[go: up one dir, main page]

WO2019144969A1 - 用于治疗细菌感染的单环β-内酰胺化合物 - Google Patents

用于治疗细菌感染的单环β-内酰胺化合物 Download PDF

Info

Publication number
WO2019144969A1
WO2019144969A1 PCT/CN2019/073699 CN2019073699W WO2019144969A1 WO 2019144969 A1 WO2019144969 A1 WO 2019144969A1 CN 2019073699 W CN2019073699 W CN 2019073699W WO 2019144969 A1 WO2019144969 A1 WO 2019144969A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
etoac
stirred
mixture
mmol
Prior art date
Application number
PCT/CN2019/073699
Other languages
English (en)
French (fr)
Inventor
辜良虎
罗微
黄志刚
丁照中
李程
陈曙辉
Original Assignee
南京明德新药研发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发股份有限公司 filed Critical 南京明德新药研发股份有限公司
Priority to CN201980006879.1A priority Critical patent/CN111511737B/zh
Priority to US16/965,086 priority patent/US11459323B2/en
Priority to JP2020541574A priority patent/JP7280273B2/ja
Priority to EP19743987.0A priority patent/EP3747883A4/en
Publication of WO2019144969A1 publication Critical patent/WO2019144969A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to the field of medicine, and in particular to a monocyclic ⁇ -lactam compound for treating bacterial infection, an isomer thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutical composition comprising the same, and Use in the preparation of a medicament for treating a disease associated with bacterial infection. Specifically, it relates to a compound represented by the formula (I') or the formula (II'), an isomer thereof or a pharmaceutically acceptable salt thereof.
  • beta-lactam antibiotics A very successful and well tolerated class of beta-lactam antibiotics has been the primary basis for the treatment of infections caused by Gram-negative pathogens over the past few decades. Among them, third-generation cephalosporins, carbapenems and monocyclic lactams are widely used for the treatment of infections caused by Gram-negative bacteria.
  • ESBLs extended-spectrum lactamases
  • carbapenemases are resistant.
  • the important driving force of sex is the urgent need for new ⁇ -lactam antibiotics that can break through the resistance to fill the gap.
  • Aztreonam is the only FDA-approved monocyclic ⁇ -lactam used worldwide and a second analogue (tigemonam) sold only in the Japanese market.
  • the value of monocyclic ⁇ -lactam antibiotics is far from being Excavated (Rev. Infect. Dis., 1985, 7, 579-593).
  • the resistance of bacteria makes the permeability of aztreonam worse, the efflux effect is enhanced, and the inhibition spectrum is reduced.
  • AiCuris (WO 2013110643) and Novartis (WO 2015148379) respectively reported studies to improve the activity by modifying substituents on the Aztreonam molecule, the structural formula of which is shown below, wherein the group A is linked to a sulfhydryl group and a hydrazine.
  • the aromatic ring structure of the base (WO 2017050218) also reported a salt-type patent for one of the compounds, which are currently in preclinical or clinical development.
  • the present invention provides a compound of the formula (I') or (II'), an isomer thereof or a pharmaceutically acceptable salt thereof,
  • Ring A is selected from phenyl or 5- to 6-membered heteroaryl
  • n and m' are each independently selected from 1 or 2;
  • R 6 is selected from H or is selected from a 3- to 6-membered heterocycloalkyl group optionally substituted by 1, 2 or 3 R;
  • n is selected from: 1, 2, 3 or 4;
  • R 1 is selected from H, NH 2 or selected from C 1 1-6 alkyl, C 1-6 heteroalkyl, C 3-6 cycloalkyl, 3 - optionally substituted by 1, 2 or 3 R. 6-membered heterocycloalkyl;
  • R is selected from F, Cl, Br, I, or selected from the group consisting of 1, 2 or 3 R' substitutions: CH 3 , NH 2 , 5- to 6-membered heterocycloalkyl;
  • R' is selected from the group consisting of F, Cl, Br, I, CH 3 , NH 2 ,
  • R 2 is selected from C 1-3 alkyl
  • R 3 and R 4 are each independently selected from H or C 1-3 alkyl optionally substituted by 1, 2 or 3 R;
  • L is selected from: single bond or -O-;
  • Heter means a hetero atom or a hetero atom group
  • the number of heteroatoms or heteroatoms is independently selected from 1, 2 or 3.
  • the above R is selected from the group consisting of: F, Cl, Br, I, CH 3 , NH 2 ,
  • R 1 is selected from H, NH 2 or selected from the group consisting of 1, 2 or 3 R substituted: C 1-4 alkyl, C 1-4 heteroalkyl, C 3-6 cycloalkyl, 3- to 6-membered heterocycloalkyl.
  • R 1 is selected from H, NH 2 or selected from the group consisting of: 1, 3 or 3 R: CH 3 , OCH 2 CH 3 , Cyclohexane, pyrrolidinyl, piperidinyl, piperazinyl.
  • R 1 is selected from the group consisting of: H, CH 3 , OCH 2 CH 2 (NH 2 ), NH 2 ,
  • R 6 above is selected from H or is selected from piperidinyl optionally substituted with 1, 2 or 3 R.
  • R 6 is selected from the group consisting of H and
  • R 2 is selected from CH 3 .
  • Ring A above is selected from the group consisting of phenyl.
  • the structural unit From:
  • the structural unit From:
  • the structural unit From:
  • the structural unit From:
  • the structural unit From:
  • the above compound is selected from the group consisting of
  • R 1 , R 2 , R 3 , R 4 , L 1 , L 2 , L, m, m′ and ring A are as defined in the present invention.
  • the above compound is selected from the group consisting of
  • R 1 , R 2 , R 3 , R 4 , L 1 and L 2 are as defined in the present invention.
  • the present invention also provides a compound of the formula, an isomer thereof or a pharmaceutically acceptable salt thereof,
  • the above compound is selected from the group consisting of
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising, as an active ingredient, a therapeutically effective amount of the above compound, an isomer thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the present invention also provides the use of the above compound, an isomer thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition as described above, for the preparation of a medicament for treating a condition associated with bacterial infection.
  • the above bacterium is a Gram-negative bacterium.
  • the compound of the present invention has a good antibacterial activity against Gram-negative bacteria, especially against Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella.
  • the compound of the present invention can be used for the treatment of a drug-resistant bacterial infection caused by a plurality of Gram-negative bacteria, in particular, a Gram-negative bacteria (B. aurantia, which is a class B metal-containing ⁇ -lactamase, Diseases caused by drug-resistant bacteria such as Pseudomonas aeruginosa and Klebsiella.
  • pharmaceutically acceptable salt refers to a salt of a compound of the invention prepared from a compound having a particular substituent found in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting a neutral amount of such a compound with a sufficient amount of a base in a neat solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic ammonia or magnesium salts or similar salts.
  • an acid addition salt can be obtained by contacting a neutral form of such a compound with a sufficient amount of an acid in a neat solution or a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogencarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and an organic acid salt, such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and me
  • the salt is contacted with a base or acid in a conventional manner, and the parent compound is separated, thereby regenerating the neutral form of the compound.
  • the parent form of the compound differs from the form of its various salts by certain physical properties, such as differences in solubility in polar solvents.
  • a "pharmaceutically acceptable salt” is a derivative of a compound of the invention wherein the parent compound is modified by salt formation with an acid or with a base.
  • pharmaceutically acceptable salts include, but are not limited to, inorganic or organic acid salts of bases such as amines, alkali metal or organic salts of acid groups such as carboxylic acids, and the like.
  • Pharmaceutically acceptable salts include the conventional non-toxic salts or quaternary ammonium salts of the parent compound, for example salts formed from non-toxic inorganic or organic acids.
  • non-toxic salts include, but are not limited to, those derived from inorganic acids and organic acids selected from the group consisting of 2-acetoxybenzoic acid, 2-hydroxyethanesulfonic acid, acetic acid, ascorbic acid, Benzenesulfonic acid, benzoic acid, hydrogencarbonate, carbonic acid, citric acid, edetic acid, ethane disulfonic acid, ethanesulfonic acid, fumaric acid, glucoheptose, gluconic acid, glutamic acid, glycolic acid, Hydrobromic acid, hydrochloric acid, hydroiodide, hydroxyl, hydroxynaphthalene, isethionethane, lactic acid, lactose, dodecylsulfonic acid, maleic acid, malic acid, mandelic acid, methanesulfonic acid, nitric acid, oxalic acid, Pamoic acid, pantothenic acid, phenylacetic acid, phen
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound containing an acid group or a base by conventional chemical methods.
  • such salts are prepared by reacting these compounds in water or an organic solvent or a mixture of the two via a free acid or base form with a stoichiometric amount of the appropriate base or acid.
  • a nonaqueous medium such as ether, ethyl acetate, ethanol, isopropanol or acetonitrile is preferred.
  • the compounds provided herein also exist in the form of prodrugs.
  • Prodrugs of the compounds described herein are readily chemically altered under physiological conditions to convert to the compounds of the invention.
  • prodrugs can be converted to the compounds of the invention by chemical or biochemical methods in an in vivo setting.
  • Certain compounds of the invention may exist in unsolvated or solvated forms, including hydrated forms.
  • the solvated forms are equivalent to the unsolvated forms and are included within the scope of the invention.
  • Certain compounds of the invention may have asymmetric carbon atoms (optical centers) or double bonds. Racemates, diastereomers, geometric isomers and individual isomers are included within the scope of the invention.
  • wedged solid keys are used unless otherwise stated
  • wedge-shaped dashed keys Represents the absolute configuration of a stereocenter, using wavy lines Indicates a wedge solid key Or wedge-shaped dotted key
  • straight dashed keys Indicates the relative configuration of the stereocenter.
  • the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, they include the E and Z geometric isomers unless otherwise specified.
  • all tautomeric forms are included within the scope of the invention.
  • the compounds of the invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including the cis and trans isomers, the (-)- and (+)-p-enantiomers, the (R)- and (S)-enantiomers, and the diastereomeric a conformation, a (D)-isomer, a (L)-isomer, and a racemic mixture thereof, and other mixtures, such as enantiomerically or diastereomeric enriched mixtures, all of which belong to It is within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in the substituents such as alkyl groups. All such isomers, as well as mixtures thereof, are included within the scope of the invention.
  • optically active (R)- and (S)-isomers as well as the D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If an enantiomer of a compound of the invention is desired, it can be prepared by asymmetric synthesis or by derivatization with a chiral auxiliary wherein the resulting mixture of diastereomers is separated and the auxiliary group cleaved to provide pure The desired enantiomer.
  • a diastereomeric salt is formed with a suitable optically active acid or base, followed by conventional methods well known in the art.
  • the diastereomers are resolved and the pure enantiomer is recovered.
  • the separation of enantiomers and diastereomers is generally accomplished by the use of chromatography using a chiral stationary phase, optionally in combination with chemical derivatization (eg, formation of an amino group from an amine). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms that make up the compound.
  • radiolabeled compounds can be used, such as tritium (3 H), iodine -125 (125 I) or C-14 (14 C). Alterations of all isotopic compositions of the compounds of the invention, whether radioactive or not, are included within the scope of the invention.
  • pharmaceutically acceptable carrier refers to any formulation or carrier medium that is capable of delivering an effective amount of an active substance of the present invention, does not interfere with the biological activity of the active substance, and has no toxic side effects to the host or patient, including water, oil, Vegetables and minerals, cream bases, lotion bases, ointment bases, etc. These bases include suspending agents, tackifiers, transdermal enhancers and the like. Their formulations are well known to those skilled in the cosmetic or topical pharmaceutical arts. For additional information on vectors, reference is made to Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott, Williams & Wilkins (2005), the contents of which are hereby incorporated by reference.
  • excipient generally refers to the carrier, diluent and/or vehicle required to formulate an effective pharmaceutical composition.
  • an "effective amount” or “therapeutically effective amount” with respect to a pharmaceutical or pharmacologically active agent refers to a sufficient amount of a drug or agent that is non-toxic but that achieves the desired effect.
  • an "effective amount" of an active substance in a composition means the amount required to achieve the desired effect in combination with another active substance in the composition. The determination of the effective amount will vary from person to person, depending on the age and general condition of the recipient, and also on the particular active substance, and a suitable effective amount in a case can be determined by one skilled in the art based on routine experimentation.
  • active ingredient refers to a chemical entity that is effective in treating a target disorder, disease or condition.
  • substituted means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, and may include variants of heavy hydrogen and hydrogen, as long as the valence of the particular atom is normal and the substituted compound is stable. of.
  • Oxygen substitution does not occur on the aromatic group.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the kind and number of substituents may be arbitrary on the basis of chemically achievable.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with at most two R, and each case has an independent option.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of one linking group is 0, such as -(CRR) 0 -, it indicates that the linking group is a single bond.
  • one of the variables When one of the variables is selected from a single bond, it means that the two groups to which it is attached are directly linked. For example, when L represents a single bond in A-L-Z, the structure is actually A-Z.
  • a substituent When a substituent is vacant, it means that the substituent is absent. For example, when X is vacant in AX, the structure is actually A.
  • the substituent can be attached to more than one atom on a ring, the substituent can be bonded to any atom on the ring, for example, a structural unit. It is indicated that the substituent R can be substituted at any position on the cyclohexyl group or cyclohexadiene.
  • substituents When the listed substituents are not indicated by which atom is attached to the substituted group, such a substituent may be bonded through any atom thereof, for example, a pyridyl group as a substituent may be passed through any one of the pyridine rings. A carbon atom is attached to the substituted group.
  • the medium linking group L is -MW-, and at this time, -MW- can be connected in the same direction as the reading order from left to right to form ring A and ring B. It is also possible to connect the ring A and the ring B in a direction opposite to the reading order from left to right. Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • hetero denotes a hetero atom or a hetero atomic group (ie, a radical containing a hetero atom), including atoms other than carbon (C) and hydrogen (H), and radicals containing such heteroatoms, including, for example, oxygen (O).
  • ring means substituted or unsubstituted cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aryl or heteroaryl. So-called rings include single rings, interlocking rings, spiral rings, parallel rings or bridge rings. The number of atoms on the ring is usually defined as the number of elements of the ring. For example, "5 to 7-membered ring” means 5 to 7 atoms arranged in a circle. Unless otherwise specified, the ring optionally contains from 1 to 3 heteroatoms.
  • 5- to 7-membered ring includes, for example, phenyl, pyridine, and piperidinyl; on the other hand, the term “5- to 7-membered heterocycloalkyl ring” includes pyridyl and piperidinyl, but does not include phenyl.
  • ring also includes ring systems containing at least one ring, each of which "ring” independently conforms to the above definition.
  • heterocycle or “heterocyclyl” means a stable monocyclic, bicyclic or tricyclic ring containing a hetero atom or a heteroatom group which may be saturated, partially unsaturated or unsaturated ( Aromatic) which comprise a carbon atom and 1, 2, 3 or 4 ring heteroatoms independently selected from N, O and S, wherein any of the above heterocycles may be fused to a phenyl ring to form a bicyclic ring.
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O)p, p is 1 or 2).
  • the nitrogen atom can be substituted or unsubstituted (i.e., N or NR, wherein R is H or other substituents as already defined herein).
  • the heterocyclic ring can be attached to the side groups of any hetero atom or carbon atom to form a stable structure. If the resulting compound is stable, the heterocycles described herein can undergo substitutions at the carbon or nitrogen sites.
  • the nitrogen atom in the heterocycle is optionally quaternized.
  • a preferred embodiment is that when the total number of S and O atoms in the heterocycle exceeds 1, these heteroatoms are not adjacent to each other. Another preferred embodiment is that the total number of S and O atoms in the heterocycle does not exceed one.
  • aromatic heterocyclic group or "heteroaryl” as used herein means a stable 5, 6, or 7 membered monocyclic or bicyclic or aromatic ring of a 7, 8, 9 or 10 membered bicyclic heterocyclic group, It contains carbon atoms and 1, 2, 3 or 4 ring heteroatoms independently selected from N, O and S.
  • the nitrogen atom can be substituted or unsubstituted (i.e., N or NR, wherein R is H or other substituents as already defined herein).
  • the nitrogen and sulfur heteroatoms can be optionally oxidized (i.e., NO and S(O)p, p is 1 or 2).
  • bridged rings are also included in the definition of heterocycles.
  • a bridged ring is formed when one or more atoms (ie, C, O, N, or S) join two non-adjacent carbon or nitrogen atoms.
  • Preferred bridged rings include, but are not limited to, one carbon atom, two carbon atoms, one nitrogen atom, two nitrogen atoms, and one carbon-nitrogen group. It is worth noting that a bridge always converts a single ring into a three ring. In the bridged ring, a substituent on the ring can also be present on the bridge.
  • heterocyclic compounds include, but are not limited to, acridinyl, octanoyl, benzimidazolyl, benzofuranyl, benzofuranylfuranyl, benzindenylphenyl, benzoxazolyl, benzimidin Oxazolinyl, benzothiazolyl, benzotriazolyl, benzotetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, oxazolyl, 4aH-carbazolyl, Porphyrin, chroman, chromene, porphyrin-decahydroquinolinyl, 2H, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b] Tetrahydrofuranyl, furyl, furfuryl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-carbazolyl, nonenyl,
  • hydrocarbyl or its subordinate concept (such as alkyl, alkenyl, alkynyl, aryl, etc.), by itself or as part of another substituent, is meant to be straight-chain, branched or cyclic.
  • the hydrocarbon atom group or a combination thereof may be fully saturated (such as an alkyl group), a unit or a polyunsaturated (such as an alkenyl group, an alkynyl group, an aryl group), may be monosubstituted or polysubstituted, and may be monovalent (such as Methyl), divalent (such as methylene) or polyvalent (such as methine), may include divalent or polyvalent radicals with a specified number of carbon atoms (eg, C 1 -C 12 represents 1 to 12 carbons) , C 1-12 is selected from C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 and C 12 ; C 3-12 is selected from C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 and C 12 .).
  • C 1-12 is selected from C 1
  • Hydrocarbyl includes, but is not limited to, aliphatic hydrocarbyl groups including chain and cyclic, including but not limited to alkyl, alkenyl, alkynyl groups including, but not limited to, 6-12 members.
  • An aromatic hydrocarbon group such as benzene, naphthalene or the like.
  • hydrocarbyl means a straight or branched chain radical or a combination thereof, which may be fully saturated, unitary or polyunsaturated, and may include divalent and multivalent radicals.
  • saturated hydrocarbon radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, isobutyl, cyclohexyl, (cyclohexyl).
  • a homolog or isomer of a methyl group, a cyclopropylmethyl group, and an atomic group such as n-pentyl, n-hexyl, n-heptyl, n-octyl.
  • the unsaturated hydrocarbon group has one or more double or triple bonds, and examples thereof include, but are not limited to, a vinyl group, a 2-propenyl group, a butenyl group, a crotyl group, a 2-isopentenyl group, and a 2-(butadienyl group). , 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and higher homologs and isomers body.
  • heterohydrocarbyl or its subordinate concept (such as heteroalkyl, heteroalkenyl, heteroalkynyl, heteroaryl, etc.), by itself or in combination with another term, means a stable straight chain, branched chain. Or a cyclic hydrocarbon radical or a combination thereof having a number of carbon atoms and at least one heteroatom.
  • heteroalkyl by itself or in conjunction with another term refers to a stable straight chain, branched hydrocarbon radical or combination thereof, having a number of carbon atoms and at least one heteroatom.
  • the heteroatoms are selected from the group consisting of B, O, N, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen heteroatoms are optionally quaternized.
  • the hetero atom or heteroatom group may be located at any internal position of the heterohydrocarbyl group, including where the hydrocarbyl group is attached to the rest of the molecule, but the terms "alkoxy”, “alkylamino” and “alkylthio” (or thioalkoxy). By customary expression, those alkyl groups which are attached to the remainder of the molecule through an oxygen atom, an amino group or a sulfur atom, respectively.
  • cycloalkyl refers to any heterocyclic alkynyl group, etc., by itself or in combination with other terms, denotes a cyclized “hydrocarbyl group” or “heterohydrocarbyl group”, respectively.
  • a hetero atom may occupy a position at which the hetero ring is attached to the rest of the molecule.
  • cycloalkyl groups include, but are not limited to, cyclopentyl, cyclohexyl, 1-cyclohexenyl, 3-cyclohexenyl, cycloheptyl, and the like.
  • heterocyclic groups include 1-(1,2,5,6-tetrahydropyridyl), 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-morpholinyl, 3-morpholinyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, 1-piperazinyl and 2-piperazinyl.
  • alkyl is used to denote a straight or branched saturated hydrocarbon group, which may be monosubstituted (eg, -CH 2 F) or polysubstituted (eg, -CF 3 ), and may be monovalent (eg, Methyl), divalent (such as methylene) or polyvalent (such as methine).
  • alkyl group include methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, s-butyl). , t-butyl), pentyl (eg, n-pentyl, isopentyl, neopentyl) and the like.
  • alkenyl refers to an alkyl group having one or more carbon-carbon double bonds at any position of the chain, which may be mono- or poly-substituted, and may be monovalent, divalent or multivalent.
  • alkenyl group include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a butadienyl group, a pentadienyl group, a hexadienyl group and the like.
  • alkynyl refers to an alkyl group having one or more carbon-carbon triple bonds at any position of the chain, which may be mono- or poly-substituted, and may be monovalent, divalent or multivalent.
  • alkynyl groups include ethynyl, propynyl, butynyl, pentynyl and the like.
  • a cycloalkyl group includes any stable cyclic or polycyclic hydrocarbon group, any carbon atom which is saturated, may be monosubstituted or polysubstituted, and may be monovalent, divalent or multivalent.
  • Examples of such cycloalkyl groups include, but are not limited to, cyclopropyl, norbornyl, [2.2.2]bicyclooctane, [4.4.0]bicyclononane, and the like.
  • a cycloalkenyl group includes any stable cyclic or polycyclic hydrocarbon group which contains one or more unsaturated carbon-carbon double bonds at any position of the ring, and may be monosubstituted or polysubstituted, It can be one price, two price or multiple price.
  • Examples of such cycloalkenyl groups include, but are not limited to, cyclopentenyl, cyclohexenyl, and the like.
  • a cycloalkynyl group includes any stable cyclic or polycyclic hydrocarbon group which contains one or more carbon-carbon triple bonds at any position of the ring, which may be monosubstituted or polysubstituted, and may be one Price, price or price.
  • halo or “halogen”, by itself or as part of another substituent, denotes a fluorine, chlorine, bromine or iodine atom.
  • haloalkyl is intended to include both monohaloalkyl and polyhaloalkyl.
  • halo(C 1 -C 4 )alkyl is intended to include, but is not limited to, trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, and the like. Wait.
  • examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, and pentachloroethyl.
  • alkoxy represents attached through an oxygen bridge
  • C 1-6 alkoxy groups include C 1, C 2, C 3 , C 4, C 5 , and C 6 alkoxy groups.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, n-pentyloxy and S- Pentyloxy.
  • aryl denotes a polyunsaturated, aromatic hydrocarbon substituent which may be monosubstituted or polysubstituted, which may be monovalent, divalent or polyvalent, which may be monocyclic or polycyclic ( For example, 1 to 3 rings; at least one of which is aromatic), they are fused together or covalently linked.
  • heteroaryl refers to an aryl (or ring) containing one to four heteroatoms. In an illustrative example, the heteroatoms are selected from the group consisting of B, N, O, and S, wherein the nitrogen and sulfur atoms are optionally oxidized, and the nitrogen atom is optionally quaternized.
  • a heteroaryl group can be attached to the remainder of the molecule through a heteroatom.
  • aryl or heteroaryl groups include phenyl, naphthyl, biphenyl, pyrrolyl, pyrazolyl, imidazolyl, pyrazinyl, oxazolyl, phenyl-oxazolyl, isomerism Azyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidinyl, benzothiazolyl, indolyl, benzimidazolyl, indolyl, isoquinolyl, quinoxalinyl, quinolinyl, 1 -naphthyl, 2-naphthyl, 4-biphenylyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl
  • aryl groups when used in conjunction with other terms (e.g., aryloxy, arylthio, aralkyl), include aryl and heteroaryl rings as defined above.
  • aralkyl is intended to include those radicals to which an aryl group is attached to an alkyl group (eg, benzyl, phenethyl, pyridylmethyl, and the like), including wherein the carbon atom (eg, methylene) has been, for example, oxygen.
  • alkyl groups substituted by an atom such as phenoxymethyl, 2-pyridyloxymethyl 3-(1-naphthyloxy)propyl and the like.
  • leaving group refers to a functional group or atom which may be substituted by another functional group or atom by a substitution reaction (for example, an affinity substitution reaction).
  • substituent groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters and the like; acyloxy groups such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to, formyl; acyl, such as alkanoyl (e.g., acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, e.g., tert-butoxycarbonyl (Boc) Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1, 1-di -(4'-methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for use in preventing hydroxy side reactions.
  • Representative hydroxy protecting groups include, but are not limited to, alkyl groups such as methyl, ethyl and t-butyl groups; acyl groups such as alkanoyl groups (e.g., acetyl); arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and t-butyl groups
  • acyl groups such as alkanoyl groups (e.g., acetyl)
  • arylmethyl groups such as benzyl (Bn), Oxybenzyl (PMB), 9-fluoreny
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations:
  • Figure 1 shows the results of an in vivo pharmacodynamic test of a compound against lung infection in mice.
  • Figure 2 shows the results of in vivo pharmacodynamic tests of compounds on mouse thigh muscle infection.
  • Figures 3 and 4 show the amount of lung bacteria administered to treat pulmonary pus in the immunosuppressed mice.
  • Step 1 Compound A1_1 (100.00 g, 642.76 mmol, 1.00 eq) was added to THF (1.50 L), then triethylamine (136.59 g, 1.35 mol, 187.10 mL, 2.10 eq) was added and the mixture was cooled to 0 ° C Then, a solution of Boc 2 O (154.31 g, 707.03 mmol, 162.43 mL, 1.10 eq) in THF (500.00 mL) was added dropwise at this temperature, warmed to 10 ° C and stirred at this temperature for 10 hours, then filtered, filtrate After concentration under reduced pressure, a saturated sodium hydrogen carbonate solution (300 mL) was evaporated and evaporated. The combined organic layers were dried with anhydrous sodium sulfate, filtered and evaporated
  • Step 3 A1_3 (30 g, 136.81 mmol, 1.00 eq) was dissolved in a mixed solution of sodium phosphate buffer (540.00 mL, 0.7 M, 2.76 eq) and acetonitrile (300 mL), then TEMPO (2.15 g, 13.68 mmol, 0.10 eq), a solution of NaClO (81.47 g, 5.47 mmol, 67.33 mL, purity 0.5%, 0.04 eq) and NaClO 2 (98.99 g, 1.09 mol, 8.00 eq) in water (300 mL) was added dropwise with stirring at 35 °C.
  • Step 4 A1_4 (48 g, 205.78 mmol, 1.00 eq) was dissolved in DMF (700 mL), then DCC (84.92 g, 411.56 mmol, 83.25 mL, 2.00 eq) and HOBt (55.61 g, 411.56 mmol, 2 eq) After stirring at 10 ° C for 0.5 hours, O-benzylhydroxylamine hydrochloride (39.41 g, 246.93 mmol, 1.20 eq) and aqueous sodium bicarbonate (69.15 g, 823.11 mmol, 32.01 mL, 4 eq) was then added.
  • Step 6 A1_6 (31 g, 96.76 mmol, 1.00 eq) was dissolved in methanol (620 mL), and Pd/C (3 g, 10%) was added under a nitrogen atmosphere, and then the reaction flask was replaced with nitrogen three times. Then, hydrogen gas was charged at 20 ° C and reacted in an atmosphere of 50 psi for 1 hour, and then the reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give Compound A1-7.
  • Step seven (220mL) was added DMF ⁇ SO 3 (17.56g, 114.65mmol , 1.2eq) to A1_7 (22g, 95.54mmol, 1.00eq) in DMF. The mixture was stirred at 0 °C 1 h, then diluted with saturated KH 2 PO 4 (200mL). The resulting mixture was extracted with ethyl acetate (100 mL), it was at 10 °C 20 min Add Bu 4 HSO 4 (38.93g, 114.65mmol , 1.20eq) to the combined aqueous layer, the resulting aqueous phase was extracted with EtOAc (350mL * 4 )extraction. The organic phases were combined and the filtrate was concentrated under reduced pressure to give Compound A1-8.
  • Step 8 A1_8 (68 g, 123.24 mmol, 1.00 eq) was added to trifluoroacetic acid (300 mL), and then the mixture was stirred at 15 ° C under nitrogen for 4 hours. The reaction mixture was diluted with dichloromethane (350 mL) and filtered. 1 H NMR (400 MHz, DMSO-d 6 ) ⁇ (ppm): 8.79 (br s, 3H), 4.18 (br s, 1H), 1.46-1.38 (m, 6H).
  • Step 1 A2_1 (97 g, 484.48 mmol, 1 eq) was dissolved in dichloromethane (600 mL) and DMF (400 mL), then triethylamine (49.02 g, 484.48 mmol, 67.43 mL, 1 eq) The temperature was lowered to -30 ° C and triphenylchloromethane (135.06 g, 484.48 mmol, 1 eq) was added dropwise at this temperature. The resulting mixture was stirred at 15 ° C for 12 h then diluted with EtOAc EtOAc EtOAc (EtOAc) The sodium was dried and filtered, and the filtrate was concentrated under reduced pressure to give A2.
  • Step 1 Slowly add Boc 2 O (9.32 g, 42.72 mmol, 9.81 mL, 1.00 eq) to a solution of A4 1 (19.00 g, 256.34 mmol, 21.35 mL, 6.00 eq) in dichloromethane (150 mL). A solution of dichloromethane (50 mL). The mixture was stirred at 20 ° C for 1 hour, then water (50 mL) was added and the mixture was evaporated. EtOAcjjjjjjjjjjj The sodium was dried, filtered and the filtrate was concentrated under reduced pressure to give Compound A4.
  • Step 2 To a solution of A4_2 (7.50 g, 43.04 mmol, 7.50 mL, 1.00 eq) in methanol (75.00 mL), EtOAc (EtOAc, EtOAc (EtOAc) , 64.56 mmol, 4.75 mL, 1.50 eq). The mixture was stirred at 20 ° C for 1 h then EtOAc (20 mL)EtOAc. The combined organic layers were washed with EtOAc EtOAc m.
  • Step 3 Compound A4_3 (5.50 g, 27.60 mmol, 1.00 eq) and pyrazole hydrochloride (2.89 g, 27.60 mmol, 1.00 eq) were added to 1,4-dioxane (50.00 mL). After stirring at 80 ° C for 2 hours under nitrogen, a 1,4-dioxane solution of the compound A4_4 was obtained, which was directly used for the next reaction.
  • Step 4 The crude product A4_4 (7.38 g, 27.61 mmol, 1.00 eq) of dioxane solution obtained in the next step was added to dichloromethane (50.00 mL), then DMAP (674.53 mg, 5.52 mmol, 0.20 eq) and Boc 2 O (18.08 g, 82.83 mmol, 19.03 mL, 3.00 eq).
  • Step 5 Compound A4_5 (4.00 g, 8.56 mmol, 1.00 eq) was dissolved in a mixture of THF (40.00 mL) and water (10.00 mL), then sodium hydroxide (3.42 g, 85.60 mmol, 10.00 eq), The mixture was stirred at 70 ° C for 2 hours under nitrogen.
  • Step 5 To a solution of the title compound (2 g, 6.58 mmol, 1 eq) in EtOAc (EtOAc) , 14.48 mmol, 2.02 mL, 2.2 eq). The mixture was stirred at 10 ° C for 1 hour. The reaction mixture was washed with water (20 mL EtOAc)
  • Step 1 Slowly add BOC-ONB (29.80 g, 106.69 mmol, 2 eq) and Et 3 N (11.34 g, to a solution of A6_1 (7 g, 53.35 mmol, 7.54 mL, 1 eq) in THF (70 mL). A solution of 112.03 mmol, 15.59 mL, 2.1 eq. After the reaction mixture was filtered, EtOAc EtOAc m.
  • Step 3 Compound A6_3 (4.2 g, 11.78 mmol, 1 eq) and pyrazole hydrochloride (1.23 g, 11.78 mmol, 1 eq) were added to THF (40 mL) and replaced with nitrogen three times, then the mixture was at 75 ° C The reaction was stirred for 12 hours. The reaction was cooled to room temperature, diluted with ethyl acetate (100 mL) and filtered and filtered, and then evaporated to give compound A6_4.
  • Step 4 To a solution of compound 0 ° C (2.1 g, 4.56 mmol, 1 eq) in DCM (20 mL), EtOAc (EtOAc, EtOAc, EtOAc, EtOAc. The mixture was stirred at 0<0>C for 20 min then EtOAc (EtOAc)EtOAc.
  • the mixture was stirred at 20 ° C for 12 h then diluted with EtOAc EtOAc (EtOAc)
  • EtOAc EtOAc
  • the organic phases were combined and concentrated under reduced pressure to give the residue obtained was purified by column chromatography
  • Step 2 To a solution of pyrazole hydrochloride (2.00 g, 19.09 mmol, 1 eq) in THF (40 mL) The mixture was stirred at 80 ° C for 12 hours and then concentrated under reduced pressure to give Compound A7_3.
  • Step 3 To a solution of A7_3 (6.5 g, 22.16 mmol, 1 eq) in DCM (60 mL), EtOAc (EtOAc, EtOAc, EtOAc, EtOAc mL, 3 eq). The mixture was stirred at 25 <0>C for 2 h, diluted with water (50 mL) andEtOAc. The organic layers were combined and concentrated under reduced pressure to give Compound A.
  • Step 1 Compound A8_1 was added to 1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-ol (10.16 g, 43.06 mmol, 10 eq) and DCM (20 mL) The mixed solution was stirred at room temperature for 45 minutes (20-25 ° C) and concentrated under reduced pressure to give Compound A8.
  • Step 1 To a solution of compound 1_1 (5.00 g, 34.44 mmol, 1.00 eq) in EtOAc (60.00 ⁇ RTIgt; The mixture was then stirred at 60 ° C for 14 hours, cooled to room temperature and concentrated under reduced pressure. The crude product was washed with ethyl acetate (30 mL).
  • Step 2 To a solution of compound 1 2 (10.50 g, 33.21 mmol, 1.00 eq) in methanol (110.00 mL), NaHH 4 (3.00 g, 79.30 mmol, 2.39 eq), and the mixture was stirred at 15 ° C for 2 hours. Water (10 mL) was then added thereto and stirred for 5 minutes. The aqueous phase was extracted with dichloromethane (100 mL). The combined organic layers were washed with EtOAc EtOAc m.
  • Step 3 Mix compound 1-3 (2.50 g, 10.45 mmol, 1.00 eq), aqueous sodium hydroxide (50.00 mL, 1 M) and 1,2-dibromoethane (62.25 g, 331.37 mmol, 25.00 mL, 31.72 eq) After stirring at 90 ° C for 2 hours, the mixture was poured into water (10 mL) and stirred for 5 minutes.
  • Step 4 To a solution of compound 1-4 (2.90 g, 8.38 mmol, 1.00 eq) in 1,2-dichloroethane (30.00 mL) was added chloro-1-chloroethyl ester (2.39 g, 16.75). Methylene, 2.00 eq), the mixture was stirred at 100 ° C for 2 hours. After concentrating under reduced pressure, MeOH (3.sub.3 mL) was evaporated.
  • Step 6 To a solution of compound 1_6 (620.00 mg, 1.55 mmol, 1.00 eq) in DMF (2.00 mL) was added triethylamine (203.90 mg, 2.01 mmol, 279.31 ⁇ l, 1.30 eq) and 2-hydroxyisoporphyrin- 1,3-diketone (252.85 mg, 1.55 mmol, 1.00 eq). The mixture was stirred at 45 ° C for 12 hr then EtOAc (EtOAc) (EtOAc)EtOAc.
  • Step 7 was added to the 1_7 (130mg, 249.72 ⁇ mol, 1eq) in ethanol compound (2mL) NH 2 NH 2 ⁇ H 2 O (14.71mg, 249.72 ⁇ mol, 14.28uL, purity 85%, 1eq). The mixture was stirred at 50 ° C for 2 hours and then filtered.
  • Step 8 Intermediate A2 (84.91 mg, 204.87 ⁇ mol, 0.9 eq) was added to a mixture of compound 1-8 (80 mg, 227.64 ⁇ mol, 1 eq) in methanol (3 mL) and dichloromethane (1 mL). The mixture was stirred at 15 ° C for 0.5 hr then concentrated EtOAc EtOAc EtOAc (EtOAc) The combined organic phases were washed with aq. EtOAc (EtOAc)
  • Step 9 DCC (64.55 mg, 312.88 ⁇ mol, 63.29 uL, 2 eq) and HOBt (42.28 mg, 312.88 ⁇ mol, 2 eq) were added to a solution of compound 1-9 (150 mg, 156.44 ⁇ mol, 1 eq) in DMF (2 mL). After the mixture was stirred at 15 ° C for 1 hour, intermediate A1 (36.17 mg, 172.08 ⁇ mol, 1.1 eq) and sodium hydrogencarbonate (52.57 mg, 625.75 ⁇ mol, 24.34 uL, 4 eq) were added, and the mixture was stirred at 15 ° C for 4 hours and then concentrated.
  • Step 10 To a solution of compound 1 - 10 (90 mg, EtOAc, EtOAc) The mixture was stirred at 15 ° C for 14 hours, then concentrated under reduced pressure. EtOAc mjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
  • Step 11 To a solution of compound 1-11 (90 mg, 94.23 mol, 1 eq) in dichloromethane (1 mL), EtOAc (EtOAc, EtOAc, EtOAc. Concentrated under reduced pressure, and the residue was purified by preparative HPLC (PLC: EtOAc: EtOAc: EtOAc: EtOAc: EtOAc: EtOAc 1.
