[go: up one dir, main page]

WO2019155886A1 - Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device - Google Patents

Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device Download PDF

Info

Publication number
WO2019155886A1
WO2019155886A1 PCT/JP2019/002128 JP2019002128W WO2019155886A1 WO 2019155886 A1 WO2019155886 A1 WO 2019155886A1 JP 2019002128 W JP2019002128 W JP 2019002128W WO 2019155886 A1 WO2019155886 A1 WO 2019155886A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
exposure
workpiece
mask
alignment mark
Prior art date
Application number
PCT/JP2019/002128
Other languages
French (fr)
Japanese (ja)
Inventor
工 富樫
榎本 芳幸
智紀 原田
洋徳 川島
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020207020122A priority Critical patent/KR20200119235A/en
Priority to CN201980012676.3A priority patent/CN111699440A/en
Priority to JP2019570664A priority patent/JPWO2019155886A1/en
Publication of WO2019155886A1 publication Critical patent/WO2019155886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7038Alignment for proximity or contact printer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7035Proximity or contact printers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically

Definitions

  • the present invention relates to a proximity exposure apparatus, a proximity exposure method, and a light irradiation apparatus for a proximity exposure apparatus.
  • a mask on which an exposure pattern is formed is placed close to a substrate to be exposed coated with a photosensitive material with a gap of several tens of ⁇ m to several hundreds of ⁇ m, and exposure light from a light illumination device is irradiated through the mask.
  • the exposure pattern is transferred to the substrate to be exposed.
  • an integrator is used in order to improve the uniformity of the illuminance of the light irradiated to the mask.
  • Patent Document 1 the parallelism of exposure illumination light is corrected by locally changing the curvature of the reflecting surface of the optical path reflecting mirror using a reference calibration mask. Next, a pattern is printed on the substrate using an exposure mask, the transferred pattern is measured, and the expansion and contraction of the mask is corrected by locally changing the curvature of the optical path reflecting mirror.
  • Patent Document 2 includes a collimation mirror and an irradiation angle changing mechanism that changes an irradiation angle of light for pattern exposure reflected by the collimation mirror, and a deviation amount between a mask alignment mark and a substrate alignment mark
  • a proximity exposure apparatus is known in which a collimation mirror is deformed by operating an irradiation angle changing mechanism based on a gap between a mask and a substrate.
  • the projection image of the alignment mark of the mask is received by the light of the first light irradiation unit, the image processing is performed to detect / store the relative position, and the workpiece is detected by the light of the second light irradiation unit. Detect and store the relative position by receiving and processing the alignment mark of the mask and moving the workpiece and / or mask so that both alignment marks overlap, and the mask and workpiece are positioned accurately. A combination method and apparatus is described.
  • Patent Document 1 a calibration mask is required separately, and there is a problem that a final exposure position can be obtained only after exposure (trial exposure) once. Further, according to Patent Document 2, the illumination means at the time of alignment adjustment is not specifically described. Furthermore, according to Patent Document 3, the alignment of the mask and the workpiece is performed by moving the workpiece and / or the mask, and it is not considered to correct the local distortion of the mask or the workpiece.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to realize proximity adjustment capable of realizing high-precision alignment adjustment without performing trial exposure and greatly improving exposure accuracy.
  • An exposure apparatus, a proximity exposure method, and a light irradiation apparatus for a proximity exposure apparatus are provided.
  • the above object of the present invention can be achieved by the following constitution.
  • a light source An integrator that uniformly emits light from the light source;
  • a mirror bending mechanism capable of changing the curvature of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator;
  • a mask on which an exposure pattern is formed and a work are arranged close to each other through a gap, and light emitted from the reflecting mirror is irradiated onto the work through the mask to transfer the exposure pattern onto the work.
  • An alignment camera that can simultaneously image the projected image of the mask-side alignment mark projected onto the workpiece and the workpiece-side alignment mark using the non-exposure light;
  • a proximity exposure apparatus further comprising: (2)
  • the non-exposure light illuminating means is disposed so as to freely advance and retreat on the optical path of the light from the light source, and blocks the first wavelength region of the light from the light source, thereby allowing the non-exposure light illumination means to
  • the proximity exposure apparatus according to (2) further including another cut filter.
  • the cut filter retracts the light from the light source from the optical path so that the exposure light having the first wavelength region of the light from the light source passes through the mask onto the workpiece.
  • the proximity exposure apparatus according to (2) wherein a shutter for blocking exposure light is configured by irradiating to the optical path and advancing on the optical path.
  • the non-exposure light illuminating unit includes a non-exposure light source that is provided separately from the light source and irradiates the non-exposure light having the second wavelength region. apparatus.
  • the workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask
  • the alignment camera includes a projected image of the alignment mark on the mask projected onto the workpiece and an alignment on the workpiece side at at least one point on each of the exposure region or the four corners around the exposure region and each side connecting the four corners.
  • the proximity exposure apparatus according to any one of (1) to (7), wherein a mark is imaged simultaneously.
  • a moving mechanism for relatively moving the workpiece and the mask The mirror bending mechanism corrects the curvature of the reflecting mirror so that the projected projection image of the mask-side alignment mark and the center of the workpiece-side alignment mark coincide with each other, and the moving mechanism corrects the mask.
  • the proximity exposure apparatus according to any one of (1) to (8), comprising: (10)
  • the workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
  • the alignment camera is configured to align the mask side projected onto the workpiece at least one point in the exposure area or four corners around the exposure area and each side connecting the four corners when exposing a predetermined number of the workpieces. Simultaneously imaging the projected image of the mark and the alignment mark on the workpiece side; and At the time of exposure of the workpiece after the predetermined number, the alignment camera simultaneously displays the projected image of the mask side alignment mark projected onto the workpiece and the workpiece side alignment mark at the four corners of the workpiece.
  • the control unit determines an average shape of the workpiece based on a shift amount at each position of at least one of the four corners and each side of the predetermined number of workpieces imaged by the alignment camera; and , At the time of exposure of the workpiece after the predetermined number, the curvature correction of the reflecting mirror by the mirror bending mechanism and the relative movement between the mask and the workpiece are shifted at the four corners imaged by the alignment camera.
  • the mirror bending mechanism corrects the curvature of the reflecting mirror so that the projected image of the mask side alignment mark coincides with the center of the workpiece side alignment mark, and the mask and the workpiece are relatively moved.
  • a proximity exposure method comprising: (12) a light source; An integrator that uniformly emits light from the light source; A mirror bending mechanism capable of changing the curvature of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator; With A mask on which an exposure pattern is formed and a work are arranged close to each other through a gap, and light emitted from the reflecting mirror is irradiated onto the work through the mask to transfer the exposure pattern onto the work.
  • An alignment camera that can simultaneously image the projected image of the mask-side alignment mark projected onto the workpiece and the workpiece-side alignment mark using the non-exposure light;
  • a light irradiation apparatus for a proximity exposure apparatus further comprising: (13)
  • the non-exposure light illuminating means is disposed so as to freely advance and retreat on the optical path of the light from the light source, and cuts off the first wavelength region of the light from the light source, thereby allowing the non-exposure light illumination means to
  • the cut filter retracts the light from the light source from the optical path so that the exposure light having the first wavelength region of the light from the light source passes through the mask onto the workpiece.
  • the light irradiation apparatus for a proximity exposure apparatus according to (13) wherein a shutter that blocks the exposure light is configured by irradiating to the optical path and advancing on the optical path.
  • the non-exposure light illuminating unit includes a non-exposure light source that is provided separately from the light source and irradiates the non-exposure light having the second wavelength region.
  • Light irradiation device for equipment 17.
  • contact exposure apparatuses of description The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
  • the alignment camera includes a projected image of the alignment mark on the mask projected onto the workpiece and an alignment on the workpiece side at at least one point on each of the exposure region or the four corners around the exposure region and each side connecting the four corners.
  • the light irradiation apparatus for a proximity exposure apparatus according to any one of (12) to (18), wherein a mark is imaged simultaneously.
  • the light source the integrator for uniformly emitting the light from the light source, and a mirror bending mechanism capable of changing the curvature of the reflection surface, A reflecting mirror that reflects the light emitted from the integrator, and a second wavelength region that is disposed closer to the light source than the reflecting mirror and that is different from the exposure light having the first wavelength region that the photosensitive material of the workpiece is exposed to.
  • the projection image of the mask side alignment mark projected on the workpiece while irradiating the non-exposure light by the non-exposure light illuminating means, and the alignment mark on the workpiece side The curvature of the reflecting mirror is corrected by a mirror bending mechanism so that the projected image of the alignment camera at the same time and the projected image of the alignment mark on the mask side coincide with the center of the alignment mark on the workpiece side. And a relative movement step.
  • highly accurate alignment adjustment can be realized without performing trial exposure, and the exposure accuracy can be greatly improved.
  • FIG. 1 is a front view of a proximity exposure apparatus according to a first embodiment of the present invention. It is a side view which shows the structure of the light irradiation apparatus applied to the proximity exposure apparatus shown in FIG.
  • (A) is a plan view of the alignment mark on the mask side
  • (b) is a plan view of the alignment mark on the workpiece side.
  • (A) is a side view of the main part of the light irradiation device showing a state before alignment adjustment by the mirror bending mechanism
  • (b) is a projection image of the alignment mark on the mask side before alignment adjustment and the workpiece side
  • It is explanatory drawing which shows the positional relationship with an alignment mark.
  • (A) is the principal part side view of the light irradiation apparatus which shows the state adjusted by the mirror bending mechanism
  • (b) is the projection image of the alignment mark on the mask side and the workpiece side alignment mark that have been aligned. It is explanatory drawing which shows a positional relationship. It is a graph which shows the wavelength area
  • (A) shows the imaging position of the mask side alignment mark and workpiece
  • (b) is a figure which shows the external shape of the workpiece
  • the proximity exposure apparatus PE uses a mask M smaller than the workpiece W as a material to be exposed, holds the mask M on a mask stage (mask support portion) 1, and holds the workpiece W on the workpiece stage (workpiece (workpiece)).
  • Pattern exposure from a light irradiation device for a proximity exposure device (hereinafter also simply referred to as a light irradiation device) 3 in a state of being held by a support portion 2 and facing the mask M and the workpiece W in close proximity with a predetermined exposure gap.
  • the pattern of the mask M is exposed and transferred onto the workpiece W by irradiating the mask M with light for use.
  • the work stage 2 is moved stepwise with respect to the mask M in the two axial directions of the X axis direction and the Y axis direction, and exposure transfer is performed for each step.
  • an X-axis stage feed mechanism 5 for moving the X-axis feed base 5a stepwise in the X-axis direction is installed on the apparatus base 4.
  • a Y-axis stage feed mechanism 6 for step-moving the Y-axis feed base 6a in the Y-axis direction is installed in order to move the work stage 2 stepwise in the Y-axis direction.
  • the work stage 2 is installed on the Y-axis feed base 6 a of the Y-axis stage feed mechanism 6.
  • the work W On the upper surface of the work stage 2, the work W is held in a state of being sucked by a work chuck or the like. Further, a substrate side displacement sensor 15 for measuring the lower surface height of the mask M is disposed on the side portion of the work stage 2. Therefore, the substrate side displacement sensor 15 can move in the X and Y axis directions together with the work stage 2.
  • a plurality of (four in the embodiment shown in the figure) X-axis linear guide rails 51 are arranged in the X-axis direction, and each guide rail 51 has a lower surface of the X-axis feed base 5 a.
  • a slider 52 fixed to the bridge is straddled.
  • the X-axis feed base 5 a is driven by the first linear motor 20 of the X-axis stage feed mechanism 5 and can reciprocate along the guide rail 51 in the X-axis direction.
  • a plurality of guide rails 53 for Y-axis linear guides are arranged on the X-axis feed base 5a in the Y-axis direction.
  • Each guide rail 53 has a slider 54 fixed to the lower surface of the Y-axis feed base 6a. Is straddled. Accordingly, the Y-axis feed base 6 a is driven by the second linear motor 21 of the Y-axis stage feed mechanism 6 and can reciprocate in the Y-axis direction along the guide rail 53.
  • the vertical coarse motion device 7 having a relatively coarse positioning resolution but a large moving stroke and moving speed, and the vertical coarse motion Positioning with high resolution is possible compared with the apparatus 7, and a vertical fine movement apparatus 8 is provided for finely adjusting the gap between the opposing surfaces of the mask M and the work W to a predetermined amount by finely moving the work stage 2 up and down. .
  • the vertical coarse movement device 7 moves the work stage 2 up and down with respect to the fine movement stage 6b by an appropriate drive mechanism provided on the fine movement stage 6b described later.
  • the stage coarse movement shafts 14 fixed at four positions on the bottom surface of the work stage 2 are engaged with linear motion bearings 14a fixed to the fine movement stage 6b, and are guided in the vertical direction with respect to the fine movement stage 6b.
  • it is desirable that the vertical coarse motion device 7 has high repeated positioning accuracy even if the resolution is low.
  • the vertical fine movement device 8 includes a fixed base 9 fixed to the Y-axis feed base 6a, and a linear guide guide rail 10 attached to the fixed base 9 with its inner end inclined obliquely downward.
  • a ball screw nut (not shown) is coupled to a slide body 12 that reciprocates along the guide rail 10 via a slider 11 straddling the guide rail 10, and an upper end surface of the slide body 12. Is in contact with the flange 12a fixed to the fine movement stage 6b so as to be slidable in the horizontal direction.
  • the vertical fine movement device 8 may drive the slide body 12 by a linear motor instead of driving the slide body 12 by the motor 17 and the ball screw.
  • the vertical fine movement device 8 is installed on one end side (left end side in FIG. 1) in the Y-axis direction of the Z-axis feed base 6a and two on the other end side, for a total of three units, and each is independently driven and controlled. It has become so. Accordingly, the vertical fine movement device 8 independently finely adjusts the heights of the three flanges 12 a based on the measurement results of the gap amounts between the mask M and the workpiece W at a plurality of locations by the gap sensor 27, and the workpiece stage 2. Fine-tune the height and inclination of In addition, when the height of the work stage 2 can be sufficiently adjusted by the vertical fine movement device 8, the vertical coarse movement device 7 may be omitted.
  • a bar mirror (both not shown) facing the interferometer is installed.
  • the bar mirror 19 facing the Y-axis laser interferometer 18 is arranged along the X-axis direction on one side of the Y-axis feed base 6a, and the bar mirror facing the X-axis laser interferometer is located on the Y-axis feed base 6a. It is arranged along the Y-axis direction on one end side.
  • the Y-axis laser interferometer 18 and the X-axis laser interferometer are each arranged so as to always face the corresponding bar mirror and supported by the apparatus base 4.
  • Two Y-axis laser interferometers 18 are installed apart from each other in the X-axis direction.
  • the two Y-axis laser interferometers 18 detect the position of the Y-axis feed base 6a and consequently the work stage 2 in the Y-axis direction and the yawing error via the bar mirror 19.
  • the X-axis laser interferometer detects the position of the X-axis feed base 5a and eventually the work stage 2 in the X-axis direction via the opposing bar mirror.
  • the mask stage 1 is inserted in a X, Y, ⁇ direction (in the X, Y plane) by inserting a mask base frame 24 composed of a substantially rectangular frame body and a gap into a central opening of the mask base frame 24.
  • a mask frame 25 supported so as to be movable, and a plurality of mask drive units 28 provided so that the mask frame 25 can be moved in the X, Y, and ⁇ directions with respect to the mask base frame 24.
  • the mask base frame 24 is held at a fixed position above the work stage 2 by a column 4 a protruding from the apparatus base 4.
  • a frame-shaped mask holder 26 is provided on the lower surface of the central opening of the mask frame 25. That is, a plurality of mask holder suction grooves connected to a vacuum suction device (not shown) are provided on the lower surface of the mask frame 25, and the mask holder 26 is sucked to the mask frame 25 through the plurality of mask holder suction grooves. Retained.
  • a plurality of mask suction grooves are provided on the lower surface of the mask holder 26 for sucking the peripheral portion of the mask M on which the mask pattern is not drawn.
  • the mask M passes through the mask suction grooves. Then, it is detachably held on the lower surface of the mask holder 26 by a vacuum suction device (not shown).
  • the light irradiation device 3 of the exposure apparatus PE of this embodiment includes a lamp unit 60 as a light source, a flat mirror 63 for changing the direction of the optical path EL, and exposure control for controlling the opening and closing of the irradiation optical path.
  • An integrator 65 that is disposed downstream of the exposure shutter unit 64 and the exposure control shutter unit 64 and uniformly emits light from the lamp unit 60, and an optical path that is disposed downstream of the integrator 65 and emitted from the integrator 65
  • the light irradiation device 3 includes an ultraviolet cut filter 90 that cuts a first wavelength region that is exposure light (ultraviolet light) on the optical path EL of light from the lamp unit 60, and a second wavelength that is longer than the exposure light.
  • a long wavelength cut filter 95 that cuts the wavelength region is disposed so as to freely advance and retract.
  • the lamp unit 60 and the ultraviolet cut filter 90 constitute the non-exposure light illumination unit 100.
  • FIGS. 4A and 5A some components of the light irradiation device 3 shown in FIG. 2 are omitted for explanation.
  • the lamp unit 60 includes, for example, a plurality of high-pressure mercury lamps 61 and a plurality of reflectors 62 that collect light emitted from the high-pressure mercury lamp 61.
  • the structure of the single high pressure mercury lamp 61 and the reflector 62 may be sufficient, or it may be comprised by LED.
  • the light emitted from the lamp unit 60 includes light in the first wavelength region and light in the second wavelength region.
  • the light in the first wavelength region is exposure light composed of ultraviolet rays including a region near 365 nm where the photosensitive material applied to the workpiece W can be exposed.
  • the light in the second wavelength region is non-exposure light composed of visible light including a region near 550 nm that does not expose the photosensitive material. The non-exposure light is used for alignment adjustment between the mask M and the workpiece W, as will be described later.
  • the integrator 65 includes a plurality of lens elements (not shown) arranged in a matrix, and emits the light collected by the reflector 62 so as to have as uniform an illuminance distribution as possible in the irradiation region.
  • the plane mirror 63, the plane mirror 66, the collimation mirror 67, and the plane mirror 68 are reflection mirrors that can reflect (substantially total reflection) light of all wavelengths (light of the first and second wavelength regions).
  • a reflection mirror that can reflect (substantially total reflection) light of all wavelengths (light of the first and second wavelength regions).
  • an aluminum film is formed on the reflective surface. Note that “substantially total reflection” means that the reflectance is 90% or more.
  • a mirror bending mechanism 70 is disposed on the back surface side of the plane mirror 68.
  • the plane mirror 68 changes the shape of the plane mirror 68 based on the command from the mirror control unit 80 connected to each mirror bending mechanism 70 by the signal line 81, and locally changes the curvature of the reflection surface. By doing so, the declination angle of the plane mirror 68 can be corrected.
  • the ultraviolet cut filter 90 is disposed between the lamp unit 60 and the plane mirror 63, and cuts light having a wavelength of less than 480 nm, for example, including exposure light in the first wavelength region, as shown in FIG.
  • the light emitted from the unit 60 is non-exposure light having the second wavelength region.
  • the ultraviolet cut filter 90 generally cuts light having a wavelength of less than 480 nm so as to include wavelengths in the vicinity of i-line (365 nm), h-line (405 nm), and g-line (436 nm).
  • the long wavelength cut filter 95 is disposed between the lamp unit 60 and the plane mirror 63, cuts light having a wavelength of 480 nm or more including non-exposure light in the second wavelength region, and is emitted from the lamp unit 60.
  • the light is exposure light having a first wavelength region.
  • a polarizing filter and a band pass filter may be disposed between the integrator 65 and the exposure surface.
