WO2019203024A1 - 透明部材及び透明部材の製造方法 - Google Patents
透明部材及び透明部材の製造方法 Download PDFInfo
- Publication number
- WO2019203024A1 WO2019203024A1 PCT/JP2019/015111 JP2019015111W WO2019203024A1 WO 2019203024 A1 WO2019203024 A1 WO 2019203024A1 JP 2019015111 W JP2019015111 W JP 2019015111W WO 2019203024 A1 WO2019203024 A1 WO 2019203024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- transparent member
- layer
- repellent layer
- substrate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 127
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 239000005871 repellent Substances 0.000 claims description 95
- 239000000463 material Substances 0.000 claims description 86
- 230000002940 repellent Effects 0.000 claims description 62
- 238000000034 method Methods 0.000 claims description 52
- 230000003287 optical effect Effects 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 12
- 238000007740 vapor deposition Methods 0.000 claims description 11
- 230000003746 surface roughness Effects 0.000 claims description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 7
- 239000010408 film Substances 0.000 description 41
- 238000001704 evaporation Methods 0.000 description 19
- 230000008020 evaporation Effects 0.000 description 18
- 230000008859 change Effects 0.000 description 17
- 238000001771 vacuum deposition Methods 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000000869 ion-assisted deposition Methods 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000005422 blasting Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 101000596093 Homo sapiens Transcription initiation factor TFIID subunit 1 Proteins 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 102100035222 Transcription initiation factor TFIID subunit 1 Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B11/00—Filters or other obturators specially adapted for photographic purposes
- G03B11/04—Hoods or caps for eliminating unwanted light from lenses, viewfinders or focusing aids
- G03B11/045—Lens hoods or shields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
- C23C14/044—Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Definitions
- the present invention relates to a transparent member and a method for producing the transparent member, and more particularly to a transparent member that can remove water droplets on the surface by a simple method and can maintain a photographed image clearly when used in a lens. .
- an in-vehicle camera is mounted on a vehicle for driving support of the vehicle. More specifically, a camera that captures the back and sides of the vehicle is mounted on the body of the automobile, and the image captured by the camera is displayed at a position where the driver can visually recognize it. Contributes to safe driving.
- in-vehicle cameras are often attached outside the vehicle, and water drops often adhere to the lens due to rain or the like. Depending on the degree of water droplets attached to the lens, the image captured by the camera may be distorted and visibility may be deteriorated.
- a technique in which a hydrophilic coating and a water repellent coating are applied to the surface of a lens, regions having different contact angles are provided on the same surface, and water droplets are concentrated and guided to one point on the guide at the boundary of the region.
- a hydrophilic coating and a water repellent coating are applied to the surface of a lens, regions having different contact angles are provided on the same surface, and water droplets are concentrated and guided to one point on the guide at the boundary of the region.
- JP 2005-331410 A Japanese Patent Laid-Open No. 2015-018106
- the present invention has been made in view of the above-described problems and situations, and a solution to the problem is to be able to remove water droplets on the surface by a simple method, and to maintain a captured image clearly when used in a lens. It is providing the manufacturing method of the transparent member which can be manufactured, and a transparent member.
- the present inventor easily removes water droplets adhering to the surface by forming a surface portion in which the contact angle with water continuously changes in the process of examining the cause of the above-mentioned problem. It has been found that a transparent member or the like that can maintain a captured image clearly can be provided, and the present invention has been achieved. That is, the said subject which concerns on this invention is solved by the following means. 1. At least a transparent member comprising a substrate or a layer on the substrate, A transparent member having a surface portion in which a contact angle with water continuously changes.
- optical component is an optical lens
- a transparent member capable of removing surface water droplets by a simple method and maintaining a photographed image clearly when used in a lens, and a method for producing the transparent member. it can.
- the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. Since it has a surface portion in which the contact angle with respect to water continuously changes, a force (driving force) for moving the water droplets acts on the surface portion regardless of the amount of change in the contact angle. Therefore, when a water droplet adheres to the surface portion, the water droplet naturally slides in the direction in which the contact angle decreases, and the water droplet is removed from the surface portion.
- the transparent member of the present invention is a transparent member comprising at least a base material or a layer on the base material, and has a surface portion in which a contact angle with water continuously changes and adheres to the surface portion. The direction of water flow is controlled.
- This feature is a technical feature common to or corresponding to each of the following embodiments.
- the surface portion is included in the water-repellent layer in terms of excellent water droplet removal.
- the thickness of the water-repellent layer is continuously changed from the viewpoint that water droplets can be more easily removed.
- the water repellent layer contains a fluoride in that the contact angle with water can be easily adjusted and the contact angle can be increased.
- the surface roughness of the surface portion is continuously changed in terms of controlling the flow direction of water by changing the surface energy. It is preferable to be used for an on-vehicle or outdoor optical component from the viewpoint of preventing adhesion of water droplets due to rain or the like and obtaining good visibility.
- the optical component is preferably an optical lens.
- the method for producing a transparent member of the present invention includes a step of forming a water-repellent layer by forming a water-repellent material, and the thickness of the water-repellent layer is continuously changed in the step.
- ⁇ is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
- the transparent member of the present invention is at least a base material or a transparent member comprising a layer on the base material, and has a surface portion where a contact angle with water continuously changes.
- “continuously changing” means that the difference between the maximum contact angle and the minimum contact angle in a specific region is preferably 10 ° or more, and if it is 10 ° or more, water droplets are sufficiently formed.
- the moving force works.
- the angle is preferably set to 40 ° or more.
- the greater the amount of change in the contact angle the greater the force to move the water droplets, and the smaller the amount of change, the smaller the force to move, but in regions where the contact angle changes continuously, it does not depend on the amount of change.
- the force to move the water drops works.
- the transparent member of the present invention is used in a circular lens, for example, it is preferable to set the amount of change from the center of the lens to the outside (radial direction) as large as possible.
- the maximum contact angle itself does not necessarily have to be large (that is, it does not have to be a water repellent surface).
- the amount of change in the contact angle may not be constant.
- the required width for the region where the contact angle continuously changes is preferably 1 mm or more. If it is less than 1 mm, there is a concern about a rapid change in optical characteristics.
- the contact angle changes in the portion where water droplets are to be removed that is, in the entire optical effective diameter region of the lens.
- a region where the contact angle changes is more preferable because water droplets can be completely removed from the lens surface.
- FIG. 1A and 1B are plan views of a surface portion of a lens that is a transparent member.
- the contact angle changes so as to continuously decrease from the center of the lens toward the outside (radial direction).
- the water droplets can be moved and removed in the radial direction of the lens, which is the same as the existing lens and can be used as it is without restriction on the direction of the lens.
- FIG. 1B changes such that the contact angle continuously decreases from one end of the outer periphery of the lens toward the other end facing the one end. In this case, water droplets can be moved to the other end of the lens and removed. When the lens is installed at an angle, water droplets can be removed in one direction.
- FIG. 2 An example of other contact angle change patterns is shown in FIG.
- the horizontal axis represents the surface position (distance from the start point of the water droplet at the portion where the water droplet moves) when viewing the cross section of the transparent member in the direction of water droplet movement
- the vertical axis represents the contact angle with water
- the method for forming the surface portion in which the contact angle continuously changes will be described later. Since the contact angle depends on the thickness, the thickness of the water repellent layer constituting the surface portion is continuously increased. It is preferable to provide an inclination (gradient) so as to change periodically.
- the contact angle can be measured by a known method.
- the measurement is performed according to a method defined in JIS R3257.
- the measurement conditions are a temperature of 25 ⁇ 5 ° C. and a humidity of 50 ⁇ 10%.
- As a specific operation procedure about 1.5 ⁇ L of water (distilled water) is dropped on a transparent member, and a solid-liquid interface analyzer ( 5 points on the transparent member are measured by Drop Master 500 (manufactured by Kyowa Interface Science Co., Ltd.), and the average contact angle is obtained from the average of the measured values.
- the time to contact angle measurement is 1 minute after dropping water.
- the transparent member of the present invention comprises at least a base material or a layer on the base material. That is, the base material itself may have a surface portion where the contact angle with respect to water continuously changes, or the surface provided with the layer provided on the base material where the contact angle with respect to water continuously changes. It may have a portion.
- the surface portion is preferably included in the water repellent layer, and the water repellent layer is preferably provided on the substrate.
- the transparent member of the present invention preferably has an antireflection layer in which a low refractive index layer and a high refractive index layer are laminated between a substrate and a water repellent layer.
- an antireflection layer 201 and a water repellent layer 104 are provided on a base material 101 in this order from the base material 101 side.
- the surface side (exposed surface side) of the water repellent layer 104 is the side in contact with air.
- Examples of the substrate include glass and resin.
- Examples of the resin include polycarbonate resin and cycloolefin resin.
- the water repellent layer is provided on the base material and has a surface portion in which a contact angle with water continuously changes. That is, since the contact angle with respect to water depends on the thickness, it is preferable that the thickness of the water-repellent layer having the surface portion is continuously changed. Furthermore, it is more preferable that the surface roughness of the water repellent layer as the surface portion is continuously changed.
- the contact angle of the water-repellent layer with respect to water is preferably in the range of not less than the contact angle with respect to water of the substrate and not more than 120 ° when, for example, fluoride is used as the constituent material of the water-repellent layer.
- the thickness of the water repellent layer located at the center of the substrate is set to 16 nm, and the thickness of the water repellent layer is continuously increased in the radial direction of the substrate. It is preferable to form the thin film so that the thickness of the water repellent layer on the edge of the base material is 0 nm.
- the center thickness of the water repellent layer is preferably in the range of 16 to 50 nm, and the thickness of the water repellent layer on the radial end side is in the range of 0 to 15 nm. Is preferable in that it can be sufficiently secured.
- the arithmetic average roughness Ra of the surface of the water repellent layer is preferably continuously changed within the range of 0.1 to 3 nm from the viewpoint of good water droplet removal. In order to obtain such a surface roughness, it can be formed by, for example, etching or blasting described later.
- the arithmetic average roughness is a value measured using an AFM (atomic force microscope) according to JIS B 0601: 2001. Specifically, a Dimension Icon made by Burker was used, and the measurement area was 10 ⁇ m ⁇ 10 ⁇ m.
