[go: up one dir, main page]

WO2019187325A1 - Vehicular lamp drive device and control method therefor - Google Patents

Vehicular lamp drive device and control method therefor Download PDF

Info

Publication number
WO2019187325A1
WO2019187325A1 PCT/JP2018/042806 JP2018042806W WO2019187325A1 WO 2019187325 A1 WO2019187325 A1 WO 2019187325A1 JP 2018042806 W JP2018042806 W JP 2018042806W WO 2019187325 A1 WO2019187325 A1 WO 2019187325A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
coil
timing
led lamp
supply path
Prior art date
Application number
PCT/JP2018/042806
Other languages
French (fr)
Japanese (ja)
Inventor
光太郎 齋藤
仁之 渡邊
楽 板橋
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to JP2020509610A priority Critical patent/JP6899484B2/en
Publication of WO2019187325A1 publication Critical patent/WO2019187325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to a vehicle lamp driving device and a control method thereof.
  • This application claims priority on March 29, 2018 based on Japanese Patent Application No. 2018-066511, filed in Japan, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a vehicular lamp driving device that charges a battery using an alternating current output from a generator that rotates in conjunction with an engine in a motorcycle and lights a headlamp. Specifically, the vehicular lamp driving device charges the battery with a positive current (hereinafter referred to as “positive current”) out of the alternating current output by the generator, and the negative current (hereinafter referred to as “current”). , “Negative current”).
  • the bulb lamp is mainly used as the headlamp, but the bulb lamp has a problem of high power consumption. Therefore, at present, it has been proposed to use an LED (light emitting diode) having lower power consumption than the bulb lamp for the headlight.
  • LED light emitting diode
  • the consumption of the negative current is reduced by using the LED as the headlamp, the consumption of the positive current is not reduced. Therefore, due to the characteristics of the generator that outputs the same alternating current for the positive side current and the negative side current, if the consumption cannot be reduced by both the positive side current and the negative side current, the output of the generator can be reduced. This cannot be done, and this has hindered the miniaturization of the generator.
  • the inventors use an LED as a headlamp, and among the electrical components used in a motorcycle, one of the electrical components driven by a positive current, that is, one of the loads (battery load) borne by the battery.
  • a positive current that is, one of the loads (battery load) borne by the battery.
  • the idea of reducing both the positive and negative currents by driving the part with a negative current was obtained.
  • the LED is a constant voltage element whose brightness is determined by current
  • lighting is basically performed by current control.
  • the so-called high beam and low beam have different numbers of LEDs in series, and this switching causes a change in the voltage of the headlight.
  • the output voltage of the generator is restricted by the voltage of the headlight.
  • the battery load is a constant current element, voltage control is required. Therefore, when the LED headlight is driven with a negative current, the negative output voltage of the generator is changed and restrained depending on the state of the headlight, and the battery load cannot be simply driven with the negative output. There is a case.
  • the present invention has been made in view of such circumstances, and an object thereof is to drive a battery load with a negative current while driving the LED headlight with a negative current.
  • One aspect of the present invention is a vehicle lamp driving device that drives an LED lamp for a vehicle by controlling energization of an alternating current output from a coil of a generator that generates electric power by rotation of an engine, and includes an intermediate between the coils.
  • a negative supply current is supplied to a second load different from the first load, and a positive current output from the coil is connected to one end of the coil.
  • a third supply path that is supplied to a third load different from the first and second loads, and a lighting control unit that controls energization timing of the first supply path; and the second supply Taimin energizes the route
  • a load drive unit for controlling a vehicle lamp driving apparatus comprising a.
  • One aspect of the present invention is the above-described lamp drive device for a vehicle, wherein the lighting control unit energizes the first supply path at a first timing and is output from an intermediate portion of the coil. Current is supplied to the first load, and the load driving unit supplies current to the second supply path at a second timing different from the first timing and is output from one end of the coil. Side current is supplied to the second load.
  • One aspect of the present invention is the above-described vehicle lamp driving device, wherein the second timing is a timing later than the first timing.
  • One aspect of the present invention is the above-described vehicle lamp driving device, wherein the LED lamp includes a first LED lamp and a second LED lamp connected in series, and the second timing is determined by the first timing. In a state where one LED lamp and the second LED lamp are lit, the timing is later than the first timing.
  • One aspect of the present invention is a control method for controlling current supply to a vehicle LED lamp and a load different from the LED lamp from a coil of a generator that generates electricity by rotating an engine, and is output from the coil.
  • a lighting control step of supplying a negative current output from the intermediate portion of the coil to the first supply path load including at least the LED lamp at a first timing;
  • the lighting control step calculates a difference value between a voltage of a capacitor connected in parallel to a first supply path provided in the LED lamp and a predetermined first threshold value.
  • the first timing is determined based on a comparison result between the calculated difference value and a voltage value of a predetermined triangular wave
  • the load driving step is a second supply different from the first supply path.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a vehicular lamp lighting system 1 including a vehicular lamp driving device 3 according to an embodiment of the present invention. It is a timing chart of the lamp drive device 3 for vehicles which concerns on one Embodiment of this invention. It is a figure which shows the control method which controls the electric power supply with respect to the 2nd load 6 different from the LED lamp apparatus 5 and the LED lamp apparatus 5 from the coil L which concerns on one Embodiment of this invention.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a vehicular lamp lighting system 1 including a vehicular lamp driving device 3 according to an embodiment of the present invention.
  • a vehicular lamp lighting system 1 includes a generator (ACG: Alternate Current Generator) 2, a vehicular lamp driving device 3, a first load LED lamp device 5, a second load 6, A resistor 8 and a third load 30 are provided.
  • the third load 30 includes a battery 4 and a load 9.
  • the LED lamp device 5 is an example of the “LED lamp” in the present invention.
  • the 1st load is the LED lamp apparatus 5
  • the first load of the present invention is a load different from the second load 6 and the third load 30, and only needs to include at least the LED lamp device 5.
  • the generator 2 is an AC generator, and generates an AC current by rotation of an engine such as a vehicle. More specifically, the generator 2 has a coil L provided with an intermediate tap (intermediate portion) c. The generator 2 outputs an alternating current W1 from one end a of the coil L as the engine rotates, and outputs an alternating current W2 having the same phase as the alternating current W1 from the intermediate tap c.
  • the one end a and the intermediate tap c of the coil L are each connected to the vehicle lamp drive device 3.
  • the other end b of the coil L is connected to GND.
  • the vehicle lamp driving device 3 charges the battery 4 with a positive-side current (hereinafter referred to as “positive-side current”) among the alternating current of the generator 2 that generates electricity by rotation of an engine (not shown). Further, the vehicle lamp drive device 3 lights the vehicle LED lamp device 5 with a negative current (hereinafter referred to as “negative current”) of the AC current. Thus, the vehicle lamp driving device 3 drives the LED lamp device 5 by controlling the energization of the alternating current output from the coil of the generator 2 that generates electric power by the rotation of the engine. Further, the vehicular lamp driving device 3 drives the second load 6 using this negative current.
  • the first power supply terminal CH is connected to one end a of the coil L in the generator 2, and the second power supply terminal CL is connected to the intermediate portion c of the coil L.
  • the vehicle lamp drive device 3 has a battery terminal BT connected to the battery 4 and a lamp terminal LA connected to the LED lamp device 5.
  • the battery 4 is mounted on a vehicle such as a motorcycle.
  • the battery 4 can be a secondary battery such as a nickel metal hydride battery or a lithium ion battery.
  • the battery 4 can also use an electric double layer capacitor (capacitor) instead of the secondary battery.
  • the LED lamp device 5 is a vehicle headlamp using an LED (light emitting diode) as a light source.
  • the LED lamp device 5 includes a first LED lamp 51, a second LED lamp 52, and a switch 53.
  • the first LED lamp 51 has a cathode connected to the lamp terminal LA, and an anode connected to the cathode of the second LED lamp 52.
  • the anode of the second LED lamp 52 is connected to GND via a resistor 8 which is a limiting resistor.
  • the first LED lamp 51 and the second LED lamp 52 are connected in series between the lamp terminal LA and GND.
  • the switch 53 is connected in parallel to the second LED lamp 52.
  • the switch 53 is a switch for switching the LED lamp device 5 to a high beam or a low beam, and is operated by a user (for example, a driver). Specifically, when the user controls the switch 53 to be in an ON state, the cathode and the anode of the second LED lamp 52 are short-circuited. As a result, only the first LED lamp 51 is turned on, resulting in a so-called low beam. On the other hand, when the user controls the switch 53 in the OFF state, the first LED lamp 51 and the second LED lamp 52 are turned on, which is a so-called high beam.
  • the second load 6 is connected to the load terminal RA of the vehicle lamp driving device 3.
  • the second load 6 is a load driven by a negative-side current output from one end a of the coil L.
  • the second load 6 is a part of the load (battery load) conventionally borne by the battery.
  • the battery load is an electrical component of the vehicle other than the LED lamp device 5 and is, for example, a load such as a stop lamp or a heater.
  • the load 9 is connected to the vehicle lamp driving device 3.
  • the load 9 is a load driven by a positive current output from one end a of the coil L.
  • the load 9 is, for example, a battery-driven electrical component.
  • the vehicle lamp driving device 3 includes a first capacitor 7, a first thyristor 10, a second thyristor 11, a second capacitor 12, a third thyristor 13, and an energization control unit 14.
  • the first capacitor 7 is connected in parallel to the second load 6.
  • the first capacitor 7 stores a negative current output from one end a of the coil L, and drives the second load 6 stably.
  • the first thyristor 10 is connected to a power supply line between the first power supply terminal CH and the battery terminal BT, and is turned on or off based on the first control signal output from the energization control unit 14. It becomes a state. Specifically, the first thyristor 10 has an anode connected to the first power supply terminal CH and a cathode connected to the battery terminal BT. The gate of the first thyristor 10 is connected to the energization control unit 14.
  • the first thyristor 10 is turned on between the anode and the cathode when the first control signal from the energization control unit 14 is input to the gate. Therefore, the first thyristor 10 half-wave rectifies the alternating current W1 input to the first power supply terminal CH, and outputs only the positive current.
  • the second thyristor 11 is connected between the second power supply terminal CL and the lamp terminal LA, and is turned on or off based on the second control signal output from the energization control unit 14. .
  • the second thyristor 11 has an anode connected to the lamp terminal LA and a cathode connected to the intermediate tap c of the coil L via the second power supply terminal CL.
  • the gate of the second thyristor 11 is connected to the energization control unit 14.
  • the second thyristor 11 is turned on between the anode and the cathode when the second control signal from the energization control unit 14 is input to the gate. Therefore, the second thyristor 11 performs half-wave rectification on the alternating current W2 output from the intermediate tap c of the coil L, and outputs only the negative current of the alternating current W2 to the LED lamp device 5.
  • the second capacitor 12 is connected between the lamp terminals LA and GND. Specifically, the second capacitor 12 has one end connected to the cathode side of the LED lamp device 5 and the other end connected to GND.
  • the second capacitor 12 accumulates the negative current of the alternating current W2 as a current for lighting the LED lamp device 5. That is, when the alternating current W2 is on the positive side, the second capacitor 12 supplies the accumulated current to the vehicle lamp driving device 3 when the alternating current W2 is on the negative side.
  • the LED lamp device 5 can be turned on even during a period in which the positive current is supplied from the intermediate tap c as the alternating current W2.
  • the third thyristor 13 is connected between the first power supply terminal CH and the load terminal RA, and is turned on or off based on the third control signal output from the energization control unit 14. .
  • the third thyristor 13 has an anode connected to the load terminal RA and a cathode connected to one end a of the coil via the first power supply terminal CH.
  • the gate of the third thyristor 13 is connected to the energization control unit 14.
  • the third thyristor 13 is turned on between the anode and the cathode when the third control signal from the energization control unit 14 is input to the gate. Therefore, the third thyristor 13 performs half-wave rectification on the alternating current W1 output from the one end a of the coil L, and outputs only the negative current of the alternating current W1 to the second load 6 and the first capacitor 7. To do.
  • the energization control unit 14 detects the polarity of the alternating current W1, and controls each of the first thyristor 10, the second thyristor 11, and the third thyristor 13 to be in an on state or an off state according to the detected polarity. To do. Below, the structure of the electricity supply control part 14 is demonstrated concretely.
  • the energization control unit 14 includes a diode 15, a third capacitor 16, a triangular wave generation circuit 17, a battery charge control unit 18, a lighting control unit 19, and a load drive unit 20.
  • the diode 15 is a backflow prevention diode, and has an anode connected to the battery terminal BT and a cathode connected to one end of the third capacitor 16.
  • the third capacitor 16 has one end connected to the load 9 and the other end connected to GND.
  • the third capacitor 16 is a capacitor that smoothes the current output to the load 9 and that continues to drive the second load temporarily when the battery is removed.
  • the triangular wave generation circuit 17 is connected to the first power supply terminal CH.
  • the triangular wave generation circuit 17 acquires the voltage (alternating voltage) VAC of the alternating current W ⁇ b> 1 output from one end a of the coil L in the generator 2. Then, the triangular wave generation circuit 17 generates a triangular wave Vw1 and a triangular wave Vw2 corresponding to each cycle of the AC voltage VAC.