  • the exposure control shutter unit 64 when the exposure control shutter unit 64 is controlled to be opened during exposure in the light irradiation device 3, the light emitted from the high-pressure mercury lamp 61 is reflected by the plane mirror 63. The light enters the entrance surface of the integrator 65. The traveling direction of the light emitted from the exit surface of the integrator 65 is changed by the plane mirror 66, the collimation mirror 67, and the plane mirror 68. Further, this light is irradiated as light for pattern exposure substantially perpendicularly to the surface of the mask M held on the mask stage 1 and further on the workpiece W held on the work stage 2, and the pattern of the mask M is irradiated to the workpiece. Exposure transferred onto W.
  • a mask side alignment mark 101 and a work side alignment mark 103 are formed at predetermined positions of the mask M and the work W, respectively.
  • the mask side alignment mark 101 has a shape having four small circles 101b at the apexes of a square in a circle 101a
  • the workpiece side alignment mark 103 has a cross shape.
  • the mask-side alignment mark 101 and the workpiece-side alignment mark 103 are not limited to the illustrated shapes as long as the alignment of the alignment marks 101 and 103 can be confirmed.
  • the mask side alignment mark 101 and the workpiece side alignment mark 103 are provided corresponding to each other.
  • a plurality of mask-side alignment marks 101 are formed around a rectangular pattern in the rectangular mask M, and the workpiece W corresponds to the plurality of mask-side alignment marks 101 at each position where the pattern is transferred.
  • a plurality of workpiece side alignment marks 103 are formed.
  • an alignment camera 110 that is focused on the upper surface of the workpiece W is disposed below the workpiece W.
  • the work stage 2 needs to be configured such that the alignment camera 110 can visually recognize both the alignment marks 101 and 103, and is configured by a transparent glass stage, for example.
  • the alignment camera 110 includes a mask side alignment mark 101, strictly speaking, a projection image 102 of the mask side alignment mark 101 projected on the upper surface of the work W, and a work side alignment mark 103. Take images at the same time.
  • the control unit 40 controls various mechanisms of the exposure apparatus PE including the light irradiation device 3.
  • the image is captured by the alignment camera 110 during alignment.
  • the amount of deviation between the projected image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 is acquired, the plurality of mask driving units 28 are driven, the mask M is moved, and the mirror control unit 80 is moved to the mirror bending mechanism.
  • a signal for driving 70 is transmitted.
  • the control unit 40 may also serve as control of the mirror control unit 80.
  • the control unit 40 may move the workpiece W by the X-axis stage feed mechanism 5 and the Y-axis stage feed mechanism 6 instead of moving the mask M by the mask drive unit 28 during alignment. That is, the moving mechanism for moving the mask M and the workpiece W relative to each other may be a plurality of mask driving units 28, or the X-axis stage feeding mechanism 5 and the Y-axis stage feeding mechanism 6.
  • the ultraviolet cut filter 90 is inserted on the optical path EL of the light from the lamp unit 60, and the long wavelength cut filter 95 is retracted from the optical path EL (step S0).
  • the light emitted from the lamp unit 60 is cut at a wavelength of less than 480 nm including the first wavelength region by the ultraviolet cut filter 90. Thereby, the light emitted from the lamp unit 60 becomes non-exposure light including a second wavelength region in which the photosensitive material applied to the workpiece W is not exposed.
  • step S1 in FIG. 7 When the exposure control shutter unit 64 is opened in a state where the non-exposure light is irradiated (step S1 in FIG. 7), the non-exposure light is irradiated onto the workpiece W through the mask M, and the projection image of the mask side alignment mark 101 is obtained. 102 is formed on the workpiece W.
  • the alignment camera 110 simultaneously captures the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103, and determines the amount of deviation between the projection image 102 and the workpiece side alignment mark 103. Obtain (step S2).
  • the non-exposure light irradiated to the workpiece W is light emitted from the lamp unit 60 that also functions as exposure light described later, its optical axis is coaxial with the optical axis of the exposure light.
  • the mask M held by the mask stage 1 is moved to adjust the alignment of the mask M and the workpiece W. Furthermore, as shown in FIG. 5, the amount of misalignment remaining without being able to adjust the alignment only by the relative movement of the mask M and the workpiece W is transmitted from the mirror control unit 80 to each mirror bending mechanism 70 of the plane mirror 68. This is transmitted and driven, and the shape of the plane mirror 68 is locally changed to correct the declination angle of the plane mirror 68 (step S3).
  • the center O 1 of the projection image 102 of the mask side alignment mark 101 and the center O 3 of the workpiece side alignment mark 103 are aligned to adjust the alignment.
  • the center O 1 of the projection image 102 of the mask side alignment mark 101 is an intersection of square diagonal lines composed of four small circles 101b
  • the center O 3 of the workpiece side alignment mark 103 is It is a cross-shaped intersection.
  • the non-exposure light that acquires the amount of deviation between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 does not expose the photosensitive material applied to the workpiece W, before the exposure of the workpiece W, and Alignment adjustment can be performed while checking the amount of deviation between the projected image 102 and the workpiece side alignment mark 103 for each shot, which was difficult with a conventional exposure apparatus. Furthermore, it is possible to adjust the alignment while grasping the movement of the projection image 102 of the mask side alignment mark 101 due to the change of the optical axis by each mirror bending mechanism 70 of the plane mirror 68 with the alignment camera 110.
  • the exposure control shutter unit 64 is moved. Once closed, the ultraviolet cut filter 90 is retracted from the optical path EL, and the long wavelength cut filter 95 is inserted into the optical path EL. Further, the alignment camera 110 is retracted from the optical path EL as necessary (step S6). Thereby, the light emitted from the lamp unit 60 becomes exposure light having the first wavelength region, and the workpiece W can be irradiated with the exposure light.
  • the exposure control shutter unit 64 is opened again, and the pattern formed on the mask M by exposure light is exposed and transferred to the workpiece W (step S7).
  • step S3 the bending correction of the plane mirror 63 is performed after the mask M is moved.
  • the movement of the mask M and the bending correction of the plane mirror 63 may be performed simultaneously.
  • the amount of deviation between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 may be acquired again after the mask M is moved and before the plane mirror 63 is bent.
  • step S5 if the deviation amount exceeds the allowable range, the process returns to step S3, and in step S3, the plurality of alignment marks are comprehensively determined and the mask M is moved or the plane mirror 63 is moved. It may be selected whether to perform the bending correction.
  • the transmission wavelength is selected by alternately inserting and withdrawing the light emitted from the same lamp unit 60 on the optical path by the ultraviolet cut filter 90 and the long wavelength cut filter 95.
  • the optical axes of the exposure light and the non-exposure light are the same. Therefore, there is no misalignment between the optical axes at the time of alignment adjustment and at the time of exposure, and in the actual exposure, the positional deviation of the pattern due to the misalignment of the optical axis is prevented, and high accuracy is achieved. Exposure is possible.
  • non-exposure light having a second wavelength region, which is different from exposure light having a first wavelength region that the photosensitive material of the workpiece W is exposed to is coaxial with the optical axis of the light from the lamp unit 60.
  • the projection image 102 of the alignment mark 101 on the mask M projected onto the workpiece W and the alignment mark 103 on the workpiece W side can be simultaneously imaged using the non-exposure light illuminating means 100 that irradiates the workpiece W and the non-exposure light.
  • An alignment camera 110 Accordingly, the non-exposure light that is coaxial with the optical axis of the light from the lamp unit 60 serving as the exposure light is used to generate the mask M by the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side.
  • the relative movement of the mask M and the workpiece W and the local change of the curvature of the reflecting surface of the plane mirror 68 are realized without performing trial exposure while confirming the position of the workpiece W. be able to.
  • there is no misalignment between the optical axes during alignment adjustment and during exposure and in actual exposure, pattern misalignment due to the misalignment of the optical axis is prevented and exposure accuracy is greatly increased. To improve.
  • the non-exposure light illuminating means 100 is disposed on the optical path of the light from the lamp unit 60 so as to freely advance and retreat, and blocks the first wavelength region of the light from the lamp unit 60 so that the non-exposure light illuminating means 100 Is provided with an ultraviolet cut filter 90 that makes the light of the second wavelength region non-exposure light having the second wavelength region, so that the exposure light and the non-exposure light can be easily switched by simply moving the ultraviolet cut filter 90 forward and backward on the optical path EL. Can do.
  • the wavelength cut filter 95 is further provided, normal exposure can be performed by cutting light in the second wavelength region, and the lamp unit 60 can be shared while switching between non-exposure light and exposure light.
  • the proximity exposure method using the proximity exposure apparatus PE described above is projected onto the workpiece W while irradiating the non-exposure light by the non-exposure light illuminating means 100.
  • the step of simultaneously imaging the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side with the alignment camera 110, and the alignment of the projection image 102 of the alignment mark 101 on the mask M side with the workpiece W side A step of correcting the curvature of the plane mirror 68 by the mirror bending mechanism 70 so that the respective centers O1 and O3 of the mark 103 coincide with each other and moving the mask M and the workpiece W relative to each other.
  • the proximity exposure apparatus PE of the second embodiment will be described with reference to FIG. In FIG. 8, the plane mirror 66 and the collimation mirror 67 shown in FIG. 2 are simply shown as lenses.
  • the proximity exposure apparatus PE of the second embodiment is different from the proximity exposure apparatus PE of the first embodiment in the non-exposure light illumination means.
  • the other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
  • a ring-shaped LED illumination unit 121 is disposed at a position conjugate with the lamp unit 60 so as to surround the integrator 65. That is, the center of the LED illumination unit 121 is coincident with the center of the integrator 65, and the optical axis of the light emitted from the lamp unit 60 is coincident with the optical axis of the light emitted from the LED illumination unit 121. ing. Thereby, the pattern shift
  • the LED illumination unit 121 may be composed of an LED of a type that emits non-exposure light having the second wavelength region and does not emit exposure light having the first wavelength region.
  • An ultraviolet cut filter that cuts a wavelength of less than 480 nm may be disposed on the front surface to cut exposure light having the first wavelength region.
  • the light emitted from the LED illumination unit 121 does not expose the photosensitive material applied to the workpiece W, and the projected image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side are aligned with the alignment camera 110.
  • the mask M is moved so that the centers O 1 and O 3 of the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side coincide with each other, and the mirror bending mechanism 70
  • the curvature of the plane mirror 68 is corrected to adjust the alignment.
  • the non-exposure light illuminating means 120 may be disposed at a position conjugate with the lamp unit 60 and is not limited to the periphery of the integrator 65.
  • a mirror 122 that can advance and retreat on the optical path EL is disposed on the optical path EL from the lamp unit 60 to the integrator 65, and the mirror 122 that has advanced on the optical path EL exits from the lamp unit 60.
  • the light emitted from the LED illumination unit 121 may be reflected and guided onto the optical path EL.
  • the non-exposure light illuminating means 120 may be any light source that can emit non-exposure light, and is not limited to the LED illumination unit 121.
  • the ultraviolet cut filter 90 that can freely move back and forth is not provided between the lamp unit 60 and the flat mirror 63 as in the first embodiment.
  • a film that cuts a wavelength of 480 nm or more including the second wavelength region may be formed on the plane mirror 63.
  • the non-exposure light illumination means 120 is provided separately from the lamp unit 60 and has the second wavelength region. Since the LED illumination unit 121 serving as a non-exposure light source that emits non-exposure light is provided, alignment adjustment can be performed without exposing the photosensitive material applied to the workpiece W.
  • the LED illumination unit 121 is disposed at a position conjugate with the lamp unit 60, highly accurate alignment adjustment can be realized, and the light emitted from the LED illumination unit 121 and the light emitted from the lamp unit 60 The pattern deviation at the time of exposure due to the deviation of the optical axis is prevented.
  • Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
  • the proximity exposure apparatus PE of the third embodiment differs from that of the first embodiment in the arrangement of the alignment camera of the non-exposure light illumination means.
  • the other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
  • the half mirror 130 is disposed on the optical path EL between the plane mirror 68 and the mask M, and the alignment camera 110 is out of the optical path EL of light. It is arranged above the mask M and on the side of the optical path EL.
  • the alignment camera 110 simultaneously images the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side through the half mirror 130.
  • the half mirror disposed on the optical path of the non-exposure light between the plane mirror 68 and the mask M. 130, and the alignment camera 110 simultaneously images the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side via the half mirror 130, so that the configuration of the work stage 2 is achieved.
  • the alignment camera 110 can be used to achieve highly accurate alignment adjustment.
  • Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
  • the proximity exposure apparatus PE of the fourth embodiment is different from that of the first embodiment in the configuration of the light irradiation apparatus 3 for proximity exposure apparatus.
  • the other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
  • the ultraviolet cut filter 90 functions as a shutter.
  • the ultraviolet cut filter 90 of the present embodiment retracts the light from the lamp unit 60 from the light path EL, thereby exposing the exposure light having the first wavelength region of the light from the lamp unit 60 through the mask M.
  • a shutter that blocks the exposure light is configured.
  • the present embodiment does not include the long wavelength cut filter 95 of the first embodiment, and on the other hand, advances and retreats on the optical path EL of the light from the lamp unit 60 between the lamp unit 60 and the ultraviolet cut filter 90.
  • a flexible pre-shutter 96 is provided. The pre-shutter 96 is configured to advance onto the optical path EL and block all light from the lamp unit 60 when an operator works in the chamber during maintenance or the like.
  • step S0a the alignment camera 110 is moved. By making it approach on optical path EL, it transfers to alignment operation of step S2, and step S1 of 1st Embodiment is not performed.
  • step S2 imaging by the alignment camera 110 (step S2), movement of the mask M and mirror correction (step S3), and confirmation of the shift amount including imaging (steps S4 and S5) are performed, and alignment is performed. Complete the adjustment.
  • step S6a when shifting to the exposure operation, in step S6a, the alignment camera 110 is first retracted from the optical path EL, and then the ultraviolet cut filter 90 is retracted in step S7a. The pattern formed on the mask M is exposed and transferred onto the workpiece W by light.
  • the non-exposure light of the present embodiment has the second wavelength region as in the first embodiment, but the exposure light of the present embodiment has both the first and second wavelength regions.
  • the ultraviolet cut filter 90 also serves as a shutter and does not include the long wavelength cut filter 95, the exposure method of the present embodiment can shorten the tact time.
  • Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
  • the proximity exposure apparatus PE of the fifth embodiment is different from that of the first embodiment in the configuration and alignment adjustment of the light irradiation apparatus 3 for proximity exposure apparatus.
  • the other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
  • 13 shows the outer shape of the workpiece W and the workpiece-side alignment mark 103, the workpiece W includes a rectangular exposure region (not shown) corresponding to the exposure pattern of the mask M. It is considered that the outer shape is substantially similar to the rectangular exposure region.
  • the mask side alignment mark 101 and the workpiece side alignment mark 103 are not only the four corners A1 to A4 around the rectangular exposure areas of the mask M and the workpiece W, but also the four corners A1 to A4. It is provided at an intermediate position of each side connecting A4 or in the vicinity thereof B1 to B4 and C1 to C4.
  • the control unit 40 confirms the shift amount at both the four corners A1 to A4 and the vicinity of the midpoint positions B1 to B4 and C1 to C4 of each side, the movement of the mask M in the mask driving unit 28, the mirror Both the curvature correction of the plane mirror 68 by the bending mechanism 70 is performed.
  • the eight camera units 140 each having the alignment camera 110 and the half mirror 130 described in the third embodiment are respectively moved in the longitudinal direction or the short direction of the workpiece W by a driving mechanism (not shown). It is attached to each rail 141 so that it can move and can move back and forth in the exposure area.
  • the eight camera units 140 are respectively moved, and the mask side alignment is performed at a total of 12 positions, ie, the four corners A1 to A4 of the workpiece W, and the vicinity of the middle points B1 to B4 and C1 to C4 of each side.
  • the projected image 102 of the mark 101 and the workpiece side alignment mark 103 are imaged.
  • the number of camera units 140 may be set to correspond to the number of imaging locations.
  • the projected image 102 of the mask side alignment mark 101 and the work side alignment mark 103 may be imaged at one midpoint of each side of the work W.
  • the control unit 40 moves the mask M based on the deviation amount between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 at the four corners A1 to A4 of the work W, and performs alignment adjustment.
  • the plane mirror 63 is based on the shift amount between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 in the vicinity of the middle points B1 to B4 and C1 to C4 Bending correction is performed.
  • the alignment camera 110 also measures the deviation amounts in the vicinity of the midpoints B1 to B4 and C1 to C4, and performs the bending correction of the plane mirror 63 based on the measured deviation amounts, thereby achieving higher accuracy. Exposure is possible.
  • the tact time is increased because the alignment camera 110 performs imaging in the vicinity of the midpoints B1 to B4 and C1 to C4 of each side of the workpiece W while moving the camera unit 140. Is concerned.
  • the mask-side alignment mark 101 and the workpiece-side alignment mark 103 are imaged at a total of twelve locations, two in the vicinity of the middle point B1 to B4 and C1 to C4. Based on the above, the average shape of the workpiece W is obtained.
  • the alignment camera 110 does not take an image in the vicinity of the midpoint of the work W, and takes an image at the four corners A1 to A4 of the work W. Alignment adjustment is performed based on the deviation amounts of the four corners A1 to A4 of W and the average shape of the workpiece W.
  • the control unit 40 determines the mask M based on the shift amount between the projection image 102 of the mask side alignment mark 101 and the work side alignment mark 103 at the four corners A1 to A4 of the work W. To adjust the x, y, and ⁇ directions. Further, based on the shift amounts at the four corners A1 to A4, the mirror bending mechanism is arranged so that the projection image 102 of the mask side alignment mark 101 and the centers of the workpiece side alignment marks 103 at the four corners A1 to A4 coincide with each other. 70, and the magnitude and direction of the bending correction of the plane mirror 63 by the mirror bending mechanism 70 at the four corners A1 to A4 are applied to other positions of the average shape of the workpiece W.
  • bending correction of the plane mirror 63 is performed.
  • the magnitude of the bending correction of the flat mirror 63 at the four corners A1 to A4 is different. For this reason, in the correction at the midpoint, after the shift amounts of the four corners A1 to A4 on both sides of the midpoint are divided into the x-direction component and the y-direction component, the average value of two points is used for each component. Further, as a correction amount at the midpoint, a coefficient may be further applied to the average value of these two points.
  • the alignment of the remaining workpieces W can be corrected based on the average shape obtained by imaging a predetermined number of workpieces W including the distortion shape at the midpoint, and therefore the influence of the tact time High-precision exposure is possible while suppressing
  • Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
  • the alignment camera 110 images the mask side alignment mark 101 and the workpiece side alignment mark 103 during alignment adjustment.
  • the alignment camera 110 captures the workpiece side alignment mark.
  • a pixel (pixel alignment) exposed and transferred to the workpiece W in advance may be imaged. That is, pixel alignment constitutes the four corners of the exposure area.
  • Light irradiation equipment (light irradiation equipment for proximity exposure equipment) 60 Lamp unit (light source) 63, 66 Plane mirror (reflector) 65 Integrator 67 Collimation Mirror (Reflector) 68 Flat mirror 70 Mirror bending mechanism 90 UV cut filter (cut filter) 95 Long wavelength cut filter (other cut filters) 100, 120 Non-exposure light illuminating means 101 Mask side alignment mark 102 Projection image of mask side alignment mark 103 Work side alignment mark 110 Alignment camera 121 LED illumination unit (non-exposure light source) 130 Half mirror M Mask O 1 Center of projection image of alignment mark on mask 1 O 3 Center of alignment mark on work side PE Proximity exposure apparatus W Work

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A proximity exposure device comprises: a non-exposure light illumination means (100), arranged closer to a lamp unit (60) than to a flat mirror (68), for irradiating non-exposure light coaxially with the optical axis of light from the lamp unit (60), the non-exposure light having a second wavelength region and being different from exposure light having a first wavelength region that induces reaction in the photosensitive material of a workpiece (W); and an alignment camera (110) capable of simultaneously capturing a projected image (102) of an alignment mark (101) in a mask (M) projected onto the workpiece (W) using the non-exposure light and an alignment mark (103) on the workpiece (W). Thus, it is possible to achieve highly accurate alignment positioning without the need for test exposure while significantly improving exposure accuracy.

