is interposed between the substrate 2 and the second AlGaN layer 5, and has a higher C concentration than the second AlGaN layer 5.
- the provision of the second AlGaN layer 5 and the third AlGaN layer 4 makes it possible to suppress current collapse.
- FIG. 3 is a cross-sectional view of a bidirectional switch element 1a according to a modification of the first embodiment.
- the same components as those of the bidirectional switch element 1 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the bidirectional switch element 1a according to the modified example includes a third AlGaN layer 4a and a second AlGaN layer instead of the third AlGaN layer 4 and the second AlGaN layer 5 of the bidirectional switch element 1 according to the first embodiment. It has a layer 5a.
- the third AlGaN layer 4a is an undoped AlGaN layer.
- the Al composition ratio of the third AlGaN layer 4a is 0.05. That is, the third AlGaN layer 4a is an undoped Al 0.05 Ga 0.95 N layer.
- the Al composition ratio of the third AlGaN layer 4a is the same as the Al composition ratio of the third AlGaN layer 4a, and is 0.05.
- the second AlGaN layer 5a is located between the substrate 2 and the GaN layer 6, and forms a second heterojunction HJ2 together with the GaN layer 6.
- the third AlGaN layer 4a is located between the substrate 2 and the second AlGaN layer 5a, and has a higher C concentration than the second AlGaN layer 5a.
- the concentration of C in the undoped AlGaN layer forming the second AlGaN layer 5a is, for example, 7 ⁇ 10 16 cm ⁇ 3 .
- the concentration of C in the third AlGaN layer 4a is, for example, not less than 5 ⁇ 10 18 cm ⁇ 3 and not more than 5 ⁇ 10 19 cm ⁇ 3 .
- the third AlGaN layer 4a are an Al z Ga 1-z N layer (here, 0 ⁇ z ⁇ 1), an Al b Ga 1-b N layer (here, 0 ⁇ b ⁇ 1), and p type Al x1 Ga 1-x1 N layer (where, 0 ⁇ x1 ⁇ 1), p -type Al x2 Ga 1-x2 N layer (where, 0 ⁇ x2 ⁇ 1), Al y Ga 1-y N layer (
- the bidirectional switch element 1a according to the modified example can suppress the occurrence of current collapse similarly to the bidirectional switch element 1 according to the first embodiment.
- the off-leak current becomes larger than that in the bidirectional switch element according to the comparative example.
- the off-leak current can be reduced as compared with the bidirectional switch element according to the modification.
- the off-leak current is a current flowing from the second source electrode S2 to the first source electrode S1 when the first gate electrode G1 is off and the second gate electrode G2 is off.
- FIG. 4 shows V S2S1 when the second source electrode S2 is at a higher potential than the first source electrode S1 and the voltage between the second source electrode S2 and the first source electrode S1 is V S2S1. And the relationship between the leakage current (off-leak current).
- DH in FIG. 4 is measurement data of an example of the bidirectional switch element 1 of Embodiment 1 having the above-described double heterostructure
- SH in FIG. 4 is a bidirectional switch of the comparative example having the above-described single heterostructure. It is measurement data of an example of an element.
- FIG. 4 shows that when V S2S1 is 400 V or less, the leakage current of the bidirectional switch element 1 according to the first embodiment is smaller than the leakage current of the bidirectional switch of the comparative example.
- the Al composition ratio of the second AlGaN layer 5 is less than 0.05. Therefore, the bidirectional switch element 1 according to the first embodiment can suppress the off-leak current.
- the same components as those of the bidirectional switch element 1 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
- the bidirectional switch device 1b according to the second embodiment includes a third AlGaN layer 4b and a second AlGaN layer 4b instead of the third AlGaN layer 4 and the second AlGaN layer 5 of the bidirectional switch device 1 according to the first embodiment.
- An AlGaN layer 5b is provided.
- the GaN layer 6, the first AlGaN layer 7, the first p-type AlGaN layer 81, the second p-type AlGaN layer 82, the second AlGaN layer 5b, and the third the AlGaN layer 4b respectively, Al z Ga 1-z N layer (where, 0 ⁇ z ⁇ 1), Al b Ga 1-b N layer (where, 0 ⁇ b ⁇ 1), p -type Al x1 Ga 1-x1 N layer (where, 0 ⁇ x1 ⁇ 1), p -type Al x2 Ga 1-x2 N layer (where, 0 ⁇ x2 ⁇ 1), Al y Ga 1-y N layer (here, It is an example of 0 ⁇ y ⁇ 1 and z ⁇ y ⁇ b) and an Al w Ga 1-w N layer (here, 0 ⁇ w ⁇ 1 and z ⁇ w ⁇ b).
- the Al composition ratio of the third AlGaN layer 4b is, for example, 0.05. That is, the third AlGaN layer 4b is an Al 0.05 Ga 0.95 N layer.
- the third AlGaN layer 4b has a higher C concentration than the second AlGaN layer 5b.
- C concentration of the third AlGaN layer 4b is, for example, 1 ⁇ 10 19 cm -3 or more 1 ⁇ 10 19 cm -3 or less.
- the Al composition ratio of the second AlGaN layer 5b is smaller than the Al composition ratio of the third AlGaN layer 4b.
- the composition ratio of Al decreases as the distance from the third AlGaN layer 4b increases in the thickness direction of the second AlGaN layer 5b.
- the band gap energy of the second AlGaN layer 5b decreases as the distance from the third AlGaN layer 4b increases, and the difference in band gap energy from the GaN layer 6 decreases as the distance from the GaN layer 6 increases.
- the second AlGaN layer 5b is, for example, a laminated film of three or more AlGaN layers having different Al composition ratios from each other.
- the second AlGaN layer 5b is a laminated film of ten AlGaN layers having different Al composition ratios from each other.
- the thickness of each of the ten AlGaN layers is one tenth of the thickness of the second AlGaN layer 5b.
- the composition ratio of Al increases by 0.005 as the distance from the GaN layer 6 increases in the thickness direction of the second AlGaN layer 5b.
- the ten AlGaN layers include the Al 0.005 Ga 0.995 N layer, the Al 0.01 Ga 0.99 N layer, and the Al 0.05 Ga layer from the GaN layer 6 side in the thickness direction of the second AlGaN layer 5 b .
- the bidirectional switch element 1b according to the second embodiment can suppress the occurrence of current collapse, similarly to the bidirectional switch element 1 according to the first embodiment.
- FIG. 6 shows a relationship between V S2S1 and a leak current (off-leak current).
- Al graded in FIG. 6 is measurement data of an example of the bidirectional switch element 1b according to the second embodiment
- SH in FIG. 6 is measurement of an example of the bidirectional switch element of the comparative example having the single heterostructure described above. Data.
- FIG. 6 shows that when V S2S1 is 250 V or less, the leak current of the bidirectional switch element 1b according to the second embodiment is smaller than the off-leak current of the bidirectional switch of the comparative example.
- the same components as those of the bidirectional switch element 1 according to the first embodiment (see FIG. 1) are denoted by the same reference numerals and description thereof is omitted.
- the bidirectional switch element 1c according to the third embodiment includes a buffer layer instead of the buffer layer 3, the third AlGaN layer 4, the second AlGaN layer 5, and the GaN layer 6 of the bidirectional switch element 1 according to the first embodiment. 3C, a third AlGaN layer 4c, a second AlGaN layer 5c, and a fourth AlGaN layer 61.
- the third AlGaN layer 4c are an Al z Ga 1-z N layer (here, 0 ⁇ z ⁇ 1), an Al b Ga 1-b N layer (here, 0 ⁇ b ⁇ 1), p type Al x1 Ga 1-x1 N layer (where, 0 ⁇ x1 ⁇ 1), p -type Al x2 Ga 1-x2 N layer (where, 0 ⁇ x2 ⁇ 1), Al y Ga 1-y N layer (
- the fourth AlGaN layer 61 is an undoped AlGaN layer.
- the undoped AlGaN layer constituting the fourth AlGaN layer 61 may contain impurities such as Mg, H, Si, C, and O which are inevitably mixed during the growth.
- the thickness of the fourth AlGaN layer 61 is, for example, not less than 100 nm and not more than 700 nm.
- the Al composition ratio z of the Al z Ga 1 -zN layer corresponding to the fourth AlGaN layer 61 is smaller than the Al composition ratio b of the Al b Ga 1 -bN layer constituted by the first AlGaN layer 7. And smaller than the Al composition ratio y of the Al y Ga 1-y N layer corresponding to the second AlGaN layer 5c.
- the first AlGaN layer 7 and the fourth AlGaN layer 61 constitute a first heterojunction HJ1c.
- a two-dimensional electron gas is generated near the first hetero junction HJ1c.
- the Al composition ratio of the undoped AlGaN layer forming the first AlGaN layer 7 is, for example, 0.17.
- the second AlGaN layer 5c is located on the side opposite to the first AlGaN layer 7 side in the thickness direction of the fourth AlGaN layer 61.
- the second AlGaN layer 5c faces the first AlGaN layer 7 with the fourth AlGaN layer 61 interposed therebetween. Therefore, the bidirectional switch element 1c has a double hetero structure including the first AlGaN layer 7, the fourth AlGaN layer 61, and the second AlGaN layer 5c.
- the band gap of each of the first AlGaN layer 7 and the second AlGaN layer 5c is larger than the band gap of the fourth AlGaN layer 61.
- the second AlGaN layer 5c is an undoped AlGaN layer.
- the undoped AlGaN layer constituting the second AlGaN layer 5c may contain impurities such as Mg, H, Si, C, and O which are inevitably mixed during the growth.