  • the triangular wave Vw1 is a voltage signal corresponding to the positive half cycle of the AC voltage VAC. Specifically, the triangular wave Vw1 rises gently at the timing of the zero point when the AC voltage VAC switches from a negative voltage to a positive voltage.
  • the triangular wave Vw1 is a so-called sawtooth waveform voltage signal in which the voltage peaks and falls sharply at the zero point when the AC voltage VAC switches from a positive voltage to a negative voltage.
  • the triangular wave Vw1 is a signal of 0V. The peak voltages are all the same value.
  • the triangular wave Vw2 is a voltage signal corresponding to the negative half cycle of the AC voltage VAC. Specifically, the triangular wave Vw2 rises gently at the timing of the zero point when the AC voltage VAC switches from a positive voltage to a negative voltage.
  • the triangular wave Vw2 is a so-called sawtooth waveform voltage signal in which the voltage peaks and falls sharply at the zero point when the AC voltage VAC switches from a negative voltage to a positive voltage.
  • the triangular wave Vw2 is a signal of 0V.
  • the triangular wave Vw1 and the triangular wave Vw2 are signals that are out of phase with each other by a half cycle of the AC voltage VAC.
  • the peak voltages are all the same value.
  • the triangular wave generation circuit 17 outputs the generated triangular wave Vw1 to the battery charge control unit 18. Further, the triangular wave generation circuit 17 outputs the generated triangular wave Vw2 to the lighting control unit 19 and the load driving unit 20.
  • the battery charge control unit 18 detects the voltage (hereinafter referred to as “battery voltage”) VBT of the battery terminal BT. For example, the battery charge control unit 18 is connected to one end of the third capacitor 16 and acquires the voltage at the one end to acquire the battery voltage VBT. Then, the battery charge control unit 18 compares the battery voltage VBT with a preset target voltage Vth1, and generates a differential voltage ⁇ V1 (battery voltage VBT ⁇ target voltage Vth1). The battery charge control unit 18 compares the generated differential voltage ⁇ V1 with the triangular wave Vw1, generates a first control signal based on the comparison result, and outputs the first control signal to the gate of the first thyristor 10.
  • the battery charge control unit 18 compares the differential voltage ⁇ V1 with the triangular wave Vw1, generates a first control signal that becomes H level during a period in which the triangular wave Vw1 exceeds the differential voltage ⁇ V1, and generates the first thyristor. Output to 10 gates.
  • the lighting control unit 19 detects a voltage at one end of the second capacitor 12 (hereinafter referred to as “LED voltage”) VL.
  • the lighting control unit 19 compares the LED voltage VL with a preset target voltage Vth2, and generates a differential voltage ⁇ V2 (LED voltage VL ⁇ target voltage Vth2).
  • the lighting control unit 19 compares the generated differential voltage ⁇ V2 with the triangular wave Vw2, generates a second control signal based on the comparison result, and outputs the second control signal to the gate of the second thyristor 11.
  • the lighting control unit 19 compares the differential voltage ⁇ V2 with the triangular wave Vw2, generates a second control signal that becomes H level in a period in which the triangular wave Vw2 exceeds the differential voltage ⁇ V2, and generates the second thyristor 11. Output to the gate.
  • the load driving unit 20 detects a voltage (hereinafter referred to as “load voltage”) VR at one end of the first capacitor 7.
  • the load driving unit 20 compares the load voltage VR with a preset target voltage Vth3, and generates a differential voltage ⁇ V3 (load voltage VR ⁇ target voltage Vth3).
  • the load driving unit 20 compares the generated differential voltage ⁇ V3 with the triangular wave Vw2, generates a third control signal based on the comparison result, and outputs the third control signal to the gate of the third thyristor 13.
  • the load driving unit 20 compares the differential voltage ⁇ V3 with the triangular wave Vw2, generates a third control signal that becomes H level in a period in which the triangular wave Vw2 exceeds the differential voltage ⁇ V3, and generates the third thyristor 13. Output to the gate.
  • FIG. 2 is a timing chart of the vehicle lamp driving device 3 according to the embodiment.
  • the differential voltage ⁇ V2 is set to a value lower than the differential voltage ⁇ V3. Therefore, the third control signal is generated later than the second control signal. That is, the rising edge of the third control signal is delayed by a predetermined time from the rising edge of the second control signal.
  • the predetermined time is, for example, the time until a constant current is charged in the second capacitor 12. This constant current corresponds to, for example, a fully charged current of the second capacitor 12. Therefore, the timing at which the third thyristor 13 is turned on (second timing) is later than the timing at which the second thyristor 11 is turned on (first timing).
  • an alternating current W1 is supplied from one end a of the coil L to the vehicle lamp driving device 3, and the vehicle lamp driving device 3 from the intermediate tap c of the coil L. Is supplied with an alternating current W2.
  • the energization control unit 14 outputs a first control signal to the gate of the first thyristor 10 during a period in which the alternating current W1 is a positive-side (positive-phase) current.
  • the first thyristor 10 is turned on, and the positive current of the alternating current W1 is supplied to the battery 4 and the load 9 that are the third load 30.
  • the energization control unit 14 supplies a positive current to the third load 30 via a current path connected to one end a of the coil L.
  • This current path is the “third supply path” of the present invention. That is, the third supply path is connected to one end a of the coil L, and the positive current output from the coil L is supplied to the third load 30 different from the first load and the second load 9. Current path.
  • the energization control unit 14 outputs the third control signal to the second control signal after outputting the second control signal to the gate of the second thyristor 11 during the period in which the alternating current W1 is a negative (negative phase) current. 3 is output to the gate of the thyristor 13. That is, when the alternating current W1 (alternating current W2) shifts to the negative side, the lighting control unit 19 first turns on the second thyristor 11. The timing at which the second thyristor 11 is turned on corresponds to the first timing.
  • the negative side current of the alternating current W2 from the intermediate tap c is supplied to the first supply path via the resistor 8, the LED lamp device 5, the second capacitor 12, the second thyristor 11, and the intermediate tap c. 1 is supplied at the timing of 1. That is, the negative current of the alternating current W2 is supplied from the intermediate tap c to the first supply path, whereby the negative current is supplied to the LED lamp device 5 and the second capacitor 12.
  • the lighting control unit 19 supplies the negative current output from the intermediate tap c of the coil L to the first load by energizing the first supply path at the first timing. Therefore, the LED lamp device 5 is turned on and the second capacitor 12 is charged.
  • the first supply path is a current path that is connected to the intermediate tap c and through which the negative current output from the coil L is supplied to the first load including at least the LED lamp device 5.
  • the load driving unit 20 determines that a predetermined time elapses after the second thyristor 11 is turned on (for example, the second capacitor 12 is fully charged) in a period in which the AC current W1 is a negative (negative phase) current.
  • a third control signal is output to the gate of the third thyristor 13 to turn it on.
  • the timing at which the third thyristor 13 is turned on corresponds to the second timing.
  • the negative current of the alternating current W1 from one end “a” becomes the second load 6, the first capacitor 7, the third thyristor 13, the resistor 8, the LED lamp device 5, the second capacitor 12, and the second capacitor.
  • the load driving unit 20 supplies the negative current output from the one end a of the coil L to the second load 6 and the first capacitor 7 at the second timing different from the first timing.
  • the second supply path is a current path that is connected to one end a of the coil L and that supplies a negative current output from the coil L to a second load 6 different from the first load.
  • the second thyristor 11 and the third thyristor 13 are turned off simultaneously. Therefore, both the supply of the negative current from the one end a and the intermediate tap c in the coil L are stopped. Therefore, during the period in which the alternating current W1 is on the positive side, the LED lamp device 5 is kept lit by the current discharged from the second capacitor 12. Further, the second load 6 can be driven by the current discharged from the first capacitor 7.
  • the control method broadly includes a lighting control step and a load driving step.
  • the lighting control step is a step of supplying the negative current output from the intermediate tap c of the coil L to the first supply path in which the LED lamp device 5 is provided at the first timing.
  • the lighting control unit 19 in the lighting control step, the lighting control unit 19 generates a differential voltage ⁇ V2 between the LED voltage VL and a preset target voltage Vth2 (first threshold) (step S101), and the generated difference The voltage ⁇ V2 is compared with the triangular wave Vw2 (step S102). And the lighting control part 19 controls the 2nd thyristor 11 to an ON state by making the timing when the triangular wave Vw2 exceeded difference voltage (DELTA) V2 into 1st timing (step S103). As described above, in the lighting control step, the lighting control unit 19 uses a differential voltage that is a differential value between the LED voltage VL that is the voltage of the second capacitor 12 connected in parallel to the first supply path and the target voltage Vth2.
  • the lighting control unit 19 controls the second thyristor 11 to be in an on state at the determined first timing.
  • the load driving step is a step of supplying a negative current output from one end a of the coil L to a second supply path that is different from the first supply path at a second timing that is later than the first timing. .
  • the load driving unit 20 in the load driving step, the load driving unit 20 generates a differential voltage ⁇ V3 between the load voltage VR and a preset target voltage Vth3 (second threshold) (step S104), and the generated differential voltage. ⁇ V3 and triangular wave Vw2 are compared (step S105). Then, the load driving unit 20 controls the third thyristor 13 to be in the ON state with the timing at which the triangular wave Vw2 exceeds the differential voltage ⁇ V3 as the second timing (step S106).
  • each of the target voltage Vth2 and the target voltage Vth3 is set such that the differential voltage ⁇ V3 is larger than the differential voltage ⁇ V2.
  • the load driving unit 20 uses the differential voltage that is the difference value between the load voltage VR that is the voltage of the first capacitor 7 connected in parallel to the second supply path and the target voltage Vth3. ⁇ V3 is calculated, and the second timing is determined based on the comparison result between the calculated differential voltage ⁇ V3 and the voltage value of the predetermined triangular wave Vw2. And this load drive part 20 controls the 3rd thyristor 13 to an ON state at this determined 2nd timing.
  • the second load 6 is driven by the load current of the alternating current W1 output from the one end a of the coil L, and the alternating current W2 output from the intermediate tap c of the coil L.
  • the LED lamp device 5 is driven with a load current of.
  • the output voltage output from the one end a of the coil L that is, the AC voltage VAC is not restricted by the drive voltage of the LED lamp device 5. Therefore, a part of the load (battery load) that the battery can bear conventionally can be driven by the negative current as the second load 6.
  • the battery load it is possible to eliminate the imbalance between the consumption of the positive current output from the generator 2 and the consumption of the negative current, which contributes to the miniaturization of the generator 2.
  • the negative current output from one end a of the coil L is supplied after the negative current output from the intermediate tap c of the coil L is supplied to the LED lamp device 5.
  • the second load 6 is supplied.
  • the drive voltage of the LED lamp device 5 is higher than the drive voltage of the second load 6.
  • the second load 6 is driven by the load current of the alternating current W1 output from the one end a of the coil L
  • the voltage output from the one end a of the coil L becomes equal to or lower than the drive voltage of the second load 6. You will be bound. For this reason, the voltage output from the intermediate tap c of the coil L becomes a voltage lower than the drive voltage of the second load 6 and naturally the LED lamp device 5 cannot be driven.
  • the energization control unit 14 has sufficient current if the third thyristor 13 is turned on before the second thyristor 11 is turned on. Is not supplied to the LED lamp device 5, and the LED lamp device 5 is turned off.
  • the energization control unit 14 first turns on the second thyristor 11 and outputs the negative side current output from the intermediate tap c of the coil L. Supply to LED lamp. Then, the energization control unit 14 turns on the third thyristor 13 from the one end a of the coil L to the second load 6 after the predetermined time has elapsed, for example, after the charging of the second capacitor 12 is completed. Supply negative current. As a result, the LED lamp device 5 is driven by the current stored in the second capacitor 12 and therefore does not turn off.
  • the case where the drive voltage of the LED lamp device 5 is higher than the drive voltage of the second load 6 is, for example, a case where the vehicle lamp drive device 3 is switched from a low beam to a high beam. Therefore, the energization control unit 14 outputs the negative current output from the intermediate tap c of the coil L to the LED lamp device 5 only when the LED lamp device 5 is a high beam, and then is output from one end a of the coil L.
  • the negative current may be controlled to be supplied to the second load 6.
  • the vehicular lamp driving device 3 has a vehicular LED lamp (LED lamp) by an alternating current output from the coil L of the generator 2 that generates electric power by rotating the engine.
  • the device 5) is lit.
  • the lamp drive device 3 for vehicles supplies the negative side current from the intermediate tap c of the coil L to the 1st load via the 1st supply path among the alternating currents.
  • the vehicle lamp drive device 3 supplies the negative current output from the one end a of the coil L to the second load 6 via the second supply path.
  • the second supply path is a supply path different from the first supply path.
  • the battery load can be driven with a negative current.
  • the lighting control unit 19 of the vehicle lamp drive device 3 energizes the first supply path at the first timing, and supplies the negative current output from the intermediate tap c to the first load.
  • the load driving unit 20 energizes the second supply path at a second timing different from the first timing, and converts the negative current output from the one end a to the second load 6 (for example, a battery load). ).
  • the LED lamp device 5 has a driving voltage higher than the driving voltage of the second load 6 (for example, a high beam) or low (for example, a low beam). Both the device 5 and the second load 6 can be driven with a negative current.
  • the battery load can be driven with a negative current while the LED headlight is driven with a negative current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

