WO2019154311A1 - 一种密码子优化的人胰岛素类似物前体基因和信号肽基因 - Google Patents
一种密码子优化的人胰岛素类似物前体基因和信号肽基因 Download PDFInfo
- Publication number
- WO2019154311A1 WO2019154311A1 PCT/CN2019/074384 CN2019074384W WO2019154311A1 WO 2019154311 A1 WO2019154311 A1 WO 2019154311A1 CN 2019074384 W CN2019074384 W CN 2019074384W WO 2019154311 A1 WO2019154311 A1 WO 2019154311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- acid molecule
- seq
- human insulin
- molecule encoding
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/62—Insulins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/50—Fusion polypeptide containing protease site
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
- C12R2001/84—Pichia
Definitions
- the present invention relates to a codon-optimized human insulin analog precursor gene and a codon-optimized ⁇ -factor signal peptide gene, and provides a method for expressing the human insulin analog precursor gene .
- Human insulin is a polypeptide consisting of 51 amino acids and contains two chains, A and B, respectively.
- the main effect of insulin is to regulate glucose metabolism.
- insulin intervention is the most direct and effective method as an alternative or supplementary treatment.
- Insulin also promotes fat synthesis, inhibits fat breakdown, and reduces ketone body formation. It is also used to correct various symptoms of insulin-related ketosis and acidosis.
- Insulin was first obtained from the pancreas of pigs, cattle and other animals, but these products are different from human insulin, so they are immunogenic.
- Eli Lilly and Danish Novo Nordisk developed the technology of recombinant human insulin production.
- human insulin and its analogues became the mainstream of the industry.
- the short duration of action of human insulin makes it necessary for patients to inject frequently, which is extremely inconvenient. Therefore, efforts have been made to obtain insulin analogs and derivatives thereof that can act on the human body for a longer period of time.
- the use of an acylating group to modify human insulin or an analog thereof is an effective method for increasing the half-life thereof.
- WO2018024186 discloses a human insulin analog in which the B29 position is substituted with a long chain fatty acid and the amino acid at position B30 is deleted, and the structure and biological activity of the human insulin analog are disclosed.
- WO9507931 discloses an insulin analog having a B29 position linked to a tetradecanoyl side chain, a B30 amino acid deletion, and a preparation thereof.
- WO2005012347 discloses a human insulin analog in which the B29 position is substituted by a glutamic acid and a long chain fatty acid, and the amino acid at position B30 is deleted.
- the commonly used expression systems for expressing human insulin and its analogues are mainly Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris, in which E. coli is expressed in the form of inclusion bodies, which undergo cleavage and renaturation of inclusion bodies, and the process is cumbersome and The yield is low, and S. cerevisiae and Pichia pastoris have the advantages of simple operation, easy cultivation, foreign protein modification, and secretory expression, but the secretion efficiency of Saccharomyces cerevisiae is low and the expression strain is not stable enough, compared to Pichia pastoris.
- Industrial production of recombinant proteins uses a broader expression system.
- the fermentation yield in the production process is a key factor in controlling the production cost. Due to the large demand in the insulin market, Novo Nordisk, an important producer, uses yeast to express its production scale when the size of the can reaches several tens of tons, which is very demanding on the plant and equipment. High and high cost, so increasing the fermentation yield of human insulin and its analogues is of great significance to industrial production.
- the genetic code is a triplet code and one codon consists of three adjacent bases on the messenger ribonucleic acid (mRNA).
- mRNA messenger ribonucleic acid
- the nucleotide sequence thereof is also derived from Saccharomyces cerevisiae, and the ⁇ -factor signal peptide nucleotide sequence optimized for Pichia pastoris has not been reported so far.
- codon optimization of insulin precursors such as the human insulin precursor gene sequence optimized by Gurramkonda et al. and its expression in the expression of simple fed-batch technique to high-level secretory production of Insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin.
- WO1998028429 discloses a gene sequence expressing a precursor of a human insulin analog, the amino acid sequence encoding the insulin precursor of the gene is EEGEPK-B(1-29)-AAK-A(1-21), wherein EEGEPK is an N-terminal extension of the insulin precursor, called a spacer peptide or a leader peptide, which protects the N-terminus of the insulin precursor from the hydrolysis of yeast protease.
- B (1-29) is the human insulin B chain lacking B30 threonine
- a (1-21) is the human insulin A chain amino acid sequence
- AAK is the connecting B chain A peptide linked to the A chain, also known as a C peptide.