- a fluoride As a constituent material of the water repellent layer, a fluoride is preferable in that it is easy to adjust the contact angle with water, and it is particularly easy to ensure a high contact angle.
- the fluoride include a fluororesin material.
- a tablet shape of SURF CLEAR 100 (SC-100) (Canon Optron Co., Ltd.) is preferable. Other than the tablet shape, it may be liquid.
- the antireflection layer preferably has a multilayer structure in which high refractive index layers and low refractive index layers are alternately laminated.
- the high refractive index layer according to the present invention is a layer having a refractive index higher than that of the substrate, and the low refractive index layer according to the present invention is a layer having a refractive index lower than that of the substrate. is there.
- the refractive index for the high refractive index wavelength of 587.56 nm is in the range of 1.9 to 2.45, and the refractive index for the low refractive index wavelength of 587.56 nm is in the range of 1.3 to 1.5. It is preferable.
- the material used for the antireflection layer (high refractive index layer, low refractive index layer) according to the present invention is preferably a dielectric material.
- a dielectric material For example, Ti, Ta, Nb, Zr, Ce, La, Al, An oxide such as Si or Hf, or an oxide compound combining these is suitable.
- the number of stacked layers depends on the required optical performance, but by generally stacking about 3 to 5 layers, the reflectance in the entire visible range can be reduced, and the upper limit number is 12 layers or less. This is preferable in that the stress of the film can be prevented and the film can be prevented from peeling off.
- the specific configuration of the antireflection layer according to the present invention is preferably a low refractive index layer, a high refractive index layer, a low refractive index layer, a high refractive index layer, and a low refractive index layer in order from the substrate side.
- a water repellent layer is preferably provided on the uppermost low-refractive index layer of the antireflection layer, but is not limited to these layer configurations.
- the low refractive index layer is made of a material having a refractive index lower than that of the substrate, and is preferably, for example, SiO 2 or a mixture of SiO 2 and Al 2 O 3 .
- the low refractive index layer can be formed on the substrate by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method, but it is particularly preferable to form the film by a vacuum deposition method. Further, in the vacuum deposition method, IAD (Ion Assisted Deposition) (hereinafter, also simply referred to as “IAD”) may be used, thereby improving scratch resistance.
- IAD Ion Assisted Deposition
- the high refractive index layer is made of a material having a refractive index higher than that of the base material.
- a material having a refractive index higher than that of the base material For example, a mixture of Ta oxide and Ti oxide, Ti oxide, Ta oxide, La oxidation It is preferable to be a mixture of an oxide and a Ti oxide.
- Commercially available products of a mixture of Ta oxide and Ti oxide include OA-600 (manufactured by Canon Optron).
- the high refractive index layer can be formed on the substrate by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method, and it is particularly preferable to form the film by a vacuum deposition method. Further, in the vacuum deposition method, IAD may be used, thereby improving the scratch resistance.
- the thickness of the antireflection layer (the total thickness when a plurality of layers are laminated) is preferably in the range of 50 nm to 5 ⁇ m. If the layer thickness is 50 nm or more, antireflection optical characteristics can be exhibited, and if the layer thickness is 5 ⁇ m or less, it is possible to prevent surface deformation due to the layer stress of the antireflection layer itself. .
- the method for producing a transparent member of the present invention includes a step of forming a water-repellent layer by forming a water-repellent material, and the thickness of the water-repellent layer is continuously changed in the step.
- the thickness of the water repellent layer is preferably continuously changed.
- the surface roughness of the water-repellent layer is continuously changed. May be.
- a vacuum deposition method or the like it is preferable to use a vacuum deposition method or the like.
- a mask plate having a different opening area depending on the position can be disposed in front of the base material to coat the water repellent material, thereby providing a film thickness gradient.
- the thickness of the water-repellent layer can be continuously changed by forming a mask material on the uniform water-repellent layer and performing etching.
- examples of means for forming the surface roughness of the water repellent layer so as to continuously change include etching and blasting. Specifically, the surface roughness can be continuously changed by forming a fine concavo-convex pattern so that the period and depth gradually change and performing etching. In addition, the surface roughness can be continuously changed by processing so that the injection amount and speed are gradually changed by the blast method.
- the contact angle is lowered by irradiating oxygen plasma, ozone, or the like as means for continuously changing the contact angle of the water repellent layer. Therefore, it is possible to create an inclination of the contact angle by irradiating while changing the irradiation intensity.
- the vacuum deposition apparatus 1 includes a chamber 2, a dome 3, and a monitor system 5.
- a plurality of evaporation sources 6 are arranged at the bottom of the chamber 2.
- the film forming material for example, water repellent material
- the film forming material of the evaporation source 6 is heated and evaporated, and the film forming material is attached to the base material 101 (for example, a glass plate) installed in the chamber 2, thereby removing the film forming material.
- a layer 7 for example, a water repellent layer (see FIG. 5) is formed on the substrate 101.
- the chamber 2 is provided with an evacuation system (not shown), and the inside of the chamber 2 is evacuated.
- a mask plate 12 is provided in the chamber 2, and details thereof will be described later.
- the dome 3 holds at least one holder 21 (see FIG. 5) that holds the base material 101 and the mask plate 12, and is also called a vapor deposition umbrella.
- the dome 3 has an arc shape in cross section, and has a rotationally symmetric shape that passes through the center of a string connecting both ends of the arc and rotates with an axis AX perpendicular to the string as a rotationally symmetric axis.
- the dome 3 rotates around the axis AX, for example, at a constant speed
- the base material 101 and the mask plate 12 held by the dome 3 via the holder 21 revolve around the axis AX at a constant speed.
- This dome 3 can hold a plurality of holders 21 side by side in the rotational radius direction (revolving radial direction) and the rotational direction (revolving direction). Thereby, it becomes possible to form a film on the plurality of base materials 101 held by the plurality of holders 21 at the same time, and the manufacturing efficiency of the optical element can be improved.
- the monitor system 5 monitors the characteristics of the layer formed on the substrate 101 by monitoring the layer evaporated from each evaporation source 6 during vacuum film formation and adhering to itself (monitor system 5). It is. With this monitor system 5, it is possible to grasp optical characteristics (for example, transmittance, reflectance, optical layer thickness, etc.) of a layer formed on the substrate 101.
- the monitor system 5 also includes a crystal layer thickness monitor, and can monitor the physical layer thickness of the layer formed on the substrate 101.
- the monitor system 5 also functions as a control unit that controls ON / OFF switching of the plurality of evaporation sources 6 according to the monitoring result of the layers.
- FIG. 5 is an enlarged cross-sectional view showing a portion A of FIG.
- the holder 21 is a holding member that holds the substrate 101 and the mask plate 12.
- the holder 21 includes a holding plate 22 that holds the base material 101 and a shaft 23.
- the shaft 23 passes through a hole (not shown) provided in the holding plate 22 and a hole (not shown) provided in the mask plate 12.
- the holding plate 22 is sandwiched between nuts 24 and 24 and is fixed to the shaft 23.
- the mask plate 12 is sandwiched between nuts 25 and 25 and fixed to the shaft 23.
- the distance (gap T) between the base material 101 and the mask plate 12 can be adjusted. Note that once the position of the mask plate 12 with respect to the substrate 101 is fixed by the holder 21 (when the gap T is set to a predetermined value), the position of the mask plate 12 during film formation (film formation step). (That is, the gap T) is not changed.
- the mask plate 12 is positioned on the plurality of evaporation sources 6 side with respect to the base material 101, and revolves together with the base material 101 in a state where gaps T are formed between a part of the base material 101, It is held in the chamber 2 by the holder 21 described above.
- FIG. 6 shows each substrate 101 when the holder 21 holding the substrate 101 and the mask plate 12 is held in the dome 3 side by side in the revolution radius direction and the revolution direction, and the mask plate 12 corresponding to an arbitrary substrate 101.
- FIG. in order to clarify the shape of the mask plate 12, in FIG. 6, the mask plate 12 is hatched for convenience (the same applies to other drawings). As shown in the figure, the width in the revolution direction of the mask plate 12 is constant in the revolution radius direction, and the planar shape of the mask plate 12 is rectangular.
- the gap 7 is formed in the layer 7 (water repellent layer) made of a film-forming material that evaporates from the evaporation source 6 and adheres to the substrate 101.
- a corresponding film thickness gradient can be provided. This point will be described in more detail as follows.
- FIG. 7A and FIG. 7B schematically show the principle that a film thickness gradient is imparted to the layer 7 (water repellent layer) formed on the substrate 101 by the mask plate 12.
- the mask plate 12 When the mask plate 12 is positioned on the evaporation source 6 side with respect to the base material 101, the film forming material from each evaporation source 6 toward the base material 101 at each position in the revolution direction of the base material 101 and the mask plate 12. A part of the mask plate 12 is removed.
- the gap T between the substrate 101 and the mask plate 12 is narrow (the gap T at this time is Ta)
- the film forming material toward the substrate 101 is between the substrate 101 and the mask plate 12. It becomes difficult to get into the back (up to the end of the base material 101). For this reason, the film thickness gradient of the layer 7 formed on the base material 101 is steep (see FIG. 7A).
- a water repellent layer having a thickness gradient is formed by a mask plate by depositing a water repellent material on a substrate using the above-described vapor deposition apparatus.
- the gap T between the substrate 101 and the mask plate 12 is preferably in the range of 1 to 50 mm, and more preferably in the range of 1 to 10 mm.
- the region of the film thickness gradient is large. Therefore, it is preferable that the gap T is also large.
- the region of the film thickness gradient may be small, so that the gap T is preferably set appropriately.
- the said mask board 12 was hold
- a film thickness gradient is formed so that the thickness gradually decreases toward the surface.
- the mask plate 12A having a hole in the center portion when the gap T between the substrate 101 and the mask plate 12 is narrow, the film thickness gradient becomes steep and the gap T When is wide, the film thickness gradient becomes gentle.
- the size (opening area) of the hole formed in the central portion may be appropriately changed according to the size of the region of the film thickness gradient where the water repellent layer is desired to be formed. Specifically, when a substrate having a diameter of 10 mm is used, it is preferable to use a mask plate in which a hole having a diameter of 2 to 8 mm is formed in the central portion.
