[go: up one dir, main page]

WO2019237678A1 - 桥台刚构桥的构造及其施工方法 - Google Patents

桥台刚构桥的构造及其施工方法 Download PDF

Info

Publication number
WO2019237678A1
WO2019237678A1 PCT/CN2018/118841 CN2018118841W WO2019237678A1 WO 2019237678 A1 WO2019237678 A1 WO 2019237678A1 CN 2018118841 W CN2018118841 W CN 2018118841W WO 2019237678 A1 WO2019237678 A1 WO 2019237678A1
Authority
WO
WIPO (PCT)
Prior art keywords
abutment
thin
main
retaining
walled
Prior art date
Application number
PCT/CN2018/118841
Other languages
English (en)
French (fr)
Inventor
黄福云
陈伟
罗小烨
庄一舟
林友炜
胡晨曦
崔玉龙
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2019237678A1 publication Critical patent/WO2019237678A1/zh
Priority to ZA2020/05860A priority Critical patent/ZA202005860B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations

Definitions

  • the invention relates to the fields of basic engineering and bridge engineering, in particular to the fields of absorbing deformation of bridge main girder, settlement analysis and prevention measures of slabs after platform; in particular, it relates to a structure of abutment rigid frame bridge and construction method thereof.
  • the abutments of traditional bridges are mainly affected by the vertical load, bending moment and backfill of the main beam.
  • Earth pressure, and the abutment rigid frame bridge can separate the load conditions of the abutment.
  • the thin-walled main abutment mainly bears the vertical load and the bending moment generated by the main beam. bear. This approach can make the stress situation of the thin-walled main abutment and the retaining sub-abutment simpler and clearer. Therefore, the size of both abutments can be made smaller.
  • the usual method is to set expansion joints and expansion devices at the bridge pier and use the deformation of the expansion joint device to absorb the main beam. Deformation, but this method has great disadvantages.
  • the telescopic device is easily damaged under the load and temperature of the car, which causes uneven driving. These methods can't solve this problem by force.
  • the method of abutment rigid frame bridge is to consolidate the bridge main girder, lead beam and thin-walled main abutment.
  • the deformation of the bridge main beam under the action of temperature and external force can be caused by The thin-walled main abutment performs absorption, thereby greatly reducing the influence of bridge deformation on the backfill of the platform.
  • the structure of the abutment rigid frame bridge and its construction method are proposed.
  • the deformation of the main beam under the action of temperature and external force can be consumed and absorbed by the thin-walled main abutment, so as to improve the stress of the thin-walled main abutment and prevent shear failure of the abutment;
  • the abutment only supports the internal and external forces of the main structure of the bridge, and does not support the post-abutment soil filling effect of traditional abutments, so as to separate its stress mode.
  • the post-abutment soil filling effect is supported by the retaining secondary abutment. . Therefore, this structural measure has many differences from the traditional abutment.
  • the lightweight abutment is filled in front of the retaining secondary abutment to balance the filling pressure behind the retaining abutment; the other is retaining soil.
  • the secondary abutment is not connected to the main bridge, does not bear the vertical load generated by the upper main beam, only the load generated by the approach beam and slab and vehicles or pedestrians, and the thin-walled main abutment basically does not bear the backfill soil pressure.
  • the third is the overall consolidation of the bridge main beam, the leading beam and the thin-walled main abutment, eliminating the expansion joints and expansion devices at the thin-walled main abutment.
  • the deformation of the main beam under the action of temperature and external force can be reduced by thin
  • the main abutment of the wall is fully consumed and absorbed;
  • the fourth is to enhance the integrity of the bridge and improve the seismic performance of the bridge;
  • the fifth is to reduce the maintenance cost of the bridge and increase the life cycle of the bridge.
  • This measure is simple in construction, convenient in construction, and easy to be popularized and applied in actual projects. At the same time, it has significant effects on absorbing the deformation of the main beam, reducing the abutment shear damage, and improving the settlement failure of the deck after the platform. Economic and social benefits.
  • the technical problem to be solved by the present invention is to provide a structure of abutment rigid frame bridge and a construction method thereof to overcome the shortcomings of the prior art.
  • the structure of the abutment rigid frame bridge of the present invention is characterized in that it includes a main beam and an approach beam, and a thin-walled main abutment, a cap and a pile foundation are sequentially arranged below the connection portion between the main beam and the approach beam.
  • the pile foundation is provided with a tapered slope on the side close to the main beam, and a retaining sub-abutment is provided below the connection portion of the lead beam and the slab, and the retaining sub-abutment is filled with soil after the platform near the slab
  • a plurality of successively connected slabs and pillow beams arranged below the expansion joints between the slabs are arranged behind the guide beam, and lightweight materials are filled between the thin-walled main abutment and the retaining sub-abutment.
  • the distance between the thin-walled main abutment and the retaining sub-abutment is between 1.0 and 2.5.
  • the lower part of the earth retaining secondary abutment is trapezoidal.
  • the lightweight material is EPS foam.
  • a sliding layer is arranged between the soil retaining sub-abutment and the guide beam, and the sliding layer is rubber or linoleum.
  • the construction method of the abutment rigid frame bridge of the present invention is characterized in that the structure of the abutment rigid frame bridge includes a main beam and an approach beam, and a thin-walled main abutment is sequentially arranged below the connection portion between the main beam and the approach beam, A cap and a pile foundation are provided with a tapered slope on the side close to the main beam, and a sub-retaining abutment is provided below the connection between the lead beam and the slab, and the sub-retaining abutment is close to One side of the slab is filled with soil after the platform. A plurality of slabs connected in sequence and a pillow beam below the expansion joint between the slabs are arranged behind the guide beam. Light materials are filled between the abutments; during construction,
  • the construction of the cone slope in front of the platform and the backfill of the platform is then carried out.
  • the backfill is only filled to the platform to reduce the impact of the displacement and angle of the thin-walled main bridge abutment on the backfill and subsidence of the backfill; Then set a secondary retaining abutment behind the thin-walled abutment;
  • the light-weight material is filled between the thin-walled main abutment and the retaining sub-abutment, and the height is consistent with the height of the thin-walled main abutment.
  • the reserved distance between soil sub-abutments, the transverse width of the horizontal bridge is the same as that of the thin-walled main abutment; after the lightweight material is filled, an approach beam is set up between the thin-walled main abutment and the retaining sub-abutment;