- the present invention combines the Pichia pastoris codon preference to optimize the insulin analog precursor gene and the ⁇ -factor signal peptide gene for secretion expression in Pichia pastoris. And as a control with the human insulin analog precursor gene in the prior art, the results show that the codon-optimized gene expression of the human insulin analog precursor in the present invention is nearly doubled, which can greatly reduce the late human insulin. The cost of industrial production of its analogues.
- PS is a nucleic acid molecule encoding a processing site, a is 0 or 1;
- SP is a nucleic acid molecule encoding a signal peptide, b is 0 or 1;
- LS is a nucleic acid molecule encoding a spacer peptide, c is 0 or 1;
- GE is a nucleic acid molecule encoding a polypeptide of interest
- P'S is a nucleic acid molecule encoding a processing site, and d is 0 or 1.
- PS is a nucleic acid molecule encoding a processing site, a is 0 or 1;
- SP is a nucleic acid molecule encoding a signal peptide, b is 1;
- LS is a nucleic acid molecule encoding a spacer peptide, c is 1;
- GE is a nucleic acid molecule encoding a polypeptide of interest
- P'S is a nucleic acid molecule encoding a processing site, and d is 0 or 1.
- the nucleic acid molecule encoding the signal peptide comprises the sequence set forth in SEQ ID NO:1.
- the polypeptide of interest is a human insulin analog precursor polypeptide;
- the nucleic acid molecule encoding a human insulin analog precursor polypeptide comprises the sequence set forth in SEQ ID NO:3.
- nucleic acid sequence of the nucleic acid molecule (SP) encoding the signal peptide is set forth in SEQ ID NO: 1
- amino acid sequence is set forth in SEQ ID NO: 2:
- the nucleic acid molecule (GE) encoding the polypeptide of interest may be a nucleic acid molecule encoding a precursor of a human insulin analog, which may be human insulin depleted at the B30 position.
- the nucleic acid molecule sequence of the human insulin analog precursor is shown in SEQ ID NO: 3, and the amino acid sequence is shown in SEQ ID NO: 4:
- position 88-96 of the nucleic acid molecule encoding a precursor of a human insulin analog is a nucleic acid molecule encoding a linker peptide (also referred to as a C-peptide), which may be substituted, including but not limited to the following Sequence: GCCGCTAAG, GCTGCCAAG, GCTGCTAAA, GCCGCCAAG.
- sequence of the nucleic acid molecule (LS) encoding the spacer peptide is set forth in SEQ ID NO: 5:
- the PS and/or P'S is a nucleic acid molecule encoding a restriction site
- PS is a nucleic acid molecule encoding an EcoR I cleavage site
- P'S is a nucleic acid molecule encoding a Not I cleavage site.
- a nucleic acid molecule capable of expressing a precursor of a human insulin analog comprising a nucleic acid molecule encoding a spacer peptide and a nucleic acid molecule encoding a precursor of a human insulin analog, capable of expressing a human after recombination with a vector comprising a signal peptide Insulin analog precursor.
- the human insulin analog precursor nucleic acid sequence encoded by the human insulin analog precursor nucleic acid molecule is as follows:
- EGEPK SEQ ID NO: 16
- B(1-29) may be a human insulin B chain lacking the B30-threonine
- A(1-21) may be the human insulin A chain amino acid sequence
- AAK is a linker peptide linking the B chain and the A chain, also referred to as C peptide.
- sequence of the human insulin analog precursor nucleic acid molecule can be as set forth in SEQ ID NO: 6, and the amino acid sequence is set forth in SEQ ID NO:7:
- a nucleic acid molecule capable of expressing a precursor of a human insulin analog comprising a signal peptide sequence, a spacer peptide sequence, and a sequence encoding a precursor of a human insulin analog, capable of and without a signal, is provided
- the peptide carrier is recombinantly expressed to express a human insulin analog precursor.
- nucleic acid sequence of the nucleic acid molecule that expresses the human insulin analog precursor is set forth in SEQ ID NO: 8
- the encoded amino acid sequence is set forth in SEQ ID NO:9:
- a nucleic acid molecule that expresses a precursor of a human insulin analog can also be ligated to a cleavage site sequence, preferably an EcoR I cleavage site and a Not I cleavage site.
- a vector capable of expression in eukaryotic or prokaryotic cells is capable of secreting expression of a human insulin analog precursor in a prokaryotic or eukaryotic cell.
- a host cell is also provided, preferably a yeast, more preferably Pichia, which is capable of secreting a human insulin analog precursor.
- a method of making a human insulin analog comprising the use of a nucleic acid molecule, vector, and/or host cell as described above.