- the shape of the hole does not have to be a perfect circle, and irregularities or the like may be formed on the peripheral surface forming the hole.
- the coating method according to the present invention it is preferable to apply the water repellent material on the substrate so that the thickness of the water repellent layer continuously changes.
- the coating method include spin coating, dip coating, spraying, and the like.
- the spraying method is preferable in that the thickness of the water-repellent layer can be continuously inclined and formed.
- the spray method according to the present invention is a method of applying a water repellent material by spraying.
- the thickness of the water repellent layer can be arbitrarily controlled by the spray irradiation time. Similarly to the vapor deposition method, the thickness can be continuously changed by a method using a mask during spraying.
- the step of forming the antireflection layer it can be formed on the substrate by a known method such as a vacuum deposition method, a sputtering method, or an ion plating method, but it is particularly preferable to form a film by a vacuum deposition method.
- IAD may be used, which improves the scratch resistance.
- an ion gun may be provided in the above-described vapor deposition apparatus, and film formation may be performed by turning on the ion gun during film formation.
- the transparent member of the present invention is used for in-vehicle or outdoor optical components.
- the in-vehicle optical component of the present invention include a lens unit mounted on an in-vehicle camera.
- “In-vehicle camera” is a camera that is installed on the outside of the car body of an automobile, installed on the rear part of the car body and used for backward confirmation, or installed on the front part of the car body for forward confirmation. Alternatively, it is used for side confirmation, distance confirmation with the front car, etc.
- Such a lens unit for an in-vehicle camera is composed of a plurality of lenses, and more specifically, is composed of an object side lens disposed on the object side and an image side lens group disposed on the image side.
- the image side lens group includes a plurality of lenses and a diaphragm provided between the lenses.
- the object side lens is an exposed surface that is exposed to the outside air, and the transparent member of the present invention is suitably used as the lens having the exposed surface.
- optical component for outdoor use examples include an outdoor installation type surveillance camera, and among the lenses constituting the surveillance camera, the transparent member of the present invention is preferably used as a lens having an exposed surface exposed to the outside air. Used.
- Example 1 As an example for producing a surface portion in which the contact angle continuously changes, a method of inclining the thickness of the water-repellent layer by depositing a water-repellent material by a vacuum deposition method was adopted.
- Base material Glass base material (TAF1 manufactured by HOYA)
- Vacuum evaporation system Film formation system BES-1300 (manufactured by Syncron Co., Ltd.)
- Evaporation source of water repellent material resistance heating method
- Water repellent material SURFCLEAR 100 (SC-100) tablet shape (manufactured by Canon Optron Co., Ltd.) Place the above substrate in a vacuum evaporation apparatus, cover the half of the substrate between the evaporation source and the substrate, and arrange the mask plate so as to be parallel to the substrate. The coating was made so that the thickness of the water-repellent layer was continuously changed on the substrate after vapor deposition.
- the film was left at room temperature for half a day or more after film formation.
- the distance between the substrate and the mask plate was 3 mm and 10 mm, film formation was performed, respectively, to obtain two transparent members in which a water repellent layer was formed on the substrate.
- 7 ⁇ L of water droplets were attached to each of the obtained transparent members, from the portion where the mask plate was not placed (the portion where the water-repellent layer was thick) to the portion where the mask plate was placed (of the water-repellent layer) It was confirmed as follows that each water droplet moved toward the thin part).
- the moving speed of the water droplet is faster when the distance between the substrate and the mask plate is smaller (3 mm) than when the distance between the substrate and the mask plate is larger (10 mm). It was confirmed. Further, the movement distance of the water droplet is longer when the distance between the substrate and the mask plate is larger (10 mm) than when the distance between the substrate and the mask plate is smaller (3 mm). It was confirmed. Further, when the thickness of the water repellent layer of each transparent member was confirmed, water droplets in a region where a continuous film thickness gradient of 16 nm to 0 nm was formed when the distance between the substrate and the mask plate was 3 mm and 10 mm. The length in the moving direction was 4 mm and 9 mm, respectively. The contact angle in the region where the thickness of the water repellent layer was 16 nm was 120 °, and the contact angle in the region where the thickness was 0 nm was 30 °.
- Example 2 A mask plate with holes formed between the base material and the evaporation source was placed so that the holes were located in the center of the base material, and film formation was performed in the same manner as in Example 1 above.
- a convex lens (diameter 12 mm) was used, the hole diameter of the mask plate was set to 6 mm, and the distance between the base material and the mask plate was set to 3 mm.