This vehicular lamp drive device drives a vehicular LED lamp by controlling the flow of alternating current output from the coil of a power-generator, which generates power via the rotation of an engine. This vehicular lamp drive device comprises: a first supply path connected at a mid-section of the coil, whereby a negative-side current output from the coil is supplied to a first load including at least the LED lamp; a second supply path connected at one end of the coil, whereby the negative-side current output from the coil is supplied to a second load that is different from the first load; and a third supply path connected at the one end of the coil, whereby a positive-side current output from the coil is supplied to a third load that is different from the first and second loads. In addition, this vehicular lamp drive device is equipped with a lighting control unit controlling the timing of the flow of electricity in the first supply path, and a load drive unit controlling the timing of the flow of electricity in the second supply path.

Description

車両用ランプ駆動装置及びその制御方法VEHICLE LAMP DRIVE DEVICE AND ITS CONTROL METHOD
 本発明は、車両用ランプ駆動装置及びその制御方法に関する。
 本願は、2018年3月29日に、日本に出願された特願2018-065191号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a vehicle lamp driving device and a control method thereof.
This application claims priority on March 29, 2018 based on Japanese Patent Application No. 2018-066511, filed in Japan, the contents of which are incorporated herein by reference.
 下記特許文献1には、二輪車において、エンジンに連動して回転する発電機により出力される交流電流を用いてバッテリを充電すると共に、ヘッドランプを点灯させる車両用ランプ駆動装置が開示されている。具体的には、車両用ランプ駆動装置は、発電機により出力される交流電流のうち、正側の電流(以下、「正側電流」という。)でバッテリを充電し、負側の電流(以下、「負側電流」という。)でヘッドランプを点灯させる。 Patent Document 1 below discloses a vehicular lamp driving device that charges a battery using an alternating current output from a generator that rotates in conjunction with an engine in a motorcycle and lights a headlamp. Specifically, the vehicular lamp driving device charges the battery with a positive current (hereinafter referred to as “positive current”) out of the alternating current output by the generator, and the negative current (hereinafter referred to as “current”). , "Negative current").
 このヘッドランプとしては主にバルブランプが使用されているが、バルブランプは消費電力が大きいという問題がある。そこで、現在では、バルブランプよりも消費電力が低いLED(light emitting diode:発光ダイオード)をヘッドライトに使用することが提案されている。 The bulb lamp is mainly used as the headlamp, but the bulb lamp has a problem of high power consumption. Therefore, at present, it has been proposed to use an LED (light emitting diode) having lower power consumption than the bulb lamp for the headlight.
 ただし、ヘッドランプとしてLEDを使用することで負側電流の消費は削減されたとしても、正側電流の消費は削減されない。そのため、正側電流と負側電流とで同一の交流電流を出力するという発電機の特性上、正側電流及び負側電流の双方で消費を削減できなければ発電機の出力を低減することができず、そのことが発電機の小型化を図る妨げになっている。 However, even if the consumption of the negative current is reduced by using the LED as the headlamp, the consumption of the positive current is not reduced. Therefore, due to the characteristics of the generator that outputs the same alternating current for the positive side current and the negative side current, if the consumption cannot be reduced by both the positive side current and the negative side current, the output of the generator can be reduced. This cannot be done, and this has hindered the miniaturization of the generator.
日本国特許第4263507号公報Japanese Patent No. 4263507
 そこで、発明者らは、ヘッドランプとしてLEDを使用するとともに、二輪車に用いられる電装品のうち、正側電流で駆動している電装品、すなわちバッテリが負担している負荷(バッテリ負荷)の一部を、負側電流で駆動させることで、正側電流及び負側電流の双方の電流を削減するという着想を得た。 Therefore, the inventors use an LED as a headlamp, and among the electrical components used in a motorcycle, one of the electrical components driven by a positive current, that is, one of the loads (battery load) borne by the battery. The idea of reducing both the positive and negative currents by driving the part with a negative current was obtained.
 ところで、LEDは電流により明るさが決まる定電圧素子であるため、電流制御による点灯が基本である。LEDを直列に接続したヘッドライトの場合、所謂ハイビームとロービームでは、LEDの直列数が異なるため、この切り替えにより、ヘッドライトの電圧に変化が生じる。 By the way, since the LED is a constant voltage element whose brightness is determined by current, lighting is basically performed by current control. In the case of a headlight in which LEDs are connected in series, the so-called high beam and low beam have different numbers of LEDs in series, and this switching causes a change in the voltage of the headlight.
 LEDの特性(定電圧素子の特性)上、LEDに電力を供給している間は、発電機の出力電圧は、このヘッドライトの電圧に拘束される。一方、バッテリ負荷は定電流素子であるため電圧制御が必要となる。そのため、LEDヘッドライトを負側電流で駆動する場合、発電機の負側出力電圧は、ヘッドライトの状態により変化かつ拘束されてしまい、単純にバッテリ負荷を負側出力で駆動させることが出来ない場合がある。 Due to the characteristics of the LED (characteristic of the constant voltage element), while supplying power to the LED, the output voltage of the generator is restricted by the voltage of the headlight. On the other hand, since the battery load is a constant current element, voltage control is required. Therefore, when the LED headlight is driven with a negative current, the negative output voltage of the generator is changed and restrained depending on the state of the headlight, and the battery load cannot be simply driven with the negative output. There is a case.
 本発明は、このような事情に鑑みてなされたもので、その目的は、LEDヘッドライトを負側電流で駆動しつつ、バッテリ負荷をも負側電流で駆動することである。 The present invention has been made in view of such circumstances, and an object thereof is to drive a battery load with a negative current while driving the LED headlight with a negative current.
 本発明の一態様は、エンジンの回転により発電する発電機のコイルから出力される交流電流の通電を制御して車両用のLEDランプを駆動する車両用ランプ駆動装置であって、前記コイルの中間部に接続され、前記コイルから出力される負側の電流が少なくとも前記LEDランプを含む第1の負荷に供給される第1の供給経路と、前記コイルの一端に接続され、前記コイルから出力される負側の電流が前記第1の負荷とは異なる第2の負荷に供給される第2の供給経路と、前記コイルの一端に接続され、前記コイルから出力される正側の電流が前記第1および第2の負荷とは異なる第3の負荷に供給される第3の供給経路と、を有し、前記第1の供給経路の通電タイミングを制御する点灯制御部と、前記第2の供給経路の通電するタイミングを制御する負荷駆動部と、を備える車両用ランプ駆動装置である。 One aspect of the present invention is a vehicle lamp driving device that drives an LED lamp for a vehicle by controlling energization of an alternating current output from a coil of a generator that generates electric power by rotation of an engine, and includes an intermediate between the coils. A first supply path through which a negative current output from the coil is supplied to a first load including at least the LED lamp, and is connected to one end of the coil and output from the coil. A negative supply current is supplied to a second load different from the first load, and a positive current output from the coil is connected to one end of the coil. A third supply path that is supplied to a third load different from the first and second loads, and a lighting control unit that controls energization timing of the first supply path; and the second supply Taimin energizes the route A load drive unit for controlling a vehicle lamp driving apparatus comprising a.
 本発明の一態様は、上述した車両用ランプ駆動装置であって、前記点灯制御部は、第1のタイミングで前記第1の供給経路に通電して前記コイルの中間部から出力される負側の電流を前記第1の負荷に供給し、前記負荷駆動部は、前記第1のタイミングとは異なる第2のタイミングで前記第2の供給経路に通電して前記コイルの一端から出力される負側の電流を前記第2の負荷に供給する。 One aspect of the present invention is the above-described lamp drive device for a vehicle, wherein the lighting control unit energizes the first supply path at a first timing and is output from an intermediate portion of the coil. Current is supplied to the first load, and the load driving unit supplies current to the second supply path at a second timing different from the first timing and is output from one end of the coil. Side current is supplied to the second load.
 本発明の一態様は、上述した車両用ランプ駆動装置であって、前記第2のタイミングは、前記第1のタイミングよりも遅いタイミングである。 One aspect of the present invention is the above-described vehicle lamp driving device, wherein the second timing is a timing later than the first timing.
 本発明の一態様は、上述した車両用ランプ駆動装置であって、 前記LEDランプは、直列接続された第1のLEDランプ及び第2のLEDランプを備え、前記第2のタイミングは、前記第1のLEDランプ及び前記第2のLEDランプが点灯している状態において、前記第1のタイミングよりも遅いタイミングである。 One aspect of the present invention is the above-described vehicle lamp driving device, wherein the LED lamp includes a first LED lamp and a second LED lamp connected in series, and the second timing is determined by the first timing. In a state where one LED lamp and the second LED lamp are lit, the timing is later than the first timing.
 本発明の一態様は、エンジンの回転により発電する発電機のコイルから、車両用のLEDランプと前記LEDランプとは異なる負荷とに対する電流供給を制御する制御方法であって、前記コイルから出力される交流電流のうち、前記コイルの中間部から出力される負側の電流を少なくとも前記LEDランプを含む第1の供給経路負荷に第1のタイミングで供給する点灯制御ステップと、前記交流電流のうち、前記コイルの一端から出力される負側の電流を前記第1の負荷とは異なる第2の負荷に前記第1のタイミングよりも遅い第2のタイミングで供給する負荷駆動ステップと、を含み、前記点灯制御ステップは、前記LEDランプに設けられている第1の供給経路に並列に接続されたコンデンサの電圧と所定の第1の閾値との差分値を算出し、当該算出した前記差分値と所定の三角波の電圧値との比較結果に基づいて前記第1のタイミングを決定し、前記負荷駆動ステップは、前記第1の供給経路とは異なる第2の供給経路に並列に接続されたコンデンサの電圧と第2の閾値との差分値を算出し、当該算出した差分値と前記三角波の電圧値との比較結果に基づいて前記第2のタイミングを決定する、ことを特徴とする制御方法である。 One aspect of the present invention is a control method for controlling current supply to a vehicle LED lamp and a load different from the LED lamp from a coil of a generator that generates electricity by rotating an engine, and is output from the coil. Among the alternating currents, a lighting control step of supplying a negative current output from the intermediate portion of the coil to the first supply path load including at least the LED lamp at a first timing; A load driving step of supplying a negative current output from one end of the coil to a second load different from the first load at a second timing slower than the first timing, The lighting control step calculates a difference value between a voltage of a capacitor connected in parallel to a first supply path provided in the LED lamp and a predetermined first threshold value. Then, the first timing is determined based on a comparison result between the calculated difference value and a voltage value of a predetermined triangular wave, and the load driving step is a second supply different from the first supply path. Calculating a difference value between the voltage of the capacitor connected in parallel to the path and the second threshold value, and determining the second timing based on a comparison result between the calculated difference value and the voltage value of the triangular wave; This is a control method characterized by this.
 以上説明したように、本発明によれば、LEDヘッドライトを負側電流で駆動しつつ、バッテリ負荷をも負側電流で駆動することができる。 As described above, according to the present invention, it is possible to drive the battery load with the negative current while driving the LED headlight with the negative current.
本発明の一実施形態に係る車両用ランプ駆動装置3を備えた車両用ランプ点灯システム1の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of a vehicular lamp lighting system 1 including a vehicular lamp driving device 3 according to an embodiment of the present invention. 本発明の一実施形態に係る車両用ランプ駆動装置3のタイミングチャートである。It is a timing chart of the lamp drive device 3 for vehicles which concerns on one Embodiment of this invention. 本発明の一実施形態に係るコイルLから、LEDランプ装置5とLEDランプ装置5とは異なる第2の負荷6とに対する電力供給を制御する制御方法を示す図である。It is a figure which shows the control method which controls the electric power supply with respect to the 2nd load 6 different from the LED lamp apparatus 5 and the LED lamp apparatus 5 from the coil L which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態に係る車両用ランプ駆動装置を、図面を用いて説明する。 Hereinafter, a vehicle lamp driving device according to an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る車両用ランプ駆動装置3を備えた車両用ランプ点灯システム1の概略構成の一例を示す図である。
 図1に示すように、車両用ランプ点灯システム1は、発電機(ACG:Alternating Current Generator)2、車両用ランプ駆動装置3、第1の負荷であるLEDランプ装置5、第2の負荷6、抵抗8、及び第3の負荷30を備える。この第3の負荷30は、バッテリ4及び負荷9を備える。なお、LEDランプ装置5は、本発明の「LEDランプ」の一例である。ここで、本実施形態では、第1の負荷は、LEDランプ装置5である場合について説明するが、本発明はこれに限定されない。すなわち、本発明の第1の負荷は、第2の負荷6及び第3の負荷30とは異なる負荷であって、少なくともLEDランプ装置5を含んでいればよい。
FIG. 1 is a diagram illustrating an example of a schematic configuration of a vehicular lamp lighting system 1 including a vehicular lamp driving device 3 according to an embodiment of the present invention.
As shown in FIG. 1, a vehicular lamp lighting system 1 includes a generator (ACG: Alternate Current Generator) 2, a vehicular lamp driving device 3, a first load LED lamp device 5, a second load 6, A resistor 8 and a third load 30 are provided. The third load 30 includes a battery 4 and a load 9. The LED lamp device 5 is an example of the “LED lamp” in the present invention. Here, although this embodiment demonstrates the case where the 1st load is the LED lamp apparatus 5, this invention is not limited to this. That is, the first load of the present invention is a load different from the second load 6 and the third load 30, and only needs to include at least the LED lamp device 5.
 発電機2は、交流発電機であり、車両等のエンジンの回転により交流電流を発電する。
 より具体的には、発電機2は、中間タップ(中間部)cを備えたコイルLを有する。そして、発電機2は、エンジンの回転によりコイルLの一端aから交流電流W1を出力し、中間タップcから交流電流W1と同位相の交流電流W2を出力する。なお、コイルLの一端a及び中間タップcは、それぞれ車両用ランプ駆動装置3に接続されている。また、コイルLの他端bは、GNDに接続されている。
The generator 2 is an AC generator, and generates an AC current by rotation of an engine such as a vehicle.