- the method may further comprise the following steps:
- nucleic acid molecule encoding a precursor of a human insulin analog can be exemplified by SEQ ID NO: 6, the enzyme-cutting insulin precursor Methods well known to those skilled in the art are employed.
- step 1) comprises expressing a human insulin analog precursor with an expression vector comprising a signal peptide sequence, said signal peptide sequence being as set forth in SEQ ID NO: 1.
- the human insulin analog is a B30 deleted human insulin, the human insulin analog further substituted with an acylating group.
- the B30 deleted human insulin is substituted with an acylating group at the lysine at position B29.
- the substituted product of the above substitution is lysine B29 (N ⁇ -(N ⁇ -hexadecane diacid-L-lysine-N ⁇ -oxobutanoyl)) des (B30) human insulin.
- Codon optimization refers to the use of host cell preference codon rules, the use of preferred codons and avoidance of low utilization or rare codons to synthesize genes.
- Control 1 is an encoding nucleic acid molecule of "EEGEPK” (GAAGAAGGTGAACCAAAG shown under double underline) is linked to the encoding nucleic acid molecule of the insulin precursor gene in patent WO1998028429, as shown in SEQ ID NO: 10 below:
- Control 2 is an "EEGEPK” encoding nucleic acid molecule (shown underlined) linked to the encoded nucleic acid molecule of the optimized insulin precursor gene in the literature of Gurramkonda et al. (Microbial Cell Factories, 2010, 9:31), as follows SEQ ID NO: 11:
- IP-S is a nucleic acid molecule corresponding to a codon optimized insulin precursor gene.
- ⁇ -factor is a nucleic acid molecule corresponding to the ⁇ -factor signal peptide gene carried by the pPIC9K expression vector provided by Invitrogen, which is derived from Saccharomyces cerevisiae.
- ⁇ -Factor-S is a nucleic acid molecule corresponding to a codon-optimized ⁇ -factor signal peptide gene.
- a “vector” includes a nucleic acid molecule capable of transporting another nucleic acid to which it is linked, including, but not limited to, a plasmid and a viral vector. Certain vectors are capable of autonomous replication in the host cell into which they are introduced, while other vectors can be integrated into the genome of the host cell upon introduction into the host cell and thus replicated along with the host genome. In addition, certain vectors are capable of directing expression of genes operably linked thereto, such vectors are referred to herein as “recombinant expression vectors" (or simply “expression vectors”), and typical vectors are well known in the art.
- target polypeptide is a polypeptide that can be expressed in yeast, including but not limited to enzymes, antibodies, interferons, insulin, interleukins, and the like, and variants, precursors, intermediates thereof, such as may be insulin precursors.
- Cell and “host cell” are used interchangeably.
- Polynucleotide molecule “nucleic acid molecule” are used interchangeably and the sequence may be a DNA sequence.
- the vector, host bacteria and culture medium used in the examples of the present invention were purchased from Invitrogen, wherein the Pichia pastoris expression vector pPIC9K contains an alcohol oxidase AOX1 promoter, which can be induced by methanol, and the vector also contains an ⁇ -factor signal peptide sequence. It can secrete and express foreign protein; Pichia pastoris expression vector pPIC3.5K contains alcohol oxidase AOX1 promoter, which can be induced by methanol.
- the vector does not contain ⁇ -factor signal peptide sequence;
- the host strain is Pichia pastoris GS115 strain; Based on the media formulation provided by the Pichia pastoris manual.
- Control 1 SEQ ID NO: 10
- Control 2 SEQ ID NO: 11
- IP-S SEQ ID NO: 6
- the point was synthesized by Nanjing Kingsray Biotech Co., Ltd., and the synthesized nucleic acid molecule sequence was ligated to the T vector.
- the T vector carrying the insulin precursor nucleic acid molecule and the expression vector pPIC9K were digested with the endonuclease EcoR I and Not I, and then the target fragment and the vector fragment were separately recovered by a gel recovery kit, and the enzyme was digested with T4 ligase. The target fragment after digestion and purification was ligated to the vector pPIC9K after digestion.
- Example 2 Pichia pastoris recombinant strain expresses insulin precursor
- Example 1 The three recombinant expression vectors constructed in Example 1 were transformed into Pichia pastoris GS115, and the recombinant strains expressing Control 1 and Control 2 were used as control strains, and the recombinant strain expressing IP-S was used as an experimental strain.
- Table 1 shows that the amount of insulin precursor expressed by the optimized insulin precursor gene is increased by 1.8 to 2.25 times compared with the two control groups. It can be seen that the optimized insulin precursor gene has a better expression effect and its expression. The yield of insulin precursors is significantly increased.