- the water droplets move from the portion where the hole portion of the mask plate is disposed (the central portion of the base material) toward the radial direction of the portion where the mask plate is disposed. It was confirmed. Moreover, it confirmed that a water droplet moved to the outer side direction of a base material in most base materials.
- Example 1 and Example 2 an experiment was conducted on a transparent member having a water-repellent layer formed on a substrate.
- an antireflection layer from the substrate side, SiO 2 (low refractive index layer) was formed on the substrate.
- OA-600 high refractive index layer
- SiO 2 low refractive index layer
- OA-600 high refractive index layer
- SiO 2 low refractive index layer
- SiO 2 low refractive index layer
- the present invention can be used for a transparent member capable of removing water droplets on the surface by a simple method and maintaining a photographed image clearly when used in a lens, and a method for manufacturing the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本発明の透明部材は、少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、水に対する接触角が連続的に変化する表面部分を有している。
Description
本発明は、透明部材及び透明部材の製造方法に関し、特に、簡便な方法で表面の水滴を除去することができ、レンズに用いた場合に撮影画像を明瞭に維持することができる透明部材等に関する。
例えば車両の運転支援のため、車両に車載カメラを搭載することが行われている。より具体的には、車両の後方や側方を撮像するカメラを自動車の車体に搭載し、このカメラによって撮像された映像を運転者が視認可能な位置に表示することによって死角を減らし、これにより安全運転に貢献できる。
ところで、車載カメラは車外に取り付けられる場合が多く、そのレンズ上に雨などによって水滴がしばしば付着する。レンズに付着した水滴の度合いによっては、カメラで撮像された画像に歪みが生じ、視認性が悪化する恐れがある。
ところで、車載カメラは車外に取り付けられる場合が多く、そのレンズ上に雨などによって水滴がしばしば付着する。レンズに付着した水滴の度合いによっては、カメラで撮像された画像に歪みが生じ、視認性が悪化する恐れがある。
従来、微量液滴を輸送する技術として、疎水面が異なる領域を楔形状で配置することで、疎水面が弱く、面積が大きい方へと液滴を輸送する技術が開示されている(例えば、特許文献1参照。)。しかしながら、当該技術を撮像系のレンズに適用しようとすると、接触角の異なる領域に境界が存在するため、光学特性が急激に変化し、画像が乱れてしまうという問題がある。また、パターンの寸法以下の微小水滴に対応しようとすると半導体プロセスなどが必要となり、生産性が著しく低下し、このような微小水滴を輸送することは困難であった。
また、レンズの表面に親水コーティング及び撥水コーティングを施し、同一表面に接触角の異なる領域を設け、当該領域の境界部をガイドにある1点に水滴を集中して導くという技術が開示されている(例えば、特許文献2参照。)。しかしながら、水滴の除去は自重(重量)に任せることになり、レンズ表面自体に水滴を移動させる力はなく、親水コーティング及び撥水コーティングはあくまで水滴が自然落下するときの移動方向を制御するガイド的な役割であった。
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、簡便な方法で表面の水滴を除去することができ、レンズに用いた場合に撮影画像を明瞭に維持することができる透明部材及び透明部材の製造方法を提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、水に対する接触角が連続的に変化する表面部分を形成することで、簡便に表面に付着する水滴を除去でき、撮影画像を明瞭に維持することができる透明部材等を提供することができることを見いだし本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、
水に対する接触角が連続的に変化する表面部分を有している透明部材。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、
水に対する接触角が連続的に変化する表面部分を有している透明部材。
2.前記表面部分が、撥水層に含まれる第1項に記載の透明部材。
3.前記撥水層の厚さが、連続的に変化している第2項に記載の透明部材。
4.前記撥水層が、フッ化物を含有する第2項又は第3項に記載の透明部材。
5.前記撥水層の裏面に、反射防止層を有する第2項から第4項までのいずれか一項に記載の透明部材。
6.前記表面部分の表面粗さが連続的に変化している第1項から第5項までのいずれか一項に記載の透明部材。
7.車載用又は屋外用の光学部品に用いられる第1項から第6項までのいずれか一項に記載の透明部材。
8.前記光学部品が、光学レンズである第7項に記載の透明部材。
9.第1項から第8項までのいずれか一項に記載の透明部材の製造方法であって、
撥水材料を成膜して撥水層を形成する工程を備え、
前記工程において、前記撥水層の厚さが連続的に変化するように形成する透明部材の製造方法。
撥水材料を成膜して撥水層を形成する工程を備え、
前記工程において、前記撥水層の厚さが連続的に変化するように形成する透明部材の製造方法。
10.前記工程では、蒸着法、塗布法のいずれかを用いる第9項に記載の透明部材の製造方法。
本発明の上記手段により、簡便な方法で表面の水滴を除去することができ、レンズに用いた場合に撮影画像を明瞭に維持することができる透明部材及び透明部材の製造方法を提供することができる。
本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
水に対する接触角が連続的に変化する表面部分を有しているので、前記表面部分において、接触角の変化量に依らず水滴を移動させる力(駆動力)が働く。そのため、当該表面部分に水滴が付着した場合に、水滴が接触角の小さくなる方向に自然に滑落し、水滴が表面部分から除去される。したがって、このような透明部材を例えば、車載用カメラや監視用カメラなど屋外にて使用するレンズに用いた場合に、撮影した画像に歪みが生じることがなく、視認性が良好となる。また、水滴がレンズに付着しづらくなり、悪天候時でも良好な視認性を維持することができる。
本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
水に対する接触角が連続的に変化する表面部分を有しているので、前記表面部分において、接触角の変化量に依らず水滴を移動させる力(駆動力)が働く。そのため、当該表面部分に水滴が付着した場合に、水滴が接触角の小さくなる方向に自然に滑落し、水滴が表面部分から除去される。したがって、このような透明部材を例えば、車載用カメラや監視用カメラなど屋外にて使用するレンズに用いた場合に、撮影した画像に歪みが生じることがなく、視認性が良好となる。また、水滴がレンズに付着しづらくなり、悪天候時でも良好な視認性を維持することができる。
本発明の透明部材は、少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、水に対する接触角が連続的に変化する表面部分を有し、当該表面部分に付着する水の流れ方向が制御されている。
この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
本発明の実施態様としては、前記表面部分が、撥水層に含まれることが、水滴除去に優れる点で好ましい。
また、前記撥水層の厚さが、連続的に変化していることが、より簡便に水滴を除去することができる点で好ましい。
前記撥水層が、フッ化物を含有することが、水に対する接触角を調整しやすく、接触角を大きくできる点で好ましい。
前記撥水層の裏面に、反射防止層を有することが、光学性能に優れる点で好ましい。
前記表面部分の表面粗さが連続的に変化していることが、表面エネルギーを変化させて水の流れ方向を制御する点で好ましい。
車載用又は屋外用の光学部品に用いられることが、雨天などによる水滴の付着を防止し、かつ、良好な視認性が得られる点で好ましい。特に、光学部品が光学レンズであることが好ましい。
また、前記撥水層の厚さが、連続的に変化していることが、より簡便に水滴を除去することができる点で好ましい。
前記撥水層が、フッ化物を含有することが、水に対する接触角を調整しやすく、接触角を大きくできる点で好ましい。
前記撥水層の裏面に、反射防止層を有することが、光学性能に優れる点で好ましい。
前記表面部分の表面粗さが連続的に変化していることが、表面エネルギーを変化させて水の流れ方向を制御する点で好ましい。
車載用又は屋外用の光学部品に用いられることが、雨天などによる水滴の付着を防止し、かつ、良好な視認性が得られる点で好ましい。特に、光学部品が光学レンズであることが好ましい。
本発明の透明部材の製造方法は、撥水材料を成膜して撥水層を形成する工程を備え、前記工程において、前記撥水層の厚さが連続的に変化するように形成する。
前記工程では、蒸着法、塗布法のいずれかを用いることが、より簡便に水滴を除去することができる点で好ましい。
前記工程では、蒸着法、塗布法のいずれかを用いることが、より簡便に水滴を除去することができる点で好ましい。
以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[透明部材の概要]
本発明の透明部材は、少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、水に対する接触角が連続的に変化する表面部分を有している。
本発明の透明部材は、少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、水に対する接触角が連続的に変化する表面部分を有している。
本発明において、「連続的に変化する」とは、特定領域において接触角の最大値と最小値の接触角の差が10°以上であることが好ましく、10°以上であると水滴を十分に移動させる力(駆動力)が働く。特に、本発明の透明部材を車載カメラ用のレンズに用いる場合には、40°以上とすることが好ましい。
また、接触角の変化量は、大きいほど水滴を移動させる力は大きくなり、変化量が小さいと移動させる力は小さくなるが、接触角が連続的に変化する領域においては、変化量に依らず水滴を移動させる力が働く。
本発明の透明部材を円形レンズで使用する場合には、例えば、レンズの中心から外側(半径方向)に向けての変化量ができる限り大きくなるように設定することが好ましい。最大接触角自体は、必ずしも大きくなくても構わない(すなわち、撥水表面でなくても構わない。)。また、水滴除去の目的からは接触角の変化量は一定でなくても構わない。
接触角が連続的に変化する領域について必要な幅は、1mm以上であることが好ましい。1mm未満では光学特性の急激な変化が懸念される。
本発明の透明部材を車載カメラ用レンズに用いる場合は、水滴を除去したい部分、つまりレンズの光学的な有効径領域全体で接触角が変化することが好ましく、有効径を除いたレンズ表面全面を接触角の変化する領域とすることが、レンズ表面より完全に水滴を除去することができるためより好ましい。
また、接触角の変化量は、大きいほど水滴を移動させる力は大きくなり、変化量が小さいと移動させる力は小さくなるが、接触角が連続的に変化する領域においては、変化量に依らず水滴を移動させる力が働く。
本発明の透明部材を円形レンズで使用する場合には、例えば、レンズの中心から外側(半径方向)に向けての変化量ができる限り大きくなるように設定することが好ましい。最大接触角自体は、必ずしも大きくなくても構わない(すなわち、撥水表面でなくても構わない。)。また、水滴除去の目的からは接触角の変化量は一定でなくても構わない。
接触角が連続的に変化する領域について必要な幅は、1mm以上であることが好ましい。1mm未満では光学特性の急激な変化が懸念される。