More specifically, the generator 2 has a coil L provided with an intermediate tap (intermediate portion) c. The generator 2 outputs an alternating current W1 from one end a of the coil L as the engine rotates, and outputs an alternating current W2 having the same phase as the alternating current W1 from the intermediate tap c. The one end a and the intermediate tap c of the coil L are each connected to the vehicle lamp drive device 3. The other end b of the coil L is connected to GND.
 車両用ランプ駆動装置3は、エンジン(不図示)の回転により発電する発電機2の交流電流のうち、正側の電流(以下、「正側電流」という。)によりバッテリ4を充電する。また、車両用ランプ駆動装置3は、上記交流電流のうち、負側の電流(以下、「負側電流」という。)で車両用のLEDランプ装置5を点灯させる。このように、車両用ランプ駆動装置3は、上記エンジンの回転により発電する発電機2のコイルから出力される交流電流の通電を制御してLEDランプ装置5を駆動する。
 さらに、車両用ランプ駆動装置3は、この負側電流を用いて、第2の負荷6を駆動する。
The vehicle lamp driving device 3 charges the battery 4 with a positive-side current (hereinafter referred to as “positive-side current”) among the alternating current of the generator 2 that generates electricity by rotation of an engine (not shown). Further, the vehicle lamp drive device 3 lights the vehicle LED lamp device 5 with a negative current (hereinafter referred to as “negative current”) of the AC current. Thus, the vehicle lamp driving device 3 drives the LED lamp device 5 by controlling the energization of the alternating current output from the coil of the generator 2 that generates electric power by the rotation of the engine.
Further, the vehicular lamp driving device 3 drives the second load 6 using this negative current.
 この車両用ランプ駆動装置3は、第1の電源端子CHが発電機2におけるコイルLの一端aに接続されており、第2の電源端子CLがコイルLの中間部cに接続されている。 In the vehicle lamp driving device 3, the first power supply terminal CH is connected to one end a of the coil L in the generator 2, and the second power supply terminal CL is connected to the intermediate portion c of the coil L.
 車両用ランプ駆動装置3は、バッテリ端子BTがバッテリ4に接続されており、ランプ端子LAがLEDランプ装置5に接続されている。 The vehicle lamp drive device 3 has a battery terminal BT connected to the battery 4 and a lamp terminal LA connected to the LED lamp device 5.
 バッテリ4は、二輪車等の車両に搭載されている。バッテリ4は、ニッケル水素電池やリチウムイオン電池といった二次電池を用いることができる。また、バッテリ4は、二次電池の代わりに、電気二重層キャパシタ(コンデンサ)を用いることもできる。 The battery 4 is mounted on a vehicle such as a motorcycle. The battery 4 can be a secondary battery such as a nickel metal hydride battery or a lithium ion battery. The battery 4 can also use an electric double layer capacitor (capacitor) instead of the secondary battery.
 LEDランプ装置5は、LED(light emitting diode:発光ダイオード)を光源とした車両のヘッドランプである。
 LEDランプ装置5は、第1のLEDランプ51、第2のLEDランプ52、及びスイッチ53を備える。
The LED lamp device 5 is a vehicle headlamp using an LED (light emitting diode) as a light source.
The LED lamp device 5 includes a first LED lamp 51, a second LED lamp 52, and a switch 53.
 第1のLEDランプ51は、カソードがランプ端子LAに接続され、アノード側が第2のLEDランプ52のカソードに接続されている。
 第2のLEDランプ52のアノードは、制限抵抗である抵抗8を介してGNDに接続されている。このように、第1のLEDランプ51及び第2のLEDランプ52は、ランプ端子LAとGNDとの間において、互いに直列に接続されている。
The first LED lamp 51 has a cathode connected to the lamp terminal LA, and an anode connected to the cathode of the second LED lamp 52.
The anode of the second LED lamp 52 is connected to GND via a resistor 8 which is a limiting resistor. Thus, the first LED lamp 51 and the second LED lamp 52 are connected in series between the lamp terminal LA and GND.
 スイッチ53は、第2のLEDランプ52に対して並列に接続されている。このスイッチ53は、LEDランプ装置5をハイビーム又はロービームに切り換えるスイッチであり、使用者(例えば、運転者)に操作される。具体的には、使用者がスイッチ53をオン状態に制御することにより第2のLEDランプ52のカソードとアノードとの間が短絡される。これにより、第1のLEDランプ51のみが点灯することになり、所謂ロービームとなる。一方、使用者がスイッチ53をオフ状態に制御することにより第1のLEDランプ51及び第2のLEDランプ52が点灯することになり、所謂ハイビームとなる。 The switch 53 is connected in parallel to the second LED lamp 52. The switch 53 is a switch for switching the LED lamp device 5 to a high beam or a low beam, and is operated by a user (for example, a driver). Specifically, when the user controls the switch 53 to be in an ON state, the cathode and the anode of the second LED lamp 52 are short-circuited. As a result, only the first LED lamp 51 is turned on, resulting in a so-called low beam. On the other hand, when the user controls the switch 53 in the OFF state, the first LED lamp 51 and the second LED lamp 52 are turned on, which is a so-called high beam.
 第2の負荷6は、車両用ランプ駆動装置3の負荷端子RAに接続されている。この第2の負荷6は、コイルLの一端aから出力される負側電流により駆動される負荷である。この第2の負荷6は、従来において、バッテリが負担していた負荷(バッテリ負荷)の一部である。このバッテリ負荷とは、LEDランプ装置5以外の車両の電装品であって、例えば、ストップランプや、ヒータ等の負荷である。 The second load 6 is connected to the load terminal RA of the vehicle lamp driving device 3. The second load 6 is a load driven by a negative-side current output from one end a of the coil L. The second load 6 is a part of the load (battery load) conventionally borne by the battery. The battery load is an electrical component of the vehicle other than the LED lamp device 5 and is, for example, a load such as a stop lamp or a heater.
 負荷9は、車両用ランプ駆動装置3に接続されている。この負荷9は、コイルLの一端aから出力される正側電流により駆動される負荷である。負荷9は、例えば、バッテリ駆動の電装品である。 The load 9 is connected to the vehicle lamp driving device 3. The load 9 is a load driven by a positive current output from one end a of the coil L. The load 9 is, for example, a battery-driven electrical component.
 次に、本発明の一実施形態に係る車両用ランプ駆動装置3の構成について、具体的に説明する。 Next, the configuration of the vehicle lamp driving device 3 according to an embodiment of the present invention will be specifically described.
 車両用ランプ駆動装置3は、第1のコンデンサ7、第1のサイリスタ10、第2のサイリスタ11、第2のコンデンサ12、第3のサイリスタ13、及び通電制御部14を備える。 The vehicle lamp driving device 3 includes a first capacitor 7, a first thyristor 10, a second thyristor 11, a second capacitor 12, a third thyristor 13, and an energization control unit 14.
 第1のコンデンサ7は、第2の負荷6に並列に接続されている。この第1のコンデンサ7は、コイルLの一端aから出力される負側電流を蓄電し、第2の負荷6を安定に駆動させるためのものである。 The first capacitor 7 is connected in parallel to the second load 6. The first capacitor 7 stores a negative current output from one end a of the coil L, and drives the second load 6 stably.
 第1のサイリスタ10は、第1の電源端子CHとバッテリ端子BTとの間の電源ラインに接続されており、通電制御部14から出力された第1の制御信号に基づいて、オン状態又はオフ状態となる。具体的には、第1のサイリスタ10は、アノードが第1の電源端子CHに接続されており、カソードがバッテリ端子BTに接続されている。また、第1のサイリスタ10のゲートは、通電制御部14に接続されている。 The first thyristor 10 is connected to a power supply line between the first power supply terminal CH and the battery terminal BT, and is turned on or off based on the first control signal output from the energization control unit 14. It becomes a state. Specifically, the first thyristor 10 has an anode connected to the first power supply terminal CH and a cathode connected to the battery terminal BT. The gate of the first thyristor 10 is connected to the energization control unit 14.
 第1のサイリスタ10は、ゲートに通電制御部14からの第1の制御信号が入力すると、アノードとカソードとの間がオン状態となる。そのため、第1のサイリスタ10は、第1の電源端子CHに入力した交流電流W1を半波整流し、正側電流のみを出力する。 The first thyristor 10 is turned on between the anode and the cathode when the first control signal from the energization control unit 14 is input to the gate. Therefore, the first thyristor 10 half-wave rectifies the alternating current W1 input to the first power supply terminal CH, and outputs only the positive current.
 第2のサイリスタ11は、第2の電源端子CLとランプ端子LAとの間に接続されており、通電制御部14から出力された第2の制御信号に基づいて、オン状態又はオフ状態となる。具体的には、第2のサイリスタ11は、アノードがランプ端子LAに接続されており、カソードが第2の電源端子CLを介してコイルLの中間タップcに接続されている。
また、第2のサイリスタ11のゲートは、通電制御部14に接続されている。
The second thyristor 11 is connected between the second power supply terminal CL and the lamp terminal LA, and is turned on or off based on the second control signal output from the energization control unit 14. . Specifically, the second thyristor 11 has an anode connected to the lamp terminal LA and a cathode connected to the intermediate tap c of the coil L via the second power supply terminal CL.
The gate of the second thyristor 11 is connected to the energization control unit 14.
 第2のサイリスタ11は、ゲートに通電制御部14からの第2の制御信号が入力すると、アノードとカソードとの間がオン状態となる。そのため、第2のサイリスタ11は、コイルLの中間タップcから出力される交流電流W2を半波整流して、交流電流W2の負側電流のみをLEDランプ装置5に出力する。 The second thyristor 11 is turned on between the anode and the cathode when the second control signal from the energization control unit 14 is input to the gate. Therefore, the second thyristor 11 performs half-wave rectification on the alternating current W2 output from the intermediate tap c of the coil L, and outputs only the negative current of the alternating current W2 to the LED lamp device 5.
 第2のコンデンサ12は、ランプ端子LA及びGNDの間に接続されている。具体的には、第2のコンデンサ12は、一端がLEDランプ装置5のカソード側に接続され、他端がGNDに接続されている。この第2のコンデンサ12は、交流電流W2の負側電流を、LEDランプ装置5を点灯させるための電流として蓄積する。すなわち、第2のコンデンサ12は、交流電流W2が正側である場合には、交流電流W2が負側のときに蓄積した電流を車両用ランプ駆動装置3に供給する。これにより、交流電流W2として正側の電流が中間タップcから供給される期間であっても、LEDランプ装置5を点灯させることができる。 The second capacitor 12 is connected between the lamp terminals LA and GND. Specifically, the second capacitor 12 has one end connected to the cathode side of the LED lamp device 5 and the other end connected to GND. The second capacitor 12 accumulates the negative current of the alternating current W2 as a current for lighting the LED lamp device 5. That is, when the alternating current W2 is on the positive side, the second capacitor 12 supplies the accumulated current to the vehicle lamp driving device 3 when the alternating current W2 is on the negative side. As a result, the LED lamp device 5 can be turned on even during a period in which the positive current is supplied from the intermediate tap c as the alternating current W2.
 第3のサイリスタ13は、第1の電源端子CHと負荷端子RAとの間に接続されており、通電制御部14から出力された第3の制御信号に基づいて、オン状態又はオフ状態となる。具体的には、第3のサイリスタ13は、アノードが負荷端子RAに接続されており、カソードが第1の電源端子CHを介してコイルの一端aに接続されている。また、第3のサイリスタ13のゲートは、通電制御部14に接続されている。 The third thyristor 13 is connected between the first power supply terminal CH and the load terminal RA, and is turned on or off based on the third control signal output from the energization control unit 14. . Specifically, the third thyristor 13 has an anode connected to the load terminal RA and a cathode connected to one end a of the coil via the first power supply terminal CH. The gate of the third thyristor 13 is connected to the energization control unit 14.
 第3のサイリスタ13は、ゲートに通電制御部14からの第3の制御信号が入力すると、アノードとカソードとの間がオン状態となる。そのため、第3のサイリスタ13は、コイルLの一端aから出力される交流電流W1を半波整流して、交流電流W1の負側電流のみを第2の負荷6及び第1のコンデンサ7に出力する。 The third thyristor 13 is turned on between the anode and the cathode when the third control signal from the energization control unit 14 is input to the gate. Therefore, the third thyristor 13 performs half-wave rectification on the alternating current W1 output from the one end a of the coil L, and outputs only the negative current of the alternating current W1 to the second load 6 and the first capacitor 7. To do.
 通電制御部14は、交流電流W1の極性を検出し、その検出した極性に応じて、第1のサイリスタ10、第2のサイリスタ11及び第3のサイリスタ13のそれぞれをオン状態又はオフ状態に制御する。以下に、通電制御部14の構成について、具体的に説明する。 The energization control unit 14 detects the polarity of the alternating current W1, and controls each of the first thyristor 10, the second thyristor 11, and the third thyristor 13 to be in an on state or an off state according to the detected polarity. To do. Below, the structure of the electricity supply control part 14 is demonstrated concretely.
 通電制御部14は、ダイオード15、第3のコンデンサ16、三角波発生回路17、バッテリ充電制御部18、点灯制御部19、及び負荷駆動部20を備える。 The energization control unit 14 includes a diode 15, a third capacitor 16, a triangular wave generation circuit 17, a battery charge control unit 18, a lighting control unit 19, and a load drive unit 20.
 ダイオード15は、逆流防止用のダイオードであって、アノードがバッテリ端子BTに接続され、カソードが第3のコンデンサ16の一端に接続されている。 The diode 15 is a backflow prevention diode, and has an anode connected to the battery terminal BT and a cathode connected to one end of the third capacitor 16.
 第3のコンデンサ16は、一端が負荷9に接続され、他端がGNDに接続されている。第3のコンデンサ16は、負荷9に出力される電流を平滑し、また、バッテリが外れた際に一時的に第2の負荷の駆動を継続するコンデンサである。 The third capacitor 16 has one end connected to the load 9 and the other end connected to GND. The third capacitor 16 is a capacitor that smoothes the current output to the load 9 and that continues to drive the second load temporarily when the battery is removed.
 三角波発生回路17は、第1の電源端子CHに接続されている。三角波発生回路17は、発電機2におけるコイルLの一端aから出力された交流電流W1の電圧(交流電圧)VACを取得する。そして、三角波発生回路17は、その交流電圧VACの各周期に対応した三角波Vw1及び三角波Vw2を生成する。 The triangular wave generation circuit 17 is connected to the first power supply terminal CH. The triangular wave generation circuit 17 acquires the voltage (alternating voltage) VAC of the alternating current W <b> 1 output from one end a of the coil L in the generator 2. Then, the triangular wave generation circuit 17 generates a triangular wave Vw1 and a triangular wave Vw2 corresponding to each cycle of the AC voltage VAC.
 三角波Vw1は、交流電圧VACの正の半周期に対応した電圧信号である。具体的には、三角波Vw1は、交流電圧VACが負の電圧から正の電圧に切り替わるときのゼロ点のタイミングでゆるやかに立ち上がる。そして、三角波Vw1は、交流電圧VACが正の電圧から負の電圧に切り替わるときのゼロ点で電圧がピークとなり急峻に立ち下がる、所謂鋸波形の電圧信号である。ただし、交流電圧VACが負の半周期である場合には、三角波Vw1は0Vの信号である。なお、上記ピークの電圧は、すべて同一の値である。 The triangular wave Vw1 is a voltage signal corresponding to the positive half cycle of the AC voltage VAC. Specifically, the triangular wave Vw1 rises gently at the timing of the zero point when the AC voltage VAC switches from a negative voltage to a positive voltage. The triangular wave Vw1 is a so-called sawtooth waveform voltage signal in which the voltage peaks and falls sharply at the zero point when the AC voltage VAC switches from a positive voltage to a negative voltage. However, when the AC voltage VAC has a negative half cycle, the triangular wave Vw1 is a signal of 0V. The peak voltages are all the same value.