  • Step 2 Compound 2_1 (3.90 g, 15.64 mmol, 1.00 eq) was added to a solution of sodium hydroxide (40.00 mL, 1M), then 1,2-dibromoethane (49.80 g, 265.09 mmol, 20.00 mL, 16.95 eq) and tetrabutylammonium bromide (100.84 mg, 312.80 ⁇ mol, 0.02 eq). The mixture was stirred at 90 ° C for 2 hours, then poured into water (10 mL) and stirred for 5 min. The aqueous phase was extracted with ethyl acetate (100 mL).
  • Step Four (15.00mL) was added to the NH compound 2_3 (900.00mg, 2.05mmol, 1.00eq) in ethanol 2 NH 2 ⁇ H 2 O ( 120.89mg, 2.05mmol, 117.36uL, purity 85%, 1.00eq) .
  • the mixture was stirred at 45 ° C for 2 hours and then filtered.
  • Step 5 To a solution of compound 2_4 (580.31 mg, 1.88 mmol, 1.20 eq) of dichloromethane (3.00mL) and methanol (9.00mL), Intermediate A2 (650.00mg, 1.57mmol, 1.00eq). The mixture was stirred at 15 ° C for 1 hr then concentrated EtOAc. The combined organic phases were washed with aq. aq.
  • Step 6 To a solution of compound 2_5 (940.00 mg, 1.33 mmol, 1.00 eq) in DMF (10.00 mL), DCC (548.84 mg, 2.66 mmol, 538.08 uL, 2.00 eq) and HOBt (359.42 mg, 2.66 mmol, 2.00 eq) ). After the mixture was stirred at 15 ° C for 1 hour, sodium hydrogencarbonate (446.93 mg, 5.32 mmol, 206.91 ⁇ l, 4.00 eq) and Intermediate A1 (307.54 mg, 1.46 mmol, 1.10 eq) were added. The mixture was stirred at 15 ° C for 11 hr then EtOAc evaporated.
  • Step 7 After a mixture of compound 2-6 (50.00 mg, 55.74 ⁇ mol, 1.00 eq) and formic acid (1 mL) was stirred at 40 ° C for 40 min, ethyl acetate (20 mL) and water (1 mL) The liquid obtained an aqueous phase which was purified by preparative HPLC (column: Boston Green ODS 150*30 5 u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 1%-30%, 10 min).
  • Compound 2-6 50.00 mg, 55.74 ⁇ mol, 1.00 eq
  • formic acid 1 mL
  • Step 2 To a solution of compound 3-1 (90.00 mg, 112.94.sup.1, 1.00 eq) in dichloromethane (1.00 mL) was added TFA (4.62 g, 40.52 mmol, 3 mL, 358.77 eq). The mixture was stirred at 15 ° C for 0.5 hours and then concentrated under reduced pressure. The residue was purified by preparative HPLC (column: Boss Green ODS 150*30 5u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 5% - Compound 3 was purified by 35%, 10 min).
  • Step 1 To a solution of compound 1_1 (6 g, 41.33 mmol, 1 eq) and 1,3-dioxolan-2-one (4.37 g, 49.60 mmol, 3.31 mL, 1.2 eq) in DMF (80 mL) (6.28 g, 45.47 mmol, 1.1 eq). The mixture was stirred at 150 ° C for 1 hour under nitrogen, and then concentrated under reduced pressure to remove DMF, and the residue was diluted with water (30mL) and extracted with ethyl acetate (100mL*5). The combined organic layers were concentrated under reduced pressure to give compound 4-1.
  • Step 2 To a solution of compound 4-1 (2 g, 10.57 mmol, 1 EtOAc) EtOAc (EtOAc) The mixture was stirred at 60 ° C for 12 hr. EtOAc (EtOAc)EtOAc.
  • Step Four was added to the NH 3 ⁇ H Compound methanol 4_3 (2g, 7.06mmol, 1eq) in (20mL) 2 O (1.82g, 51.93mmol, 2mL, purity 36%, 7.36eq), under nitrogen, was added Pd (OH) 2 / C (100 mg, 10%), m. m.
  • Step seven (10mL) was added NH 2 NH 2 ⁇ H ethanol solution of compound 4_6 (500mg, 784.04 ⁇ mol, 1eq) in 2 O (39.25mg, 784.04 ⁇ mol, 38.11uL ). The mixture was stirred at 15 ° C for 1 hour and then filtered, and the filtrate was evaporated evaporated evaporated. mjjjjjjjjj 9, then extracted with dichloromethane (10 mL). The organic phases were combined and concentrated under reduced pressure to give compound 4-7.
  • Step 10 Compound 4-9 (90 mg, 71.32 ml, 1 eq) was dissolved in HCOOH (2 mL). The obtained residue was purified by preparative HPLC (formic acid, column: Boston Green ODS 150*30 5 u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 1%-27%, 10 min) to give compound 4 .
  • Step 2 Compound 5_1 (2.1 g, 4.91 mmol, 1 eq), 2-hydroxyisoindoline-1,3-dione (961.99 mg, 5.90 mmol, 1.2 eq), and PPh 3 (1.55 g, 5.90 mmol) , 1.2 eq) was added to DMF (20 mL), then DIAD (1.19 g, 5.90 mmol, 1.15 mL, 1.2 eq) was added at 0 °C. The mixture was stirred at 15 ° C for 18 hours, then concentrated under reduced pressure.
  • Step Three Compound ethanol 5_2 (2.4g, 4.87mmol, 1eq) in (25mL) was added NH 2 NH 2 ⁇ H 2 O (286.97mg, 4.87mmol, 278.62 ⁇ L, purity 85%, 1eq). The mixture was stirred at 15 ° C for 1 hour, then poured into water (20 mL).
  • Step four methanol (20mL) solution of compound 5_3 (1g, 2.76mmol, 1eq) was added NaBH 4 (313.15mg, 8.28mmol, 3eq ). The mixture was stirred at 15 ° C for 0.5 h then EtOAc (EtOAc) (EtOAc) Washed, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give compound 5-4.
  • Step 5 To a solution of compound EtOAc (EtOAc, EtOAc, EtOAc. The mixture was stirred at 15 ° C for 1 hour, then concentrated under reduced vacuo.
  • Step 6 To a solution of compound 5_5 (600 mg, 787.48.sup.sup.1 eq.) in DMF (6 mL), EtOAc (212.81 mg, 1.57 mmol, 2 eq.) and DCC (324.96 mg, 1.57 mmol, 318.58 ⁇ L, 2 eq). After the mixture was stirred at 15 ° C for 1 hour, sodium hydrogencarbonate (264.61 mg, 3.15 mmol, 122.51 ⁇ L, 4 eq) and Intermediate A1 (248.30 mg, 1.18 mmol, 1.5 eq) were added to the mixture and stirred at 15 ° C for 16 hours. After the mixture was stirred at 25 ° C for 1 hour, the mixture was filtered and the filtrate was evaporated. mjjjjjjjjjjj
  • Step 8 To a solution of compound 5-7 (300 mg, 309.55. The mixture was stirred at 15 ° C for 1 hour and then concentrated under reduced pressure. The residue was purified by preparative HPLC (cold: Phenomenex Synergi C18 150*25*10 um; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 1 Compound #5 was purified by %-18%, 10 minutes).
  • Step 1 To a solution of compound 5-6 (100 mg, 96.10 ⁇ mol, 1 eq) in dichloromethane (1 mL) Compound 6 was purified by preparative HPLC (column: Phenomenex Synergi C18 150*25*10 um; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 1% to 25%, 10 min).
  • Step 2 Compound 7_1 (78 mg, 91.34 ⁇ mol, 1 eq) was added to formic acid (1.83 g, 39.76 mmol, 1.5 mL, 435.31 eq), and the mixture was stirred at 40 ° C for 40 min and concentrated under reduced pressure.
  • formic acid (1.83 g, 39.76 mmol, 1.5 mL, 435.31 eq)
  • the mixture was stirred at 40 ° C for 40 min and concentrated under reduced pressure.
  • Mobile phase [water (0.225% formic acid)-acetonitrile]
  • acetonitrile % 1% to 25%, 10 min.
  • Step 1 Compound 4_1 (0.5 g, 2.64 mmol, 1 eq) was dissolved in THF (15 mL) and 2-hydroxyisoindoline-1,3-dione (474.19 mg, 2.91 mmol, 1.1 eq) and PPh 3 (762.41 mg, 2.91 mmol, 1.1 eq). DIAD (641.21 mg, 3.17 mmol, 616.55 uL, 1.2 eq) was added dropwise to the above mixture at 0 ° C and the reaction was stirred at 20 ° C for 16 hours, then the reaction mixture was filtered, and the filter cake was petroleum ether (5 mL*3) Washing and drying under vacuum at 45 ° C gave Compound 8_1.
  • Step Three Compound 8_2 (2.7g, 5.67mmol, 1eq) was dissolved in DMF (30mL), followed by addition of NH 2 NH 2 ⁇ H 2 O (317.18mg, 5.39mmol, 307.95uL, purity 85%, 0.95eq). After the mixture was stirred at 15 ° C for 1 hour, it was filtered, and the filtrate was evaporated to dryness.
  • Step 4 Compound 8-3 (0.92 g, 2.66 mmol, 1 eq) was dissolved in dichloromethane (3 mL) and ethanol (9mL), then Intermediate A2 (991.40mg, 2.39mmol, 0.9 eq). The mixture was stirred at 10 ° C for 1 hour, the reaction mixture was filtered, and the filter cake was collected and dried to give compound 8-4.
  • Step 6 To a solution of compound 8_5 (400 mg, 478.34 [mu]mol, 1 eq) in DMF (10 mL) was added DCC (197.39 mg, 956.68 ⁇ mol, 193.52 ⁇ L, 2 eq) and HOBt (129.27 mg, 956.68 ⁇ mol, 2 eq). After the mixture was stirred at 40 ° C for 1 hour, intermediate A3 (103.43 mg, 574.01 ⁇ mol, 1.2 eq) and sodium hydrogencarbonate (160.74 mg, 1.91 mmol, 74.41 ⁇ l, 4 eq) were added to the reaction, and the mixture was stirred at 40 ° C for 12 hours.
  • Step 7 Compound 8-6 (50 mg, 64.03 ⁇ mol, 1 eq) was dissolved in formic acid (1 mL), and the mixture was stirred at 40 ° C for 40 min and then concentrated under reduced pressure. The residue was purified by preparative HPLC (FA conditions) (column: Boston Green ODS 150*30 5u; mobile phase: [water (0.225% formic acid)-acetonitrile]), B%: 1%-30%, 10 min).
  • Step 1 To a solution of compound 8-6 (80 mg, 102.44.sup.sup.1 eq.) in DMF (2mL), sodium carbonate (21.72mg, 204.89 umol, 2 eq) and methyl iodide (1.19 g, 8.38 mmol, 521.93 uL, 81.84 eq). The mixture was stirred at 40 ° C for 2 hours and then filtered.
  • Step 2 Compound 9_1 (100 mg, 110.29 mmol, 1 eq) was added to formic acid (2 mL). The mixture was stirred at 40 ° C for 40 min then diluted with water (10 mL) and washed with dichloromethane (10 mL*2) Concentrated under reduced pressure, the residue was purified by preparative HPLC (FA conditions) (column: Boston Green ODS 150*30 5u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 1%-27%, 10 min) Compound 9 was purified.
  • Step 1 To a solution of compound 10-1 (3 g, 20.67 mmol, 1 EtOAc) (EtOAc) The mixture was stirred at 60 ° C for 14 hr.
  • Step Two After 0 °C, methanol compound 10_2 (5g, 15.81mmol, 1eq) in (50mL) was added NaBH 4 (2.02g, 53.33mmol, 3.37eq ), the mixture was stirred at 15 °C 2 pressure was reduced Concentrated, the residue was poured into water (20 mL) The combined organic layers were washed with EtOAc EtOAc m.
  • Step 5 Compound 10_5 (3 g, 10.23 mmol, 1 eq) was added to ethyl acetate (10.23 mmol, 30 mL, 4M), and the mixture was stirred at 10 ° C for 20 min.
  • Step seven THF (20mL) solution of compound 10_7 (2g, 4.53mmol, 1eq) was added 2-hydroxy-isoindoline-1,3-dione (886.92mg, 5.44mmol, 1.2eq) and a solution of PPh 3 (1.43 g, 5.44 mmol, 1.2 eq), then DIAD (1.10 g, 5.44 mmol, 1.06 mL, 1.2 eq) was added dropwise at 0 °C. The mixture was stirred at 15 ° C for 5 hours, then concentrated under reduced pressure. EtOAc EtOAcjjjjjjj
  • Step Eight To a 10_8 (1.8g, 2.35mmol, 40.95uL, 1eq) in ethanol (20mL) was added NH 2 NH 2 ⁇ H 2 O (138.21mg, 2.35mmol, 134.19uL, purity 85%, 1eq) . The mixture was stirred at 45 ° C for 0.5 hr. The combined organic layers were washed with a saturated aqueous
  • Step 9 To a solution of compound 10-9 (EtOAc, EtOAc, EtOAc) The mixture was stirred at 15 ° C for 10 min.
  • Step 10 HOBt (127.62 mg, 944.52 [mu]mol, 2 eq) and DCC (194.88 mg, 944.52 [mu]mol, 2 eq) were added to a solution of compound 10-10 (400 mg, 472.26 [mu]mol, 1 eq) in DMF (5 mL). After the mixture was stirred at 15 ° C for 1 hour, sodium hydrogencarbonate (158.70 mg, 1.89 mmol, 73.47 uL, 4 eq) and Intermediate A1 (129.06 mg, 613.94 ⁇ mol, 1.3 eq) were added.
  • Step 11 To a solution of compound 10-11 (20 mg, 13.1. The mixture was stirred at 15 ° C for 0.5 hours, and concentrated under reduced pressure. The residue was purified by preparative HPLC (column: Phenomenex Synergi C18 150*25*10 um; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 5%-35 Compound 10 was purified by %, 10 min).
  • Step 1 Compound 11_1 (10 g, 53.69 mmol, 1 eq) and BrCN (6.82 g, 64.43 mmol, 4.74 mL, 1.2 eq) were dissolved in acetone (100 mL) and potassium carbonate (11.13 g, 80.54 mmol, 1.5 eq) After replacing the nitrogen three times, it was stirred at 15 ° C for 1 hour. The reaction mixture was concentrated with EtOAc EtOAc (EtOAc)EtOAc. Concentrated to give compound 11_2.
  • Step 2 Compound 11-2 (2 g, 9.47 mmol, 1 eq) and pyridine salt ( 989.98 mg, 9.47 mmol, 1 eq) was added to THF (20 mL). The reaction mixture was diluted with methyl tert-butyl ether (20 mL) and stirred for 10 min.
  • Step 4 Compound 11_4 (1.85 g, 4.93 mmol, 1.00 eq) and compound 4-4 (0.95 g, 4.92 mmol, 1 eq) were added to DMF (10 mL) and then three times with nitrogen, and the mixture was stirred at 15 ° C for 1.5 hours. Heat to 30 ° C and stir for 2.5 hours. The reaction mixture was quenched with EtOAc EtOAc (EtOAc)EtOAc. The filtrate was concentrated to give compound 11_5.
  • Step 5 To a solution of compound 11_5 (2.3 g, 4.60 mmol, 1 eq) and 2-hydroxyisoindoline-1,3-dione (899.56 mg, 5.51 mmol, 1.2 eq) in THF (20 mL) PPh 3 (1.45 g, 5.51 mmol, 1.2 eq) and DIAD (1.12 g, 5.51 mmol, 1.07 mL, 1.2 eq) were added. The mixture was stirred at EtOAc (2 mL). The combined organic layers were dried with anhydrous sodium sulfate.
  • Step 6 Compound 11_6 (1.5 g, 2.32 mmol, 1 eq) was dissolved in ethanol (10 mL) and dichloromethane (5 mL), then NH 2 NH 2 ⁇ H 2 O (136.83 mg, 2.32 mmol, 132.85 uL, 85% purity, 1 eq). The mixture was stirred at 15 ° C for 0.5 hr then filtered and evaporatedEtOAc. The combined organic layers were dried with anhydrous sodium
  • Step 7 Compound 11_7 (400 mg, 775.91 ⁇ mol, 1.61 eq) and Intermediate A2 (200 mg, 482.54 ⁇ mol, 1 eq) were added to a mixed solution of dichloromethane (5 mL) and ethanol (5 mL), then stirred at 15 ° C 0.5 hours. The reaction mixture was concentrated under reduced pressure. EtOAc EtOAc m.
  • Step 10 To a solution of compound 11_10 (100 mg, 99.19 [mu]mol, 1 eq) in dichloromethane (1 mL) After the mixture was stirred at 0 ° C for 40 minutes, the reaction mixture was diluted with petroleum ether / ethyl acetate (5mL, 1/4) to form a precipitate, which was collected by filtration and passed to preparative HPLC (FA, column: Boston Green ODS 150 *30 5u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 1%-27%, 10 min).
  • Step 1 Compound 12_1 (2g, 9.99mmol, 1 eq), BrCN (1.59g, 14.98mmol, 1.10mL, 1.5eq) and sodium acetate (4.10g, 49.93mmol, 5eq) were added to ethanol (20mL) After stirring at room temperature (10-15 ° C) for 2 hours, the solvent was removed under reduced pressure and water (20 ml) was added to the mixture. The resulting mixture was extracted with EtOAc (EtOAc m.
  • Step 2 Compound 12-2 (2.3 g, 10.21 mmol, 1 eq), 1H-pyrazole hydrochloride (764.52 mg, 11.23 mmol, 1.1 eq) was added to THF (30 mL) and replaced with nitrogen three times, then the mixture was at 70 Stir at °C for 1.5 hours under nitrogen. After cooling to room temperature, methyl tert-butyl ether (30 ml) was added. The mixture was filtered, and the filter cake was washed with ethyl t-butyl ether (20 ml)
  • Step 3 The hydrochloride salt of compound 12-3 (1.8 g, 5.46 mmol, 1 eq) and triethylamine (1.38 g, 13.64 mmol, 1.90 mL, 2.5 eq) was added to dichloromethane (20 mL) and then at 0 ° C Trifluoroacetic anhydride (1.72 g, 8.19 mmol, 1.14 mL, 1.5 eq) was added. The reaction was stirred at room temperature (10-15 ° C) for 2 hr then dichloromethane (20 mL) was evaporated. The solvent was removed under reduced pressure to give compound 12_4.
  • Step 4 Compound 12_4 (2.1 g, 5.39 mmol, 1 eq) was dissolved in DMF (20 mL), then compound 4-4 (1.35 g, 7.01 mmol, 1.3 eq) was added and replaced with nitrogen three times. Stir for 1 hour and then stir at 30 ° C for 24 hours. Saturated sodium chloride (50 ml) was added to the mixture and ethyl acetate (30 ml?
  • Step 5 To compound 12-5 (2.05 g, 3.50 mmol, 1 eq), 2-hydroxyisoindoline-1,3-dione (684.81 mg, 4.20 mmol, 1.2 eq) and PPh 3 (1.84 g, 7.00 mmol, DIAS (1.06 g, 5.25 mmol, 1.02 mL, 1.5 eq) was added to a solution of EtOAc (20 mL). After the reaction was stirred at room temperature (10-15 ° C) for 12 hr, solvent was evaporated under reduced pressure, and water (20mL) was added to the reaction mixture.
  • Step Six Compound 12_6 (4g, 2.85mmol, 1eq) was dissolved in dichloromethane (10mL) and ethanol (10 mL), followed by addition of NH 2 NH 2 ⁇ H 2 O (167.85mg, 2.85mmol, 162.96uL, 85 % purity, 1 eq). The reaction was stirred at room temperature for 2 hr (10-15 ° C) then filtered and evaporated. The filtrate was washed with water (10 ml) and dried over anhydrous sodium sulfate.
  • Step 8 To a solution of compound 12_8 (640 mg, 487.25. The organic layer was washed with saturated aqueous sodium chloride (10 ml).
  • Step 9 DCC (83.52 mg, 404.82 ⁇ mol, 81.89 uL, 2 eq) and HOBt (54.70 mg, 404.82 ⁇ mol, 2 eq) were added to a solution of compound 12-9 (210 mg, 202.41 ⁇ mol, 1 eq) in DMF (1 mL). After the reaction mixture was stirred at room temperature (10-15 ° C) for 1 hour, intermediate A1 (63.82 mg, 303.61 ⁇ mol, 1.5 eq) and sodium hydrogencarbonate (68.01 mg, 809.64 ⁇ mol, 31.49 uL, 4 eq) were added.
  • Step 10 To a solution of compound 12-10 (64 mg, 62.61 ⁇ mol, 1 eq) in dichloromethane (1 mL) was added trifluoroacetic acid (1 mL), and stirred at -15 ° C for 0.5 hour, then warmed to 0 ° C and then stirred. hour. Ethyl acetate/petroleum ether (10 ml, 4:1) was then added to the reaction mixture to give a white solid. After filtration, the white solid was passed to preparative HPLC (column: Boston Green ODS 150*30 5u; mobile phase: [water] (0.225% formic acid)-acetonitrile]; acetonitrile %: 1% to 28%, 10 min).
  • Step 3 To compound 13_3 (9g, 30.18mmol, 1eq) and 4,4,4',4',5,5,5',5'-octamethyl-2,2'-di(1,3, Pd(dppf)Cl 2 ⁇ CH 2 Cl 2 (2.46 g, 3.02 mmol, 0.1 eq) and potassium acetate were added to a solution of 2-dioxaborane (15.33 g, 60.37 mmol, 2 eq) in DMSO (150 mL). 11.85 g, 120.73 mmol, 4 eq). The mixture was replaced with nitrogen three times and then stirred at 90 ° C for 12 hours.
  • 1 H NMR 400 MHz, DMSO-d 6 ) ⁇ (ppm): 7.21.
  • Step 8 2-Hydroxyisoindoline-1,3-dione (104.52 mg, 640.71 ⁇ mol, 0.95 eq) and compound 13-8 (320 mg, 674.43 mmol, 1 eq) were dissolved in THF (5 mL), then PPh 3 (212.27 mg, 809.32 ⁇ mol, 1.2 eq) and DIAD (163.65 mg, 809.32 ⁇ mol, 157.36 uL, 1.2 eq).
  • Step 9 the compound 13_9 (0.4g, 645.59 ⁇ mol, 1eq) in ethanol (5mL) and dichloromethane (1 mL) was added NH 2 NH 2 ⁇ H 2 O (41.82mg, 710.15 ⁇ mol, 40.61 ⁇ l, 85% Purity, 1.1 eq). The mixture was stirred at 15 ° C for 10 min then diluted with H20 (20 mL The combined organic layers were filtered and concentrated under reduced pressure to give compound 13-10. LC-MS (ESI) m.
  • Step 10 To a solution of Intermediate A2 (203.22 mg, 490.31. The mixture was stirred at 15 ° C for 10 minutes and then concentrated under reduced pressure to give compound 13-11. LC-MS (ESI)??
  • Step 13 To a solution of compound 13_13 (180 mg, 183.27. After the mixture was stirred at 0 ° C for 10 min, the reaction mixture was diluted with petroleum ether / ethyl acetate (10mL, 1 / 1), filtered, and filtered, and filtered, and passed to preparative HPLC (column: Boston Green ODS 150* 30 5u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 2% - 32%, 10 min).
  • Step 1 Trifluoroacetate salt of compound 6 (100 mg, 113.41 ⁇ mol, 1 eq), ethyl methionate (12.42 mg, 113.41 ⁇ mol, 1 eq, HCl) and triethylamine (34.43 mg, 340.22 ⁇ mol, 47.36 ⁇ L, 3 eq) was dissolved in DMF (1 mL) and the mixture was reacted at 15 ° C for 24 hours. After filtration, the filtrate was purified by preparative HPLC (FA, column: Boston Green ODS 150*30 5 u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 3%-33%, 10 min) 14.
  • Step 1 Compound 6 (100 mg, 113.41 ⁇ mol, 1 eq, 2TFA), formaldehyde solution (9.20 mg, 113.41 ⁇ mol, 8.44 uL, 1 eq) and anhydrous sodium sulfate (80.54 mg, 567.04 ⁇ mol, 57.53 uL, 5 eq) were added.
  • MeOH (1mL) solution was stirred, at 15 °C 1 h addition of NaBH 3 (CN) (14.25mg, 226.82 ⁇ mol, 2eq). The mixture was stirred at 15 ° C for further 11 hours and then filtered.
  • the filtrate was purified by preparative HPLC (FA, column: Boston Green ODS 150*30 5u; mobile phase: [water (0.225% formic acid)-acetonitrile]; acetonitrile %: 2%- Compound 15 was purified by 32%, 10 min).
  • Step 1 16_1 (2 g, 12.48 mmol, 1.96 mL, 1 eq), EtOAc (EtOAc, EtOAc, EtOAc (EtOAc) The mixture was replaced 3 times with nitrogen, and then the mixture was stirred at 10-15 ° C for 2 hours. The solvent was evaporated under reduced pressure. EtOAc (EtOAc) The combined organic phases were washed with brine and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to give compound 16-2.
  • Step 2 To a solution of compound 16-2 (2.3 g, 12.42 mmol, 1 EtOAc) The mixture was stirred at 70 ° C for 12 hours and then concentrated under reduced pressure to give the hydrochloride of compound 16-3.
  • EtOAc EtOAc
  • Step 4 Compound 16_4 (500 mg, 306.89 ⁇ mol, 1 eq) and compound 4-4 (59.30 mg, 306.89 ⁇ mol, 1 eq) were dissolved in DMF (5 mL) and the mixture was stirred at 30 ° C for 2 hours. The mixture was poured into water (10 mL) and EtOAc (EtOAc)EtOAc. Concentrated to give compound 16_5.
  • Step 5 Compound 16_5 (0.4 g, 843.04 ⁇ mol, 1 eq), 2-hydroxyisoindoline-1,3-dione (165.03 mg, 1.01 mmol, 1.2 eq), and PPh 3 (265.34 mg, 1.01 mmol) , 1.2 eq) was added to THF (4 mL) and DIAD (204.56 mg, 1.01 mmol, 196.70 uL, 1.2 eq) was added at 0 °C. The mixture was stirred at EtOAc (3 mL).
  • Step Six To a solution was added NH 2 NH 2 ⁇ H to 16_6 (200mg, 322.80 ⁇ mol, 1eq) in ethanol compound (2mL) 2 O (19.01mg, 322.80 ⁇ mol, 18.46uL, 85% purity, 1eq). The mixture was stirred at 20 ° C for 1 hr then filtered and evaporatedEtOAc. The combined organic phases were washed with EtOAc EtOAc m.
  • Step 7 To a solution of compound 16_7 (120 mg, 245.15.sup.sup.1 eq.) in methanol (3mL) and dichloromethane (1mL), Intermediate A2 (101.61mg, 245.15 ⁇ mol, 1 eq). The mixture was stirred at 15 ° C for 1 hour and then concentrated under reduced pressure to give compound 16-8.
  • Step 8 To a solution of compound 16_8 (200 mg, 225.75.times.sup.1 eq.) in methanol (1 mL) was added potassium carbonate (78.00 mg, 564.37 ⁇ mol, 2.5 eq). After the mixture was stirred at 15 ° C for 14 hours, the residue was poured into water (10 mL) and stirred for 5 min, then extracted with dichloromethane (50 mL*2), and the combined organic The mixture was washed with anhydrous sodium sulfate, filtered, and evaporated, evaporated,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • Step 9 DCC (41.79 mg, 202.55 ⁇ mol, 40.97 uL, 2 eq) and HOBt (27.37 mg, 202.55 ⁇ mol, 2 eq) were added to a solution of compound 16-9 (80 mg, 101.27 ⁇ mol, 1 eq) in DMF (2 mL). The mixture was stirred at 15 ° C for 30 minutes, then sodium bicarbonate (34.03 mg, 405.09 ⁇ mol, 15.75 uL, 4 eq) and intermediate A1 (31.93 mg, 151.91 ⁇ mol, 1.5 eq).
  • Step Two To a 17_1 (370mg, 585.74 ⁇ mol, 1eq) and 2-hydroxy-iso-indole-1,3-dione (95.55mg, 585.74umol, 1eq) in THF (8mL) was added PPh 3 (199.72 Mg, 761.46 ⁇ mol, 1.3 eq), then DIAD (153.97 mg, 761.46 ⁇ mol, 148.05 uL, 1.3 eq) was added dropwise at 0 °C.
  • Step three (10mL) was added NH 2 NH 2 ⁇ H to the compound EtOH 17_2 (700mg, 901.14 ⁇ mol, 1eq ) at 25 °C 2 O (58.38mg, 991.25 ⁇ mol , 56.68 ⁇ L, 85% purity, 1.1eq ) and stir for 1 hour.
  • the reaction mixture was concentrated under reduced EtOAc.
  • Step 5 To a solution of compound 17_4 (350 mg, 335.52. The mixture was stirred at 40 <0>C for 14 h then concentrated under reduced vacuo. The aqueous phase was extracted with DCM (100 mL). The combined organic phases were washed with EtOAc EtOAc m.
  • Step 6 To a solution of compound 17_5 (300 mg, 316.74 ⁇ mol, 1 eq) in DMF (3 mL), N,N'-diisopropylcarbodiimide (79.95 mg, 633.48 ⁇ mol, 98.09 uL, 2 eq) and HOBt ( 85.60 mg, 633.48 ⁇ mol, 2 eq). The mixture was stirred at 25 ° C for 30 minutes, then intermediate A1 (86.56 mg, 411.76 ⁇ mol, 1.3 eq) and NaHCO 3 (106.43 mg, 1.27 mmol, 4 eq) were added to the mixture.
  • Step 7 To a solution of compound 17_6 (80 mg, 64.84 [mu]mol, 1 eq) in EtOAc (1 mL) A mixed solution of ethyl acetate (10 mL, 1/2) was poured into the above reaction solution and stirred for 5 minutes, and the filter cake was collected by filtration and passed through a preparative HPLC column (Boston Green ODS 150*30*5 ⁇ m; mobile phase : [Water (0.225% FA)-acetonitrile]; acetonitrile %: 1%-27%, 10 min).
  • a preparative HPLC column Boston Green ODS 150*30*5 ⁇ m; mobile phase : [Water (0.225% FA)-acetonitrile]; acetonitrile %: 1%-27%, 10 min).
  • Step 1 To a solution of compound 13_12 (500 mg, 632.96 ⁇ mol, 1 eq) in DMF (5 mL), EtOAc (EtOAc, EtOAc, EtOAc, the mixture was stirred at this temperature for 60 minutes, followed by addition of intermediate A3 (148.26mg, 822.85 ⁇ mol, 1.3eq) and NaHCO 3 (212.70mg, 2.53mmol, 4eq ). The resulting mixture was stirred at room temperature for 11 hr then diluted with water (50 mL), filtered and evaporated.
  • Step 2 To a solution of compound 18-1 (450 mg, 472.64. (column: Boston pH-lex 150*25*10 ⁇ m; mobile phase: [water (0.1% TFA)-ACN]; acetonitrile %: 15%-29%, 8 min).
  • Step 2 To a solution of compound 19_1 (1.2 g, 2.40 mmol, 1 eq) and 2-hydroxyisoindoline-1,3-dione (391.11 mg, 2.40 mmol, 1 eq.) in THF (20 mL) 3 (691.73 mg, 2.64 mmol, 1.1 eq) and DIAD (533.29 mg, 2.64 mmol, 512.77 ⁇ L, 1.1 eq).
  • Step Three To a solution was added NH 2 NH 2 ⁇ H to (870mg, 1.35mmol, 1eq) in EtOH (10mL) compound 19_2 2 O (87.30mg, 1.48mmol, 84.76uL, 85% purity, 1.1eq). The mixture was stirred at 25 ° C for 10 min then EtOAc EtOAc. The organic layers were combined and concentrated under reduced pressure to give compound 19_3.
  • Step 4 To a mixed solution of compound 19_3 (500 mg, 969.89.mol. The mixture was stirred at 25 ° C for 0.5 hr, then concentrated under reduced pressure. EtOAc EtOAc m. LCMS (ESI) m/z:21.21.
  • Step 6 To a solution of compound 19_5 (400 mg, 490.21 ⁇ mol, 1 eq) in DMF (3 mL), DIC (123.73 mg, 980.42 ⁇ mol, 158.11 ⁇ L, 2 eq) and HOBt (132.48 mg, 980.42 mmol, 2 eq).
  • Step 7 To a solution of compound 19-6 (130 mg, EtOAc, EtOAc) The reaction was stirred at room temperature (20-30 ° C) for 30 min then EtOAc (10 mL) was evaporated. After filtering the reaction mixture, the filter cake was collected and purified by preparative HPLC (column: Phenomenex Synergi C18 150*25*10 ⁇ m; mobile phase: [water (0.225% formic acid)-ACN]; acetonitrile %: 1%-17% , Compound 8 was obtained in 8 minutes.
  • Step 2 To a solution of compound 20-2 (4.2 g, 17.55 mmol, 1 EtOAc) The mixture was stirred at 70 ° C for 12 hours to give a white solid. The reaction was filtered to give the compound 20-3.
  • Step Six was added NH 2 NH 2 ⁇ H 2 O (59.31mg, 1.01mmol, 57.58 ⁇ L, 85% purity of the compound 20_6 (730mg, 1.01mmol, 1eq) in MeOH (5mL) and DCM (5mL) mixed solution, 1eq). The reaction was stirred at room temperature (20-30 ° C) for 1 hour, then concentrated under reduced pressure. EtOAcjjjjjjjjjj Concentrated to give compound 20_7.
  • Step 7 To a mixed solution of the compound intermediate A2 (414 mg, 998.85 smol, 1 eq) in DCM (5mL) and MeOH (5mL) was added 20-7 (600 mg, 1.13 mmol, 1.13 eq). The reaction was stirred at room temperature (20-30 ° C) for 2 hr.
  • Step 8 To a solution of compound 20_8 (729 mg, 787.25 ⁇ RTIgt; The reaction was stirred at 45 ° C for 12 h then EtOAc EtOAc m. The compound 20-9 was obtained by washing with ethyl acetate / petroleum ether (20 mL, 1 / 1).
  • Step 10 To a solution of compound 20-10 (230 mg, EtOAc. The mixture was stirred at 0<0>C for 30 min then ethyl acetate (10 mL) was evaporated. The solid obtained after filtration was purified by preparative HPLC purification (instrument ASCWH-GX-C method column: Boston Green ODS 150*30*5 ⁇ m, condition: water (0.225% formic acid)-acetonitrile) to give compound 20.
  • Step 1 To a mixed solution of the compound 21_1 (150 mg, 422.12 ⁇ mol, 1 eq) (refer to WO2017106064) in MeOH (5 mL) and DCM (5 mL), Compound 13-10 (240 mg, 405.93 ⁇ mol, 9.62e-1 eq), then the mixture Stir at 20 ° C for 0.5 hours. The reaction mixture was concentrated under reduced pressure to give Compound 21-2.
  • Step 2 Compound 21 2 (350 mg, 373.76 ⁇ mol, 1 eq) and potassium carbonate (154.97 mg, 1.12 mmol, 3 eq) were added to MeOH (5 mL), and the reaction flask was replaced with nitrogen three times, then the mixture was at 45 ° C, nitrogen. The mixture was stirred for 24 hours, then EtOAc was evaporated. The organic layer was dried over anhydrous sodium sulfate, filtered, evaporated,
  • Step 3 To a solution of compound 21_3 (150 mg, 185.05 ⁇ mol, 1 eq) in DMF (2 mL), HOBt (50.01 mg, 370.09 ⁇ mol, 2 eq) and DIC (46.71 mg, 370.09 ⁇ mol, 57.31 ⁇ L, 2 eq), mixture at 25 After stirring for 1 hour at ° C, then intermediate A1 (50.57 mg, 240.56 ⁇ mol, 1.3 eq) and NaHCO 3 (62.18 mg, 740.19 ⁇ mol, 28.79 ⁇ L, 4 eq) were added, and the mixture was stirred at 25 ° C for 11 h and then water (20 mL) was added.
  • HOBt 50.01 mg, 370.09 ⁇ mol, 2 eq
  • DIC 46.71 mg, 370.09 ⁇ mol, 57.31 ⁇ L, 2 eq
  • Step 4 To a solution of compound 21_4 (80 mg, EtOAc, EtOAc) The mixture was stirred at 20 ° C for 1 hour and then concentrated under reduced pressure to give a crystal. m. m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
  • Step 1 To a solution of compound 16_9 (200 mg, 248.77 ⁇ mol, 1 eq) in DMF (2 mL), DIC (62.79 mg, 497.53 ⁇ mol, 77.04 ⁇ L, 2 eq) and HOBt (67.23 mg, 497.53 ⁇ mol, 2 eq). After the mixture was stirred at 25 ° C for 1 hour, compound 22_1 (69.10 mg, 373.15 ⁇ mol, 1.5 eq) (reference: US2015266867A1) and NaHCO 3 (83.59 mg, 995.07 ⁇ mol, 38.70 ⁇ L, 4 eq) were added, and the mixture was at 25 ° C. After stirring for an additional 11 hours, EtOAc (EtOAc) (EtOAc) The combined organic layers were washed with EtOAcq.