- the Al composition ratio of the second AlGaN layer 5c in other words, the Al composition ratio y of the Al y Ga 1-y N layer corresponding to the second AlGaN layer 5c is, for example, 0.02. That is, the second AlGaN layer 5c is an undoped Al 0.02 Ga 0.98 N layer.
- the concentration of C in the Al y Ga 1-y N layer corresponding to the second AlGaN layer 5c was, for example, 7 ⁇ 10 16 cm ⁇ 3 , but is not limited to this value.
- the concentration of C in the Al y Ga 1-y N layer is preferably, for example, 3 ⁇ 10 17 cm ⁇ 3 or less.
- the thickness of the second AlGaN layer 5c is, for example, not less than 100 nm and not more than 500 ⁇ m.
- the third AlGaN layer 4c is located between the substrate 2 and the second AlGaN layer 5c.
- the Al composition ratio of the third AlGaN layer 4c in other words, the Al composition ratio w of the Al w Ga 1-w N layer constituted by the third AlGaN layer 4c corresponds to the second AlGaN layer 5c.
- the Al composition ratio y of the Al y Ga 1-y N layer is preferably the same as, for example, 0.02. That is, the third AlGaN layer 4c is an Al 0.02 Ga 0.98 N layer.
- the third AlGaN layer 4c has a higher C concentration than the second AlGaN layer 5c.
- the concentration of C in the third AlGaN layer 4c is, for example, not less than 5 ⁇ 10 18 cm ⁇ 3 and not more than 5 ⁇ 10 19 cm ⁇ 3 .
- the third AlGaN layer 4c is intentionally doped with C during its growth. More specifically, by setting the growth conditions of the third AlGaN layer 4c such that the growth rate of the third AlGaN layer 4c is higher than the growth rate of the second AlGaN layer 5c, The C concentration of 4c is higher than the C concentration of the second AlGaN layer 5c.
- the third AlGaN layer 4c has higher electrical insulation than the second AlGaN layer 5c, and functions as an electrical insulation layer. Thereby, it is possible to suppress a current from flowing in the thickness direction of the fourth AlGaN layer 61.
- the buffer layer 3c is a C-doped GaN layer.
- the buffer layer 3c is intentionally doped with C during its growth.
- the C concentration of the buffer layer 3c is higher than the C concentration of the buffer layer 3 composed of the undoped GaN layer.
- the thickness of the buffer layer 3c is, for example, 100 nm or more and 3000 nm or less.
- the composition ratio of Al y Ga 1-y N layer of Al corresponding to the second AlGaN layer 5c y is less than 0.05.
- the bidirectional switch element 1c according to the third embodiment can suppress the off-leak current.
- the Al composition ratio w of the Al w Ga 1-w N layer corresponding to the third AlGaN layer 4c is less than 0.05.
- the bidirectional switch element 1c according to the third embodiment can suppress the off-leak current.
- the Al y Ga 1-y N layer corresponding to the second AlGaN layer 5c has an Al composition ratio y of less than 0.03, and the third AlGaN layer
- the Al composition ratio w of the Al w Ga 1-w N layer corresponding to 4c is preferably less than 0.03.
- the first to third embodiments and the like are only one of various embodiments of the present disclosure. Various changes can be made to the above-described Embodiments 1 to 3 according to the design and the like as long as the object of the present disclosure can be achieved.
- the relationship between the thicknesses of the three or more AlGaN layers in the second AlGaN layer 5b is not particularly limited.
- the thickness of the three or more AlGaN layers is not limited to the same thickness, and may be different from each other.
- the second AlGaN layer 5b is not limited to the case where the Al composition ratio changes stepwise, but may change continuously.
- the substrate 2 is not limited to a silicon substrate, but may be, for example, a GaN substrate, a SiC substrate, a sapphire substrate, or the like.
- a first p-type GaN layer is provided instead of the first p-type AlGaN layer 81, and a second p-type AlGaN layer 82 is provided. May be provided instead of the second p-type GaN layer.
- a first gate layer made of a p-type metal oxide semiconductor layer is used instead of the first p-type AlGaN layer 81.
- a second gate layer made of a p-type metal oxide semiconductor layer may be provided instead of the second p-type AlGaN layer.
- Each of the p-type metal oxide semiconductor layers of the first gate layer and the second gate layer is, for example, a NiO layer.
- the NiO layer may contain, for example, at least one alkali metal selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium as an impurity.
- the NiO layer may contain, for example, a transition metal such as silver or copper which becomes monovalent when added as an impurity.
- a voltage is not applied between the first gate electrode G1 and the first source electrode S1
- the first gate layer has a first AlGaN layer 7 and a GaN layer 6 immediately below the first gate layer. Then, a depletion layer is formed.
- the second gate layer has a first AlGaN layer 7 and a GaN layer 6 directly below the second gate layer. Then, a depletion layer is formed.
- an InAlGaN layer may be provided instead of the second AlGaN layer 5.
- the InAlGaN layer may be constituted by an undoped In 0.05 Al 0.10 Ga 0.85 N layer.
- an InAlGaN layer instead of the third AlGaN layer 4, an InAlGaN layer may be provided.
- InAlGaN layer in place of the third AlGaN layer 4 may be constituted by the second AlGaN layer 5 higher In 0.05 Al 0.10 Ga 0.85 N layer having a concentration of C than InAlGaN layer in place of.
- the bidirectional switch element (1; 1a; 1b; 1c) includes a substrate (2), an Al z Ga 1-z N layer (here, 0 ⁇ z ⁇ 1), and an Al b Ga 1-b N layer (where 0 ⁇ b ⁇ 1), a first source electrode (S1), a first gate electrode (G1), a second gate electrode (G2), and a second A source electrode (S2), a p-type Al x1 Ga 1-x1 N layer (here, 0 ⁇ x1 ⁇ 1), a p-type Al x2 Ga 1-x2 N layer (here, 0 ⁇ x2 ⁇ 1) , Al y Ga 1-y N layer (where 0 ⁇ y ⁇ 1 and z ⁇ y ⁇ b), and Al w Ga 1-w N layer (where 0 ⁇ w ⁇ 1 and z ⁇ W ⁇ b).
- the Al z Ga 1 -zN layer (GaN layer 6; fourth AlGaN layer 61) is formed on the substrate (2).
- the Al b Ga 1-b N layer (first AlGaN layer 7) is formed on the Al z Ga 1-z N layer (GaN layer 6; fourth AlGaN layer 61).
- the first source electrode (S1), the first gate electrode (G1), the second gate electrode (G2), and the second source electrode (S2) are formed of an Al b Ga 1-b N layer (first On the AlGaN layer 7).
- the p-type Al x1 Ga 1-x1 N layer (first p-type AlGaN layer 81) is provided between the first gate electrode (G1) and the Al b Ga 1-b N layer (first AlGaN layer 7). Intervenes.
- the p-type Al x2 Ga 1-x2 N layer (second p-type AlGaN layer 82) is provided between the second gate electrode (G2) and the Al b Ga 1-b N layer (first AlGaN layer 7). Intervenes.
- the Al y Ga 1-y N layer (the second AlGaN layer 5; 5a; 5b; 5c) includes the substrate (2) and the Al z Ga 1-z N layer (the GaN layer 6; the fourth AlGaN layer 61). Intervening between.
- the Al w Ga 1-w N layer (third AlGaN layer 4; 4a; 4b; 4c) is composed of the substrate (2) and the Al y Ga 1-y N layer (second AlGaN layer 5; 5a; 5b; 5c). ), And has a higher C concentration than the Al y Ga 1-y N layer (second AlGaN layer 5; 5a; 5b; 5c).
- the Al composition ratio (y) of the Al y Ga 1-y N layer (second AlGaN layer 5; 5c) is different from that of the first aspect. It is less than 0.05.
- the off-leak current can be suppressed.
- the Al composition ratio (y) of the Al y Ga 1-y N layer (second AlGaN layer 5b) is Al It is smaller than the Al composition ratio (w) of the w Ga 1-w N layer (third AlGaN layer 4b).
- the Al y Ga 1-y N layer (second AlGaN layer 5b) in the thickness direction of the Al y Ga 1-y N layer (second AlGaN layer 5b), the Al w Ga 1-w N layer (third As the distance from the AlGaN layer 4b) increases, the Al composition ratio (y) decreases.
- the off-leak current can be suppressed.
- the Al y Ga 1-y N layer (the second AlGaN layer 5b) has a composition of Al It is a laminated film of three or more AlGaN layers having different ratios.
- the Al composition ratio (w) of the Al w Ga 1-w N layer (third AlGaN layer 4c) is less than 0.05. It is.
- Al y Ga 1-y N layer below the Al composition ratio of the (second AlGaN layer 5c) (y) is 0.03
- Al composition ratio (w) of the Al w Ga 1-w N layer (third AlGaN layer 4c) is less than 0.03.
- a bidirectional switch element (1; 1a; 1b; 1c) according to a seventh aspect is the bidirectional switch element according to any one of the first to sixth aspects, wherein the substrate (2) comprises the first source electrode (S1) and the second source electrode (S1). Is used in a state in which it is electrically insulated from any of the source electrode (S2), the first gate electrode (G1), and the second gate electrode (G2).
- bidirectional switch element (1; 1a; 1b; 1c) it is possible to suppress current collapse without using the substrate (2) in a grounded state.
- the thickness of the third AlGaN layer (4; 4a; 4b; 4c) is increased in any one of the first to seventh aspects. Is thicker than the thickness of the second AlGaN layer (5; 5a; 5b; 5c).
- the withstand voltage can be improved.