  • main beam, approach beam and thin-walled main abutment are poured or assembled as a whole, followed by the construction of the backfill behind the retaining sub-abutment, followed by the construction of the slip layer and the pillow beam, and Wiring pavement connection
  • the distance between the thin-walled main abutment and the retaining sub-abutment is between 1.0 and 2.5.
  • the lower part of the earth retaining secondary abutment is trapezoidal.
  • the lightweight material is EPS foam.
  • a sliding layer is arranged between the soil retaining sub-abutment and the guide beam, and the sliding layer is rubber or linoleum.
  • the structure and construction method of the abutment rigid frame bridge of the present invention have the following main advantages:
  • the main beam, lead beam and thin-walled main abutment are poured or assembled as a whole, which can eliminate the expansion joints and expansion devices of the main abutment.
  • the thin-walled main abutment is good for absorbing the deformation of the main beam, making it difficult for shear failure to occur at the abutment.
  • the retaining abutment can be set in the form of a retaining wall; when the local conditions are poor, measures such as pile foundations or enlarged foundations can be added to prevent the retaining abutment from being introduced. Beams and slabs settle under the dead weight and other vertical loads.
  • the filling of lightweight materials between the two bridge abutments is beneficial to absorb the horizontal displacement and rotation angle of the thin-walled main abutment, reduce the impact of the displacement of the thin-walled abutment on the backfill of the platform, and balance the retaining abutment abutment After stationary earth pressure.
  • the structure and construction method of the abutment rigid frame bridge proposed by the present invention have the advantages of high versatility and ease of construction, meanwhile, it can reduce bridge maintenance costs and increase bridge life.
  • FIG. 1 is an overall schematic diagram of the present invention
  • FIG. 2 is a partially enlarged view of FIG. 1;
  • Figure 3 is a left side view of Figure 2;
  • the structure of the abutment rigid frame bridge of the present invention includes a main beam 1 and an approach beam 2, and a thin-walled main abutment 3, a cap 4 and a pile foundation 5 are sequentially arranged below the connection portion between the main beam and the approach beam, and the cap 4 and the pile foundation 5 is provided with a tapered slope 6 on the side close to the main beam, and a plurality of landing plates 11 connected in sequence and a pillow beam 12 provided under the expansion joint 7 between the landing plates are provided behind the guide beam 2.
  • a sub-retaining abutment 9 is provided below the connecting portion of the guide beam 12 and the slat 11.
  • the sub-retaining abutment is filled with post-filling soil 14 near the side of the slab.
  • the thin-walled main abutment and retaining Lightweight materials 10 are filled between the secondary abutments.
  • the technical solution specifically adopted by the present invention is: First, when the bridge is finished with the main girder construction, the thin-walled main abutment is constructed, and a reinforced concrete thin-walled main abutment is set on the bearing platform. (1.0 ⁇ 2.5) A secondary retaining abutment is set at h. Both the thin-walled primary abutment and the retaining secondary abutment can be cast on site or prefabricated in the factory. The height of the retaining sub-abutment is the same as that of the thin-walled main abutment, and it adopts a variable cross-section form.
  • the cross-section form above the height of the thin-walled main abutment platform adopts a rectangular section, which is lower than the height of the thin-walled main abutment platform.
  • the trapezoidal section can effectively prevent settlement of the secondary retaining platform.
  • an approach beam is erected between the two abutments, and then the main beam, the approach beam, and the thin-walled main abutment are poured or consolidated into a whole, and finally, the construction of the slab is carried out.
  • the expansion joint position of the slab is laid at the end of the approach beam, and a slip layer is laid on the contact surface between the secondary abutment and the approach beam, which can effectively reduce the impact of the expansion and contraction of the approach beam on the secondary abutment.
  • the pillow beam can be buried at the end of the slab.
  • the thin-walled main abutment is a bridge abutment supported on the main beam.
  • the reinforced concrete structure is adopted.
  • the upper part is consolidated with the main beam and the lead beam, and the lower part is consolidated with the cap. It can be cast-in-situ or factory-prefabricated.
  • the thin-walled main abutment can fully absorb the deformation of the main beam under the action of temperature and external force.
  • the retaining sub-abutment refers to another abutment arranged behind the thin-walled main abutment.
  • the retaining sub-abutment needs to strictly control its settlement and deformation.
  • the retaining abutment In addition to its own variable cross-section form, it can also consider adding pile foundations or expanding foundations according to site soil conditions.
  • Lightweight materials are filled between the two abutments.
  • Lightweight materials are generally materials that do not produce plastic cumulative stress and cumulative deformation, such as rubber, EPS foam, and the like. Its height usually does not exceed the height of the two abutments, and its width is consistent with the width of the thin-walled main abutment, and the thickness is the distance between the two abutments.
  • Lightweight materials are good for absorbing the horizontal displacement and rotation angle of the thin-walled main abutment, so that the deformation of the thin-walled main abutment will not affect the backfilling of the platform, and will not cause the cumulative deformation and stress accumulation of the backfilling soil, and Lightweight materials can balance the static earth pressure on the retaining abutment.
  • the guide beam is provided between the two abutments, and the guide beam can adopt a box-shaped or T-shaped cross section according to the actual design requirements of the bridge.
  • the slip layer is arranged between the retaining sub-abutment and the guide beam, and the slip layer may be made of materials such as linoleum, which can reduce the friction between the secondary abutment and the guide beam and the landing plate, and reduce the guide beam and The influence of the expansion and contraction of the slab on the secondary abutment.
  • the structure construction method of the abutment rigid frame bridge of the present invention is mainly aimed at the common phenomenon of bridge head bouncing caused by the common abutment shear failure and settlement damage caused by the slab after the platform.
  • the applicable scope of the bridge type is wide and it can be used for rigid bridges.
  • Bridges such as bridges, continuous beam bridges and bridges without expansion joints. As shown in the overall schematic diagram of FIG. 1, specific embodiments of the present invention are described as follows:
  • the foundation of the thin-walled main abutment is constructed with the cap 4; the foundation can be a pile foundation 5 or an enlarged foundation. It can be used in accordance with conventional construction methods, and the thin-walled main abutment 3 is constructed on the cap 4
  • the thin-walled main abutment 3 can be cast on site or prefabricated in the factory.