 三角波Vw2は、交流電圧VACの負の半周期に対応した電圧信号である。具体的には、三角波Vw2は、交流電圧VACが正の電圧から負の電圧に切り替わるときのゼロ点のタイミングでゆるやかに立ち上がる。そして、三角波Vw2は、交流電圧VACが負の電圧から正の電圧に切り替わるときのゼロ点で電圧がピークとなり急峻に立ち下がる、所謂鋸波形の電圧信号である。ただし、交流電圧VACが正の半周期である場合には、三角波Vw2は0Vの信号である。このように、三角波Vw1と三角波Vw2とは、互いに交流電圧VACの半周期分位相がずれている信号となる。なお、上記ピークの電圧は、すべて同一の値である。 The triangular wave Vw2 is a voltage signal corresponding to the negative half cycle of the AC voltage VAC. Specifically, the triangular wave Vw2 rises gently at the timing of the zero point when the AC voltage VAC switches from a positive voltage to a negative voltage. The triangular wave Vw2 is a so-called sawtooth waveform voltage signal in which the voltage peaks and falls sharply at the zero point when the AC voltage VAC switches from a negative voltage to a positive voltage. However, when the AC voltage VAC has a positive half cycle, the triangular wave Vw2 is a signal of 0V. Thus, the triangular wave Vw1 and the triangular wave Vw2 are signals that are out of phase with each other by a half cycle of the AC voltage VAC. The peak voltages are all the same value.
 三角波発生回路17は、生成した三角波Vw1をバッテリ充電制御部18に出力する。
また、三角波発生回路17は、生成した三角波Vw2を点灯制御部19及び負荷駆動部20に出力する。
The triangular wave generation circuit 17 outputs the generated triangular wave Vw1 to the battery charge control unit 18.
Further, the triangular wave generation circuit 17 outputs the generated triangular wave Vw2 to the lighting control unit 19 and the load driving unit 20.
 バッテリ充電制御部18は、バッテリ端子BTの電圧(以下、「バッテリ電圧」という。)VBTを検出する。例えば、バッテリ充電制御部18は、第3のコンデンサ16の一端に接続され、当該一端の電圧を取得することで、バッテリ電圧VBTを取得する。そして、バッテリ充電制御部18は、バッテリ電圧VBTと予め設定された目標電圧Vth1とを比較し、その差分電圧ΔV1(バッテリ電圧VBT-目標電圧Vth1)を生成する。
 バッテリ充電制御部18は、生成した差分電圧ΔV1と三角波Vw1とを比較し、その比較結果に基づいて第1の制御信号を生成して、第1のサイリスタ10のゲートに出力する。具体的には、バッテリ充電制御部18は、差分電圧ΔV1と三角波Vw1とを比較し、三角波Vw1が差分電圧ΔV1を上回る期間においてHレベルとなる第1の制御信号を生成して第1のサイリスタ10のゲートに出力する。
The battery charge control unit 18 detects the voltage (hereinafter referred to as “battery voltage”) VBT of the battery terminal BT. For example, the battery charge control unit 18 is connected to one end of the third capacitor 16 and acquires the voltage at the one end to acquire the battery voltage VBT. Then, the battery charge control unit 18 compares the battery voltage VBT with a preset target voltage Vth1, and generates a differential voltage ΔV1 (battery voltage VBT−target voltage Vth1).
The battery charge control unit 18 compares the generated differential voltage ΔV1 with the triangular wave Vw1, generates a first control signal based on the comparison result, and outputs the first control signal to the gate of the first thyristor 10. Specifically, the battery charge control unit 18 compares the differential voltage ΔV1 with the triangular wave Vw1, generates a first control signal that becomes H level during a period in which the triangular wave Vw1 exceeds the differential voltage ΔV1, and generates the first thyristor. Output to 10 gates.
 点灯制御部19は、第2のコンデンサ12の一端の電圧(以下、「LED電圧」という。)VLを検出する。点灯制御部19は、LED電圧VLと予め設定された目標電圧Vth2とを比較し、その差分電圧ΔV2(LED電圧VL-目標電圧Vth2)を生成する。点灯制御部19は、生成した差分電圧ΔV2と三角波Vw2とを比較し、その比較結果に基づいて第2の制御信号を生成して、第2のサイリスタ11のゲートに出力する。具体的には、点灯制御部19は、差分電圧ΔV2と三角波Vw2とを比較し、三角波Vw2が差分電圧ΔV2を上回る期間においてHレベルとなる第2の制御信号を生成して第2のサイリスタ11のゲートに出力する。 The lighting control unit 19 detects a voltage at one end of the second capacitor 12 (hereinafter referred to as “LED voltage”) VL. The lighting control unit 19 compares the LED voltage VL with a preset target voltage Vth2, and generates a differential voltage ΔV2 (LED voltage VL−target voltage Vth2). The lighting control unit 19 compares the generated differential voltage ΔV2 with the triangular wave Vw2, generates a second control signal based on the comparison result, and outputs the second control signal to the gate of the second thyristor 11. Specifically, the lighting control unit 19 compares the differential voltage ΔV2 with the triangular wave Vw2, generates a second control signal that becomes H level in a period in which the triangular wave Vw2 exceeds the differential voltage ΔV2, and generates the second thyristor 11. Output to the gate.
 負荷駆動部20は、第1のコンデンサ7の一端の電圧(以下、「負荷電圧」という。)VRを検出する。負荷駆動部20は、負荷電圧VRと予め設定された目標電圧Vth3とを比較し、その差分電圧ΔV3(負荷電圧VR-目標電圧Vth3)を生成する。負荷駆動部20は、生成した差分電圧ΔV3と三角波Vw2とを比較し、その比較結果に基づいて第3の制御信号を生成して、第3のサイリスタ13のゲートに出力する。具体的には、負荷駆動部20は、差分電圧ΔV3と三角波Vw2とを比較し、三角波Vw2が差分電圧ΔV3を上回る期間においてHレベルとなる第3の制御信号を生成して第3のサイリスタ13のゲートに出力する。 The load driving unit 20 detects a voltage (hereinafter referred to as “load voltage”) VR at one end of the first capacitor 7. The load driving unit 20 compares the load voltage VR with a preset target voltage Vth3, and generates a differential voltage ΔV3 (load voltage VR−target voltage Vth3). The load driving unit 20 compares the generated differential voltage ΔV3 with the triangular wave Vw2, generates a third control signal based on the comparison result, and outputs the third control signal to the gate of the third thyristor 13. Specifically, the load driving unit 20 compares the differential voltage ΔV3 with the triangular wave Vw2, generates a third control signal that becomes H level in a period in which the triangular wave Vw2 exceeds the differential voltage ΔV3, and generates the third thyristor 13. Output to the gate.
 ここで、図2を用いて第2の制御信号と第3の制御信号とについて説明する。図2は、実施形態に係る車両用ランプ駆動装置3のタイミングチャートである。図2に示すように、差分電圧ΔV2は、差分電圧ΔV3よりも低い値に設定される。したがって、第3の制御信号は、第2の制御信号よりも遅れて生成される。すなわち、第3の制御信号の立ち上がりは、第2の制御信号の立ち上がりよりも所定時間遅れている。この所定時間とは、例えば、第2のコンデンサ12に一定の電流が充電されるまでの時間である。この一定の電流とは、例えば、第2のコンデンサ12の満充電の電流に相当する。したがって、第3のサイリスタ13がオン状態になるタイミング(第2のタイミング)は、第2のサイリスタ11がオン状態となるタイミング(第1のタイミング)よりも遅いタイミングとなる。 Here, the second control signal and the third control signal will be described with reference to FIG. FIG. 2 is a timing chart of the vehicle lamp driving device 3 according to the embodiment. As shown in FIG. 2, the differential voltage ΔV2 is set to a value lower than the differential voltage ΔV3. Therefore, the third control signal is generated later than the second control signal. That is, the rising edge of the third control signal is delayed by a predetermined time from the rising edge of the second control signal. The predetermined time is, for example, the time until a constant current is charged in the second capacitor 12. This constant current corresponds to, for example, a fully charged current of the second capacitor 12. Therefore, the timing at which the third thyristor 13 is turned on (second timing) is later than the timing at which the second thyristor 11 is turned on (first timing).
 次に、本実施形態に係る車両用ランプ駆動装置3の動作について、説明する。 Next, the operation of the vehicle lamp drive device 3 according to the present embodiment will be described.
 二輪車のエンジンが回転することで発電機2が発電すると、コイルLの一端aから交流電流W1が車両用ランプ駆動装置3に供給されるとともに、コイルLの中間タップcから車両用ランプ駆動装置3に交流電流W2が供給される。 When the generator 2 generates power by rotating the engine of the two-wheeled vehicle, an alternating current W1 is supplied from one end a of the coil L to the vehicle lamp driving device 3, and the vehicle lamp driving device 3 from the intermediate tap c of the coil L. Is supplied with an alternating current W2.
 通電制御部14は、交流電流W1が正側(正相)の電流である期間において、第1の制御信号を第1のサイリスタ10のゲートに出力する。これにより、第1のサイリスタ10がオン状態となり、交流電流W1の正側電流が第3の負荷30であるバッテリ4及び負荷9に供給される。例えば、通電制御部14は、コイルLの一端aに接続された電流経路を介して第3の負荷30に正側電流を供給する。この電流経路は、本発明の「第3の供給経路」である。すなわち、第3の供給経路は、コイルLの一端aに接続され、コイルLから出力される正側電流が第1の負荷および第2の負荷9とは異なる第3の負荷30に供給される電流経路である。 The energization control unit 14 outputs a first control signal to the gate of the first thyristor 10 during a period in which the alternating current W1 is a positive-side (positive-phase) current. Thus, the first thyristor 10 is turned on, and the positive current of the alternating current W1 is supplied to the battery 4 and the load 9 that are the third load 30. For example, the energization control unit 14 supplies a positive current to the third load 30 via a current path connected to one end a of the coil L. This current path is the “third supply path” of the present invention. That is, the third supply path is connected to one end a of the coil L, and the positive current output from the coil L is supplied to the third load 30 different from the first load and the second load 9. Current path.
 一方、通電制御部14は、交流電流W1が負側(負相)の電流である期間において、第2の制御信号を第2のサイリスタ11のゲートに出力した後に、第3の制御信号を第3のサイリスタ13のゲートに出力する。すなわち、点灯制御部19は、交流電流W1(交流電流W2)が負側に移行した場合には、まず最初に第2のサイリスタ11をターンオンさせる。この第2のサイリスタ11がターンオンするタイミングが上記第1のタイミングに相当する。これにより、中間タップcから交流電流W2の負側電流が、抵抗8、LEDランプ装置5、第2のコンデンサ12、第2のサイリスタ11、及び中間タップcを経由する第1の供給経路に第1のタイミングで供給される。すなわち、中間タップcから交流電流W2の負側電流が第1の供給経路に供給されることで、当該負側電流がLEDランプ装置5及び第2のコンデンサ12に供給される。このように、点灯制御部19は、第1のタイミングで第1の供給経路に通電してコイルLの中間タップcから出力される負側電流を第1の負荷に供給する。したがって、LEDランプ装置5が点灯するとともに、第2のコンデンサ12が充電される。
 上記第1の供給経路は、中間タップcに接続され、コイルLから出力される負側電流が少なくともLEDランプ装置5を含む第1の負荷に供給される電流経路である。
On the other hand, the energization control unit 14 outputs the third control signal to the second control signal after outputting the second control signal to the gate of the second thyristor 11 during the period in which the alternating current W1 is a negative (negative phase) current. 3 is output to the gate of the thyristor 13. That is, when the alternating current W1 (alternating current W2) shifts to the negative side, the lighting control unit 19 first turns on the second thyristor 11. The timing at which the second thyristor 11 is turned on corresponds to the first timing. Thereby, the negative side current of the alternating current W2 from the intermediate tap c is supplied to the first supply path via the resistor 8, the LED lamp device 5, the second capacitor 12, the second thyristor 11, and the intermediate tap c. 1 is supplied at the timing of 1. That is, the negative current of the alternating current W2 is supplied from the intermediate tap c to the first supply path, whereby the negative current is supplied to the LED lamp device 5 and the second capacitor 12. In this way, the lighting control unit 19 supplies the negative current output from the intermediate tap c of the coil L to the first load by energizing the first supply path at the first timing. Therefore, the LED lamp device 5 is turned on and the second capacitor 12 is charged.
The first supply path is a current path that is connected to the intermediate tap c and through which the negative current output from the coil L is supplied to the first load including at least the LED lamp device 5.
 次に、負荷駆動部20は、交流電流W1が負側(負相)の電流である期間において、第2のサイリスタ11がターンオンしてから所定時間経過(例えば、第2のコンデンサ12が満充電されるまでの時間が経過した)後に第3の制御信号を第3のサイリスタ13のゲートに出力してターンオンさせる。この第3のサイリスタ13がターンオンするタイミングが上記第2のタイミングに相当する。これにより、一端aから交流電流W1の負側電流が、第2の負荷6、第1のコンデンサ7、第3のサイリスタ13、抵抗8、LEDランプ装置5、第2のコンデンサ12、第2のサイリスタ11、及びコイルLの一端aを経由する第2の供給経路に第2のタイミングで供給される。すなわち、第1のタイミングよりも遅いタイミングで、中間タップcから交流電流W2の負側電流が第2の供給経路に供給されることで、当該負側電流が第2の負荷6及び第1のコンデンサ7に供給される。
 このように、負荷駆動部20は、第1のタイミングとは異なる第2のタイミングでコイルLの一端aから出力される負側電流を第2の負荷6及び第1のコンデンサ7に供給する。これにより、第2の負荷6が駆動可能となるとともに、第1のコンデンサ7が充電される。
 上記第2の供給経路は、コイルLの一端aに接続され、コイルLから出力される負側電流が第1の負荷とは異なる第2の負荷6に供給される電流経路である。
Next, the load driving unit 20 determines that a predetermined time elapses after the second thyristor 11 is turned on (for example, the second capacitor 12 is fully charged) in a period in which the AC current W1 is a negative (negative phase) current. After the elapse of the time until the third control signal is passed, a third control signal is output to the gate of the third thyristor 13 to turn it on. The timing at which the third thyristor 13 is turned on corresponds to the second timing. As a result, the negative current of the alternating current W1 from one end “a” becomes the second load 6, the first capacitor 7, the third thyristor 13, the resistor 8, the LED lamp device 5, the second capacitor 12, and the second capacitor. Supplied at a second timing to the second supply path via the thyristor 11 and one end a of the coil L. That is, the negative side current of the alternating current W2 is supplied from the intermediate tap c to the second supply path at a timing later than the first timing, so that the negative side current is supplied to the second load 6 and the first load. It is supplied to the capacitor 7.
Thus, the load driving unit 20 supplies the negative current output from the one end a of the coil L to the second load 6 and the first capacitor 7 at the second timing different from the first timing. As a result, the second load 6 can be driven and the first capacitor 7 is charged.
The second supply path is a current path that is connected to one end a of the coil L and that supplies a negative current output from the coil L to a second load 6 different from the first load.