Landscapes
- Junction Field-Effect Transistors (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本開示の課題は、電流コラプスを抑制することである。双方向スイッチ素子(1)は、基板(2)、AlzGa1-zN層(GaN層6)、AlbGa1-bN層(第1のAlGaN層7)、第1のソース電極(S1)、第1のゲート電極(G1)、第2のゲート電極(G2)、第2のソース電極(S2)、p型Alx1Ga1-x1N層(第1のp型AlGaN層81)、p型Alx2Ga1-x2N層(第2のp型AlGaN層82)、AlyGa1-yN層(第2のAlGaN層5)、及びAlwGa1-wN層(第3のAlGaN層4)を備える。AlzGa1-zN層は、基板(2)上に形成されている。AlbGa1-bN層は、AlzGa1-zN層上に形成されている。AlyGa1-yN層は、基板(2)とAlzGa1-zN層との間に介在している。AlwGa1-wN層は、基板(2)とAlyGa1-yN層との間に介在し、AlyGa1-yN層よりもCの濃度が高い。
Description
本開示は、一般に双方向スイッチ素子に関し、より詳細には2つのゲート電極を備える双方向スイッチ素子に関する。
従来、ダブルゲート(デュアルゲート)の半導体素子である双方向スイッチ素子が提案されている(特許文献1)。
特許文献1に記載された双方向スイッチ素子は、シリコンからなる導電性の基板上にAlNからなるバッファ層を介在させて、半導体層積層体が形成されている。半導体層積層体は、アンドープのGaNからなる第1の層(GaN層)と、アンドープのAlGaNからなる第2の層(第1のAlGaN層)とが下側から順次積層されている。
第1の層の第2の層とのヘテロ界面近傍には、2次元電子ガス層であるチャネル領域が生成されている。
半導体層積層体の上には、互いに間隔をおいて第1のオーミック電極(第1のソース電極)及び第2のオーミック電極(第2のソース電極)が形成されている。半導体層積層体の上における第1のオーミック電極と第2のオーミック電極との間の領域に、第1のオーミック電極側から順に、第1のp型窒化物半導体層を介在させて形成された第1のゲート電極と、第2のp型窒化物半導体層を介在させて形成された第2のゲート電極と、が並んでいる。
特許文献1に記載の双方向スイッチ素子では、例えば基板を電気的にフローティングにした状態で使用された場合に、スイッチング時のオン抵抗が増加する電流コラプスが発生することがあった。電流コラプスは、高電圧印加時にチャネル近傍(結晶、界面等)に電子が捕獲され、オン抵抗が増大する現象である。
本開示の目的は、電流コラプスを抑制することが可能な双方向スイッチ素子を提供することにある。
本開示に係る一態様の双方向スイッチ素子は、基板と、AlzGa1-zN層(ここで、0≦z<1)と、AlbGa1-bN層(ここで、0<b<1)と、第1のソース電極と、第1のゲート電極と、第2のゲート電極と、第2のソース電極と、p型Alx1Ga1-x1N層(ここで、0≦x1≦1)と、p型Alx2Ga1-x2N層(ここで、0≦x2≦1)と、AlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)と、AlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)と、を備える。前記AlzGa1-zN層は、前記基板上に形成されている。前記AlbGa1-bN層は、前記AlzGa1-zN層上に形成されている。前記第1のソース電極、前記1のゲート電極、前記第2のゲート電極、及び、前記第2のソース電極は、前記AlbGa1-bN層上に形成されている。前記p型Alx1Ga1-x1N層は、前記第1のゲート電極と前記AlbGa1-bN層との間に介在している。前記p型Alx2Ga1-x2N層は、前記第2のゲート電極と前記AlbGa1-bN層との間に介在している。前記AlyGa1-yN層は、前記基板と前記AlzGa1-zN層との間に介在している。前記AlwGa1-wN層は、前記基板と前記AlyGa1-yN層との間に介在している。前記AlwGa1-wN層のCの濃度は、前記AlyGa1-yN層のCの濃度よりも高い。
下記の実施形態等において説明する図1、3、5及び7は、模式的な図であり、図1、3、5及び7中の各構成要素の大きさや厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。
(実施形態1)
以下では、実施形態1に係る双方向スイッチ素子1について、図1に基づいて説明する。
以下では、実施形態1に係る双方向スイッチ素子1について、図1に基づいて説明する。
双方向スイッチ素子1は、例えば、交流-交流電力変換を行うマトリクスコンバータ等の電力変換装置に使用可能であるが、これに限らず、例えば、リレー、照明装置の調光用の交流スイッチ等にも使用可能である。双方向スイッチ素子1は、例えば、デュアルゲート型のGaN系GIT(Gate Injection Transistor)である。
双方向スイッチ素子1は、基板2と、GaN層6と、第1のAlGaN層7と、第1のソース電極S1と、第1のゲート電極G1と、第2のゲート電極G2と、第2のソース電極S2と、第1のp型AlGaN層81と、第2のp型AlGaN層82と、を備える。
GaN層6は、基板2上に形成されている。第1のAlGaN層7は、GaN層6上に形成されており、GaN層6と共に第1のヘテロ接合部HJ1を構成する。GaN層6においては、第1ヘテロ接合部HJ1の近傍に、2次元電子ガス(Two-Dimensional Electron Gas)が発生している。2次元電子ガスを含む領域(以下、「2次元電子ガス層」ともいう)は、nチャネル層(電子伝導層)として機能することが可能である。
第1のソース電極S1は、第1のAlGaN層7上に形成されている。第1のゲート電極G1は、第1のAlGaN層7上に形成されている。第2のゲート電極G2は、第1のAlGaN層7上における、第1のゲート電極G1から見て第1のソース電極S1とは反対側の位置に形成されている。第2のソース電極S2は、第1のAlGaN層7上における、第2のゲート電極G2から見て第1のゲート電極G1とは反対側の位置に形成されている。ここにおいて、双方向スイッチ素子1では、第1のAlGaN層7の表面71に沿った一方向において、第1のソース電極S1、第1のゲート電極G1、第2のゲート電極G2及び第2のソース電極S2が、この順に並んでいる。第1のソース電極S1、第1のゲート電極G1、第2のゲート電極G2及び第2のソース電極S2は、上記一方向において互いに離れている。
双方向スイッチ素子1は、ノーマリオフ型の双方向スイッチ素子であり、上述の第1のp型AlGaN層81と、第2のp型AlGaN層82と、を備えている。第1のp型AlGaN層81は、第1のゲート電極G1と第1のAlGaN層7との間に介在している。第2のp型AlGaN層82は、第2のゲート電極G2と第1のAlGaN層7との間に介在している。
以下では、説明の便宜上、第1のゲート電極G1と第1のソース電極S1との間に第1の閾値電圧以上の電圧が印加されていない状態を、第1のゲート電極G1がオフ状態ともいう。また、第1のゲート電極G1と第1のソース電極S1との間に第1のゲート電極G1を高電位側として第1の閾値電圧以上の電圧が印加されている状態を、第1のゲート電極G1がオン状態ともいう。また、第2のゲート電極G2と第2のソース電極S2との間に第2の閾値電圧以上の電圧が印加されていない状態を、第2のゲート電極G2がオフ状態ともいう。また、第2のゲート電極G2と第2のソース電極S2との間に第2のゲート電極G2を高電位側として第2の閾値電圧以上の電圧が印加されている状態を、第2のゲート電極G2がオン状態ともいう。
双方向スイッチ素子1は、上述の第1のp型AlGaN層81及び第2のp型AlGaN層82を備えることにより、ノーマリオフ型のトランジスタを実現している。ここにおいて、第1のp型AlGaN層81は、第1のゲート電極G1がオフ状態のときに、第1のp型AlGaN層81直下において第1のAlGaN層7とGaN層6とに空乏層を形成する。第2のp型AlGaN層82は、第2のゲート電極G2がオフ状態のときに、第2のp型AlGaN層82直下において第1のAlGaN層7とGaN層6とに空乏層を形成する。双方向スイッチ素子1では、第1のゲート電極G1がオン状態のときには、第1のゲート電極G1と第1のソース電極S1との間を2次元電子ガスでつなげることができる(第1のゲート電極G1と第1のソース電極S1との間で2次元電子ガスが空乏層により遮られなくなる)。また、双方向スイッチ素子1では、第2のゲート電極G2がオン状態のときには、第2のゲート電極G2と第2のソース電極S2との間を2次元電子ガスでつなげることができる(第2のゲート電極G2と第2のソース電極S2との間で2次元電子ガスが空乏層により遮られなくなる)。
双方向スイッチ素子1では、第1のゲート電極G1がオフ状態で、かつ第2のゲート電極G2がオフ状態である場合(第1の動作モードの場合)、第1のソース電極S1と第2のソース電極S2との間において、いずれの方向にも電流を流すことができない。より詳細には、第1の動作モードの場合、第1のソース電極S1が第2のソース電極S2よりも高電位のときに第1のソース電極S1から第2のソース電極S2へ流れる電流が遮断され、かつ、第2のソース電極S2が第1のソース電極S1よりも高電位のときに第2のソース電極S2から第1のソース電極S1へ流れる電流が遮断される。
双方向スイッチ素子1では、第1のゲート電極G1がオン状態で、かつ第2のゲート電極G2がオン状態である場合(第2の動作モードの場合)、第1のソース電極S1と第2のソース電極S2との間において、双方向に電流を流すことができる。より詳細には、第2の動作モードの場合、第1のソース電極S1が第2のソース電極S2よりも高電位のときに第1のソース電極S1から第2のソース電極S2へ電流が流れ、かつ、第2のソース電極S2が第1のソース電極S1よりも高電位のときに第2のソース電極S2から第1のソース電極S1へ電流が流れる。
双方向スイッチ素子1では、第1のゲート電極G1がオン状態で、かつ第2のゲート電極G2がオフ状態である場合(第3の動作モードの場合)、ダイオードとして機能する。より詳細には、第3の動作モードの場合、第1のソース電極S1が第2のソース電極S2よりも高電位のときには第1のソース電極S1から第2のソース電極S2へ流れる電流が遮断され、かつ、第2のソース電極S2が第1のソース電極S1よりも第2の閾値電圧以上、高電位のときには第2のソース電極S2から第1のソース電極S1へ電流が流れる。