Description

近接露光装置、近接露光方法、及び近接露光装置用光照射装置Proximity exposure apparatus, proximity exposure method, and light irradiation apparatus for proximity exposure apparatus
 本発明は、近接露光装置、近接露光方法、及び近接露光装置用光照射装置に関する。 The present invention relates to a proximity exposure apparatus, a proximity exposure method, and a light irradiation apparatus for a proximity exposure apparatus.
 近接露光装置では、感光材が塗布された被露光基板に、露光パターンが形成されたマスクを数10μm~数100μmのギャップで近接配置し、光照明装置からの露光光をマスクを介して照射して露光パターンを被露光基板に転写する。また、近接露光装置に適用される光照明装置では、マスクに照射される光の照度の均一性を向上するため、インテグレータが使用されている。 In a proximity exposure apparatus, a mask on which an exposure pattern is formed is placed close to a substrate to be exposed coated with a photosensitive material with a gap of several tens of μm to several hundreds of μm, and exposure light from a light illumination device is irradiated through the mask. The exposure pattern is transferred to the substrate to be exposed. Further, in the light illumination device applied to the proximity exposure apparatus, an integrator is used in order to improve the uniformity of the illuminance of the light irradiated to the mask.
 従来の近接露光装置では、反射鏡の曲率を補正する曲率補正機構が照明装置に設けられたものがあり、反射鏡を湾曲させて反射鏡のデクリネーション角を変化させることで、露光パターンの形状を補正し、高精度な露光結果を得るものが考案されている(例えば、特許文献1、2参照。)。 In a conventional proximity exposure apparatus, there is an illumination apparatus provided with a curvature correction mechanism that corrects the curvature of the reflecting mirror. By changing the declination angle of the reflecting mirror by bending the reflecting mirror, the exposure pattern can be changed. A device that corrects the shape and obtains a highly accurate exposure result has been devised (see, for example, Patent Documents 1 and 2).
 特許文献1では、基準となるキャリブレーションマスクを用いて露光用照明光の平行度を、光路反射ミラーの反射面の曲率を局部的に変えて補正する。次に、露光用マスクを用いて、基板にパターンの焼き付けを行い、転写されたパターンを測定し、光路反射ミラーの曲率を局部的に変えてマスクの伸縮を補正する。 In Patent Document 1, the parallelism of exposure illumination light is corrected by locally changing the curvature of the reflecting surface of the optical path reflecting mirror using a reference calibration mask. Next, a pattern is printed on the substrate using an exposure mask, the transferred pattern is measured, and the expansion and contraction of the mask is corrected by locally changing the curvature of the optical path reflecting mirror.
 特許文献2では、コリメーションミラーと、該コリメーションミラーによって反射されるパターン露光用の光の照射角度を変更する照射角度変更機構と、を有し、マスクのアライメントマークと基板のアライメントマークとのずれ量、及びマスクと基板とのギャップに基づいて、照射角度変更機構を作動させてコリメーションミラーを変形させる近接露光装置が知られている。 Patent Document 2 includes a collimation mirror and an irradiation angle changing mechanism that changes an irradiation angle of light for pattern exposure reflected by the collimation mirror, and a deviation amount between a mask alignment mark and a substrate alignment mark A proximity exposure apparatus is known in which a collimation mirror is deformed by operating an irradiation angle changing mechanism based on a gap between a mask and a substrate.
 また、特許文献3では、第1の光照射部の光によりマスクのアライメントマークの投影像を受像し、画像処理してその相対位置を検出/記憶し、第2の光照射部の光によりワークのアライメントマークを受像・画像処理して相対位置を検出/記憶し、両アライメントマークが重なるようにワークおよび/またはマスクを移動させてマスクとワークの位置合わせを精度良く行うマスクとワークの自動位置合わせ方法および装置が記載されている。 Further, in Patent Document 3, the projection image of the alignment mark of the mask is received by the light of the first light irradiation unit, the image processing is performed to detect / store the relative position, and the workpiece is detected by the light of the second light irradiation unit. Detect and store the relative position by receiving and processing the alignment mark of the mask and moving the workpiece and / or mask so that both alignment marks overlap, and the mask and workpiece are positioned accurately. A combination method and apparatus is described.
日本国特開平7-201711号公報Japanese Unexamined Patent Publication No. 7-201711 日本国特許第5311341号公報Japanese Patent No. 531341 日本国特開平8-234452号公報Japanese Laid-Open Patent Publication No. 8-234452
 ところで、特許文献1によれば、キャリブレーションマスクが別途必要であり、また、最終的な露光位置は、一度露光(試し露光)した後でしか得ることができないという課題がある。また、特許文献2によれば、アライメント調整時の照明手段について具体的に記載されていない。さらに、特許文献3によれば、ワークおよび/またはマスクの移動によりマスクとワークの位置合わせを行っており、マスクやワークの局部的な歪を補正することを考慮したものではなかった。 By the way, according to Patent Document 1, a calibration mask is required separately, and there is a problem that a final exposure position can be obtained only after exposure (trial exposure) once. Further, according to Patent Document 2, the illumination means at the time of alignment adjustment is not specifically described. Furthermore, according to Patent Document 3, the alignment of the mask and the workpiece is performed by moving the workpiece and / or the mask, and it is not considered to correct the local distortion of the mask or the workpiece.
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、試し露光を行うことなく高精度なアライメント調整を実現することができると共に、露光精度を大幅に向上することができる近接露光装置、近接露光方法、及び近接露光装置用光照射装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to realize proximity adjustment capable of realizing high-precision alignment adjustment without performing trial exposure and greatly improving exposure accuracy. An exposure apparatus, a proximity exposure method, and a light irradiation apparatus for a proximity exposure apparatus are provided.
 本発明の上記目的は、下記の構成により達成される。
(1) 光源と、
 該光源からの光を均一にして出射するインテグレータと、
 反射面の曲率を変更可能なミラー曲げ機構を備え、前記インテグレータから出射された前記光を反射する反射鏡と、
を備え、
 露光パターンが形成されたマスクとワークとをギャップを介して近接配置し、前記マスクを介して前記反射鏡から出射された光を前記ワーク上に照射して前記露光パターンを前記ワークに露光転写するための近接露光装置であって、
 前記反射鏡よりも前記光源側に配置され、前記ワークの感光材が感光する第1の波長領域を有する露光光と異なる、第2の波長領域を備える非露光光を、前記光源からの光の光軸と同軸に照射する非露光光照明手段と、
 前記非露光光を用いて、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像可能なアライメントカメラと、
をさらに備えることを特徴とする近接露光装置。
(2) 前記非露光光照明手段は、前記光源からの光の前記光路上に進退自在に配置され、前記光源からの光の前記第1の波長領域を遮断することで、通過した前記光源からの光を前記第2の波長領域を備える前記非露光光とするカットフィルタを具備することを特徴とする(1)に記載の近接露光装置。
(3) 前記光源からの光の前記光路上に進退自在に配置され、前記第2の波長領域を遮断することで、通過した前記光源からの光を前記第1の波長領域を備える前記露光光とする他のカットフィルタをさらに備えることを特徴とする(2)に記載の近接露光装置。
(4) 前記カットフィルタは、前記光源からの光の前記光路上から退避することで、前記光源からの光の前記第1の波長領域を備える前記露光光を、前記マスクを介して前記ワーク上に照射し、前記光路上に進出することで、該露光光を遮るシャッターを構成することを特徴とする(2)に記載の近接露光装置。
(5) 前記非露光光照明手段は、前記光源と別体に設けられ、前記第2の波長領域を備える前記非露光光を照射する非露光用光源を具備する(1)に記載の近接露光装置。
(6) 前記非露光用光源は、前記光源と共役な位置に配置されることを特徴とする(5)に記載の近接露光装置。
(7) 前記反射鏡と前記マスクとの間で、前記非露光光の光路上に配置されるハーフミラーをさらに備え、
 前記アライメントカメラは、前記ハーフミラーを介して、前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする(1)~(6)のいずれかに記載の近接露光装置。
(8) 前記ワークは、前記マスクの露光パターンに対応する、矩形状の露光領域を備え、
 前記アライメントカメラは、前記露光領域又は該露光領域周囲の四隅、及び該四隅を結ぶ各辺における少なくとも一点において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする(1)~(7)のいずれかに記載の近接露光装置。
(9) 前記ワークと前記マスクとを相対移動する移動機構と、
 撮像された前記マスク側のアライメントマークの投影像と前記ワーク側のアライメントマークの各中心とが一致するように、前記ミラー曲げ機構により前記反射鏡の曲率を補正すると共に、前記移動機構により前記マスクと前記ワークとを相対移動する制御部と、
を備えることを特徴とする(1)~(8)のいずれかに記載の近接露光装置。
(10) 前記ワークは、前記マスクの露光パターンに対応する、矩形状の露光領域を備え、
 前記アライメントカメラは、所定の枚数の前記ワークの露光時において、前記露光領域又は該露光領域周囲の四隅、及び該四隅を結ぶ各辺における少なくとも一点において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像し、且つ、
 前記所定の枚数以降の前記ワークの露光時において、前記アライメントカメラは、前記ワークの四隅において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像し、
 前記制御部は、前記所定の枚数のワークにおける、前記アライメントカメラで撮像された、前記四隅及び各辺における少なくとも一点の各位置でのずれ量に基づいて、前記ワークの平均形状を決定し、且つ、
 前記所定の枚数以降の前記ワークの露光時において、前記ミラー曲げ機構による前記反射鏡の曲率補正と、前記マスクと前記ワークとの相対移動とを、前記アライメントカメラで撮像された前記四隅でのずれ量と、前記ワークの平均形状とに基づいて行うことを特徴とする(9)に記載の近接露光装置。
(11) (1)~(10)のいずれかに記載の近接露光装置を用いた近接露光方法であって、
 前記非露光光照明手段によって前記非露光光を照射しながら、前記ワーク上に投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークと、を前記アライメントカメラで同時に撮像する工程と、
 前記マスク側のアライメントマークの投影像と前記ワーク側のアライメントマークの各中心とが一致するように、前記ミラー曲げ機構により前記反射鏡の曲率を補正すると共に、前記マスクと前記ワークとを相対移動する工程と、
を備えることを特徴とする近接露光方法。
(12) 光源と、
 該光源からの光を均一にして出射するインテグレータと、
 反射面の曲率を変更可能なミラー曲げ機構を備え、前記インテグレータから出射された前記光を反射する反射鏡と、
を備え、
 露光パターンが形成されたマスクとワークとをギャップを介して近接配置し、前記マスクを介して前記反射鏡から出射された光を前記ワーク上に照射して前記露光パターンを前記ワークに露光転写するための近接露光装置用光照射装置であって、
 前記反射鏡よりも前記光源側に配置され、前記ワークの感光材が感光する第1の波長領域を有する露光光と異なる、第2の波長領域を備える非露光光を、前記光源からの光の光軸と同軸に照射する非露光光照明手段と、
 前記非露光光を用いて、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像可能なアライメントカメラと、
をさらに備えることを特徴とする近接露光装置用光照射装置。
(13) 前記非露光光照明手段は、前記光源からの光の前記光路上に進退自在に配置され、前記光源からの光の前記第1の波長領域を遮断することで、通過した前記光源からの光を前記第2の波長領域を備える前記非露光光とするカットフィルタを具備することを特徴とする(12)に記載の近接露光装置用光照射装置。
(14) 前記光源からの光の前記光路上に進退自在に配置され、前記第2の波長領域を遮断することで、通過した前記光源からの光を前記第1の波長領域を備える前記露光光とする他のカットフィルタをさらに備えることを特徴とする(13)に記載の近接露光装置用光照射装置。
(15) 前記カットフィルタは、前記光源からの光の前記光路上から退避することで、前記光源からの光の前記第1の波長領域を備える前記露光光を、前記マスクを介して前記ワーク上に照射し、前記光路上に進出することで、該露光光を遮るシャッターを構成することを特徴とする(13)に記載の近接露光装置用光照射装置。
(16) 前記非露光光照明手段は、前記光源と別体に設けられ、前記第2の波長領域を備える前記非露光光を照射する非露光用光源を具備する(12)に記載の近接露光装置用光照射装置。
(17) 前記非露光用光源は、前記光源と共役な位置に配置されることを特徴とする(16)に記載の近接露光装置用光照射装置。
(18) 前記反射鏡と前記マスクとの間で、前記非露光光の光路上に配置されるハーフミラーをさらに備え、
 前記アライメントカメラは、前記ハーフミラーを介して、前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする(12)~(17)のいずれかに記載の近接露光装置用光照射装置。
(19) 前記ワークは、前記マスクの露光パターンに対応する、矩形状の露光領域を備え、
 前記アライメントカメラは、前記露光領域又は該露光領域周囲の四隅、及び該四隅を結ぶ各辺における少なくとも一点において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする(12)~(18)のいずれかに記載の近接露光装置用光照射装置。
The above object of the present invention can be achieved by the following constitution.
(1) a light source;
An integrator that uniformly emits light from the light source;
A mirror bending mechanism capable of changing the curvature of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator;
With
A mask on which an exposure pattern is formed and a work are arranged close to each other through a gap, and light emitted from the reflecting mirror is irradiated onto the work through the mask to transfer the exposure pattern onto the work. A proximity exposure apparatus for
Non-exposure light having a second wavelength region, which is different from exposure light having a first wavelength region that is disposed on the light source side of the reflecting mirror and is exposed to the photosensitive material of the workpiece, Non-exposure light illumination means for irradiating coaxially with the optical axis;
An alignment camera that can simultaneously image the projected image of the mask-side alignment mark projected onto the workpiece and the workpiece-side alignment mark using the non-exposure light;
A proximity exposure apparatus, further comprising:
(2) The non-exposure light illuminating means is disposed so as to freely advance and retreat on the optical path of the light from the light source, and blocks the first wavelength region of the light from the light source, thereby allowing the non-exposure light illumination means to The proximity exposure apparatus according to (1), further comprising: a cut filter that makes the non-exposure light having the second wavelength region the non-exposure light.
(3) The exposure light that is disposed on the optical path of the light from the light source so as to be able to advance and retreat and blocks the second wavelength region, thereby passing the light from the light source through the first wavelength region. The proximity exposure apparatus according to (2), further including another cut filter.
(4) The cut filter retracts the light from the light source from the optical path so that the exposure light having the first wavelength region of the light from the light source passes through the mask onto the workpiece. The proximity exposure apparatus according to (2), wherein a shutter for blocking exposure light is configured by irradiating to the optical path and advancing on the optical path.
(5) The proximity exposure according to (1), wherein the non-exposure light illuminating unit includes a non-exposure light source that is provided separately from the light source and irradiates the non-exposure light having the second wavelength region. apparatus.
(6) The proximity exposure apparatus according to (5), wherein the non-exposure light source is disposed at a position conjugate with the light source.
(7) It further comprises a half mirror disposed on the optical path of the non-exposure light between the reflecting mirror and the mask,
In any one of (1) to (6), the alignment camera images the projected image of the mask side alignment mark and the workpiece side alignment mark simultaneously through the half mirror. The proximity exposure apparatus described.
(8) The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
The alignment camera includes a projected image of the alignment mark on the mask projected onto the workpiece and an alignment on the workpiece side at at least one point on each of the exposure region or the four corners around the exposure region and each side connecting the four corners. The proximity exposure apparatus according to any one of (1) to (7), wherein a mark is imaged simultaneously.
(9) a moving mechanism for relatively moving the workpiece and the mask;
The mirror bending mechanism corrects the curvature of the reflecting mirror so that the projected projection image of the mask-side alignment mark and the center of the workpiece-side alignment mark coincide with each other, and the moving mechanism corrects the mask. And a control unit for relatively moving the workpiece and the workpiece,
The proximity exposure apparatus according to any one of (1) to (8), comprising:
(10) The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
The alignment camera is configured to align the mask side projected onto the workpiece at least one point in the exposure area or four corners around the exposure area and each side connecting the four corners when exposing a predetermined number of the workpieces. Simultaneously imaging the projected image of the mark and the alignment mark on the workpiece side; and
At the time of exposure of the workpiece after the predetermined number, the alignment camera simultaneously displays the projected image of the mask side alignment mark projected onto the workpiece and the workpiece side alignment mark at the four corners of the workpiece. Image
The control unit determines an average shape of the workpiece based on a shift amount at each position of at least one of the four corners and each side of the predetermined number of workpieces imaged by the alignment camera; and ,
At the time of exposure of the workpiece after the predetermined number, the curvature correction of the reflecting mirror by the mirror bending mechanism and the relative movement between the mask and the workpiece are shifted at the four corners imaged by the alignment camera. The proximity exposure apparatus according to (9), which is performed based on an amount and an average shape of the workpiece.
(11) A proximity exposure method using the proximity exposure apparatus according to any one of (1) to (10),
While irradiating the non-exposure light by the non-exposure light illuminating means, the projection image of the mask side alignment mark projected onto the workpiece and the alignment mark on the workpiece side are simultaneously imaged by the alignment camera. Process,
The mirror bending mechanism corrects the curvature of the reflecting mirror so that the projected image of the mask side alignment mark coincides with the center of the workpiece side alignment mark, and the mask and the workpiece are relatively moved. And a process of
A proximity exposure method comprising:
(12) a light source;
An integrator that uniformly emits light from the light source;
A mirror bending mechanism capable of changing the curvature of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator;
With
A mask on which an exposure pattern is formed and a work are arranged close to each other through a gap, and light emitted from the reflecting mirror is irradiated onto the work through the mask to transfer the exposure pattern onto the work. A light irradiation device for a proximity exposure apparatus for
Non-exposure light having a second wavelength region, which is different from exposure light having a first wavelength region that is disposed on the light source side of the reflecting mirror and is exposed to the photosensitive material of the workpiece, Non-exposure light illumination means for irradiating coaxially with the optical axis;
An alignment camera that can simultaneously image the projected image of the mask-side alignment mark projected onto the workpiece and the workpiece-side alignment mark using the non-exposure light;
A light irradiation apparatus for a proximity exposure apparatus, further comprising:
(13) The non-exposure light illuminating means is disposed so as to freely advance and retreat on the optical path of the light from the light source, and cuts off the first wavelength region of the light from the light source, thereby allowing the non-exposure light illumination means to The light irradiation apparatus for a proximity exposure apparatus according to (12), further comprising: a cut filter that uses the non-exposure light having the second wavelength region as the non-exposure light.
(14) The exposure light that is disposed on the optical path of the light from the light source so as to freely advance and retreat and blocks the second wavelength region, thereby passing the light from the light source having the first wavelength region. The light irradiation apparatus for a proximity exposure apparatus according to (13), further comprising: another cut filter.
(15) The cut filter retracts the light from the light source from the optical path so that the exposure light having the first wavelength region of the light from the light source passes through the mask onto the workpiece. The light irradiation apparatus for a proximity exposure apparatus according to (13), wherein a shutter that blocks the exposure light is configured by irradiating to the optical path and advancing on the optical path.
(16) The proximity exposure according to (12), wherein the non-exposure light illuminating unit includes a non-exposure light source that is provided separately from the light source and irradiates the non-exposure light having the second wavelength region. Light irradiation device for equipment.
(17) The light irradiation apparatus for a proximity exposure apparatus according to (16), wherein the non-exposure light source is arranged at a position conjugate with the light source.
(18) It further comprises a half mirror disposed on the optical path of the non-exposure light between the reflecting mirror and the mask,
In any one of (12) to (17), the alignment camera images the projected image of the mask side alignment mark and the workpiece side alignment mark simultaneously through the half mirror. The light irradiation apparatus for proximity | contact exposure apparatuses of description.
(19) The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
The alignment camera includes a projected image of the alignment mark on the mask projected onto the workpiece and an alignment on the workpiece side at at least one point on each of the exposure region or the four corners around the exposure region and each side connecting the four corners. The light irradiation apparatus for a proximity exposure apparatus according to any one of (12) to (18), wherein a mark is imaged simultaneously.
 本発明の近接露光装置及び近接露光装置用光照射装置によれば、光源と、該光源からの光を均一にして出射するインテグレータと、反射面の曲率を変更可能なミラー曲げ機構を備え、前記インテグレータから出射された前記光を反射する反射鏡と、反射鏡よりも光源側に配置され、ワークの感光材が感光する第1の波長領域を有する露光光と異なる、第2の波長領域を備える非露光光を、光源からの光の光軸と同軸に照射する非露光光照明手段と、非露光光を用いて、ワークに投影されたマスク側のアライメントマークの投影像と、ワーク側のアライメントマークとを同時に撮像可能なアライメントカメラと、を備える。これにより、露光光となる光源からの光の光軸と同軸の非露光光を用いて、試し露光を行うことなく、高精度でアライメント調整を実現することができる。したがって、露光光と非露光光の互いの光軸のずれが発生することがなく、実際の露光の際に、該光軸のずれに起因するパターンの位置ずれが防止され、露光精度が大幅に向上する。 According to the proximity exposure apparatus and the proximity exposure apparatus light irradiation apparatus of the present invention, the light source, the integrator for uniformly emitting the light from the light source, and a mirror bending mechanism capable of changing the curvature of the reflection surface, A reflecting mirror that reflects the light emitted from the integrator, and a second wavelength region that is disposed closer to the light source than the reflecting mirror and that is different from the exposure light having the first wavelength region that the photosensitive material of the workpiece is exposed to. Non-exposure light illuminating means for irradiating non-exposure light coaxially with the optical axis of the light from the light source, a projection image of the mask-side alignment mark projected on the workpiece using the non-exposure light, and workpiece-side alignment An alignment camera capable of simultaneously imaging the mark. Thereby, alignment adjustment can be realized with high accuracy without performing trial exposure using non-exposure light coaxial with the optical axis of light from a light source serving as exposure light. Therefore, the optical axes of the exposure light and the non-exposure light are not shifted from each other, and the pattern positional shift caused by the shift of the optical axis is prevented in actual exposure, and the exposure accuracy is greatly increased. improves.