  • EtOAc EtOAc
  • Step 2 To a solution of the compound 22-2 (100 mg, 102.97 ⁇ mol, 1 eq) in DMF (1 mL) was added N,N-dimethylformamide sulfur trioxide (31.54 mg, 205.95 ⁇ mol, 2 eq) at 0 ° C After stirring at 0 ° C for 1 hour, additional N,N-dimethylformamide sulfur trioxide (31.54 mg, 205.95 ⁇ mol, 2 eq) was added, followed by stirring at 0 ° C for further 1 hour. The reaction mixture was quenched with water (10 mL) EtOAc. The combined organic layer was washed with saturated sodium
  • Step 3 To a solution of compound EtOAc (EtOAc m.) The mixture was stirred at 0 ° C for 1 hour then ethyl acetate / pet ether (5 mL, 4 / 1) was added to give a solid precipitate. After filtration, the filter cake was collected and passed to preparative HPLC (TFA, column: Phenomenex Synergi C18 150 *25*10 ⁇ m; mobile phase: [water (0.1% TFA)-ACN]; acetonitrile %: 1%-30%, 6 minutes).
  • EtOAc EtOAc m.
  • Step 1 Intermediate A7 (2.7 g, 6.93 mmol, 1 eq), compound 4-4 (1.34 g, 6.93 mmol, 1 eq) and triethylamine (701.68 mg, 6.93 mmol, 965.17 ⁇ L, 1 eq) was dissolved in DMF (20 mL) It was replaced with nitrogen three times, and the mixture was stirred at 45 ° C for 12 hours, then concentrated under reduced pressure to remove DMF, and the residue was diluted with water (20mL) and ethyl acetate (20mL*2).
  • Step 4 Compound 23_3 (1.4 g, 1.89 mmol, 1 eq), Intermediate A2 (782.69 mg, 1.89 mmol, 1 eq) was added to a mixed solvent of DCM (10 mL) and MeOH (10 mL). The mixture was stirred under a nitrogen atmosphere for 1 hour, and the reaction mixture was concentrated under reduced pressure to remove solvent to give compound 23_4.
  • Step 5 Compound 23_4 (1.8 g, 1.94 mmol, 1 eq) was dissolved in MeOH (20 mL). . The reaction mixture was concentrated under reduced pressure to EtOAc (EtOAc) (EtOAc) The mixture was washed with EtOAc EtOAc EtOAc EtOAc. 1) Stirring and washing, and filtering to obtain Compound 23_5.
  • Step 7 To a solution of compound 23_6 (160 mg, 100.79.sup.1,1 eq) in DCM (1 mL), EtOAc (EtOAc, EtOAc, EtOAc, EtOAc. The reaction mixture was then diluted with petroleum ether / ethyl acetate (10 mL, 1/4) and then filtered to yield a solid and purified by preparative HPLC (TFA, column: Boston pH-lex 150*25 10 ⁇ m; mobile phase: [water (0.1 %TFA)-ACN]; acetonitrile %: 10% - 34%, 8 minutes) Compound 23 was purified.
  • Step 1 To a solution of compound 13_12 (200 mg, 253.18 ⁇ mol, 1 eq) in DMF (2 mL), DIC (63.90 mg, 506.37 ⁇ mol, 78.41 ⁇ l, 2 eq) and HOBt (68.42 mg, 506.37 ⁇ mol, 2 eq). After the mixture was stirred at 20 ° C for 1 hour, compound 22_1 (70.33 mg, 379.78 ⁇ mol, 1.5 eq) and NaHCO 3 (85.08 mg, 1.01 mmol, 39.39 ⁇ L, 4 eq) were added. The mixture was stirred at 20 ° C for 11 hr. EtOAc (EtOAc) (EtOAc m. It was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give Compound 24-1.
  • EtOAc EtOAc
  • Step 2 To a solution of compound 24-1 (180 mg, 188.07.mol., 1 eq) in DMF (2 mL), EtOAc (EtOAc, EtOAc, EtOAc. After the mixture was stirred at 0 ° C for 1 hour, N,N-dimethylformamide sulfur trioxide (86.41 mg, 564.20 ⁇ mol, 3 eq) was added and stirred at 0 ° C for an additional hour. The reaction was quenched by EtOAc (EtOAc)EtOAc.
  • Step 1 Compound 4_4 (705.34 mg, 3.65 mmol, 1 eq), Intermediate A6 (1.9 g, 3.65 mmol, 1 eq) and TEA (369.35 mg, 3.65 mmol, 1 eq) was added to DMF (20 mL) Stir at 40 ° C for 12 hours. The reaction mixture was concentrated with EtOAc EtOAc (EtOAc m. Compound 25_1 was obtained.
  • Step Three EtOH solution of compound 25_2 (1.2g, 1.18mmol, 1eq) in (12 mL) was added NH 2 NH 2 ⁇ H 2 O (139.45mg, 2.37mmol, 135.39 ⁇ L, purity 85%, 2eq). After the mixture was stirred at 25 ° C for 0.5 hr, then filtered, EtOAcjjjjjjjjjj 25_3.
  • Step 4 Compound 25-3 (900 mg, 1.36 mmol, 1 eq) and Intermediate A2 (564.58 mg, 1.36 mmol, 1 eq) were dissolved in DCM (5mL) and MeOH (5mL), then the mixture was stirred at 25 ° C for 1 hour. The reaction mixture was concentrated under reduced pressure to give Compound 25_4.
  • Step 5 Compound 25_4 (1.4 g, 907.92 ⁇ mol, 1 eq) and potassium carbonate (627.40 mg, 4.54 mmol, 5 eq) were added to MeOH (14 mL) and the mixture was replaced with nitrogen three times, then the mixture was stirred at 40 ° C for 12 hours. The reaction mixture was concentrated under reduced pressure to dryness EtOAc (EtOAc m. The extract was dried over anhydrous sodium sulfate, filtered and evaporatedEtOAc.
  • Step 7 To a solution of compound 25_6 (140 mg, EtOAc, EtOAc, EtOAc) The mixture was stirred at 0<0>C for 1 h then diluted with ethyl acetate / pet ether (5 mL, 4:1) and then filtered to afford a yellow solid and purified by preparative HPLC (TFA, column: Phenomenex Synergi C18 150*25*10 ⁇ m; The mobile phase: [water (0.1% TFA)-ACN]; acetonitrile %: 1%-30%, 9 minutes) was purified to give compound 25.
  • Step 1 To a solution of 2-(3-methoxyphenyl)ethylamine (26-1, 135 g, 892.83 mmol, 131.07 mL, 1 eq) in HCOOH (900 mL) 24.59 mL, 1 eq), the mixture was stirred at 45 ° C for 12 hr and then concentrated under reduced pressure to give the residue, which was diluted with water (500 mL), then sodium hydroxide solution (4M) was adjusted to pH > 450 mL*2) extraction. The combined organic layers were dried with anhydrous sodium s
  • Step 2 Compound 26-2 (140 g, 857.76 mmol, 1 eq) was added to a mixed solution of AcOH (300 mL) and HBr/AcOH (300 mL), and was replaced with nitrogen three times, and then the mixture was stirred at 90 ° C for 36 hours. After the reaction was cooled to room temperature, ethyl acetate (400 mL) was added and the mixture was diluted and stirred for 30 minutes, and then the solid was collected by filtration to obtain the hydrogen bromide salt of Compound 26-3.
  • Step Three To a solution of the compound 26_3 hydrobromide (97g, 421.55mmol, 1eq) in DCM (1000mL) was added TEA (127.97g, 1.26mol, 176.03mL, 3eq) and Boc 2 O (101.20g, 463.71mmol , 106.53 mL, 1.1 eq). After the mixture was stirred at 15 ° C for 12 hours, water (500 mL) was evaporated, evaporated, evaporated, evaporated Ethyl acetate (330 mL, 10/1) was stirred and washed, and the solid was collected by filtration to afford compound 26-4.
  • TEA 127.97g, 1.26mol, 176.03mL, 3eq
  • Boc 2 O 101.20g, 463.71mmol , 106.53 mL, 1.1 eq
  • Step 7 To a solution of compound EtOAc (EtOAc, EtOAc. After the reaction was stirred at room temperature (20-30 ° C) for 12 hours, the solvent was removed under reduced pressure to give Compound 26-8.
  • Step 9 Compound 26-9 (0.9 g, 1.49 mmol, 1 eq), 2-hydroxyisoindoline-1,3-dione (292.31 mg, 1.79 mmol, 1.2 eq) and PPh 3 (587.48 mg, 2.24 mmol, DIAD (603.89 mg, 2.99 mmol, 580.66 ⁇ L, 2 eq) was added to a solution of 1.5 eq) THF (10 mL).
  • Step 10 To a mixture of compound 26_10 (0.5 g, 668.60 ⁇ mol, 1 eq) in methanol (5 mL) and DCM (5 mL) was added NH 2 NH 2 ⁇ H 2 O (26.79 mg, 668.60 ⁇ mol, purity 85%, 1 eq) . The mixture was stirred at room temperature (20-30 ° C) for 0.5 hr.
  • Step 11 Intermediate A2 (216.05 mg, 521.26 [mu]mol, 0.7 eq) was added to a mixture of EtOAc (EtOAc) The reaction was stirred at room temperature (20-30 ° C) for 1 EtOAc.
  • Step 12 To a solution of compound 26_12 (300 mg, 295.80 ⁇ mol, 1 eq) in DMF (3 mL), HOBt (47.96 mg, 354.96 ⁇ mol, 1.2 eq) and DIC (44.80 mg, 354.96 ⁇ mol, 54.96 ⁇ L, 1.2 eq). After the reaction mixture was stirred at room temperature (20-25 ° C) for 1 hour, intermediate A1 (80.83 mg, 384.54 ⁇ mol, 1.3 eq) and NaHCO 3 (99.40 mg, 1.18 mmol, 46.02 ⁇ L, 4 eq) were added. After stirring for 12 hours at room temperature (20-30 ° C), EtOAc (EtOAc) (EtOAc)EtOAc.
  • Step 1 To a solution of the trifluoroacetate salt of Compound 13 in DMF (0.5 mL) was added DIPEA (28.51 mg, 220.57 ⁇ mol, 38.42 ⁇ L, 4 eq) and ethyl methionine hydrochloride (7.85 mg, 71.69 ⁇ mol) , 1.3eq). The mixture was stirred at 25 ° C for 2 hours and then concentrated under reduced pressure. The residue was purified by preparative HPLC (cold: Phenomenex Synergi C18 150*25*10 ⁇ m; mobile phase: [water (0.1%TFA)-ACN]; acetonitrile %: 1 Compound 27 was purified by %-30%, 13 minutes).
  • Step 1 To a solution of the trifluoroacetic acid salt of Compound 4 (100 mg, 113.41 ⁇ mol, 1 eq) in DMF (1 mL), ethyl methionate hydrochloride (16.15 mg, 147.43 smol, 1.3 eq) and DIPEA ( 58.63 mg, 453.63 ⁇ mol, 79.01 ⁇ L, 4 eq). The mixture was stirred at 25 ° C for 2 hours and then concentrated under reduced pressure.
  • Step 2 Compound 29_1 (700 mg, 1.40 mmol, 1 eq), 2-hydroxyisoindoline-1,3-dione (273.78 mg, 1.68 mmol, 1.2 eq), PPh 3 (440.19 mg, DIA (339.36 mg, 1.68 mmol, 326.31 ⁇ L, 1.2 eq) was added to a solution of 1.68 mmol, 1.2 eq. The mixture was stirred at room temperature for 2 hr.
  • Step Three EtOH solution of compound 29_2 (400mg, 298.38mmol, 1eq) of (5mL) was added NH 2 NH 2 ⁇ H solution 2 O (17.57mg, 298.38 ⁇ mol, 17.06 ⁇ L , 85% purity). The mixture was stirred at room temperature for 1 hr.
  • Step 4 To a solution of Compound 29_3 (330 mg, EtOAc, EtOAc, EtOAc) The mixture was stirred at room temperature for 30 min. EtOAc (EtOAc)EtOAc.
  • Step 5 To a solution of compound 29_4 (350 mg, 383.78.sup..sup.1 eq.) in MeOH (5mL), potassium carbonate (132.60 mg, 959.45. The mixture was stirred at 40 ° C for 12 h then EtOAc evaporated. The combined organic layers were washed with EtOAc EtOAc EtOAc.
  • Step 6 To a solution of compound 29-5 (300 mg, 367.66 [mu]mol, 1 eq) in DMF (3 mL), DIC (92.80 mg, 735.31 ⁇ mol, 113.86 ⁇ L, 2 eq) and HOBt (99.36 mg, 735.31 ⁇ mol, 2 eq). After the mixture was stirred at room temperature for 1 hour, intermediate A1 (100.47 mg, 477.95 ⁇ mol, 1.3 eq) and NaHCO 3 (123.55 mg, 1.47 mmol, 57.20 ⁇ L, 4 eq) were added.
  • Step 7 To a solution of compound 29_6 (100 mg, EtOAc, EtOAc) The mixture was stirred for 30 minutes, petroleum ether / ethyl acetate (10 mL, 1/2) was added and stirred for 5 min, and the filter cake was collected by filtration and passed through preparative HPLC (column: Boston Green ODS 150*30 5u; mobile phase: [water (0.225) % formic acid)-ACN]; acetonitrile %: 3% - 33%, 10 min) was purified to give compound 29.
  • 1 H NMR 400 MHz, D 2 O) ⁇ (ppm): 8.34 (s, 1H), 7.21.
  • Step 2 Compound 30_1 (5 g, 9.46 mmol, 1 eq), 2-hydroxyisoindoline-1,3-dione (1.85 g, 11.35 mmol, 1.2 eq) and PPh 3 (2.98 g, DIA (3.83 g, 18.92 mmol, 3.68 mL, 2 eq) was added dropwise to a solution of 11.35 mmol, 1.2 eq. The mixture was stirred at 25 ° C for 1 hour, then concentrated under reduced pressure. EtOAcjjjjjjjj
  • Step Three EtOH solution of compound 30_2 (2g, 2.97mmol, 1eq) in (20mL) was added NH 2 NH 2 ⁇ H 2 O (174.84mg, 2.97mmol, 169.75 ⁇ L, 85% purity, 1eq). The mixture was stirred at 25 ° C for 2 hr. The combined organic phases were washed with EtOAc EtOAc m.
  • Step Four (6mL) and CH 2 Cl 2 (2mL) was added to the compound of Intermediate A2 30_3 (1.5g, 2.76mmol, 1eq) in MeOH (1.03g, 2.48mmol, 0.9eq) . The mixture was stirred at 25 ° C for 30 minutes and then concentrated under reduced pressure to give compound 30.
  • Step 5 To a solution of compound 30_4 (2.4 g, EtOAc, EtOAc) The mixture was stirred at 25 ° C for 2 hours and then at 40 ° C for another 12 hours. The mixture was concentrated under reduced pressure and the residue was pouredjjjjjjjj The aqueous layer was extracted with EtOAc EtOAc EtOAc (EtOAc)EtOAc. The filter cake gave compound 30_5.
  • Step 6 DIC (119.17 mg, 944.28 ⁇ mol, 146.22 ⁇ L, 2 eq) and HOBt (127.59 mg, 944.28 ⁇ mol, 2 eq) were added to a solution of compound 30_5 (500 mg, 472.14 ⁇ mol, 1 eq) in DMF (5 mL). After the mixture was stirred at 25 ° C for 30 minutes, intermediate A1 (129.02 mg, 613.78 ⁇ mol, 1.3 eq) and NaHCO 3 (158.65 mg, 1.89 mmol, 73.45 ⁇ L, 4 eq) were added, and the mixture was stirred at 25 ° C for further 12 hours. Water (30 mL) was added and stirred for 5 min, filtered to give abr.
  • Step 7 To a solution of compound 30_6 (300 mg, 289.51. The mixture was stirred at 0 ° C for 30 min, then ethyl acetate / pet ether (30 mL, 1 / 1) was added and stirred for 5 min, filtered and filtered to give a filter cake and purified by preparative HPLC (column: Phenomenex Synergi C18 150*25*10 ⁇ m Mobile phase: [water (0.1% TFA)-ACN]; acetonitrile %: 4% - 34%, 12 min).
  • Step 1 To a solution of compound 17 (300 mg, 288.78 ⁇ mol, 1 eq, 3TFA) in DMF (5 mL), triethylamine (116.89 mg, 1.16 mmol, 4 eq) and N-[(tert-butoxycarbonylamino)-pyrene tert-Butyl ester of oxazol-1-yl-methylene]carbamate (107.55 mg, 346.53 ⁇ mol, 1.2 eq).
  • Step 2 To a solution of compound 31-1 (90 mg, EtOAc, EtOAc, EtOAc. The mixture was stirred at 0 ° C for 3 hours under reduced pressure and the solvent was evaporated, and the residue was purified by preparative HPLC (column: Boss pH-lex 150 ⁇ 25 ⁇ 10 ⁇ m; mobile phase: [water (0.1%TFA)-ACN]; acetonitrile %: Compound 31 was purified from 8% to 38%, 9 min.
  • Step 2 To a solution of compound 32-1 (6.3 g, 17.32 mmol, 1 EtOAc) Concentration under reduced pressure gave the trifluoroacetate salt of Compound 32.
  • Step 4 To a solution of EtOAc (3 mL, EtOAc. After the mixture was stirred at 20 ° C for 17 hours, the reaction mixture was adjusted to pH 3-4 with dilute hydrochloric acid (2M).
  • Step seven (10mL) was added NH 2 NH 2 ⁇ H to the compound 32_6 (1g, 1.10mmol, 1eq) in EtOH 2 O (77.95mg, 1.32mmol, 75.68uL, 85% purity, 1.2eq). The mixture was stirred at 20 ° C for 30 min then EtOAc EtOAc m.
  • Step 9 To a solution of compound 32_8 (200 mg, 163.39 umol, 1 eq) in DMF (2 mL), N,N'-diisopropylcarbodiimide (41.24 mg, 326.77 ⁇ mol, 2 eq) and HOBt (44.15 mg, 326.77 ⁇ mol, 2 eq). After the mixture was stirred at 20 ° C for 1 hour, intermediate A1 (48.08 mg, 228.74 ⁇ mol, 1.4 eq) and NaHCO 3 (54.90 mg, 653.55 ⁇ mol, 25.42 ⁇ L, 4 eq) were added and stirred at 20 ° C for 11 hours. The reaction mixture was diluted with water (8 mL).
  • Step 10 To a solution of compound 32_9 (EtOAc, EtOAc, EtOAc. The reaction mixture was diluted with petroleum ether / ethyl acetate (10 mL, 4 / 1) and filtered and collected solids and passed to preparative HPLC (TFA, column: Phenomenex Synergi C18 150 ⁇ 25 ⁇ 10 ⁇ m; mobile phase: [water (0.1%TFA)- Acetonitrile]; acetonitrile %: 1%-30%, 9 minutes) was purified to give compound 32.
  • TFA column: Phenomenex Synergi C18 150 ⁇ 25 ⁇ 10 ⁇ m
  • mobile phase [water (0.1%TFA)- Acetonitrile]
  • acetonitrile % 1%-30%, 9 minutes
  • Step 1 To a solution of compound 32_8 (200 mg, 163.39 [mu]mol, 1 eq) in DMF (2 mL) EtOAc (41.24 mg, 326.7850 The mixture was stirred at 20 ° C for 1 hour, then intermediate A3 (44.16 mg, 245.08 ⁇ mol, 1.5 eq) and NaHCO 3 (54.90 mg, 653.56 ⁇ mol, 25.42 ⁇ L, 4 eq) were added and stirred at 20 ° C for an additional 11 hours. The reaction mixture was diluted with water (8 mL).
  • Step 2 To a solution of compound 33-1 (215 mg, 162.94. The mixture was stirred at 0 ° C for 1 hour, then diluted with petroleum ether / ethyl acetate (10 mL, 4 / 1) and filtered, and the solid was collected and passed to preparative HPLC (TFA, column: Phenomenex Synergi C18 150 ⁇ 25 ⁇ 10um; mobile phase : [Water (0.1% TFA)-ACN]; acetonitrile %: 1%-30%, 9 min).
  • Step 2 To a solution of compound 34-1 (2.2 g, 3. After the mixture was stirred at 15 ° C for 14 hours, sodium hydroxide (337.06 mg, 8.43 mmol, 2.5 eq) was added and the mixture was stirred at 15 ° C for further 17 hours. After cooling to room temperature, the pH of the mixture was adjusted to 6 to 7, and concentrated under reduced pressure at 33 ° C to give compound 34-2.
  • Step 4 Add azo to a solution of compound 34_3 (1.14 g, 1.94 mmol, 1 eq) and 2-hydroxyisoindoline-1,3-dione (379.08 mg, 2.32 mmol, 1.2 eq) in tetrahydrofuran (15 mL) Diisopropyl dicarboxylate (783.15 mg, 3.87 mmol, 753.03 ⁇ L, 2 eq) and triphenylphosphine (609.50 mg, 2.32 mmol, 1.2 eq). The mixture was stirred at 15 ° C for 3 hours, then concentrated under reduced pressure.
  • Step Five was added to 34_4 (1.4g, 1.91mmol, 1eq) in ethanol compound (25mL) NH 2 NH 2 ⁇ H 2 O (112.36mg, 1.91mmol, 109.09 ⁇ L, 85% purity, 1e q). The mixture was continuously reacted at 15 ° C for 30 minutes, filtered and the liquid was collected, and concentrated under reduced pressure to give Compound 34_5.
  • Step 7 To a solution of compound 34_6 (300 mg, 299.95 ⁇ mol, 1 eq) in DMF (3 mL), HOBt (81.06 mg, 599.90 ⁇ mol, 2 eq) and N,N'-diisopropylcarbodiimide (75.71 mg, 599.90 umol, 92.89 ⁇ L, 2 eq). After the mixture was stirred at 10 ° C for 1 hour, intermediate A1 (81.97 mg, 389.94 ⁇ mol, 1.3 eq) and NaHCO 3 (100.79 mg, 1.20 mmol, 46.66 ⁇ L, 4 eq) were added. After the mixture was stirred at 30 ° C for 11 hours, water (5 mL) was added to the mixture and stirred for 5 minutes, and the filter cake was collected and collected to give Compound 34-7.
  • HOBt 81.06 mg, 599.90 ⁇ mol, 2 eq
  • Step 1 To a solution of intermediate 34_6 (300 mg, 299.95 ⁇ mol, 1 eq) in DMF (3 mL), HOBt (81.06 mg, 599.90 ⁇ mol, 2 eq) and N,N'-diisopropylcarbodiimide (75.71 mg) , 599.90 ⁇ mol, 92.89 ⁇ L, 2 eq). After the mixture was stirred at 10 ° C for 1 hour, intermediate A3 (64.85 mg, 359.94 ⁇ mol, 1.2 eq) and sodium hydrogencarbonate (100.79 mg, 1.20 mmol, 46.66 ⁇ L, 4 eq) were added, and the mixture was stirred at 30 ° C for further 11 hours. After adding water (5 mL) and stirring for 5 minutes, the filter cake was collected after filtration to give compound 35-1.
  • Step 2 To a solution of compound 35-1 (300 mg, 258.10.sup.sup.1 eq) in dichloromethane (1 mL), trifluoroacetic acid (29.43 mg, 258.10 ⁇ mol, 19.11 ⁇ L, 1 eq). After the mixture was stirred at 0 ° C for 1 hour, petroleum ether / ethyl acetate (10 mL, 1/3) was added and stirred for 5 minutes, and the filter cake was collected by filtration.
  • the filter cake was passed through preparative high performance liquid chromatography (column: Phenomenex Synergi C18 150 ⁇ 25 ⁇ 10 ⁇ m; mobile phase: [water (0.1% trifluoroacetic acid)-acetonitrile]; acetonitrile %: 1%-30%, 9 minutes) was purified to give compound 35.
  • Step 2 To a solution of compound 36-2 (5.6 g, 26.26 mmol, 1 EtOAc) EtOAc (EtOAc) The mixture was stirred at 70 ° C for 12 hours, filtered and the filter cake was collected to give compound 36_3.
  • Step 3 To a solution of compound 36_3 (6 g, 18.88 mmol, 1 EtOAc, EtOAc) 37.76 mmol, 5.26 mL, 2 eq). The mixture was stirred at 0 ° C for 30 minutes, poured into water (20 mL) and stirred for 5 min. The aqueous phase was extracted with EtOAc (EtOAc)EtOAc.
  • Step 5 To a solution of compound 36_5 (1 g, 1.78 mmol, 1 EtOAc) After the mixture was stirred at 15 ° C for 12 hours, sodium hydroxide (178.39 mg, 4.46 mmol, 2.5 eq) was added, and the mixture was stirred at 15 ° C for further 17 hours, then adjusted to pH 6-7, then concentrated under reduced pressure. Compound 36_6.
  • Step 6 To a solution of compound 36_6 (770 mg, 1.76 mmol, 1 eq) MeOH (10 mL) The mixture was stirred at 15 ° C for 12 hours and concentrated under reduced pressure.
  • Step 7 To a solution of compound 36-7 (500 mg, 829.57 ⁇ mol, 1 eq) and 2-hydroxyisoindoline-1,3-dione (202.99 mg, 1.24 mmol, 1.5 eq) in tetrahydrofuran (5 mL) Phosphine (326.38 mg, 1.24 mmol, 1.5 eq) and diisopropyl azodicarboxylate (335.49 mg, 1.66 mmol, 2 eq). The mixture was stirred at 15 ° C for 12 hr.
  • Step Eight was added NH 2 NH 2 ⁇ H to 36_8 (400mg, 408.91 ⁇ mol, 1eq) in ethanol compound (4mL) 2 O (24.08mg, 408.91umol, 23.38 ⁇ L, 85% purity, 1eq). The mixture was stirred at 15 ° C for 30 min, then filtered and evaporated, evaporated, evaporated, evaporated The combined organic phases were washed with EtOAc EtOAc m.
  • Step 9 To a solution of compound 36_9 (230 mg, 372.33, EtOAc, EtOAc) The mixture was stirred at 15 ° C for 30 minutes and then concentrated under reduced pressure to give compound 36-1.
  • Step 10 To a solution of compound 36_10 (200 mg, 197.20 ⁇ mol, 1 eq) in DMF (2 mL), N,N'-diisopropylcarbodiimide (49.77 mg, 394.40 ⁇ mol, 61.07 eq) and HOBt (53.29 mg) , 394.40 ⁇ mol, 2 eq). After the mixture was stirred at 15 ° C for 1 hour, intermediate A1 (62.18 mg, 295.80 ⁇ mol, 1.5 eq) and sodium hydrogencarbonate (66.26 mg, 788.80 ⁇ mol, 4 eq) were added. The mixture was further stirred at 15 ° C for 15 hours, poured into water (10 mL) and stirred for 5 minutes, and the filter cake was collected by filtration to give compound 36_11.
  • Step 11 To a solution of compound 36_11 (230.00 mg, 190.65.sup.sup.1 eq) in dichloromethane (1mL), triethylamine (21.74 mg, 190.65 ⁇ mol, 14.12 ⁇ L, 1 eq).
  • Step 1 To a solution of compound 36_10 (120 mg, 118.32 ⁇ mol, 1 eq) in DMF (1 mL), N,N'-diisopropylcarbodiimide (29.86 mg, 236.64 ⁇ mol, 36.64 2 eq) and HOBt (31.98 mg) , 236.64 ⁇ mol, 2 eq). After the mixture was stirred at 15 ° C for 1 hour, intermediate A3 (25.58 mg, 141.99 ⁇ mol, 1.2 eq) and sodium hydrogencarbonate (39.76 mg, 473.28 umol, 18.41 ⁇ L, 4 eq) were added. After the mixture was stirred at 15 ° C for 11 hours, water (10 mL) was added and stirred for 5 minutes, and filtered to give a cake.
  • Step 2 To a solution of compound 37-1 (100 mg, EtOAc. The mixture was stirred at 0 ° C for 1 hour, then added to petroleum ether / ethyl acetate (10 mL, 1/3) and stirred for 5 min, filtered, and the filter cake was collected and passed through preparative high performance liquid chromatography (column: Phenomenex Synergi C18 150 ⁇ 25 ⁇ 10 ⁇ m; mobile phase: [water (0.1% trifluoroacetic acid)-acetonitrile]; acetonitrile %: 1%-30%, 9 min).
  • Step 1 To a solution of compound 38-1 (4.7 g, 21.93 mmol, 1 EtOAc) EtOAc (EtOAc, EtOAc, EtOAc The mixture was stirred at 10 ° C for 3 hours, poured into saturated sodium bicarbonate (20 mL) and stirred for 5 min. The aqueous phase was extracted with ethyl acetate (100 mL*2). The combined organic phases were washed with EtOAc EtOAc m.
  • Step 2 To a solution of compound 38-2 (5.2 g, 21.73 mmol, 1 EtOAc) The mixture was stirred at 70 ° C for 12 hours, then cooled, filtered and filtered to give compound 38-3.
  • Step 3 To a solution of compound 38_3 (6.6 g, 19.19 mmol, 1 eq, EtOAc) in dichloromethane (60 ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; , 38.39 mmol, 5.34 mL, 2 eq). The mixture was stirred at 0 ° C for 30 minutes, poured into water (20 mL) and stirred for 5 min. The aqueous phase was extracted with dichloromethane (100 mL). The combined organic phases were washed with EtOAc EtOAc m.
  • EtOAc EtOAc
  • Step 5 To a solution of compound 38_5 (1.8 g, 3.07 mmol, 1 eq) in MeOH (20 mL), EtOAc (30 ⁇ After stirring for further 12 hours, the pH was adjusted to 5-6 with dilute hydrochloric acid, and then concentrated under reduced pressure to give compound 38_6.
  • Step 6 To a solution of compound 38_6 (1.4 g, 3.03 mmol, 1 eq) in MeOH (15 mL). The mixture was stirred at 15 ° C for 12 hours, then concentrated under reduced pressure.
  • Step 7 To a solution of compound 38_7 (680 mg, 1.08 mmol, 1 eq) and 2-hydroxyisoindoline-1,3-dione (264.64 mg, 1.62 mmol, 1.5 eq) in THF (8 mL) Phosphine (425.49 mg, 1.62 mmol, 1.5 eq) and diisopropyl azodicarboxylate (437.38 mg, 2.16 mmol, 420.55 [mu]L, 2 eq). The mixture was stirred at 15 ° C for 12 hr.
  • Step Eight was added NH 2 NH 2 ⁇ H to 38_8 (500mg, 646.10 ⁇ mol, 1eq) in ethanol compound (2mL) 2 O (38.05mg, 646.10 ⁇ mol, 36.94 ⁇ L, 85% purity, 1eq). The mixture was stirred at 15 ° C for 30 minutes and then concentrated under reduced pressure to give compound 38.
  • Step 10 To a solution of compound 38_10 (200 mg, 192.26 umol, 1 eq) in DMF (2 mL), N, N'-diisopropylcarbodiimide (48.53 mg, 384.53 g of amine ol, 59.54 2 eq) and HOBt ( 51.96 mg, 384.53 geql, 2 eq). After the mixture was stirred at 15 ° C for 1 hour, intermediate A1 (60.62 mg, 288.40 ⁇ mol, 1.5 eq) and sodium hydrogencarbonate (64.61 mg, 769.06 ⁇ mol, 29.91 ⁇ L, 4 eq) were added, and the mixture was stirred at 15 ° C for further 11 hours. Water (10 mL) was stirred for five minutes, and the filter cake was collected by suction filtration to give compound 38_11.
  • Step 1 To a solution of compound 38_10 (100 mg, 96.13 ⁇ mol, 1 eq) in DMF (1 mL), N,N'-diisopropylcarbodiimide (24.26 mg, 192.27 ⁇ mol, 29.77 2 eq) and HOBt (25.98 mg) , 192.27 ⁇ mol, 2 eq). After the mixture was stirred at 15 ° C for 1 hour, intermediate A3 (20.79 mg, 115.36 ⁇ mol, 1.2 eq) and sodium hydrogencarbonate (32.30 mg, 384.53 ⁇ mol, 14.96 ⁇ L, 4 eq) were added, and the mixture was stirred at 15 ° C for further 11 hours. In water (10 mL), the filter cake was filtered and collected to give compound 39-1.
  • Step 2 To a solution of compound 39-1 (100 mg, EtOAc, EtOAc, EtOAc) The mixture was stirred at 0 ° C for 1 hour, then petroleum ether / ethyl acetate (10 mL, 1/3) was added. After filtration, the filter cake was collected and passed through preparative high performance liquid chromatography (column: Boston Prime C18 150 ⁇ 30 mm 5 ⁇ m; mobile phase : [Water (0.1% trifluoroacetic acid)-acetonitrile]; acetonitrile %: 10%-27%, 7 min).
  • Step 2 To a solution of compound 40-1 (5 g, EtOAc. After the mixture is stirred at 25 ° C for 14 hours, the pH of the mixture is adjusted to 3-5, and then the mixture is concentrated under reduced pressure at 40 ° C to obtain a compound 40 2;
  • Step Five To a 40_4 (2.5g, 3.29mmol, 1eq) in ethanol (25mL) was added NH 2 NH 2 ⁇ H 2 O (193.77mg, 3.29mmol, 188.13 ⁇ L, 85% purity, 1eq). The mixture was stirred at 15 ° C for 30 min.
  • Step 1 To a solution of compound 41-1 (10 g, 49.93 mmol, 1 eq) in MeOH (10 mL), EtOAc (EtOAc, EtOAc (EtOAc, EtOAc, EtOAc) . The mixture was stirred at 20 ° C for 1 hour, poured into water (50 mL) and stirred for 5 min. The aqueous phase was extracted with ethyl acetate (100 mL*3), and the combined organic phase was washed with saturated sodium chloride (30 mL) Drying over sodium sulfate, filtration and concentration under reduced pressure to give compound 41-2;
  • Step 5 To a solution of compound 41_5 (6 g, 10.48 mmol, 1 EtOAc) The mixture was stirred at 20 ° C for 12 hours and then at 35 ° C for further 3 hours, the pH of the mixture was adjusted to 4 to 5 and concentrated under reduced pressure to give compound 41_6.
  • Step Eight was added NH 2 NH 2 ⁇ H to the compound 41_8 (2.7g, 2.97mmol, 1eq) in ethanol (30mL) 2 O (174.64mg, 2.97mmol, 169.55 ⁇ L, 85% purity, 1eq). The mixture was stirred at 20 ° C for 20 minutes, and the mixture was filtered and evaporated.
  • Step 9 To a solution of compound 41_9 (1 ⁇ The mixture was stirred at 20 ° C for 30 minutes and then concentrated under reduced pressure. EtOAc m. LCMS (ESI) m /z:
  • Step 10 To a solution of compound 41_10 (3 g, 2.53 mmol, 1 eq) in EtOAc (30mL), EtOAc (EtOAc, EtOAc, EtOAc, EtOAc, EtOAc. After the mixture was stirred at 20 ° C for 1 hour, intermediate A1 (796.42 mg, 3.79 mmol, 1.5 eq) and sodium hydrogen carbonate (848.77 mg, 10.10 mmol, 392.95 ⁇ L, 4 eq) were added and the mixture was stirred at 20 ° C for 12 hours. It was poured into water (30 mL) and stirred for 5 minutes, then filtered and collected to give compound 41_11.
  • Step 2 To a solution of compound 42-2 (7 g, 33.13 mmol, 1 eq) in THF (50 mL). The mixture was stirred at 65 ° C for 12 hours, and then the solvent was removed under reduced pressure to give compound 42_3;
  • Step 3 To a solution of compound 42_3 (10 g, 31.67 mmol, 1 EtOAc, EtOAc) 95.00 mmol, 13.22 mL, 3 eq). The mixture was stirred at 0 ° C for 1 hour, poured into water (30 mL) and stirred for 5 min. The aqueous phase was extracted with dichloromethane (100 mL). Washed with sodium chloride (30 mL), dried over anhydrous sodium sulfate
  • Step 4 To a solution of compound 32-2 (6.3 g, 17.25 mmol, 1 eq, TFA) in DMF (60 mL)
  • Step 5 To a solution of the compound 42_5 (4.7 g, 8.41 mmol, 1 eq) in methanol, sodium hydroxide (1.35 g, 33.66 mmol, 4 eq), and the mixture was stirred at 20 ° C for 14 hours and then adjusted to pH 4 to 5, And concentrated under reduced pressure at 40 ° C to obtain the compound 42_6;
  • Step Eight Compound ethanol 42_8 (1.2g, 1.61mmol, 1eq) in (10 mL) was added NH 2 NH 2 ⁇ H 2 O (94.76mg, 1.61mmol, 92.00 ⁇ L, 85% purity, 1eq), the mixture After stirring at 20 ° C for 1 hour, concentrated under reduced pressure, filtered, and the solvent was evaporated to give compound 42_9;
  • Step 9 To a solution of EtOAc EtOAc (EtOAc m. The mixture was stirred at 20 ° C for 30 minutes and then concentrated under reduced pressure to give compound 42_10;
  • the filter cake was collected by filtration and passed through preparative high performance liquid chromatography column (Phenomenex Synergi C18 150 ⁇ 25 ⁇ 10 ⁇ m; mobile phase: [water (0.1% trifluoroacetic acid)-acetonitrile]; acetonitrile %: 5% - 35%, 9 min).
  • Step 1 To a solution of compound 13_5 (130 g, 508.33 mmol, 1 eq) in THF (1200 mL) and DMF (300 mL), NaH (38.22 g, 955.67 mmol, 60% purity, 1.88 eq. After stirring for 15 minutes, the intermediate A10 (53.80 g, 432.08 mmol, 0.85 eq) was slowly added to the reaction mixture in portions, and the mixture was heated to 70-75 ° C for 3 hours, then cooled to room temperature, and the mixture was mixed with water.