本発明の透明部材を車載カメラ用レンズに用いる場合は、水滴を除去したい部分、つまりレンズの光学的な有効径領域全体で接触角が変化することが好ましく、有効径を除いたレンズ表面全面を接触角の変化する領域とすることが、レンズ表面より完全に水滴を除去することができるためより好ましい。
具体的に、接触角変化のパターン例を図1に示す。図1A及び図1Bは、透明部材であるレンズの表面部分の平面図である。
図1Aは、レンズの中心から外側(半径方向)に向かって接触角が連続的に小さくなるように変化している。この場合、レンズの半径方向に向けて水滴を移動して除去することができ、既存のレンズと同様で、レンズの向きの制限がなくそのまま置き換えて使用することが可能である。
図1Bは、レンズの外周のうち一端部から、当該一端部に対向する他端部へ向かって接触角が連続的に小さくなるように変化している。この場合、レンズの前記他端部へ水滴を移動して除去することができる。レンズを傾けて設置した場合、1方向に水滴を除去することができる。
図1Aは、レンズの中心から外側(半径方向)に向かって接触角が連続的に小さくなるように変化している。この場合、レンズの半径方向に向けて水滴を移動して除去することができ、既存のレンズと同様で、レンズの向きの制限がなくそのまま置き換えて使用することが可能である。
図1Bは、レンズの外周のうち一端部から、当該一端部に対向する他端部へ向かって接触角が連続的に小さくなるように変化している。この場合、レンズの前記他端部へ水滴を移動して除去することができる。レンズを傾けて設置した場合、1方向に水滴を除去することができる。
なお、その他の接触角変化のパターン例を図2に示す。
図2において、横軸は、透明部材の水滴移動方向の断面を見たときの表面位置(水滴が移動する部分における水滴のスタート地点からの距離)、縦軸は、水に対する接触角を表す。
図2において、横軸は、透明部材の水滴移動方向の断面を見たときの表面位置(水滴が移動する部分における水滴のスタート地点からの距離)、縦軸は、水に対する接触角を表す。
また、上述のように接触角が連続的に変化する表面部分の形成方法としては、後述するが、接触角は厚さに依存することから、表面部分を構成する撥水層の厚さを連続的に変化するように傾斜(勾配)をつけることが好ましい。
<接触角の測定法>
接触角は、公知の方法によって測定することができる。例えば、JIS R3257で規定される方法に準拠して測定する。測定条件は、温度25±5℃、湿度50±10%とし、具体的な操作の手順としては、水(蒸留水)を透明部材上に約1.5μL滴下して、固液界面解析装置(DropMaster500、協和界面科学株式会社製)により透明部材上の5か所を測定し、測定値の平均から平均接触角を得る。接触角測定までの時間は水を滴下してから1分で測定する。
接触角は、公知の方法によって測定することができる。例えば、JIS R3257で規定される方法に準拠して測定する。測定条件は、温度25±5℃、湿度50±10%とし、具体的な操作の手順としては、水(蒸留水)を透明部材上に約1.5μL滴下して、固液界面解析装置(DropMaster500、協和界面科学株式会社製)により透明部材上の5か所を測定し、測定値の平均から平均接触角を得る。接触角測定までの時間は水を滴下してから1分で測定する。
<透明部材の構成>
本発明の透明部材は、少なくとも、基材又は当該基材上に層を備えてなる。すなわち、基材自体に、水に対する接触角が連続的に変化する表面部分を有するものであってもよいし、基材上に備えられた層に、水に対する接触角が連続的に変化する表面部分を有するものであってもよい。
本発明の透明部材は、前記表面部分が撥水層に含まれることが好ましく、当該撥水層が、前記基材上に備えられていることが好ましい。
また、本発明の透明部材は、基材と撥水層との間に、低屈折率層及び高屈折率層が積層されてなる反射防止層を有することが好ましい。
本発明の透明部材の好ましい構成としては、図3に示すように、基材101上に、当該基材101側から順に、反射防止層201及び撥水層104が設けられた構成である。なお、撥水層104の表面側(露出面側)が空気に接触する側となる。
本発明の透明部材は、少なくとも、基材又は当該基材上に層を備えてなる。すなわち、基材自体に、水に対する接触角が連続的に変化する表面部分を有するものであってもよいし、基材上に備えられた層に、水に対する接触角が連続的に変化する表面部分を有するものであってもよい。
本発明の透明部材は、前記表面部分が撥水層に含まれることが好ましく、当該撥水層が、前記基材上に備えられていることが好ましい。
また、本発明の透明部材は、基材と撥水層との間に、低屈折率層及び高屈折率層が積層されてなる反射防止層を有することが好ましい。
本発明の透明部材の好ましい構成としては、図3に示すように、基材101上に、当該基材101側から順に、反射防止層201及び撥水層104が設けられた構成である。なお、撥水層104の表面側(露出面側)が空気に接触する側となる。
(基材)
基材としては、ガラス、樹脂等が挙げられる。樹脂としては、ポリカーボネート樹脂や
シクロオレフィン樹脂等が挙げられる。
基材としては、ガラス、樹脂等が挙げられる。樹脂としては、ポリカーボネート樹脂や
シクロオレフィン樹脂等が挙げられる。
(撥水層)
撥水層は、基材上に設けられ、水に対する接触角が連続的に変化する表面部分を有する。
すなわち、水に対する接触角は、厚さに依存することから、表面部分を有する前記撥水層の厚さが連続的に変化していることが好ましい。
さらに、前記表面部分である撥水層の表面粗さが連続的に変化していることがより好ましい。
撥水層は、基材上に設けられ、水に対する接触角が連続的に変化する表面部分を有する。
すなわち、水に対する接触角は、厚さに依存することから、表面部分を有する前記撥水層の厚さが連続的に変化していることが好ましい。
さらに、前記表面部分である撥水層の表面粗さが連続的に変化していることがより好ましい。
撥水層の水に対する接触角は、撥水層の構成材料として例えばフッ化物を用いる場合は、基材の水に対する接触角以上120°以下の範囲内であることが好ましい。そして、このような接触角とするためには、例えば、基材の中心に位置する撥水層の厚さを16nmとし、基材の半径方向に向けて撥水層の厚さが連続的に薄くなるように形成し、基材の端部上の撥水層の厚さが0nmとなるように形成することが好ましい。
撥水層の中心の厚さは、16~50nmの範囲内であることが好ましく、撥水層の半径方向端部側の厚さは、0~15nmの範囲内であることが、撥水性能の確保が十分に確保できる点で好ましい。
撥水層の中心の厚さは、16~50nmの範囲内であることが好ましく、撥水層の半径方向端部側の厚さは、0~15nmの範囲内であることが、撥水性能の確保が十分に確保できる点で好ましい。
撥水層の表面の算術平均粗さRaは、0.1~3nmの範囲内で連続的に変化していることが、水滴除去が良好となる点で好ましい。このような表面粗さとするためには、例えば、後述するエッチングやブラスト法等によって形成することができる。
前記算術平均粗さは、JIS B 0601:2001に準じて、AFM(原子間力顕微鏡)を用いて測定した値である。具体的には、Buruker社製のDimension Iconを用い、測定エリアは、10μm×10μmとした。
前記算術平均粗さは、JIS B 0601:2001に準じて、AFM(原子間力顕微鏡)を用いて測定した値である。具体的には、Buruker社製のDimension Iconを用い、測定エリアは、10μm×10μmとした。
撥水層の構成材料としては、水に対する接触角を調整しやすく、特に高い接触角を確保しやすい点で、フッ化物が好ましい。フッ化物としては、フッ素樹脂材料等が挙げられる。市販品としては、SURF CLEAR 100(SC-100)(キヤノンオプトロン株式会社)のタブレット形状のものが好ましい。その他、タブレット形状以外に液体状であっても構わない。
(反射防止層)
反射防止層は、高屈折率層と低屈折率層とが交互に積層された多層構造を有することが好ましい。
本発明に係る高屈折率層は、基材の屈折率よりも高い屈折率を有する層であり、本発明に係る低屈折率層は、基材の屈折率よりも低い屈折率を有する層である。
高屈折率の波長587.56nmに対する屈折率は、1.9~2.45の範囲内、低屈折率の波長587.56nmに対する屈折率としては、1.3~1.5の範囲内であることが好ましい。
反射防止層は、高屈折率層と低屈折率層とが交互に積層された多層構造を有することが好ましい。
本発明に係る高屈折率層は、基材の屈折率よりも高い屈折率を有する層であり、本発明に係る低屈折率層は、基材の屈折率よりも低い屈折率を有する層である。
高屈折率の波長587.56nmに対する屈折率は、1.9~2.45の範囲内、低屈折率の波長587.56nmに対する屈折率としては、1.3~1.5の範囲内であることが好ましい。
本発明に係る反射防止層(高屈折率層、低屈折率層)に用いられる材料としては、好ましくは誘電体材料が挙げられ、例えば、Ti、Ta、Nb、Zr、Ce、La、Al、Si、Hfなどの酸化物、又はこれらを組み合わせた酸化化合物が適している。異なる誘電体材料を複数層積み重ねることで、可視域全体の反射率を低下させた機能を付加することができる。
積層数は、要求される光学性能によるが、おおむね3~5層程度の積層をすることで、可視域全体の反射率を低下させることができ、上限数としては12層以下であることが、膜の応力が大きくなって膜が剥がれたりすることを防止できる点で好ましい。
本発明に係る反射防止層の具体的構成としては、基材側から順に、低屈折率層、高屈折率層、低屈折率層、高屈折率層、低屈折率層とすることが好ましい。反射防止層の最上層の低屈折率層上に撥水層が設けられることが好ましいが、これらの層構成に限られるものではない。
前記低屈折率層は、基材よりも屈折率が低い材料から構成され、例えば、SiO2やその他、SiO2とAl2O3の混合物などであることが好ましい。特に、撥水層の直下の層に、SiO2からなる層を設けることが、SiO2と撥水層中のフッ化物とが強固に結合する点で好ましい。
前記低屈折率層は、基材上に真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜することができるが、特に、真空蒸着法で成膜することが好ましい。また、真空蒸着法において、IAD(Ion Assisted Deposition)(以下、単に「IAD」ともいう。)を用いてもよくこれにより耐傷性が向上する。
前記高屈折率層は、基材よりも屈折率が高い材料から構成され、例えば、Taの酸化物とTiの酸化物の混合物や、その他、Tiの酸化物、Taの酸化物、Laの酸化物とTiの酸化物の混合物などであることが好ましい。Taの酸化物とTiの酸化物の混合物(Ta2O5+TiO2)の市販品としては、OA-600(キヤノンオプトロン社製)等が挙げられる。
前記高屈折率層は、基材上に真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜することができるが、特に、真空蒸着法で成膜することが好ましい。また、真空蒸着法において、IADを用いてもよくこれにより耐傷性が向上する。
また、反射防止層の層厚(複数層積層した場合は全体の厚さ)は、好ましくは、50nm~5μmの範囲内である。層厚が50nm以上であれば、反射防止の光学特性を発揮させることができ、層厚が5μm以下であれば、反射防止層自体の層応力による面変形が発生するのを防止することができる。
[透明部材の製造方法]
本発明の透明部材の製造方法は、撥水材料を成膜して撥水層を形成する工程を備え、前記工程において、前記撥水層の厚さが連続的に変化するように形成する。
本発明の透明部材の製造方法は、撥水材料を成膜して撥水層を形成する工程を備え、前記工程において、前記撥水層の厚さが連続的に変化するように形成する。
<撥水層を形成する工程>
前記撥水層を形成する工程は、撥水層の水に対する接触角が、撥水層の厚さに依存することから、撥水層の厚さが連続的に変化することが好ましい。また、撥水層の厚さを上述のように制御することに加えて、又は、撥水層の厚さを制御せずに、撥水層の表面粗さが連続的に変化するように形成してもよい。
撥水層の厚さを連続的に変化するように形成する手段としては、例えば、マスク板による撥水材料をコートする際に、けられを利用して厚さに傾斜(膜厚勾配)をつけることができる。この場合は、後述するように、真空蒸着法などを用いることが好ましい。
また、位置により開口面積の異なるマスク板を基材の手前に配置して撥水材料のコートを行い、膜厚勾配をつけることができる。この場合は、真空蒸着法やスプレー法などを用いることが好ましい。
また、均一な撥水層上にマスク材料を傾斜成膜し、エッチングすることで撥水層の厚さ
を連続的に変化するように形成することもできる。
前記撥水層を形成する工程は、撥水層の水に対する接触角が、撥水層の厚さに依存することから、撥水層の厚さが連続的に変化することが好ましい。また、撥水層の厚さを上述のように制御することに加えて、又は、撥水層の厚さを制御せずに、撥水層の表面粗さが連続的に変化するように形成してもよい。