- ⁇ -factor SEQ ID NO: 12
- ⁇ -factor-S SEQ ID NO: 1
- SEQ ID NO: 13 SEQ ID NO: 8
- the synthesized nucleic acid molecule is ligated to the T vector.
- ⁇ -factor SEQ ID NO: 12
- ⁇ -factor-S SEQ ID NO: 1
- SEQ ID NO: 14 SEQ ID NO: 15
- the synthesis is carried out, and the 5' and 3' ends of the synthesized nucleic acid molecule carry EcoR I and Not I cleavage sites, respectively, and the synthesized nucleic acid molecule is ligated to the T vector.
- T vector and the expression vector pPIC3.5K were digested with the endonucleases EcoR I and Not I, and then the target fragment and the vector fragment were separately recovered by a gel recovery kit, and the target fragment was digested with T4 ligase.
- the vector pPIC3.5K after restriction enzyme digestion was separately ligated.
- the above-mentioned ligation solution was transformed into E. coli TOP10 competent cells, and the resistant plate containing ampicillin was applied. After the culture, the cloned plasmid was picked and cloned, and the two recombinant expression vectors were finally verified.
- An insulin precursor gene that expresses a different nucleotide sequence is fused with an ⁇ -factor signal peptide and an ⁇ -factor-S signal peptide.
- Example 4 Insulin precursor before and after optimization of expression of Pichia pastoris recombinant bacteria
- the recombinant expression vector constructed in Example 3 was separately transformed into Pichia pastoris GS115.
- the cells were collected and resuspended in 50 mL of BMGY medium, and cultured overnight at 30 ° C with a constant temperature shaker at 250 rpm until the OD 600 was about 30.
- the cells were collected by centrifugation at 1500 rpm for 5 minutes and resuspended in 25 mL of BMMY medium.
- the recombinant strain expressing the control 1 gene of the fusion ⁇ -factor was used as a control strain, and the insulin precursor production of the other strains was converted into a percentage relative to the yield of the control strain, as shown in Table 2.
- the data in Table 2 shows that only the signal peptide-optimized nucleic acid molecule sequence expresses the amount of insulin precursor increased by a factor of 1.5, and only the insulin precursor gene-optimized nucleic acid molecule sequence expresses the amount of the insulin precursor to 2.25 times, while the signal peptide
- the amount of the insulin precursor expressed by the nucleic acid molecule sequence optimized simultaneously with the insulin precursor gene was increased to 2.75 times. Taken together, codon optimization increases the expression of insulin precursors to 1.5-2.75 times.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
菌株 | 载体 | 所用信号肽 | 表达基因 | 产量百分比(%) |
对照菌 | pPIC9K | α-因子 | 对照1 | 100 |
对照菌 | pPIC9K | α-因子 | 对照2 | 125 |
实验菌 | pPIC9K | α-因子 | IP-S | 225 |
菌株 | 载体 | 所用信号肽 | 表达基因 | 产量百分比(%) |
对照菌 | pPIC3.5K | α-因子 | 对照1 | 100 |
实验菌 | pPIC3.5K | α-因子-S | 对照1 | 150 |
实验菌 | pPIC3.5K | α-因子 | IP-S | 225 |
实验菌 | pPIC3.5K | α-因子-S | IP-S | 275 |
Claims (13)