 また、本発明の近接露光方法によれば、非露光光照明手段によって非露光光を照射しながら、ワーク上に投影されたマスク側のアライメントマークの投影像と、ワーク側のアライメントマークと、をアライメントカメラで同時に撮像する工程と、マスク側のアライメントマークの投影像とワーク側のアライメントマークの各中心とが一致するように、ミラー曲げ機構により反射鏡の曲率を補正すると共に、マスクとワークとを相対移動する工程と、を備える。これにより、試し露光を行うことなく高精度なアライメント調整を実現することができると共に、露光精度を大幅に向上することができる。 Further, according to the proximity exposure method of the present invention, the projection image of the mask side alignment mark projected on the workpiece while irradiating the non-exposure light by the non-exposure light illuminating means, and the alignment mark on the workpiece side, The curvature of the reflecting mirror is corrected by a mirror bending mechanism so that the projected image of the alignment camera at the same time and the projected image of the alignment mark on the mask side coincide with the center of the alignment mark on the workpiece side. And a relative movement step. As a result, highly accurate alignment adjustment can be realized without performing trial exposure, and the exposure accuracy can be greatly improved.
本発明の第1実施形態に係る近接露光装置の正面図である。1 is a front view of a proximity exposure apparatus according to a first embodiment of the present invention. 図1に示す近接露光装置に適用される光照射装置の構成を示す側面図である。It is a side view which shows the structure of the light irradiation apparatus applied to the proximity exposure apparatus shown in FIG. (a)は、マスク側のアライメントマークの平面図であり、(b)は、ワーク側のアライメントマークの平面図である。(A) is a plan view of the alignment mark on the mask side, and (b) is a plan view of the alignment mark on the workpiece side. (a)は、ミラー曲げ機構によりアライメント調整される前の状態を示す光照射装置の要部側面図、(b)は、アライメント調整される前のマスク側のアライメントマークの投影像とワーク側のアライメントマークとの位置関係を示す説明図である。(A) is a side view of the main part of the light irradiation device showing a state before alignment adjustment by the mirror bending mechanism, and (b) is a projection image of the alignment mark on the mask side before alignment adjustment and the workpiece side It is explanatory drawing which shows the positional relationship with an alignment mark. (a)は、ミラー曲げ機構によりアライメント調整される状態を示す光照射装置の要部側面図、(b)は、アライメント調整されたマスク側のアライメントマークの投影像とワーク側のアライメントマークとの位置関係を示す説明図である。(A) is the principal part side view of the light irradiation apparatus which shows the state adjusted by the mirror bending mechanism, (b) is the projection image of the alignment mark on the mask side and the workpiece side alignment mark that have been aligned. It is explanatory drawing which shows a positional relationship. 近接露光装置用光照射装置から出射する光の波長と、i線を基準とした相対強度の関係、及び紫外線カットフィルタでカットされる波長領域を示すグラフである。It is a graph which shows the wavelength area | region cut | disconnected by the wavelength of the light radiate | emitted from the light irradiation apparatus for proximity exposure apparatuses, the relative intensity on the basis of i line | wire, and an ultraviolet cut filter. アライメント調整及び露光の手順を示すフローチャートである。It is a flowchart which shows the procedure of alignment adjustment and exposure. 本発明の第2実施形態に係る近接露光装置用光照射装置を模式的に示す側面図である。It is a side view which shows typically the light irradiation apparatus for proximity exposure apparatuses which concerns on 2nd Embodiment of this invention. 第2実施形態の変形例に係る近接露光装置用光照射装置を模式的に示す側面図である。It is a side view which shows typically the light irradiation apparatus for proximity exposure apparatuses which concerns on the modification of 2nd Embodiment. 本発明の第3実施形態に係る近接露光装置用光照射装置を模式的に示す側面図である。It is a side view which shows typically the light irradiation apparatus for proximity exposure apparatuses which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る光照射装置の構成を示す側面図である。It is a side view which shows the structure of the light irradiation apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係るアライメント調整及び露光の手順を示すフローチャートである。It is a flowchart which shows the procedure of the alignment adjustment and exposure which concern on 4th Embodiment of this invention. 本発明の第4実施形態に係る光照射装置の構成を概略示す上面図である。It is a top view which shows roughly the structure of the light irradiation apparatus which concerns on 4th Embodiment of this invention. (a)は、本発明の第4実施形態の変形例に係るマスク側アライメントマークとワーク側アライメントマークの撮像位置を示し、(b)は、変形前と変形後のワークの外形を示す図である。(A) shows the imaging position of the mask side alignment mark and workpiece | work side alignment mark which concern on the modification of 4th Embodiment of this invention, (b) is a figure which shows the external shape of the workpiece | work before and after a deformation | transformation. is there.
 以下、本発明に係る近接露光装置及び近接露光装置用光照射装置の各実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of a proximity exposure apparatus and a light irradiation apparatus for a proximity exposure apparatus according to the present invention will be described in detail with reference to the drawings.
(第1実施形態)
 図1に示すように、近接露光装置PEは、被露光材としてのワークWより小さいマスクMを用い、マスクMをマスクステージ(マスク支持部)1で保持すると共に、ワークWをワークステージ(ワーク支持部)2で保持し、マスクMとワークWとを近接させて所定の露光ギャップで対向配置した状態で、近接露光装置用光照射装置(以下、単に光照射装置とも言う)3からパターン露光用の光をマスクMに向けて照射することにより、マスクMのパターンをワークW上に露光転写する。また、ワークステージ2をマスクMに対してX軸方向とY軸方向の二軸方向にステップ移動させて、ステップ毎に露光転写が行われる。
(First embodiment)
As shown in FIG. 1, the proximity exposure apparatus PE uses a mask M smaller than the workpiece W as a material to be exposed, holds the mask M on a mask stage (mask support portion) 1, and holds the workpiece W on the workpiece stage (workpiece (workpiece)). Pattern exposure from a light irradiation device for a proximity exposure device (hereinafter also simply referred to as a light irradiation device) 3 in a state of being held by a support portion 2 and facing the mask M and the workpiece W in close proximity with a predetermined exposure gap. The pattern of the mask M is exposed and transferred onto the workpiece W by irradiating the mask M with light for use. Further, the work stage 2 is moved stepwise with respect to the mask M in the two axial directions of the X axis direction and the Y axis direction, and exposure transfer is performed for each step.
 ワークステージ2をX軸方向にステップ移動させるため、装置ベース4上には、X軸送り台5aをX軸方向にステップ移動させるX軸ステージ送り機構5が設置されている。X軸ステージ送り機構5のX軸送り台5a上には、ワークステージ2をY軸方向にステップ移動させるため、Y軸送り台6aをY軸方向にステップ移動させるY軸ステージ送り機構6が設置されている。Y軸ステージ送り機構6のY軸送り台6a上には、ワークステージ2が設置されている。ワークステージ2の上面には、ワークWがワークチャック等で真空吸引された状態で保持される。また、ワークステージ2の側部には、マスクMの下面高さを測定するための基板側変位センサ15が配設されている。従って、基板側変位センサ15は、ワークステージ2と共にX、Y軸方向に移動可能である。 In order to move the work stage 2 stepwise in the X-axis direction, an X-axis stage feed mechanism 5 for moving the X-axis feed base 5a stepwise in the X-axis direction is installed on the apparatus base 4. On the X-axis feed base 5a of the X-axis stage feed mechanism 5, a Y-axis stage feed mechanism 6 for step-moving the Y-axis feed base 6a in the Y-axis direction is installed in order to move the work stage 2 stepwise in the Y-axis direction. Has been. The work stage 2 is installed on the Y-axis feed base 6 a of the Y-axis stage feed mechanism 6. On the upper surface of the work stage 2, the work W is held in a state of being sucked by a work chuck or the like. Further, a substrate side displacement sensor 15 for measuring the lower surface height of the mask M is disposed on the side portion of the work stage 2. Therefore, the substrate side displacement sensor 15 can move in the X and Y axis directions together with the work stage 2.
 装置ベース4上には、複数(図に示す実施形態では4本)のX軸リニアガイドのガイドレール51がX軸方向に配置され、それぞれのガイドレール51には、X軸送り台5aの下面に固定されたスライダ52が跨架されている。これにより、X軸送り台5aは、X軸ステージ送り機構5の第1リニアモータ20で駆動され、ガイドレール51に沿ってX軸方向に往復移動可能である。また、X軸送り台5a上には、複数のY軸リニアガイドのガイドレール53がY軸方向に配置され、それぞれのガイドレール53には、Y軸送り台6aの下面に固定されたスライダ54が跨架されている。これにより、Y軸送り台6aは、Y軸ステージ送り機構6の第2リニアモータ21で駆動され、ガイドレール53に沿ってY軸方向に往復移動可能である。 On the apparatus base 4, a plurality of (four in the embodiment shown in the figure) X-axis linear guide rails 51 are arranged in the X-axis direction, and each guide rail 51 has a lower surface of the X-axis feed base 5 a. A slider 52 fixed to the bridge is straddled. Thereby, the X-axis feed base 5 a is driven by the first linear motor 20 of the X-axis stage feed mechanism 5 and can reciprocate along the guide rail 51 in the X-axis direction. A plurality of guide rails 53 for Y-axis linear guides are arranged on the X-axis feed base 5a in the Y-axis direction. Each guide rail 53 has a slider 54 fixed to the lower surface of the Y-axis feed base 6a. Is straddled. Accordingly, the Y-axis feed base 6 a is driven by the second linear motor 21 of the Y-axis stage feed mechanism 6 and can reciprocate in the Y-axis direction along the guide rail 53.
 Y軸ステージ送り機構6とワークステージ2の間には、ワークステージ2を上下方向に移動させるため、比較的位置決め分解能は粗いが移動ストローク及び移動速度が大きな上下粗動装置7と、上下粗動装置7と比べて高分解能での位置決めが可能でワークステージ2を上下に微動させてマスクMとワークWとの対向面間のギャップを所定量に微調整する上下微動装置8が設置されている。 Between the Y-axis stage feed mechanism 6 and the work stage 2, since the work stage 2 is moved in the vertical direction, the vertical coarse motion device 7 having a relatively coarse positioning resolution but a large moving stroke and moving speed, and the vertical coarse motion Positioning with high resolution is possible compared with the apparatus 7, and a vertical fine movement apparatus 8 is provided for finely adjusting the gap between the opposing surfaces of the mask M and the work W to a predetermined amount by finely moving the work stage 2 up and down. .
 上下粗動装置7は後述の微動ステージ6bに設けられた適宜の駆動機構によりワークステージ2を微動ステージ6bに対して上下動させる。ワークステージ2の底面の4箇所に固定されたステージ粗動軸14は、微動ステージ6bに固定された直動ベアリング14aに係合し、微動ステージ6bに対し上下方向に案内される。なお、上下粗動装置7は、分解能が低くても、繰り返し位置決め精度が高いことが望ましい。 The vertical coarse movement device 7 moves the work stage 2 up and down with respect to the fine movement stage 6b by an appropriate drive mechanism provided on the fine movement stage 6b described later. The stage coarse movement shafts 14 fixed at four positions on the bottom surface of the work stage 2 are engaged with linear motion bearings 14a fixed to the fine movement stage 6b, and are guided in the vertical direction with respect to the fine movement stage 6b. In addition, it is desirable that the vertical coarse motion device 7 has high repeated positioning accuracy even if the resolution is low.
 上下微動装置8は、Y軸送り台6aに固定された固定台9と、固定台9にその内端側を斜め下方に傾斜させた状態で取り付けられたリニアガイドの案内レール10とを備えており、該案内レール10に跨架されたスライダ11を介して案内レール10に沿って往復移動するスライド体12にボールねじのナット(図示せず)が連結されると共に、スライド体12の上端面は微動ステージ6bに固定されたフランジ12aに対して水平方向に摺動自在に接している。 The vertical fine movement device 8 includes a fixed base 9 fixed to the Y-axis feed base 6a, and a linear guide guide rail 10 attached to the fixed base 9 with its inner end inclined obliquely downward. A ball screw nut (not shown) is coupled to a slide body 12 that reciprocates along the guide rail 10 via a slider 11 straddling the guide rail 10, and an upper end surface of the slide body 12. Is in contact with the flange 12a fixed to the fine movement stage 6b so as to be slidable in the horizontal direction.
 そして、固定台9に取り付けられたモータ17によってボールねじのねじ軸を回転駆動させると、ナット、スライダ11及びスライド体12が一体となって案内レール10に沿って斜め方向に移動し、これにより、フランジ12aが上下微動する。
 なお、上下微動装置8は、モータ17とボールねじによってスライド体12を駆動する代わりに、リニアモータによってスライド体12を駆動するようにしてもよい。
Then, when the screw shaft of the ball screw is rotationally driven by the motor 17 attached to the fixed base 9, the nut, the slider 11 and the slide body 12 are integrally moved along the guide rail 10 in an oblique direction. The flange 12a is finely moved up and down.
Note that the vertical fine movement device 8 may drive the slide body 12 by a linear motor instead of driving the slide body 12 by the motor 17 and the ball screw.
 この上下微動装置8は、Z軸送り台6aのY軸方向の一端側(図1の左端側)に1台、他端側に2台、合計3台設置されてそれぞれが独立に駆動制御されるようになっている。これにより、上下微動装置8は、ギャップセンサ27による複数箇所でのマスクMとワークWとのギャップ量の計測結果に基づき、3箇所のフランジ12aの高さを独立に微調整してワークステージ2の高さ及び傾きを微調整する。
 なお、上下微動装置8によってワークステージ2の高さを十分に調整できる場合には、上下粗動装置7を省略してもよい。
The vertical fine movement device 8 is installed on one end side (left end side in FIG. 1) in the Y-axis direction of the Z-axis feed base 6a and two on the other end side, for a total of three units, and each is independently driven and controlled. It has become so. Accordingly, the vertical fine movement device 8 independently finely adjusts the heights of the three flanges 12 a based on the measurement results of the gap amounts between the mask M and the workpiece W at a plurality of locations by the gap sensor 27, and the workpiece stage 2. Fine-tune the height and inclination of
In addition, when the height of the work stage 2 can be sufficiently adjusted by the vertical fine movement device 8, the vertical coarse movement device 7 may be omitted.
 また、Y軸送り台6a上には、ワークステージ2のY方向の位置を検出するY軸レーザ干渉計18に対向するバーミラー19と、ワークステージ2のX軸方向の位置を検出するX軸レーザ干渉計に対向するバーミラー(共に図示せず)とが設置されている。Y軸レーザ干渉計18に対向するバーミラー19は、Y軸送り台6aの一側でX軸方向に沿って配置されており、X軸レーザ干渉計に対向するバーミラーは、Y軸送り台6aの一端側でY軸方向に沿って配置されている。 On the Y-axis feed base 6a, a bar mirror 19 facing the Y-axis laser interferometer 18 that detects the position of the work stage 2 in the Y direction, and an X-axis laser that detects the position of the work stage 2 in the X-axis direction. A bar mirror (both not shown) facing the interferometer is installed. The bar mirror 19 facing the Y-axis laser interferometer 18 is arranged along the X-axis direction on one side of the Y-axis feed base 6a, and the bar mirror facing the X-axis laser interferometer is located on the Y-axis feed base 6a. It is arranged along the Y-axis direction on one end side.
 Y軸レーザ干渉計18及びX軸レーザ干渉計は、それぞれ常に対応するバーミラーに対向するように配置されて装置ベース4に支持されている。なお、Y軸レーザ干渉計18は、X軸方向に離間して2台設置されている。2台のY軸レーザ干渉計18により、バーミラー19を介してY軸送り台6a、ひいてはワークステージ2のY軸方向の位置及びヨーイング誤差を検出する。また、X軸レーザ干渉計により、対向するバーミラーを介してX軸送り台5a、ひいてはワークステージ2のX軸方向の位置を検出する。 The Y-axis laser interferometer 18 and the X-axis laser interferometer are each arranged so as to always face the corresponding bar mirror and supported by the apparatus base 4. Two Y-axis laser interferometers 18 are installed apart from each other in the X-axis direction. The two Y-axis laser interferometers 18 detect the position of the Y-axis feed base 6a and consequently the work stage 2 in the Y-axis direction and the yawing error via the bar mirror 19. In addition, the X-axis laser interferometer detects the position of the X-axis feed base 5a and eventually the work stage 2 in the X-axis direction via the opposing bar mirror.
 マスクステージ1は、略長方形状の枠体からなるマスク基枠24と、該マスク基枠24の中央部開口にギャップを介して挿入されてX,Y,θ方向(X,Y平面内)に移動可能に支持されたマスクフレーム25と、マスクフレーム25をマスク基枠24に対してX,Y,θ方向に移動可能となるように設けられた複数のマスク駆動部28と、を備えており、マスク基枠24は装置ベース4から突設された支柱4aによってワークステージ2の上方の定位置に保持されている。 The mask stage 1 is inserted in a X, Y, θ direction (in the X, Y plane) by inserting a mask base frame 24 composed of a substantially rectangular frame body and a gap into a central opening of the mask base frame 24. A mask frame 25 supported so as to be movable, and a plurality of mask drive units 28 provided so that the mask frame 25 can be moved in the X, Y, and θ directions with respect to the mask base frame 24. The mask base frame 24 is held at a fixed position above the work stage 2 by a column 4 a protruding from the apparatus base 4.
 マスクフレーム25の中央部開口の下面には、枠状のマスクホルダ26が設けられている。即ち、マスクフレーム25の下面には、図示しない真空式吸着装置に接続される複数のマスクホルダ吸着溝が設けられており、マスクホルダ26が複数のマスクホルダ吸着溝を介してマスクフレーム25に吸着保持される。 A frame-shaped mask holder 26 is provided on the lower surface of the central opening of the mask frame 25. That is, a plurality of mask holder suction grooves connected to a vacuum suction device (not shown) are provided on the lower surface of the mask frame 25, and the mask holder 26 is sucked to the mask frame 25 through the plurality of mask holder suction grooves. Retained.
 マスクホルダ26の下面には、マスクMのマスクパターンが描かれていない周縁部を吸着するための複数のマスク吸着溝(図示せず)が開設されており、マスクMは、マスク吸着溝を介して図示しない真空式吸着装置によりマスクホルダ26の下面に着脱自在に保持される。 A plurality of mask suction grooves (not shown) are provided on the lower surface of the mask holder 26 for sucking the peripheral portion of the mask M on which the mask pattern is not drawn. The mask M passes through the mask suction grooves. Then, it is detachably held on the lower surface of the mask holder 26 by a vacuum suction device (not shown).
 図2に示すように、本実施形態の露光装置PEの光照射装置3は、光源としてのランプユニット60と、光路ELの向きを変えるための平面ミラー63と、照射光路を開閉制御する露光制御用シャッターユニット64と、露光制御用シャッターユニット64の下流側に配置され、ランプユニット60からの光を均一にして出射するインテグレータ65と、インテグレータ65の下流側に配置されインテグレータ65から出射された光路ELの向きを変えるための平面ミラー66と、高圧水銀ランプ61からの光を平行光として照射するコリメーションミラー67と、該コリメーションミラー67からの光をマスクMに向けて照射する平面ミラー68と、を備える。 As shown in FIG. 2, the light irradiation device 3 of the exposure apparatus PE of this embodiment includes a lamp unit 60 as a light source, a flat mirror 63 for changing the direction of the optical path EL, and exposure control for controlling the opening and closing of the irradiation optical path. An integrator 65 that is disposed downstream of the exposure shutter unit 64 and the exposure control shutter unit 64 and uniformly emits light from the lamp unit 60, and an optical path that is disposed downstream of the integrator 65 and emitted from the integrator 65 A plane mirror 66 for changing the direction of the EL, a collimation mirror 67 for irradiating light from the high-pressure mercury lamp 61 as parallel light, a plane mirror 68 for irradiating the light from the collimation mirror 67 toward the mask M, Is provided.
 さらに、光照射装置3は、ランプユニット60からの光の光路EL上に、露光光(紫外線)である第1の波長領域をカットする紫外線カットフィルタ90と、露光光より波長が長い第2の波長領域をカットする長波長カットフィルタ95が、進退自在に配設されている。本実施形態では、ランプユニット60と紫外線カットフィルタ90は、非露光光照明手段100を構成する。
 なお、図4(a)及び図5(a)では、説明のため、図2に示す光照射装置3の構成部品の一部を省略して示している。
Furthermore, the light irradiation device 3 includes an ultraviolet cut filter 90 that cuts a first wavelength region that is exposure light (ultraviolet light) on the optical path EL of light from the lamp unit 60, and a second wavelength that is longer than the exposure light. A long wavelength cut filter 95 that cuts the wavelength region is disposed so as to freely advance and retract. In the present embodiment, the lamp unit 60 and the ultraviolet cut filter 90 constitute the non-exposure light illumination unit 100.
In FIGS. 4A and 5A, some components of the light irradiation device 3 shown in FIG. 2 are omitted for explanation.
 ランプユニット60は、例えば高圧水銀ランプ61と、この高圧水銀ランプ61から出射された光を集光するリフレクタ62をそれぞれ複数有する。なお、光源としては、単一の高圧水銀ランプ61とリフレクタ62の構成であってもよく、或いは、LEDによって構成されてもよい。 The lamp unit 60 includes, for example, a plurality of high-pressure mercury lamps 61 and a plurality of reflectors 62 that collect light emitted from the high-pressure mercury lamp 61. In addition, as a light source, the structure of the single high pressure mercury lamp 61 and the reflector 62 may be sufficient, or it may be comprised by LED.
 図6に示すように、ランプユニット60から出射する光は、第1の波長領域の光と、第2の波長領域の光を含んでいる。第1の波長領域の光は、ワークWに塗布された感光材を感光可能な365nm付近の領域を含む紫外線からなる露光光である。第2の波長領域の光は、感光材を感光させない、550nm付近の領域を含む可視光からなる非露光光である。非露光光は、後述するように、マスクMとワークWとのアライメント調整に用いられる。 As shown in FIG. 6, the light emitted from the lamp unit 60 includes light in the first wavelength region and light in the second wavelength region. The light in the first wavelength region is exposure light composed of ultraviolet rays including a region near 365 nm where the photosensitive material applied to the workpiece W can be exposed. The light in the second wavelength region is non-exposure light composed of visible light including a region near 550 nm that does not expose the photosensitive material. The non-exposure light is used for alignment adjustment between the mask M and the workpiece W, as will be described later.
 図2に戻り、インテグレータ65は、マトリックス状に配列された複数の不図示のレンズ素子を備え、リフレクタ62で集光された光を照射領域においてできるだけ均一な照度分布となるようにして出射する。 Referring back to FIG. 2, the integrator 65 includes a plurality of lens elements (not shown) arranged in a matrix, and emits the light collected by the reflector 62 so as to have as uniform an illuminance distribution as possible in the irradiation region.
 平面ミラー63、平面ミラー66、コリメーションミラー67、及び平面ミラー68は、全波長の光(第1、及び第2の波長領域の光)を反射可能(実質的に全反射)な反射鏡であり、例えば、反射面にはアルミニウム膜が形成される。なお、「実質的に全反射」とは、反射率が90%以上であることを意味する。 The plane mirror 63, the plane mirror 66, the collimation mirror 67, and the plane mirror 68 are reflection mirrors that can reflect (substantially total reflection) light of all wavelengths (light of the first and second wavelength regions). For example, an aluminum film is formed on the reflective surface. Note that “substantially total reflection” means that the reflectance is 90% or more.
 また、平面ミラー68には、ミラー曲げ機構70が裏面側に配設されている。これにより、平面ミラー68は、信号線81により各ミラー曲げ機構70に接続されたミラー制御部80からの指令に基づいて、平面ミラー68の形状を変更し、反射面の曲率を局部的に変更することで、平面ミラー68のデクリネーション角を補正することができる。 Further, a mirror bending mechanism 70 is disposed on the back surface side of the plane mirror 68. Thereby, the plane mirror 68 changes the shape of the plane mirror 68 based on the command from the mirror control unit 80 connected to each mirror bending mechanism 70 by the signal line 81, and locally changes the curvature of the reflection surface. By doing so, the declination angle of the plane mirror 68 can be corrected.
 紫外線カットフィルタ90は、ランプユニット60と平面ミラー63との間に配置され、図6に示すように、第1の波長領域の露光光を含む、例えば480nm未満の波長の光をカットしてランプユニット60から出射された光を第2の波長領域を有する非露光光とする。
 なお、紫外線カットフィルタ90は、一般的に、i線(365nm)、h線(405nm)、g線(436nm)近傍の波長を含むように480nm未満の波長の光をカットしている。
 長波長カットフィルタ95は、ランプユニット60と平面ミラー63との間に配置され、第2の波長領域の非露光光を含む480nm以上の波長の光をカットして、ランプユニット60から出射された光を第1の波長領域を有する露光光とする。
The ultraviolet cut filter 90 is disposed between the lamp unit 60 and the plane mirror 63, and cuts light having a wavelength of less than 480 nm, for example, including exposure light in the first wavelength region, as shown in FIG. The light emitted from the unit 60 is non-exposure light having the second wavelength region.