  • the thin-walled main abutment 3 can fully absorb the deformation of the main beam 1 and complete the construction of the thin-walled main abutment 3.
  • cone slope 6 in front of the platform and backfill 14 at the back of the platform.
  • the construction of cone slope 6 is in accordance with the design requirements.
  • the backfill 14 in the platform is only filled at the platform 4 to reduce the thin-walled main bridge abutment.
  • the displacement and rotation angle of 3 affect the backfilling and subsidence of the backfill 14.
  • a retaining sub-abutment 9 is set at 3 (1.0 ⁇ 2.5) h from the back of the thin-walled main abutment.
  • the retaining abutment can be cast on site or prefabricated in the factory. Its concrete strength grade and reinforcement ratio meet the requirements. The design of the earth wall is sufficient.
  • the bottom of the retaining sub-abutment adopts a trapezoidal section. Because the retaining sub-abutment is relatively stable, it is less affected by the main beam 1, the guide beam 2, and the slab 11, that is, it mainly plays the role of retaining the backfill 14 of the platform, and will not squeeze or leave the platform. Filling the soil causes the phenomenon of backfilling and subsidence of the filling body behind the platform.
  • the lightweight materials can use EPS foam and other materials.
  • the height is consistent with the height of the thin-walled main abutment 3.
  • the thickness is thin-walled.
  • the reserved distance between the main abutment 3 and the retaining sub-abutment 9 is the same as that of the thin-walled main abutment.
  • the lightweight material 10 mainly absorbs the displacement and rotation angle generated by the thin-walled main abutment 3, and reduces its influence on the retaining sub-abutment and the filling of some of the abutment. At the same time, it can also provide the function of static earth pressure behind the abutment for the retaining sub-abutment.
  • the cross-section form of the guide beam is not limited. It can adopt box-shaped or T-shaped cross-sections. Its construction process and process can be compared with 1 main The beams agree.
  • the cross-sectional form adopted by the main beam 1 is not limited. T-beams and box beams can be used. The construction process and process are the same as those of conventional bridges.
  • the main beam 1, the leading beam 2 and the thin-walled main abutment 3 are poured or assembled into a whole, which meets the requirements of concrete strength and reinforcement ratio, and the construction process and construction process are consistent with traditional bridges.
  • the construction of the backfill 14 behind the soil retaining bridge abutment 9 is then carried out, and the construction of the backfill can be carried out according to the design requirements.
  • the construction of the slip layer 8 and the pillow beam 12 is performed, and the material of the slip layer 8 may be linoleum, which only satisfies the design requirements.
  • the bolster 12 may be in accordance with the conventional one, and thereafter connected to the wiring pavement 13.
  • the invention solves the problems of abutment shear failure, backplane failure, and bridgehead bouncing at the source, that is, after adopting this method, the abutment shear will be effectively reduced. Destroy and reduce diseases such as bumps at the bridge head, reduce the later maintenance costs of the bridge, and increase the life cycle of the bridge.
  • the structure and construction method of the abutment rigid frame bridge proposed by the present invention are mainly composed of a thin-walled main abutment, an approach beam, a retaining sub-abutment, lightweight materials, sliding materials, and the like.
  • the thin-walled main abutment is used to fully absorb the deformation of the main girder, so as to reduce the shear failure of the abutment; the lightweight material absorbs the influence of the horizontal displacement and corner of the thin-walled main abutment on the filling behind the platform, and the secondary soil retaining bridge
  • the platform and the thin-walled main bridge abutment support the approach beam to solve the purpose of slab settlement and bridgehead jumping. It has the advantages of simple construction, short construction period, high maneuverability, and can be widely used in the field of bridges today to solve the actual diseases of bridges.
  • the invention relates to the structure of abutment rigid frame bridge and its construction method.
  • the main beam and bridge deck are supported on the main abutment, and the main abutment adopts a thin-walled lightweight structure.
  • a retaining sub-abutment is set at (1.0 ⁇ 2.5) h from the back of the thin-wall main abutment (h is the height of the main wall of the thin-wall abutment).
  • the platform is consistent, and the cross-sectional shape changes at the same height as the base of the thin-walled abutment.
  • a tapered slope is set on the front side of the thin-walled main abutment, and the backfill is only filled to the cap, and the fill in front of the retaining sub-abutment is only filled to the variable cross-section position (with the main section).
  • the abutment is at the same height), but the earth is filled to the top of the platform after retaining the abutment.
  • the gap between the thin-walled main abutment and the retaining sub-abutment is filled with lightweight materials.
  • the light-weight material can absorb the horizontal displacement and rotation angle of the thin-walled main abutment, so that it will not affect the backfill of the platform.
  • the lightweight material can balance the static earth pressure generated by the filling behind the secondary abutment, preventing the retaining secondary abutment from tilting under the effect of the filling pressure behind the secondary abutment.
  • Leading beams are set between the thin-walled main abutment and the upper part of the retaining sub-abutment.
  • the main beam, the leading beam and the thin-walled main abutment are integrally poured to eliminate the expansion joints and expansion devices at the thin-walled main abutment. overall.
  • the guide beam is provided with a slip layer on the retaining sub-abutment.
  • a slab is set behind the retaining sub-abutment and a pillow beam is buried at the end of the slab.
  • a slip layer is added between the top of the retaining sub-abutment and the slab to reduce The influence of small plank expansion and contraction on the retaining abutment. After being used for a certain period of time, most bridges are prone to shear damage at the abutment and bridge head bumping caused by the settlement of the platform behind the platform. The main reasons are: 1. For bridges without expansion joints, due to the main The beam bridge abutment pile foundation is cast as a whole.
  • the present invention specifically proposes the structure of the abutment rigid frame bridge and its construction method. Its main advantages are: 1.
  • the thin-walled main abutment adopts The thin-walled lightweight structure can fully absorb the deformation of the main beam and reduce the impact on the abutment; 2. It can effectively prevent the settlement of the slab behind the bridge abutment and ensure the ride comfort and comfort; 3. Reduce the maintenance costs of the bridge, Improve the life cycle of the bridge and enhance the traffic capacity of the bridge; 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种桥台刚构桥的构造及其施工方法,桥台刚构桥的构造包括主梁(1)和引梁(2),主梁(1)与引梁(2)连接部下方依次设有薄壁主桥台(3)、承台(4)和桩基础(5),承台(4)和桩基础(5)靠近主梁(1)一侧设有锥坡(6),引梁(2)与搭板(11)的连接部下方设有挡土次桥台(9),挡土次桥台(9)靠近搭板(11)一侧填有台后填土(14),引梁(2)后方设有多个依次连接的搭板(11)和设在搭板(11)之间胀缝(7)下方的枕梁(12),薄壁主桥台(3)与挡土次桥台(9)之间填有轻质材料(10)。薄壁主桥台(3)采用薄壁轻型结构可以充分吸收主梁(1)的变形,减少对桥台的受力影响;能够有效减少桥台剪切破坏和防止桥梁台后搭板(11)发生沉降,保障行车平顺性与舒适性。