双方向スイッチ素子1では、第1のゲート電極G1がオフ状態で、かつ第2のゲート電極G2がオン状態である場合(第4の動作モードの場合)、ダイオードとして機能する。より詳細には、第4の動作モードの場合、第2のソース電極S2が第1のソース電極S1よりも高電位のときには第2のソース電極S2から第1のソース電極S1へ流れる電流が遮断され、かつ、第1のソース電極S1が第2のソース電極S2よりも第1の閾値電圧以上、高電位のときには第1のソース電極S1から第2のソース電極S2へ電流が流れる。
なお、双方向スイッチ素子1では、第1の閾値電圧と第2の閾値電圧とが同じ値であるが、互いの異なる値であってもよい。
ところで、双方向スイッチ素子1は、第2のAlGaN層5と、第3のAlGaN層4と、を更に備える。第2のAlGaN層5は、基板2とGaN層6との間に位置しており、GaN層6と共に第2のヘテロ接合部HJ2を構成する。第3のAlGaN層4は、基板2と第2のAlGaN層5との間に位置している。
双方向スイッチ素子1は、基板2と第3のAlGaN層4との間に位置しているバッファ層3を更に備える。したがって、双方向スイッチ素子1は、バッファ層3と第3のAlGaN層4と第2のAlGaN層5とGaN層6と第1のAlGaN層7と第1のp型AlGaN層81及び第2のp型AlGaN層82とを含む積層体10を有している。
双方向スイッチ素子1の厚さ方向からの平面視における双方向スイッチ素子1の外周形状は、例えば、正方形状である。双方向スイッチ素子1の外周形状は、正方形状に限らず、例えば、長方形状等でもよい。
以下、双方向スイッチ素子1の各構成要素について、より詳細に説明する。
基板2は、シリコン基板である。したがって、基板2は、導電性基板の一種である。基板2は、第1主面21及び第2主面22を有する。基板2の第1主面21及び第2主面22は、基板2の厚さ方向に直交する。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(厚さ方向と第1主面21又は第2主面22とのなす角度が例えば90°±5°)でもよい。第2主面22は、基板2の厚さ方向において第1主面21の反対側に位置している。双方向スイッチ素子1では、積層体10は、基板2の第1主面21上に形成されている。基板2の第1主面21は、例えば、(111)面である。基板2の第1主面21は、例えば、(111)面からのオフ角(以下、「第1オフ角」という)が0°よりも大きく5°以下の結晶面でもよい。ここにおいて、「第1オフ角」とは、(111)面に対する第1主面21の傾斜角である。したがって、オフ角が0°であれば、第1主面21は、(111)面である。(111)面は、3つの指数を括弧のなかに入れて表記したミラー指数(Miller Index)による結晶面である。基板2の厚さは、例えば、100μm以上1000μm以下である。
積層体10は、上述のように、バッファ層3と、第3のAlGaN層4と、第2のAlGaN層5と、GaN層6と、第1のAlGaN層7と、を含む。積層体10では、バッファ層3、第3のAlGaN層4、第2のAlGaN層5、GaN層6及び第1のAlGaN層7は、基板2側からこの順に並んでいる。バッファ層3は、基板2上に直接形成されている。第3のAlGaN層4は、バッファ層3上に直接形成されている。第2のAlGaN層5は、第3のAlGaN層4上に直接形成されている。GaN層6は、第2のAlGaN層5上に直接形成されている。第1のAlGaN層7は、GaN層6上に直接形成されている。また、積層体10は、第1のAlGaN層7上に直接形成されている第1のp型AlGaN層81及び第2のp型AlGaN層82を含んでいる。
積層体10は、基板2上に例えばMOVPE(Metal Organic Vapor Phase Epitaxy)によって成長されたエピタキシャル成長層である。基板2上に積層体10を成長させるエピタキシャル成長装置としてMOVPE装置を採用する場合、Alの原料ガスとしては、トリメチルアルミニウム(TMAl)を採用するのが好ましい。また、Gaの原料ガスとしては、トリメチルガリウム(TMGa)を採用するのが好ましい。Nの原料ガスとしては、NH3を採用するのが好ましい。p型導電性に寄与する不純物であるMgの原料ガスとしては、ビスシクロペンタジエニルマグネシウム(Cp2Mg)を採用するのが好ましい。各原料ガスそれぞれのキャリアガスとしては、例えば、H2ガスを採用するのが好ましい。各原料ガスは、特に限定されず、例えば、Gaの原料ガスとしてトリエチルガリウム(TEGa)、Nの原料ガスとしてヒドラジン誘導体を採用してもよい。
バッファ層3は、例えば、アンドープのGaN層である。バッファ層3は、第3のAlGaN層4、第2のAlGaN層5、GaN層6、第1のAlGaN層7、第1のp型AlGaN層81及び第2のp型AlGaN層82の結晶性の向上を目的として設けた層である。バッファ層3は、基板2の第1主面21上に直接形成されている。バッファ層3を構成するアンドープのGaN層は、その成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。バッファ層3の厚さは、例えば、100nm以上3000nm以下である。
GaN層6は、アンドープのGaN層である。GaN層6を構成するアンドープのGaN層は、その成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。GaN層6の厚さは、例えば、100nm以上700nm以下である。
第1のAlGaN層7は、アンドープのAlGaN層である。上述のように、第1のAlGaN層7は、GaN層6と共に第1のヘテロ接合部HJ1を構成する。GaN層6においては、第1ヘテロ接合部HJ1の近傍に、2次元電子ガスが発生している。第1のAlGaN層7を構成するアンドープのAlGaN層は、その成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。第1のAlGaN層7を構成するアンドープのAlGaN層のAlの組成比は、例えば、0.20である。本明細書において、Alの組成比とは、AlGaN層をAlxGa1-xN層で表したときのxの値である。つまり、第1のAlGaN層7は、アンドープのAl0.20Ga0.80N層である。組成比は、例えば、EDX(Energy Dispersive X-ray Spectroscopy)による組成分析で求めた値である。組成比の相対的な大小関係を議論する上では、組成比は、EDXに限らず、例えば、オージェ電子分光(Auger Electron Spectroscopy)による組成分析、SIMSによる組成分析で求めた値でもよい。実施形態1に係る双方向スイッチ素子1では、GaN層6、第1のAlGaN層7、第1のp型AlGaN層81、第2のp型AlGaN層82、第2のAlGaN層5及び第3のAlGaN層4が、それぞれ、AlzGa1-zN層(ここで、0≦z<1)、AlbGa1-bN層(ここで、0<b<1)、p型Alx1Ga1-x1N層(ここで、0≦x1≦1)、p型Alx2Ga1-x2N層(ここで、0≦x2≦1)、AlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)及びAlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)の一例である。
第1のAlGaN層7の厚さは、例えば、10nm以上100nm以下である。
第1のp型AlGaN層81及び第2のp型AlGaN層82は、第1のAlGaN層7の表面71の一部のみを覆っている。したがって、第1のAlGaN層7の表面71は、第1のp型AlGaN層81及び第2のp型AlGaN層82に覆われている領域と、第1のp型AlGaN層81及び第2のp型AlGaN層82に覆われていない領域と、を含む。第1のp型AlGaN層81と第2のp型AlGaN層82とは、互いに離れている。第1のp型AlGaN層81及び第2のp型AlGaN層82は、その成長時にMgがドーピングされており、Mgを含有している。第1のp型AlGaN層81及び第2のp型AlGaN層82は、MOVPE装置によって第1のp型AlGaN層81と第2のp型AlGaN層82との元になるp型AlGaN層を第1のAlGaN層7上に成長させた後に、フォトリソグラフィ技術及びエッチング技術を利用してp型AlGaN層をパターニングすることによって形成されている。
第1のp型AlGaN層81のAlの組成比と第2のp型AlGaN層82のAlの組成比とは同じである。第1のp型AlGaN層81及び第2のp型AlGaN層82のAlの組成比は、第1のAlGaN層7のAlの組成比と同じ(例えば、0.20)であるが、第1のAlGaN層7のAlの組成比と異なっていてもよい。第1のp型AlGaN層81及び第2のp型AlGaN層82の厚さは、例えば、50nm以上300nm以下である。
第1のソース電極S1及び第2のソース電極S2は、第1のAlGaN層7の表面71において第1のp型AlGaN層81及び第2のp型AlGaN層82に覆われていない領域に形成されている。第1のソース電極S1と第2のソース電極S2とは、互いに離れている。第1のソース電極S1及び第2のソース電極S2は、第1ヘテロ接合部HJ1と電気的に接続されている。ここにおいて、「電気的に接続されている」とはオーミック接触していることを意味する。第1のソース電極S1及び第2のソース電極S2の各々は、例えば、TiとAlとを含んでいる。
第1のゲート電極G1は、第1のp型AlGaN層81を介して第1のAlGaN層7上に形成されている。また、第2のゲート電極G2は、第2のp型AlGaN層82を介して第1のAlGaN層7上に形成されている。第1のゲート電極G1と第2のゲート電極G2との距離は、第1のp型AlGaN層81と第2のp型AlGaN層82との距離よりも長い。第1のゲート電極G1及び第2のゲート電極G2の各々は、第1のAlGaN層7の表面71に沿った方向において、対応する第1のソース電極S1及び第2のソース電極S2それぞれから離れている。第1のゲート電極G1及び第2のゲート電極G2は、例えば、第1のp型AlGaN層81及び第2のp型AlGaN層82にそれぞれオーミック接触している。第1のゲート電極G1及び第2のゲート電極G2の各々は、例えば、PdとAuとを含んでいる。
第2のAlGaN層5は、上述のように、GaN層6と共に第2のヘテロ接合部HJ2を構成する。第2のAlGaN層5は、GaN層6の厚さ方向において、第1のAlGaN層7側とは反対側に位置している。要するに、第2のAlGaN層5は、GaN層6を挟んで第1のAlGaN層7と対向している。したがって、双方向スイッチ素子1は、第1のAlGaN層7とGaN層6と第2のAlGaN層5とを含むダブルヘテロ構造を有している。第1のAlGaN層7及び第2のAlGaN層5の各々のバンドギャップは、GaN層6のバンドギャップよりも大きい。