The ultraviolet cut filter 90 generally cuts light having a wavelength of less than 480 nm so as to include wavelengths in the vicinity of i-line (365 nm), h-line (405 nm), and g-line (436 nm).
The long wavelength cut filter 95 is disposed between the lamp unit 60 and the plane mirror 63, cuts light having a wavelength of 480 nm or more including non-exposure light in the second wavelength region, and is emitted from the lamp unit 60. The light is exposure light having a first wavelength region.
 その他、光照射装置3では、インテグレータ65と露光面との間には、偏光フィルタ、バンドパスフィルタが配置されてもよい。 In addition, in the light irradiation device 3, a polarizing filter and a band pass filter may be disposed between the integrator 65 and the exposure surface.
 このように構成された露光装置PEでは、光照射装置3において、露光時に露光制御用シャッターユニット64が開制御されると、高圧水銀ランプ61から出射された光が、平面ミラー63で反射されてインテグレータ65の入射面に入射する。そして、インテグレータ65の出射面から発せられた光は、平面ミラー66、コリメーションミラー67、及び平面ミラー68によってその進行方向が変えられる。さらに、この光は、マスクステージ1に保持されるマスクM、さらにはワークステージ2に保持されるワークWの表面に対して略垂直にパターン露光用の光として照射され、マスクMのパターンがワークW上に露光転写される。 In the exposure apparatus PE configured as described above, when the exposure control shutter unit 64 is controlled to be opened during exposure in the light irradiation device 3, the light emitted from the high-pressure mercury lamp 61 is reflected by the plane mirror 63. The light enters the entrance surface of the integrator 65. The traveling direction of the light emitted from the exit surface of the integrator 65 is changed by the plane mirror 66, the collimation mirror 67, and the plane mirror 68. Further, this light is irradiated as light for pattern exposure substantially perpendicularly to the surface of the mask M held on the mask stage 1 and further on the workpiece W held on the work stage 2, and the pattern of the mask M is irradiated to the workpiece. Exposure transferred onto W.
 図3(a)及び(b)に示すように、マスクM及びワークWの所定位置には、マスク側アライメントマーク101、及びワーク側アライメントマーク103がそれぞれ形成されている。ここでは、マスク側アライメントマーク101は、円101a内に、正方形の頂点に4つの小円101bを備えた形状とし、ワーク側アライメントマーク103は、十字形状としている。マスク側アライメントマーク101、及びワーク側アライメントマーク103は、両アライメントマーク101、103の一致が確認可能な形状であれば、図示した形状に限定されない。 3A and 3B, a mask side alignment mark 101 and a work side alignment mark 103 are formed at predetermined positions of the mask M and the work W, respectively. Here, the mask side alignment mark 101 has a shape having four small circles 101b at the apexes of a square in a circle 101a, and the workpiece side alignment mark 103 has a cross shape. The mask-side alignment mark 101 and the workpiece-side alignment mark 103 are not limited to the illustrated shapes as long as the alignment of the alignment marks 101 and 103 can be confirmed.
 図4に示すように、マスク側アライメントマーク101、及びワーク側アライメントマーク103は、互いに対応して設けられている。例えば、矩形状のマスクMには、矩形パターンの周囲に、複数のマスク側アライメントマーク101が形成され、ワークWには、パターンが転写される箇所ごとに、複数のマスク側アライメントマーク101に対応して、複数のワーク側アライメントマーク103が形成される。 As shown in FIG. 4, the mask side alignment mark 101 and the workpiece side alignment mark 103 are provided corresponding to each other. For example, a plurality of mask-side alignment marks 101 are formed around a rectangular pattern in the rectangular mask M, and the workpiece W corresponds to the plurality of mask-side alignment marks 101 at each position where the pattern is transferred. Thus, a plurality of workpiece side alignment marks 103 are formed.
 また、ワークWの下方には、ワークWの上面に焦点を合わせたアライメントカメラ110が配置されている。ワークステージ2は、アライメントカメラ110が両アライメントマーク101,103を視認可能な構成とする必要があり、例えば、透明なガラスステージによって構成される。アライメントカメラ110は、図4(b)に示すように、マスク側アライメントマーク101、厳密には、ワークWの上面に投影されたマスク側アライメントマーク101の投影像102と、ワーク側アライメントマーク103を同時に撮像する。 Also, below the workpiece W, an alignment camera 110 that is focused on the upper surface of the workpiece W is disposed. The work stage 2 needs to be configured such that the alignment camera 110 can visually recognize both the alignment marks 101 and 103, and is configured by a transparent glass stage, for example. As shown in FIG. 4B, the alignment camera 110 includes a mask side alignment mark 101, strictly speaking, a projection image 102 of the mask side alignment mark 101 projected on the upper surface of the work W, and a work side alignment mark 103. Take images at the same time.
 また、図1に示すように、制御部40は、光照射装置3を含む露光装置PEの各種機構を制御するが、特に、本実施形態では、アライメントの際に、アライメントカメラ110で撮像されたマスク側アライメントマーク101の投影像102とワーク側アライメントマーク103とのずれ量を取得して、複数のマスク駆動部28を駆動し、マスクMを移動させるとともに、ミラー制御部80に、ミラー曲げ機構70を駆動するための信号を送信する。
 なお、制御部40は、ミラー制御部80の制御を兼ねてもよい。また、制御部40は、アライメントの際、マスク駆動部28によってマスクMを移動させる代わりに、X軸ステージ送り機構5及びY軸ステージ送り機構6によって、ワークWを移動させてもよい。即ち、マスクMとワークWを相対移動する移動機構は、複数のマスク駆動部28でもよいし、X軸ステージ送り機構5及びY軸ステージ送り機構6でもよい。
As shown in FIG. 1, the control unit 40 controls various mechanisms of the exposure apparatus PE including the light irradiation device 3. In particular, in the present embodiment, the image is captured by the alignment camera 110 during alignment. The amount of deviation between the projected image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 is acquired, the plurality of mask driving units 28 are driven, the mask M is moved, and the mirror control unit 80 is moved to the mirror bending mechanism. A signal for driving 70 is transmitted.
Note that the control unit 40 may also serve as control of the mirror control unit 80. The control unit 40 may move the workpiece W by the X-axis stage feed mechanism 5 and the Y-axis stage feed mechanism 6 instead of moving the mask M by the mask drive unit 28 during alignment. That is, the moving mechanism for moving the mask M and the workpiece W relative to each other may be a plurality of mask driving units 28, or the X-axis stage feeding mechanism 5 and the Y-axis stage feeding mechanism 6.
 次に、マスクMのパターンをワークW上に露光転写する手順について図4~図7を参照して説明する。まず、ランプユニット60からの光の光路EL上に紫外線カットフィルタ90を挿入すると共に、長波長カットフィルタ95を光路EL上から退避させる(ステップS0)。ランプユニット60から出射された光は、紫外線カットフィルタ90によって第1の波長領域を含む480nm未満の波長がカットされる。これにより、ランプユニット60から出射された光は、ワークWに塗布された感光材を感光させない第2の波長領域を含む非露光光となる。 Next, a procedure for exposing and transferring the pattern of the mask M onto the workpiece W will be described with reference to FIGS. First, the ultraviolet cut filter 90 is inserted on the optical path EL of the light from the lamp unit 60, and the long wavelength cut filter 95 is retracted from the optical path EL (step S0). The light emitted from the lamp unit 60 is cut at a wavelength of less than 480 nm including the first wavelength region by the ultraviolet cut filter 90. Thereby, the light emitted from the lamp unit 60 becomes non-exposure light including a second wavelength region in which the photosensitive material applied to the workpiece W is not exposed.
 非露光光が照射されている状態で露光制御用シャッターユニット64を開くと(図7のステップS1)、非露光光がマスクMを介してワークWに照射され、マスク側アライメントマーク101の投影像102がワークW上に形成される。アライメントカメラ110は、図4(b)に示すように、マスク側アライメントマーク101の投影像102とワーク側アライメントマーク103を同時に撮像して、該投影像102とワーク側アライメントマーク103のずれ量を取得する(ステップS2)。 When the exposure control shutter unit 64 is opened in a state where the non-exposure light is irradiated (step S1 in FIG. 7), the non-exposure light is irradiated onto the workpiece W through the mask M, and the projection image of the mask side alignment mark 101 is obtained. 102 is formed on the workpiece W. As shown in FIG. 4B, the alignment camera 110 simultaneously captures the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103, and determines the amount of deviation between the projection image 102 and the workpiece side alignment mark 103. Obtain (step S2).
 このとき、ワークWに照射される非露光光は、後述する露光光としても機能するランプユニット60から出射する光であるので、その光軸は露光光の光軸と同軸となる。 At this time, since the non-exposure light irradiated to the workpiece W is light emitted from the lamp unit 60 that also functions as exposure light described later, its optical axis is coaxial with the optical axis of the exposure light.
 そして、アライメントカメラ110が取得したずれ量に基づいて、マスクステージ1が保持するマスクMを移動させてマスクMとワークWのアライメント調整を行う。さらに、マスクMとワークWの相対移動だけではアライメント調整しきれずに残ったずれ量は、図5に示すように、ミラー制御部80から平面ミラー68の各ミラー曲げ機構70に対して駆動信号を伝達して駆動し、平面ミラー68の形状を局部的に変更して、平面ミラー68のデクリネーション角を補正する(ステップS3)。これにより、マスク側アライメントマーク101の投影像102の中心Oとワーク側アライメントマーク103の中心Oを一致させてアライメント調整する。なお、本実施形態では、マスク側アライメントマーク101の投影像102の中心Oとは、4つの小円101bからなる正方形の対角線の交点であり、ワーク側アライメントマーク103の中心Oとは、十字形状の交点である。 Then, based on the deviation amount acquired by the alignment camera 110, the mask M held by the mask stage 1 is moved to adjust the alignment of the mask M and the workpiece W. Furthermore, as shown in FIG. 5, the amount of misalignment remaining without being able to adjust the alignment only by the relative movement of the mask M and the workpiece W is transmitted from the mirror control unit 80 to each mirror bending mechanism 70 of the plane mirror 68. This is transmitted and driven, and the shape of the plane mirror 68 is locally changed to correct the declination angle of the plane mirror 68 (step S3). As a result, the center O 1 of the projection image 102 of the mask side alignment mark 101 and the center O 3 of the workpiece side alignment mark 103 are aligned to adjust the alignment. In the present embodiment, the center O 1 of the projection image 102 of the mask side alignment mark 101 is an intersection of square diagonal lines composed of four small circles 101b, and the center O 3 of the workpiece side alignment mark 103 is It is a cross-shaped intersection.
 マスク側アライメントマーク101の投影像102とワーク側アライメントマーク103のずれ量を取得する非露光光は、ワークWに塗布された感光材を感光させることがないので、ワークWの露光前に、且つ従来の露光装置では困難であったショットごとに投影像102とワーク側アライメントマーク103のずれ量を確認しながらアライメント調整することができる。さらに、平面ミラー68の各ミラー曲げ機構70による光軸の変化によるマスク側アライメントマーク101の投影像102の移動を、アライメントカメラ110で把握しながらアライメント調整することが可能となる。 Since the non-exposure light that acquires the amount of deviation between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 does not expose the photosensitive material applied to the workpiece W, before the exposure of the workpiece W, and Alignment adjustment can be performed while checking the amount of deviation between the projected image 102 and the workpiece side alignment mark 103 for each shot, which was difficult with a conventional exposure apparatus. Furthermore, it is possible to adjust the alignment while grasping the movement of the projection image 102 of the mask side alignment mark 101 due to the change of the optical axis by each mirror bending mechanism 70 of the plane mirror 68 with the alignment camera 110.
 次いで、アライメントカメラ110により、マスク側アライメントマーク101の投影像102とワーク側アライメントマーク103のずれ量が許容範囲内であることを確認した後(ステップS4、S5)、露光制御用シャッターユニット64を一旦閉じ、紫外線カットフィルタ90を光路EL上から退避させると共に、長波長カットフィルタ95を光路EL上に挿入する。また、必要に応じてアライメントカメラ110を光路EL上から退避させる(ステップS6)。これにより、ランプユニット60から出射された光は、第1の波長領域を有する露光光となり、該露光光のワークWへの照射が可能となる。 Next, after confirming that the deviation amount between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 is within an allowable range by the alignment camera 110 (steps S4 and S5), the exposure control shutter unit 64 is moved. Once closed, the ultraviolet cut filter 90 is retracted from the optical path EL, and the long wavelength cut filter 95 is inserted into the optical path EL. Further, the alignment camera 110 is retracted from the optical path EL as necessary (step S6). Thereby, the light emitted from the lamp unit 60 becomes exposure light having the first wavelength region, and the workpiece W can be irradiated with the exposure light.
 そして、再び露光制御用シャッターユニット64を開き、露光光によりマスクMに形成されたパターンをワークWに露光転写する(ステップS7)。 Then, the exposure control shutter unit 64 is opened again, and the pattern formed on the mask M by exposure light is exposed and transferred to the workpiece W (step S7).
 上述したステップS3のアライメント調整では、マスクMを移動させた後、平面ミラー63の曲げ補正を行っているが、マスクMの移動と平面ミラー63の曲げ補正は同時に行われてもよい。また、マスク側アライメントマーク101の投影像102とワーク側アライメントマーク103のずれ量の取得は、マスクMを移動させた後、平面ミラー63の曲げ補正を行う前に、再度行われてもよい。
 また、ステップS5において、ずれ量が許容範囲を越えている場合には、ステップS3に戻り、ステップS3において、複数のアライメントマークを総合的に判断して、マスクMを移動させるか、平面ミラー63の曲げ補正を行うかを選択してもよい。
In the alignment adjustment in step S3 described above, the bending correction of the plane mirror 63 is performed after the mask M is moved. However, the movement of the mask M and the bending correction of the plane mirror 63 may be performed simultaneously. Further, the amount of deviation between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 may be acquired again after the mask M is moved and before the plane mirror 63 is bent.
In step S5, if the deviation amount exceeds the allowable range, the process returns to step S3, and in step S3, the plurality of alignment marks are comprehensively determined and the mask M is moved or the plane mirror 63 is moved. It may be selected whether to perform the bending correction.
 上記したように、露光光及び非露光光は、同一のランプユニット60から出射する光を紫外線カットフィルタ90と長波長カットフィルタ95を、交互に光路上に挿入及び退避することにより透過波長を選択して形成されるので、露光光と非露光光の光軸は同一である。従って、アライメント調整時と露光時とで互いの光軸のずれが発生することがなく、実際の露光の際に、該光軸のずれに起因するパターンの位置ずれが防止され、高精度での露光が可能となる。 As described above, for the exposure light and the non-exposure light, the transmission wavelength is selected by alternately inserting and withdrawing the light emitted from the same lamp unit 60 on the optical path by the ultraviolet cut filter 90 and the long wavelength cut filter 95. Thus, the optical axes of the exposure light and the non-exposure light are the same. Therefore, there is no misalignment between the optical axes at the time of alignment adjustment and at the time of exposure, and in the actual exposure, the positional deviation of the pattern due to the misalignment of the optical axis is prevented, and high accuracy is achieved. Exposure is possible.
 以上説明したように、本実施形態の近接露光装置PE及び近接露光装置用光照射装置3によれば、反射面の曲率を変更可能なミラー曲げ機構70を備える平面ミラー68と、平面ミラー68よりも光源側に配置され、ワークWの感光材が感光する第1の波長領域を有する露光光と異なる、第2の波長領域を備える非露光光を、ランプユニット60からの光の光軸と同軸に照射する非露光光照明手段100と、非露光光を用いて、ワークWに投影されたマスクM側のアライメントマーク101の投影像102と、ワークW側のアライメントマーク103とを同時に撮像可能なアライメントカメラ110と、を備える。これにより、露光光となるランプユニット60からの光の光軸と同軸の非露光光を用いて、マスクM側のアライメントマーク101の投影像102とワークW側のアライメントマーク103とにより、マスクMとワークWの位置を確認しながら、マスクMとワークWの相対移動と、平面ミラー68の反射面の曲率の局部的な変更とによって、試し露光を行うことなく高精度なアライメント調整を実現することができる。また、アライメント調整時と露光時とで互いの光軸のずれが発生することがなく、実際の露光の際に、該光軸のずれに起因するパターンの位置ずれが防止され、露光精度が大幅に向上する。 As described above, according to the proximity exposure apparatus PE and the proximity exposure apparatus light irradiation apparatus 3 of the present embodiment, the plane mirror 68 including the mirror bending mechanism 70 capable of changing the curvature of the reflection surface, and the plane mirror 68. Is also arranged on the light source side, and non-exposure light having a second wavelength region, which is different from exposure light having a first wavelength region that the photosensitive material of the workpiece W is exposed to, is coaxial with the optical axis of the light from the lamp unit 60. The projection image 102 of the alignment mark 101 on the mask M projected onto the workpiece W and the alignment mark 103 on the workpiece W side can be simultaneously imaged using the non-exposure light illuminating means 100 that irradiates the workpiece W and the non-exposure light. An alignment camera 110. Accordingly, the non-exposure light that is coaxial with the optical axis of the light from the lamp unit 60 serving as the exposure light is used to generate the mask M by the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side. In addition, the relative movement of the mask M and the workpiece W and the local change of the curvature of the reflecting surface of the plane mirror 68 are realized without performing trial exposure while confirming the position of the workpiece W. be able to. In addition, there is no misalignment between the optical axes during alignment adjustment and during exposure, and in actual exposure, pattern misalignment due to the misalignment of the optical axis is prevented and exposure accuracy is greatly increased. To improve.
 また、非露光光照明手段100は、ランプユニット60からの光の光路上に進退自在に配置され、ランプユニット60からの光の第1の波長領域を遮断することで、通過したランプユニット60からの光を第2の波長領域を備える非露光光とする紫外線カットフィルタ90を具備するので、紫外線カットフィルタ90を光路EL上に進退させるだけで、露光光と非露光光とを容易に切り換えることができる。 Further, the non-exposure light illuminating means 100 is disposed on the optical path of the light from the lamp unit 60 so as to freely advance and retreat, and blocks the first wavelength region of the light from the lamp unit 60 so that the non-exposure light illuminating means 100 Is provided with an ultraviolet cut filter 90 that makes the light of the second wavelength region non-exposure light having the second wavelength region, so that the exposure light and the non-exposure light can be easily switched by simply moving the ultraviolet cut filter 90 forward and backward on the optical path EL. Can do.
 また、ランプユニット60からの光の光路上に進退自在に配置され、第2の波長領域を遮断することで、通過したランプユニット60からの光を第1の波長領域を備える露光光とする長波長カットフィルタ95をさらに備えるので、第2の波長領域の光をカットして通常の露光を行うことができ、ランプユニット60を非露光光と露光光とに切り替ながら共用することができる。 Further, it is disposed so as to be able to advance and retreat on the optical path of the light from the lamp unit 60, and by blocking the second wavelength region, the light from the lamp unit 60 that has passed is used as exposure light having the first wavelength region. Since the wavelength cut filter 95 is further provided, normal exposure can be performed by cutting light in the second wavelength region, and the lamp unit 60 can be shared while switching between non-exposure light and exposure light.
 また、本発明の近接露光方法によれば、上記の近接露光装置PEを用いた近接露光方法であって、非露光光照明手段100によって非露光光を照射しながら、ワークW上に投影されたマスクM側のアライメントマーク101の投影像102と、ワークW側のアライメントマーク103と、をアライメントカメラ110で同時に撮像する工程と、マスクM側のアライメントマーク101の投影像102とワークW側のアライメントマーク103の各中心O1,O3とが一致するように、ミラー曲げ機構70により平面ミラー68の曲率を補正すると共に、マスクMとワークWとを相対移動する工程と、を備える。これにより、試し露光を行うことなく高精度なアライメント調整を実現することができると共に、露光精度を大幅に向上することができる。 Further, according to the proximity exposure method of the present invention, the proximity exposure method using the proximity exposure apparatus PE described above is projected onto the workpiece W while irradiating the non-exposure light by the non-exposure light illuminating means 100. The step of simultaneously imaging the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side with the alignment camera 110, and the alignment of the projection image 102 of the alignment mark 101 on the mask M side with the workpiece W side A step of correcting the curvature of the plane mirror 68 by the mirror bending mechanism 70 so that the respective centers O1 and O3 of the mark 103 coincide with each other and moving the mask M and the workpiece W relative to each other. As a result, highly accurate alignment adjustment can be realized without performing trial exposure, and the exposure accuracy can be greatly improved.
(第2実施形態)
 次に、第2実施形態の近接露光装置PEについて図8を参照して説明する。なお、図8においては、図2に示す平面ミラー66、コリメーションミラー67をレンズとして簡略して示している。
 第2実施形態の近接露光装置PEは、非露光光照明手段において第1実施形態の近接露光装置PEと異なる。その他の部分については、本発明の第1実施形態の近接露光装置PEと同様であるので、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Second Embodiment)
Next, the proximity exposure apparatus PE of the second embodiment will be described with reference to FIG. In FIG. 8, the plane mirror 66 and the collimation mirror 67 shown in FIG. 2 are simply shown as lenses.
The proximity exposure apparatus PE of the second embodiment is different from the proximity exposure apparatus PE of the first embodiment in the non-exposure light illumination means. The other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
 本実施形態の非露光光照明手段120は、インテグレータ65の周囲を囲んで、ランプユニット60と共役な位置にリング状のLED照明ユニット121が配置される。即ち、LED照明ユニット121の中心は、インテグレータ65の中心と一致しており、ランプユニット60から出射される光の光軸と、LED照明ユニット121から出射される光の光軸とは、一致している。これにより、LED照明ユニット121から出射される光と、ランプユニット60から出射される光との光軸のずれに起因した、露光時でのパターンずれが防止される。 In the non-exposure light illuminating means 120 of this embodiment, a ring-shaped LED illumination unit 121 is disposed at a position conjugate with the lamp unit 60 so as to surround the integrator 65. That is, the center of the LED illumination unit 121 is coincident with the center of the integrator 65, and the optical axis of the light emitted from the lamp unit 60 is coincident with the optical axis of the light emitted from the LED illumination unit 121. ing. Thereby, the pattern shift | offset | difference at the time of exposure resulting from the shift | offset | difference of the optical axis of the light radiate | emitted from the LED illumination unit 121 and the light radiate | emitted from the lamp unit 60 is prevented.
 LED照明ユニット121は、第2の波長領域を有する非露光光を出射し、第1の波長領域を有する露光光が出射されないタイプのLEDで構成されてもよいし、或いは、LED照明ユニット121の前面に、480nm未満の波長をカットする紫外線カットフィルタを配置して、第1の波長領域を有する露光光をカットしてもよい。 The LED illumination unit 121 may be composed of an LED of a type that emits non-exposure light having the second wavelength region and does not emit exposure light having the first wavelength region. An ultraviolet cut filter that cuts a wavelength of less than 480 nm may be disposed on the front surface to cut exposure light having the first wavelength region.
 LED照明ユニット121から出射される光により、ワークWに塗布された感光材が感光することはなく、マスクM側のアライメントマーク101の投影像102とワークW側のアライメントマーク103とをアライメントカメラ110で確認して、マスクM側のアライメントマーク101の投影像102とワークW側のアライメントマーク103との中心O,Oが一致するように、マスクMを移動させると共に、ミラー曲げ機構70により平面ミラー68の曲率を補正してアライメント調整する。 The light emitted from the LED illumination unit 121 does not expose the photosensitive material applied to the workpiece W, and the projected image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side are aligned with the alignment camera 110. The mask M is moved so that the centers O 1 and O 3 of the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side coincide with each other, and the mirror bending mechanism 70 The curvature of the plane mirror 68 is corrected to adjust the alignment.