Description

桥台刚构桥的构造及其施工方法 技术领域
本发明涉及基础工程、桥梁工程领域,尤其是涉及吸收桥梁主梁变形、台后搭板沉降分析及防治措施领域;特别是一种桥台刚构桥的构造及其施工方法。
背景技术
随着我国道路交通事业的发展及工程数量的不断增加,桥梁的常见病害中桥台发生剪切破坏和台后搭板发生沉降及破坏的问题尤为显著,该问题常常会引起桥头跳车等桥梁常见的病害,尤其对于通行要求高的桥梁道路,会影响行车的安全性与舒适性,同时会降低桥梁的全寿命周期,增加桥梁的养护费用。针对桥台处发生剪切破坏、台后搭板沉降破坏及桥头跳车等病害现象,采取相应的有效措施来解决这些问题势在必行。现行桥梁大多数为简支梁桥、连续梁桥、刚构桥、拱桥、斜拉桥和悬索桥等常规桥梁,传统桥梁的桥台主要受主梁产生的竖向荷载,弯矩以及台后填土压力,而桥台刚构桥可以将桥台的受力状况进行分离,薄壁主桥台主要承受竖向荷载以及主梁产生的弯矩,台后填土压力则由挡土次桥台承受。这样的做法可以使得薄壁主桥台、挡土次桥台的受力状况更加简单、清晰,因此两个桥台的尺寸均可以做的更小。
对于桥梁主梁在温度作用和外力荷载下产生的变形,并没有很有效的方法来解决,通常的做法是在桥梁墩台处设置伸缩缝及伸缩装置,利用伸缩缝装置的变形来吸收主梁的变形,但是该做法存在很大的弊端。伸缩装置在汽车荷载、温度作用下很容易产生破坏,从而造成行车不平顺。这些方法不能从受力上来解决这个问题,桥台刚构桥做法是使桥梁主梁、引梁和薄壁主桥台整体固结,在温度作用和外力荷载下桥梁主梁产生的变形可以由薄壁主桥台进行吸收,从而极大的减小了桥梁变形对台后填土的影响。
技术问题
为了从力学机理上消除桥台的剪切破坏和搭板的沉降问题,保证行车的安全性与舒适性,特提出了桥台刚构桥的构造及其施工方法。该构造措施的基本原理:其一是桥梁主梁、引梁以及薄壁主桥台固结成整体,消除了薄壁主桥台处的伸缩缝及伸缩装置,使得桥梁的整体性更强,且主梁在温度作用以及外力荷载下产生的变形可以由薄壁主桥台进行消耗吸收,从而改善薄壁主桥台的受力,防止桥台发生剪切破坏;其二是让薄壁主桥台仅承受桥梁主体结构的内力和外力作用,而不承受如传统桥台的台后填土作用,从而分离其受力模式,把台后填土的作用让挡土次级桥台来承受。因此,该构造措施与传统的桥台有很多不同之处,其一是挡土次级桥台台前填充有轻质材料以平衡挡土次桥台台后填土压力;其二是挡土次桥台不与主桥连接,不承受上部主梁产生的竖向荷载,仅承受引梁和搭板与车辆或行人等产生的荷载,而薄壁主桥台基本不承受台后填土压力;其三是桥梁主梁、引梁以及薄壁主桥台整体固结,消除了薄壁主桥台处的伸缩缝及伸缩装置,主梁在温度作用以及外力荷载下产生的变形可以由薄壁主桥台充分消耗吸收;其四是增强桥梁的整体性,提高了桥梁的抗震性能;其五是减少桥梁的养护费用,增加桥梁的全周期寿命。该措施构造简单、施工方便,且容易在实际工程中推广应用,同时对吸收主梁的变形、减少桥台剪切破坏以及改善台后搭板发生沉降破坏有显著效果,因此,具有较重要的经济效益和社会效益。
技术解决方案
在此处键入技术解决方案描述段落。本发明所要解决的技术问题是:提供一种桥台刚构桥的构造及其施工方法,以克服现有技术的不足之处。
本发明解决其技术问题所采取的技术方案是:
本发明桥台刚构桥的构造,其特征在于:包括主梁和引梁,所述主梁与引梁连接部下方依次设有薄壁主桥台、承台和桩基础,所述承台和桩基础靠近主梁一侧设有锥坡,所述引梁与搭板的连接部下方设有挡土次桥台,所述挡土次桥台靠近搭板一侧填有台后填土,所述引梁后方设有多个依次连接的搭板和设在搭板之间胀缝下方的枕梁,所述薄壁主桥台与挡土次桥台之间填有轻质材料。
进一步的,上述薄壁主桥台与挡土次桥台之间的间距为1.0~2.5的薄壁主桥台高度。
进一步的,上述挡土次桥台的下部呈梯形。
进一步的,上述轻质材料为EPS泡沫。
进一步的,上述挡土次桥台与引梁之间垫设有滑移层,所述滑移层为橡胶或油毛毡。
本发明桥台刚构桥的施工方法,其特征在于:所述桥台刚构桥的构造包括主梁和引梁,所述主梁与引梁连接部下方依次设有薄壁主桥台、承台和桩基础,所述承台和桩基础靠近主梁一侧设有锥坡,所述引梁与搭板的连接部下方设有挡土次桥台,所述挡土次桥台靠近搭板一侧填有台后填土,所述引梁后方设有多个依次连接的搭板和设在搭板之间胀缝下方的枕梁,所述薄壁主桥台与挡土次桥台之间填有轻质材料;施工时,
首先进行薄壁主桥台的桩基础与承台施工,并在承台上进行薄壁主桥台的施工,完成薄壁主桥台的施工;
接着进行台前锥坡与台后填土的施工,台后填土仅填筑至承台处,降低因薄壁主桥台的位移及转角对台后填土产生脱空下沉的影响;然后在薄壁主桥台台背后方设置挡土次桥台;
再接着挡土次桥台安置完毕后,在薄壁主桥台与挡土次桥台之间填充轻质材料,高度与薄壁主桥台高度相一致,厚度为薄壁主桥台与挡土次桥台之间的预留距离,横桥向宽度与薄壁主桥台一致;轻质材料填充后,然后在薄壁主桥台与挡土次桥台之间架设引梁;
然后将主梁、引梁和薄壁主桥台浇筑或装配成整体,接着对挡土次桥台后的台后填土进行施工,紧接着进行滑移层与枕梁的施工,其后与接线路面相连; 
最后进行搭板的施工,同时在挡土次桥台的台顶处留有胀缝,并在搭板铺设完成后在胀缝中填充柔性材料。