- 核酸分子,其包含具有以下通式的分子或结构:5′—(PS) a—(SP) b—(LS) c—GE—(P′S) d—3′,其中,PS是编码加工位点的核酸分子,a是0或1;SP是编码信号肽的核酸分子,b是1;LS是编码间隔肽的核酸分子,c是0或1;GE是编码目标多肽的核酸分子;P′S是编码加工位点的核酸分子,d是0或1;所述编码信号肽的核酸分子包含如SEQ ID NO:1所示序列。
- 核酸分子,其包含具有以下通式的分子或结构:5′—(PS) a—(SP) b—(LS) c—GE—(P′S) d—3′,其中,PS是编码加工位点的核酸分子,a是0或1;SP是编码信号肽的核酸分子,b是0或1;LS是编码间隔肽的核酸分子,c是0或1;GE是编码人胰岛素类似物前体多肽的核酸分子;P′S是编码加工位点的核酸分子,d是0或1;所述编码人胰岛素类似物前体多肽的核酸分子包含如SEQ ID NO:3所示序列。
- 根据权利要求1所述的核酸分子,其中所述目标多肽是人胰岛素类似物前体,编码所述人胰岛素类似物前体的核酸分子包含编码SEQ ID NO:4所示氨基酸序列的核酸分子,优选的,包含如SEQ ID NO:3所示核酸序列。
- 根据权利要求2所述的核酸分子,其中编码所述信号肽的核酸分子包含编码SEQ ID NO:2所示氨基酸序列的核酸分子,优选的,包含如SEQ ID NO:1或SEQ ID NO:12所示核酸序列。
- 根据前述权利要求2-4中任一项所述的核酸分子,所述编码人胰岛素类似物前体的核酸分子在相当于SEQ ID NO:3的第88-96位被替换,优选的,被GCCGCTAAG、GCTGCCAAG、GCTGCTAAA或GCCGCCAAG替换。
- 根据前述权利要求中任一项所述的核酸分子,所述间隔肽的氨基酸序列 包含EEGEPK(Glu-Glu-Gly-Glu-Pro-Lys),优选的,编码间隔肽的核酸分子包含如SEQ ID NO:5所示序列。
- 根据前述权利要求中任一项所述的核酸分子,其包含如SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:13、SEQ ID NO:15所示序列中的任意一个;或为SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:13、SEQ ID NO:15所示序列中的任意一个。
- 根据前述权利要求中任一项所述的核酸分子,所述加工位点是连接酶切位点,优选的,PS是编码EcoR I酶切位点的核酸分子和/或P′S是编码Not I酶切位点的核酸分子。
- 载体,其包含如前任一项权利要求所述的核酸分子,优选的,其是真核细胞表达载体或原核细胞表达载体。
- 宿主细胞,其含有权利要求1-8任一项所述的核酸分子和/或权利要求9所述的载体,优选的,其为酵母菌;更优选的,其为毕赤酵母。
- 制备人胰岛素类似物的方法,包括使用权利要求1-8任一项所述的核酸分子,权利要求9所述的载体,和/或权利要求10所述的宿主细胞。
- 根据权利要求11所述的方法,其还包括如下步骤:1)表达人胰岛素类似物前体;2)酶切步骤1)获得的人胰岛素类似物前体,得到人胰岛素类似物。
- 根据权利要求11或12所述的方法,所述的人胰岛素类似物为B30缺失的人胰岛素,和/或进一步经过酰化基团的取代,优选的,所述取代是B29位的赖氨酸被取代;更优选的,所述取代的产物为赖氨酸B29(N ε-(N α-十六烷脂肪二酸-L-赖氨酸-N ε-氧代丁酰基))des(B30)人胰岛素。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19751736.0A EP3750998A4 (en) | 2018-02-09 | 2019-02-01 | CODON-OPTIMIZED PRECURSOR GENE AND SIGNAL PEPTID GENE OF HUMAN INSULIN ANALOGUE |
KR1020207020915A KR20200119237A (ko) | 2018-02-09 | 2019-02-01 | 인간 인슐린 유사체의 코돈 최적화된 전구체 유전자 및 신호 펩티드 유전자 |
CA3086618A CA3086618A1 (en) | 2018-02-09 | 2019-02-01 | Codon optimized precursor gene and signal peptide gene of human insulin analogue |
US16/967,117 US20210032307A1 (en) | 2018-02-09 | 2019-02-01 | Codon optimized precursor gene and signal peptide gene of human insulin analogue |
RU2020128190A RU2020128190A (ru) | 2018-02-09 | 2019-02-01 | Кодон-оптимизированный ген предшественника и ген сигнального пептида аналога человеческого инсулина |
MX2020007929A MX2020007929A (es) | 2018-02-09 | 2019-02-01 | Gen percursor del codón optimizado y gen de péptido señal de analógo de la insulina humana. |
CN201980004477.8A CN111094572B (zh) | 2018-02-09 | 2019-02-01 | 一种密码子优化的人胰岛素类似物前体基因和信号肽基因 |
JP2020541883A JP2021513330A (ja) | 2018-02-09 | 2019-02-01 | ヒトインスリンアナログのコドン最適化前駆体遺伝子およびシグナルペプチド遺伝子 |
BR112020015238-2A BR112020015238A2 (pt) | 2018-02-09 | 2019-02-01 | Gene precursor otimizado por códon e gene de peptídeo sinal de análogo de insulina humana |
AU2019218315A AU2019218315A1 (en) | 2018-02-09 | 2019-02-01 | Codon optimized precursor gene and signal peptide gene of human insulin analogue |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810131794 | 2018-02-09 | ||
CN201810131794.3 | 2018-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019154311A1 true WO2019154311A1 (zh) | 2019-08-15 |
Family