撥水層の厚さを連続的に変化するように形成する手段としては、例えば、マスク板による撥水材料をコートする際に、けられを利用して厚さに傾斜(膜厚勾配)をつけることができる。この場合は、後述するように、真空蒸着法などを用いることが好ましい。
また、位置により開口面積の異なるマスク板を基材の手前に配置して撥水材料のコートを行い、膜厚勾配をつけることができる。この場合は、真空蒸着法やスプレー法などを用いることが好ましい。
また、均一な撥水層上にマスク材料を傾斜成膜し、エッチングすることで撥水層の厚さ
を連続的に変化するように形成することもできる。
一方、撥水層の表面粗さを連続的に変化するように形成する手段としては、エッチング、ブラスト法等が挙げられる。具体的には、微細な凹凸パターンを周期、深さが徐々に変化するように形成しエッチングを行うことで表面粗さを連続的に変化させることができる。また、ブラスト法により噴射量、速度を徐々に変化するように処理することで表面粗さを連続的に変化させることができる。
なお、前記撥水層の厚さや表面粗さを変化させることの他に、撥水層の接触角を連続的に変化させる手段として、酸素プラズマ、オゾンなどを照射することで接触角が低下することから、照射強度を変えながら照射することで、接触角の傾斜を作り出すこともできる。
なお、前記撥水層の厚さや表面粗さを変化させることの他に、撥水層の接触角を連続的に変化させる手段として、酸素プラズマ、オゾンなどを照射することで接触角が低下することから、照射強度を変えながら照射することで、接触角の傾斜を作り出すこともできる。
以下では、真空蒸着法において、けられを利用して膜厚勾配を有する撥水層を形成する方法について説明する。
(真空蒸着法)
前記真空蒸着法を用いた成膜方法について、真空蒸着装置の説明とともに以下に説明する。
図4に示すように、本発明に係る真空蒸着装置1は、チャンバー2と、ドーム3と、モニターシステム5とを備えている。
前記真空蒸着法を用いた成膜方法について、真空蒸着装置の説明とともに以下に説明する。
図4に示すように、本発明に係る真空蒸着装置1は、チャンバー2と、ドーム3と、モニターシステム5とを備えている。
チャンバー2の底部には、複数の蒸発源6が配置されている。ここでは、蒸発源6として、2個の蒸発源6a,6bを示しているが、蒸発源6の個数は1個であってもよいし、3個以上であってもよい。蒸発源6の成膜材料(例えば、撥水材料)を加熱して蒸発させ、チャンバー2内に設置される基材101(例えばガラス板)に成膜材料を付着させることにより、成膜材料からなる層7(例えば、撥水層)(図5参照)が基材101上に成膜される。
各蒸発源6において成膜材料を蒸発させるときの加熱方式としては、抵抗加熱、電子ビーム加熱、高周波誘導加熱、レーザビーム加熱などがあるが、いずれの方式であっても構わない。また、チャンバー2には、図示しない真空排気系が設けられており、これによってチャンバー2内が真空引きされる。
各蒸発源6において成膜材料を蒸発させるときの加熱方式としては、抵抗加熱、電子ビーム加熱、高周波誘導加熱、レーザビーム加熱などがあるが、いずれの方式であっても構わない。また、チャンバー2には、図示しない真空排気系が設けられており、これによってチャンバー2内が真空引きされる。
なお、チャンバー2内には、マスク板12が設けられているが、これらの詳細については後述する。
ドーム3は、基材101及びマスク板12を保持するホルダー21(図5参照)を、少なくとも1個保持するものであり、蒸着傘とも呼ばれる。このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心をとおり、その弦に垂直な軸AXを回転対称軸として回転する回転対称形状となっている。ドーム3が軸AXを中心に例えば一定速度で回転することにより、ホルダー21を介してドーム3に保持された基材101及びマスク板12は、軸AXの周りに一定速度で公転する。
このドーム3は、複数のホルダー21を回転半径方向(公転半径方向)及び回転方向(公転方向)に並べて保持することが可能である。これにより、複数のホルダー21によって保持された複数の基材101上に同時に成膜することが可能となり、光学素子の製造効率を向上させることができる。
モニターシステム5は、真空成膜中に各蒸発源6から蒸発して自身(モニターシステム5)に付着する層を監視することにより、基材101上に成膜される層の特性を監視するシステムである。このモニターシステム5により、基材101上に成膜される層の光学特
性(例えば透過率、反射率、光学層厚など)を把握することができる。また、モニターシステム5は、水晶層厚モニターも含んでおり、基材101上に成膜される層の物理層厚を監視することもできる。このモニターシステム5は、層の監視結果に応じて、複数の蒸発源6のON/OFFの切り替え等を制御する制御部としても機能する。
性(例えば透過率、反射率、光学層厚など)を把握することができる。また、モニターシステム5は、水晶層厚モニターも含んでおり、基材101上に成膜される層の物理層厚を監視することもできる。このモニターシステム5は、層の監視結果に応じて、複数の蒸発源6のON/OFFの切り替え等を制御する制御部としても機能する。
図5は、図4のA部を拡大して示す断面図である。上記のホルダー21は、基材101及びマスク板12を保持する保持部材である。ホルダー21は、基材101を保持する保持板22と、シャフト23とを有している。シャフト23は、保持板22に設けられた穴(図示せず)と、マスク板12に設けられた穴(図示せず)とを貫通している。保持板22は、ナット24,24によって挟まれてシャフト23に固定されている。マスク板12は、ナット25,25によって挟まれてシャフト23に固定されている。
ナット24,24又はナット25,25を回すことにより、基材101に対してマスク板12を、シャフト23の軸方向に相対的に移動させることが可能である。これにより、基材101とマスク板12との距離(間隙T)を調整することが可能となる。なお、ホルダー21によって基材101に対するマスク板12の位置が一旦固定されると(間隙Tが所定の値に設定されると)、成膜中(成膜工程)においては、マスク板12の位置(すなわち間隙T)が変更されることはない。
次に、上述したマスク板12の詳細について説明する。
(マスク板)
マスク板12は、基材101に対して複数の蒸発源6側に位置し、かつ、基材101の一部との間に間隙Tが形成された状態で基材101とともに公転するように、上述したホルダー21によってチャンバー2内で保持されている。
図6は、基材101及びマスク板12を保持したホルダー21を、公転半径方向及び公転方向に並べてドーム3に保持したときの各基材101と、任意の基材101に対応するマスク板12とを示す平面図である。なお、マスク板12の形状を明確にするため、図6では、マスク板12にハッチングを便宜的に付している(他の図面でも同様)。同図に示すように、マスク板12の公転方向の幅は、公転半径方向において一定であり、マスク板12の平面形状は長方形となっている。
マスク板12は、基材101に対して複数の蒸発源6側に位置し、かつ、基材101の一部との間に間隙Tが形成された状態で基材101とともに公転するように、上述したホルダー21によってチャンバー2内で保持されている。
図6は、基材101及びマスク板12を保持したホルダー21を、公転半径方向及び公転方向に並べてドーム3に保持したときの各基材101と、任意の基材101に対応するマスク板12とを示す平面図である。なお、マスク板12の形状を明確にするため、図6では、マスク板12にハッチングを便宜的に付している(他の図面でも同様)。同図に示すように、マスク板12の公転方向の幅は、公転半径方向において一定であり、マスク板12の平面形状は長方形となっている。
上記のようにマスク板12がチャンバー2内で保持されていることにより、蒸発源6から蒸発して基材101上に付着する成膜材料からなる層7(撥水層)に、間隙Tに応じた膜厚勾配を付与することができる。この点についてより詳しく説明すると、以下のとおりである。
図7A及び図7Bは、マスク板12によって、基材101上に成膜される層7(撥水層)に膜厚勾配が付与される原理を模式的に示している。
基材101に対して蒸発源6側にマスク板12が位置していると、基材101及びマスク板12の公転方向の各位置において、各蒸発源6から基材101に向かう成膜材料の一部がマスク板12にて、けられる。このとき、基材101とマスク板12との間隙Tが狭い場合(このときの間隙TをTaとする)、基材101に向かう成膜材料が、基材101とマスク板12との間で奥まで(基材101の端部まで)に入り込みにくくなる。このため、基材101上に成膜される層7の膜厚勾配は急となる(図7A参照。)。
基材101に対して蒸発源6側にマスク板12が位置していると、基材101及びマスク板12の公転方向の各位置において、各蒸発源6から基材101に向かう成膜材料の一部がマスク板12にて、けられる。このとき、基材101とマスク板12との間隙Tが狭い場合(このときの間隙TをTaとする)、基材101に向かう成膜材料が、基材101とマスク板12との間で奥まで(基材101の端部まで)に入り込みにくくなる。このため、基材101上に成膜される層7の膜厚勾配は急となる(図7A参照。)。
一方、図7Bに示すように、基材101とマスク板12との間隙Tが広い場合(このときの間隙TをTbとすると、Tb>Ta)、マスク板12でけられずに基材101に向かう成膜材料が、基材101とマスク板12との間で奥まで入り込みやすくなる。このため、基材101上に成膜される層7の膜厚勾配は緩やかとなる。
したがって、基材101の一部と間隙Tを介してマスク板12を配置することにより、基材101上に成膜される層7に対して、上記間隙Tに応じた膜厚勾配を付与することができる。
本発明では、上述した蒸着装置を用いて、撥水材料を基材上に蒸着することで、マスク板により、けられて膜厚勾配が付与された撥水層が形成される。
本発明において、基材101とマスク板12との間の間隙Tは、1~50mmの範囲内が好ましく、1~10mmの範囲内がさらに好ましい。光学部材が大きい場合は膜厚勾配の領域が大きいほうがよいので、間隙Tも大きいほうが好ましい。光学部材が小さい場合は膜厚勾配の領域も小さくてよいので、間隙Tを適宜設定することが好ましい。
なお、前記マスク板12は、図5では、ホルダー21の一端部側に保持され、基材の半面を覆うように配置されていたが、これに限らず、例えば、図8に示すように、中心にパンチやドリル等で穴があけられたマスク板12Aを用い、これをホルダー(図示しない)の両端部で保持するように構成されていてもよい。この場合、蒸発源6から基材101に向かう成膜材料の一部がマスク板12にて、けられる。このとき、基材101の中心部分を除く部分(基材101の端部側)がマスク板12によって覆われているので、基材101の中心部分が最も厚く、基材101の端部側に向けて厚さが徐々に薄くなるように膜厚勾配が形成されることとなる。
また、このように中心部分に穴があけられたマスク板12Aを用いた場合も同様に、基材101とマスク板12との間隙Tが狭い場合には、膜厚勾配は急となり、間隙Tが広い場合には、膜厚勾配は緩やかとなる。
さらに、中心部分にあけられる穴の大きさ(開口面積)は、撥水層の形成したい膜厚勾配の領域の大きさに応じて適宜変更すればよい。具体的には、直径10mmの基材を用いた場合、中心部分に直径2~8mmの穴を形成したマスク板を用いることが好ましい。なお、前記穴の形状は真円でなくともよく、また、穴を形成する周面に凹凸等が形成されていてもよい。
また、このように中心部分に穴があけられたマスク板12Aを用いた場合も同様に、基材101とマスク板12との間隙Tが狭い場合には、膜厚勾配は急となり、間隙Tが広い場合には、膜厚勾配は緩やかとなる。
さらに、中心部分にあけられる穴の大きさ(開口面積)は、撥水層の形成したい膜厚勾配の領域の大きさに応じて適宜変更すればよい。具体的には、直径10mmの基材を用いた場合、中心部分に直径2~8mmの穴を形成したマスク板を用いることが好ましい。なお、前記穴の形状は真円でなくともよく、また、穴を形成する周面に凹凸等が形成されていてもよい。
(塗布法)
本発明に係る塗布法は、基材上に撥水層の厚さが連続的に変化するように撥水材料を塗布することが好ましい。
塗布法としては、スピン塗布、ディップ塗布、スプレー法等が挙げられ、中でもスプレー法が撥水層の厚さを連続的に傾斜して形成しやすい点で好ましい。
本発明に係る塗布法は、基材上に撥水層の厚さが連続的に変化するように撥水材料を塗布することが好ましい。
塗布法としては、スピン塗布、ディップ塗布、スプレー法等が挙げられ、中でもスプレー法が撥水層の厚さを連続的に傾斜して形成しやすい点で好ましい。
(スプレー法)
本発明に係るスプレー法は、撥水材料をスプレーにて塗布する方法である。スプレーの照射時間で撥水層の厚さを任意に制御することができる。また、蒸着法同様、スプレー時にマスクを用いる方法でも厚さを連続的に変化させることができる。
本発明に係るスプレー法は、撥水材料をスプレーにて塗布する方法である。スプレーの照射時間で撥水層の厚さを任意に制御することができる。また、蒸着法同様、スプレー時にマスクを用いる方法でも厚さを連続的に変化させることができる。
なお、前記撥水層を形成する工程前に、基材上に反射防止層を形成する工程を設けてもよい。