 交流電流W1が負側から正側に移行すると、第2のサイリスタ11及び第3のサイリスタ13が同時にターンオフする。そのため、コイルLにおける一端a及び中間タップcからの負側電流の供給が双方とも停止する。そのため、交流電流W1が正側である期間においては、LEDランプ装置5は、第2のコンデンサ12から放電される電流により点灯を維持する。また、第2の負荷6は、第1のコンデンサ7から放電される電流により駆動可能となる。 When the alternating current W1 shifts from the negative side to the positive side, the second thyristor 11 and the third thyristor 13 are turned off simultaneously. Therefore, both the supply of the negative current from the one end a and the intermediate tap c in the coil L are stopped. Therefore, during the period in which the alternating current W1 is on the positive side, the LED lamp device 5 is kept lit by the current discharged from the second capacitor 12. Further, the second load 6 can be driven by the current discharged from the first capacitor 7.
 次に、本発明の一実施形態に係るコイルLから、LEDランプ装置5とLEDランプ装置5とは異なる第2の負荷6とに対する電流供給を制御する制御方法について、図3を用いて説明する。 Next, a control method for controlling current supply from the coil L according to the embodiment of the present invention to the LED lamp device 5 and the second load 6 different from the LED lamp device 5 will be described with reference to FIG. .
 本実施形態に係る制御方法は、大別して点灯制御ステップ及び負荷駆動ステップを含む。点灯制御ステップは、コイルLの中間タップcから出力される負側の電流をLEDランプ装置5が設けられている第1の供給経路に第1のタイミングで供給するステップである。 The control method according to the present embodiment broadly includes a lighting control step and a load driving step. The lighting control step is a step of supplying the negative current output from the intermediate tap c of the coil L to the first supply path in which the LED lamp device 5 is provided at the first timing.
 具体的には、点灯制御ステップでは、点灯制御部19が、LED電圧VLと予め設定された目標電圧Vth2(第1の閾値)との差分電圧ΔV2を生成し(ステップS101)、その生成した差分電圧ΔV2と三角波Vw2とを比較する(ステップS102)。そして、点灯制御部19は、三角波Vw2が差分電圧ΔV2を上回ったタイミングを第1のタイミングとして第2のサイリスタ11をオン状態に制御する(ステップS103)。
 このように、点灯制御ステップは、点灯制御部19は、第1の供給経路に並列に接続された第2のコンデンサ12の電圧であるLED電圧VLと目標電圧Vth2との差分値である差分電圧ΔV2を算出し、当該算出した差分電圧ΔV2と所定の三角波Vw2の電圧値との比較結果に基づいて第1のタイミングを決定する。そして、この点灯制御部19は、この決定した第1のタイミングで第2のサイリスタ11をオン状態に制御する。
Specifically, in the lighting control step, the lighting control unit 19 generates a differential voltage ΔV2 between the LED voltage VL and a preset target voltage Vth2 (first threshold) (step S101), and the generated difference The voltage ΔV2 is compared with the triangular wave Vw2 (step S102). And the lighting control part 19 controls the 2nd thyristor 11 to an ON state by making the timing when the triangular wave Vw2 exceeded difference voltage (DELTA) V2 into 1st timing (step S103).
As described above, in the lighting control step, the lighting control unit 19 uses a differential voltage that is a differential value between the LED voltage VL that is the voltage of the second capacitor 12 connected in parallel to the first supply path and the target voltage Vth2. ΔV2 is calculated, and the first timing is determined based on the comparison result between the calculated differential voltage ΔV2 and the voltage value of the predetermined triangular wave Vw2. Then, the lighting control unit 19 controls the second thyristor 11 to be in an on state at the determined first timing.
 負荷駆動ステップは、コイルLの一端aから出力される負側の電流を第1の供給経路とは異なる第2の供給経路に第1のタイミングよりも遅い第2のタイミングで供給するステップである。 The load driving step is a step of supplying a negative current output from one end a of the coil L to a second supply path that is different from the first supply path at a second timing that is later than the first timing. .
 具体的には、負荷駆動ステップでは、負荷駆動部20が、負荷電圧VRと予め設定された目標電圧Vth3(第2の閾値)との差分電圧ΔV3を生成し(ステップS104)、生成した差分電圧ΔV3と三角波Vw2とを比較する(ステップS105)。そして、負荷駆動部20は、三角波Vw2が差分電圧ΔV3を上回るタイミングを第2のタイミングとして第3のサイリスタ13をオン状態に制御する(ステップS106)。ここで、例えば、目標電圧Vth2及び目標電圧Vth3のそれぞれは、差分電圧ΔV3が差分電圧ΔV2より大きい値になるように設定される。
 このように、負荷駆動ステップは、負荷駆動部20は、第2の供給経路に並列に接続された第1のコンデンサ7の電圧である負荷電圧VRと目標電圧Vth3との差分値である差分電圧ΔV3を算出し、当該算出した差分電圧ΔV3と所定の三角波Vw2の電圧値との比較結果に基づいて第2のタイミングを決定する。そして、この負荷駆動部20は、この決定した第2のタイミングで第3のサイリスタ13をオン状態に制御する。
Specifically, in the load driving step, the load driving unit 20 generates a differential voltage ΔV3 between the load voltage VR and a preset target voltage Vth3 (second threshold) (step S104), and the generated differential voltage. ΔV3 and triangular wave Vw2 are compared (step S105). Then, the load driving unit 20 controls the third thyristor 13 to be in the ON state with the timing at which the triangular wave Vw2 exceeds the differential voltage ΔV3 as the second timing (step S106). Here, for example, each of the target voltage Vth2 and the target voltage Vth3 is set such that the differential voltage ΔV3 is larger than the differential voltage ΔV2.
Thus, in the load driving step, the load driving unit 20 uses the differential voltage that is the difference value between the load voltage VR that is the voltage of the first capacitor 7 connected in parallel to the second supply path and the target voltage Vth3. ΔV3 is calculated, and the second timing is determined based on the comparison result between the calculated differential voltage ΔV3 and the voltage value of the predetermined triangular wave Vw2. And this load drive part 20 controls the 3rd thyristor 13 to an ON state at this determined 2nd timing.
 次に、本実施形態に係る作用効果について説明する。 Next, functions and effects according to this embodiment will be described.
(第1の作用効果)
 本実施形態における車両用ランプ駆動装置3では、コイルLの一端aから出力される交流電流W1の負荷電流で第2の負荷6を駆動し、コイルLの中間タップcから出力される交流電流W2の負荷電流でLEDランプ装置5を駆動する。このため、コイルLの一端aから出力される出力電圧、すなわち交流電圧VACは、LEDランプ装置5の駆動電圧に拘束されることがない。したがって、従来においてバッテリが負担していいた負荷(バッテリ負荷)の一部を、第2の負荷6として負側電流で駆動することができる。さらに、バッテリ負荷が削減されることで、発電機2から出力される正側電流の消費と負側電流の消費とのアンバランスを解消することができ、発電機2の小型化に寄与する。
(First effect)
In the vehicle lamp drive device 3 in the present embodiment, the second load 6 is driven by the load current of the alternating current W1 output from the one end a of the coil L, and the alternating current W2 output from the intermediate tap c of the coil L. The LED lamp device 5 is driven with a load current of. For this reason, the output voltage output from the one end a of the coil L, that is, the AC voltage VAC is not restricted by the drive voltage of the LED lamp device 5. Therefore, a part of the load (battery load) that the battery can bear conventionally can be driven by the negative current as the second load 6. Furthermore, by reducing the battery load, it is possible to eliminate the imbalance between the consumption of the positive current output from the generator 2 and the consumption of the negative current, which contributes to the miniaturization of the generator 2.
(第2の作用効果)
 また、本実施形態における車両用ランプ駆動装置3では、コイルLの中間タップcから出力される負側電流をLEDランプ装置5に供給した後に、コイルLの一端aから出力される負側電流を第2の負荷6に供給する。これにより、以下に説明する効果を奏する。
(Second effect)
In the vehicle lamp drive device 3 according to the present embodiment, the negative current output from one end a of the coil L is supplied after the negative current output from the intermediate tap c of the coil L is supplied to the LED lamp device 5. The second load 6 is supplied. Thereby, there exists an effect demonstrated below.
 例えば、LEDランプ装置5の駆動電圧が第2の負荷6の駆動電圧よりも高いとする。
この場合において、コイルLの一端aから出力される交流電流W1の負荷電流で第2の負荷6を駆動すると、コイルLの一端aから出力される電圧が第2の負荷6の駆動電圧以下に拘束されることになる。そのため、コイルLの中間タップcから出力される電圧は、第2の負荷6の駆動電圧未満の電圧となり、当然にLEDランプ装置5を駆動することができない。すなわち、通電制御部14は、交流電流W1(交流電流W2)が負側に移行した場合において、第2のサイリスタ11をターンオンさせる前に第3のサイリスタ13をターンオンさせてしまうと、十分な電流がLEDランプ装置5に供給されなくなり、LEDランプ装置5が消灯してしまう。
For example, it is assumed that the drive voltage of the LED lamp device 5 is higher than the drive voltage of the second load 6.
In this case, when the second load 6 is driven by the load current of the alternating current W1 output from the one end a of the coil L, the voltage output from the one end a of the coil L becomes equal to or lower than the drive voltage of the second load 6. You will be bound. For this reason, the voltage output from the intermediate tap c of the coil L becomes a voltage lower than the drive voltage of the second load 6 and naturally the LED lamp device 5 cannot be driven. That is, when the alternating current W1 (alternating current W2) shifts to the negative side, the energization control unit 14 has sufficient current if the third thyristor 13 is turned on before the second thyristor 11 is turned on. Is not supplied to the LED lamp device 5, and the LED lamp device 5 is turned off.
 そこで、通電制御部14は、交流電流W1(交流電流W2)が負側に移行した場合において、先に第2のサイリスタ11をターンオンさせてコイルLの中間タップcから出力される負側電流をLEDランプに供給する。そして、通電制御部14は、所定時間経過後、例えば、第2のコンデンサ12への充電が終了した後に、第3のサイリスタ13をターンオンさせて、コイルLの一端aから第2の負荷6に負側電流を供給する。これにより、LEDランプ装置5は、第2のコンデンサ12に蓄えられた電流で駆動することになるため消灯することがない。なお、LEDランプ装置5の駆動電圧が第2の負荷6の駆動電圧よりも高くなる場合とは、例えば、車両用ランプ駆動装置3がロービームからハイビームに切り替えられた場合である。
 したがって、通電制御部14は、LEDランプ装置5がハイビームの場合にのみ、コイルLの中間タップcから出力される負側電流をLEDランプ装置5に供給した後に、コイルLの一端aから出力される負側電流を第2の負荷6に供給するように制御してもよい。
Therefore, when the alternating current W1 (alternating current W2) shifts to the negative side, the energization control unit 14 first turns on the second thyristor 11 and outputs the negative side current output from the intermediate tap c of the coil L. Supply to LED lamp. Then, the energization control unit 14 turns on the third thyristor 13 from the one end a of the coil L to the second load 6 after the predetermined time has elapsed, for example, after the charging of the second capacitor 12 is completed. Supply negative current. As a result, the LED lamp device 5 is driven by the current stored in the second capacitor 12 and therefore does not turn off. The case where the drive voltage of the LED lamp device 5 is higher than the drive voltage of the second load 6 is, for example, a case where the vehicle lamp drive device 3 is switched from a low beam to a high beam.
Therefore, the energization control unit 14 outputs the negative current output from the intermediate tap c of the coil L to the LED lamp device 5 only when the LED lamp device 5 is a high beam, and then is output from one end a of the coil L. The negative current may be controlled to be supplied to the second load 6.
 以上、説明したように、本発明の一実施形態に係る車両用ランプ駆動装置3は、エンジンの回転により発電する発電機2のコイルLから出力される交流電流により車両用のLEDランプ(LEDランプ装置5)を点灯させる装置である。そして、車両用ランプ駆動装置3は、その交流電流のうち、コイルLの中間タップcからの負側電流を第1の供給経路を介して第1の負荷に供給する。また、車両用ランプ駆動装置3は、コイルLの一端aから出力される負側電流を第2の供給経路を介して第2の負荷6に供給する。そして、第2の供給経路は、第1の供給経路とは異なる供給経路である。 As described above, the vehicular lamp driving device 3 according to the embodiment of the present invention has a vehicular LED lamp (LED lamp) by an alternating current output from the coil L of the generator 2 that generates electric power by rotating the engine. The device 5) is lit. And the lamp drive device 3 for vehicles supplies the negative side current from the intermediate tap c of the coil L to the 1st load via the 1st supply path among the alternating currents. Further, the vehicle lamp drive device 3 supplies the negative current output from the one end a of the coil L to the second load 6 via the second supply path. The second supply path is a supply path different from the first supply path.
 このような構成によれば、バッテリ負荷を負側電流で駆動することができる。 According to such a configuration, the battery load can be driven with a negative current.
 また、車両用ランプ駆動装置3の点灯制御部19は、第1のタイミングで第1の供給経路に通電して、中間タップcから出力される負側電流を第1の負荷に供給する。また、負荷駆動部20は、第1のタイミングとは異なる第2のタイミングで第2の供給経路に通電して、一端aから出力される負側電流を第2の負荷6(例えば、バッテリ負荷)に供給する。 Further, the lighting control unit 19 of the vehicle lamp drive device 3 energizes the first supply path at the first timing, and supplies the negative current output from the intermediate tap c to the first load. In addition, the load driving unit 20 energizes the second supply path at a second timing different from the first timing, and converts the negative current output from the one end a to the second load 6 (for example, a battery load). ).
 このような構成によれば、LEDランプ装置5の駆動電圧が第2の負荷6の駆動電圧よりも高い場合(例えばハイビーム)であっても、低い場合(例えばロービーム)であっても、LEDランプ装置5と第2の負荷6との双方を負側電流で駆動することができる。 According to such a configuration, the LED lamp device 5 has a driving voltage higher than the driving voltage of the second load 6 (for example, a high beam) or low (for example, a low beam). Both the device 5 and the second load 6 can be driven with a negative current.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within the scope not departing from the gist of the present invention.
 上記の車両用ランプ駆動装置によれば、LEDヘッドライトを負側電流で駆動しつつ、バッテリ負荷をも負側電流で駆動できる。 According to the vehicle lamp driving device described above, the battery load can be driven with a negative current while the LED headlight is driven with a negative current.
1 車両用ランプ点灯システム
2 発電機
3 車両用ランプ駆動装置
4 バッテリ
5 LEDランプ装置(LEDランプ)
6 第2の負荷
17 三角波発生回路
18 バッテリ充電制御部
19 点灯制御部
20 負荷駆動部
30 第3の負荷
DESCRIPTION OF SYMBOLS 1 Vehicle lamp lighting system 2 Generator 3 Vehicle lamp drive device 4 Battery 5 LED lamp device (LED lamp)
6 Second load 17 Triangular wave generation circuit 18 Battery charge control unit 19 Lighting control unit 20 Load drive unit 30 Third load