ID=67548783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/074384 WO2019154311A1 (zh) | 2018-02-09 | 2019-02-01 | 一种密码子优化的人胰岛素类似物前体基因和信号肽基因 |
Country Status (12)
Country | Link |
---|---|
US (1) | US20210032307A1 (zh) |
EP (1) | EP3750998A4 (zh) |
JP (1) | JP2021513330A (zh) |
KR (1) | KR20200119237A (zh) |
CN (1) | CN111094572B (zh) |
AU (1) | AU2019218315A1 (zh) |
BR (1) | BR112020015238A2 (zh) |
CA (1) | CA3086618A1 (zh) |
MX (1) | MX2020007929A (zh) |
RU (1) | RU2020128190A (zh) |
TW (1) | TW201934752A (zh) |
WO (1) | WO2019154311A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115927360B (zh) * | 2020-05-26 | 2023-07-14 | 北京惠之衡生物科技有限公司 | 密码子优化的门冬胰岛素前体基因、重组载体、基因工程菌及其应用 |
CN116751817B (zh) * | 2023-05-29 | 2024-07-09 | 广东东阳光药业股份有限公司 | 检测胰岛素或其类似物的生物学活性的方法及试剂盒 |
CN117384275B (zh) * | 2023-12-13 | 2024-03-15 | 北京科为博生物科技有限公司 | 胰岛素样生长因子突变体igf1m及其应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995007931A1 (en) | 1993-09-17 | 1995-03-23 | Novo Nordisk A/S | Acylated insulin |
US5602034A (en) * | 1987-12-30 | 1997-02-11 | Chiron Corporation | Expression and secretion of heterologous proteins in yeast employing truncated alpha-factor leader sequences |
CN1154143A (zh) * | 1994-06-16 | 1997-07-09 | 诺沃挪第克公司 | 合成前导肽序列 |
WO1998028429A1 (en) | 1996-12-20 | 1998-07-02 | Novo Nordisk A/S | N-terminally extended proteins expressed in yeast |
CN1302333A (zh) * | 1998-01-23 | 2001-07-04 | 诺沃挪第克公司 | 在酵母中制备目的多肽的方法 |
WO2005012347A2 (en) | 2003-08-05 | 2005-02-10 | Novo Nordisk A/S | Novel insulin derivatives |
CN1836047A (zh) * | 2003-06-17 | 2006-09-20 | 赛姆生物系统遗传公司 | 在植物中生产胰岛素的方法 |
WO2013022721A1 (en) * | 2011-08-08 | 2013-02-14 | Merck Sharp & Dohme Corp. | N-glycosylated insulin analogues |
CN104788556A (zh) * | 2011-12-15 | 2015-07-22 | 上海恒瑞医药有限公司 | 人胰岛素类似物及其酰化衍生物 |
WO2018024186A1 (zh) | 2016-08-02 | 2018-02-08 | 江苏恒瑞医药股份有限公司 | 一种人胰岛素或其类似物的酰化衍生物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR025646A1 (es) * | 2000-09-13 | 2002-12-04 | Beta Lab Sa | Cepa de levaduras metilotroficas recombinantes productoras de un precursor de insulina, construcciones de adn y metodo para obtener la cepa. |
CN1873006A (zh) * | 2005-05-30 | 2006-12-06 | 上海新生源医药研究有限公司 | 一种重组人胰岛素原的生产方法 |
CA2755300A1 (en) * | 2009-03-12 | 2010-09-16 | Bigtec Private Limited | A polynucleotide and polypeptide sequence and methods thereof |
-
2019
- 2019-02-01 TW TW108104187A patent/TW201934752A/zh unknown
- 2019-02-01 MX MX2020007929A patent/MX2020007929A/es unknown
- 2019-02-01 AU AU2019218315A patent/AU2019218315A1/en not_active Abandoned
- 2019-02-01 US US16/967,117 patent/US20210032307A1/en not_active Abandoned
- 2019-02-01 KR KR1020207020915A patent/KR20200119237A/ko not_active Withdrawn
- 2019-02-01 CA CA3086618A patent/CA3086618A1/en active Pending
- 2019-02-01 BR BR112020015238-2A patent/BR112020015238A2/pt not_active IP Right Cessation
- 2019-02-01 RU RU2020128190A patent/RU2020128190A/ru unknown
- 2019-02-01 JP JP2020541883A patent/JP2021513330A/ja not_active Withdrawn
- 2019-02-01 WO PCT/CN2019/074384 patent/WO2019154311A1/zh unknown