反射防止層を形成する工程では、基材上に真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜することができるが、特に、真空蒸着法で成膜することが好ましい。また、真空蒸着法において、IADを用いてもよく、これにより耐傷性が向上する。
IADを用いる場合、上述した蒸着装置内にイオン銃を設け、成膜時にイオン銃の駆動をONにして成膜すればよい。
反射防止層を形成する工程では、基材上に真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法によって成膜することができるが、特に、真空蒸着法で成膜することが好ましい。また、真空蒸着法において、IADを用いてもよく、これにより耐傷性が向上する。
IADを用いる場合、上述した蒸着装置内にイオン銃を設け、成膜時にイオン銃の駆動をONにして成膜すればよい。
[車載用又は屋外用の光学部品]
本発明の透明部材は、車載用又は屋外用の光学部品に用いられる。
本発明の車載用光学部品としては、例えば、車載カメラに搭載されるレンズユニットなどが挙げられる。
「車載カメラ」とは、自動車の車体の外方側に設置されるカメラであって、車体の後方部に設置されて後方確認用に使用されたり、車体の前方部に設置されて前方確認用又は側方確認用や、前車との距離の確認用などとして使用される。
このような車載カメラ用のレンズユニットは、複数枚のレンズによって構成され、詳しくは、物体側に配置される物体側レンズと、像側に配置される像側レンズ群とで構成される。像側レンズ群は、複数枚のレンズとレンズ間に設けられた絞りを備えている。
このような複数のレンズのうち、物体側レンズが外気に露出される露出面となっており、この露出面を有するレンズとして、本発明の透明部材が好適に用いられる。
本発明の透明部材は、車載用又は屋外用の光学部品に用いられる。
本発明の車載用光学部品としては、例えば、車載カメラに搭載されるレンズユニットなどが挙げられる。
「車載カメラ」とは、自動車の車体の外方側に設置されるカメラであって、車体の後方部に設置されて後方確認用に使用されたり、車体の前方部に設置されて前方確認用又は側方確認用や、前車との距離の確認用などとして使用される。
このような車載カメラ用のレンズユニットは、複数枚のレンズによって構成され、詳しくは、物体側に配置される物体側レンズと、像側に配置される像側レンズ群とで構成される。像側レンズ群は、複数枚のレンズとレンズ間に設けられた絞りを備えている。
このような複数のレンズのうち、物体側レンズが外気に露出される露出面となっており、この露出面を有するレンズとして、本発明の透明部材が好適に用いられる。
前記屋外用の光学部品としては、屋外設置型の監視カメラなどが挙げられ、当該監視カメラを構成するレンズのうち、外気に露出される露出面を有するレンズとして、本発明の透明部材が好適に用いられる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
接触角が連続的に変化する表面部分を付与する作製例として、真空蒸着法により撥水材料を蒸着して撥水層の厚さに傾斜をつける方法を採用した。
基材:ガラス基材(HOYA社製のTAF1)
真空蒸着装置:成膜装置BES-1300(株式会社シンクロン製)
撥水材料の蒸発源:抵抗加熱方式
撥水材料:SURFCLEAR 100(SC-100)タブレット形状(キヤノンオプトロン株式会社製)
上記の基材を真空蒸着装置に設置して、蒸発源と基材との間に基材の半分を覆い、かつ、基材に対して平行となるようにマスク板を配置し、マスク板でコートがけられることにより、蒸着後の基材上に撥水層の厚さが連続的に変化するように作製した。また、撥水層の安定化のために、成膜後は室温にて半日以上放置した。
基材とマスク板との間の距離は、3mmと10mmの場合について、それぞれ成膜を行い、基材上に撥水層が形成された二つの透明部材を得た。
得られた各透明部材について、7μLの水滴を付着させると、マスク板が配置されていない部分(撥水層の厚さが厚い部分)から、マスク板が配置されていた部分(撥水層の厚さが薄い部分)に向けてそれぞれ水滴が移動することを下記のとおり確認した。このとき、水滴の移動速度は、基材とマスク板との間の距離が小さい(3mm)場合の方が、基材とマスク板との間の距離が大きい(10mm)場合に比べて、速いことを確認した。また、水滴の移動距離については、基材とマスク板との間の距離が大きい(10mm)場合の方が、基材とマスク板との間の距離が小さい(3mm)場合に比べて、長いことを確認した。
また、各透明部材の撥水層の厚さを確認したところ、基材とマスク板との間の距離が3mm、10mmにおいて16nm~0nmの連続的な膜厚勾配が形成されている領域の水滴が移動する方向の長さは各々4mm、9mmであった。撥水層の厚さが16nmの領域の接触角は120°、厚さが0nmの領域の接触角は30°であった。
[実施例1]
接触角が連続的に変化する表面部分を付与する作製例として、真空蒸着法により撥水材料を蒸着して撥水層の厚さに傾斜をつける方法を採用した。
基材:ガラス基材(HOYA社製のTAF1)
真空蒸着装置:成膜装置BES-1300(株式会社シンクロン製)
撥水材料の蒸発源:抵抗加熱方式
撥水材料:SURFCLEAR 100(SC-100)タブレット形状(キヤノンオプトロン株式会社製)
上記の基材を真空蒸着装置に設置して、蒸発源と基材との間に基材の半分を覆い、かつ、基材に対して平行となるようにマスク板を配置し、マスク板でコートがけられることにより、蒸着後の基材上に撥水層の厚さが連続的に変化するように作製した。また、撥水層の安定化のために、成膜後は室温にて半日以上放置した。
基材とマスク板との間の距離は、3mmと10mmの場合について、それぞれ成膜を行い、基材上に撥水層が形成された二つの透明部材を得た。
得られた各透明部材について、7μLの水滴を付着させると、マスク板が配置されていない部分(撥水層の厚さが厚い部分)から、マスク板が配置されていた部分(撥水層の厚さが薄い部分)に向けてそれぞれ水滴が移動することを下記のとおり確認した。このとき、水滴の移動速度は、基材とマスク板との間の距離が小さい(3mm)場合の方が、基材とマスク板との間の距離が大きい(10mm)場合に比べて、速いことを確認した。また、水滴の移動距離については、基材とマスク板との間の距離が大きい(10mm)場合の方が、基材とマスク板との間の距離が小さい(3mm)場合に比べて、長いことを確認した。
また、各透明部材の撥水層の厚さを確認したところ、基材とマスク板との間の距離が3mm、10mmにおいて16nm~0nmの連続的な膜厚勾配が形成されている領域の水滴が移動する方向の長さは各々4mm、9mmであった。撥水層の厚さが16nmの領域の接触角は120°、厚さが0nmの領域の接触角は30°であった。
[実施例2]
基材と蒸発源との間に、穴が形成されたマスク板を、当該穴が基材の中心部に位置するように設置して、上記実施例1と同様にして成膜した。なお、基材としては、凸形状レン
ズ(直径12mm)を用い、マスク板の穴の直径は6mmとし、基材とマスク板との間の距離は3mmに設定した。得られた透明部材について、水滴を付着させると、マスク板の穴部が配置されていた部分(基材の中心部分)からマスク板が配置されていた部分の径方向に向けて水滴が移動することを確認した。また、基材の大部分において、水滴が基材の外側方向に移動することを確認した。
基材と蒸発源との間に、穴が形成されたマスク板を、当該穴が基材の中心部に位置するように設置して、上記実施例1と同様にして成膜した。なお、基材としては、凸形状レン
ズ(直径12mm)を用い、マスク板の穴の直径は6mmとし、基材とマスク板との間の距離は3mmに設定した。得られた透明部材について、水滴を付着させると、マスク板の穴部が配置されていた部分(基材の中心部分)からマスク板が配置されていた部分の径方向に向けて水滴が移動することを確認した。また、基材の大部分において、水滴が基材の外側方向に移動することを確認した。
なお、上記実施例1及び実施例2では、基材に撥水層を形成した透明部材について実験を行ったが、基材上に反射防止層(基材側から、SiO2(低屈折率層)、OA-600(高屈折率層)、SiO2(低屈折率層)、OA-600(高屈折率層)、SiO2(低屈折率層)が順に積層された層)を形成し、当該反射防止層上に上記実施例1及び実施例2と同様の方法で撥水層を形成した場合も、同様にして水滴が移動することを確認した。
本発明は、簡便な方法で表面の水滴を除去することができ、レンズに用いた場合に撮影画像を明瞭に維持することができる透明部材及びその製造方法に利用することができる。
1 蒸着装置
2 チャンバー
3 ドーム
5 モニターシステム
6,6a,6b 蒸発源
7 層
12,12A マスク板
21 ホルダー
22 保持板
23 シャフト
24,25 ナット
AX 軸
101 基材
104 撥水層
201 反射防止層
2 チャンバー
3 ドーム
5 モニターシステム
6,6a,6b 蒸発源
7 層
12,12A マスク板
21 ホルダー
22 保持板
23 シャフト
24,25 ナット
AX 軸
101 基材
104 撥水層
201 反射防止層
Claims (10)
- 少なくとも、基材又は当該基材上に層を備えてなる透明部材であって、
水に対する接触角が連続的に変化する表面部分を有する透明部材。 - 前記表面部分が、撥水層に含まれる請求項1に記載の透明部材。
- 前記撥水層の厚さが、連続的に変化している請求項2に記載の透明部材。
- 前記撥水層が、フッ化物を含有する請求項2又は請求項3に記載の透明部材。
- 前記撥水層の裏面に、反射防止層を有する請求項2から請求項4までのいずれか一項に記載の透明部材。
- 前記表面部分の表面粗さが連続的に変化している請求項1から請求項5までのいずれか一項に記載の透明部材。
- 車載用又は屋外用の光学部品に用いられる請求項1から請求項6までのいずれか一項に記載の透明部材。
- 前記光学部品が、光学レンズである請求項7に記載の透明部材。
- 請求項1から請求項8までのいずれか一項に記載の透明部材の製造方法であって、
撥水材料を成膜して撥水層を形成する工程を備え、
前記工程において、前記撥水層の厚さが連続的に変化するように形成する透明部材の製造方法。 - 前記工程では、蒸着法、塗布法のいずれかを用いる請求項9に記載の透明部材の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020514079A JP7327385B2 (ja) | 2018-04-20 | 2019-04-05 | 透明部材及び透明部材の製造方法 |
US16/978,609 US11994653B2 (en) | 2018-04-20 | 2019-04-05 | Transparent member and transparent-member manufacturing method |
EP19789336.5A EP3783129B1 (en) | 2018-04-20 | 2019-04-05 | Transparent member and transparent-member manufacturing method |
CN201980026769.1A CN112020570B (zh) | 2018-04-20 | 2019-04-05 | 透明部件和透明部件的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018081269 | 2018-04-20 | ||
JP2018-081269 | 2018-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203024A1 true WO2019203024A1 (ja) | 2019-10-24 |
Family
ID=68239644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015111 WO2019203024A1 (ja) | 2018-04-20 | 2019-04-05 | 透明部材及び透明部材の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11994653B2 (ja) |
EP (1) | EP3783129B1 (ja) |
JP (1) | JP7327385B2 (ja) |
CN (1) | CN112020570B (ja) |
WO (1) | WO2019203024A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021155820A (ja) * | 2020-03-27 | 2021-10-07 | 富士フイルム株式会社 | 蒸着装置、蒸着方法及び斜方蒸着膜の製造方法 |