进一步的,上述薄壁主桥台与挡土次桥台之间的间距为1.0~2.5的薄壁主桥台高度。
进一步的,上述挡土次桥台的下部呈梯形。
进一步的,上述轻质材料为EPS泡沫。
进一步的,上述挡土次桥台与引梁之间垫设有滑移层,所述滑移层为橡胶或油毛毡。
有益效果
本发明桥台刚构桥的构造及其施工方法与现有技术相比,其具有如下几个主要优点:
1、主梁、引梁和薄壁主桥台浇筑或装配成整体,可消除主桥台的伸缩缝及伸缩装置。薄壁主桥台有利于吸收主梁的变形,使得桥台处不易发生剪切破坏。
2、设置挡土次桥台可预防台后引梁和搭板发生沉降及破坏,从源头上消除桥头跳车等病害,提高行车舒适性、平顺性和安全性。
3、构造简单,施工方便。当地质条件较好时,挡土次桥台可参照扶壁式挡土墙的形式设置;当地质条件较差时,可加设桩基或者扩大基础等措施,防止挡土次桥台在引梁和搭板自重及其他竖向荷载作用下发生沉降。
4、有效的降低桥梁养护费用,并可提高桥梁的全寿命周期,增加其使用年限以及通行能力。
5、两桥台间填充轻质材料有利于吸收薄壁主桥台所发生的水平位移和转角,减小薄壁主桥台位移对台后填土产生的影响,同时平衡挡土次桥台台后静止土压力。
6、对于目前的施工技术,实现上述吸收主梁产生的变形,防止桥台发生剪切破坏并改善桥梁台后填土沉降及桥头跳车的桥台刚构构造措施并不复杂,因此本发明具有重要的实际意义和工程应用价值。
总之,本发明提出的桥台刚构桥的构造及其施工方法具有通用性高、便于施工,同时能够降低桥梁养护费用,提高桥梁寿命等优点。
下面结合附图和具体实施方式对本发明做进一步的详细说明。
附图说明
图1是本发明的整体示意图;
图2是图1的局部放大图;
图3是图2的左视图;
图中标号说明:1.主梁;2.引梁;3.薄壁主桥台;4.承台;5.桩基础;6.锥坡;7.胀缝;8.滑移层;9.挡土次桥台;10.轻质材料;11.搭板;12.枕梁;13.接线路面;14.台后填土。
本发明的实施方式
下面结合实施方式及附图对本发明作进一步的说明,但不局限于本发明。
本发明桥台刚构桥的构造包括主梁1和引梁2,所述主梁与引梁连接部下方依次设有薄壁主桥台3、承台4和桩基础5,所述承台4和桩基础5靠近主梁一侧设有锥坡6,所述引梁2后方设有多个依次连接的搭板11和设在搭板之间胀缝7下方的枕梁12,所述引梁12与搭板11的连接部下方设有挡土次桥台9,所述挡土次桥台靠近搭板一侧填有台后填土14,所述薄壁主桥台与挡土次桥台之间填有轻质材料10。
本发明具体采取的技术方案是:首先,当桥梁完成主梁施工后,对薄壁主桥台进行施工,在承台上设置钢筋混凝土薄壁主桥台,在距离薄壁主桥台后约(1.0 ~2.5) h处设置挡土次桥台,薄壁主桥台和挡土次桥台均可采用现场浇筑或者工厂预制。挡土次桥台的高度与薄壁主桥台一致,且采用变截面形式,其与薄壁主桥台承台高度以上的截面形式采用矩形截面,低于薄壁主桥台承台高度部分采用梯形截面,能够有效防止挡土次桥台发生沉降。进行到台后填土施工阶段时,薄壁主桥台台后填土与挡土次桥台台前填土保持在同一高度,仅填筑至薄壁主桥台承台处。然后,在两个桥台之间填充轻质材料,轻质材料填充至与桥台高度一致。接着在两个桥台之间架设引梁,然后在将主梁、引梁及薄壁主桥台浇筑或固结成整体,最后,进行搭板的施工。搭板的胀缝位置布设在引梁的端部,同时在次桥台与引梁的接触面铺设滑移层,能有效减小引梁伸缩变形对次桥台产生的影响,为防止搭板发生沉降,可在搭板末端埋置枕梁。
所述薄壁主桥台即支承于主梁的桥台,其采用钢筋混凝土结构,上部与主梁、引梁固结,下部与承台固结,其可采用现浇或者工厂预制。薄壁主桥台可以充分吸收主梁在温度作用及外力荷载下产生的变形。
所述挡土次桥台是指在薄壁主桥台台后方向布设的另一个桥台,挡土次桥台需严格控制其发生沉降变形,根据台后的地质情况,挡土次桥台除了自身设置变截面形式外,其还可根据场地土条件考虑增加桩基础或者扩大基础。
所述两桥台之间填充轻质材料,轻质材料通常为不会产生塑性累积应力和累积变形的材料,如橡胶、EPS泡沫等。其高度通常不超过两桥台高度,宽度与薄壁主桥台宽度一致,厚度为两桥台之间的距离。轻质材料有利于吸收薄壁主桥台产生的水平位移及转角,使薄壁主桥台的变形对台后填土不产生影响,不会使台后填土产生累积变形和应力累积,并且轻质材料可以平衡挡土次桥台所受到的静止土压力。
所述在两个桥台之间设置引梁,引梁根据桥梁的实际设计要求可以采用箱形或T形截面。
所述在挡土次桥台与引梁间布设滑移层,滑移层可采用油毛毡等材料,其能够减小次桥台与引梁、搭板之间的摩擦力,减小引梁和搭板的伸缩变形对次桥台的影响。
本发明桥台刚构桥的构造施工方法,主要针对常见的桥台剪切破坏和台后搭板发生沉降破坏所引起的桥头跳车的现象,其适用桥型的范围较广,可用于刚构桥、连续梁桥以及无伸缩缝桥等桥型中。如图1整体示意图所示,本发明具体实施方式如下所述:
1、首先进行薄壁主桥台的基础与承台4施工,基础可以采用桩基础5或者扩大基础,其按常规施工方法即可,并在承台4上进行薄壁主桥台3的施工,薄壁主桥台3可采用现场浇筑或工厂预制,薄壁主桥台3可充分吸收主梁1产生的变形,完成薄壁主桥台3的施工,薄壁主桥台3的台后没有填土,即薄壁主桥台3后没有受到台后填土压力的影响。