- 2019-02-01 CN CN201980004477.8A patent/CN111094572B/zh active Active
- 2019-02-01 EP EP19751736.0A patent/EP3750998A4/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5602034A (en) * | 1987-12-30 | 1997-02-11 | Chiron Corporation | Expression and secretion of heterologous proteins in yeast employing truncated alpha-factor leader sequences |
WO1995007931A1 (en) | 1993-09-17 | 1995-03-23 | Novo Nordisk A/S | Acylated insulin |
CN1154143A (zh) * | 1994-06-16 | 1997-07-09 | 诺沃挪第克公司 | 合成前导肽序列 |
WO1998028429A1 (en) | 1996-12-20 | 1998-07-02 | Novo Nordisk A/S | N-terminally extended proteins expressed in yeast |
CN1302333A (zh) * | 1998-01-23 | 2001-07-04 | 诺沃挪第克公司 | 在酵母中制备目的多肽的方法 |
CN1836047A (zh) * | 2003-06-17 | 2006-09-20 | 赛姆生物系统遗传公司 | 在植物中生产胰岛素的方法 |
WO2005012347A2 (en) | 2003-08-05 | 2005-02-10 | Novo Nordisk A/S | Novel insulin derivatives |
WO2013022721A1 (en) * | 2011-08-08 | 2013-02-14 | Merck Sharp & Dohme Corp. | N-glycosylated insulin analogues |
CN104788556A (zh) * | 2011-12-15 | 2015-07-22 | 上海恒瑞医药有限公司 | 人胰岛素类似物及其酰化衍生物 |
WO2018024186A1 (zh) | 2016-08-02 | 2018-02-08 | 江苏恒瑞医药股份有限公司 | 一种人胰岛素或其类似物的酰化衍生物 |
Non-Patent Citations (6)
Title |
---|
GURRAMKONDA CHANDRASEKHAR; POLEZ SULENA; SKOKO NATASA; ADNAN AHMAD; GäBEL THOMAS; CHUGH DIPTI; SWAMINATHAN SATHYAMANGALAM; KHANNA: "Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin", MICROBIAL CELL FACTORIES, vol. 9, no. 31, 12 May 2010 (2010-05-12), pages 1 - 11, XP021077183, ISSN: 1475-2859, DOI: 10.1186/1475-2859-9-31 |
GURRAMKONDA ET AL., MICROBIAL CELL FACTORIES, vol. 9, 2010, pages 31 |
GURRAMKONDA, PICHIA PASTORIS |
MANUEL MANSUR; CECILIA CABELLO; LESTER HERNÁNDEZ; JOSÉ PAÍS; LAURA VARAS; JORGE VALDÉS; YANET TERRERO; ABDEL HIDALGO; LIUBA PLANA;: "Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris", BIOTECHNOLOGY LETTERS, vol. 27, no. 5, 31 March 2005 (2005-03-31), pages 339 - 345, XP019231101, ISSN: 0438-0479, DOI: :10.1007/s10529-005-1007-7 * |
See also references of EP3750998A4 |
SHI YING-FEI,JING KE-JU,LING XUE-PING,LU YING-HUA: "Codon Optimization of Human Proinsulin and Expression in Pichia pastoris", JOURNAL OF XIAMEN UNIVERSITY (NATURAL SCIENCE), vol. 51, no. 1, 31 January 2012 (2012-01-31), pages 101 - 106, XP009522307, ISSN: 0438-0479 * |
Also Published As
Publication number | Publication date |
---|---|
RU2020128190A (ru) | 2022-03-09 |
EP3750998A1 (en) | 2020-12-16 |
KR20200119237A (ko) | 2020-10-19 |
CN111094572B (zh) | 2023-04-04 |
US20210032307A1 (en) | 2021-02-04 |
MX2020007929A (es) | 2020-10-01 |
CN111094572A (zh) | 2020-05-01 |
AU2019218315A1 (en) | 2020-07-09 |
JP2021513330A (ja) | 2021-05-27 |
CA3086618A1 (en) | 2019-08-15 |
TW201934752A (zh) | 2019-09-01 |
EP3750998A4 (en) | 2022-02-23 |
BR112020015238A2 (pt) | 2020-12-29 |
RU2020128190A3 (zh) | 2022-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111072783B (zh) | 一种采用大肠杆菌表达串联序列制备glp-1或其类似物多肽的方法 | |
EP3874047B2 (en) | Carbon-source regulated protein production in a recombinant host cell | |
WO2019154311A1 (zh) | 一种密码子优化的人胰岛素类似物前体基因和信号肽基因 | |
KR20110132447A (ko) | 폴리뉴클레오타이드 및 폴리펩타이드 서열 및 이의 방법 | |