Claims (5)

  1.  エンジンの回転により発電する発電機のコイルから出力される交流電流の通電を制御して車両用のLEDランプを駆動する車両用ランプ駆動装置であって、
     前記コイルの中間部に接続され、前記コイルから出力される負側の電流が少なくとも前記LEDランプを含む第1の負荷に供給される第1の供給経路と、
     前記コイルの一端に接続され、前記コイルから出力される負側の電流が前記第1の負荷とは異なる第2の負荷に供給される第2の供給経路と、
     前記コイルの一端に接続され、前記コイルから出力される正側の電流が前記第1および第2の負荷とは異なる第3の負荷に供給される第3の供給経路と、
     を有し、
     前記第1の供給経路の通電タイミングを制御する点灯制御部と、
     前記第2の供給経路の通電するタイミングを制御する負荷駆動部と、
     を備える車両用ランプ駆動装置。
    A vehicle lamp driving device for driving an LED lamp for a vehicle by controlling energization of an alternating current output from a coil of a generator that generates electricity by rotation of an engine,
    A first supply path connected to an intermediate portion of the coil, wherein a negative current output from the coil is supplied to a first load including at least the LED lamp;
    A second supply path that is connected to one end of the coil and that supplies a negative current output from the coil to a second load different from the first load;
    A third supply path that is connected to one end of the coil and that supplies a positive current output from the coil to a third load different from the first and second loads;
    Have
    A lighting control unit for controlling the energization timing of the first supply path;
    A load driving unit that controls the timing of energization of the second supply path;
    A vehicle lamp driving device comprising:
  2.  前記点灯制御部は、第1のタイミングで前記第1の供給経路に通電して前記コイルの中間部から出力される負側の電流を前記第1の負荷に供給し、
     前記負荷駆動部は、前記第1のタイミングとは異なる第2のタイミングで前記第2の供給経路に通電して前記コイルの一端から出力される負側の電流を前記第2の負荷に供給する、
     ことを特徴とする請求項1に記載の車両用ランプ駆動装置。
    The lighting control unit supplies the negative current output from the intermediate part of the coil to the first load by energizing the first supply path at a first timing,
    The load driver supplies current to the second supply path at a second timing different from the first timing to supply a negative current output from one end of the coil to the second load. ,
    The vehicular lamp driving device according to claim 1.
  3.  前記第2のタイミングは、前記第1のタイミングよりも遅いタイミングであることを特徴とする、請求項2に記載の車両用ランプ駆動装置。 3. The vehicle lamp driving device according to claim 2, wherein the second timing is a timing later than the first timing.
  4.  前記LEDランプは、直列接続された第1のLEDランプ及び第2のLEDランプを備え、
     前記第2のタイミングは、前記第1のLEDランプ及び前記第2のLEDランプが点灯している状態において、前記第1のタイミングよりも遅いタイミングであることを特徴とする、請求項2又は3に記載の車両用ランプ駆動装置。
    The LED lamp includes a first LED lamp and a second LED lamp connected in series,
    The second timing is a timing later than the first timing in a state where the first LED lamp and the second LED lamp are lit. The vehicle lamp drive device described in 1.
  5.  エンジンの回転により発電する発電機のコイルから、車両用のLEDランプと前記LEDランプとは異なる負荷とに対する電流供給を制御する制御方法であって、
     前記コイルから出力される交流電流のうち、前記コイルの中間部から出力される負側の電流を少なくとも前記LEDランプを含む第1の負荷に第1のタイミングで供給する点灯制御ステップと、
     前記交流電流のうち、前記コイルの一端から出力される負側の電流を前記第1の負荷とは異なる第2の負荷に前記第1のタイミングよりも遅い第2のタイミングで供給する負荷駆動ステップと、
     を含み、
     前記点灯制御ステップは、前記LEDランプに設けられている第1の供給経路に並列に接続されたコンデンサの電圧と所定の第1の閾値との差分値を算出し、当該算出した前記差分値と所定の三角波の電圧値との比較結果に基づいて前記第1のタイミングを決定し、
     前記負荷駆動ステップは、前記第1の供給経路とは異なる第2の供給経路に並列に接続されたコンデンサの電圧と第2の閾値との差分値を算出し、当該算出した差分値と前記三角波の電圧値との比較結果に基づいて前記第2のタイミングを決定する、
     ことを特徴とする制御方法。
    A control method for controlling current supply to a vehicle LED lamp and a load different from the LED lamp from a coil of a generator that generates electricity by rotating an engine,
    A lighting control step of supplying, at a first timing, a negative current output from an intermediate portion of the coil among the alternating current output from the coil to a first load including at least the LED lamp;
    A load driving step of supplying a negative current output from one end of the coil of the alternating current to a second load different from the first load at a second timing later than the first timing. When,
    Including
    The lighting control step calculates a difference value between a voltage of a capacitor connected in parallel to a first supply path provided in the LED lamp and a predetermined first threshold, and the calculated difference value Determining the first timing based on a comparison result with a voltage value of a predetermined triangular wave;
    The load driving step calculates a difference value between a voltage of a capacitor connected in parallel to a second supply path different from the first supply path and a second threshold, and the calculated difference value and the triangular wave The second timing is determined based on a comparison result with the voltage value of
    A control method characterized by that.
PCT/JP2018/042806 2018-03-29 2018-11-20 Vehicular lamp drive device and control method therefor WO2019187325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020509610A JP6899484B2 (en) 2018-03-29 2018-11-20 Vehicle lamp drive device and its control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065191 2018-03-29
JP2018-065191 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187325A1 true WO2019187325A1 (en) 2019-10-03