2、接着进行台前锥坡6与台后填土14的施工,锥坡6的施工按照设计要求即可,台后填土14仅填筑至承台4处,降低因薄壁主桥台3的位移及转角对台后填土14产生脱空下沉的影响。
3、在距离薄壁主桥台3台背(1.0~2.5)h 处设置挡土次桥台9,挡土次桥台可以采用现场浇筑或工厂预制,其混凝土强度等级和配筋率满足挡土墙设计要求即可,为防止挡土次桥台9发生沉降,挡土次桥台的底部采用梯形截面的形式。由于挡土次桥台自身较稳定,受到主梁1、引梁2及搭板11的影响较小,即对台后填土14主要起到挡土的作用,不会挤压或脱离台后填土,造成台后填土体脱空下沉现象。
4、挡土次桥台安置完毕后,在两个桥台之间填充轻质材料10,轻质材料可以采用EPS泡沫等材料,高度与薄壁主桥台3高度相一致,厚度为薄壁主桥台3与挡土次桥台9之间的预留距离,横桥向宽度与薄壁主桥台3一致。轻质材料10主要是吸收薄壁主桥台3产生的位移及转角,降低其对挡土次桥台以及部分台后填土的影响。同时还可为挡土次桥台提供平衡台后静止土压力的作用。
5、轻质材料10填充后,然后在两个桥台之间架设引梁2,引梁的截面形式不受限制,可以采用箱形或T形等截面,其施工工艺及流程可与1主梁相一致。
6、主梁1采用的截面形式不受限制,可以采用T形梁,箱形梁等,其施工工艺及流程与常规桥梁的一致。
7、将主梁1、引梁2和薄壁主桥台3浇筑或装配成整体,满足混凝土强度要求和配筋率要求,施工工艺和施工流程与传统桥梁一致。
8、接着对挡土次桥台9后的台后填土14进行施工,台后填土的施工按设计要求进行即可。紧接着进行滑移层8与枕梁12的施工,滑移层8的材料可以采用油毛毡等,其仅满足设计要求即可。枕梁12可与传统的相一致,其后与接线路面13相连。
9、最后进行搭板11的施工,搭板11的混凝土强度等级与配筋率满足设计要求即可,同时在挡土次桥台9的台顶处留有胀缝7,并在搭板铺设完成后在胀缝中填充天然橡胶等柔性材料。
本发明从设计、施工、养护阶段出发,在源头上解决了桥台剪切破坏、台后搭板破坏和桥头跳车的问题,即采用该种方法措施之后,将有效减少桥台的剪切破坏和降低桥梁桥头跳车等病害,并降低桥梁的后期养护费用,同时提高桥梁的全寿命周期。
总之,本发明提出的桥台刚构桥的构造及其施工方法,主要由薄壁主桥台、引梁、挡土次桥台、轻质材料、滑移材料等组成。利用薄壁主桥台来充分吸收主梁的变形,实现减少桥台的剪切破坏;轻质材料吸收薄壁主桥台的水平位移及转角对台后填土的影响,以及挡土次桥台与薄壁主桥台对引梁形成支撑作用的方式来解决搭板沉降和桥头跳车病害的目的。具有施工简单,施工周期短,可操作性高,以及可广泛运用于现今桥梁领域,解决桥梁实际病害等优点。
上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明是桥台刚构桥的构造及其施工方法,其主梁与桥面板支撑于主桥台之上,主桥台采用薄壁轻型结构。在距薄壁主桥台台背(1.0~2.5)h(h为薄壁主桥台高度)处设置挡土次桥台,挡土次桥台采用变截面形式,且高度与薄壁主桥台相一致,在与薄壁主桥台承台高度相同的位置处截面形状发生变化。在薄壁主桥台台前侧设置锥坡,而台后侧填土仅填筑至承台处,同时挡土次桥台台前处的填土也仅填充至变截面位置处(与主桥台同高),但挡土次桥台台后填土填筑至台顶处。薄壁主桥台与挡土次桥台之间的间隙采用轻质材料进行填充,轻质材料可以吸收薄壁主桥台所产生的水平位移及转角,使其对台后填土不产生影响,并且轻质材料可以平衡次桥台台后填土产生的静止土压力,防止挡土次桥台在台后填土压力的作用下发生倾斜。在薄壁主桥台与挡土次桥台上部设置引梁,主梁、引梁与薄壁主桥台之间采用整体浇筑,从而消除薄壁主桥台处的伸缩缝及伸缩装置以形成整体。引梁在挡土次桥台上设置滑移层,挡土次桥台后设置搭板并在搭板末端埋设枕梁,挡土次桥台台顶与搭板之间增设滑移层,减小搭板伸缩变形对挡土次桥台产生的影响。大多数桥梁在使用一定年限之后,均易发生桥台处的剪切破坏以及由于台后搭板沉降而引起的桥头跳车等病害,其主要原因是:1、对于无伸缩缝桥梁,由于主梁桥台桩基三者浇筑为整体,在温度作用及外力作用下的主梁伸缩变形会引起桥台往复运动,桥台容易发生剪切破坏,并且由于桥台不断挤压台后填土,容易造成台后填土体脱空下沉而引起搭板发生沉降或开裂破坏。2、对于有缝桥梁,桥台受到主梁的偏心荷载作用、汽车制动力与冲击力以及温度作用的影响下易发生往复位移及转角,桥台处的伸缩缝及伸缩装置容易发生破坏,且台后填土体在自重或者竖向荷载的作用下会产生沉降变形,引起桥头跳车等病害。依据桥梁桥台破坏形式、伸缩装置损坏及台后搭板因沉降破坏等病害,本发明特提出桥台刚构桥的构造及其施工方法 ,其主要优点在于:1、薄壁主桥台采用薄壁轻型结构可以充分吸收主梁的变形,减少对桥台的受力影响;2、能够有效防止桥梁台后搭板发生沉降,保障行车平顺性与舒适性;3、降低桥梁的养护费用,提高桥梁的全周期寿命,增强桥梁的通行能力;4、将桥台的受力进行分离,使薄壁主桥台和挡土次桥台受力更清晰,且尺寸均比普通桥台较小;5、增强了桥梁的整体性并提高桥梁的抗震性能。