第2のAlGaN層5は、アンドープのAlGaN層である。第2のAlGaN層5を構成するアンドープのAlGaN層は、その成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。第2のAlGaN層5のAlの組成比、言い換えれば、第2のAlGaN層5に対応するAlyGa1-yN層のAlの組成比yは、例えば、0.02である。つまり、第2のAlGaN層5は、アンドープのAl0.02Ga0.98N層である。第2のAlGaN層5を構成するAlyGa1-yN層のCの濃度は、一例として、7×1016cm-3であったが、この数値に限定されない。AlyGa1-yN層のCの濃度は、例えば、3×1017cm-3以下であるのが好ましい。Cの濃度は、SIMS(Secondary Ion Mass Spectroscopy)によって測定した値である。第2のAlGaN層5の厚さは、例えば、100nm以上500μm以下である。
第3のAlGaN層4は、基板2と第2のAlGaN層5との間に位置している。第3のAlGaN層4のAlの組成比、言い換えれば、第3のAlGaN層4に対応するAlwGa1-wN層のAlの組成比wは、第2のAlGaN層5のAlの組成比(第2のAlGaN層5に対応するAlyGa1-yN層のAlの組成比y)と同じであるのが好ましく、例えば、0.02である。つまり、第3のAlGaN層4は、Al0.02Ga0.98N層である。第3のAlGaN層4は、第2のAlGaN層5よりもCの濃度が高い。第3のAlGaN層4のCの濃度は、例えば、5×1018cm-3以上5×1019cm-3以下である。第3のAlGaN層4は、その成長時に意図的にCをドーピングしている。より詳細には、第3のAlGaN層4の成長速度が第2のAlGaN層5の成長速度よりも速くなるように第3のAlGaN層4の成長条件を設定することにより、第3のAlGaN層4のCの濃度を第2のAlGaN層5のCの濃度よりも高くしている。ここにおいて、第3のAlGaN層4は、第2のAlGaN層5よりも電気絶縁性が高く、電気絶縁層として機能する。これにより、GaN層6の厚さ方向に電流が流れるのを抑制することができる。ここにおいて、第3のAlGaN層4の成長条件及び第2のAlGaN層5の成長条件は、例えば、基板温度、V/III比、各原料ガスの供給量、成長圧力等を適宜設定すればよい。「基板温度」は、例えば、基板2の元になるウェハを支持するサセプタ(susceptor)の温度を代用することができる。例えば、基板温度は、熱電対により測定したサセプタの温度を代用することができる。「V/III比」とは、III族元素の原料ガスのモル供給量[μmol/min]に対するV族元素の原料ガスのモル供給量[μmol/min]の比である。「成長圧力」とは、各原料ガス及び各キャリアガスをMOVPE装置の反応炉内に供給している状態における反応炉内の圧力である。
第3のAlGaN層4の厚さは、第2のAlGaN層5の厚さよりも厚いのが好ましい。これにより、双方向スイッチ素子1の耐圧をより高くすることが可能となる。第3のAlGaN層4の厚さは、例えば、600nm以上3000nm以下である。
本願発明者らは、実施形態1に係る双方向スイッチ素子1において、基板2を電気的にフローティングした状態で、双方向スイッチ素子1をターンオンさせたときのオン抵抗(Ron)の時間変化について評価した。ここにおいて、「基板2を電気的にフローティングした状態」とは、基板2が第1のソース電極S1、第2のソース電極S2、第1のゲート電極G1及び第2のゲート電極G2のいずれとも電気的に絶縁された状態を意味する。
また、本願発明者らは、実施形態1に係る双方向スイッチ素子1の比較例に係る双方向スイッチ素子についても、基板をフローティングした状態で、比較例に係る双方向スイッチ素子をターンオンさせたときのオン抵抗の時間変化について評価した。比較例に係る双方向スイッチ素子は、実施形態1に係る双方向スイッチ素子1の第2のAlGaN層5を備えていない。比較例に係る双方向スイッチ素子は、実施形態1に係る双方向スイッチ素子1のGaN層6の代わりに、GaN層6の厚さと第2のAlGaN層5の厚さとの合計厚さを有する第1のGaN層を備え、第2のAlGaN層5よりもCの濃度の高い第3のAlGaN層4の代わりに、第1のGaN層よりもCの濃度の高い第2のGaN層を備えている。第1のGaN層は、アンドープのGaN層である。つまり、比較例に係る双方向スイッチ素子は、実施形態1に係る双方向スイッチ素子1のダブルヘテロ構造の代わりに、シングルヘテロ構造を採用している。
オン抵抗の時間変化の評価に際しては、実施形態1に係る双方向スイッチ素子1及び比較例に係る双方向スイッチ素子それぞれに流れる電流の電流値を10Aとしたときのオン抵抗-時間特性により評価した。双方向スイッチ素子1及び比較例の双方向スイッチの各々の両端間(第1のソース電極S1と第2のソース電極S2との間)に接続している直流電源の電圧をVddとし、オン抵抗は、オームの法則に従ってVdd/10の計算で求めた値である。なお、双方向スイッチ素子1に関して、スイッチ動作させる前の電流コラプスの発生していない場合のオン抵抗の実測値は、30mΩである。
比較例の双方向スイッチ素子では、Vddが大きくなるほどオン抵抗が上昇していることから、電流コラプスが発生していることが分かった。これに対して、実施形態1の双方向スイッチ素子1では、比較例の双方向スイッチ素子と比べて、Vddが大きくなった場合のオン抵抗の上昇が抑制されていることから、電流コラプスが抑制されている。
図2A及び2Bは、実施形態1に係る双方向スイッチ素子1及び比較例の双方向スイッチ素子それぞれについて、電流コラプスの発生していないときのオン抵抗を1とした場合のオン抵抗の比(言い換えれば規格化されたオン抵抗)とVddとの関係を示している。図2A及び2Bの各々は、基板2を電気的にフローティングした状態でのオン抵抗の比とVddとの関係を示している。
図2A及び2Bからも、実施形態1の双方向スイッチ素子1では、比較例の双方向スイッチ素子と比べて、Vddが大きくなった場合のオン抵抗の上昇が抑制されていることが分かる。
実施形態1に係る双方向スイッチ素子1は、基板2と、GaN層6と、第1のAlGaN層7と、第1のソース電極S1と、第1のゲート電極G1と、第2のゲート電極G2と、第2のソース電極S2と、第1のp型AlGaN層81と、第2のp型AlGaN層82と、第2のAlGaN層5と、第3のAlGaN層4と、を備える。GaN層6は、基板2上に形成されている。第1のAlGaN層7は、GaN層6上に形成されている。第1のソース電極S1、第1のゲート電極G1、第2のゲート電極G2、及び、第2のソース電極S2は、第1のAlGaN層7上に形成されている。第1のp型AlGaN層81は、第1のゲート電極G1と第1のAlGaN層7との間に介在している。第2のp型AlGaN層82は、第2のゲート電極G2と第1のAlGaN層7との間に介在している。第2のAlGaN層5は、基板2とGaN層6との間に介在している。第3のAlGaN層4は、基板2と第2のAlGaN層5との間に介在し、第2のAlGaN層5よりもCの濃度が高い。
実施形態1に係る双方向スイッチ素子1では、上記の第2のAlGaN層5及び第3のAlGaN層4を備えることにより、電流コラプスを抑制することが可能となる。
図3は、実施形態1の変形例に係る双方向スイッチ素子1aの断面図である。変形例に係る双方向スイッチ素子1aに関し、実施形態1に係る双方向スイッチ素子1と同様の構成要素については、同一の符号を付して説明を省略する。
変形例に係る双方向スイッチ素子1aは、実施形態1に係る双方向スイッチ素子1の第3のAlGaN層4、第2のAlGaN層5の代わりに、第3のAlGaN層4a、第2のAlGaN層5aを備えている。第3のAlGaN層4aは、アンドープのAlGaN層である。第3のAlGaN層4aのAlの組成比は、0.05である。つまり、第3のAlGaN層4aは、アンドープのAl0.05Ga0.95N層である。また、第3のAlGaN層4aのAlの組成比は、第3のAlGaN層4aのAlの組成比と同じであり、0.05である。
第2のAlGaN層5aは、基板2とGaN層6との間に位置しており、GaN層6と共に第2のヘテロ接合部HJ2を構成する。第3のAlGaN層4aは、基板2と第2のAlGaN層5aとの間に位置しており、第2のAlGaN層5aよりもCの濃度が高い。第2のAlGaN層5aを構成するアンドープのAlGaN層のCの濃度は、一例として、7×1016cm-3である。第3のAlGaN層4aのCの濃度は、例えば、5×1018cm-3以上5×1019cm-3以下である。実施形態1の変形例に係る双方向スイッチ素子1aでは、GaN層6、第1のAlGaN層7、第1のp型AlGaN層81、第2のp型AlGaN層82、第2のAlGaN層5a及び第3のAlGaN層4aが、それぞれ、AlzGa1-zN層(ここで、0≦z<1)、AlbGa1-bN層(ここで、0<b<1)、p型Alx1Ga1-x1N層(ここで、0≦x1≦1)、p型Alx2Ga1-x2N層(ここで、0≦x2≦1)、AlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)及びAlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)の一例である。
変形例に係る双方向スイッチ素子1aは、実施形態1に係る双方向スイッチ素子1と同様、電流コラプスの発生を抑制することが可能となる。
ここにおいて、変形例に係る双方向スイッチ素子1では、比較例に係る双方向スイッチ素子と比べてオフリーク電流が大きくなってしまう。これに対して、実施形態1に係る双方向スイッチ素子1では、変形例に係る双方向スイッチ素子と比べてオフリーク電流を低減することができる。オフリーク電流とは、第1のゲート電極G1がオフ状態、第2のゲート電極G2がオフ状態のときに、第2のソース電極S2から第1のソース電極S1へ流れる電流である。
図4は、第2のソース電極S2を第1のソース電極S1よりも高電位として第2のソース電極S2と第1のソース電極S1との間の電圧をVS2S1とした場合の、VS2S1とリーク電流(オフリーク電流)との関係を示している。図4中のDHは、上述のダブルヘテロ構造を有する実施形態1の双方向スイッチ素子1の一例の測定データであり、図4中のSHは上述のシングルヘテロ構造を有する比較例の双方向スイッチ素子の一例の測定データである。図4から、VS2S1が400V以下であれば、実施形態1に係る双方向スイッチ素子1のリーク電流が比較例の双方向スイッチのリーク電流よりも小さいことが分かる。