  • Step 2 To a solution of compound 43-1 (60 g, 185.56 mmol, 1 eq) in DCM (420 mL) Concentration by pressure gave compound 43_2.
  • Step 7 Add NH 2 NH 2 ⁇ H 2 O (37.62mg, 638.78g50), 36.528g solution of compound 43_6 (470mg, 638.78 ⁇ mol, 1eq) in ethanol (2mL) and dichloromethane (2mL), 85% Purity, 1 eq). The reaction was stirred at room temperature (15-20 ° C) for 1 hour. After filtration, the filtrate was concentrated and evaporated.
  • Step 8 To a solution of compound 43_7 (EtOAc, EtOAc, EtOAc, The mixture was stirred at room temperature (15-20 ° C) for 1 hour, then concentrated under reduced pressure. EtOAc m.
  • Step 9 To a solution of compound 43_8 (550 mg, 548.83 compound, 1 eq) in DMF (3 mL), diisopropylcarbodiimide (138.52 mg, 1.10 mmol, 169.97 ⁇ L, 2 eq) and HOBt (148.32 mg, 1.10) mmol, 2eq), the mixture was added at 20 deg.] C of intermediate A1 (161.51mg, 768.36mg material objects, 1.4eq) and NaHCO 3 (184.42mg, 2.20mmol, 85.38mo , 4eq) after stirring for 1 hour, the mixture was 20 poured into water (20mL) was stirred at °C 11 hours, solid was collected by filtration with dichloromethane (100mL) was dissolved, filtered over anhydrous sodium sulfate, concentrated under reduced pressure to give the residue was purified by column chromatography (SiO 2, Purification of Compound 43_9; EtOAc: m.
  • Step 10 To a solution of compound 43_9 (120 mg, 93.609 30, 1 eq) in dichloromethane (0.6 mL), trifluoroacetic acid (924.00 mg, 8.10 mmol, 0.6 mL, 86.58 eq). After stirring at ° C for 1 hour, it was diluted with petroleum ether/ethyl acetate (20 mL, 1/4) and stirred for 10 minutes.
  • Step 1 To a solution of compound 43_3 (3 g, 12.09 mmol, 1 eq) in EtOAc (30 ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; , HCl) and tert-butyl N-(2-aminoethyl)carbamate (1.94 g, 12.09 mmol, 1.90 mL, 1 eq). After the mixture was stirred at 90 ° C for 12 hr, EtOAc (EtOAc) (EtOAc)
  • Step Four (45mL) was added NH 2 ⁇ H 2 O (312.26mg , 6.11mmol, 303.17mg, 98% purity, 1eq) 2 NH to a compound ethanol 44_3 (4.4g, 6.11mmol, 1eq) of.
  • the mixture was stirred at 25 ° C for 30 minutes and then filtered, and then the filtrate was concentrated under reduced pressure to give compound 44-4.
  • Step 5 To a solution of compound 44_4 (3 g, EtOAc, EtOAc) The mixture was stirred at 25 ° C for 30 min then concentrated EtOAc.
  • Step 6 To a solution of compound 44_5 (2.5 g, 2.54 mmol, 1 eq) in DMF (25mL), DIC (639.86mg, 5.07mmol, 785. After the mixture was stirred at 25 ° C for 1 hour, sodium hydrogencarbonate (851.87 mg, 10.14 mmol, 394.39m, 4 eq) and Intermediate A1 (639.49 mg, 3.04 mmol, 1.2 eq) were added. The mixture was stirred at 25 ° C for further 11 hours, poured into water (50 mL) and stirred for 5 min.
  • the filter cake was collected by filtration and passed through preparative high performance liquid chromatography (column: Phenomenex Luna C18 250 x 50 mm x 10 ⁇ m; mobile phase: [water (0.1% trifluoroacetic acid)-acetonitrile]; acetonitrile %: 1% - 25%, 10 min).
  • Step 2 A solution of HCl / EtOAc (8.24 mL, 4M, 1 eq) was slowly added dropwise to a solution of compound 45 ⁇ /RTI> (10 g, 32.96 mmol, 1 eq. The mixture was stirred at 0 ° C for 10 minutes and then filtered, and a solid was collected to give compound 45_3.
  • Step 3 To a solution of compound 43_3 (3.2 g, 12.79 mmol, 1 eq) in EtOAc (EtOAc) The mixture was stirred at 100 ° C for 12 hours under a nitrogen atmosphere, and the crude product was concentrated, evaporated, evaporated, evaporated, evaporated. *2) Washing, cooling the aqueous layer to 0 ° C, adjusting the pH to 3-4 with dilute hydrochloric acid (0.5 M), and lyophilizing the aqueous layer to give compound 45_4.
  • Step Six (15mL) was added to the compound 45_6 (1.2g, 1.08mmol, 1eq) in ethanol was added NH 2 NH 2 ⁇ H 2 O (64.87mg, 1.30mmol, 62.98mo, 1.2eq). The mixture was stirred at 20 ° C for 1 hour and then filtered. EtOAc EtOAc m. LCMS (ESI) m/z:
  • Step 8 To a solution of compound 45_9 ( 910 mg, 688.60, EtOAc, EtOAc, EtOAc) The mixture was stirred at 0 ° C for 1 hour, then diluted with petroleum ether / ethyl acetate (60 mL, 1/4), then filtered and solids were collected and purified by preparative high performance liquid chromatography (trifluoroacetic acid, column: Phenomenex luna C18250*50mm *10 ⁇ m; mobile phase: [water (0.1% trifluoroacetic acid)-acetonitrile]; acetonitrile %: 1%-30%, 10 min) was purified to give compound 45.
  • Step 1 To a solution of compound 43-1 (20 g, EtOAc, EtOAc, EtOAc, EtOAc, EtOAc, EtOAc The reaction was stirred at room temperature (20-25 ° C) for 12 hours then poured into water (200 mL). The mixture was extracted with methyl tert-butyl ether (100 mL*3), and the combined organic phase was water (100mL*2) and The mixture was washed with saturated sodium chloride (100 mL).
  • Step 2 To a solution of compound 46-1 (10 g, 24.19 mmol, 1 eq) in dichloromethane (50 mL) The reaction mixture was stirred at room temperature (15-20 ° C) for 1 hour and then concentrated under reduced pressure to afford compound 46-2.
  • Step 4 To a solution of compound 46_3 (6.8 g, EtOAc, EtOAc) The reaction was stirred at room temperature (10-15 ° C) for 1 hour, then EtOAc (EtOAc) m.
  • Step Seven To a 46_6 (5.00g, 5.30mmol, 1eq) in ethanol (50mL) was added NH 2 NH 2 ⁇ H 2 O (291.95mg, 5.83mmol, 283.44ol, 1.1eq). The mixture was stirred at 20 ° C for 1 hr then EtOAc (EtOAc)EtOAc. ESI) m/z: 813.4 (M + 1).
  • Step 9 To a solution of compound 46_8 (1 g, 826.82 ⁇ /RTI> ⁇ /RTI> ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ⁇ /RTI> ⁇ RTIgt; ./RTI> ⁇ RTIgt; .
  • the resulting mixture was stirred at 25 <0>C for 11 h then diluted with water (EtOAc) &lt
  • coli NCTC 13476 (IMP) -1type), E.coli ATCC BAA-2523 (OXA-48), E.coli MG1655 ⁇ tol C, E.coli ATCC25922; 1 strain of Acinetobacter baumannii A.baumannii ATCC 17978 and 1 strain of Staphylococcus aureus S. aureus NRS384, the Minimum Inhibitory Concentration (MIC) of each compound was determined by a micro-liquid dilution method according to the Institute of Clinical and Laboratory Standard (CLSI) requirements.
  • CLSI Institute of Clinical and Laboratory Standard
  • a 2-fold serial dilution of the compound (final concentration range 0.125 ⁇ g/ml-128 ⁇ g/ml) was added to a round bottom 96-well plate (Catalog #3788, Corning) from an overnight Hinton Miller agar medium Mueller Hinton II Agar ( MHA, Cat. No.
  • BD BBLTM pick fresh monoclonal bacteria, suspend in sterile physiological saturated sodium chloride solution, adjust the concentration to 1x108 CFU / ml, and then use cation-regulated Schindler Miller medium Cation -Adjusted Mueller Hinton II Broth (MHB, Catalog #212332, BD BBLTM) was diluted to 5 x 105 CFU/ml and 100 ⁇ l was added to a round bottom 96-well plate containing the drug. The plate was inverted and cultured at 37 ° C for 20-24 hours, and the MIC value was read, and the minimum drug concentration for inhibiting bacterial growth was determined as MIC. The specific test results are shown in Table 1.
  • the results of the experiment show that the compound of the invention (MIC range 0.25-16 ⁇ g/mL) is relative to aztreonam, meropenem and sulbactam (MIC range 16->128 ⁇ g/mL) to K.pneumoniae ATCC BAA-205, K .pneumoniae ATCC BAA-1705, K.pneumoniae ATCC BAA-2470 and E.coli ATCC BAA-2523 have better antibacterial activity; this activity data also indicates that the compounds of the invention have better activity against various Gram-negative bacteria.
  • the novel monocyclic ⁇ -lactam compound designed and synthesized by the invention can effectively improve the antibacterial activity of the monocyclic ⁇ -lactam and has a good antibacterial effect against Gram-negative bacteria.
  • ATCC 17978 Using 12 strains of Acinetobacter baumannii A.baumannii ATCC 17978 (ATCC-BAA-1605, ATCC-BAA-1789, ATCC-BAA-1790, ATCC-BAA-1791, ATCC-BAA-1792, ATCC-BAA-1793, ATCC-BAA-1794, ATCC-BAA-1795, ATCC-BAA-1799, ATCC-BAA-1800, ATCC 19606, ATCC 17978) pass micro-in accordance with the requirements of the Institute of Clinical and Laboratory Standard (CLSI) The Minimum Inhibitory Concentration (MIC) of each compound was determined by liquid dilution method.
  • CLSI Institute of Clinical and Laboratory Standard
  • a 2-fold serial dilution of the compound was added to a round bottom 96-well plate (final concentration range 0.125 ⁇ g/mL-128 ⁇ g/mL) from overnight Hinton Miller agar medium Mueller Hinton II Agar (MHA, Cat. No. 211438) , BD BBLTM) pick fresh monoclonal bacteria on the plate, suspend in sterile saline, adjust the concentration to 1 ⁇ 108 CF ⁇ / mL, and then use the cation-regulated Clement-Adjusted Mueller Hinton II Broth (MHB, BD BBLTM) was diluted to 5 ⁇ 105 CF ⁇ /mL, and 100 ⁇ L was added to a round bottom 96-well plate containing the drug. The plate was inverted and cultured at 37 ° C for 20-24 hours, and the MIC value was read, and the minimum drug concentration for inhibiting bacterial growth was determined as MIC.
  • Table 2 The specific test results are shown in Table 2.
  • the results of the experiment show that the compound of the present invention (MIC range 0.25-8 ⁇ g/mL) is resistant to Acinetobacter baumannii relative to meropenem, imipenem and aztreonam (MIC range: 32->128 ⁇ g/mL).
  • the activity has significant advantages, and the activity data also indicates that the novel monocyclic ⁇ -lactam compound designed and synthesized by the present invention can effectively solve the acinetobacter baumannii to aztreonam, meropenem and imipenem. Drug resistance problem.
  • mice 7-cage mice were intraperitoneally injected with the immunosuppressant cyclophosphamide (100 mpk); MHA plate resuscitation strain ATCC-17978.
  • mice On the day of administration: the resuscitated colonies were picked up in physiological saline to prepare ATCC-17978 bacterial solution at a concentration of 1.0E+09 CFU/ml for pulmonary infection in mice.
  • the experimental mice were infected by intranasal drip, the amount of infected bacteria was 50 ul/only, the actual bacterial concentration was 4.40E+09 CFU/ml, and the infection amount per mouse was 2.20E+08 CFU/mouse.
  • the lungs of the control group were placed in 5 ml of normal saline, homogenized in lung tissue, and the plate was diluted by gradient;
  • mice were administered, and the specific administration was as follows (currently available for distribution):
  • mice One day after the administration: the 2nd to 7th cage mice were infected for 24h, and the lung tissues were placed in 5ml of normal saline, the lung tissue was homogenized, and the plate was diluted by gradient, and each mouse was repeated twice.
  • the compound of the present invention has an in vivo effect on the pulmonary infection of Acinetobacter baumannii in immunosuppressed mice induced by cyclophosphamide, and can significantly reduce the amount of bacteria in the lung tissue.
  • CD-1 females were divided into 5 cages, 3 per cage (labeled as follows); intraperitoneal injection of the immunosuppressant cyclophosphamide (150 mpk).
  • mice were intraperitoneally injected with the immunosuppressant cyclophosphamide (100 mpk); MHA plate resuscitation strain ATCC-25922.
  • mice On the day of administration: the resuscitated colonies were picked up in physiological saline to prepare ATCC-25922 bacterial solution at a concentration of 1.0E+07 CFU/mL for infection of the mouse thigh muscle.
  • the amount of bacterial fluid injected into the thigh muscle of the experimental mice was 100 ul/mouse, that is, the inoculum amount was 1.0E+07 CFU/mouse.
  • the control group took thigh muscle tissue in 10 ml normal saline, homogenized thigh muscle tissue, and diluted the dot plate; according to the above table, the mice were administered.
  • the specific administration was as follows:
  • mice One day after the administration: the 2nd to 5th cage mice were infected for 24h, the thigh muscle tissue was placed in 10ml normal saline, the thigh muscle tissue was homogenized, and the plate was diluted by gradient, and each mouse was repeated twice.
  • the compound of the present invention has an in vivo effect on the infection of E. coli in the thigh muscle of immunosuppressed mice induced by cyclophosphamide, and can significantly reduce the amount of muscle tissue.
  • CD-1 mice male were divided into 2 groups (2 groups) according to their body weight.
  • Groups 1 and 2 were injected intravenously and intraperitoneally with Example 13, Example 17, Example 32 and Example 34, respectively, and each compound was 2 mg/kg.
  • the vehicles for intravenous and intraperitoneal injection were 5% dimethyl sulfoxide / 95% water (10% polyoxyethylene castor oil), K2-EDTA (anticoagulant).
  • the compound of the present invention has low clearance rate in mice, high blood exposure, high bioavailability in intraperitoneal administration, and good pharmacokinetic properties.
  • Pseudomonas aeruginosa PA14 Pseudomonas aeruginosa PA14.
  • MHA Mueller-Hinton agar
  • TSA media purchased from BD.
  • CD-1 mice supplied by Beijing Vital River Laboratory Animal Technology Co., Ltd., weighed 23 to 27 g, 7 weeks old, and females, totaling 64 animals.
  • mice Sixty-four mice were intraperitoneally injected with cyclophosphamide 150 mg/kg on the first day and the fourth day to form immunosuppressed mice.
  • the experiment consisted of 10 groups, respectively, the high, medium and low dose groups of Example 34, the high, medium and low dose groups of Example 32, the new antibiotic 3 high and medium dose groups, the aztreonam group and the model group, each group 6
  • the remaining 4 animals were counted for lung tissue after 2 hours of lung infection.
  • the specific grouping situation is shown in the table below.
  • mice were injected with 50 ⁇ L of bacterial solution (2 ⁇ 10 3 CFU). Four model mice were sacrificed from the cervical vertebra 2 hours after infection.
  • mice in each group were sacrificed 24 hours after infection.
  • the lungs and kidney tissues were aseptically taken, placed in a sterile tissue homogenate tube, weighed, and the appropriate amount of physiological saline (NS) was added.
  • the homogenizer was homogenized for 1 min.
  • lung model group was diluted 10 4, 10 5, 106-fold, 10,100-fold dilutions of lung tissue of animals in each treatment group, was diluted 10 2, 10 3, 10 4 times the renal tissue of animals, the animals in each treatment group
  • the lung tissue was diluted 10-fold, TSA plates were coated with a spiral coater, cultured overnight at 37 ° C, and CFU was counted using a colony counter.
  • the CFU scatter plot of lung tissue was prepared using Graphpad Prism mapping software.
  • CFU and body weight mean were measured by SPSS19.0 software, and variance between groups was analyzed by analysis of variance.
  • the lung-infected P. aeruginosa PA14 of 4 immunosuppressed mice injected intraperitoneally twice with cyclophosphamide was about 1.06 ⁇ 10 4 CFU. After 2 hours, the lung tissue homogenate was taken, the bacteria were counted, and the bacterial load of the mice was calculated. The range is, the average load is 5.10 ⁇ 10 3 CFU.
  • Example 32 The new monocyclic ⁇ -lactam antibiotics were inoculated intraperitoneally at 2h, 4h, 6h and 8h after infection.
  • Example 32, Example 34, Ig and aztreonam were sacrificed.
  • the animals were sacrificed and the lung tissues were aseptically taken with physiological saline (NS).
  • Soak, tissue homogenate, appropriate dilution, take 50 ⁇ L evenly spread on TSA plate, incubate overnight in 37 °C incubator, count the number of colonies, convert to CFU per ml according to the dilution ratio, and then base the substrate on the bottom of 10
  • the average and standard deviation of each group were compared. The results are shown in Table 10 and Figure 1.
  • the amount of bacteria in the model group increased from 1.06 ⁇ 10 4 CFU to 3.34 ⁇ 10 8 CFU (the LOG 10 of the bacterial load was 8.14).
  • the amount of bacteria in each group was significantly lower than that in the model group.
  • the new antibiotic 2 high, medium and low dose groups were completely eliminated.
  • the compound of the present invention has an in vivo effect on the lung infection of Pseudomonas aeruginosa in the immunosuppressed mice induced by cyclophosphamide, and can significantly reduce the amount of bacteria in the lung tissue and clear the Pseudomonas aeruginosa infected on the lung.
  • Pseudomonas aeruginosa PA14 Pseudomonas aeruginosa PA14.
  • Test compound Example 41, Example 44, Example 46
  • MHA Mueller-Hinton agar
  • TSA media purchased from BD.
  • CD-1 mice supplied by Beijing Vital River Laboratory Animal Technology Co., Ltd., weighed 23 to 27 g, 7 weeks old, and females, totaling 64 animals.
  • mice were intraperitoneally injected with cyclophosphamide 150 mg/kg on the first day and the fourth day to form immunosuppressed mice.
  • the experiment consisted of 8 groups, which were the high and low dose groups of Example 41, the high and low dose groups of Example 44, the high and low dose groups of Example 46, the reference compound group, the aztreonam group, and 6 animals in each group.
  • the specific grouping situation is shown in Table 11.
  • mice were injected with 50 ⁇ L of bacterial solution (2 ⁇ 10 3 CFU). Four model mice were sacrificed from the cervical vertebra 2 hours after infection.
  • mice in each group were sacrificed 24 hours after infection.
  • the lungs and kidney tissues were aseptically taken, placed in a sterile tissue homogenate tube, weighed, and the appropriate amount of physiological saline (NS) was added.
  • the homogenizer was homogenized for 1 min. group animal lung tissue was diluted 104, 105, 106-fold, 10,100-fold dilution of each administration group were lung tissue, renal tissue of animals was diluted 10 2, 10 3, 10 4 times, the lungs of animals in each treatment group The tissue was diluted 10 times, and the TSA plate was coated with a spiral coater, cultured at 37 ° C overnight, and the CFU was counted using a colony counter.
  • the CFU scatter plot of lung tissue was prepared using Graphpad Prism mapping software.
  • CFU and body weight mean were measured by SPSS19.0 software, and variance between groups was analyzed by analysis of variance.
  • the neomonocyclic ⁇ -lactam antibiotics were injected intraperitoneally at 2h, 4h, 6h and 8h after infection.
  • Example 41, Example 44, Example 46, I-g and aztreonam the animals were sacrificed and the lung tissues were aseptically taken. Soak with physiological saline (NS), homogenize the tissue, dilute 50 ⁇ L and spread it evenly on TSA plate, incubate overnight in 37 ° C incubator, count the number of colonies, convert to CFU per ml according to the dilution ratio, and then load The amount of bacteria was calculated on the basis of 10, and the mean and standard deviation of each group were compared. The results are shown in Table 12 and Figure 2.
  • the amount of bacteria in the model group increased from 3.31 ⁇ 10 4 to 3.40 ⁇ 10 9 CFU (the LOG10 of the bacterial load was 9.53), and the ratio of each drug-administered group to the model group was significantly lower.
  • the high- and low-dose group of the new antibiotic WXFL70050164 was significantly lower than other drug groups, indicating that its efficacy in the body is more worrying.
  • the compound of the present invention has an in vivo effect on the lung infection of Pseudomonas aeruginosa in the immunosuppressed mice induced by cyclophosphamide, and can significantly reduce the amount of bacteria in the lung tissue and clear the Pseudomonas aeruginosa infected on the lung.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

一类新的单环β-内酰胺化合物,其异构体或其药学上可接受的盐,和包含此类化合物的药物组合物,以及它们在制备治疗细菌感染相关疾病的药物中的应用。具体公开了式(I')和式(II')所示化合物、其异构体或其药学上可接受的盐。

Description

用于治疗细菌感染的单环β-内酰胺化合物
本申请主张如下优先权:
CN201810084282.6,申请日2018年1月29日;
CN201810201654.9,申请日2018年3月12日。
技术领域
本发明涉及药物领域,具体涉及一类用于治疗细菌感染的单环β-内酰胺化合物、其异构体或其药学上可接受的盐,和包含此类化合物的药物组合物,以及它们在制备治疗细菌感染相关疾病的药物中的应用。具体涉及式(I’)或式(II’)所示化合物、其异构体或其药学上可接受的盐。
背景技术
公共卫生专家和官员普遍认为耐药菌的出现和传播是21世纪的主要公共卫生问题之一。抗菌药物耐药的频率及其与严重传染病的关系以惊人的速度增加。院内病原体耐药性日益普遍,特别令人不安。在美国每年出现的超过200万例院内感染中,50%至60%是由抗菌素耐药细菌引起的。对常用抗菌药物的高耐药率增加了与院内感染有关的发病率,死亡率和成本。死于不可治愈的院内感染的患者人数持续增长,现在每年全球因耐药菌死亡的人数达到70万人,如果不开发新的治疗药物或者治疗方案,到2050年这一数字将会增加到1000万(Nature,2017,543,15)。对于由耐多药革兰氏阴性菌(包括肠杆菌科和非发酵菌)引起的感染可以选择的治疗方式特别有限,更为严重的是医药工业的研发管线中包含能够突破细菌耐药性的化合物很少(Clin.Inf.Dis.,2009,48,1-12)。
过去几十年来,非常成功和耐受良好的一类β-内酰胺抗生素一直是治疗由革兰氏阴性病原体引起的感染的主要依据。其中特别是第三代头孢菌素,碳青霉烯类和单环内酰胺被广泛用于治疗革兰氏阴性菌引起的感染。但是越来越多的内酰胺酶和其他耐药机制的出现严重危及当前化合物在这些亚类中的中期可用性,特别是超广谱内酰胺酶(ESBLs)和碳青霉烯酶是产生耐药性的重要动力,因此迫切需要能够突破耐药性的新型β-内酰胺类抗生素来填补空白。