CN111378027B (zh) | 一种索玛鲁肽前体的制备方法 | |
EP2831262B1 (en) | Secretion of functional insulin glargine directly into the culture medium through over expression of kex2p intracellularly | |
CN111944823B (zh) | 适合于酵母表达的抗菌肽Hepcidin优化基因及其表达载体和应用 | |
CN102016043A (zh) | 用新融合配偶体生产重组蛋白的方法 | |
CN109988802B (zh) | 一种高效分泌表达人源fgf21蛋白的表达盒及其应用 | |
HK40025349A (zh) | 一种密码子优化的人胰岛素类似物前体基因和信号肽基因 | |
JP7631322B2 (ja) | 組換え治療用ペプチドの発現のためのn末端伸長配列 | |
JP2020513834A (ja) | ペプチドの発現および大規模生産 | |
CN114686504A (zh) | Lpp或其突变体作为分子伴侣在大肠杆菌中分泌表达重组蛋白的应用 | |
WO2020200414A1 (en) | Protein production in mut-methylotrophic yeast | |
RU2729353C1 (ru) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pF646, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД, СОДЕРЖАЩИЙ ПРОИНСУЛИН АСПАРТ, И ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ ГИБРИДНОГО ПОЛИПЕПТИДА, СОДЕРЖАЩЕГО ПРОИНСУЛИН АСПАРТ | |
RU2728611C1 (ru) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pF265, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД, СОДЕРЖАЩИЙ ПРОИНСУЛИН ЧЕЛОВЕКА, И ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ ГИБРИДНОГО ПОЛИПЕПТИДА, СОДЕРЖАЩЕГО ПРОИНСУЛИН ЧЕЛОВЕКА | |
WO2012048856A1 (en) | Proinsulin with helper sequence | |
US20240084084A1 (en) | Promoter for yeast | |
JP7570346B2 (ja) | Mut-メチロトローフ酵母 | |
RU2729357C1 (ru) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pF267, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД, СОДЕРЖАЩИЙ ПРОИНСУЛИН ЛИЗПРО, И ШТАММ БАКТЕРИЙ Escherichia coli - ПРОДУЦЕНТ ГИБРИДНОГО ПОЛИПЕПТИДА, СОДЕРЖАЩЕГО ПРОИНСУЛИН ЛИЗПРО | |
US10273520B2 (en) | Means and methods for hyper-production of authentic human basic fibroblast growth factor in Escherichia coli | |
RU2263147C1 (ru) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pHINS05, КОДИРУЮЩАЯ ГИБРИДНЫЙ ПОЛИПЕПТИД, СОДЕРЖАЩИЙ ПРОИНСУЛИН ЧЕЛОВЕКА, КЛЕТКА ESCHERICHIA COLI, ТРАНСФОРМИРОВАННАЯ РЕКОМБИНАНТНОЙ ПЛАЗМИДНОЙ ДНК pHINS05, И ШТАММ БАКТЕРИЙ ESCHERICHIA COLI JM109/pHINS05 - ПРОДУЦЕНТ ГИБРИДНОГО ПОЛИПЕПТИДА, СОДЕРЖАЩЕГО ПРОИНСУЛИН ЧЕЛОВЕКА | |
CN113462713A (zh) | 提高胰高血糖素样肽六连体在毕赤酵母中表达水平的方法 | |
RU2515061C1 (ru) | РЕКОМБИНАТНАЯ ПЛАЗМИДНАЯ ДНК рНI03 КОДИРУЮЩАЯ, ГИБРИДНЫЙ БЕЛОК С ПРОИНСУЛИНОМ ЧЕЛОВЕКА, КЛЕТКА Escherichia coli, ТРАНСФОРМИРОВАННАЯ РЕКОМБИНАНТНОЙ ПЛАЗМИДНОЙ ДНК рНI03, И ШТАММ БАКТЕРИЙ Escherichia coli JM109/pHI03-ПРОДУЦЕНТ ГИБРИДНОГО БЕЛКА-ПРЕДШЕСТВЕННИКА ИНСУЛИНА ЧЕЛОВЕКА | |
EP2867250A2 (en) | Proinsulin with enhanced helper sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19751736 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3086618 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019218315 Country of ref document: AU Date of ref document: 20190201 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020541883 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019751736 Country of ref document: EP Effective date: 20200909 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020015238 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112020015238 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200727 |