上述のように実施形態1に係る双方向スイッチ素子1は、第2のAlGaN層5のAlの組成比が0.05未満である。これにより、実施形態1に係る双方向スイッチ素子1は、オフリーク電流を抑制することが可能となる。
(実施形態2)
以下では、実施形態2に係る双方向スイッチ素子1bについて、図5に基づいて説明する。
以下では、実施形態2に係る双方向スイッチ素子1bについて、図5に基づいて説明する。
実施形態2に係る双方向スイッチ素子1bに関し、実施形態1に係る双方向スイッチ素子1(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
実施形態2に係る双方向スイッチ素子1bは、実施形態1に係る双方向スイッチ素子1の第3のAlGaN層4、第2のAlGaN層5の代わりに、第3のAlGaN層4b、第2のAlGaN層5bを備えている。実施形態2に係る双方向スイッチ素子1bでは、GaN層6、第1のAlGaN層7、第1のp型AlGaN層81、第2のp型AlGaN層82、第2のAlGaN層5b及び第3のAlGaN層4bが、それぞれ、AlzGa1-zN層(ここで、0≦z<1)、AlbGa1-bN層(ここで、0<b<1)、p型Alx1Ga1-x1N層(ここで、0≦x1≦1)、p型Alx2Ga1-x2N層(ここで、0≦x2≦1)、AlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)及びAlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)の一例である。
第3のAlGaN層4bのAlの組成比は、例えば、0.05である。つまり、第3のAlGaN層4bは、Al0.05Ga0.95N層である。第3のAlGaN層4bは、第2のAlGaN層5bよりもCの濃度が高い。第3のAlGaN層4bのCの濃度は、例えば、1×1019cm-3以上1×1019cm-3以下である。
第2のAlGaN層5bのAlの組成比は、第3のAlGaN層4bのAlの組成比よりも小さい。第2のAlGaN層5bでは、第2のAlGaN層5bの厚み方向において第3のAlGaN層4bから離れるにつれてAlの組成比が小さくなっている。言い換えれば、第2のAlGaN層5bは、第3のAlGaN層4bから離れるにつれてバンドギャップエネルギが小さくなっており、GaN層6に近づくにつれてGaN層6とのバンドギャップエネルギの差が小さくなっている。ここにおいて、第2のAlGaN層5bは、例えば、互いにAlの組成比の異なる3層以上のAlGaN層の積層膜である。一例として、第2のAlGaN層5bは、互いにAlの組成比の異なる10層のAlGaN層の積層膜である。ここにおいて、10層のAlGaN層の各々の厚さは、第2のAlGaN層5bの厚さの10分の1の厚さである。また、10層のAlGaN層は、第2のAlGaN層5bの厚み方向においてGaN層6から離れるにつれてAlの組成比が0.005ずつ増加している。つまり、10層のAlGaN層は、第2のAlGaN層5bの厚み方向においてGaN層6側から、Al0.005Ga0.995N層、Al0.01Ga0.99N層、Al0.015Ga0.985N層、Al0.02Ga0.98N層、Al0.025Ga0.975N層、Al0.03Ga0.97N層、Al0.035Ga0.965N層、Al0.04Ga0.96N層、Al0.045Ga0.955N層、Al0.05Ga0.95N層の順に並んでいる。
実施形態2に係る双方向スイッチ素子1bは、実施形態1に係る双方向スイッチ素子1と同様、電流コラプスの発生を抑制することが可能となる。
図6は、VS2S1とリーク電流(オフリーク電流)との関係を示している。図6中のAlグレーデッドは実施形態2に係る双方向スイッチ素子1bの一例の測定データであり、図6中のSHは上述のシングルヘテロ構造を有する比較例の双方向スイッチ素子の一例の測定データである。図6から、VS2S1が250V以下であれば、実施形態2に係る双方向スイッチ素子1bのリーク電流が比較例の双方向スイッチのオフリーク電流よりも小さいことが分かる。
(実施形態3)
以下では、実施形態3に係る双方向スイッチ素子1cについて、図7に基づいて説明する。
以下では、実施形態3に係る双方向スイッチ素子1cについて、図7に基づいて説明する。
実施形態3に係る双方向スイッチ素子1cに関し、実施形態1に係る双方向スイッチ素子1(図1参照)と同様の構成要素については、同一の符号を付して説明を省略する。
実施形態3に係る双方向スイッチ素子1cは、実施形態1に係る双方向スイッチ素子1のバッファ層3、第3のAlGaN層4、第2のAlGaN層5及びGaN層6の代わりに、バッファ層3c、第3のAlGaN層4c、第2のAlGaN層5c及び第4のAlGaN層61を備えている。実施形態3に係る双方向スイッチ素子1cでは、第4のAlGaN層61、第1のAlGaN層7、第1のp型AlGaN層81、第2のp型AlGaN層82、第2のAlGaN層5c及び第3のAlGaN層4cが、それぞれ、AlzGa1-zN層(ここで、0≦z<1)、AlbGa1-bN層(ここで、0<b<1)、p型Alx1Ga1-x1N層(ここで、0≦x1≦1)、p型Alx2Ga1-x2N層(ここで、0≦x2≦1)、AlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)及びAlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)の一例である。
第4のAlGaN層61は、アンドープのAlGaN層である。第4のAlGaN層61を構成するアンドープのAlGaN層は、その成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。第4のAlGaN層61の厚さは、例えば、100nm以上700nm以下である。第4のAlGaN層61に対応するAlzGa1-zN層のAlの組成比zが、第1のAlGaN層7により構成されるAlbGa1-bN層のAlの組成比bよりも小さく、かつ、第2のAlGaN層5cに対応するAlyGa1-yN層のAlの組成比yよりも小さい。
第1のAlGaN層7は、第4のAlGaN層61と共に第1のヘテロ接合部HJ1cを構成する。第4のAlGaN層61においては、第1ヘテロ接合部HJ1cの近傍に、2次元電子ガスが発生している。第1のAlGaN層7を構成するアンドープのAlGaN層のAlの組成比は、例えば、0.17である。
第2のAlGaN層5cは、第4のAlGaN層61と共に第2のヘテロ接合部HJ2cを構成する。第2のAlGaN層5cは、第4のAlGaN層61の厚さ方向において、第1のAlGaN層7側とは反対側に位置している。要するに、第2のAlGaN層5cは、第4のAlGaN層61を挟んで第1のAlGaN層7と対向している。したがって、双方向スイッチ素子1cは、第1のAlGaN層7と第4のAlGaN層61と第2のAlGaN層5cとを含むダブルヘテロ構造を有している。第1のAlGaN層7及び第2のAlGaN層5cの各々のバンドギャップは、第4のAlGaN層61のバンドギャップよりも大きい。
第2のAlGaN層5cは、アンドープのAlGaN層である。第2のAlGaN層5cを構成するアンドープのAlGaN層は、その成長時に不可避的に混入されるMg、H、Si、C、O等の不純物が存在してもよい。第2のAlGaN層5cのAlの組成比、言い換えれば、第2のAlGaN層5cに対応するAlyGa1-yN層のAlの組成比yは、例えば、0.02である。つまり、第2のAlGaN層5cは、アンドープのAl0.02Ga0.98N層である。第2のAlGaN層5cに対応するAlyGa1-yN層のCの濃度は、一例として、7×1016cm-3であったが、この数値に限定されない。AlyGa1-yN層のCの濃度は、例えば、3×1017cm-3以下であるのが好ましい。第2のAlGaN層5cの厚さは、例えば、100nm以上500μm以下である。
第3のAlGaN層4cは、基板2と第2のAlGaN層5cとの間に位置している。第3のAlGaN層4cのAlの組成比、言い換えれば、第3のAlGaN層4cにより構成されるAlwGa1-wN層のAlの組成比wは、第2のAlGaN層5cに対応するAlyGa1-yN層のAlの組成比yと同じであるのが好ましく、例えば、0.02である。つまり、第3のAlGaN層4cは、Al0.02Ga0.98N層である。第3のAlGaN層4cは、第2のAlGaN層5cよりもCの濃度が高い。第3のAlGaN層4cのCの濃度は、例えば、5×1018cm-3以上5×1019cm-3以下である。第3のAlGaN層4cは、その成長時に意図的にCをドーピングしている。より詳細には、第3のAlGaN層4cの成長速度が第2のAlGaN層5cの成長速度よりも速くなるように第3のAlGaN層4cの成長条件を設定することにより、第3のAlGaN層4cのCの濃度を第2のAlGaN層5cのCの濃度よりも高くしている。ここにおいて、第3のAlGaN層4cは、第2のAlGaN層5cよりも電気絶縁性が高く、電気絶縁層として機能する。これにより、第4のAlGaN層61の厚さ方向に電流が流れるのを抑制することができる。
バッファ層3cは、CドープのGaN層である。バッファ層3cは、その成長時に意図的にCをドーピングしている。バッファ層3cのCの濃度は、アンドープのGaN層により構成されるバッファ層3のCの濃度よりも高い。バッファ層3cの厚さは、例えば、100nm以上3000nm以下である。
実施形態3に係る双方向スイッチ素子1cは、第2のAlGaN層5cに対応するAlyGa1-yN層のAlの組成比yが0.05未満である。これにより、実施形態3に係る双方向スイッチ素子1cは、オフリーク電流を抑制することが可能となる。
また、実施形態3に係る双方向スイッチ素子1cは、第3のAlGaN層4cに対応するAlwGa1-wN層のAlの組成比wが0.05未満である。これにより、実施形態3に係る双方向スイッチ素子1cは、オフリーク電流を抑制することが可能となる。
また、実施形態3に係る双方向スイッチ素子1cは、第2のAlGaN層5cに対応するAlyGa1-yN層のAlの組成比yが0.03未満であり、第3のAlGaN層4cに対応するAlwGa1-wN層のAlの組成比wが0.03未満であるのが好ましい。これにより、実施形態3に係る双方向スイッチ素子1cでは、オフリーク電流をより一層抑制することが可能となる。
上記の実施形態1~3等は、本開示の様々な実施形態の一つに過ぎない。上記の実施形態1~3等は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。