Claims (6)

  1. 一种桥台刚构桥的构造,其特征在于:包括主梁和引梁,所述主梁与引梁连接部下方依次设有薄壁主桥台、承台和桩基础,所述承台和桩基础靠近主梁一侧设有锥坡,所述引梁与搭板的连接部下方设有挡土次桥台,所述挡土次桥台靠近搭板一侧填有台后填土,所述引梁后方设有多个依次连接的搭板和设在搭板之间胀缝下方的枕梁,所述薄壁主桥台与挡土次桥台之间填有轻质材料。
  2. 根据权利要求1所述的桥台刚构桥的构造,其特征在于:所述薄壁主桥台与挡土次桥台之间的间距为1.0~2.5的薄壁主桥台高度。
  3. 根据权利要求1所述的桥台刚构桥的构造,其特征在于:所述挡土次桥台的下部呈梯形。
  4. 根据权利要求1所述的桥台刚构桥的构造,其特征在于:所述轻质材料为EPS泡沫。
  5. 根据权利要求1所述的桥台刚构桥的构造,其特征在于:所述挡土次桥台与引梁之间垫设有滑移层,所述滑移层为橡胶或油毛毡。
  6. 一种桥台刚构桥构造的施工方法,其特征在于:所述桥台刚构桥的构造包括主梁和引梁,所述主梁与引梁连接部下方依次设有薄壁主桥台、承台和桩基础,所述承台和桩基础靠近主梁一侧设有锥坡,所述引梁与搭板的连接部下方设有挡土次桥台,所述挡土次桥台靠近搭板一侧填有台后填土,所述引梁后方设有多个依次连接的搭板和设在搭板之间胀缝下方的枕梁,所述薄壁主桥台与挡土次桥台之间填有轻质材料;施工方法如下:(1)进行薄壁主桥台的桩基础与承台施工;(2)进行台前锥坡与台后填土的施工,台后填土仅填筑至承台处;(3)在薄壁主桥台台背后方设置挡土次桥台;(4)在薄壁主桥台与挡土次桥台之间填充轻质材料,在薄壁主桥台与挡土次桥台之间架设引梁;(5)将主梁、引梁和薄壁主桥台浇筑或装配成整体;(6)进行剩余台后填土的填筑;(7)进行枕梁的施工;(8)进行搭板和胀缝的施工。
PCT/CN2018/118841 2018-06-14 2018-12-03 桥台刚构桥的构造及其施工方法 WO2019237678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/05860A ZA202005860B (en) 2018-06-14 2020-09-22 Structure of rigid frame bridge having abutments and construction method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810613757.6A CN108547218A (zh) 2018-06-14 2018-06-14 桥台刚构桥的构造及其施工方法
CN201810613757.6 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019237678A1 true WO2019237678A1 (zh) 2019-12-19