Family

ID=68061060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042806 WO2019187325A1 (en) 2018-03-29 2018-11-20 Vehicular lamp drive device and control method therefor

Country Status (2)

Country Link
JP (1) JP6899484B2 (en)
WO (1) WO2019187325A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191696A (en) * 1995-11-09 1997-07-22 Mitsuba Corp Voltage regulator for magnet generator
WO2017212837A1 (en) * 2016-06-09 2017-12-14 株式会社ミツバ Vehicle lamp drive device and vehicle lamp lighting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191696A (en) * 1995-11-09 1997-07-22 Mitsuba Corp Voltage regulator for magnet generator
WO2017212837A1 (en) * 2016-06-09 2017-12-14 株式会社ミツバ Vehicle lamp drive device and vehicle lamp lighting system

Also Published As

Publication number Publication date
JPWO2019187325A1 (en) 2021-02-12
JP6899484B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP4148746B2 (en) Lighting circuit
CN101594715B (en) Electrical circuit arrangement
JP4788400B2 (en) Lighting power supply device and lighting fixture
US9376056B2 (en) Power supply device and illumination device for vehicle using same
TWI465148B (en) Led driving circuit and led driving controller
CN103563487B (en) LED lamp device
EP1345479B1 (en) Electric discharge lamp device
JP5749244B2 (en) LED lamp lighting device and control method
US6768273B2 (en) Dynamo control circuit for a bicycle
JP2006073352A (en) Lighting control circuit of vehicular luminair
WO2019187325A1 (en) Vehicular lamp drive device and control method therefor
JP2004140886A (en) Switching regulator circuit and lighting fixture for vehicle
US10004116B2 (en) Lighting device, headlight device with the same, and vehicle
JP5684432B1 (en) Lamp driving power source and control method of lamp driving power source
JP5602945B1 (en) LED lamp lighting control circuit and LED lamp lighting control method
CN101640967B (en) Fluorescent lamp driving circuit, fluorescent lamp dimming circuit and method
JP5940015B2 (en) Power supply device, LED lighting device, and in-vehicle headlamp system
WO2017212837A1 (en) Vehicle lamp drive device and vehicle lamp lighting system
JP5214003B2 (en) Power supply device and lighting device
JP2008034629A (en) Led drive
US20190342959A1 (en) Light emitting element driving device and driving method thereof
JP2015185405A (en) LED lighting device
WO2016189581A1 (en) Vehicular led lamp lighting circuit, vehicular led lamp lighting device, and control method for vehicular led lamp lighting circuit
JP4044268B2 (en) Vehicle power supply
JP5580677B2 (en) Discharge lamp lighting circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509610

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911738

Country of ref document: EP

Kind code of ref document: A1