例えば、第2のAlGaN層5bにおける3層以上のAlGaN層の厚さの関係は、特に限定されない。例えば、3層以上のAlGaN層は、厚さが同じである場合に限らず、互いに厚さが異なっていてもよい。
また、第2のAlGaN層5bは、Alの組成比がステップ状に変化している場合に限らず、連続的に変化していてもよい。
また、基板2は、シリコン基板に限らず、例えば、GaN基板、SiC基板、サファイア基板等であってもよい。
双方向スイッチ素子1、1a、1b、1cの各々の他の第1例では、第1のp型AlGaN層81の代わりに第1のp型GaN層を備え、第2のp型AlGaN層82の代わりに第2のp型GaN層を備えていてもよい。
また、双方向スイッチ素子1、1a、1b、1cの各々の他の第2例では、第1のp型AlGaN層81の代わりに、p型金属酸化物半導体層からなる第1のゲート層を備え、第2のp型AlGaN層の代わりに、p型金属酸化物半導体層からなる第2のゲート層を備えていてもよい。第1のゲート層及び第2のゲート層の各々のp型金属酸化物半導体層は、例えば、NiO層である。NiO層は、例えば、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムの群から選ばれる少なくとも1種のアルカリ金属を不純物として含んでいてもよい。また、NiO層は、例えば、不純物として添加されたときに一価となる銀、銅等の遷移金属を含んでいてもよい。第1のゲート層は、第1のゲート電極G1と第1のソース電極S1との間に電圧が印加されていないときに、第1のゲート層直下において第1のAlGaN層7とGaN層6とに空乏層を形成する。第2のゲート層は、第2のゲート電極G2と第2のソース電極S2との間に電圧が印加されていないときに、第2のゲート層直下において第1のAlGaN層7とGaN層6とに空乏層を形成する。
また、双方向スイッチ素子1の他の第3例では、第2のAlGaN層5の代わりに、InAlGaN層を備えていてもよい。この場合、InAlGaN層は、アンドープのIn0.05Al0.10Ga0.85N層により構成してもよい。
また、双方向スイッチ素子1の他の第4例では、第3のAlGaN層4の代わりに、InAlGaN層を備えていてもよい。この場合、第3のAlGaN層4の代わりのInAlGaN層は、第2のAlGaN層5の代わりのInAlGaN層よりもCの濃度の高いIn0.05Al0.10Ga0.85N層により構成してもよい。
(まとめ)
以上説明した実施形態等から本明細書には以下の態様が開示されている。
以上説明した実施形態等から本明細書には以下の態様が開示されている。
第1の態様に係る双方向スイッチ素子(1;1a;1b;1c)は、基板(2)と、AlzGa1-zN層(ここで、0≦z<1)と、AlbGa1-bN層(ここで、0<b<1)と、第1のソース電極(S1)と、第1のゲート電極(G1)と、第2のゲート電極(G2)と、第2のソース電極(S2)と、p型Alx1Ga1-x1N層(ここで、0≦x1≦1)と、p型Alx2Ga1-x2N層(ここで、0≦x2≦1)と、AlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)と、AlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)と、を備える。AlzGa1-zN層(GaN層6;第4のAlGaN層61)は、基板(2)上に形成されている。AlbGa1-bN層(第1のAlGaN層7)は、AlzGa1-zN層(GaN層6;第4のAlGaN層61)上に形成されている。第1のソース電極(S1)、第1のゲート電極(G1)、第2のゲート電極(G2)、及び、第2のソース電極(S2)は、AlbGa1-bN層(第1のAlGaN層7)上に形成されている。p型Alx1Ga1-x1N層(第1のp型AlGaN層81)は、第1のゲート電極(G1)とAlbGa1-bN層(第1のAlGaN層7)との間に介在している。p型Alx2Ga1-x2N層(第2のp型AlGaN層82)は、第2のゲート電極(G2)とAlbGa1-bN層(第1のAlGaN層7)との間に介在している。AlyGa1-yN層(第2のAlGaN層5;5a;5b;5c)は、基板(2)とAlzGa1-zN層(GaN層6;第4のAlGaN層61)との間に介在している。AlwGa1-wN層(第3のAlGaN層4;4a;4b;4c)は、基板(2)とAlyGa1-yN層(第2のAlGaN層5;5a;5b;5c)との間に介在し、AlyGa1-yN層(第2のAlGaN層5;5a;5b;5c)よりもCの濃度が高い。
第1の態様に係る双方向スイッチ素子(1;1a;1b;1c)では、電流コラプスを抑制することが可能となる。
第2の態様に係る双方向スイッチ素子(1;1c)では、第1の態様において、AlyGa1-yN層(第2のAlGaN層5;5c)のAlの組成比(y)が0.05未満である。
第2の態様に係る双方向スイッチ素子(1;1c)では、オフリーク電流を抑制することが可能となる。
第3の態様に係る双方向スイッチ素子(1b)では、第1又は2の態様において、AlyGa1-yN層(第2のAlGaN層5b)のAlの組成比(y)は、AlwGa1-wN層(第3のAlGaN層4b)のAlの組成比(w)よりも小さい。AlyGa1-yN層(第2のAlGaN層5b)では、AlyGa1-yN層(第2のAlGaN層5b)の厚み方向においてAlwGa1-wN層(第3のAlGaN層4b)から離れるにつれてAlの組成比(y)が小さくなっている。
第3の態様に係る双方向スイッチ素子(1b)では、オフリーク電流を抑制することが可能となる。
第4の態様に係る双方向スイッチ素子(1b)では、第1~3の態様のいずれか一つにおいて、AlyGa1-yN層(第2のAlGaN層5b)は、互いにAlの組成比の異なる3層以上のAlGaN層の積層膜である。
第4の態様に係る双方向スイッチ素子(1b)では、オフリーク電流の発生を抑制することが可能となる。
第5の態様に係る双方向スイッチ素子(1c)では、第2の態様において、AlwGa1-wN層(第3のAlGaN層4c)のAlの組成比(w)が0.05未満である。
第5の態様に係る双方向スイッチ素子(1c)では、オフリーク電流をより抑制することが可能となる。
第6の態様に係る双方向スイッチ素子(1c)では、第5の態様において、AlyGa1-yN層(第2のAlGaN層5c)のAlの組成比(y)が0.03未満であり、AlwGa1-wN層(第3のAlGaN層4c)のAlの組成比(w)が0.03未満である。
第6の態様に係る双方向スイッチ素子(1c)では、オフリーク電流をより一層抑制することが可能となる。
第7の態様に係る双方向スイッチ素子(1;1a;1b;1c)は、第1~6の態様のいずれか一つにおいて、基板(2)が第1のソース電極(S1)、第2のソース電極(S2)、第1のゲート電極(G1)及び第2のゲート電極(G2)のいずれとも電気的に絶縁された状態で使用される。
第7の態様に係る双方向スイッチ素子(1;1a;1b;1c)では、基板(2)が接地された状態で使用することなく電流コラプスを抑制することが可能となる。
第8の態様に係る双方向スイッチ素子(1;1a;1b;1c)では、第1~7の態様のいずれか一つにおいて、第3のAlGaN層(4;4a;4b;4c)の厚さが、第2のAlGaN層(5;5a;5b;5c)の厚さよりも厚い。
第8の態様に係る双方向スイッチ素子(1;1a;1b;1c)では、耐圧の向上を図ることが可能となる。
1、1a、1b、1c 双方向スイッチ素子
2 基板
4、4a、4b、4c 第3のAlGaN層(AlwGa1-wN層)
5、5a、5b、5c 第2のAlGaN層(AlyGa1-yN層)
6 GaN層(AlzGa1-zN層)
61 第4のAlGaN層(AlzGa1-zN層)
7 第1のAlGaN層(AlbGa1-bN層)
81 第1のp型AlGaN層(p型Alx1Ga1-x1N層)
82 第2のp型AlGaN層(p型Alx2Ga1-x2N層)
G1 第1のゲート電極
G2 第2のゲート電極
S1 第1のソース電極
S2 第2のソース電極
2 基板
4、4a、4b、4c 第3のAlGaN層(AlwGa1-wN層)
5、5a、5b、5c 第2のAlGaN層(AlyGa1-yN層)
6 GaN層(AlzGa1-zN層)
61 第4のAlGaN層(AlzGa1-zN層)
7 第1のAlGaN層(AlbGa1-bN層)
81 第1のp型AlGaN層(p型Alx1Ga1-x1N層)
82 第2のp型AlGaN層(p型Alx2Ga1-x2N層)
G1 第1のゲート電極
G2 第2のゲート電極
S1 第1のソース電極
S2 第2のソース電極
Claims (8)
- 基板と、
前記基板上に形成されているAlzGa1-zN層(ここで、0≦z<1)と、
前記AlzGa1-zN層上に形成されているAlbGa1-bN層(ここで、0<b<1)と、
前記AlbGa1-bN層上に形成されている第1のソース電極、第1のゲート電極、第2のゲート電極、及び、第2のソース電極と、
前記第1のゲート電極と前記AlbGa1-bN層との間に介在しているp型Alx1Ga1-x1N層(ここで、0≦x1≦1)と、
前記第2のゲート電極と前記AlbGa1-bN層との間に介在しているp型Alx2Ga1-x2N層(ここで、0≦x2≦1)と、
前記基板と前記AlzGa1-zN層との間に介在しているAlyGa1-yN層(ここで、0<y<1、かつ、z<y<b)と、
前記基板と前記AlyGa1-yN層との間に介在し、前記AlyGa1-yN層よりもCの濃度が高いAlwGa1-wN層(ここで、0<w<1、かつ、z<w<b)と、を備える、
双方向スイッチ素子。 - 前記AlyGa1-yN層のAlの組成比yが0.05未満である、
請求項1に記載の双方向スイッチ素子。 - 前記AlyGa1-yN層のAlの組成比yは、前記AlwGa1-wN層のAlの組成比wよりも小さく、
前記AlyGa1-yN層では、前記AlyGa1-yN層の厚み方向において前記AlwGa1-wN層から離れるにつれてAlの組成比yが小さくなっている、
請求項1又は2に記載の双方向スイッチ素子。 - 前記AlyGa1-yN層は、互いにAlの組成比の異なる3層以上のAlGaN層の積層膜である、
請求項1~3のいずれか一項に記載の双方向スイッチ素子。 - 前記AlwGa1-wN層のAlの組成比wが0.05未満である、
請求項2に記載の双方向スイッチ素子。 - 前記AlyGa1-yN層のAlの組成比yが0.03未満であり、
前記AlwGa1-wN層のAlの組成比wが0.03未満である、
請求項5に記載の双方向スイッチ素子。 - 前記基板が前記第1のソース電極、前記第2のソース電極、前記第1のゲート電極及び前記第2のゲート電極のいずれとも電気的に絶縁された状態で使用される、