氨曲南作为世界范围内使用的FDA唯一批准的单环β-内酰胺以及仅在日本市场销售的第二种类似物(tigemonam),单环β-内酰胺类抗生素的价值还远远没有被发掘出来(Rev.Infect.Dis.,1985,7,579-593)。另一方面细菌的耐药性使氨曲南的渗透性变差,外排作用增强,抑菌谱缩小。为了提高单环β-内酰胺对细菌的渗透性,Basilea(WO 2007065288),Naeja Pharmaceuticals(WO 2002022613)和Squibb&Sons(ΜS 5290929,EP 531976,EP 484881)在单环β-内酰胺分子上引入铁载体摄取系统。最近,辉瑞公司重新研究了在N1-位携带磺酰氨基羰基活化基团的单环β-内酰胺(WO 2010070523)。另外,在WO 2008116813中,Basilea描述了使用单环β-内酰胺与碳青霉烯类的联合治疗方法。AiCuris(WO 2013110643)和Novartis(WO 2015148379)分别报道了通过修饰氨曲南(Aztreonam)分子上的取代基来提高活性的研究,化合物结构式如下所示,其中基团A为连接有脒基和胍基的芳香环结构。Novartis(WO 2017050218)还报道了其中一个化合物的盐型专利,目前这些化合物都处在临床前或临床开发阶段。
Figure PCTCN2019073699-appb-000001
发明内容
本发明提供式(I’)或(II’)所示化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2019073699-appb-000002
其中,
环A选自苯基或5~6元杂芳基;
m和m′分别独立的选自1或2;
L 1和L 2分别独立地选自单键、-NH-、-C(=NH)-、-C(=NR 6)NH-、-CH=N-或-(CH 2) n-;
R 6选自H,或者选自任选被1、2或3个R取代的3~6元杂环烷基;
n选自:1、2、3或4;
R 1选自H、NH 2,或选自任选被1、2或3个R取代的:C 1-6烷基、C 1-6杂烷基、C 3-6环烷基、3~6元杂环烷基;
R选自F、Cl、Br、I,或选自任选被1、2或3个R’取代的:CH 3、NH 2
Figure PCTCN2019073699-appb-000003
Figure PCTCN2019073699-appb-000004
5~6元杂环烷基;
R’选自F、Cl、Br、I、CH 3、NH 2
Figure PCTCN2019073699-appb-000005
R 2选自C 1-3烷基;
R 3和R 4分别独立地选自H或任选被1、2或3个R取代的C 1-3烷基;
L选自:单键或-O-;
R 5选自:H、COOH、OH、C(=O)NH 2、C(=O)CH 3或C(=O)OCH 3
“杂”表示杂原子或杂原子团,所述5~6元杂芳基、C 1-6杂烷基、3~6元杂环烷基、5~6元杂环烷基之“杂”,分别独立地选自:N、-NH-、-C(=NH)-、-C(=NH)NH-、-O-、-S-、N、=O、=S、-C(=O)-;
以上任何一种情况下,杂原子或杂原子团的数目分别独立地选自1、2或3。
在本发明的一些方案中,上述R选自:F、Cl、Br、I、CH 3、NH 2
Figure PCTCN2019073699-appb-000006
Figure PCTCN2019073699-appb-000007
在本发明的一些方案中,上述R 1选自H、NH 2,或选自任选被1、2或3个R取代的:C 1-4烷基、C 1-4杂烷基、C 3-6环烷基、3~6元杂环烷基。
在本发明的一些方案中,上述R 1选自H、NH 2,或选自任选被1、2或3个R取代的:CH 3、OCH 2CH 3
Figure PCTCN2019073699-appb-000008
环己烷基、吡咯烷基、哌啶基、哌嗪基。
在本发明的一些方案中,上述R 1选自:H、CH 3、OCH 2CH 2(NH 2)、NH 2
Figure PCTCN2019073699-appb-000009
Figure PCTCN2019073699-appb-000010
Figure PCTCN2019073699-appb-000011
在本发明的一些方案中,上述R 6选自H,或者选自任选被1、2或3个R取代的哌啶基。
在本发明的一些方案中,上述R 6选自H和
Figure PCTCN2019073699-appb-000012
在本发明的一些方案中,上述结构单元
Figure PCTCN2019073699-appb-000013
选自:H、CH 3
Figure PCTCN2019073699-appb-000014
Figure PCTCN2019073699-appb-000015
Figure PCTCN2019073699-appb-000016
在本发明的一些方案中,上述R 2选自CH 3
在本发明的一些方案中,上述环A选自苯基。
在本发明的一些方案中,上述结构单元
Figure PCTCN2019073699-appb-000017
选自:
Figure PCTCN2019073699-appb-000018
Figure PCTCN2019073699-appb-000019
在本发明的一些方案中,上述结构单元
Figure PCTCN2019073699-appb-000020
选自:
Figure PCTCN2019073699-appb-000021
Figure PCTCN2019073699-appb-000022
Figure PCTCN2019073699-appb-000023
在本发明的一些方案中,上述结构单元
Figure PCTCN2019073699-appb-000024
选自:
Figure PCTCN2019073699-appb-000025
在本发明的一些方案中,上述结构单元
Figure PCTCN2019073699-appb-000026
选自:
Figure PCTCN2019073699-appb-000027
Figure PCTCN2019073699-appb-000028
在本发明的一些方案中,上述结构单元
Figure PCTCN2019073699-appb-000029
选自:
Figure PCTCN2019073699-appb-000030
Figure PCTCN2019073699-appb-000031
在本发明的一些方案中,上述化合物选自:
Figure PCTCN2019073699-appb-000032
其中,R 1、R 2、R 3、R 4、L 1、L 2、L、m、m’和环A如本发明所定义。
在本发明的一些方案中,上述化合物选自:
Figure PCTCN2019073699-appb-000033
其中,R 1、R 2、R 3、R 4、L 1和L 2如本发明所定义。
本发明还提供下式化合物,其异构体或其药学上可接受的盐,
Figure PCTCN2019073699-appb-000034
Figure PCTCN2019073699-appb-000035
Figure PCTCN2019073699-appb-000036
Figure PCTCN2019073699-appb-000037
在本发明的一些方案中,上述化合物选自
Figure PCTCN2019073699-appb-000038
Figure PCTCN2019073699-appb-000039
Figure PCTCN2019073699-appb-000040
Figure PCTCN2019073699-appb-000041
本发明还提供一种药物组合物,包括作为活性成分的治疗有效量的上述的化合物、其异构体或其药学上可接受的盐以及药学上可接受的载体。
本发明还提供上述的化合物、其异构体或其药学上可接受的盐或上述的药物组合物在制备治疗细菌感染相关病症的药物上的应用。
在本发明的一些方案中,上述细菌为革兰氏阴性菌。
技术效果
本发明化合物对革兰氏阴性菌的抑菌活性较好,尤其是对鲍曼不动杆菌,绿脓杆菌和克雷伯氏菌的抑菌活性。本发明的化合物能够用于治疗多种革兰氏阴性菌引起的耐药性细菌感染的疾病,特别是由B类含金属β-内酰胺酶的革兰氏阴性菌(鲍曼不动杆菌、绿脓假单胞菌和克雷伯氏菌)等耐药性细菌引起的疾病。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐(参见Berge et al.,"Pharmaceutical Salts",Journal of Pharmaceutical Science 66:1-19(1977))。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
优选地,以常规方式使盐与碱或酸接触,再分离母体化合物,由此再生化合物的中性形式。化合物的母体形式与其各种盐的形式的不同之处在于某些物理性质,例如在极性溶剂中的溶解度不同。
本文所用的“药学上可接受的盐”属于本发明化合物的衍生物,其中,通过与酸成盐或与碱成盐的方式修饰所述母体化合物。药学上可接受的盐的实例包括但不限于:碱基比如胺的无机酸或有机酸盐、酸根比如羧酸的碱金属或有机盐等等。药学上可接受的盐包括常规的无毒性的盐或母体化合物的季铵盐,例如无毒的无机酸或有机酸所形成的盐。常规的无毒性的盐包括但不限于那些衍生自无机酸和有机酸的盐,所述的无机酸或有机酸选自2-乙酰氧基苯甲酸、2-羟基乙磺酸、乙酸、抗坏血酸、苯磺酸、苯甲酸、碳酸氢根、碳酸、柠檬酸、依地酸、乙烷二磺酸、乙烷磺酸、富马酸、葡庚糖、葡糖酸、谷氨酸、乙醇酸、氢溴酸、盐酸、氢碘酸盐、羟基、羟萘、羟乙磺酸、乳酸、乳糖、十二烷基磺酸、马来酸、苹果酸、扁桃酸、甲烷磺酸、硝酸、草酸、双羟萘酸、泛酸、苯乙酸、磷酸、多聚半乳糖醛、丙酸、水杨酸、硬脂酸、亚乙酸、琥珀酸、氨基磺酸、对氨基苯磺酸、硫酸、单宁、酒石酸和对甲苯磺酸。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与 化学计量的适当的碱或酸反应来制备。一般地,优选醚、乙酸乙酯、乙醇、异丙醇或乙腈等非水介质。
除了盐的形式,本发明所提供的化合物还存在前药形式。本文所描述的化合物的前药容易地在生理条件下发生化学变化从而转化成本发明的化合物。此外,前体药物可以在体内环境中通过化学或生化方法被转换到本发明的化合物。
本发明的某些化合物可以以非溶剂化形式或者溶剂化形式存在,包括水合物形式。一般而言,溶剂化形式与非溶剂化的形式相当,都包含在本发明的范围之内。
本发明的某些化合物可以具有不对称碳原子(光学中心)或双键。外消旋体、非对映异构体、几何异构体和单个的异构体都包括在本发明的范围之内。
除非另有说明,除非另有说明,用楔形实线键
Figure PCTCN2019073699-appb-000042
和楔形虚线键
Figure PCTCN2019073699-appb-000043
表示一个立体中心的绝对构型,用波浪线
Figure PCTCN2019073699-appb-000044
表示楔形实线键
Figure PCTCN2019073699-appb-000045
或楔形虚线键
Figure PCTCN2019073699-appb-000046
用直形实线键
Figure PCTCN2019073699-appb-000047
和直形虚线键
Figure PCTCN2019073699-appb-000048
表示立体中心的相对构型。当本文所述化合物含有烯属双键或其它几何不对称中心,除非另有规定,它们包括E、Z几何异构体。同样地,所有的互变异构形式均包括在本发明的范围之内。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“药学上可接受的载体”是指能够递送本发明有效量活性物质、不干扰活性物质的生物活性并且对宿主或者患者无毒副作用的任何制剂或载体介质代表性的载体包括水、油、蔬菜和矿物质、膏基、洗剂基质、软膏基质等。这些基质包括悬浮剂、增粘剂、透皮促进剂等。它们的制剂为化妆品领域或局部药物领域的技术人员所周知。关于载体的其他信息,可以参考Remington:The Science and Practice of Pharmacy,21st Ed.,Lippincott,Williams&Wilkins(2005),该文献的内容通过引用的方式并入本文。
术语“赋形剂”通常是指配制有效的药物组合物所需要载体、稀释剂和/或介质。
针对药物或药理学活性剂而言,术语“有效量”或“治疗有效量”是指无毒的但能达到预期效果的药物或药剂的足够用量。对于本发明中的口服剂型,组合物中一种活性物质的“有效量”是指与该组合物中另 一种活性物质联用时为了达到预期效果所需要的用量。有效量的确定因人而异,取决于受体的年龄和一般情况,也取决于具体的活性物质,个案中合适的有效量可以由本领域技术人员根据常规试验确定。
术语“活性成分”、“治疗剂”,“活性物质”或“活性剂”是指一种化学实体,它可以有效地治疗目标紊乱、疾病或病症。
“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当一个取代基可以连接到一个环上的一个以上原子时,这种取代基可以与这个环上的任意原子相键合,例如,结构单元
Figure PCTCN2019073699-appb-000049
表示取代基R可在环己基或者环己二烯上的任意一个位置发生取代。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2019073699-appb-000050
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2019073699-appb-000051
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2019073699-appb-000052
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,术语“杂”表示杂原子或杂原子团(即含有杂原子的原子团),包括碳(C)和氢(H)以外的原子以及含有这些杂原子的原子团,例如包括氧(O)、氮(N)、硫(S)、硅(Si)、锗(Ge)、铝(Al)、硼(B)、-O-、-S-、=O、=S、-C(=O)O-、-C(=O)-、-C(=S)-、-S(=O)、-S(=O) 2-,以及任选被 取代的-C(=O)N(H)-、-N(H)-、-C(=NH)-、-S(=O) 2N(H)-或-S(=O)N(H)-。
除非另有规定,“环”表示被取代或未被取代的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。所谓的环包括单环、联环、螺环、并环或桥环。环上原子的数目通常被定义为环的元数,例如,“5~7元环”是指环绕排列5~7个原子。除非另有规定,该环任选地包含1~3个杂原子。因此,“5~7元环”包括例如苯基、吡啶和哌啶基;另一方面,术语“5~7元杂环烷基环”包括吡啶基和哌啶基,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“杂环”或“杂环基”意指稳定的含杂原子或杂原子团的单环、双环或三环,它们可以是饱和的、部分不饱和的或不饱和的(芳族的),它们包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子,其中上述任意杂环可以稠合到一个苯环上形成双环。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。该杂环可以附着到任何杂原子或碳原子的侧基上从而形成稳定的结构。如果产生的化合物是稳定的,本文所述的杂环可以发生碳位或氮位上的取代。杂环中的氮原子任选地被季铵化。一个优选方案是,当杂环中S及O原子的总数超过1时,这些杂原子彼此不相邻。另一个优选方案是,杂环中S及O原子的总数不超过1。如本文所用,术语“芳族杂环基团”或“杂芳基”意指稳定的5、6、7元单环或双环或7、8、9或10元双环杂环基的芳香环,它包含碳原子和1、2、3或4个独立地选自N、O和S的环杂原子。氮原子可以是被取代的或未取代的(即N或NR,其中R是H或本文已经定义过的其他取代基)。氮和硫杂原子可任选被氧化(即NO和S(O)p,p是1或2)。值得注意的是,芳香杂环上S和O原子的总数不超过1。桥环也包含在杂环的定义中。当一个或多个原子(即C、O、N或S)连接两个不相邻的碳原子或氮原子时形成桥环。优选的桥环包括但不限于:一个碳原子、两个碳原子、一个氮原子、两个氮原子和一个碳-氮基。值得注意的是,一个桥总是将单环转换成三环。桥环中,环上的取代基也可以出现在桥上。
杂环化合物的实例包括但不限于:吖啶基、吖辛因基、苯并咪唑基、苯并呋喃基、苯并巯基呋喃基、苯并巯基苯基、苯并恶唑基、苯并恶唑啉基、苯并噻唑基、苯并三唑基、苯并四唑基、苯并异恶唑基、苯并异噻唑基、苯并咪唑啉基、咔唑基、4aH-咔唑基、咔啉基、苯并二氢吡喃基、色烯、噌啉基十氢喹啉基、2H,6H-1,5,2-二噻嗪基、二氢呋喃并[2,3-b]四氢呋喃基、呋喃基、呋咱基、咪唑烷基、咪唑啉基、咪唑基、1H-吲唑基、吲哚烯基、二氢吲哚基、中氮茚基、吲哚基、3H-吲哚基、异苯并呋喃基、异吲哚基、异二氢吲哚基、异喹啉基、异噻唑基、异恶唑基、亚甲二氧基苯基、吗啉基、萘啶基,八氢异喹啉基、恶二唑基、1,2,3-恶二唑基、1,2,4-恶二唑基、1,2,5-恶二唑基、1,3,4-恶二唑基、恶唑烷基、恶唑基、羟吲哚基、嘧啶基、菲啶基、菲咯啉基、吩嗪、吩噻嗪、苯并黄嘌呤基、酚恶嗪基、酞嗪基、哌嗪基、哌啶基、哌啶酮基、4-哌啶酮基、胡椒基、蝶啶基、嘌呤基、吡喃基、吡嗪基、吡唑烷基、吡唑啉基、吡唑基、哒嗪基、吡啶并恶唑、吡啶并咪唑、吡啶并噻唑、吡啶基、吡咯烷基、吡咯啉基、2H-吡咯基、吡咯基、喹唑啉基、喹啉基、4H-喹嗪基、喹喔啉基、奎宁环基、四氢呋喃基、四氢异喹啉基、四氢喹啉基、四唑基,6H-1,2,5-噻二嗪基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、噻蒽基、噻唑基、异噻唑基噻吩基、噻吩并恶唑基、噻吩并噻唑基、噻吩并咪唑基、噻吩基、三嗪基、 1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基、4H-1,2,4-三唑基和呫吨基。还包括稠环和螺环化合物。
除非另有规定,术语“烃基”或者其下位概念(比如烷基、烯基、炔基、芳基等等)本身或者作为另一取代基的一部分表示直链的、支链的或环状的烃原子团或其组合,可以是完全饱和的(如烷基)、单元或多元不饱和的(如烯基、炔基、芳基),可以是单取代或多取代的,可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基),可以包括二价或多价原子团,具有指定数量的碳原子(如C 1-C 12表示1至12个碳,C 1-12选自C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11和C 12;C 3-12选自C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11和C 12。)。“烃基”包括但不限于脂肪烃基和芳香烃基,所述脂肪烃基包括链状和环状,具体包括但不限于烷基、烯基、炔基,所述芳香烃基包括但不限于6-12元的芳香烃基,例如苯、萘等。在一些实施例中,术语“烃基”表示直链的或支链的原子团或它们的组合,可以是完全饱和的、单元或多元不饱和的,可以包括二价和多价原子团。饱和烃原子团的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、异丁基、环己基、(环己基)甲基、环丙基甲基,以及正戊基、正己基、正庚基、正辛基等原子团的同系物或异构体。不饱和烃基具有一个或多个双键或三键,其实例包括但不限于乙烯基、2-丙烯基、丁烯基、巴豆基、2-异戊烯基、2-(丁二烯基)、2,4-戊二烯基、3-(1,4-戊二烯基)、乙炔基、1-和3-丙炔基,3-丁炔基,以及更高级的同系物和异构体。
除非另有规定,术语“杂烃基”或者其下位概念(比如杂烷基、杂烯基、杂炔基、杂芳基等等)本身或者与另一术语联合表示稳定的直链的、支链的或环状的烃原子团或其组合,有一定数目的碳原子和至少一个杂原子组成。在一些实施例中,术语“杂烷基”本身或者与另一术语联合表示稳定的直链的、支链的烃原子团或其组合物,有一定数目的碳原子和至少一个杂原子组成。在一个典型实施例中,杂原子选自B、O、N和S,其中氮和硫原子任选地被氧化,氮杂原子任选地被季铵化。杂原子或杂原子团可以位于杂烃基的任何内部位置,包括该烃基附着于分子其余部分的位置,但术语“烷氧基”、“烷氨基”和“烷硫基”(或硫代烷氧基)属于惯用表达,是指分别通过一个氧原子、氨基或硫原子连接到分子的其余部分的那些烷基基团。实例包括但不限于-CH 2-CH 2-O-CH 3、-CH 2-CH 2-NH-CH 3、-CH 2-CH 2-N(CH 3)-CH 3、-CH 2-S-CH 2-CH 3、-CH 2-CH 2、-S(O)-CH 3、-CH 2-CH 2-S(O) 2-CH 3、-CH=CH-O-CH 3、-NH-CH 2-NH-H、-CH 2-CH=N-OCH 3和–CH=CH-N(CH 3)-CH 3。至多两个杂原子可以是连续的,例如-CH 2-NH-OCH 3
除非另有规定,术语“环烃基”、“杂环烃基”或者其下位概念(比如芳基、杂芳基、环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基等等)本身或与其他术语联合分别表示环化的“烃基”、“杂烃基”。此外,就杂烃基或杂环烃基(比如杂烷基、杂环烷基)而言,杂原子可以占据该杂环附着于分子其余部分的位置。环烃基的实例包括但不限于环戊基、环己基、1-环己烯基、3-环己烯基、环庚基等。杂环基的非限制性实例包括1-(1,2,5,6-四氢吡啶基)、1-哌啶基、2-哌啶基,3-哌啶基、4-吗啉基、3-吗啉基、四氢呋喃-2-基、四氢呋喃吲哚-3-基、四氢噻吩-2-基、四氢噻吩-3-基,1-哌嗪基和2-哌嗪基。
除非另有规定,术语“烷基”用于表示直链或支链的饱和烃基,可以是单取代(如-CH 2F)或多取代的(如-CF 3),可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。烷基的例子包括甲基(Me),乙基(Et),丙基(如,n-丙基和异丙基),丁基(如,n-丁基,异丁基,s-丁基,t-丁基),戊基(如,n-戊基,异戊基,新戊基)等。
除非另有规定,“烯基”指在链的任何位点上具有一个或多个碳碳双键的烷基,可以是单取代或多取代的,可以是一价、二价或者多价。烯基的例子包括乙烯基,丙烯基,丁烯基,戊烯基,己烯基,丁间二烯基,戊间二烯基,己间二烯基等。
除非另有规定,“炔基”指在链的任何位点上具有一个或多个碳碳三键的烷基,可以是单取代或多取代的,可以是一价、二价或者多价。炔基的例子包括乙炔基,丙炔基,丁炔基,戊炔基等。
除非另有规定,环烷基包括任何稳定的环状或多环烃基,任何碳原子都是饱和的,可以是单取代或多取代的,可以是一价、二价或者多价。这些环烷基的实例包括,但不限于,环丙基、降冰片烷基、[2.2.2]二环辛烷、[4.4.0]二环癸烷等。
除非另有规定,环烯基包括任何稳定的环状或多环烃基,该烃基在环的任何位点含有一个或多个不饱和的碳-碳双键,可以是单取代或多取代的,可以是一价、二价或者多价。这些环烯基的实例包括,但不限于,环戊烯基、环己烯基等。
除非另有规定,环炔基包括任何稳定的环状或多环烃基,该烃基在环的任何位点含有一个或多个碳-碳三键,可以是单取代或多取代的,可以是一价、二价或者多价。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。此外,术语“卤代烷基”意在包括单卤代烷基和多卤代烷基。例如,术语“卤代(C 1-C 4)烷基”意在包括但不仅限于三氟甲基、2,2,2-三氟乙基、4-氯丁基和3-溴丙基等等。除非另有规定,卤代烷基的实例包括但不仅限于:三氟甲基、三氯甲基、五氟乙基,和五氯乙基。
“烷氧基”代表通过氧桥连接的具有特定数目碳原子的上述烷基,除非另有规定,C 1-6烷氧基包括C 1、C 2、C 3、C 4、C 5和C 6的烷氧基。烷氧基的例子包括但不限于:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基和S-戊氧基。
除非另有规定,术语“芳基”表示多不饱和的芳族烃取代基,可以是单取代或多取代的,可以是一价、二价或者多价,它可以是单环或多环(比如1至3个环;其中至少一个环是芳族的),它们稠合在一起或共价连接。术语“杂芳基”是指含有一至四个杂原子的芳基(或环)。在一个示范性实例中,杂原子选自B、N、O和S,其中氮和硫原子任选地被氧化,氮原子任选地被季铵化。杂芳基可通过杂原子连接到分子的其余部分。芳基或杂芳基的非限制性实施例包括苯基、萘基、联苯基、吡咯基、吡唑基、咪唑基、吡嗪基、恶唑基、苯基-恶唑基、异恶唑基、噻唑基、呋喃基、噻吩基、吡啶基、嘧啶基、苯并噻唑基、嘌呤基、苯并咪唑基、吲哚基、异喹啉基、喹喔啉基、喹啉基、1-萘基、2-萘基、4-联苯基、1-吡咯基、2-吡咯基、3-吡咯基、3-吡唑基、2-咪唑基、4-咪唑基、吡嗪基、2-恶唑基、4-恶唑基、2-苯基-4-恶唑基、5-恶唑基、3-异恶唑基、4-异恶唑基、5-异恶唑基、2-噻唑基、4-噻唑基、5-噻唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、2-吡啶基、3-吡啶基、4-吡啶基、2-嘧啶基、4-嘧啶基、5-苯并噻唑基、嘌呤基、2-苯并咪唑基、5-吲哚基、1-异喹啉基、5-异喹啉基、2-喹喔啉基、5-喹喔啉基、3-喹啉基和6-喹啉基。上述任意一个芳基和杂芳基环系的取代基选自下文所述的可接受的取代基。
除非另有规定,芳基在与其他术语联合使用时(例如芳氧基、芳硫基、芳烷基)包括如上定义的芳基和杂芳基环。因此,术语“芳烷基”意在包括芳基附着于烷基的那些原子团(例如苄基、苯乙基、吡啶基甲基等),包括其中碳原子(如亚甲基)已经被例如氧原子代替的那些烷基,例如苯氧基甲基、2-吡 啶氧甲基3-(1-萘氧基)丙基等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:
aq代表水;min代表分钟;FA代表甲酸;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;DCC代表N,N′-二环己基碳二亚胺;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二甲酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;Cbz代表苄氧羰基,是一种胺保护基团;Boc代表叔丁氧羰基,是一种胺保护基团;HOAc代表乙酸;ACN代表乙腈;BH 3代表氰基硼氢化钠;r.t.代表室温;THF代表四氢呋喃;Boc 2O代表二-叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;CS 2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu 4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基氨基锂;TEMPO代表2,2,6,6-四甲基哌啶-1-氧自由基或2,2,6,6-四甲基哌啶氧化物;NaClO代表次氯酸钠;NaClO 2代表亚氯酸钠;HOBt代表1-羟基苯并三氮唑;psi代表磅/平方英寸;DMF·SO 3代表N,N-二甲基甲酰胺三氧化硫;KH 2PO 4代表磷酸二氢钾;Bu 4HSO 4代表四丁基硫酸氢铵;PPh 3代表三苯基膦;NH 2NH 2·H 2O代表水合肼;DPPF代表1,1'-双(二苯基膦基)二茂铁;Pd 2(dba) 3代表三(二亚苄基丙酮)二钯(0);MIC代表最小抑菌溶度;DMAP代表4-二甲基氨基吡啶;BnBr代表卞溴;H 2O 2代表双氧水。
附图说明
图1为化合物对小鼠肺部感染的体内药效试验结果。
图2为化合物对小鼠大腿肌肉感染的体内药效试验结果。
图3和图4为给药治疗免疫抑制小鼠肺部绿脓感染的肺荷菌量。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
关键中间体A1:
Figure PCTCN2019073699-appb-000053
步骤一:将化合物A1_1(100.00g,642.76mmol,1.00eq)加入到THF(1.50L)中,然后加入三乙胺(136.59g,1.35mol,187.10mL,2.10eq),所得混合物冷却至0℃,然后在此温度下滴加Boc 2O(154.31g,707.03mmol,162.43mL,1.10eq)的THF(500.00mL)溶液,升温至10℃并在此温度下搅拌10小时,然后过滤,将滤液减压浓缩,向所得的粗产品中加入饱和碳酸氢钠溶液(300mL),并用乙酸乙酯(500mL*2)萃取。将合并的有机层用无水硫酸钠干燥,过滤并减压浓缩得到化合物A1_2。
1H NMR(400MHz,CDCl 3)δ(ppm):5.51(br s,1H),4.46-4.31(m,1H),4.03-3.86(m,2H),3.83-3.72(m,3H),2.64(br s,1H),1.46(s,9H)。
步骤二:将A1_2溶解于THF(2000mL)中,并降温至-50℃下搅拌10分钟,然后在-50℃下经20分钟滴加MeMgBr(3M,638.59mL,6.00eq)。将所得混合物在25℃下搅拌60分钟后在0℃下加入稀盐酸(2000mL,0.5M)淬灭反应混合物,然后将所得混合物用乙酸乙酯(500mL*2)萃取。合并的有机层用饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,将滤液减压浓缩,所得到粗产品其用石油醚/乙酸乙酯(70mL,10/1)搅拌洗涤后通过柱色谱(SiO 2,石油醚/乙酸乙酯=10/1至1/1(v/v))纯化得到化合物A1_3。
1H NMR(400MHz,CDCl 3)δ(ppm):5.41-5.23(m,1H),3.96(br d,J=11.2Hz,1H),3.79-3.70(m,1H),3.40(br d,J=8.3Hz,1H),2.53-2.39(m,2H),1.39(s,9H),1.28(s,3H),1.18(s,3H)。
步骤三:将A1_3(30g,136.81mmol,1.00eq)溶解于磷酸钠缓冲液(540.00mL,0.7M,2.76eq)和乙腈(300mL)的混合溶液中,然后加入TEMPO(2.15g,13.68mmol,0.10eq),在35℃搅拌下滴加NaClO(81.47g,5.47mmol,67.33mL,纯度为0.5%,0.04eq)和NaClO 2(98.99g,1.09mol,8.00eq)的水(300mL)溶液。将所得混合物在35℃下搅拌12小时,然后冷却至室温并加入柠檬酸(10g)。所得混合物用乙酸乙酯(500mL*4)萃取,将合并的有机层用饱和氯化钠水溶液(100mL)洗涤,无水硫酸钠干燥,过滤并将滤液减压浓缩。向所得粗产品中加入碳酸钠水溶液(300mL,2M)后用乙酸乙酯(200mL*2)洗涤。将水层冷却至0℃后用稀盐酸(1M)将pH调节至3.0。然后向水溶液中加入氯化钠至饱和,所得混合 物用乙酸乙酯(500mL*4)萃取。合并的有机层用饱和氯化钠水溶液(50mL)洗涤,无水硫酸钠干燥,过滤并将滤液减压浓缩得到化合物A1_4。
1H NMR(400MHz,CDCl 3)δ(ppm):5.42(br d,J=7.8Hz,1H),4.18(br d,J=8.4Hz,1H),1.39(s,9H),1.30(s,3H),1.22(s,3H)。
步骤四:将A1_4(48g,205.78mmol,1.00eq)溶于DMF(700mL),然后加入DCC(84.92g,411.56mmol,83.25mL,2.00eq)和HOBt(55.61g,411.56mmol,2eq),在10℃下搅拌0.5小时,然后加入O-苄基羟胺盐酸盐(39.41g,246.93mmol,1.20eq)和碳酸氢钠水溶液(69.15g,823.11mmol,32.01mL,4eq)。将所得混合物在10℃下搅拌1.5小时,然后将反应混合物过滤并将滤液减压浓缩。将粗产品用水(400mL)稀释,并用乙酸乙酯(500mL*2)萃取。合并的有机层用饱和氯化钠水溶液洗涤,无水硫酸钠干燥并过滤。将滤液减压浓缩,所得残留物通过柱色谱(SiO 2,石油醚/乙酸乙酯=6/1至3/1(v/v))纯化得到化合物A1_5。
1H NMR(400MHz,DMSO-d 6)δ(ppm):11.06(s,1H),7.45-7.32(m,5H),6.45(br d,J=9.2Hz,1H),4.80(d,J=2.6Hz,2H),4.65(s,1H),4.04(d,J=7.0Hz,1H),3.77(br d,J=9.2Hz,1H),1.40(s,9H),1.11(s,3H),1.08(s,3H);
LC-MS(ESI)m/z:283(M-56+1)。
步骤五:将A1_5(57g,168.44mmol,1eq)溶解于吡啶(600mL)中,在55℃下搅拌12小时后加入三氧化硫吡啶(187.67g,1.18mol,7eq)。然后将反应混合物减压浓缩,所得固体溶于乙酸乙酯(800mL)中。在0℃下向固体中滴加碳酸钾水溶液(816.94mL,2M,9.7eq),所得混合物在100℃下搅拌2小时。然后将反应冷却至室温,并用乙酸乙酯(400mL*3)萃取。合并的有机层用无水硫酸钠干燥,过滤并减压浓缩滤液。所得粗产品通过柱色谱(SiO 2,石油醚/乙酸乙酯=12/1至9/1(v/v))纯化得到化合物A1_6。
1H NMR(400MHz,CDCl 3)δ(ppm):7.41(br d,J=1.0Hz,5H),5.02-4.97(m,2H),4.32(d,J=6.7Hz,1H),1.50-1.43(m,9H),1.34(s,3H),1.11(s,3H);
LC-MS(ESI)m/z:321.1(M+1)。
步骤六:将A1_6(31g,96.76mmol,1.00eq)溶于甲醇(620mL)中,并在氮气气氛下加入Pd/C(3g,10%),然后将反应瓶用氮气置换三次。然后在20℃充入氢气并在50psi气氛下反应1小时,然后将反应混合物过滤并减压浓缩滤液得到化合物A1_7。
步骤七:向A1_7(22g,95.54mmol,1.00eq)的DMF(220mL)溶液中加入DMF·SO 3(17.56g,114.65mmol,1.2eq)。将混合物在0℃下搅拌1小时,然后用饱和KH 2PO 4(200mL)稀释。所得混合物用乙酸乙酯(100mL)萃取,在10℃下经20分钟向合并的水层中加入Bu 4HSO 4(38.93g,114.65mmol,1.20eq),所得的水相用EtOAc(350mL*4)萃取。合并有机相并减压浓缩滤液得到化合物A1_8。
步骤八:将A1_8(68g,123.24mmol,1.00eq)加入到三氟乙酸(300mL)中,然后将混合物在15℃氮气下搅拌4小时。将反应混合物用二氯甲烷(350mL)稀释并过滤,将滤液减压浓缩得到化合物A1。 1H NMR(400MHz,DMSO-d 6)δ(ppm):8.79(br s,3H),4.18(br s,1H),1.46-1.38(m,6H)。
关键中间体A2:
Figure PCTCN2019073699-appb-000054
步骤一:将A2_1(97g,484.48mmol,1eq)溶解于二氯甲烷(600mL)和DMF(400mL)中,然后向此溶液中滴加三乙胺(49.02g,484.48mmol,67.43mL,1eq),降温至-30℃并在此温度下滴加三苯基氯甲烷(135.06g,484.48mmol,1eq)。将所得混合物在15℃下搅拌12小时,然后将反应混合物用水(500mL)稀释,并用乙酸乙酯(500ml*2)萃取,合并的有机层用稀盐酸(100mL,0.1M)洗涤,无水硫酸钠干燥并过滤,将滤液减压浓缩得到A2_2。
步骤二:向A2_2(250g,564.94mmol,1eq)的甲醇(750mL)溶液中加入氢氧化钠(24.86g,621.43mmol,1.1eq)。将所得混合物在60℃下搅拌10分钟,然后将反应物过滤,将得到的固体溶于水(500mL)中并用稀盐酸(500mL,1M)调节至pH<5伴随沉淀析出。将其过滤并将得到的固体溶于二氯甲烷(5L)中,所得溶液用无水硫酸钠干燥,过滤并减压浓缩滤液得到中间体A2。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.02(s,1H),7.76(s,1H),7.37-7.21(m,15H);
LC-MS(ESI)m/z:437.2(M+23)。
关键中间体A3:(从上海氟德化工有限公司购得)
Figure PCTCN2019073699-appb-000055
关键中间体A4:
Figure PCTCN2019073699-appb-000056
步骤一:在0℃下向A4_1(19.00g,256.34mmol,21.35mL,6.00eq)的二氯甲烷(150mL)溶液中缓慢滴加Boc 2O(9.32g,42.72mmol,9.81mL,1.00eq)的二氯甲烷(50mL)溶液。混合物在20℃搅拌1小时后加入水(50mL)将反应淬灭,分液得到有机层后用水(30mL)洗涤,水层用二氯甲烷(30mL)萃取水层,合并有机相并用无水硫酸钠干燥,过滤并减压浓缩滤液得化合物A4_2。
步骤二:在0℃下向A4_2(7.50g,43.04mmol,7.50mL,1.00eq)的甲醇(75.00mL)溶液中加入醋酸钠(7.06g,86.08mmol,2.00eq),然后加入BrCN(6.84g,64.56mmol,4.75mL,1.50eq)。混合物在20℃搅拌1小时加水(20mL)淬灭,然后用乙酸乙酯(20mL)萃取。合并的有机层用饱和氯化钠(20mL*2)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液得化合物A4_3。
步骤三:将化合物A4_3(5.50g,27.60mmol,1.00eq)和吡唑盐酸盐(2.89g,27.60mmol,1.00eq)加入到1,4-二氧六环(50.00mL)中,混合物在80℃氮气下搅拌2小时后得到化合物A4_4的1,4-二氧六环溶液,该溶液直接用于下一步反应。
步骤四:向上一步得到的粗产品A4_4(7.38g,27.61mmol,1.00eq)的二氧六环溶液加入到二氯甲烷(50.00mL),然后加入DMAP(674.53mg,5.52mmol,0.20eq)和Boc 2O(18.08g,82.83mmol,19.03mL,3.00eq)。混合物在20℃搅拌12小时后加水(50mL)淬灭,用乙酸乙酯(50mL*2)萃取。合并的有机相用饱和氯化钠(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=20:1至10:1(v/v))纯化得化合物A4_5。
1H NMR(400MHz,CDCl 3)δ(ppm):8.13(d,J=2.7Hz,1H),7.55(s,1H),6.36-6.28(m,1H),4.89(br s,1H),3.44(t,J=6.2Hz,2H),3.25-3.14(m,2H),1.87-1.75(m,2H),1.59-1.32(m,27H)。
步骤五:将化合物A4_5(4.00g,8.56mmol,1.00eq)溶于THF(40.00mL)和水(10.00mL)的混合溶液中,然后加入氢氧化钠(3.42g,85.60mmol,10.00eq),混合物在70℃和氮气保护下搅拌2小时。将反应混合物浓缩后加入二氯甲烷(20mL)萃取,合并的有机相用饱和氯化钠(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=10/1至5/1(v/v))纯化得中间体A4。
关键中间体A5:
Figure PCTCN2019073699-appb-000057
步骤五:向化合物A4_4的盐酸盐(2g,6.58mmol,1eq)的DCM(20mL)溶液中加入三氟乙酸酐(1.66g,7.90mmol,1.10mL,1.2eq)和三乙胺(1.47g,14.48mmol,2.02mL,2.2eq)。将混合物在10℃下搅拌1小时。反应混合物用水(20mL*2)mL洗涤,将有机层减压浓缩得中间体A5。
关键中间体A6
Figure PCTCN2019073699-appb-000058
步骤一:在20℃下向A6_1(7g,53.35mmol,7.54mL,1eq)的THF(70mL)溶液中缓慢滴加BOC-ONB(29.80g,106.69mmol,2eq)和Et 3N(11.34g,112.03mmol,15.59mL,2.1eq)的THF(330mL)溶液,将所得混合物在20℃下搅拌11小时。将反应混合物过滤后并减压浓缩滤液,所得残余物用碳酸钾溶液(100mL,2M)稀释,并用乙酸乙酯(100mL*2)萃取,合并有机相并减压浓缩得化合物A6_2。
步骤二:在0℃下向A6_2(15g,45.26mmol,1eq)的MeOH(150mL)溶液中加入BrCN(7.86g,74.21mmol,5.46mL,1.64eq)和醋酸钠(7.43g,90.51mmol,2eq),混合物在室温下搅拌2小时后用饱和碳酸钠溶液的饱和水溶液(300mL)稀释并用乙酸乙酯(100mL)萃取。将有机相减压浓缩,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=5/1至1/1)纯化得化合物A6_3。
步骤三:将化合物A6_3(4.2g,11.78mmol,1eq)和吡唑盐酸盐(1.23g,11.78mmol,1eq)分别加入到THF(40mL)中并用氮气置换三次,然后将混合物在在75℃下搅拌反应12小时。将反应冷却至室温后用乙酸乙酯(100mL)稀释后过滤并收集滤饼,干燥后得化合物A6_4。
LCMS(ESI)m/z:425.4(M+1)。
步骤四:在0℃下向化合物0℃(2.1g,4.56mmol,1eq)的DCM(20mL)溶液加入TFAA(765.41mg,3.64mmol,506.89uL,0.8eq)和三乙胺(1.01g,10.02mmol,1.39mL,2.2eq),混合物在0℃下搅拌20分钟后用水(20mL)稀释,所得混合物用DCM(50mL*2)萃取,合并有机层并减压浓缩得化合物A6。
关键中间体A7
Figure PCTCN2019073699-appb-000059
步骤一:在0℃下向A7_1(5g,24.97mmol,1eq)的MeOH(50mL)溶液中加入BrCN(4.46g,42.11mmol,1.69eq)和AcONa(4.10g,49.93mmol,2eq)。混合物在20℃下搅拌12小时用饱和碳酸钠溶液(100mL)稀释,用乙酸乙酯(50mL)萃取。合并有机相并减压浓缩,得到残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=5/1至1/1)纯化得到化合物A7_2。
步骤二:在室温下向吡唑盐酸盐(2.00g,19.09mmol,1eq)的THF(40mL)溶液中加入A7_2(4.3g,19.09mmol,1eq)。将混合物在80℃下搅拌12小时后减压浓缩得到化合物A7_3。
步骤三:在0℃下向A7_3(6.5g,22.16mmol,1eq)的DCM(60mL)溶液中加入TFAA(5.12g,24.37mmol,3.39mL,1.1eq)和TEA(6.73g,66.47mmol,9.25mL,3eq)。混合物在25℃下搅拌2小时用水(50mL)稀释并用DCM(50mL*2)萃取。合并有机层并减压浓缩得化合物A7。
关键中间体A8:
Figure PCTCN2019073699-appb-000060
步骤一:将化合物A8_1加入到1,1,1,3,3,3-六氟-2-(三氟甲基)丙-2-醇(10.16g,43.06mmol,10eq)和DCM(20mL)的混合溶液中,将反应物在室温下搅拌45分钟(20-25℃)后减压浓缩得化合物A8。
实施例1
Figure PCTCN2019073699-appb-000061
步骤一:在15℃下向化合物1_1(5.00g,34.44mmol,1.00eq)的乙醇(60.00mL)溶液中加入BnBr(7.66g,44.77mmol,5.32mL,1.30eq)。然后将混合物在60℃下搅拌14小时,冷却至室温后,减压浓缩。粗产品用乙酸乙酯(30mL)洗涤后得到化合物1_2。
步骤二:在0℃下向化合物1_2(10.50g,33.21mmol,1.00eq)的甲醇(110.00mL)溶液中加入NaBH 4(3.00g,79.30mmol,2.39eq),混合物在15℃下搅拌2小时后将水(10mL)加入其中并搅拌5分钟。水相用二氯甲烷(100mL)萃取。合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液得到化合物1_3。
LC-MS(ESI)m/z=240.3(M+1)。
步骤三:将化合物1_3(2.50g,10.45mmol,1.00eq),氢氧化钠水溶液(50.00mL,1M)和1,2-二溴乙烷(62.25g,331.37mmol,25.00mL,31.72eq)混合,在90℃下搅拌2小时后将混合物倒入水(10mL)中并搅拌5分钟。水相用乙酸乙酯(100mL)萃取,合并的有机相用饱和饱和氯化钠水溶液(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=1/0至3/1(v/v))纯化得到化合物1_4。
步骤四:在0℃下向化合物1_4(2.90g,8.38mmol,1.00eq)的1,2-二氯乙烷(30.00mL)溶液中加入碳酸氯代-1-氯乙酯(2.39g,16.75mmol,2.00eq),将混合物在100℃下搅拌2小时。减压浓缩后加入甲醇(30.00mL),将混合物在100℃下搅拌3小时,减压浓缩并用乙酸乙酯(20mL)洗涤干燥后得化合物1_5的盐酸盐。
步骤五:向化合物1_5的盐酸盐(1.00g,3.42mmol,1.00eq)的DMF(10.00mL)溶液中加入碳酸钾(944.70mg,6.84mmol,2.00eq)和N-(2-溴乙基)氨基甲酸叔丁酯(919.07mg,4.10mmol,1.20eq)。混合物在60℃下搅拌14小时后减压浓缩,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=10/1至1/1(v/v))纯化得化合物1_6。
步骤六:向化合物1_6(620.00mg,1.55mmol,1.00eq)的DMF(2.00mL)溶液中加入三乙胺(203.90mg,2.01mmol,279.31μl,1.30eq)和2-羟基异吲哚啉-1,3-二酮(252.85mg,1.55mmol,1.00eq)。混合物在45℃搅拌12小时后减压浓缩,然后向残余物中加入饱和碳酸钠水溶液(20mL),并用乙酸乙酯(50mL*2)萃取,合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液,所得残余物通过制备型TLC(SiO 2,石油醚/乙酸乙酯=1/1(v/v))纯化得到化合物1_7。
LC-MS(ESI)m/z:482.4(M+1)。
步骤七:向化合物1_7(130mg,249.72μmol,1eq)的乙醇(2mL)溶液中加入NH 2NH 2·H 2O(14.71mg,249.72μmol,14.28uL,纯度85%,1eq)。混合物在50℃下搅拌2小时后过滤,减压浓缩滤液得化合物1_8。