 なお、非露光光照明手段120は、ランプユニット60と共役な位置に配置されればよく、インテグレータ65の周囲に限定されない。例えば、図9に示すように、ランプユニット60からインテグレータ65までの光路EL上に、光路EL上に進退自在なミラー122を配置し、該光路EL上に進出したミラー122がランプユニット60から出射される光を遮光するとともに、LED照明ユニット121から出射される光を反射して光路EL上に導くようにしてもよい。
 また、非露光光照明手段120は、非露光光を出射可能な光源であればよく、LED照明ユニット121に限定されない。
The non-exposure light illuminating means 120 may be disposed at a position conjugate with the lamp unit 60 and is not limited to the periphery of the integrator 65. For example, as shown in FIG. 9, a mirror 122 that can advance and retreat on the optical path EL is disposed on the optical path EL from the lamp unit 60 to the integrator 65, and the mirror 122 that has advanced on the optical path EL exits from the lamp unit 60. The light emitted from the LED illumination unit 121 may be reflected and guided onto the optical path EL.
Further, the non-exposure light illuminating means 120 may be any light source that can emit non-exposure light, and is not limited to the LED illumination unit 121.
 このような構成の本実施形態では、第1実施形態のようなランプユニット60と平面ミラー63との間に進退自在な紫外線カットフィルタ90は設けられていない。また、本実施形態では、長波長カットフィルタ95を設ける代わりに、平面ミラー63に、第2の波長領域を含む480nm以上の波長をカットする膜が形成されていてもよい。 In the present embodiment having such a configuration, the ultraviolet cut filter 90 that can freely move back and forth is not provided between the lamp unit 60 and the flat mirror 63 as in the first embodiment. In this embodiment, instead of providing the long wavelength cut filter 95, a film that cuts a wavelength of 480 nm or more including the second wavelength region may be formed on the plane mirror 63.
 以上説明したように、本実施形態の近接露光装置PE及び近接露光装置用光照射装置3によれば、非露光光照明手段120は、ランプユニット60と別体に設けられ、第2の波長領域を備える非露光光を出射する非露光用光源としてのLED照明ユニット121を具備するので、ワークWに塗布された感光材を感光させることなく、アライメント調整できる。 As described above, according to the proximity exposure apparatus PE and the proximity exposure apparatus light irradiation apparatus 3 of the present embodiment, the non-exposure light illumination means 120 is provided separately from the lamp unit 60 and has the second wavelength region. Since the LED illumination unit 121 serving as a non-exposure light source that emits non-exposure light is provided, alignment adjustment can be performed without exposing the photosensitive material applied to the workpiece W.
 また、LED照明ユニット121は、ランプユニット60と共役な位置に配置されるので、高精度なアライメント調整が実現でき、LED照明ユニット121から出射される光と、ランプユニット60から出射される光との光軸のずれに起因した、露光時でのパターンずれが防止される。
 その他の機構及び作用については、第1実施形態の近接露光装置PEと同様である。
In addition, since the LED illumination unit 121 is disposed at a position conjugate with the lamp unit 60, highly accurate alignment adjustment can be realized, and the light emitted from the LED illumination unit 121 and the light emitted from the lamp unit 60 The pattern deviation at the time of exposure due to the deviation of the optical axis is prevented.
Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
(第3実施形態)
 次に、第3実施形態の近接露光装置PEについて図10を参照して説明する。
 第3実施形態の近接露光装置PEは、非露光光照明手段のアライメントカメラの配置において第1実施形態のものと異なる。その他の部分については、本発明の第1実施形態の近接露光装置PEと同様であるので、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Third embodiment)
Next, the proximity exposure apparatus PE of the third embodiment will be described with reference to FIG.
The proximity exposure apparatus PE of the third embodiment differs from that of the first embodiment in the arrangement of the alignment camera of the non-exposure light illumination means. The other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
 図10に示すように、本実施形態では、平面ミラー68とマスクMとの間の光路EL上には、ハーフミラー130が配置されており、アライメントカメラ110は、光の光路ELから外れた、マスクMの上方且つ光路ELの側方に配置されている。 As shown in FIG. 10, in this embodiment, the half mirror 130 is disposed on the optical path EL between the plane mirror 68 and the mask M, and the alignment camera 110 is out of the optical path EL of light. It is arranged above the mask M and on the side of the optical path EL.
 このため、アライメントカメラ110は、ハーフミラー130を介して、マスクM側のアライメントマーク101の投影像102と、ワークW側のアライメントマーク103とを同時に撮像する。 For this reason, the alignment camera 110 simultaneously images the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side through the half mirror 130.
 以上説明したように、本実施形態の近接露光装置PE及び近接露光装置用光照射装置3によれば、平面ミラー68とマスクMとの間で、非露光光の光路上に配置されるハーフミラー130をさらに備え、アライメントカメラ110は、ハーフミラー130を介して、マスクM側のアライメントマーク101の投影像102と、ワークW側のアライメントマーク103とを同時に撮像するので、ワークステージ2の構成に依らずに、アライメントカメラ110を用いて、高精度なアライメント調整を実現できる。
 その他の機構及び作用については、第1実施形態の近接露光装置PEと同様である。
As described above, according to the proximity exposure apparatus PE and the proximity exposure apparatus light irradiation apparatus 3 of the present embodiment, the half mirror disposed on the optical path of the non-exposure light between the plane mirror 68 and the mask M. 130, and the alignment camera 110 simultaneously images the projection image 102 of the alignment mark 101 on the mask M side and the alignment mark 103 on the workpiece W side via the half mirror 130, so that the configuration of the work stage 2 is achieved. Regardless, the alignment camera 110 can be used to achieve highly accurate alignment adjustment.
Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
(第4実施形態)
 次に、第4実施形態の近接露光装置PEについて図11及び図12を参照して説明する。
 第4実施形態の近接露光装置PEは、近接露光装置用光照射装置3の構成において第1実施形態のものと異なる。その他の部分については、本発明の第1実施形態の近接露光装置PEと同様であるので、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Fourth embodiment)
Next, the proximity exposure apparatus PE of the fourth embodiment will be described with reference to FIGS.
The proximity exposure apparatus PE of the fourth embodiment is different from that of the first embodiment in the configuration of the light irradiation apparatus 3 for proximity exposure apparatus. The other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
 図11に示すように、本実施形態では、第1実施形態の露光制御用シャッターユニット64を設けない代わりに、紫外線カットフィルタ90をシャッターとして機能させている。即ち、本実施形態の紫外線カットフィルタ90は、ランプユニット60からの光の光路EL上から退避することで、ランプユニット60からの光の第1の波長領域を備える露光光を、マスクMを介してワークW上に照射し、光路EL上に進出することで、該露光光を遮るシャッターを構成する。また、本実施形態は、第1実施形態の長波長カットフィルタ95を備えておらず、一方、ランプユニット60と紫外線カットフィルタ90との間で、ランプユニット60からの光の光路EL上に進退自在なプリシャッター96を備える。このプリシャッター96は、メンテナンス時等、作業者がチャンバー内で作業する際に、光路EL上に進出し、ランプユニット60からの全ての光を遮るように構成される。 As shown in FIG. 11, in this embodiment, instead of providing the exposure control shutter unit 64 of the first embodiment, the ultraviolet cut filter 90 functions as a shutter. In other words, the ultraviolet cut filter 90 of the present embodiment retracts the light from the lamp unit 60 from the light path EL, thereby exposing the exposure light having the first wavelength region of the light from the lamp unit 60 through the mask M. By irradiating on the workpiece W and advancing on the optical path EL, a shutter that blocks the exposure light is configured. Further, the present embodiment does not include the long wavelength cut filter 95 of the first embodiment, and on the other hand, advances and retreats on the optical path EL of the light from the lamp unit 60 between the lamp unit 60 and the ultraviolet cut filter 90. A flexible pre-shutter 96 is provided. The pre-shutter 96 is configured to advance onto the optical path EL and block all light from the lamp unit 60 when an operator works in the chamber during maintenance or the like.
 次に、本実施形態の、マスクMのパターンをワークW上に露光転写する手順について、図12を参照して、第1実施形態と比較しながら説明する。即ち、本実施形態においては、前のワークの露光が完了した時点で、シャッターを構成する紫外線カットフィルタ90が、予め光路EL上に進入した位置にあるため、ステップS0aにおいては、アライメントカメラ110を光路EL上に進入させることで、ステップS2のアライメント動作へ移行し、第1実施形態のステップS1は行わない。 Next, a procedure for exposing and transferring the pattern of the mask M onto the workpiece W according to the present embodiment will be described with reference to FIG. 12 while comparing with the first embodiment. In other words, in the present embodiment, when the exposure of the previous workpiece is completed, the ultraviolet cut filter 90 constituting the shutter is in a position that has entered the optical path EL in advance, so in step S0a, the alignment camera 110 is moved. By making it approach on optical path EL, it transfers to alignment operation of step S2, and step S1 of 1st Embodiment is not performed.
 その後、第1実施形態と同様に、アライメントカメラ110による撮像(ステップS2)、マスクMの移動及びミラー補正(ステップS3)、撮像を含む、ずれ量の確認(ステップS4、S5)を行い、アライメント調整を完了する。そして、露光動作に移行する際には、本実施形態では、ステップS6aにおいて、まず、アライメントカメラ110を光路EL上から退避させ、その後、ステップS7aにおいて、紫外線カットフィルタ90を退避させることで、露光光によりマスクMに形成されたパターンをワークWに露光転写する。 After that, as in the first embodiment, imaging by the alignment camera 110 (step S2), movement of the mask M and mirror correction (step S3), and confirmation of the shift amount including imaging (steps S4 and S5) are performed, and alignment is performed. Complete the adjustment. In the present embodiment, when shifting to the exposure operation, in step S6a, the alignment camera 110 is first retracted from the optical path EL, and then the ultraviolet cut filter 90 is retracted in step S7a. The pattern formed on the mask M is exposed and transferred onto the workpiece W by light.
 即ち、本実施形態の非露光光は、第1実施形態と同様に、第2の波長領域を備えているが、本実施形態の露光光は、第1及び第2の波長領域の両方を備える。また、本実施形態では、紫外線カットフィルタ90がシャッターを兼ね、また、長波長カットフィルタ95を備えないため、本実施形態の露光方法は、タクトタイムを短縮することができる。
 その他の機構及び作用については、第1実施形態の近接露光装置PEと同様である。
That is, the non-exposure light of the present embodiment has the second wavelength region as in the first embodiment, but the exposure light of the present embodiment has both the first and second wavelength regions. . In the present embodiment, since the ultraviolet cut filter 90 also serves as a shutter and does not include the long wavelength cut filter 95, the exposure method of the present embodiment can shorten the tact time.
Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
(第5実施形態)
 次に、第5実施形態の近接露光装置PEについて図13及び図14を参照して説明する。
 第5実施形態の近接露光装置PEは、近接露光装置用光照射装置3の構成、及びアライメント調整において第1実施形態のものと異なる。その他の部分については、本発明の第1実施形態の近接露光装置PEと同様であるので、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
 なお、図13は、ワークWの外形、及びワーク側アライメントマーク103を示しているが、ワークWは、マスクMの露光パターンに対応する、図示しない矩形状の露光領域を備えており、ワークWの外形は、矩形状の露光領域に略相似形状であると考える。
(Fifth embodiment)
Next, a proximity exposure apparatus PE according to a fifth embodiment will be described with reference to FIGS.
The proximity exposure apparatus PE of the fifth embodiment is different from that of the first embodiment in the configuration and alignment adjustment of the light irradiation apparatus 3 for proximity exposure apparatus. The other parts are the same as those of the proximity exposure apparatus PE according to the first embodiment of the present invention. Therefore, the same parts are denoted by the same or corresponding reference numerals, and description thereof will be simplified or omitted.
13 shows the outer shape of the workpiece W and the workpiece-side alignment mark 103, the workpiece W includes a rectangular exposure region (not shown) corresponding to the exposure pattern of the mask M. It is considered that the outer shape is substantially similar to the rectangular exposure region.
 本実施形態では、図13に示すように、マスク側アライメントマーク101及びワーク側アライメントマーク103は、マスクMとワークWの矩形状の露光領域周囲の四隅A1~A4だけでなく、該四隅A1~A4を結ぶ各辺の中間位置またはその近傍B1~B4、C1~C4に設けられている。制御部40は、上記四隅A1~A4と、各辺の中点位置近傍B1~B4、C1~C4との両方でのずれ量を確認し、マスク駆動部28におるマスクMの移動と、ミラー曲げ機構70による平面ミラー68の曲率補正の両方を行っている。 In this embodiment, as shown in FIG. 13, the mask side alignment mark 101 and the workpiece side alignment mark 103 are not only the four corners A1 to A4 around the rectangular exposure areas of the mask M and the workpiece W, but also the four corners A1 to A4. It is provided at an intermediate position of each side connecting A4 or in the vicinity thereof B1 to B4 and C1 to C4. The control unit 40 confirms the shift amount at both the four corners A1 to A4 and the vicinity of the midpoint positions B1 to B4 and C1 to C4 of each side, the movement of the mask M in the mask driving unit 28, the mirror Both the curvature correction of the plane mirror 68 by the bending mechanism 70 is performed.
 また、本実施形態では、第3実施形態で説明したアライメントカメラ110とハーフミラー130とをそれぞれ有する8台のカメラユニット140が、図示しない駆動機構によって、それぞれワークWの長手方向又は短手方向に移動可能、且つ、露光領域に進退可能に、各レール141に取り付けられている。 In the present embodiment, the eight camera units 140 each having the alignment camera 110 and the half mirror 130 described in the third embodiment are respectively moved in the longitudinal direction or the short direction of the workpiece W by a driving mechanism (not shown). It is attached to each rail 141 so that it can move and can move back and forth in the exposure area.
 したがって、8台のカメラユニット140は、それぞれ移動しながら、ワークWの四隅A1~A4、及び各辺の中点近傍B1~B4、C1~C4の2箇所ずつの計12箇所で、マスク側アライメントマーク101の投影像102とワーク側アライメントマーク103とを撮像する。
 なお、カメラユニット140の数は、撮像箇所に対応する数設けるようにしてもよい。また、ワークWの各辺の中点1箇所で、マスク側アライメントマーク101の投影像102とワーク側アライメントマーク103とを撮像してもよい。
Accordingly, the eight camera units 140 are respectively moved, and the mask side alignment is performed at a total of 12 positions, ie, the four corners A1 to A4 of the workpiece W, and the vicinity of the middle points B1 to B4 and C1 to C4 of each side. The projected image 102 of the mark 101 and the workpiece side alignment mark 103 are imaged.
Note that the number of camera units 140 may be set to correspond to the number of imaging locations. Further, the projected image 102 of the mask side alignment mark 101 and the work side alignment mark 103 may be imaged at one midpoint of each side of the work W.
 そして、制御部40は、ワークWの四隅A1~A4でのマスク側アライメントマーク101の投影像102とワーク側アライメントマーク103のずれ量に基づいて、マスクMを移動させてアライメント調整を行い、さらに、四隅A1~A4でのずれ量に加えて、中点近傍B1~B4、C1~C4でのマスク側アライメントマーク101の投影像102とワーク側アライメントマーク103のずれ量に基づいて、平面ミラー63の曲げ補正を行う。 Then, the control unit 40 moves the mask M based on the deviation amount between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 at the four corners A1 to A4 of the work W, and performs alignment adjustment. In addition to the shift amount at the four corners A1 to A4, the plane mirror 63 is based on the shift amount between the projection image 102 of the mask side alignment mark 101 and the workpiece side alignment mark 103 in the vicinity of the middle points B1 to B4 and C1 to C4 Bending correction is performed.
 したがって、本実施形態では、アライメントカメラ110が、中点近傍B1~B4、C1~C4でのずれ量も測定して、それに基づいて平面ミラー63の曲げ補正を行うことで、より高精度での露光が可能となる。 Therefore, in the present embodiment, the alignment camera 110 also measures the deviation amounts in the vicinity of the midpoints B1 to B4 and C1 to C4, and performs the bending correction of the plane mirror 63 based on the measured deviation amounts, thereby achieving higher accuracy. Exposure is possible.
 また、本実施形態では、カメラユニット140を移動させながら、ワークWの各辺の中点近傍B1~B4、C1~C4において、アライメントカメラ110による撮像を行っているため、タクトタイムが長くなることが懸念される。このため、本実施形態の変形例としては、まず、所定の枚数の露光時には、図14(a)に示すように、本実施形態の上記手法で、ワークWの四隅A1~A4、及び各辺の中点近傍B1~B4、C1~C4の2箇所ずつの計12箇所で、マスク側アライメントマーク101とワーク側アライメントマーク103を撮像し、制御部80は、撮像した複数のワーク側アライメントマーク103に基づいて、ワークWの平均形状を求める。そして、その後の所定の枚数を越えた露光時には、アライメントカメラ110は、ワークWの中点近傍での撮像を行わず、ワークWの四隅A1~A4での撮像を行い、制御部40は、ワークWの四隅A1~A4でのずれ量と、ワークWの平均形状に基づいて、アライメント調整を行う。 Further, in this embodiment, the tact time is increased because the alignment camera 110 performs imaging in the vicinity of the midpoints B1 to B4 and C1 to C4 of each side of the workpiece W while moving the camera unit 140. Is concerned. For this reason, as a modification of the present embodiment, first, at the time of exposure for a predetermined number of sheets, as shown in FIG. The mask-side alignment mark 101 and the workpiece-side alignment mark 103 are imaged at a total of twelve locations, two in the vicinity of the middle point B1 to B4 and C1 to C4. Based on the above, the average shape of the workpiece W is obtained. Then, at the time of exposure beyond the predetermined number, the alignment camera 110 does not take an image in the vicinity of the midpoint of the work W, and takes an image at the four corners A1 to A4 of the work W. Alignment adjustment is performed based on the deviation amounts of the four corners A1 to A4 of W and the average shape of the workpiece W.
 即ち、図14(b)に示すように、制御部40は、ワークWの四隅A1~A4でのマスク側アライメントマーク101の投影像102とワーク側アライメントマーク103のずれ量に基づいて、マスクMを移動させてx、y、θ方向の調整を行う。さらに、四隅A1~A4でのずれ量に基づいて、四隅A1~A4でのマスク側のアライメントマーク101の投影像102とワーク側のアライメントマーク103の各中心とが一致するように、ミラー曲げ機構70による平面ミラー63の曲げ補正を行い、さらに、四隅A1~A4でのミラー曲げ機構70による平面ミラー63の曲げ補正の大きさや方向を、ワークWの平均形状の他の位置にも適用して、平面ミラー63の曲げ補正を行う。この際、四隅A1~A4でのワーク側アライメントマーク103の位置と、四隅A1~A4での平均形状における位置とのずれ量に基づいて、平均形状に対してワークWが拡大形状であるか、縮小形状であるかどうかを判断して、該他の位置での平面ミラー63の曲げ補正に反映している。 That is, as shown in FIG. 14B, the control unit 40 determines the mask M based on the shift amount between the projection image 102 of the mask side alignment mark 101 and the work side alignment mark 103 at the four corners A1 to A4 of the work W. To adjust the x, y, and θ directions. Further, based on the shift amounts at the four corners A1 to A4, the mirror bending mechanism is arranged so that the projection image 102 of the mask side alignment mark 101 and the centers of the workpiece side alignment marks 103 at the four corners A1 to A4 coincide with each other. 70, and the magnitude and direction of the bending correction of the plane mirror 63 by the mirror bending mechanism 70 at the four corners A1 to A4 are applied to other positions of the average shape of the workpiece W. Then, bending correction of the plane mirror 63 is performed. At this time, based on the amount of deviation between the position of the workpiece side alignment mark 103 at the four corners A1 to A4 and the position of the average shape at the four corners A1 to A4, whether the workpiece W has an enlarged shape with respect to the average shape, It is determined whether or not it is a reduced shape, and this is reflected in the bending correction of the plane mirror 63 at the other position.
 また、四隅A1~A4での平面ミラー63の曲げ補正の大きさはそれぞれ異なる。このため、中点での補正は、中点の両側の四隅A1~A4のずれ量をx方向成分、y方向成分に分けた後、各成分ごとに、2点の平均値を用いている。また、中点での補正量としては、この2点の平均値に対してさらに係数をかけて使用されてもよい。 Also, the magnitude of the bending correction of the flat mirror 63 at the four corners A1 to A4 is different. For this reason, in the correction at the midpoint, after the shift amounts of the four corners A1 to A4 on both sides of the midpoint are divided into the x-direction component and the y-direction component, the average value of two points is used for each component. Further, as a correction amount at the midpoint, a coefficient may be further applied to the average value of these two points.
 これによって、中点でのひずみ形状を含む、所定の枚数のワークWを撮像することで得られた平均形状を元にして、残りのワークWをアライメント補正することができるので、タクトタイムの影響を抑えつつ、高精度な露光が可能となる。
 その他の機構及び作用については、第1実施形態の近接露光装置PEと同様である。
As a result, the alignment of the remaining workpieces W can be corrected based on the average shape obtained by imaging a predetermined number of workpieces W including the distortion shape at the midpoint, and therefore the influence of the tact time High-precision exposure is possible while suppressing
Other mechanisms and operations are the same as those of the proximity exposure apparatus PE of the first embodiment.
 尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 なお、上記実施形態では、アライメント調整の際、アライメントカメラ110は、マスク側アライメントマーク101と、ワーク側アライメントマーク103とを撮像しているが、本発明では、アライメントカメラ110は、ワーク側アライメントマーク103の代わりに、予めワークWに露光転写された画素(ピクセルアライメント)を撮像してもよい。即ち、ピクセルアライメントは、露光領域の四隅を構成する。
In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
In the embodiment described above, the alignment camera 110 images the mask side alignment mark 101 and the workpiece side alignment mark 103 during alignment adjustment. However, in the present invention, the alignment camera 110 captures the workpiece side alignment mark. Instead of 103, a pixel (pixel alignment) exposed and transferred to the workpiece W in advance may be imaged. That is, pixel alignment constitutes the four corners of the exposure area.
 本出願は、2018年2月8日出願の日本特許出願2018-021151に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2018-021151 filed on Feb. 8, 2018, the contents of which are incorporated herein by reference.
3   光照射装置(近接露光装置用光照射装置)
60   ランプユニット(光源)
63,66   平面ミラー(反射鏡)
65   インテグレータ
67   コリメーションミラー(反射鏡)
68   平面ミラー(反射鏡)
70   ミラー曲げ機構
90   紫外線カットフィルタ(カットフィルタ)
95   長波長カットフィルタ(他のカットフィルタ)
100,120     非露光光照明手段
101 マスク側アライメントマーク
102 マスク側のアライメントマークの投影像
103 ワーク側アライメントマーク
110 アライメントカメラ
121 LED照明ユニット(非露光用光源)
130 ハーフミラー
M   マスク
1  マスク側のアライメントマークの投影像の中心
3  ワーク側のアライメントマークの中心
PE  近接露光装置
W   ワーク
3 Light irradiation equipment (light irradiation equipment for proximity exposure equipment)
60 Lamp unit (light source)
63, 66 Plane mirror (reflector)
65 Integrator 67 Collimation Mirror (Reflector)
68 Flat mirror
70 Mirror bending mechanism 90 UV cut filter (cut filter)
95 Long wavelength cut filter (other cut filters)
100, 120 Non-exposure light illuminating means 101 Mask side alignment mark 102 Projection image of mask side alignment mark 103 Work side alignment mark 110 Alignment camera 121 LED illumination unit (non-exposure light source)
130 Half mirror M Mask O 1 Center of projection image of alignment mark on mask 1 O 3 Center of alignment mark on work side PE Proximity exposure apparatus W Work