請求項1~6のいずれか一項に記載の双方向スイッチ素子。 - 前記AlwGa1-wN層の厚さが、前記AlyGa1-yN層の厚さよりも厚い、
請求項1~7のいずれか一項に記載の双方向スイッチ素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019003283.6T DE112019003283T5 (de) | 2018-06-29 | 2019-06-12 | Bidirektionales Schaltelement |
US17/256,475 US11605715B2 (en) | 2018-06-29 | 2019-06-12 | Bidirectional switch element |
JP2020527374A JP7203361B2 (ja) | 2018-06-29 | 2019-06-12 | 双方向スイッチ素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-125452 | 2018-06-29 | ||
JP2018125452 | 2018-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020004021A1 true WO2020004021A1 (ja) | 2020-01-02 |
Family
ID=68986372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023188 WO2020004021A1 (ja) | 2018-06-29 | 2019-06-12 | 双方向スイッチ素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11605715B2 (ja) |
JP (1) | JP7203361B2 (ja) |
DE (1) | DE112019003283T5 (ja) |
WO (1) | WO2020004021A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021166232A (ja) * | 2020-04-06 | 2021-10-14 | 株式会社東芝 | 半導体装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12057824B2 (en) | 2021-06-29 | 2024-08-06 | Navitas Semiconductor Limited | Circuits and methods for controlling a voltage of a semiconductor substrate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196575A (ja) * | 2000-01-13 | 2001-07-19 | Matsushita Electric Ind Co Ltd | 半導体装置 |
WO2008062800A1 (en) * | 2006-11-20 | 2008-05-29 | Panasonic Corporation | Semiconductor device and its drive method |
JP2012243871A (ja) * | 2011-05-17 | 2012-12-10 | Advanced Power Device Research Association | 半導体素子及びその製造方法 |
JP2015115582A (ja) * | 2013-12-16 | 2015-06-22 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP2017521869A (ja) * | 2014-07-21 | 2017-08-03 | トランスフォーム インコーポレーテッド | エンハンスメントモードiii族窒化物デバイスの形成 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011064955A1 (ja) * | 2009-11-30 | 2011-06-03 | パナソニック株式会社 | 双方向スイッチ |
JP5666157B2 (ja) | 2010-03-26 | 2015-02-12 | パナソニック株式会社 | 双方向スイッチ素子及びそれを用いた双方向スイッチ回路 |
-
2019
- 2019-06-12 US US17/256,475 patent/US11605715B2/en active Active
- 2019-06-12 WO PCT/JP2019/023188 patent/WO2020004021A1/ja active Application Filing
- 2019-06-12 JP JP2020527374A patent/JP7203361B2/ja active Active
- 2019-06-12 DE DE112019003283.6T patent/DE112019003283T5/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196575A (ja) * | 2000-01-13 | 2001-07-19 | Matsushita Electric Ind Co Ltd | 半導体装置 |
WO2008062800A1 (en) * | 2006-11-20 | 2008-05-29 | Panasonic Corporation | Semiconductor device and its drive method |
JP2012243871A (ja) * | 2011-05-17 | 2012-12-10 | Advanced Power Device Research Association | 半導体素子及びその製造方法 |
JP2015115582A (ja) * | 2013-12-16 | 2015-06-22 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP2017521869A (ja) * | 2014-07-21 | 2017-08-03 | トランスフォーム インコーポレーテッド | エンハンスメントモードiii族窒化物デバイスの形成 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021166232A (ja) * | 2020-04-06 | 2021-10-14 | 株式会社東芝 | 半導体装置 |
JP7261196B2 (ja) | 2020-04-06 | 2023-04-19 | 株式会社東芝 | 半導体装置 |
US11699724B2 (en) | 2020-04-06 | 2023-07-11 | Kabushiki Kaisha Toshiba | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP7203361B2 (ja) | 2023-01-13 |
JPWO2020004021A1 (ja) | 2021-08-02 |
US11605715B2 (en) | 2023-03-14 |
US20210134963A1 (en) | 2021-05-06 |
DE112019003283T5 (de) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9343542B2 (en) | Method for fabricating enhancement mode transistor | |
JP6189235B2 (ja) | 半導体装置 | |
US20140110759A1 (en) | Semiconductor device | |
US8164117B2 (en) | Nitride semiconductor device | |
CN101232046B (zh) | Ⅲ族氮化物功率半导体器件 | |
JP5386987B2 (ja) | 半導体装置 | |
US8816399B2 (en) | Semiconductor device | |
US9502602B2 (en) | Structure of high electron mobility light emitting transistor | |
TW201403814A (zh) | 半導體裝置及其製造方法 | |
US9087890B2 (en) | Semiconductor device | |
US10784336B2 (en) | Gallium nitride high electron mobility transistor and gate structure thereof | |
US20150263155A1 (en) | Semiconductor device | |
JP2011009493A (ja) | 半導体装置およびその製造方法 | |
US20210359123A1 (en) | Semiconductor power device | |
JP7203361B2 (ja) | 双方向スイッチ素子 | |
JP2020047695A (ja) | 半導体装置 | |
JPWO2018181237A1 (ja) | 半導体装置 | |
US11024717B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JP2015106627A (ja) | 半導体積層基板 | |
JP2007250727A (ja) | 電界効果トランジスタ | |
JP2015056413A (ja) | 窒化物半導体装置 | |
CN106206707A (zh) | 半导体装置 | |
JP2015149360A (ja) | 化合物半導体fet | |
JP6137621B2 (ja) | 化合物半導体fet | |
CN112310209A (zh) | 一种场效应晶体管及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19825490 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020527374 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19825490 Country of ref document: EP Kind code of ref document: A1 |