步骤八:向化合物1_8(80mg,227.64μmol,1eq)的甲醇(3mL)和二氯甲烷(1mL)混合溶液中加入中间体A2(84.91mg,204.87μmol,0.9eq)。混合物在15℃下搅拌0.5小时后减压浓缩,然后向残余物加入稀盐酸(10mL,0.5M),水相用乙酸乙酯(50mL*2)萃取。合并的有机相用饱和氯化钠水溶液(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液得化合物1_9。
LC-MS(ESI)m/z:748.6(M+1)。
步骤九:向化合物1_9(150mg,156.44μmol,1eq)的DMF(2mL)溶液中加入DCC(64.55mg,312.88μmol,63.29uL,2eq)和HOBt(42.28mg,312.88μmol,2eq)。混合物在15℃搅拌1小时后加入中间体A1(36.17mg,172.08μmol,1.1eq)和碳酸氢钠(52.57mg,625.75μmol,24.34uL,4eq),混合物在15℃搅拌4小时后减压浓缩,所得残余物倒入水(20mL)中并搅拌5分钟,然后用乙酸乙酯(100mL)萃取,合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸铵干燥,过滤后减压浓缩,残余物通过制备TLC(SiO 2,二氯甲烷/甲醇=10/1(v/v))纯化得到化合物1_10。
LC-MS(ESI)m/z:940.7(M+1)。
步骤十:向化合物1_10(90mg,94.18μmol,1eq)的THF(1mL)溶液中加入碘甲烷(1.84g,12.96mmol,807.02μL,137.64eq)。混合物在15℃搅拌14小时后减压浓缩,将所得残余物溶于DMF(2mL)中并加入碘甲烷(1.74g,12.26mmol,763.16μL,130.16eq)和碳酸钾(13.02mg,94.18μmol,1eq),在15℃下再搅拌1小时后减压浓缩得化合物1_11。
步骤十一:向化合物1_11(90mg,94.23μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(3.08g,27.01mmol,2mL,286.67eq),所得混合物在15℃下搅拌0.5小时,然后减压浓缩,残余物用制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:3%-30%,10分钟)纯化得化合物1。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.42(br d,J=7.5Hz,1H),8.22(s,1H),7.20(br s,2H),7.11(br d,J=9.0Hz,1H),6.89(br s,1H),6.76(s,1H),4.69-4.46(m,3H),4.37(br s,2H),4.19(br s,2H),3.58-3.53(m,4H),3.13(br s,2H),3.10(s,3H),3.03(br s,2H),1.39-1.29(m,3H),1.28-1.15(m,3H);
LC-MS(ESI)m/z:612.7(M+1)。
实施例2
Figure PCTCN2019073699-appb-000062
步骤一:在氮气下向化合物1_3(2.80g,11.70mmol,1.00eq)的甲醇(30.00mL)溶液中加入Pd(OH) 2/C(200mg,10%)和Boc 2O(3.83g,17.55mmol,1.5eq),混合物用氢气置换三次后在30℃和氢气(50psi)下搅拌2小时后过滤,减压浓缩滤液,残余物通过硅色谱法(SiO 2,石油醚/乙酸乙酯=1/0至1/1(v/v))纯化得化合物2_1。
步骤二:将化合物2_1(3.90g,15.64mmol,1.00eq)加入到氢氧化钠(40.00mL,1M)溶液中,然后加入1,2-二溴乙烷(49.80g,265.09mmol,20.00mL,16.95eq)和四丁基溴化铵(100.84mg,312.80μmol,0.02eq)。混合物在90℃下搅拌2小时后倒入水(10mL)中并搅拌5分钟,水相用乙酸乙酯(100mL)萃取,合并有机相用饱和氯化钠水溶液(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱法(SiO 2,石油醚/乙酸乙酯=1/0至50/1(v/v))纯化得化合物2_2。
步骤三:向化合物2_2(3.00g,8.42mmol,1.00eq)的DMF(20.00mL)溶液中加入三乙胺(1.11g,10.95mmol,1.52mL,1.30eq)和2-羟基异吲哚啉-1,3-二酮(1.37g,8.42mmol,1.00eq)。混合物在50℃搅拌12小时后减压浓缩,残余物通过硅胶色谱法(SiO 2,石油醚/乙酸乙酯=10/1至3/1(v/v))纯化得化合物2_3。
LC-MS(ESI)m/z:339.3(M-99)。
步骤四:向化合物2_3(900.00mg,2.05mmol,1.00eq)的乙醇(15.00mL)溶液中加入NH 2NH 2·H 2O(120.89mg,2.05mmol,117.36uL,纯度85%,1.00eq)。混合物在45℃搅拌2小时后过滤,减压浓缩滤液得化合物2_4。
步骤五:向化合物2_4(580.31mg,1.88mmol,1.20eq)的二氯甲烷(3.00mL)和甲醇(9.00mL)溶液加入中间体A2(650.00mg,1.57mmol,1.00eq)。混合物在15℃搅拌1小时后减压浓缩,然后向残余物中加入稀盐酸(40mL,0.5M),水相用乙酸乙酯(50mL)萃取。合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸干燥,过滤并减压浓缩滤液得化合物2_5。
步骤六:向化合物2_5(940.00mg,1.33mmol,1.00eq)的DMF(10.00mL)溶液中加入DCC(548.84mg,2.66mmol,538.08uL,2.00eq)和HOBt(359.42mg,2.66mmol,2.00eq)。混合物在15℃搅拌1小时后加入碳酸氢钠(446.93mg,5.32mmol,206.91μl,4.00eq)和中间体A1(307.54mg,1.46mmol,1.10eq)。混合物在15℃搅拌11小时后减压浓缩,将残余物倒入水(10mL)中并搅拌5分钟,然后用乙酸乙酯(100mL)萃取。合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=30/1至10/1(v/v))纯化得化合物2_6。
步骤七:化合物2_6(50.00mg,55.74μmol,1.00eq)和甲酸(1mL)混合物在40℃搅拌40分钟后,向残余物中加入乙酸乙酯(20mL)和水(1mL)并搅拌洗涤,分液得到水相,水相通过制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-30%,10分钟)纯化得化合物2。
1H NMR(400MHz,D 2O)δ(ppm):8.34(s,1H),7.08(d,J=8.6Hz,1H),6.90(s,1H),6.84(dd,J=2.6,8.6Hz,1H),6.80(s,1H),4.80-4.76(m,2H),4.47(br d,J=2.3Hz,2H),4.28-4.25(m,1H),4.23(s,2H),3.47-3.31(m,2H),3.00(t,J=6.4Hz,2H),1.44(s,3H),1.15(s,3H);
LC-MS(ESI)m/z:555.3(M+1)。
实施例3
Figure PCTCN2019073699-appb-000063
步骤一:向化合物2的三氟乙酸盐(200.00mg,299.12μmol,1.00eq)的DMF(2.00mL)溶液中加入DIPEA(154.63mg,1.20mmol,208.96μL,4.0eq)和((叔丁氧基羰基)氨基)(1H-吡唑-1-基)亚甲基)氨基甲酸叔丁酯(Z)-叔丁酯(102.12mg,329.03μmol,1.10eq)。混合物在40℃搅拌2小时后减压浓缩,残余物通过制备型TLC(SiO 2,二氯甲烷/甲醇=6/1(v/v))纯化得化合物3_1。
步骤二:向化合物3_1(90.00mg,112.94μmol,1.00eq)的二氯甲烷(1.00mL)溶液中加入TFA(4.62g,40.52mmol,3mL,358.77eq)。混合物在15℃下搅拌0.5小时候后减压浓缩,残余物通过制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:5%-35%,10分钟)纯化得化合物3。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.43(br d,J=7.9Hz,1H),7.45(br s,4H),7.21(br s,2H),7.08(br d,J=8.2Hz,1H),6.90-6.80(m,2H),6.76(s,1H),4.59(br d,J=7.9Hz,1H),4.49(s,2H),4.37(br s,2H),4.18(br s,2H),3.56(br t,J=5.4Hz,2H),2.89(br s,2H),1.40(s,3H),1.23(s,3H);
LC-MS(ESI)m/z:597.2(M+1)。
实施例4
Figure PCTCN2019073699-appb-000064
Figure PCTCN2019073699-appb-000065
步骤一:向化合物1_1(6g,41.33mmol,1eq)和1,3-二氧戊环-2-酮(4.37g,49.60mmol,3.31mL,1.2eq)的DMF(80mL)溶液中加入碳酸钾(6.28g,45.47mmol,1.1eq)。混合物在150℃氮气下搅拌1小时后减压浓缩以除去DMF,将残余物用水(30mL)稀释,并用乙酸乙酯(100mL*5)萃取。合并的有机层减压浓缩得化合物4_1。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.15(s,1H),8.52-8.29(m,1H),8.18-7.90(m,1H),7.84-7.57(m,1H),7.50-7.09(m,2H),5.16-4.81(m,1H),4.16(br s,2H),3.95-3.66(m,2H)。
步骤二:向化合物4_1(2g,10.57mmol,1eq)的甲醇(30mL)溶液中加入BnBr(2.35g,13.74mmol,1.63mL,1.3eq)。混合物在60℃下搅拌12小时减压浓缩,残余物用乙酸乙酯(50mL)稀释并搅拌20分钟,然后过滤混合物并收集固体得化合物4_2。
1H NMR(400MHz,DMSO-d 6)δ(ppm):10.04(s,1H),8.75-8.67(m,1H),8.44-8.40(m,1H),8.36-8.32(m,1H),7.79-7.76(m,1H),7.71-7.66(m,1H),7.55(s,2H),7.44(s,3H),5.89(s,2H),4.36-4.24(m,2H),3.89-3.78(m,2H)。
步骤三:在0℃下向化合物4_2(3.17g,10.56mmol,1eq)的甲醇(40mL)溶液中加入NaBH 4(998.64mg,26.40mmol,2.5eq)。混合物在15℃搅拌2小时后加入水(10ml)淬灭,减压浓缩以除去溶剂,残余物 用水(30mL)稀释并用乙酸乙酯(30mL)萃取,合并有机层并减压浓缩,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=1/1至1/2(v/v))纯化得化合物4_3。
1H NMR(400MHz,CDCl 3)δ(ppm):7.48-7.26(m,5H),6.96-6.89(m,1H),6.75-6.70(m,1H),6.69-6.67(m,1H),4.08-4.01(m,2H),3.96-3.90(m,2H),3.72(s,2H),3.61(s,2H),2.93-2.87(m,2H),2.80-2.72(m,2H)。
步骤四:向化合物4_3(2g,7.06mmol,1eq)的甲醇(20mL)溶液中加入NH 3·H 2O(1.82g,51.93mmol,2mL,纯度36%,7.36eq),在氮气下加入Pd(OH) 2/C(100mg,10%),所得混合物用氢气置换三次后在50℃和氢气(50psi)下搅拌12小时,过滤并将滤液减压浓缩得化合物4_4。
步骤五:向化合物4_4(600mg,3.10mmol,1eq)的DMF(15mL)溶液中加入DIPEA(802.58mg,6.21mmol,1.08mL,2eq)和中间体A4(1.14g,3.10mmol,1eq)。混合物在90℃下搅拌12小时后减压浓缩,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=1/1至0/1(v/v))纯化得化合物4_5。
步骤六:将化合物4_5(740mg,1.38mmol,1eq),2-羟基异吲哚啉-1,3-二酮(225.07mg,1.38mmol,1eq)和PPh 3(434.25mg,1.66mmol,1.2eq)溶于THF(20mL)中,然后加入DIAD(334.78mg,1.66mmol,321.90uL,1.2eq)。混合物在15℃氮气下搅拌12小时后减压浓缩,残余物通过柱色谱(SiO 2,二氯甲烷/甲醇=100/1至10/1(v/v))纯化得化合物4_6。
步骤七:向化合物4_6(500mg,784.04μmol,1eq)的乙醇(10mL)溶液中加入NH 2NH 2·H 2O(39.25mg,784.04μmol,38.11uL)。混合物在15℃搅拌1小时后过滤,并将滤液减压浓缩,残余物用稀盐酸(10mL,0.5M)稀释并用二氯甲烷(10mL)萃取,水层用饱和碳酸氢钠调节pH至8~9,然后再用二氯甲烷(10mL)萃取。合并有机相并减压浓缩得到化合物4_7。
步骤八:将化合物4_7(130mg,160.54μmol,1eq)溶于乙醇(3mL)和二氯甲烷(1mL)的混合溶液中,然后加入中间体A2(66.54mg,160.54μmol,1eq)。混合物在15℃下搅拌1小时后减压浓缩,残余物通过制备TLC(SiO 2,二氯甲烷/甲醇=10/1(v/v))纯化得化合物4_8。
步骤九:向化合物4_8(80mg,88.49μmol,1eq)的DMF(3mL)溶液中加入DCC(36.51mg,176.97μmol,35.80uL,2eq)和HOBt(23.91mg,176.97umol,2eq)。混合物在35℃下搅拌1小时后向其中加入A1(22.32mg,106.18μmol,1.2eq)和碳酸氢钠(29.73mg,353.95μmol,13.77μL,4eq),混合物在35℃搅拌12小时后减压浓缩,残余物通过制备型TLC(SiO 2,二氯甲烷/甲醇=8/1(v/v))纯化得化合物4_9。
步骤十:将化合物4_9(90mg,71.32ml,1eq)溶于HCOOH(2mL)中,在40℃搅拌1小时后减压浓缩。将所得残余物通过制备型HPLC(甲酸,柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-27%,10min)纯化得化合物4。
1H NMR(400MHz,DMSO-d 6)δ(ppm):8.39(s,2H),7.15-7.05(m,1H),6.86-6.78(m,2H),6.76(s,1H),4.59(s,1H),4.48-4.42(m,2H),4.40-4.32(m,2H),4.19-4.12(m,2H),3.58-3.49(m,2H),3.59-3.47(m,2H),3.31-3.22(m,2H),2.93-2.76(m,4H),1.86-1.72(m,2H),1.38(s,3H),1.19(s,3H);
LC-MS(ESI)m/z:654(M+1)。
实施例5
Figure PCTCN2019073699-appb-000066
步骤一:向化合物4_1(1.6g,8.46mmol,1eq)的丙酮(16mL)和甲醇(16mL)的混合溶液中加入N-(3-溴丙基)氨基甲酸叔丁酯(3.02g,12.68mmol,1.5eq)和碘化钾(2.81g,16.91mmol,2eq)。混合物在70℃搅拌12小时后减压浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=50/1至20/1(v/v))纯化得化合物5_1。
步骤二:将化合物5_1(2.1g,4.91mmol,1eq),2-羟基异吲哚啉-1,3-二酮(961.99mg,5.90mmol,1.2eq),和PPh 3(1.55g,5.90mmol,1.2eq)加入到DMF(20mL)中,然后在0℃加入DIAD(1.19g,5.90mmol,1.15mL,1.2eq)。混合物在15℃搅拌18小时后减压浓缩,残余物用乙酸乙酯(20mL*2)搅拌洗涤得化合物5_2。
步骤三:向化合物5_2(2.4g,4.87mmol,1eq)的乙醇(25mL)溶液中加入NH 2NH 2·H 2O(286.97mg,4.87mmol,278.62μL,纯度85%,1eq)。混合物在15℃搅拌1小时后倒入水(20mL)中,水相用二氯甲烷(50mL)洗涤后减压浓缩得化合物5_3。
步骤四:向化合物5_3(1g,2.76mmol,1eq)的甲醇(20mL)溶液中加入NaBH 4(313.15mg,8.28mmol,3eq)。混合物在15℃下搅拌0.5小时后用水(10mL)淬灭,所得混合物减压浓缩以除去甲醇,残余水 相用乙酸乙酯(50mL*2)萃取,合并有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物5_4。
步骤五:向化合物5_4(650mg,1.78mmol,1eq)的二氯甲烷(1mL)和甲醇(3mL)溶液中加入中间体A2(737.77mg,1.78mmol,1eq)。混合物在15℃搅拌1小时后减压浓缩,残余物用乙酸乙酯(20mL*2)洗涤得化合物5_5。
步骤六:向化合物5_5(600mg,787.48μmol,1eq)的DMF(6mL)溶液中加入HOBt(212.81mg,1.57mmol,2当量)和DCC(324.96mg,1.57mmol,318.58μL,2eq)。混合物在15℃搅拌1小时后向反应混合物中加入碳酸氢钠(264.61mg,3.15mmol,122.51μL,4eq)和中间体A1(248.30mg,1.18mmol,1.5eq),在15℃下搅拌16小时后再在25℃搅拌1小时,然后将混合物过滤并减压浓缩滤液,残余物通过硅胶色谱(二氯甲烷/甲醇=50/1至10/1(v/v))纯化得化合物5_6。
LC-MS(ESI)m/z:954.8(M+1)。
步骤七:向化合物5_6(300mg,288.30μmol,1eq)的DMF(1mL)溶液中加入碘甲烷(1.19g,8.38mmol,521.93μL,29.08eq)和碳酸钾(39.84mg,288.30μmol,1eq)。混合物在15℃搅拌0.5小时候减压浓缩得化合物5_7。
步骤八:向化合物5_7(300mg,309.55μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(3.08g,27.01mmol,2.00mL,87.26eq)。将混合物在15℃下搅拌1小时后减压浓缩,残余物通过制备型HPLC(柱:Phenomenex Synergi C18 150*25*10um;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-18%,10分钟)纯化得化合物5。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.44(br d,J=7.8Hz,1H),8.35(br s,1H),7.22(s,2H),7.12(br d,J=8.3Hz,1H),6.95-6.87(m,2H),6.76(s,1H),4.58(s,1H),4.52(br s,2H),4.38(br s,2H),4.19(br s,2H),3.62-3.58(m,4H),3.14(br s,3H),3.06(br s,2H),2.72(br s,2H),1.95(br s,2H),1.40(s,3H),1.20(s,3H);
LC-MS(ESI)m/z:626.5(M+1)。
实施例6
Figure PCTCN2019073699-appb-000067
步骤一:向化合物5_6(100mg,96.10μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(2.57g,22.52mmol,1.67mL),混合物在15℃搅拌1小时后减压浓缩,残余物通过制备型HPLC(柱:Phenomenex Synergi C18 150*25*10um;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-25%,10分钟)纯化得化合物6。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.44(d,J=8.1Hz,1H),8.23(s,1H),7.22(s,2H),6.96(d,J=8.4Hz,1H),6.76(s,1H),6.72(d,J=2.6Hz,1H),6.70(s,1H),6.69(s,1H),4.60(d,J=7.9Hz,1H),4.35(br t,J=4.5Hz,2H),4.15-4.11(m,2H),3.49(br s,4H),2.88(br t,J=7.0Hz,2H),2.82-2.76(m,2H),2.62(br t,J=5.8Hz,2H),1.78(br t,J=6.7Hz,2H),1.40(s,3H),1.22(s,3H);
LC-MS(ESI)m/z:612.5(M+1)。
实施例7
Figure PCTCN2019073699-appb-000068
步骤一:向化合物6的甲酸盐(60mg,91.22μmol,1eq)的DMF(1mL)溶液中加入三乙胺(27.69mg,273.67μmol,38.09uL,3eq)和N-[(叔丁氧基羰基氨基)-吡唑-1-基-亚甲基]氨基甲酸叔丁酯(28.31mg,91.22umol,1eq)。混合物在40℃搅拌12小时后减压浓缩,残余物通过制备型TLC(SiO 2,二氯甲烷/甲醇=10/1(v/v))纯化得化合物7_1。
步骤二:将化合物7_1(78mg,91.34μmol,1eq)加入到甲酸(1.83g,39.76mmol,1.5mL,435.31eq)中,混合物在40℃搅拌40分钟后减压浓缩,残余物通过制备型HPLC(柱:Phenomenex Synergi C18 150*25*10um;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-25%,10分钟)纯化得化合物7。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.43(d,J=8.0Hz,1H),8.21(s,1H),7.51(br s,1H),7.20(s,2H),6.97(d,J=8.4Hz,1H),6.76(s,1H),6.73-6.67(m,2H),4.60(d,J=7.9Hz,1H),4.34(br d,J=4.8Hz,2H),4.13(br d,J=3.6Hz,2H),3.21-3.04(m,2H),2.83-2.77(m,2H),2.71-2.66(m,2H),2.47-2.44(m,2H),2.35-2.30(m,2H),1.73(br t,J=6.5Hz,2H),1.40(s,3H),1.23(s,3H);
LC-MS(ESI)m/z:654.5(M+1)。
实施例8
Figure PCTCN2019073699-appb-000069
步骤一:将化合物4_1(0.5g,2.64mmol,1eq)溶解于THF(15mL)中并加入2-羟基异吲哚啉-1,3-二酮(474.19mg,2.91mmol,1.1eq)和PPh 3(762.41mg,2.91mmol,1.1eq)。在0℃下将DIAD(641.21mg,3.17mmol,616.55uL,1.2eq)滴加到上述混合物中并在20℃下搅拌反应16小时,然后将反应混合物过滤,滤饼用石油醚(5mL*3)洗涤,在45℃下真空干燥得到化合物8_1。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.16(s,1H),8.42(d,J=5.6Hz,1H),8.01(d,J=9.0Hz,1H),7.87(s,4H),7.70(d,J=5.6Hz,1H),7.34(d,J=2.0Hz,1H),7.17(dd,J=2.4,8.9Hz,1H),4.65-4.55(m,2H),4.52-4.42(m,2H)。
步骤二:将化合物8_1(4.8g,14.36mmol,1eq)溶于DMF(45mL)中,然后加入碳酸钾(2.18g,15.79mmol,1.1eq)和碘甲烷(23.97g,168.88mmol,10.51mL,11.76eq)。所得混合物在30℃下搅拌1小时后将反应混合物过滤并将滤液减压浓缩,然后将粗产品用水(20mL)洗涤并过滤,将滤液减压浓缩得到化合物8_2。
步骤三:将化合物8_2(2.7g,5.67mmol,1eq)溶于DMF(30mL),然后加入NH 2NH 2·H 2O(317.18mg,5.39mmol,307.95uL,纯度85%,0.95eq)。将混合物在15℃下搅拌1小时后过滤,将滤液减压浓缩得到粗产品,将其用二氯甲烷(20mL)稀释并过滤,将滤液减压浓缩得到化合物8_3。
步骤四:将化合物8_3(0.92g,2.66mmol,1eq)溶于二氯甲烷(3mL)和乙醇(9mL)中,然后加入中间体A2(991.40mg,2.39mmol,0.9eq)。将混合物在10℃下搅拌1小时,过滤反应混合物,收集滤饼干燥得到化合物8_4。
LC-MS(ESI)m/z:615.4(M)。
步骤五:向化合物8_4(870mg,1.20mmol,1eq)的甲醇(10mL)溶液中加入NaBH 4(452.43mg,11.96mmol,10eq)。混合物在15℃搅拌0.5小时后减压浓缩,由此获得的残余物通过柱色谱(SiO 2,二氯甲烷/甲醇=20/1至10/1(v/v))纯化得化合物8_5。
步骤六:向化合物8_5(400mg,478.34μmol,1eq)的DMF(10mL)溶液中加入DCC(197.39mg,956.68μmol,193.52μL,2eq)和HOBt(129.27mg,956.68μmol,2eq)。混合物在40℃搅拌1小时后向反应中加入中间体A3(103.43mg,574.01μmol,1.2eq)和碳酸氢钠(160.74mg,1.91mmol,74.41μl,4eq),混合物在40℃搅拌12小时减压浓缩,残余物用水(10mL)稀释后用二氯甲烷(10mL*2)萃取。合并有机层减压浓缩后得到的残余物通过柱色谱(SiO 2,二氯甲烷/甲醇=20/1至1/1(v/v))纯化得化合物8_6。
步骤七:将化合物8_6(50mg,64.03μmol,1eq)溶于甲酸(1mL)中,混合物在40℃搅拌40分钟后减压浓缩,残余物通过制备型HPLC(FA条件)(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈]),B%:1%-30%,10分钟)纯化得化合物8。
1H NMR(400MHz,DMSO-d 6)δ(ppm):7.08-7.02(m,1H),6.86-6.79(m,2H),6.75(s,1H),4.41(d,J=2.6Hz,1H),4.43-4.40(m,2H),4.39-4.32(m,2H),4.21-4.15(m,2H),4.01(s,2H),3.68-3.66(m,1H),3.22-3.14(m,2H),3.02-2.94(m,2H),2.72(s,3H),1.33(d,J=6.1Hz,3H);
LC-MS(ESI)m/z:539(M+1)。
实施例9
Figure PCTCN2019073699-appb-000070
步骤一:向化合物8_6(80mg,102.44μmol,1eq)的DMF(2mL)溶液中加入碳酸钠(21.72mg,204.89umol,2eq)和碘甲烷(1.19g,8.38mmol,521.93uL,81.84eq)。混合物在40℃搅拌2小时后过滤,减压浓缩滤液得化合物9_1。
步骤二:将化合物9_1(100mg,110.29mmol,1eq)加入到甲酸(2mL)中,混合物在40℃搅拌40分钟后用水(10mL)稀释,并用二氯甲烷(10mL*2)洗涤,将水层减压浓缩,残余物通过制备型HPLC(FA条件)(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-27%,10min)纯化得化合物9。
1H NMR(400MHz,DMSO-d 6)δ(ppm):7.12-7.07(m,1H),6.94-6.89(m,2H),6.75(s,1H),4.48(s,2H),4.41(d,J=2.6Hz,1H),4.39-4.35(m,2H),4.25-4.17(m,2H),3.66-3.65(m,1H),3.21-3.05(m,10H),1.31(d,J=6.2Hz,3H)。
LC-MS(ESI)m/z:553.3(M+1)。
实施例10
Figure PCTCN2019073699-appb-000071
步骤一:向化合物10_1(3g,20.67mmol,1eq)的乙醇(40mL)溶液中加入BnBr(4.60g,26.87mmol,3.19mL,1.3eq)。混合物在60℃搅拌14小时后减压浓缩,残余物用乙酸乙酯(30mL*2)洗涤得到化合物10_2。
步骤二:在0℃,向化合物10_2(5g,15.81mmol,1eq)的甲醇(50mL)溶液中加入NaBH 4(2.02g,53.33mmol,3.37eq),混合物在15℃下搅拌2小时后减压浓缩,将残余物倒入水(20mL)中,水相用乙酸乙酯(100mL*2)萃取。合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物10_3。
1H NMR(400MHz,CDCl 3)δ(ppm):7.37-7.30(m,2H),7.29-7.23(m,2H),7.23-7.19(m,1H),6.83(d,J=8.3Hz,1H),6.47(dd,J=2.6,8.3Hz,1H),6.25(d,J=2.4Hz,1H),3.61(s,2H),3.45(s,2H),2.76-2.70(m,2H),2.69-2.63(m,2H)。
步骤三:向化合物10_3(3.3g,13.79mmol,1eq)的甲醇(40mL)溶液中加入Boc 2O(4.51g,20.68mmol,4.75mL,1.5eq)和Pd(OH) 2/C(0.2g,10%)。悬浮液用氮气置换三次,再用氢气置换三次,然后在30℃ 和氢气(50psi)下搅拌14小时。将混合物过滤并减压浓缩,残余物通过硅胶色谱法(SiO 2,石油醚/乙酸乙酯=1/0至5/1(v/v))纯化得化合物10_4。
1H NMR(400MHz,CDCl 3)δ(ppm):6.92(d,J=8.4Hz,1H),6.61(br d,J=6.9Hz,2H),4.46(br s,2H),3.55(br t,J=5.8Hz,2H),2.68(t,J=5.8Hz,2H),1.42(s,9H)。
步骤四:向化合物10_4(2.4g,9.34mmol,1eq)的DMF(30mL)溶液中加入碳酸钾(1.42g,10.28mmol,1.1eq)和1,3-二氧戊环-2-酮(987.29mg,11.21mmol,747.95uL,1.2eq)。混合物在135℃下搅拌4小时后过滤并减压浓缩,将残余物倒入水(20mL)中。水相用乙酸乙酯(100mL*2)萃取,合并有机相用饱和氯化钠水溶液(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物10_5。
步骤五:将化合物10_5(3g,10.23mmol,1eq)加入到氯化氢的乙酸乙酯(10.23mmol,30mL,4M)溶液中,在10℃搅拌20分钟后减压浓缩化合物得到10_6的盐酸盐。
步骤六:向化合物10_6的盐酸盐(2.35g,10.23mmol,1eq)的DMF(25mL)溶液中加入DIPEA(5.29g,40.92mmol,7.13mL,4eq)和N-[(叔丁氧基羰基氨基)-吡唑-1-基-亚甲基]氨基甲酸叔丁酯(3.18g,10.23mmol,1eq)。混合物在40℃搅拌3小时后减压浓缩,残余物倒入水(30mL)中后用乙酸乙酯(100mL)萃取。合并有机相用饱和氯化钠水溶液(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱法纯化(SiO 2,石油醚/乙酸乙酯=10/1至1/1(v/v))得化合物10_7。
步骤七:向化合物10_7(2g,4.53mmol,1eq)的THF(20mL)溶液中加入2-羟基异二氢吲哚-1,3-二酮(886.92mg,5.44mmol,1.2eq)和PPh 3(1.43g,5.44mmol,1.2eq),然后在0℃滴加DIAD(1.10g,5.44mmol,1.06mL,1.2eq)。混合物在15℃搅拌5小时后减压浓缩,残余物通过硅胶色谱法(石油醚/乙酸乙酯=10/1至1/1(v/v))纯化得化合物10_8。
LC-MS(ESI)m/z:581.5(M+1)。
步骤八:向化合物10_8(1.8g,2.35mmol,40.95uL,1eq)的乙醇(20mL)溶液中加入NH 2NH 2·H 2O(138.21mg,2.35mmol,134.19uL,纯度85%,1eq)。混合物在45℃搅拌0.5小时后过滤并减压浓缩滤液,向残余物加入水(10mL)并用乙酸乙酯(50mL)萃取。合并有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥后过滤并减压浓缩滤液得化合物10_9。
步骤九:向化合物10_9(0.8g,1.78mmol,1eq)的甲醇(9mL)和二氯甲烷(3mL)溶液中加入中间体A2(735.98mg,1.78mmol,1eq)。混合物在15℃搅拌10分钟后减压浓缩,将残余物用乙酸乙酯(30mL)洗涤得化合物10_10。
步骤十:向化合物10_10(400mg,472.26μmol,1eq)的DMF(5mL)溶液中加入HOBt(127.62mg,944.52μmol,2eq)和DCC(194.88mg,944.52μmol,2eq)。混合物在15℃搅拌1小时后加入碳酸氢钠(158.70mg,1.89mmol,73.47uL,4eq)和中间体A1(129.06mg,613.94μmol,1.3eq)。混合物在15℃再搅拌12小时后减压浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=20/1至10/1(v/v))纯化后再通过制备TLC(SiO 2,二氯甲烷/甲醇=10/1(v/v))纯化得化合物10_11。
步骤十一:向化合物10_11(20mg,13.10μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(2.10g,18.39mmol,1.36mL,1403.52eq)。混合物在15℃搅拌0.5小时候减压浓缩,残余物通过制备型HPLC(柱:Phenomenex Synergi C18 150*25*10um;流动相:[水(0.225%甲酸)-乙腈];乙腈%:5%-35%,10分钟)纯化得化合物10。
1H NMR(400MHz,DMSO-d 6)δ(ppm):8.43(s,1H),7.15(br d,J=8.4Hz,1H),6.84(br d,J=7.7Hz,1H),6.78-6.69(m,2H),4.59(s,1H),4.51(s,2H),4.36(br s,2H),4.16(br s,2H),3.69-3.62(m,4H),2.83(br s,2H),1.39(s,3H),1.22(s,3H);
LC-MS(ESI)m/z:597.4(M+1)。
实施例11
Figure PCTCN2019073699-appb-000072
步骤一:将化合物11_1(10g,53.69mmol,1eq)和BrCN(6.82g,64.43mmol,4.74mL,1.2eq)溶于丙酮(100mL)中并加入碳酸钾(11.13g,80.54mmol,1.5eq),氮气置换三次后在15℃搅拌1小时。将 反应混合物减压浓缩,残余物用水(50mL)稀释,水相用二氯甲烷(100mL)萃取,合并有机层用饱和氯化钠水溶液(50mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物11_2。
步骤二:将化合物11_2(2g,9.47mmol,1eq)和吡唑盐酸盐(989.98mg,9.47mmol,1eq)加入到THF(20mL)中,氮气置换三次后在65℃搅拌4小时。反应混合物用甲基叔丁基醚(20mL)稀释,搅拌10分钟过滤得到化合物11_3的盐酸盐。
步骤三:向化合物11_3的盐酸盐(1.8g,5.70mmol,1eq)的二氯甲烷(20mL)溶液中加入三乙胺(1.44g,14.25mmol,1.98mL,2.5eq),然后在0℃下缓慢加入三氟乙酸酐(1.80g,8.55mmol,1.19mL,1.5eq)。混合物在15℃搅拌0.5小时后加入稀盐酸(25mL,0.1M)淬灭,然后用二氯甲烷(20mL)萃取,将合并的有机层用无水硫酸钠干燥,过滤并减压浓缩滤液得化合物11_4。
步骤四:将化合物11_4(1.85g,4.93mmol,1.00eq)和化合物4_4(0.95g,4.92mmol,1eq)加入到DMF(10mL)中,然后用氮气置换三次,混合物在15℃搅拌1.5小时后加热至30℃并搅拌2.5小时。反应混合物用水(10mL)和稀盐酸(1mL,0.5M)淬灭,然后用乙酸乙酯(20mL)萃取,有机层用饱和氯化钠水溶液(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液得化合物11_5。
步骤五:在0℃下向化合物11_5(2.3g,4.60mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(899.56mg,5.51mmol,1.2eq)的THF(20mL)溶液中加入PPh 3(1.45g,5.51mmol,1.2eq)和DIAD(1.12g,5.51mmol,1.07mL,1.2eq)。混合物在15℃搅拌2小时后减压浓缩以除去THF,将残余物用水(30ml)稀释并用乙酸乙酯(30mL)萃取。合并的有机层用无水硫酸钠干燥,过滤并减压浓缩滤液得化合物11_6。
步骤六:将化合物11_6(1.5g,2.32mmol,1eq)溶解于乙醇(10mL)和二氯甲烷(5mL)中,然后加入NH 2NH 2·H 2O(136.83mg,2.32mmol,132.85uL,85%纯度,1eq)。混合物在15℃搅拌0.5小时后过滤并减压浓缩滤液,残余物用水(10mL)稀释后用二氯甲烷(10mL)萃取。合并的有机层用无水硫酸钠干燥,过滤并减压浓缩得化合物11_7。
步骤七:将化合物11_7(400mg,775.91μmol,1.61eq)和中间体A2(200mg,482.54μmol,1eq)加入到二氯甲烷(5mL)和乙醇(5mL)的混合溶液中,然后在15℃搅拌0.5小时。将反应混合物减压浓缩,残余物用石油醚/乙酸乙酯(12mL,5/1)打浆,过滤收集滤饼得化合物11_8。
步骤八:将化合物11_8(500mg,548.25μmol,1eq)和碳酸钾(151.54mg,1.10mmol,2eq)加入到甲醇(5mL)和水(0.1mL)的混合溶液中,在15℃氮气下搅拌2小时后减压浓缩,残余物用饱和氯化钠水溶液(10mL)稀释,并用二氯甲烷(20mL)萃取。合并的有机层用无水硫酸钠干燥,过滤并减压浓缩,残余物用石油醚/乙酸乙酯(15mL,2/1)搅拌洗涤,过滤收集滤饼得化合物11_9。
步骤九:将化合物11_9(200mg,245.10μmol,1eq)溶于DMF(2mL)中,然后加入DCC(101.14mg,490.21μmol,99.16μL,2eq)和HOBt(66.24mg,490.21μmol,2eq)。混合物在15℃和氮气下搅拌1小时,然后加入中间体A1(66.98mg,318.64μmol,1.3eq)和碳酸氢钠(82.36mg,980.42mmol,38.13μL,4eq),混合搅拌11小时后过滤并减压浓缩滤液,残余物通过制备型TLC(SiO 2,二氯甲烷/甲醇=10/1(v/v))纯化得化合物11_10。
步骤十:在0℃下向化合物11_10(100mg,99.19μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(1mL)。混合物在0℃搅拌40分钟后将反应混合物用石油醚/乙酸乙酯(5mL,1/4)稀释后形成沉淀物,过滤收 集固体并将其通过制备型HPLC(FA,柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-27%,10分钟)纯化得化合物11。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.43(d,J=7.8Hz,1H),8.19(s,1H),8.02(br s,1H),7.22(s,2H),7.11(d,J=9.0Hz,1H),6.86-6.79(m,2H),6.76(s,1H),4.59(d,J=7.9Hz,1H),4.47(s,2H),4.36(br d,J=4.9Hz,2H),4.17(br d,J=2.6Hz,2H),3.64-3.54(m,2H),3.28(br s,4H),2.99-2.91(m,2H),2.80(br s,4H),1.40(s,3H),1.21(s,3H)。
LC-MS(ESI)m/z:666.4(M+1)。
实施例12
Figure PCTCN2019073699-appb-000073
步骤一:将化合物12_1(2g,9.99mmol,1eq),BrCN(1.59g,14.98mmol,1.10mL,1.5eq)和醋酸钠(4.10g,49.93mmol,5eq)加入到乙醇(20mL)中,混合物在室温(10-15℃)下搅拌2小时后减压除 去溶剂,向反应混合物中加入水(20ml)。所得混合物用乙酸乙酯(15ml*2)萃取,将合并的有机相用饱和氯化钠水溶液(10ml)洗涤,硫酸钠干燥,减压除去溶剂得化合物12_2。
步骤二:将化合物12_2(2.3g,10.21mmol,1eq),1H-吡唑盐酸盐(764.52mg,11.23mmol,1.1eq)加入到THF(30mL)中并用氮气置换三次,然后将混合物在70℃和氮气保护下搅拌1.5小时。冷却至室温后加入甲基叔丁基醚(30ml)。将混合物过滤,滤饼用甲基叔丁基醚(20ml)洗涤得化合物12_3的盐酸盐。
LC-MS(ESI)m/z:294.2(M+1)。
步骤三:将化合物12_3的盐酸盐(1.8g,5.46mmol,1eq)和三乙胺(1.38g,13.64mmol,1.90mL,2.5eq)加入到二氯甲烷(20mL)中,然后在0℃加入三氟乙酸酐(1.72g,8.19mmol,1.14mL,1.5eq)。反应物在室温(10-15℃)下搅拌2小时后加入二氯甲烷(20ml),所得混合物用稀盐酸(5ml,0.5M),水(10ml)洗涤,无水硫酸钠干燥,然后过滤并减压除去溶剂得化合物12_4。
步骤四:将化合物12_4(2.1g,5.39mmol,1eq)溶于DMF(20mL)中,然后加入化合物4_4(1.35g,7.01mmol,1.3eq),并用氮气置换三次,混合物在室温和氮气保护下搅拌1小时,然后在30℃下搅拌24小时。将饱和氯化钠(50ml)加入到反应混合物中,用乙酸乙酯(30ml*2)萃取。合并的有机相用饱和氯化钠洗涤,无水硫酸钠干燥,过滤并减压除去溶剂,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯/甲醇=3/1/0至0/10/1(v/v))纯化得到化合物12_5。
LC-MS(ESI)m/z:515.4(M+1)。
步骤五:向化合物12_5(2.05g,3.50mmol,1eq),2-羟基异吲哚啉-1,3-二酮(684.81mg,4.20mmol,1.2eq)和PPh 3(1.84g,7.00mmol,2eq)的THF(20mL)溶液中加入DIAD(1.06g,5.25mmol,1.02mL,1.5eq)。将反应在室温(10-15℃)下搅拌12小时后减压除去溶剂,向反应混合物中加入水(20mL)。所得混合物用乙酸乙酯(20ml*2)萃取,合并的有机相用饱和氯化钠洗涤,无水硫酸钠干燥,过滤后减压除去溶剂,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=3/1至1/0(v/v))纯化得化合物12_6。LC-MS(ESI)m/z:660.4(M+1)。
步骤六:将化合物12_6(4g,2.85mmol,1eq)溶于二氯甲烷(10mL)和乙醇(10mL)中,然后加入NH 2NH 2·H 2O(167.85mg,2.85mmol,162.96uL,85%纯度,1eq)。反应物在室温下搅拌2小时(10-15℃)后过滤并减压浓缩滤液,然后将二氯甲烷(10ml)加入到所得残余物中,再次过滤。滤液用水(10ml)洗涤后用无水硫酸钠干燥,过滤并减压浓缩得化合物12_7。
步骤七:将化合物12_7(1g,1.89mmol,1eq)溶于二氯甲烷(5mL)和乙醇(15mL)中,然后加入中间体A2(391.35mg,944.19μmol,0.5eq),将反应在室温(15-20℃)下搅拌3小时后减压浓缩,残余物在石油醚/乙酸乙酯(30ml,2:1)中搅拌洗涤两次得到化合物12_8。
LC-MS(ESI)m/z:926.5(M+1)。
步骤八:向化合物12_8(640mg,487.25μmol,1eq)的甲醇(10mL)溶液中加入碳酸钾(202.02mg,1.46mmol,3eq),混合物在30℃下搅拌15小时后减压浓缩,将残余物溶于二氯甲烷(20ml),有机相用饱和氯化钠水溶液(10ml)洗涤,无水硫酸钠干燥,减压浓缩后得到化合物12_9。
LC-MS(ESI)m/z:830.5(M+1)。
步骤九:向化合物12_9(210mg,202.41μmol,1eq)的DMF(1mL)溶液中加入DCC(83.52mg,404.82μmol,81.89uL,2eq)和HOBt(54.70mg,404.82μmol,2eq)。反应混合物在室温(10-15℃)下搅拌1小时后加入中间体A1(63.82mg,303.61μmol,1.5eq)和碳酸氢钠(68.01mg,809.64μmol,31.49uL,4eq)。将反应在30℃下搅拌12小时过滤并减压除去溶剂,残余物通过制备型TLC(SiO 2,二氯甲烷/甲醇=10/1(v/v))纯化得到化合物12_10。
LC-MS(ESI)m/z:1022.6(M+1)。
步骤十:向化合物12_10(64mg,62.61μmol,1eq)的二氯甲烷(1mL)溶液中加入三氟乙酸(1mL),在-15℃下搅拌0.5小时后将其升温至0℃并再搅拌0.5小时。然后将乙酸乙酯/石油醚(10ml,4:1)加入到反应混合物中以产生白色固体,过滤后将白色固体通过制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:1%-28%,10min)纯化得化合物12。
LC-MS(ESI)m/z:680.3(M+1);