Claims (19)

  1.  光源と、
     該光源からの光を均一にして出射するインテグレータと、
     反射面の曲率を変更可能なミラー曲げ機構を備え、前記インテグレータから出射された前記光を反射する反射鏡と、
    を備え、
     露光パターンが形成されたマスクとワークとをギャップを介して近接配置し、前記マスクを介して前記反射鏡から出射された光を前記ワーク上に照射して前記露光パターンを前記ワークに露光転写するための近接露光装置であって、
     前記反射鏡よりも前記光源側に配置され、前記ワークの感光材が感光する第1の波長領域を有する露光光と異なる、第2の波長領域を備える非露光光を、前記光源からの光の光軸と同軸に照射する非露光光照明手段と、
     前記非露光光を用いて、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像可能なアライメントカメラと、
    をさらに備えることを特徴とする近接露光装置。
    A light source;
    An integrator that uniformly emits light from the light source;
    A mirror bending mechanism capable of changing the curvature of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator;
    With
    A mask on which an exposure pattern is formed and a work are arranged close to each other through a gap, and light emitted from the reflecting mirror is irradiated onto the work through the mask to transfer the exposure pattern onto the work. A proximity exposure apparatus for
    Non-exposure light having a second wavelength region, which is different from exposure light having a first wavelength region that is disposed on the light source side of the reflecting mirror and is exposed to the photosensitive material of the workpiece, Non-exposure light illumination means for irradiating coaxially with the optical axis;
    An alignment camera that can simultaneously image the projected image of the mask-side alignment mark projected onto the workpiece and the workpiece-side alignment mark using the non-exposure light;
    A proximity exposure apparatus, further comprising:
  2.  前記非露光光照明手段は、前記光源からの光の前記光路上に進退自在に配置され、前記光源からの光の前記第1の波長領域を遮断することで、通過した前記光源からの光を前記第2の波長領域を備える前記非露光光とするカットフィルタを具備することを特徴とする請求項1に記載の近接露光装置。 The non-exposure light illuminating means is disposed so as to freely advance and retreat on the optical path of the light from the light source, and blocks the first wavelength region of the light from the light source, thereby passing the light from the light source that has passed through. 2. The proximity exposure apparatus according to claim 1, further comprising a cut filter that is used as the non-exposure light having the second wavelength region.
  3.  前記光源からの光の前記光路上に進退自在に配置され、前記第2の波長領域を遮断することで、通過した前記光源からの光を前記第1の波長領域を備える前記露光光とする他のカットフィルタをさらに備えることを特徴とする請求項2に記載の近接露光装置。 Other than being arranged on the optical path of the light from the light source so as to be able to advance and retreat, and blocking the second wavelength region, the light from the light source that has passed is used as the exposure light having the first wavelength region. The proximity exposure apparatus according to claim 2, further comprising: a cut filter.
  4.  前記カットフィルタは、前記光源からの光の前記光路上から退避することで、前記光源からの光の前記第1の波長領域を備える前記露光光を、前記マスクを介して前記ワーク上に照射し、前記光路上に進出することで、該露光光を遮るシャッターを構成することを特徴とする請求項2に記載の近接露光装置。 The cut filter irradiates the exposure light having the first wavelength region of the light from the light source onto the workpiece through the mask by retracting from the optical path of the light from the light source. The proximity exposure apparatus according to claim 2, wherein a shutter that blocks the exposure light is configured by advancing on the optical path.
  5.  前記非露光光照明手段は、前記光源と別体に設けられ、前記第2の波長領域を備える前記非露光光を照射する非露光用光源を具備する請求項1に記載の近接露光装置。 The proximity exposure apparatus according to claim 1, wherein the non-exposure light illuminating means includes a non-exposure light source that is provided separately from the light source and that irradiates the non-exposure light having the second wavelength region.
  6.  前記非露光用光源は、前記光源と共役な位置に配置されることを特徴とする請求項5に記載の近接露光装置。 6. The proximity exposure apparatus according to claim 5, wherein the non-exposure light source is disposed at a position conjugate with the light source.
  7.  前記反射鏡と前記マスクとの間で、前記非露光光の光路上に配置されるハーフミラーをさらに備え、
     前記アライメントカメラは、前記ハーフミラーを介して、前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする請求項1~6のいずれか1項に記載の近接露光装置。
    Further comprising a half mirror disposed on the optical path of the non-exposure light between the reflecting mirror and the mask;
    The alignment camera according to any one of claims 1 to 6, wherein the alignment camera images the projected image of the alignment mark on the mask side and the alignment mark on the workpiece side simultaneously through the half mirror. The proximity exposure apparatus described.
  8.  前記ワークは、前記マスクの露光パターンに対応する、矩形状の露光領域を備え、
     前記アライメントカメラは、前記露光領域又は該露光領域周囲の四隅、及び該四隅を結ぶ各辺における少なくとも一点において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする請求項1~7のいずれか1項に記載の近接露光装置。
    The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
    The alignment camera includes a projected image of the alignment mark on the mask projected onto the workpiece and an alignment on the workpiece side at at least one point on each of the exposure region or the four corners around the exposure region and each side connecting the four corners. 8. The proximity exposure apparatus according to claim 1, wherein the mark is imaged simultaneously.
  9.  前記ワークと前記マスクとを相対移動する移動機構と、
     撮像された前記マスク側のアライメントマークの投影像と前記ワーク側のアライメントマークの各中心とが一致するように、前記ミラー曲げ機構により前記反射鏡の曲率を補正すると共に、前記移動機構により前記マスクと前記ワークとを相対移動する制御部と、
    を備えることを特徴とする請求項1~8のいずれか1項に記載の近接露光装置。
    A moving mechanism for relatively moving the workpiece and the mask;
    The mirror bending mechanism corrects the curvature of the reflecting mirror so that the projected projection image of the mask-side alignment mark and the center of the workpiece-side alignment mark coincide with each other, and the moving mechanism corrects the mask. And a control unit for relatively moving the workpiece and the workpiece,
    The proximity exposure apparatus according to any one of claims 1 to 8, further comprising:
  10.  前記ワークは、前記マスクの露光パターンに対応する、矩形状の露光領域を備え、
     前記アライメントカメラは、所定の枚数の前記ワークの露光時において、前記露光領域又は該露光領域周囲の四隅、及び該四隅を結ぶ各辺における少なくとも一点において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像し、且つ、
     前記所定の枚数以降の前記ワークの露光時において、前記アライメントカメラは、前記ワークの四隅において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像し、
     前記制御部は、前記所定の枚数のワークにおける、前記アライメントカメラで撮像された、前記四隅及び各辺における少なくとも一点の各位置でのずれ量に基づいて、前記ワークの平均形状を決定し、且つ、
     前記所定の枚数以降の前記ワークの露光時において、前記ミラー曲げ機構による前記反射鏡の曲率補正と、前記マスクと前記ワークとの相対移動とを、前記アライメントカメラで撮像された前記四隅でのずれ量と、前記ワークの平均形状とに基づいて行うことを特徴とする請求項9に記載の近接露光装置。
    The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
    The alignment camera is configured to align the mask side projected onto the workpiece at least one point in the exposure area or four corners around the exposure area and each side connecting the four corners when exposing a predetermined number of the workpieces. Simultaneously imaging the projected image of the mark and the alignment mark on the workpiece side; and
    At the time of exposure of the workpiece after the predetermined number, the alignment camera simultaneously displays the projected image of the mask side alignment mark projected onto the workpiece and the workpiece side alignment mark at the four corners of the workpiece. Image
    The control unit determines an average shape of the workpiece based on a shift amount at each position of at least one of the four corners and each side of the predetermined number of workpieces imaged by the alignment camera; and ,
    At the time of exposure of the workpiece after the predetermined number, the curvature correction of the reflecting mirror by the mirror bending mechanism and the relative movement between the mask and the workpiece are shifted at the four corners imaged by the alignment camera. The proximity exposure apparatus according to claim 9, wherein the proximity exposure apparatus is performed based on an amount and an average shape of the workpiece.
  11.  請求項1~10のいずれか1項に記載の近接露光装置を用いた近接露光方法であって、
     前記非露光光照明手段によって前記非露光光を照射しながら、前記ワーク上に投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークと、を前記アライメントカメラで同時に撮像する工程と、
     前記マスク側のアライメントマークの投影像と前記ワーク側のアライメントマークの各中心とが一致するように、前記ミラー曲げ機構により前記反射鏡の曲率を補正すると共に、前記マスクと前記ワークとを相対移動する工程と、
    を備えることを特徴とする近接露光方法。
    A proximity exposure method using the proximity exposure apparatus according to any one of claims 1 to 10,
    While irradiating the non-exposure light by the non-exposure light illuminating means, the projection image of the mask side alignment mark projected onto the workpiece and the alignment mark on the workpiece side are simultaneously imaged by the alignment camera. Process,
    The mirror bending mechanism corrects the curvature of the reflecting mirror so that the projected image of the mask side alignment mark coincides with the center of the workpiece side alignment mark, and the mask and the workpiece are relatively moved. And a process of
    A proximity exposure method comprising:
  12.  光源と、
     該光源からの光を均一にして出射するインテグレータと、
     反射面の曲率を変更可能なミラー曲げ機構を備え、前記インテグレータから出射された前記光を反射する反射鏡と、
    を備え、
     露光パターンが形成されたマスクとワークとをギャップを介して近接配置し、前記マスクを介して前記反射鏡から出射された光を前記ワーク上に照射して前記露光パターンを前記ワークに露光転写するための近接露光装置用光照射装置であって、
     前記反射鏡よりも前記光源側に配置され、前記ワークの感光材が感光する第1の波長領域を有する露光光と異なる、第2の波長領域を備える非露光光を、前記光源からの光の光軸と同軸に照射する非露光光照明手段と、
     前記非露光光を用いて、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像可能なアライメントカメラと、
    をさらに備えることを特徴とする近接露光装置用光照射装置。
    A light source;
    An integrator that uniformly emits light from the light source;
    A mirror bending mechanism capable of changing the curvature of the reflecting surface, and a reflecting mirror that reflects the light emitted from the integrator;
    With
    A mask on which an exposure pattern is formed and a work are arranged close to each other through a gap, and light emitted from the reflecting mirror is irradiated onto the work through the mask to transfer the exposure pattern onto the work. A light irradiation device for a proximity exposure apparatus for
    Non-exposure light having a second wavelength region, which is different from exposure light having a first wavelength region that is disposed on the light source side of the reflecting mirror and is exposed to the photosensitive material of the workpiece, Non-exposure light illumination means for irradiating coaxially with the optical axis;
    An alignment camera that can simultaneously image the projected image of the mask-side alignment mark projected onto the workpiece and the workpiece-side alignment mark using the non-exposure light;
    A light irradiation apparatus for a proximity exposure apparatus, further comprising:
  13.  前記非露光光照明手段は、前記光源からの光の前記光路上に進退自在に配置され、前記光源からの光の前記第1の波長領域を遮断することで、通過した前記光源からの光を前記第2の波長領域を備える前記非露光光とするカットフィルタを具備することを特徴とする請求項12に記載の近接露光装置用光照射装置。 The non-exposure light illuminating means is disposed so as to freely advance and retreat on the optical path of the light from the light source, and blocks the first wavelength region of the light from the light source, thereby passing the light from the light source that has passed through. The light irradiation apparatus for a proximity exposure apparatus according to claim 12, further comprising a cut filter that is the non-exposure light having the second wavelength region.
  14.  前記光源からの光の前記光路上に進退自在に配置され、前記第2の波長領域を遮断することで、通過した前記光源からの光を前記第1の波長領域を備える前記露光光とする他のカットフィルタをさらに備えることを特徴とする請求項13に記載の近接露光装置用光照射装置。 Other than being arranged on the optical path of the light from the light source so as to be able to advance and retreat, and blocking the second wavelength region, the light from the light source that has passed is used as the exposure light having the first wavelength region. The light irradiation apparatus for a proximity exposure apparatus according to claim 13, further comprising: a cut filter.
  15.  前記カットフィルタは、前記光源からの光の前記光路上から退避することで、前記光源からの光の前記第1の波長領域を備える前記露光光を、前記マスクを介して前記ワーク上に照射し、前記光路上に進出することで、該露光光を遮るシャッターを構成することを特徴とする請求項13に記載の近接露光装置用光照射装置。 The cut filter irradiates the exposure light having the first wavelength region of the light from the light source onto the workpiece through the mask by retracting from the optical path of the light from the light source. The light irradiation apparatus for a proximity exposure apparatus according to claim 13, wherein a shutter that blocks the exposure light by advancing on the optical path is configured.
  16.  前記非露光光照明手段は、前記光源と別体に設けられ、前記第2の波長領域を備える前記非露光光を照射する非露光用光源を具備する請求項12に記載の近接露光装置用光照射装置。 13. The proximity exposure apparatus light according to claim 12, wherein the non-exposure light illuminating means includes a non-exposure light source that is provided separately from the light source and irradiates the non-exposure light having the second wavelength region. Irradiation device.
  17.  前記非露光用光源は、前記光源と共役な位置に配置されることを特徴とする請求項16に記載の近接露光装置用光照射装置。 The light irradiation apparatus for a proximity exposure apparatus according to claim 16, wherein the non-exposure light source is disposed at a position conjugate with the light source.
  18.  前記反射鏡と前記マスクとの間で、前記非露光光の光路上に配置されるハーフミラーをさらに備え、
     前記アライメントカメラは、前記ハーフミラーを介して、前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする請求項12~17のいずれか1項に記載の近接露光装置用光照射装置。
    Further comprising a half mirror disposed on the optical path of the non-exposure light between the reflecting mirror and the mask;
    The alignment camera according to any one of claims 12 to 17, wherein the alignment camera simultaneously images the projection image of the mask side alignment mark and the workpiece side alignment mark via the half mirror. The light irradiation apparatus for proximity | contact exposure apparatuses of description.
  19.  前記ワークは、前記マスクの露光パターンに対応する、矩形状の露光領域を備え、
     前記アライメントカメラは、前記露光領域又は該露光領域周囲の四隅、及び該四隅を結ぶ各辺における少なくとも一点において、前記ワークに投影された前記マスク側のアライメントマークの投影像と、前記ワーク側のアライメントマークとを同時に撮像することを特徴とする請求項12~18のいずれか1項に記載の近接露光装置用光照射装置。
    The workpiece includes a rectangular exposure region corresponding to the exposure pattern of the mask,
    The alignment camera includes a projected image of the alignment mark on the mask projected onto the workpiece and an alignment on the workpiece side at at least one point on each of the exposure region or the four corners around the exposure region and each side connecting the four corners. The light irradiation apparatus for a proximity exposure apparatus according to any one of claims 12 to 18, wherein the mark is imaged simultaneously.
PCT/JP2019/002128 2018-02-08 2019-01-23 Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device WO2019155886A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207020122A KR20200119235A (en) 2018-02-08 2019-01-23 Proximity exposure apparatus, proximity exposure method, and light irradiation apparatus for proximity exposure apparatus
CN201980012676.3A CN111699440A (en) 2018-02-08 2019-01-23 Proximity exposure apparatus, proximity exposure method, and light irradiation apparatus for proximity exposure apparatus
JP2019570664A JPWO2019155886A1 (en) 2018-02-08 2019-01-23 Proximity exposure equipment, proximity exposure method, and light irradiation equipment for proximity exposure equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021151 2018-02-08
JP2018-021151 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019155886A1 true WO2019155886A1 (en) 2019-08-15