Family

ID=63493470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118841 WO2019237678A1 (zh) 2018-06-14 2018-12-03 桥台刚构桥的构造及其施工方法

Country Status (3)

Country Link
CN (1) CN108547218A (zh)
WO (1) WO2019237678A1 (zh)
ZA (1) ZA202005860B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547218A (zh) * 2018-06-14 2018-09-18 福州大学 桥台刚构桥的构造及其施工方法
CN110644360A (zh) * 2019-10-24 2020-01-03 福州大学 一种适用于无缝桥引板胀缝构造及施工方法
CN110644354B (zh) * 2019-10-29 2024-04-30 福州大学 桥台刚构桥挡墙的构造及其施工方法
CN110886195B (zh) * 2019-12-12 2024-05-31 福州大学 适用于桥台刚构桥的隔震结构及施工方法
CN110847008B (zh) * 2019-12-12 2024-05-31 福州大学 一种带有刚性扩大基础的桥台刚构桥的构造及其施工方法
CN110847010B (zh) * 2019-12-12 2024-05-31 福州大学 适用于大跨度桥台刚构桥的构造及施工方法
CN110952442A (zh) * 2019-12-27 2020-04-03 福州大学 一种自复位的整体式柔性桥台及其应用
CN110952462B (zh) * 2019-12-31 2024-10-22 福州大学 一种适用于桥台刚构桥的减震结构及其施工方法
CN112458873B (zh) * 2020-04-03 2022-07-15 吕世宽 一种防高填土路基桥头跳车结构
CN111485487B (zh) * 2020-04-22 2022-05-03 深圳市市政设计研究院有限公司 适用于大变形的无伸缩缝桥梁桥台及其施工方法
CN112458883B (zh) * 2020-12-09 2022-09-23 中电建路桥集团有限公司 公路软土路基与桥涵构造物的衔接段结构及施工方法
CN114892498A (zh) * 2022-04-21 2022-08-12 上海林同炎李国豪土建工程咨询有限公司 一种单跨无缝无桥台型桥梁

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219645B2 (ja) * 2013-09-11 2017-10-25 公益財団法人鉄道総合技術研究所 土圧低減による斜角橋台の耐震補強方法
CN107905093A (zh) * 2017-11-17 2018-04-13 福州大学 改善桥梁台后土沉降的多级桥台构造及其施工方法
CN207452688U (zh) * 2017-11-17 2018-06-05 福州大学 改善桥梁台后土沉降的多级桥台构造
CN108547218A (zh) * 2018-06-14 2018-09-18 福州大学 桥台刚构桥的构造及其施工方法
CN208472551U (zh) * 2018-06-14 2019-02-05 福州大学 桥台刚构桥的构造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219645B2 (ja) * 2013-09-11 2017-10-25 公益財団法人鉄道総合技術研究所 土圧低減による斜角橋台の耐震補強方法
CN107905093A (zh) * 2017-11-17 2018-04-13 福州大学 改善桥梁台后土沉降的多级桥台构造及其施工方法
CN207452688U (zh) * 2017-11-17 2018-06-05 福州大学 改善桥梁台后土沉降的多级桥台构造
CN108547218A (zh) * 2018-06-14 2018-09-18 福州大学 桥台刚构桥的构造及其施工方法
CN208472551U (zh) * 2018-06-14 2019-02-05 福州大学 桥台刚构桥的构造

Also Published As

Publication number Publication date
CN108547218A (zh) 2018-09-18
ZA202005860B (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2019237678A1 (zh) 桥台刚构桥的构造及其施工方法
CN110904740B (zh) 一种控制高速铁路路桥过渡段不均匀沉降的路基及方法
CN103741595B (zh) 一种用于治理桥头跳车的桥头结构
CN103614961B (zh) 一种防止桥台跳车的阶梯式钢筋混凝土板及施工方法
CN109853381B (zh) 一种防治桥头跳车的过渡结构及其施工方法
CN103114521B (zh) 桥梁的桥台与路基结合处的结构及施工方法
CN209584839U (zh) 一种防治桥头跳车的过渡结构
CN107988897A (zh) 一种减小桥梁台后土压力与沉降的结构及其施工方法
CN107905093B (zh) 改善桥梁台后土沉降的多级桥台构造及其施工方法
CN108505434B (zh) 一种采用半刚性整体式桥台的无缝弯桥
CN108547209B (zh) 一种单孔预制空心板无伸缩缝桥梁及其施工方法
CN208151831U (zh) 一种单孔预制空心板无伸缩缝桥梁
CN218861322U (zh) 一种减小桥台侧向力的整体桥结构
CN105442457A (zh) 一种采用细砂填充的延伸桥面板桥施工结构及施工方法
CN108103923A (zh) 一种桥梁用防桥头跳车装置
KR101973657B1 (ko) 교대 측방유동 방지용 역아치 구조 및 이를 이용한 개보수공법
CN111733689A (zh) 适用于新型大跨度整体桥台后填料装置及其施工方法
CN207512580U (zh) 用于运营公路治理桥头跳车的刚度加强型桥头结构
CN207452688U (zh) 改善桥梁台后土沉降的多级桥台构造
CN110792042A (zh) 一种用于矩形独柱墩桥梁的抗倾覆加固方法
CN213571514U (zh) 装配式口字型框架钢桥台
CN211772757U (zh) 一种中小跨度简支公路桥梁端部无缝防跳车构造
CN208472551U (zh) 桥台刚构桥的构造
CN110904741B (zh) 一种控制高速铁路路桥过渡段不均匀沉降的组合结构
CN211645958U (zh) 一种带枕梁及h型钢的桥台搭板结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922772

Country of ref document: EP

Kind code of ref document: A1