1H NMR(400MHz,DMSO-d 6+D 2O)δ(ppm):8.35(br s,1H),7.09(br d,J=8.3Hz,1H),6.85-6.78(m,2H),6.75(s,1H),4.57(s,1H),4.46(br s,2H),4.36(br s,2H),4.16(br s,2H),3.23(br s,2H),2.87(br s,2H),2.76(br s,2H),2.67(br d,J=1.8Hz,2H),1.91(br s,2H),1.67(br s,2H),1.37(s,3H),1.18(s,3H)。
实施例13
Figure PCTCN2019073699-appb-000074
Figure PCTCN2019073699-appb-000075
步骤一:向化合物13_1(29g,128.30mmol,1eq)的THF(300mL)溶液中加入BH 3·SMe 2(10M,38.49mL,3eq)。混合物在80℃反应12小时后冷却至0℃,用甲醇(100mL)淬灭。然后加入稀盐酸(90mL,1M),并在80℃下搅拌1小时,减压浓缩以除去溶剂。残余物用水(100mL)稀释,乙酸乙酯(150mL*2)萃取。然后水层用氢氧化钠水溶液(1M)调节至pH=10~11,所得水相再用乙酸乙酯(150mL*2)萃取。合并有机层用无水硫酸钠干燥,过滤并减压浓缩得到化合物13_2。
步骤二:向化合物13_2(6g,30.29mmol,1eq)的二氯甲烷(50mL)溶液中加入Boc 2O(6.61g,30.29mmol,6.96mL,1eq)和三乙胺(6.13g,60.59mmol,8.43mL,2eq)。混合物在20℃下搅拌12小时减压浓缩以除去溶剂。将残余物用水(100mL)稀释并用乙酸乙酯(50mL*3)萃取。合并有机层减压浓缩,得到残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=1/0至10/1(v/v))纯化得化合物13_3。
步骤三:向化合物13_3(9g,30.18mmol,1eq)和4,4,4',4',5,5,5',5'-八甲基-2,2'-二(1,3,2-二氧杂硼烷)(15.33g,60.37mmol,2eq)的DMSO(150mL)溶液中加入Pd(dppf)Cl 2·CH 2Cl 2(2.46g,3.02mmol,0.1eq)和乙酸钾(11.85g,120.73mmol,4eq)。混合物用氮气置换3次后在90℃下搅拌12小时。将反应混合物用水(200mL)稀释并用乙酸乙酯(150mL*3)萃取。合并的有机层过滤并减压浓缩滤液,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=100/1至20/1(v/v))纯化得到化合物13_4。
步骤四:向化合物13_4(11g,31.86mmol,1eq)的THF(100mL)溶液中加入H 2O 2(86.69g,764.69mmol,73.47mL,30%纯度,24eq)和乙酸(9.95g,165.68mmol,9.48mL,5.2eq)。混合物在20℃下搅拌12小时后用饱和碳酸钠(30mL)淬灭,所得混合物用水(10mL)稀释后用乙酸乙酯(20mL*2)萃取。合并有机层减压浓缩,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=15/1至7/1(v/v))纯化得到化合物13_5。LC-MS(ESI)m/z:180(M-56+1)。 1H NMR(400MHz,DMSO-d 6)δ(ppm):7.09(t,J=6.3Hz,1H),6.72-6.65(m,2H),4.47(br t,J=12.7Hz,4H),1.45(s,9H)。
步骤五:向化合物13_5(2.25g,25.50mmol,1.70mL,1.5eq)的DMF(30mL)溶液中加入碳酸钾(2.58g,18.70mmol,1.1eq)和1,3-二氧戊环-2-酮(4g,17.00mmol,1eq)。混合物在150℃下搅拌1小时后减压浓缩,将残余物用水(50mL)稀释并用乙酸乙酯(50mL*2)萃取。合并有机层并减压浓缩,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=7/1至3/1(v/v))纯化得化合物13_6。 1H NMR(400MHz,DMSO-d 6)δ(ppm):7.21(dd,J=5.9,8.0Hz,1H),6.91(d,J=5.5Hz,1H),6.85(d,J=8.6Hz,1H),4.87(t,J=5.5Hz,1H),4.56-4.46(m,5H),3.99-3.93(m,2H),3.70(q,J=5.3Hz,2H),1.45(s,9H)。
步骤六:向化合物13_6(1.2g,4.30mmol,1eq)的二氯甲烷(5mL)溶液中加入TFA(6.16g,54.02mmol,4mL,12.58eq)。混合物在10℃下搅拌1小时后减压浓缩,残余物用甲醇(5mL)稀释,并在-10℃下经10分钟滴加到氯化氢的乙酸乙酯(4M,15mL)溶液中,然后过滤并搜集滤饼干燥,将其加入到甲醇(10mL)和碳酸钾(1.19g,8.59mmol,2eq)的混合物中,在15℃反应两小时后过滤,将滤液减压浓缩得化合物13_7。
步骤七:将化合物13_7(0.3g,1.67mmol,1eq)和中间体A5(608.21mg,1.67mmol,1eq)溶解于DMF(10mL)中,混合物在10℃下搅拌0.5小时后加入水(50mL)稀释并用乙酸乙酯(50mL*2)萃取。合并有机层用饱和氯化钠(20mL*2)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过柱色谱法纯化(SiO 2,DCM/MeOH=50/1至20/1(v/v))得化合物13_8。LC-MS(ESI)m/z:475.3(M+1)。
步骤八:将2-羟基异吲哚啉-1,3-二酮(104.52mg,640.71μmol,0.95eq)和化合物13_8(320mg,674.43mmol,1eq)溶于THF(5mL)中,然后加入PPh 3(212.27mg,809.32μmol,1.2eq)和DIAD(163.65mg,809.32μmol,157.36uL,1.2eq)。将混合物在20℃下搅拌0.5小时后减压浓缩以除去溶剂,残余物用水(50mL)稀释并用乙酸乙酯(50mL*2)萃取。合并有机层后减压浓缩除去溶剂,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=2/1至1/3(v/v))纯化得化合物13_9。LC-MS(ESI)m/z:620.3(M+1)。
步骤九:向化合物13_9(0.4g,645.59μmol,1eq)的乙醇(5mL)和二氯甲烷(1mL)溶液中加入NH 2NH 2·H 2O(41.82mg,710.15μmol,40.61μl,85%纯度,1.1eq)。混合物在15℃下搅拌10分钟后用水(20ml)稀释并用乙酸乙酯(20mL*3)萃取。合并有机层后过滤并减压浓缩得化合物13_10。LC-MS(ESI)m/z:490.3(M+1)。
步骤十:向中间体A2(203.22mg,490.31μmol,0.8eq)的二氯甲烷(2mL)和乙醇(5mL)溶液中加入化合物13_10(0.3g,612.89μmol,1eq)。混合物在15℃下搅拌10分钟后减压浓缩得化合物13_11。LC-MS(ESI)m/z:886.4(M+1)。
步骤十一:向化合物13_11(0.5g,564.37μmol,1eq)的甲醇(5mL)和水(0.1mL)溶液中加入碳酸钾(156.00mg,1.13mmol,2eq),混合物在15℃下搅拌24小时后用稀盐酸(20mL,0.1M)稀释,混合物用二氯甲烷(50mL*2)萃取。合并有机层并用饱和氯化钠(10mL*2)洗涤,无水硫酸钠干燥,过滤 并减压浓缩,残余物通过柱色谱(SiO 2,DCM/MeOH=10/1至0/1(v/v))纯化得化合物13_12。LC-MS(ESI)m/z:790.4(M+1)。
步骤十二:向化合物13_12(0.3g,379.77μmol,1eq)的DMF(4mL)溶液中加入HOBt(102.63mg,759.55μmol,2eq)和DCC(156.72mg,759.55μmol,153.64μL,2eq)。混合物在室温下搅拌0.5小时后加入中间体A1(103.78mg,493.71μmol,1.3eq)和碳酸氢钠(127.62mg,1.52mmol,59.08uL,4eq)。所得混合物在15℃下搅拌11.5小时后过滤并减压浓缩,残余物通过制备型TLC(SiO 2,DCM/MeOH=8/1(v/v))纯化得化合物13_13。LC-MS(ESI)m/z:983.6(M+1)
步骤十三:向化合物13_13(180mg,183.27μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(1.54g,13.51mmol,1mL,73.69eq)。混合物在0℃下搅拌10分钟后将反应混合物用石油醚/乙酸乙酯(10mL,1/1)稀释,减压过滤并干燥滤饼,将其通过制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:2%-32%,10min)纯化得化合物13。 1H NMR(400MHz,DMSO-d 6+D 2O)δ(ppm):8.34(s,1H),7.33-7.24(m,1H),7.06-6.89(m,2H),6.76(s,1H),4.76-4.57(m,5H),4.38(br s,2H),4.20-4.15(m,1H),3.36-3.23(m,2H),2.85(br t,J=7.5Hz,2H),1.80(br s,2H),1.37(s,3H),1.17(s,3H);LC-MS(ESI)m/z:640.4(M+1)。
实施例14
Figure PCTCN2019073699-appb-000076
步骤一:将化合物6的三氟乙酸盐(100mg,113.41μmol,1eq),甲亚胺酸乙酯(12.42mg,113.41μmol,1eq,HCl)和三乙胺(34.43mg,340.22μmol,47.36μL,3eq)溶于DMF(1mL)中,混合物在15℃下反应24小时。过滤后将滤液通过制备型HPLC(FA,柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:3%-33%,10分钟)纯化得化合物14。 1H NMR(400MHz,DMSO-d 6)δ(ppm):9.44(br d,J=7.6Hz,1H),8.46(s,1H),7.90(br s,1H),7.23(s,2H),7.08(br d,J=8.3Hz,1H),6.88-6.80(m,2H),6.76(s,1H),4.59(d,J=7.3Hz,1H),4.50(br s,2H),4.36(br d,J=4.4Hz,2H),4.17(br d,J=3.1Hz,2H),3.58(br s,2H),3.30(br d,J=6.4Hz,2H),2.89(br s,2H),1.79(br d,J=5.4Hz,2H),1.39(s,3H),1.22(s,3H);
LC-MS(ESI)m/z:681.4(M+1)。
实施例15
Figure PCTCN2019073699-appb-000077
步骤一:将化合物6(100mg,113.41μmol,1eq,2TFA),甲醛溶液(9.20mg,113.41μmol,8.44uL,1eq)和无水硫酸钠(80.54mg,567.04μmol,57.53uL,5eq)加入到MeOH(1mL)溶液在,15℃下搅拌1小时后加入NaBH 3(CN)(14.25mg,226.82μmol,2eq)。混合物在15℃下再搅拌11小时后过滤,滤液通过制备型HPLC(FA,柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-乙腈];乙腈%:2%-32%,10分钟)纯化得化合物15。
1H NMR(400MHz,DMSO-d 6)δ(ppm):9.42(d,J=7.8Hz,1H),8.18(s,1H),7.83(br s,3H),7.20(s,2H),7.09(br d,J=8.3Hz,1H),6.93-6.82(m,2H),6.76(s,1H),4.58(d,J=7.8Hz,1H),4.47(s,2H),4.37(brs,2H),4.18(br s,2H),3.55(br d,J=5.9Hz,2H),3.26(br d,J=7.0Hz,2H),2.90(br d,J=5.9Hz,2H),2.37-2.32(m,3H),2.20(s,6H),1.75-1.65(m,2H),1.40(s,3H),1.22(s,3H);
LC-MS(ESI)m/z:682.4(M+1)。
实施例16
Figure PCTCN2019073699-appb-000078
Figure PCTCN2019073699-appb-000079
步骤一:将16_1(2g,12.48mmol,1.96mL,1eq),BrCN(1.98g,18.72mmol,1.38mL,1.5eq)和NaOAc(5.12g,62.42mmol,5eq)加入到乙醇(20mL)中,混合物用氮气置换3次,然后将混合物在10-15℃下搅拌2小时。减压浓缩除去溶剂,向反应混合物中加入水(30ml),用乙酸乙酯(20mL*2)萃取。合并有机相用盐水洗涤,无水硫酸钠干燥。过滤后减压浓缩滤液得到化合物16_2。
步骤二:向化合物16_2(2.3g,12.42mmol,1eq)的THF(40mL)溶液中加入吡唑盐酸盐(1.30g,12.42mmol,1eq)。将混合物在70℃下搅拌12小时后减压浓缩得化合物16_3的盐酸盐。
步骤三:向化合物16_3的盐酸盐(1g,3.95mmol,1eq)的二氯甲烷(10mL)溶液中加入三氟乙酸酐(829.18mg,3.95mmol,549.12μL,1eq)和三乙胺(798.97mg,7.90mmol,1.10mL,2eq)。混合物在0℃下搅拌1小时用稀盐酸(10mL,1M)淬灭,然后用二氯甲烷(50mL)萃取。合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物16_4。
步骤四:将化合物16_4(500mg,306.89μmol,1eq)和化合物4_4(59.30mg,306.89μmol,1eq)溶于DMF(5mL)中,混合物在30℃下搅拌2小时。将混合物倒入水(10mL)中并搅拌5分钟,水相用乙酸乙酯(50mL)萃取,将合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物16_5。
步骤五:将化合物16_5(0.4g,843.04μmol,1eq),2-羟基异吲哚啉-1,3-二酮(165.03mg,1.01mmol,1.2eq),和PPh 3(265.34mg,1.01mmol,1.2eq)加入到THF(4mL)中,在0℃下加入DIAD(204.56mg, 1.01mmol,196.70uL,1.2eq)。混合物在15℃下搅拌3小时后减压浓缩,然后将残余物倒入水(20mL)中并搅拌5分钟,水相用乙酸乙酯(50mL)萃取。合并有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=5/1至0/1(v/v))纯化得化合物16_6。
LC-MS(ESI)m/z:620.3(M+1)。
步骤六:向化合物16_6(200mg,322.80μmol,1eq)的乙醇(2mL)溶液中加入NH 2NH 2·H 2O(19.01mg,322.80μmol,18.46uL,85%纯度,1eq)。混合物在20℃下搅拌1小时后过滤并减压浓缩滤液,残余物用水(20mL)稀释,水相用乙酸乙酯(50mL×2)萃取。合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物16_7。
步骤七:向化合物16_7(120mg,245.15μmol,1eq)的甲醇(3mL)和二氯甲烷(1mL)溶液中加入中间体A2(101.61mg,245.15μmol,1eq)。将混合物在15℃下搅拌1小时后减压浓缩得化合物16_8。
步骤八:向化合物16_8(200mg,225.75μmol,1eq)的甲醇(1mL)溶液中加入碳酸钾(78.00mg,564.37μmol,2.5eq)。将混合物在15℃下搅拌14小时后将残余物倒入水(10mL)中并搅拌5分钟,然后用二氯甲烷(50mL*2)萃取,将合并的有机相用饱和氯化钠溶液(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩滤液,残余物用(20mL*3,石油醚/乙酸乙酯=1/1)洗涤,过滤并收集滤饼得化合物16_9。LC-MS(ESI)m/z:790.5(M+1)。
步骤九:向化合物16_9(80mg,101.27μmol,1eq)的DMF(2mL)溶液中加入DCC(41.79mg,202.55μmol,40.97uL,2eq)和HOBt(27.37mg,202.55μmol,2eq)。将混合物在15℃下搅拌30分钟,然后加入碳酸氢钠(34.03mg,405.09μmol,15.75uL,4eq)和中间体A1(31.93mg,151.91μmol,1.5eq)。将混合物在15℃下搅拌11.5小时后过滤并减压浓缩滤液,残余物通过制备型TLC(SiO 2,二氯甲烷/甲醇=10/1)纯化得化合物16_10。LC-MS(ESI)m/z:982.6(M+1)。
步骤十:在-15℃下向化合物16_10(30mg,30.55μmol,1eq)的二氯甲烷(1mL)溶液中加入TFA(1.54g,13.51mmol,1mL,442.16eq)。将混合物在0℃下搅拌30分钟后减压浓缩,残余物通过制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-ACN];B%:8%-38%,10分钟)纯化得化合物16。 1H NMR(400MHz,DMSO-d 6)δ(ppm):8.36(s,3H),7.10(br d,J=8.9Hz,1H),6.88(s,1H),6.82(br s,2H),4.88-4.87(m,2H),4.46(s,4H),3.59-3.48(m,4H),3.18(t,J=6.4Hz,2H),2.86(br d,J=6.1Hz,2H),1.98-1.96(m,1H),1.39(S,3H),1.05(s,3H));
LC-MS(ESI)m/z:640.4(M+1)。
实施例17
Figure PCTCN2019073699-appb-000080
Figure PCTCN2019073699-appb-000081
步骤一:向化合物A6(1.6g,3.07mmol,1eq)的DMF(20mL)溶液中加入三乙胺(1.24g,12.29mmol,1.71mL,4eq)和13_7的三氟乙酸盐(901.33mg,3.07mmol,1eq),所得混合物在45℃下搅拌反应12小时。反应冷却到室温后用水(40mL)稀释并用乙酸乙酯(50mL*2)萃取,将合并的有机层减压浓缩,所得残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=2/1至0/1)纯化得化合物17_1。
LCMS(ESI)m/z:632.4(M+1)。
步骤二:向化合物17_1(370mg,585.74μmol,1eq)和2-羟基异吲哚啉-1,3-二酮(95.55mg,585.74umol,1eq)的THF(8mL)溶液中加入PPh 3(199.72mg,761.46μmol,1.3eq),然后在0℃下滴加DIAD(153.97mg,761.46μmol,148.05uL,1.3eq)。将所得混合物在25℃下搅拌1小时后减压浓缩除去溶剂,残余物通过柱色谱法(SiO 2,,石油醚/乙酸乙酯=5/1至2/1)纯化的化合物17_2。
步骤三:在25℃下向化合物17_2(700mg,901.14μmol,1eq)的EtOH(10mL)溶液中加入NH 2NH H 2O(58.38mg,991.25μmol,56.68μL,85%纯度,1.1eq)并搅拌1小时。将反应混合物减压浓缩以除去溶剂,残余物用水(40mL)稀释后用DCM(40mL*2)萃取,合并有机层并减压浓缩得到化合物17_3。
步骤四:向化合物17_3(400mg,618.53μmol,1eq)的MeOH(3mL)和DCM(3mL)混合溶液中加入中间体A2(256.36mg,618.53μmol,1eq)。混合物在25℃下搅拌0.5小时后减压浓缩,残余物通过柱色谱(SiO 2,MeOH/DCM=0/1至10/1)纯化得化合物17_4。
步骤五:向化合物17_4(350mg,335.52μmol,1eq)的MeOH(5mL)溶液中加入碳酸钾(231.85mg,1.68mmol,5eq)。将混合物在40℃下搅拌14小时后减压浓缩,将残余物倒入水(20mL)中并搅拌5分钟。水相用DCM(100mL)萃取。合并的有机相用饱和氯化钠水溶液(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物17_5。
步骤六:向化合物17_5(300mg,316.74μmol,1eq)的DMF(3mL)溶液中加入N,N'-二异丙基碳二亚胺(79.95mg,633.48μmol,98.09uL,2eq)和HOBt(85.60mg,633.48μmol,2eq)。将混合物在25℃下搅拌30分钟,然后将中间体A1(86.56mg,411.76μmol,1.3eq)和NaHCO 3(106.43mg,1.27mmol,4eq)加入到混合物中。在25℃下搅拌12小时后将其倒入水(10mL)中并搅拌5分钟,过滤并收集滤饼,将其通过制备型TLC(SiO 2,二氯甲烷/甲醇=10/1)纯化得化合物17_6。
LCMS(ESI)m/z:1139.7(M+1)。
步骤七:在0℃下向化合物17_6(80mg,64.84μmol,1eq)的DCM(1mL)中的溶液中加入TFA(1.54g,13.51mmol,1mL,208.28eq)并搅拌30分钟,然后将石油醚/乙酸乙酯(10mL,1/2)的混合溶液倒入到上述反应液中并搅拌5分钟,过滤并收集滤饼,将其通过制备型HPLC柱(Boston Green ODS150*30*5μm;流动相:[水(0.225%FA)-乙腈];乙腈%:1%-27%,10min)纯化得化合物17。 1H NMR(400MHz,DMSO-d 6)δ(ppm):7.25(d,J=8.4Hz,1H),7.03-6.99(m,1H),6.97-6.90(m,2H),4.86(br s,4H),4.56(br d,J=2.9Hz,1H),3.45(t,J=7.2Hz,4H),3.05-2.86(m,4H),2.08-1.91(m,4H),1.45(s,3H),1.05(s,3H);LCMS(ESI)m/z:697.4(M+1)。
实施例18
Figure PCTCN2019073699-appb-000082
步骤一:在室温下向化合物13_12(500mg,632.96μmol,1eq)的DMF(5mL)溶液中加入HOBt(171.05mg,1.27mmol,2eq)和DIC(159.76mg,1.27mmol,196.02μL,2eq),将混合物在该温度下搅拌60分钟,然后加入中间体A3(148.26mg,822.85μmol,1.3eq)和NaHCO 3(212.70mg,2.53mmol,4eq)。将所得混合物在室温下搅拌11小时后用水(50mL)稀释,减压过滤并收集滤饼,干燥后得化合物18_1。
LCMS(ESI)m/z:952.4(M+1)。
步骤二:在0℃下向化合物18_1(450mg,472.64μmol,1eq)的DCM(5mL)中加入TFA(4mL),所得混合物在0℃搅拌2小时,减压除去溶剂,残余物通过制备型HPLC(column:Boston pH-lex150*25*10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:15%-29%,8min)纯化得化合物18。
1H NMR(400MHz,DMSO-d 6+D 2O)δ(ppm):7.26(d,J=8.3Hz,1H),7.00-6.90(m,2H),6.86(s,1H),4.69(br s,2H),4.63(br s,2H),4.40(br dd,J=3.2,13.2Hz,3H),4.23(br d,J=3.9Hz,2H),3.74(br dd,J=2.7,6.2Hz,1H),3.28(br t,J=6.6Hz,2H),2.86(br t,J=7.6Hz,2H),1.86-1.76(m,2H),1.32(d,J=6.1Hz,3H);LCMS(ESI)m/z:610.4(M).
实施例19
Figure PCTCN2019073699-appb-000083
步骤一:向中间体A7(4.51g,11.59mmol,1eq)的DMF(20mL)溶液中加入三乙胺(5.87g,57.97mmol,8.07mL,5eq)和化合物13_7的三氟乙酸盐(3.4g,11.59mmol,1eq),混合物在45℃下搅拌12小时后 用水(50mL)稀释并用乙酸乙酯(50mL*2)萃取。合并有机层并减压浓缩,残余物通过柱色谱法(SiO 2,DCM/MeOH=1/0至20/1)纯化得化合物19_1。LCMS(ESI)m/z:501.3(M+1)。
步骤二:向化合物19_1(1.2g,2.40mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(391.11mg,2.40mmol,1当量)的THF(20mL)溶液中分别加入PPh 3(691.73mg,2.64mmol,1.1eq)和DIAD(533.29mg,2.64mmol,512.77μL,1.1eq)。将混合物在0℃下搅拌4小时后用水(50mL)稀释并用乙酸乙酯(50mL*2)萃取。合并有机层并减压浓缩,得到残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=1/1至1/3)纯化得化合物19_2。
步骤三:向化合物19_2(870mg,1.35mmol,1eq)的EtOH(10mL)溶液中加入NH 2NH 2·H 2O(87.30mg,1.48mmol,84.76uL,85%纯度,1.1eq)。混合物在25℃下搅拌10分钟后减压浓缩,将残余物用水(30mL)稀释后用DCM(50mL*2)萃取。合并有机层并减压浓缩得化合物19_3。
步骤四:向化合物19_3(500mg,969.89μmol,1eq)的EtOH(5mL)和DCM(5mL)的混合溶液中加入中间体A2(401.99mg,969.89μmol,1eq)。混合物在25℃下搅拌0.5小时后减压浓缩,残余物用石油醚/乙酸乙酯(50mL,1/5)搅拌洗涤,然后过滤并收集滤饼,干燥后得化合物19_4。LCMS(ESI)m/z:912.2(M+1)。
步骤五:向化合物19_4(650mg,712.73μmol,1eq)的MeOH(5mL)溶液中加入碳酸钾(985.04mg,7.13mmol,10eq)。将反应液在50℃下搅拌12小时后减压浓缩,残余物用水(10mL)稀释后用稀盐酸(10%)调至pH=5,水相用DCM(20mL*2)萃取,合并的有机相用饱和氯化钠洗涤,无水硫酸钠干燥后过滤,减压浓缩滤液,残余物用乙酸乙酯/石油醚(30mL,3/1)搅拌洗涤得化合物19_5。
步骤六:向化合物19_5(400mg,490.21μmol,1eq)的DMF(3mL)溶液中加入DIC(123.73mg,980.42μmol,151.81μL,2eq)和HOBt(132.48mg,980.42mmol,2eq)。混合物在室温(20-30℃)下搅拌30分钟后加入中间体A1(123.66mg,588.25umol,1.2eq)和NaHCO 3(164.72mg,1.96mmol,4eq)并在室温(20-30℃)下搅拌5小时,向反应混合物中加入水(10mL)并搅拌5分钟,产生白色固体沉淀后抽滤,收集滤饼干燥后于乙酸乙酯/石油醚(10mL,2/1)中搅拌洗涤得化合物19_6。
步骤七:在0℃下向化合物19_6(130mg,128.95 1mmol)的DCM(2mL)溶液中加入TFA(1mL)。反应在室温(20-30℃)下搅拌30分钟后加入EtOAc(10mL)并析出白色固体沉淀。将反应混合物过滤后收集滤饼,将其通过制备型HPLC纯化(柱:Phenomenex Synergi C18 150*25*10μm;流动相:[水(0.225%甲酸)-ACN];乙腈%:1%-17%,8分钟)得到化合物19。 1H NMR(400MHz,D 2O)δ(ppm):8.37(s,1H),7.23(d,J=8.2Hz,1H),6.96-6.86(m,3H),4.99-4.80(m,4H),4.50-4.23(m,5H),3.76(br t,J=8.3Hz,1H),3.69-3.57(m,2H),3.37(br t,J=8.9Hz,1H),3.20-3.02(m,2H),2.63(br d,J=6.5Hz,1H),2.32-2.13(m,1H),1.81(br d,J=8.9Hz,1H),1.44(d,J=2.5Hz,3H),1.09(br d,J=9.9Hz,3H);LCMS(ESI)m/z:666.5(M+1)。
实施例20
Figure PCTCN2019073699-appb-000084
步骤一:向化合物20_1(5g,23.33mmol,1eq)的MeOH(50mL)溶液中加入BrCN(2.97g,28.00mmol,2.06mL,1.2eq)和AcONa 3.83g,46.66mmol,2eq)。反应在室温(20-25℃)下搅拌2小时后加入水(200mL),所得混合物用EtOAc(100mL*2)萃取,合并有机相用无水硫酸钠干燥,过滤后减压浓缩,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=5/1至1/1)纯化得化合物20_2。
步骤二:向化合物20_2(4.2g,17.55mmol,1eq)的THF(100mL)溶液中加入吡唑的盐酸盐(1.83g,17.55mmol,1eq)。将混合物在70℃下搅拌12小时后产生白色固体。将反应物过滤得到化合物20_3。
步骤三:向化合物20_3(3.2g,9.31mmol,1eq)的DCM(30mL)溶液中加入三乙胺(1.41g,13.96mmol,1.94mL,1.5eq),然后向混合物中加入三氟乙酸酐(1.76g,8.38mmol,1.17mL,0.9eq)。将反应液在室温(20-25℃)下搅拌反应2小时后倒入水(50ml)中,所得混合物用DCM(30mL)萃取,合并的有机相用饱和氯化钠洗涤,无水硫酸钠干燥,减压除去溶剂得化合物20_4。
步骤四:向化合物13_7的三氟乙酸盐(3.2g,10.91mmol,1.5eq)和化合物20_4(2.93g,7.28mmol,1当量)的DMF(20mL)溶液中加入三乙胺(3.68g,36.38mmol,5.06mL,5eq)。将反应在45℃下搅拌12小时后倒入水(200mL)中,抽滤收集滤饼并通过柱色谱法(SiO 2,石油醚/乙酸乙酯=4/1至0/1)纯化得化合物20_5。
步骤五:在0℃下向化合物20_5(0.780g,1.33mmol,1eq),2-羟基异吲哚啉-1,3-二酮(217.62mg,1.33mmol,1eq)和PPh 3(419.87mg,1.60mmol,1.2eq)的THF(5mL)溶液中滴加DIAD(539.50mg,2.67mmol,518.75μL,2eq)。将反应在室温(20-30℃)下搅拌12小时后减压浓缩,残余物用EtOAc(20mL)稀释后用饱和氯化钠洗涤,无水硫酸钠干燥,过滤后将滤液减压浓缩,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=10/1至0/1)纯化得化合物20_6。
步骤六:向化合物20_6(730mg,1.01mmol,1eq)的MeOH(5mL)和DCM(5mL)混合溶液中加入NH 2NH 2·H 2O(59.31mg,1.01mmol,57.58μL,85%纯度,1eq)。将反应在室温(20-30℃)下搅拌1小时后减压浓缩,将固体溶于DCM(10mL)中并过滤,有机相用饱和氯化钠洗涤,无水硫酸钠干燥,过滤后减压浓缩得化合物20_7。
步骤七:向化合物中间体A2(414mg,998.85μmol,1eq)的DCM(5mL)和MeOH(5mL)混合溶液中加入20_7(600mg,1.13mmol,1.13eq)。将反应在室温(20-30℃)下搅拌2小时后减压浓缩,残余物用乙酸乙酯/石油醚(20mL,1/1)搅拌洗涤得到化合物20_8。
步骤八:向化合物20_8(729mg,787.25μmol,1eq)的MeOH(10mL)溶液中加入碳酸钾(272.01mg,1.97mmol,2.5eq)。将反应在45℃下搅拌12小时后减压浓缩,将残余物溶于DCM(20ml)中并用水和稀盐酸(10mL,1M)洗涤,无水硫酸钠干燥,过滤后减压浓缩,残余物用乙酸乙酯/石油醚(20mL,1/1)洗涤得化合物20_9。
步骤九:向化合物20_9(700mg,843.37μmol,1eq)的DMF(10mL)溶液中加入HOBt(227.92mg,1.69mmol,2当量)和DIC(212.86mg,1.69mmol,261.18μL,2eq),混合物在室温(20-30℃)下搅拌30分钟,然后将中间体A1(248.20mg,1.18mmol,1.4eq)和NaHCO 3(283.39mg,3.37mmol,131.20μL,4eq)加入到反应混合物中并在室温(20-30℃)下搅拌12小时。向反应混合物中加入水(10mL),产生白色固体沉淀,过滤并收集滤饼,将其通过制备型TLC(SiO 2,DCM/MeOH=10/1)纯化得到化合物20_10。
步骤十:在0℃下向化合物20_10(230mg,225.01μmol,1eq)的DCM(2mL)溶液中加入TFA(1mL)。混合物在0℃下搅拌30分钟后加入乙酸乙酯(10mL)产生白色固体沉淀。过滤后得到的固体通过制备型HPLC纯化固体(仪器ASCWH-GX-C方法柱:Boston Green ODS 150*30*5μm,条件:水(0.225%甲酸)-乙腈)纯化得到化合物20。 1H NMR(400MHz,DMSO-d 6+D 2O)δ(ppm):8.33(s,1H),7.23-7.01(m,1H),6.98-6.64(m,3H),4.49-4.08(m,8H),3.37(br s,1H),3.14(br s,1H),2.04(br s,4H),1.54-1.35(m,7H),1.22-1.01(m,3H)。LCMS(ESI)m/z:680.3(M+1)。
实施例21
Figure PCTCN2019073699-appb-000085
步骤一:向化合物21_1(150mg,422.12μmol,1eq)(参考WO2017106064)的MeOH(5mL)和DCM(5mL)的混合溶液中加入化合物13_10(240mg,405.93μmol,9.62e-1eq),然后将混合物在20℃下搅拌0.5小时。将反应混合物减压浓缩得化合物21_2。
步骤二:将化合物21_2(350mg,373.76μmol,1eq)和碳酸钾(154.97mg,1.12mmol,3eq)加到MeOH(5mL)中,反应瓶用氮气置换3次,然后将混合物在45℃,氮气气氛下搅拌24小时,然后将反应混合物减压浓缩以除去MeOH,残余物用DCM(30mL)稀释,用稀盐酸(0.5M)调至pH<6后用DCM/MeOH(20mL,10/1)萃取,有机层用无水硫酸钠干燥,过滤并减压浓缩,得到残余物用乙酸乙酯(5mL)搅拌洗涤,过滤并收集固体得化合物21_3。
步骤三:向化合物21_3(150mg,185.05μmol,1eq)的DMF(2mL)溶液中加入HOBt(50.01mg,370.09μmol,2eq)和DIC(46.71mg,370.09μmol,57.31μL,2eq),混合物在25℃下搅拌1小时,然后加入中间体A1(50.57mg,240.56μmol,1.3eq)和NaHCO 3(62.18mg,740.19μmol,28.79μL,4eq),混合物在25℃下搅拌11h后加水(20mL)淬灭,然后用乙酸乙酯(15mL*2)萃取。将合并的有机层用饱和氯化钠(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,得到的残余物通过制备型TLC(SiO 2,DCM/MeOH=10/1)纯化得化合物21_4。
步骤四:在0℃向化合物21_4(80mg,90.42μmol,1eq)的DCM(1mL)溶液中加入TFA(542.37mg,4.76mmol,352.19μL,52.61eq)。将混合物在20℃下搅拌1小时后减压浓缩,得到残余物通过制备型HPLC(FA,柱:Boston Green ODS 150*30 5μm;流动相:[水(0.225%甲酸)-ACN];乙腈%:2%-32%,10分钟)纯化得化合物21。 1H NMR(400MHz,DMSO-d 6+D 2O)δ(ppm):8.45-8.33(m,1H),7.29(br d,J=8.9Hz,1H),7.00-6.90(m,2H),4.68(br d,J=18.3Hz,4H),4.56(s,1H),4.47(br s,2H),4.21(br s,2H),3.29(br s,2H),2.83(br s,2H),1.77(br s,2H),1.37(s,3H),1.18(s,3H);LCMS(ESI)m/z:641.1(M+1)。
实施例22
Figure PCTCN2019073699-appb-000086
步骤一:向化合物16_9(200mg,248.77μmol,1eq)的DMF(2mL)溶液中加入DIC(62.79mg,497.53μmol,77.04μL,2eq)和HOBt(67.23mg,497.53μmol,2eq)。将混合物在25℃下搅拌1小时后加入化合物22_1(69.10mg,373.15μmol,1.5eq)(参考文献:US2015266867A1)和NaHCO 3(83.59mg,995.07μmol,38.70μL,4eq),将混合物在25℃下再搅拌11小时后加入水(10mL)淬灭,然后用乙酸乙酯(10mL)稀释形成一些未溶解的油,过滤后油状物用DCM(20mL)萃取。合并的有机层用饱和氯化钠(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物22_2。
步骤二:在0℃下向化合物22_2(100mg,102.97μmol,1eq)的DMF(1mL)溶液中加入N,N-二甲基甲酰胺三氧化硫(31.54mg,205.95μmol,2eq),将混合物在0℃下搅拌1小时后再加入N,N-二甲基甲酰胺三氧化硫(31.54mg,205.95μmol,2eq),然后在0℃下再搅拌1小时。在0℃下加入水(10mL)淬灭反应混合物,然后用DCM(10mL*2)萃取。将合并的有机层用饱和氯化钠洗涤,无水硫酸钠干燥,过滤并减压浓缩,得到化合物22_3。
步骤三:向化合物22_3(100mg,95.13mmol,1eq)的DCM(0.5mL)溶液中加入TFA(770.00mg,6.75mmol,0.5mL,70.99eq)。将混合物在0℃下搅拌1小时后加入乙酸乙酯/石油醚(5mL,4/1),产生固体沉淀,过滤后收集滤饼,将其通过制备型HPLC(TFA,柱:Phenomenex Synergi C18 150*25*10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:1%-30%,6分钟)纯化得化合物22。 1H NMR(400MHz, DMSO-d 6+D 2O)δ(ppm):7.08(d,J=9.2Hz,1H),6.83-6.75(m,3H),5.18(d,J=5.8Hz,1H),4.45(s,2H),4.39(br s,2H),4.18(br s,2H),4.15-4.09(m,1H),4.06-3.94(m,2H),3.59-3.49(m,3H),3.48-3.34(m,2H),3.30-3.16(m,3H),2.89-2.78(m,4H),1.83-1.72(m,2H);LCMS(ESI)m/z:709.1(M+1)。
实施例23
Figure PCTCN2019073699-appb-000087
步骤一:将中间体A7(2.7g,6.93mmol,1eq),化合物4_4(1.34g,6.93mmol,1eq)和三乙胺(701.68mg,6.93mmol,965.17μL,1eq)溶于DMF(20mL)中并用氮气置换三次,混合物在45℃下搅拌反应12小时,然后减压浓缩以除去DMF,残余物用水(20mL)稀释并用乙酸乙酯(20mL*2)萃取。合并的有机层用饱和氯化钠(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=2/1至0/1)纯化得化合物23_1。
步骤二:向化合物23_1(1.9g,3.69mmol,1eq),2-羟基异吲哚啉-1,3-二酮(722.86mg,4.43mmol,1.2eq)和PPh 3(1.16g,4.43mmol,1.2eq)的THF(20mL)溶液中加入DIAD(896.03mg,4.43mmol,861.56μL,1.2eq)。将混合物在20℃下搅拌1小时后减压浓缩以除去THF,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=1/1至0/1)纯化得化合物23_2。
步骤三:向化合物23_2(2.2g,1.79mmol,1eq)的EtOH(22mL)溶液中加入NH 2NH 2·H 2O(211.27mg,3.59mmol,205.11μL,85%纯度,2eq)。将混合物在25℃下搅拌0.5小时后减压浓缩以除去溶剂,将残余物用DCM(20mL)稀释并过滤,将有机层用饱和氯化钠(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得到化合物23_3。
步骤四:将化合物23_3(1.4g,1.89mmol,1eq),中间体A2(782.69mg,1.89mmol,1eq)加入到DCM(10mL)和MeOH(10mL)的混合溶剂中,然后将混合物在25℃下氮气气氛下搅拌1小时,将反应混合物减压浓缩以除去溶剂得化合物23_4。
步骤五:将化合物23_4(1.8g,1.94mmol,1eq)溶于MeOH(20mL)中,然后加入碳酸钾(1.34g,9.72mmol,5eq)并用氮气置换三次,混合物在在45℃下搅拌12小时。将反应混合物减压浓缩以除去MeOH,残余物用水(50mL)和DCM(100mL)稀释,用稀盐酸(1M)将混合物调至pH=5,然后分液得到有机层并用饱和氯化钠溶液(50mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物用乙酸乙酯(20mL)搅拌洗涤,过滤收集滤饼,将滤饼再用乙酸乙酯/二氯甲烷(20mL,1/1)搅拌洗涤,过滤得到化合物23_5。
步骤六:向化合物23_5(250mg,301.20μmol,1eq)的DMF(3mL)溶液中加入DIC(76.02mg,602.41μmol,93.28μL,2eq)和HOBt(81.40mg,602.41μmol,2eq)。在25℃下搅拌1小时后加入中间体A1(82.31mg,391.56μmol,1.3eq)和NaHCO3(101.21mg,1.20mmol,46.86μL,4eq)。将混合物在25℃下搅拌11小时减压浓缩以除去DMF,残余物用DCM(5mL)稀释,有机层用饱和氯化钠洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过制备型TLC(SiO 2,DCM/MeOH=8/1)纯化得化合物23_6。
步骤七:向化合物23_6(160mg,100.79μmol,1eq)的DCM(1mL)溶液中加入TFA(991.61mg,8.70mmol,643.90μL,86.29eq)和水(0.05mL),在0℃下搅拌1小时后将反应混合物用石油醚/乙酸乙酯(10mL,1/4)稀释,然后过滤得到固体并通过制备型HPLC(TFA,柱:波士顿pH-lex 150*25 10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:10%-34%,8分钟)纯化得化合物23。 1H NMR(400MHz,D 2O)δ(ppm):7.06(br d,J=8.3Hz,1H),7.02(d,J=1.7Hz,1H),6.78(br s,2H),4.54(br s,2H),4.42(br s,2H),4.30(br s,2H),3.71-3.42(m,5H),3.28(t,J=9.2Hz,1H),3.07(dq,J=7.3,12.9Hz,2H),2.98-2.77(m,2H),2.68-2.52(m,1H),2.19(br dd,J=5.8,11.7Hz,1H),1.82-1.68(m,1H),1.39(br d,J=3.9Hz,3H),1.04(br d,J=9.8Hz,3H);LCMS(ESI)m/z:680.3(M+1)。
实施例24
Figure PCTCN2019073699-appb-000088
步骤一:向化合物13_12(200mg,253.18μmol,1eq)的DMF(2mL)溶液中加入DIC(63.90mg,506.37μmol,78.41μl,2eq)和HOBt(68.42mg,506.37μmol,2eq)。将混合物在20℃下搅拌1小时后加入化合物22_1(70.33mg,379.78μmol,1.5eq)和NaHCO 3(85.08mg,1.01mmol,39.39μL,4eq)。将混合物在20℃下搅拌11小时减压浓缩以除去DMF,残余物用水(5mL)和乙酸乙酯(5mL)稀释,搅拌10分钟,过滤并将滤饼溶于DCM(10mL)中,有机相用无水硫酸钠干燥,然后过滤并减压浓缩得到化合物24_1。
步骤二:在0℃下向化合物24_1(180mg,188.07μmol,1eq)的DMF(2mL)溶液中加入N,N-二甲基甲酰胺三氧化硫(57.61mg,376.13μmol,2eq)。将混合物在0℃下搅拌1小时后再加入N,N-二甲基甲酰胺三氧化硫(86.41mg,564.20μmol,3eq),并在0℃下再搅拌1小时。在0℃下通过加入水(10mL)淬灭反应,然后用DCM(10mL*2)萃取,将合并的有机层用无水硫酸钠干燥,过滤并减压浓缩得化合物24_2。
步骤三:向化合物24_2(150mg,83.48μmol,1eq)的DCM(1mL)溶液中加入TFA(1mL)和水(0.05mL)。将混合物在0℃下搅拌1小时后减压浓缩以除去DCM,残余物用水(2mL)和乙酸乙酯(5mL)稀释,分离的水层通过制备型HPLC(TFA,柱:波士顿pH-lex 150*25×10μm;流动相:[水(0.1%TFA)-ACN])纯化;乙腈%:5%-29%,8分钟)纯化得化合物24。 1H NMR(400MHz,D 2O)δ(ppm):7.28(d,J=8.7Hz,1H),7.04(br s,1H),6.96-6.86(m,2H),5.27(d,J=5.9Hz,1H),4.65-4.50(m,4H),4.46-4.39(m,1H),4.28(br d,J=3.8Hz,2H),4.06-3.95(m,1H),3.90-3.80(m,1H),3.50-3.30(m,4H),3.12-2.98(m,4H),2.01-1.90(m,2H).LCMS(ESI)m/z:695.2(M+1).