Family

ID=67549027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002128 WO2019155886A1 (en) 2018-02-08 2019-01-23 Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device

Country Status (5)

Country Link
JP (1) JPWO2019155886A1 (en)
KR (1) KR20200119235A (en)
CN (1) CN111699440A (en)
TW (1) TW201940993A (en)
WO (1) WO2019155886A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251090A1 (en) * 2020-06-08 2021-12-16 株式会社ブイ・テクノロジー Light source device for exposure, lighting device, exposure device, and exposure method
US20220292652A1 (en) * 2021-03-11 2022-09-15 Seiko Epson Corporation Image generation method and information processing device
EP4130881A4 (en) * 2020-04-29 2023-09-13 The Institute of Optics and Electronics The Chinese Academy of Sciences MULTIFUNCTIONAL LITHOGRAPHIC APPARATUS
TWI872128B (en) * 2019-10-11 2025-02-11 日商V科技股份有限公司 Illumination device for proximity exposure device, LED unit, proximity exposure device, and exposure method of proximity exposure device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7361599B2 (en) * 2019-12-26 2023-10-16 キヤノン株式会社 Exposure equipment and article manufacturing method
CN114624968B (en) * 2020-12-08 2024-11-22 上海新微技术研发中心有限公司 Photolithography exposure method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098649A (en) * 2004-09-29 2006-04-13 Nsk Ltd Exposure apparatus and exposure method
JP2011169924A (en) * 2010-01-22 2011-09-01 Nsk Ltd Exposure apparatus and exposure method
JP2014207300A (en) * 2013-04-12 2014-10-30 株式会社オーク製作所 Light source device and exposure apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201711A (en) 1993-12-29 1995-08-04 Dainippon Screen Mfg Co Ltd Proximity aligner and its device
JP3246300B2 (en) 1994-11-29 2002-01-15 ウシオ電機株式会社 Automatic alignment method and apparatus for mask and workpiece
JPH08264427A (en) * 1995-03-23 1996-10-11 Nikon Corp Method and device for alignment
JP5311341B2 (en) 2006-06-14 2013-10-09 Nskテクノロジー株式会社 Proximity exposure apparatus and proximity exposure method
CN102193339A (en) * 2011-06-13 2011-09-21 中国科学院光电技术研究所 Maskless photoetching alignment system
CN103858208B (en) * 2011-08-10 2016-08-24 株式会社V技术 The alignment device of exposure device and alignment mark
CN107077080B (en) * 2015-01-15 2019-04-26 株式会社村田制作所 Exposure device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098649A (en) * 2004-09-29 2006-04-13 Nsk Ltd Exposure apparatus and exposure method
JP2011169924A (en) * 2010-01-22 2011-09-01 Nsk Ltd Exposure apparatus and exposure method
JP2014207300A (en) * 2013-04-12 2014-10-30 株式会社オーク製作所 Light source device and exposure apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI872128B (en) * 2019-10-11 2025-02-11 日商V科技股份有限公司 Illumination device for proximity exposure device, LED unit, proximity exposure device, and exposure method of proximity exposure device
EP4130881A4 (en) * 2020-04-29 2023-09-13 The Institute of Optics and Electronics The Chinese Academy of Sciences MULTIFUNCTIONAL LITHOGRAPHIC APPARATUS
WO2021251090A1 (en) * 2020-06-08 2021-12-16 株式会社ブイ・テクノロジー Light source device for exposure, lighting device, exposure device, and exposure method
US20220292652A1 (en) * 2021-03-11 2022-09-15 Seiko Epson Corporation Image generation method and information processing device
CN115086631A (en) * 2021-03-11 2022-09-20 精工爱普生株式会社 Image generation method and information processing apparatus
CN115086631B (en) * 2021-03-11 2024-03-29 精工爱普生株式会社 Image generation method and information processing device

Also Published As

Publication number Publication date
KR20200119235A (en) 2020-10-19
TW201940993A (en) 2019-10-16
JPWO2019155886A1 (en) 2021-01-28
CN111699440A (en) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2019155886A1 (en) Proximity exposure device, proximity exposure method, and light irradiation device for proximity exposure device
TWI496190B (en) Imprint apparatus, imprint method, and device manufacturing method
CN101986207A (en) Exposure apparatus and exposure method
KR101885751B1 (en) Sensor system, substrate handling system and lithographic apparatus
EP3534213B1 (en) Pattern forming apparatus, alignment mark detection method, and pattern forming method
JP5464991B2 (en) Proximity exposure apparatus and proximity exposure method
KR101277430B1 (en) Exposure apparatus
KR102175590B1 (en) Illumination apparatus, optical apparatus, imprint apparatus, projection apparatus, and method of manufacturing article
WO2021251090A1 (en) Light source device for exposure, lighting device, exposure device, and exposure method
JP6535197B2 (en) Exposure apparatus and exposure method
US8400618B2 (en) Method for arranging an optical module in a measuring apparatus and a measuring apparatus
CN101101452A (en) Exposure device
TW200305790A (en) Exposure apparatus
JP2994968B2 (en) Mask and work alignment method and apparatus
JP2011028122A (en) Exposure apparatus and exposure method
JP5089238B2 (en) Substrate adapter for exposure apparatus and exposure apparatus
KR101578385B1 (en) Proximity exposure device, proximity exposure method and illumination optical system
JP6712508B2 (en) Method of manufacturing illuminance adjustment filter, illuminance adjustment filter, illumination optical system, and exposure apparatus
CN105045043B (en) Exposure device and exposure method
JP7088552B2 (en) Proximity exposure equipment and proximity exposure method
JP2008209631A (en) Exposure apparatus and mask mounting method thereof
KR20240146539A (en) Exposure device
JP6500282B2 (en) Exposure apparatus and illumination apparatus
JP2008089993A (en) Method for measuring gap amount of exposure apparatus
JP2019109445A (en) Proximity exposure device and proximity exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751749

Country of ref document: EP

Kind code of ref document: A1