WO2022230024A1 (ja) * | 2021-04-26 | 2022-11-03 | オリンパス株式会社 | 内視鏡の対物光学素子 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021130420A1 (de) | 2021-11-22 | 2023-05-25 | HELLA GmbH & Co. KGaA | Verfahren und Anordnung zur gerichteten Vakuumbeschichtung eines optischen Bauteiles |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63149601A (ja) * | 1986-12-15 | 1988-06-22 | Toyota Central Res & Dev Lab Inc | 防曇性光学部材 |
JPH09258004A (ja) * | 1996-03-25 | 1997-10-03 | Ulvac Japan Ltd | 反射防止多層膜とその成膜方法並びにその成膜装置 |
JP2000047005A (ja) * | 1998-07-30 | 2000-02-18 | Teijin Ltd | 反射防止物品及びその製造方法 |
JP2005331410A (ja) | 2004-05-20 | 2005-12-02 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | 疎水面を利用した微量液滴輸送デバイス |
JP2005352303A (ja) * | 2004-06-11 | 2005-12-22 | Pentax Corp | 反射防止膜及び反射防止膜を有する光学素子 |
JP2009003348A (ja) * | 2007-06-25 | 2009-01-08 | Nisca Corp | 減光フィルタの成膜方法、減光フィルタの製造装置及びこれを用いた減光フィルタ並びに撮像光量絞り装置 |
JP2015018106A (ja) | 2013-07-11 | 2015-01-29 | クラリオン株式会社 | 撮像装置、及び、水滴除去方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6929822B2 (en) * | 2001-04-27 | 2005-08-16 | Hoya Corporation | Method for manufacturing optical member having water-repellent thin film |
JP2006257249A (ja) | 2005-03-17 | 2006-09-28 | Nissan Motor Co Ltd | 液滴ガイド構造 |
JP4909537B2 (ja) * | 2005-07-07 | 2012-04-04 | 神港精機株式会社 | 酸化珪素膜の成膜方法 |
WO2008051166A1 (en) * | 2006-10-25 | 2008-05-02 | Agency For Science, Technology And Research | Modification of surface wetting properties of a substrate |
CN101497017B (zh) | 2009-01-05 | 2011-09-07 | 东南大学 | 一种微流控制结构 |
US8691331B2 (en) | 2009-02-09 | 2014-04-08 | Prashant D. Santan | Surface modification of hydrophobic and/or oleophobic coatings |
CN104157666A (zh) * | 2013-05-14 | 2014-11-19 | 北儒精密股份有限公司 | 可挠透光基板及其制造方法 |
CN103320832B (zh) | 2013-06-25 | 2016-04-06 | 北京航空航天大学 | 阳极氧化构筑浸润性梯度表面的方法 |
JP6661640B2 (ja) * | 2014-12-19 | 2020-03-11 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 化学機械研磨ツール用の構成要素 |
CN104646833B (zh) * | 2014-12-25 | 2018-09-14 | 广东工业大学 | 一种金属基底梯度润湿表面的激光制备方法 |
WO2017038868A1 (ja) * | 2015-08-31 | 2017-03-09 | 旭硝子株式会社 | 透光性構造体、その製造方法および物品 |
CN106066293B (zh) | 2016-04-27 | 2019-01-08 | 浙江工业大学 | 利用梯度润湿表面检测酒精浓度的方法 |
CN107564865A (zh) * | 2017-07-17 | 2018-01-09 | 潮州三环(集团)股份有限公司 | 一种防污基板及其制备方法 |
CN107640739A (zh) * | 2017-09-06 | 2018-01-30 | 邱丹丹 | 液滴在润湿梯度表面上长距离自驱动方法 |
CN107482953A (zh) | 2017-09-16 | 2017-12-15 | 邱丹丹 | 基于润湿梯度表面的液滴自驱动能量转换装置及制备方法 |
US11302830B2 (en) * | 2018-09-30 | 2022-04-12 | John Arthur DeVos | Apparatus for forming a nanostructured thin film with porosity gradient on an array of sloped outdoor panel surfaces using meniscus drag |
JP2020098284A (ja) | 2018-12-18 | 2020-06-25 | コニカミノルタ株式会社 | 光学部材及び光学部材の製造方法 |
-
2019
- 2019-04-05 JP JP2020514079A patent/JP7327385B2/ja active Active
- 2019-04-05 US US16/978,609 patent/US11994653B2/en active Active
- 2019-04-05 CN CN201980026769.1A patent/CN112020570B/zh active Active
- 2019-04-05 EP EP19789336.5A patent/EP3783129B1/en active Active
- 2019-04-05 WO PCT/JP2019/015111 patent/WO2019203024A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63149601A (ja) * | 1986-12-15 | 1988-06-22 | Toyota Central Res & Dev Lab Inc | 防曇性光学部材 |
JPH09258004A (ja) * | 1996-03-25 | 1997-10-03 | Ulvac Japan Ltd | 反射防止多層膜とその成膜方法並びにその成膜装置 |
JP2000047005A (ja) * | 1998-07-30 | 2000-02-18 | Teijin Ltd | 反射防止物品及びその製造方法 |
JP2005331410A (ja) | 2004-05-20 | 2005-12-02 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | 疎水面を利用した微量液滴輸送デバイス |
JP2005352303A (ja) * | 2004-06-11 | 2005-12-22 | Pentax Corp | 反射防止膜及び反射防止膜を有する光学素子 |
JP2009003348A (ja) * | 2007-06-25 | 2009-01-08 | Nisca Corp | 減光フィルタの成膜方法、減光フィルタの製造装置及びこれを用いた減光フィルタ並びに撮像光量絞り装置 |
JP2015018106A (ja) | 2013-07-11 | 2015-01-29 | クラリオン株式会社 | 撮像装置、及び、水滴除去方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3783129A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021155820A (ja) * | 2020-03-27 | 2021-10-07 | 富士フイルム株式会社 | 蒸着装置、蒸着方法及び斜方蒸着膜の製造方法 |
JP7307021B2 (ja) | 2020-03-27 | 2023-07-11 | 富士フイルム株式会社 | 蒸着装置、蒸着方法及び斜方蒸着膜の製造方法 |
WO2022230024A1 (ja) * | 2021-04-26 | 2022-11-03 | オリンパス株式会社 | 内視鏡の対物光学素子 |
Also Published As
Publication number | Publication date |
---|---|
US20210003745A1 (en) | 2021-01-07 |
JPWO2019203024A1 (ja) | 2021-05-13 |
JP7327385B2 (ja) | 2023-08-16 |
CN112020570A (zh) | 2020-12-01 |
EP3783129B1 (en) | 2024-11-27 |
EP3783129A4 (en) | 2021-06-02 |
US11994653B2 (en) | 2024-05-28 |
CN112020570B (zh) | 2023-11-28 |
EP3783129A1 (en) | 2021-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019203024A1 (ja) | 透明部材及び透明部材の製造方法 | |
US9459379B2 (en) | Optical member and method for producing same | |
EP2490048B1 (en) | Optical member, method of manufacturing the same, and optical system using the same | |
WO2019208426A1 (ja) | 光学薄膜、光学部材及び光学薄膜の製造方法 | |
TWI604075B (zh) | Film forming method and film forming apparatus | |
US20070157883A1 (en) | Device For Coating Both Sides of Substrates With A Hydrophobic Layer | |
US20200165716A1 (en) | Film forming method and film forming apparatus | |
JP5442375B2 (ja) | 光学素子の製造方法 | |
US20070224342A1 (en) | Apparatus and method for forming antireflection film | |
JP7310360B2 (ja) | 薄膜の製造方法 | |
JP2020076996A (ja) | モスアイ転写型及びモスアイ転写型の製造方法 | |
JP2020098284A (ja) | 光学部材及び光学部材の製造方法 | |
WO2021261225A1 (ja) | 親水性膜の製造方法、親水性膜及び光学部材 | |
JP2006309139A (ja) | 防汚性光学物品の製造方法 | |
US20050064642A1 (en) | Optical component and method of manufacturing the same | |
JP7476564B2 (ja) | 超親水膜とその製造方法及び光学部材 | |
WO2020129424A1 (ja) | 誘電体膜、その製造方法及びそれを用いた光学部材 | |
JP2011070137A (ja) | 小型ミラー | |
KR101960599B1 (ko) | 진공증착에 의한 무반사코팅층이 형성된 cctv 돔렌즈 및 그 제작방법 | |
KR20150024157A (ko) | 무반사 미세 구조물의 형성방법 및 무반사 미세 구조물을 구비하는 광학 소자 | |
WO2024128176A1 (ja) | マスク、積層体及びマスクの製造方法 | |
KR20220094084A (ko) | 편광필터 제조방법 | |
JPH0230747A (ja) | プラスチック基板への成膜方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19789336 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020514079 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019789336 Country of ref document: EP |