实施例25
Figure PCTCN2019073699-appb-000089
步骤一:将化合物4_4(705.34mg,3.65mmol,1eq),中间体A6(1.9g,3.65mmol,1eq)和TEA(369.35mg,3.65mmol,1eq)加入到DMF(20mL),然后将混合物在40℃下搅拌12小时。将反应混合物减压浓缩以除去DMF,残余物用水(20mL)稀释,乙酸乙酯(30mL)萃取,合并有机相并用饱和氯化钠(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得到化合物25_1。
步骤二:在0℃下向化合物25_1(1.8g,2.79mmol,1eq),2-羟基异吲哚啉-1,3-二酮(545.70mg,3.35mmol,1.2eq)和PPh 3(877.40mg,3.35mmol,1.2eq)的THF(20mL)溶液中加入DIAD(676.42mg,3.35mmol,650.40μL,1.2eq)。将混合物在25℃下搅拌1小时后减压浓缩以除去THF,得到残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=1/1至0/1)纯化得化合物25_2。
步骤三:向化合物25_2(1.2g,1.18mmol,1eq)的EtOH(12mL)溶液中加入NH 2NH 2·H 2O(139.45mg,2.37mmol,135.39μL,纯度85%,2eq)。将混合物在25℃下搅拌0.5小时后过滤,然后将滤液浓缩,将 残余物用DCM(20mL)稀释,有机相用饱和盐水(10mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物25_3。
步骤四:将化合物25_3(900mg,1.36mmol,1eq)和中间体A2(564.58mg,1.36mmol,1eq)溶于DCM(5mL)和MeOH(5mL)中,然后将混合物在25℃下搅拌1小时,将反应混合物减压浓缩得到化合物25_4。
步骤五:将化合物25_4(1.4g,907.92μmol,1eq)和碳酸钾(627.40mg,4.54mmol,5eq)加入到MeOH(14mL)中并用氮气置换三次,然后将混合物在40℃下搅拌12小时。将反应混合物减压浓缩以除去MeOH,残余物用DCM(200mL)和水(50mL)稀释,并用稀盐酸(1M)将混合物调节pH<5,分液并将有机层用饱和氯化钠(50mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物用乙酸乙酯(20mL)搅拌洗涤,过滤并收集滤饼得化合物25_5。
步骤六:向化合物25_5(200mg,185.83μmol,1eq)的DMF(2mL)溶液中加入DIC(46.90mg,371.67μmol,57.55μL,2eq)和HOBt(50.22mg,371.67μmol,2eq),将混合物在25℃下搅拌1小时后加入中间体A1(58.60mg,278.75μmol,1.5eq)和NaHCO 3(62.45mg,743.34μmol,28.91μL,4eq)。将混合物在25℃下再搅拌11小时后减压浓缩以除去DMF,将残余物用水(5mL)稀释并用DCM(10mL)萃取,有机层用无水硫酸钠干燥,过滤并减压浓缩,残余物通过制备型TLC(SiO 2,DCM/MeOH=10/1)纯化得化合物25_6。
步骤七:向化合物25_6(140mg,121.38μmol,1eq)的DCM(0.5mL)溶液中加入TFA(770.00mg,6.75mmol,0.5mL,55.63eq)和水(0.05mL)。将混合物在0℃下搅拌1小时后用乙酸乙酯/石油醚(5mL,4:1)稀释,然后过滤得到黄色固体并通过制备型HPLC(TFA,柱:Phenomenex Synergi C18 150*25*10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:1%-30%,9分钟)纯化得化合物25。 1H NMR(400MHz,D 2O)δ(ppm):7.11-6.94(m,2H),6.85-6.72(m,2H),4.45(br s,5H),4.27(br s,2H),3.59(br s,2H),3.38(br s,4H),2.90(br d,J=7.4Hz,6H),1.92(br s,4H),1.39(s,3H),1.02(s,3H);LCMS(ESI)m/z:711.2(M+1)。
实施例26
Figure PCTCN2019073699-appb-000090
Figure PCTCN2019073699-appb-000091
步骤一:在15℃下向2-(3-甲氧基苯基)乙胺(26_1,135g,892.83mmol,131.07mL,1eq)的HCOOH(900mL)溶液中加入甲醛(26.81g,892.83mmol,24.59mL,1eq),将混合物在45℃下搅拌12小时后减压浓缩,得到残余物用水(500mL)稀释,然后加入氢氧化钠溶液(4M)调节pH>9,所得混合物用乙酸乙酯(450mL*2)萃取。将合并的有机层用无水硫酸钠干燥,过滤并浓缩得化合物26_2。
步骤二:将化合物26_2(140g,857.76mmol,1eq)加入到AcOH(300mL)和HBr/AcOH(300mL)的混合溶液中,并用氮气置换3次,然后将混合物在90℃下搅拌36小时。反应冷却至室温后向混合物中加入乙酸乙酯(400mL)稀释并搅拌30分钟,然后过滤收集固体得化合物26_3的溴化氢盐。
步骤三:向化合物26_3的溴化氢盐(97g,421.55mmol,1eq)的DCM(1000mL)溶液中加入TEA(127.97g,1.26mol,176.03mL,3eq)和Boc 2O(101.20g,463.71mmol,106.53mL,1.1eq)。混合物在15℃下搅拌12小时后加入水(500mL),分液后的有机层用稀盐酸(500mL,0.5M)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物用石油醚/乙酸乙酯(330mL,10/1)搅拌洗涤,过滤收集固体得到化合 物26_4。 1H NMR(400MHz,CDCl 3)δ=6.89(d,J=8.3Hz,1H),6.60(br d,J=8.3Hz,1H),6.55(d,J=2.4Hz,1H),4.88(s,1H),4.42(s,2H),3.54(br s,2H),2.70(t,J=5.9Hz,2H),1.42(s,9H)。
步骤四:向化合物26_4(5g,20.06mmol,1eq)的甲基叔丁基醚(5mL)溶液中加入环氧乙烷-2-羧酸乙酯(6.99g,60.17mmol,3eq),中间体A8(841.11mg,1.00mmol,0.05eq)和分子筛
Figure PCTCN2019073699-appb-000092
将混合物在室温(20-30℃)下搅拌12小时后加入对甲苯磺酸吡啶盐(120mg),并用甲基叔丁基醚(5mL)稀释,然后将混合物通过一小段硅胶过滤,并用石油醚/乙酸乙酯(100mL,1/1)洗涤,合并有机相并减压浓缩,残余物通过柱色谱纯化(SiO 2,石油醚/乙酸乙酯=4/1)得到化合物26_5。
步骤五:向化合物26_5(3g,8.21mmol,1eq)的DCM(10mL)溶液中加入TFA(5mL),将反应在室温(20-30℃)下搅拌30分钟后减压浓缩,得到化合物26_6的三氟乙酸盐。
步骤六:向化合物26_6的三氟乙酸盐(3.2g,8.44mmol,1eq)的DMF(20mL)溶液中加入三乙胺(2.56g,25.31mmol,3.52mL,3eq)和中间体A5(3.68g,10.12mmol,1.2eq)(20-30℃)。将反应在45℃下搅拌12小时后冷却至室温,然后向反应混合物中加入水(10mL),并用乙酸乙酯(10mL*2)萃取,合并有机相用水,稀盐酸(10mL,0.5M)和饱和氯化钠洗涤,无水硫酸钠干燥,然后过滤后减压浓缩,残余物通过柱色谱法(SiO 2,石油醚/乙酸乙酯=10/1至1/1)纯化得化合物26_7。
步骤七:向化合物26_7(1g,1.78mmol,1eq)的MeOH(5mL)溶液中加入NaOH(149.85mg,3.75mmol,2.1eq)。将反应在室温(20-30℃)下搅拌12小时后减压除去溶剂得化合物26_8。
步骤八:向化合物26_8(0.8g,1.83mmol,1eq)的MeOH(5mL)溶液中加入[重氮(苯基)甲基]苯(1.07g,5.50mmol,3eq)。将反应物在室温下搅拌12小时后减压除去溶剂,残余物通过柱色谱法纯化(SiO 2,DCM/MeOH=5/1)得到化合物26_9。
步骤九:向化合物26_9(0.9g,1.49mmol,1eq),2-羟基异吲哚啉-1,3-二酮(292.31mg,1.79mmol,1.2eq)和PPh 3(587.48mg,2.24mmol,1.5eq)的THF(10mL)溶液中加入DIAD(603.89mg,2.99mmol,580.66μL,2eq)。将其在室温(20-30℃)下搅拌1小时减压浓缩,残余物用DCM(20mL)稀释,并用水和饱和氯化钠洗涤,然后减压除去溶剂,残余物通过柱色谱(SiO 2,DCM/MeOH=10/1)纯化得化合物26_10。
步骤十:向化合物26_10(0.5g,668.60μmol,1eq)的甲醇(5mL)和DCM(5mL)混合溶液中加入NH 2NH 2·H 2O(26.79mg,668.60μmol,纯度85%,1eq)。将混合物在室温(20-30℃)下搅拌0.5小时后减压浓缩,然后向残余物中加入DCM(10mL)并过滤,减压浓缩后得化合物26_11。
步骤十一:向化合物26_11(460mg,744.66μmol,1eq)的DCM(5mL)和MeOH(2mL)混合溶液中加入中间体A2(216.05mg,521.26μmol,0.7eq)。将反应在室温(20-30℃)下搅拌1小时减压除去溶剂,残余物用乙酸乙酯(30mL)研磨12小时得化合物26_12。
步骤十二:向化合物26_12(300mg,295.80μmol,1eq)的DMF(3mL)溶液中加入HOBt(47.96mg,354.96μmol,1.2eq)和DIC(44.80mg,354.96μmol,54.96μL,1.2eq)。将反应混合物在室温(20-25℃)下搅拌1小时后加入中间体A1(80.83mg,384.54μmol,1.3eq)和NaHCO 3(99.40mg,1.18mmol,46.02μL,4eq),将所得混合物在室温(20-30℃)下搅拌12小时后加水(10mL)淬灭,产生黄色固体,过滤后将 黄色固体溶于DCM(10mL)中,饱和氯化钠洗涤,减压除去溶剂,残余物通过制备型TLC(SiO 2,DCM/MeOH=10/1)纯化得到得化合物26_13。
步骤十三:在0℃下向化合物26_13(240mg,198.94μmol,1eq)的DCM(2mL)溶液中加入TFA(1mL)。在该温度下将反应物搅拌0.5小时后加入乙酸乙酯(10mL),产生黄色固体沉淀,过滤后收集滤饼并通过制备型HPLC(柱:Boston pH-lex 150×25×10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:3%-30%,9分钟)纯化得化合物26。 1H NMR(400MHz,D 2O)δ(ppm):7.13-7.04(m,2H),6.85-6.76(m,2H),5.15(dd,J=2.4,5.0Hz,1H),4.61(s,1H),4.52-4.42(m,4H),3.52(br t,J=5.9Hz,2H),3.34(t,J=7.0Hz,2H),3.03(br t,J=7.8Hz,2H),2.87(br t,J=5.7Hz,2H),1.96(quin,J=7.4Hz,2H),1.38(s,3H),1.01(s,3H);LCMS m/z:698.3(M+1)。
实施例27
Figure PCTCN2019073699-appb-000093
步骤一:向化合物13的三氟乙酸盐的DMF(0.5mL)溶液中加入DIPEA(28.51mg,220.57μmol,38.42μL,4eq)和甲亚胺酸乙酯盐酸盐(7.85mg,71.69μmol,1.3eq)。将混合物在25℃下搅拌2小时后减压浓缩,残余物通过制备型HPLC(柱:Phenomenex Synergi C18 150*25*10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:1%-30%,13分钟)纯化得化合物27。 1H NMR(400MHz,D 2O)δ(ppm):7.73-7.67(m,1H),7.18(br d,J=8.9Hz,1H),6.95(s,1H),6.90-6.83(m,2H),4.62(br s,2H),4.58(br s,2H),4.29(br s,2H),4.25(br s,2H),3.44-3.34(m,2H),3.30(br d,J=4.1Hz,3H),1.94-1.77(m,2H),1.37(s,3H),0.98(s,3H);LCMS(ESI)m/z:667.1(M+1)。
实施例28
Figure PCTCN2019073699-appb-000094
Figure PCTCN2019073699-appb-000095
步骤一:向化合物4的三氟乙酸盐(100mg,113.41μmol,1eq)的DMF(1mL)溶液中加入甲亚胺酸乙酯盐酸盐(16.15mg,147.43μmol,1.3eq)和DIPEA(58.63mg,453.63μmol,79.01μL,4eq)。将混合物在25℃下搅拌2小时后减压浓缩,残余物通过制备型HPLC(柱:Boston pH-lex 150*25 10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:10%-40%,10分钟)纯化得化合物28。 1H NMR(400MHz,D 2O)δ(ppm):7.73-7.64(m,1H),7.05(br d,J=9.0Hz,1H),6.95(s,1H),6.78(br s,2H),4.63(s,2H),4.49(br s,2H),4.39(s,2H),4.27(br d,J=4.0Hz,2H),3.55-3.43(m,2H),3.27(br d,J=6.1Hz,3H),2.82(br s,2H),1.93-1.76(m,2H),1.35(s,3H),0.99(s,3H);LCMS(ESI)m/z:681.3(M+1)。
实施例29
Figure PCTCN2019073699-appb-000096
步骤一:向化合物12_4(2g,5.14mmol,1eq)和13_7的三氟乙酸盐(1.5g,5.12mmol,1eq)的DMF(20mL)溶液中加入TEA(2.60g,25.68mmol,3.57mL,5eq)。混合物在40℃下搅拌15小时后倒入水(40mL)中,然后用乙酸乙酯(100mL*2)萃取,合并有机相用饱和氯化钠(2mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,将残余物通过硅胶色谱法(SiO 2,乙酸乙酯/甲醇=1/0至10/1)纯化得化合物29_1。
步骤二:在0℃下向化合物29_1(700mg,1.40mmol,1eq),2-羟基异吲哚啉-1,3-二酮(273.78mg,1.68mmol,1.2eq),PPh 3(440.19mg,1.68mmol,1.2eq)的THF(8mL)溶液中加入DIAD(339.36mg,1.68mmol,326.31μL,1.2eq)。将混合物在室温下搅拌2小时后减压浓缩,残余物通过硅胶色谱法(石油醚/乙酸乙酯=3/1至0/1)纯化得化合物29_2。
步骤三:向化合物29_2(400mg,298.38mmol,1eq)的EtOH(5mL)溶液中加入NH 2NH 2·H 2O(17.57mg,298.38μmol,17.06μL,纯度85%)。将混合物在室温下搅拌1小时后减压浓缩,残余物用乙酸乙酯(20mL)溶解后过滤,将滤液减压浓缩后得化合物29_3。
步骤四:向化合物29_3(330mg,640.12μmol,1eq)的MeOH(3mL)和DCM(1mL)溶液中加入中间体A2(238.78mg,576.11μmol,0.9eq)。将混合物在室温下搅拌30分钟后减压浓缩,残余物用石油醚/乙酸乙酯(20mL,1/1)搅拌洗涤,过滤收集滤饼得化合物29_4。
步骤五:向化合物29_4(350mg,383.78μmol,1eq)的MeOH(5mL)溶液中加入碳酸钾(132.60mg,959.45μmol,2.5eq)。将混合物在40℃下搅拌12小时后减压浓缩,残余物倒入水(10mL)中并用DCM(50mL)萃取。将合并的有机层用稀盐酸(10mL*3,0.1M)洗涤,无水硫酸钠干燥,过滤减压浓缩,将残余物用乙酸乙酯(30mL)洗涤,过滤并得到滤饼得化合物29_5。
步骤六:向化合物29_5(300mg,367.66μmol,1eq)的DMF(3mL)溶液中加入DIC(92.80mg,735.31μmol,113.86μL,2eq)和HOBt(99.36mg,735.31μmol,2eq)。混合物在室温下搅拌1小时后加入中间体A1(100.47mg,477.95μmol,1.3eq)和NaHCO 3(123.55mg,1.47mmol,57.20μL,4eq)。将混合物在室温下再搅拌13小时后倒入水(10mL)中,产生黄色沉淀,过滤并得到滤饼,将其通过制备型TLC(SiO 2,DCM/MeOH=10/1)纯化得化合物29_6。
步骤七:在0℃下向化合物29_6(100mg,79.12μmol,1eq)的DCM(1mL)溶液中加入TFA(1.54g,13.51mmol,1mL)。混合物搅拌30分钟加入石油醚/乙酸乙酯(10mL,1/2)并搅拌5分钟,过滤收集滤饼并通过制备型HPLC(柱:Boston Green ODS 150*30 5u;流动相:[水(0.225%甲酸)-ACN];乙腈%:3%-33%,10分钟)纯化得化合物29。 1H NMR(400MHz,D 2O)δ(ppm):8.34(s,1H),7.21(br d,J=9.3Hz,1H),6.92-6.88(m,2H),6.86(s,1H),4.60(br s,4H),4.46(br s,2H),4.36-4.19(m,3H),3.73(br s,1H),3.45(br d,J=14.3Hz,2H),3.07-2.98(m,2H),2.19(d,J=17.5Hz,2H),1.80(br d,J=10.0Hz,2H),1.40(s,3H),1.03(s,3H);LCMS(ESI)m/z:666.3(M+1)。
实施例30
Figure PCTCN2019073699-appb-000097
步骤一:向化合物4_4(1.23g,6.37mmol,1eq)的DMF(50mL)溶液中加入20_4(2.8g,6.94mmol,1eq)。将混合物在35℃下搅拌12小时后倒入水(50mL)中并搅拌5分钟。水相用乙酸乙酯(100mL×2)萃取,合并的有机相用盐水(30mL*2)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物30_1。
步骤二:在0℃下向化合物30_1(5g,9.46mmol,1eq),2-羟基异吲哚啉-1,3-二酮(1.85g,11.35mmol,1.2eq)和PPh 3(2.98g,11.35mmol,1.2eq)的THF(50mL)溶液中滴加DIAD(3.83g,18.92mmol,3.68mL,2eq)。混合物在25℃下搅拌1小时后减压浓缩,残余物通过硅胶色谱法纯化(石油醚/乙酸乙酯=5/1至0/1)得化合物30_2。
步骤三:向化合物30_2(2g,2.97mmol,1eq)的EtOH(20mL)溶液中加入NH 2NH 2·H 2O(174.84mg,2.97mmol,169.75μL,85%纯度,1eq)。混合物在25℃下搅拌2小时后减压浓缩,残余物用二氯甲烷/ 水(30mL/10mL)稀释,然后用DCM(100mL)萃取。将合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物30_3。
步骤四:向化合物30_3(1.5g,2.76mmol,1eq)的MeOH(6mL)和CH 2Cl 2(2mL)溶液中加入中间体A2(1.03g,2.48mmol,0.9eq)。混合物在25℃下搅拌30分钟后减压浓缩得化合物30_4。LCMS(ESI)m/z:940.4(M+1)。
步骤五:向化合物30_4(2.4g,1.81mmol,1eq)的MeOH(25mL)溶液中加入碳酸钾(749.67mg,5.42mmol,3eq)。将混合物在25℃下搅拌2小时后在40℃下再搅拌12小时。将混合物减压浓缩并将残余物倒入水溶液中,加入稀盐酸(30mL,1M)并搅拌5分钟。水相用DCM(100mL*2)萃取,合并有机相用饱和氯化钠(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物用乙酸乙酯(30mL)搅拌洗涤,过滤收集滤饼得化合物30_5。LCMS(ESI)m/z:844.3(M+1)。
步骤六:向化合物30_5(500mg,472.14μmol,1eq)的DMF(5mL)溶液中加入DIC(119.17mg,944.28μmol,146.22μL,2eq)和HOBt(127.59mg,944.28μmol,2eq)。将混合物在25℃下搅拌30分钟后加入中间体A1(129.02mg,613.78μmol,1.3eq)和NaHCO 3(158.65mg,1.89mmol,73.45μL,4eq),混合物在25℃下再搅拌12小时后加水(30mL)并搅拌5分钟,过滤并得到滤饼并通过硅胶色谱法(DCM/MeOH=50/1至10/1)纯化得化合物30_6。
步骤七:向化合物30_6(300mg,289.51μmol,1eq)的DCM(2mL)溶液中加入TFA(3.08g,27.01mmol,2mL)。将混合物在0℃下搅拌30分钟后加入乙酸乙酯/石油醚(30mL,1/1)并搅拌5分钟,过滤并得到滤饼并通过制备型HPLC(柱:Phenomenex Synergi C18 150*25*10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:4%-34%,12分钟)纯化得化合物30。
实施例31
Figure PCTCN2019073699-appb-000098
Figure PCTCN2019073699-appb-000099
步骤一:向化合物17(300mg,288.78μmol,1eq,3TFA)的DMF(5mL)溶液中加入三乙胺(116.89mg,1.16mmol,4eq)和N-[(叔丁氧基羰基氨基)-吡唑-1-基-亚甲基]氨基甲酸叔丁酯(107.55mg,346.53μmol,1.2eq)。将该混合物在40℃下搅拌12小时,然后通过制备型HPLC(柱:Phenomenex Synergi C18150×25×10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:15%-45%,11min)纯化得化合物31_1的三氟乙酸盐。LCMS(ESI)m/z:839.5(M+1)。
步骤二:向化合物31_1(90mg,84.35μmol,1eq,2TFA)的DCM(2mL)溶液中加入TFA(1.54g,13.51mmol,1mL,160.12eq)。将混合物在0℃下搅拌3小时减压浓缩除去溶剂,残余物通过制备HPLC(柱:Boston pH-lex 150×25×10μm;流动相:[水(0.1%TFA)-ACN];乙腈%:8%-38%,9min)纯化得化合物31。
LCMS(ESI)m/z:739.3(M+1); 1H NMR(400MHz,DMSO-d 6+D 2O)δ=7.28(br d,J=8.6Hz,1H),6.96-6.89(m,2H),6.81(s,1H),4.66(br d,J=17.9Hz,4H),4.58(s,1H),4.46-4.38(m,2H),4.19(br s,2H),3.35-3.22(m,2H),3.15(br t,J=6.9Hz,2H),2.99-2.87(m,4H),1.88-1.73(m,4H),1.37(s,3H),1.15(s,3H)ppm。
实施例32
Figure PCTCN2019073699-appb-000100
Figure PCTCN2019073699-appb-000101
步骤一:向中间体13_5(6.8g,26.69mmol,1eq),环氧乙烷-2-羧酸乙酯(7.75g,66.72mmol,2.5eq),
Figure PCTCN2019073699-appb-000102
分子筛(8g)的MTBE(10mL)溶液中加入催化剂A8(673.34mg,800.64μmol,0.03eq),混合物用氮气置换3次后在20℃下搅拌12小时。将反应混合物用乙酸乙酯(30mL)稀释并过滤,将滤液减压浓缩后通过柱色谱(SiO 2,石油醚/乙酸乙酯=6/1至3/1(v/v))纯化得到化合物32_1。
步骤二:在0℃下向化合物32_1(6.3g,17.32mmol,1eq)的DCM(20mL)溶液加入TFA(14.88g,130.51mmol,9.66mL,7.53eq),混合物在20℃下搅拌1小时后减压浓缩得到化合物32_2的三氟乙酸盐。
步骤三:向中间体A6(3.8g,7.30mmol,1eq)的DMF(30mL)溶液中加入三乙胺(2.95g,29.20mmol,4.06mL,4eq)和化合物32_2的三氟乙酸盐(5.33g,14.60mmol,2eq)。混合物在45℃下搅拌2小时后减压浓缩除去DMF,将残余物用水(50mL)稀释并用乙酸乙酯(50mL)萃取。合并有机层用饱和氯化钠水溶液(25mL)洗涤,用无水硫酸钠干燥,过滤并减压浓缩得残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=1/1至0/1)纯化得化合物32_3。
步骤四:向化合物32_3(3.3g,4.50mmol,1eq)的MeOH(20mL)溶液中加入NaOH(378.39mg,9.46mmol,2.1eq)。混合物在20℃下搅拌17小时后用稀盐酸(2M)将反应混合物调节pH=3-4,减压浓缩后残余物用甲醇(20mL)稀释溶解,然后过滤并减压浓缩,得到化合物32_4。
步骤五:化合物32_4(2g,3.45mmol,1eq)的MeOH(20mL)溶液中加入二苯基重氮甲烷(1.34g,6.90mmol,2eq)。混合物在20℃下搅拌12小时后将减压浓缩,残余物用水(20mL)稀释后再用DCM(40mL)萃取。将合并的有机层用饱和氯化钠水溶液(10mL)洗涤,无水硫酸钠干燥,然后过滤并减压浓缩,残余物通过柱色谱法(SiO 2,DCM/MeOH=20/1至10/1(v/v))纯化得化合物32_5。
步骤六:在0℃向化合物32_5(1.2g,1.42mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(278.65mg,1.71mmol,1.2eq)的THF(12mL)溶液中加入PPh 3(560.04mg,2.14mmol,1.5eq)和DIAD(431.75mg,2.14mmol,415.15uL,1.5当量)。混合物在20℃下搅拌1小时后减压浓缩除去THF,残余物通过柱色谱(SiO 2,DCM/EtOH=20/1至10/1(v/v))纯化得化合物32_6。
步骤七:向化合物32_6(1g,1.10mmol,1eq)的EtOH(10mL)溶液中加入NH 2NH 2·H 2O(77.95mg,1.32mmol,75.68uL,85%纯度,1.2eq)。混合物在20℃下搅拌30分钟后过滤并减压浓缩,残余物用水(10mL)稀释并用DCM(20mL)萃取,合并有机层用无水硫酸铵干燥,过滤并减压浓缩得化合物32_7。
步骤八:向化合物32_7(900mg,1.00mmol,1eq)的DCM(5mL)和EtOH(5mL)溶液中加入中间体A2(416.01mg,1.00mmol,1eq),在20℃下将混合物在氮气下搅拌1小时,然后将反应混合物减压浓缩,残余物通过柱色谱法(SiO 2,DCM/MeOH=20/1至10/1(v/v))纯化得化合物32_8。
步骤九:向化合物32_8(200mg,163.39umol,1eq)的DMF(2mL)溶液中加入N,N'-二异丙基碳二亚胺(41.24mg,326.77μmol,2eq)和HOBt(44.15mg,326.77μmol,2eq)。混合物在20℃下搅拌1小时后加入中间体A1(48.08mg,228.74μmol,1.4eq)和NaHCO 3(54.90mg,653.55μmol,25.42μL,4eq)并在20℃搅拌11小时。反应混合物用水(8mL)稀释,然后过滤收集固体得化合物32_9。
步骤十:在0℃下向化合物32_9(220mg,163.01μmol,1eq)的DCM(1mL)溶液中加入TFA(1.54g,13.51mmol,1mL,82.85eq)并搅拌1小时。反应液用石油醚/乙酸乙酯(10mL,4/1)稀释后过滤收集固体并通过制备HPLC(TFA,柱:Phenomenex Synergi C18 150×25×10μm;流动相:[水(0.1%TFA)-乙腈];乙腈%:1%-30%,9分钟)纯化得化合物32。
1H NMR(400MHz,D 2O)δ=7.23(d,J=8.4Hz,1H),7.10(s,1H),6.93-6.85(m,2H),5.19(dd,J=2.0,5.7Hz,1H),4.87-4.76(m,4H),4.64(s,1H),4.54-4.48(m,1H),4.44-4.37(m,1H),3.43(br t,J=7.3Hz,4H),3.04-2.91(m,4H),1.98(quin,J=7.6Hz,4H),1.41(s,3H),0.97(s,3H)ppm;LCMS(ESI)m/z:741.3(M+1)。
实施例33
Figure PCTCN2019073699-appb-000103
Figure PCTCN2019073699-appb-000104
步骤一:向化合物32_8(200mg,163.39μmol,1eq)的DMF(2mL)溶液中加入DIC(41.24mg,326.7850mmol,2eq)和HOBt(44.15mg,326.78μmol,2eq)。混合物在20℃下搅拌1小时,然后加入中间体A3(44.16mg,245.08μmol,1.5eq)和NaHCO 3(54.90mg,653.56μmol,25.42μL,4eq)并在20℃再搅拌11小时。反应混合物用水(8mL)稀释后过滤后收集固体得化合物33_1。
步骤二:在0℃下向化合物33_1(215mg,162.94μmol,1eq)的DCM(1mL)溶液中加入TFA(1.54g,13.50mmol,1mL,82.85eq)。将混合物在0℃下搅拌1小时后用石油醚/乙酸乙酯(10mL,4/1)稀释后过滤,收集固体并通过制备HPLC(TFA,柱:Phenomenex Synergi C18 150×25×10um;流动相:[水(0.1%TFA)-ACN];乙腈%:1%-30%,9min)纯化得化合物33。
1H NMR(400MHz,D 2O)δ=7.23(d,J=8.1Hz,1H),7.05(s,1H),6.97-6.88(m,2H),5.07(br d,J=3.9Hz,1H),4.87-4.76(m,4H),4.57(br d,J=11.6Hz,1H),4.50-4.41(m,1H),4.32(br s,1H),3.52-3.33(m,5H),2.97(br t,J=7.8Hz,4H),1.97(quin,J=7.4Hz,4H),1.13(br d,J=6.0Hz,3H)ppm;LCMS(ESI)m/z:711.3(M+1)。
实施例34
Figure PCTCN2019073699-appb-000105
Figure PCTCN2019073699-appb-000106
步骤一:向中间体A4(3g,8.26mmol,1.01eq)的DMF(30mL)溶液中加入三乙胺(2.16g,41.06mmol,5.72mL,5eq)和32_2(3g,8.21mmol,8.21eq),混合物在40℃下搅拌12小时后冷却至室温,然后将残余物倒入水(50mL)中并搅拌5分钟。水相用乙酸乙酯(200mL*2)萃取。将合并的有机相用饱和氯化钠(50mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩。残余物通过硅胶色谱(石油醚/乙酸乙酯=10/1至0/1)纯化得化合物34_1。
步骤二:向化合物34_1(2.2g,3.37mmol,1eq)的甲醇(20mL)溶液中加入氢氧化钠(337.06mg,8.43mmol,2.5eq)。混合物在15℃下搅拌14小时后再加入氢氧化钠(337.06mg,8.43mmol,2.5eq),将混合物在15℃再搅拌17小时。冷却至室温后将混合物的pH值调至6~7,并在33℃减压浓缩得化合物34_2。
步骤三:向化合物34_2(1.3g,3.08mmol,eq)的甲醇(15mL)溶液中加入二苯基重氮甲烷(1.79g,9.23mmol,3eq)。混合物在15℃搅拌12小时后减压浓缩。残余物通过硅胶色谱法(二氯甲烷/甲醇=30/1至10/1)纯化得化合物34_3。
步骤四:向化合物34_3(1.14g,1.94mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(379.08mg,2.32mmol,1.2eq)的四氢呋喃(15mL)溶液中加入偶氮二甲酸二异丙酯(783.15mg,3.87mmol,753.03μL,2eq) 和三苯基膦(609.50mg,2.32mmol,1.2eq)。将该混合物在15℃下搅拌3小时后减压浓缩,残余物通过硅胶色谱法(二氯甲烷/甲醇=1/0至10/1)纯化得化合物34_4。
步骤五:向化合物34_4(1.4g,1.91mmol,1eq)的乙醇(25mL)溶液中加入NH 2NH 2·H 2O(112.36mg,1.91mmol,109.09μL,85%纯度,1e q)。混合物在15℃持续反应30分钟后过滤并收集液体,减压浓缩得化合物34_5。
步骤六:化合物34_5(1.1g,1.82mmol,1eq)的甲醇(6mL)和二氯甲烷(2mL)溶液中加入中间体A2(679.69mg,1.64mmol,0.9eq)。在15℃搅拌1小时后减压浓缩,残余物用(石油醚/乙酸乙酯=1/2,30mL*2)洗涤得化合物34_6。
步骤七:向化合物34_6(300mg,299.95μmol,1eq)的DMF(3mL)溶液中加入HOBt(81.06mg,599.90μmol,2eq)和N,N'-二异丙基碳二亚胺(75.71mg,599.90umol,92.89μL,2eq)。混合物在10℃搅拌1小时后加入中间体A1(81.97mg,389.94μmol,1.3eq)和NaHCO 3(100.79mg,1.20mmol,46.66μL,4eq)。将混合物在30℃在搅拌11小时后,向混合物中加水(5mL)并搅拌5分钟,过滤并收集滤饼得化合物34_7。
步骤八:向化合物34_7(300mg,251.60umol,1eq)的二氯甲烷(1mL)溶液中加入三氟乙酸(4.62g,40.52mmol,3mL,161.04eq)。混合物在0℃搅拌1小时后向混合物中加入石油醚/乙酸乙酯(10mL,1/3)并搅拌5分钟,过滤后收集滤饼并通过制备型高效液相色谱(柱:Phenomenex Synergi C18 150×25×10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:1%-30%,9分钟)纯化得化合物34。
1H NMR(400MHz,D 2O)δ=7.25-7.16(m,1H),7.04(s,1H),6.86(br s,2H),5.06(br d,J=4.2Hz,1H),4.61(br s,1H),4.55(br d,J=7.1Hz,4H),4.46(br d,J=9.7Hz,1H),4.40-4.32(m,1H),3.33(br t,J=6.8Hz,2H),3.07-2.94(m,2H),1.99-1.83(m,2H),1.37(s,3H),0.94(s,3H)ppm;LCMS(ESI)m/z:684.7(M+1)。
实施例35
Figure PCTCN2019073699-appb-000107
步骤一:向中间体34_6(300mg,299.95μmol,1eq)的DMF(3mL)溶液中加入HOBt(81.06mg,599.90μmol,2eq)和N,N'-二异丙基碳二亚胺(75.71mg,599.90μmol,92.89μL,2eq)。将混合物在10℃下搅拌1小时后加入中间体A3(64.85mg,359.94μmol,1.2eq)和碳酸氢钠(100.79mg,1.20mmol,46.66μL,4eq),混合物在30℃下再搅拌11小时后加入水(5mL)并搅拌5分钟,过滤后收集滤饼得化合物35_1。
步骤二:向化合物35_1(300mg,258.10μmol,1eq)的二氯甲烷(1mL)溶液中加入三氟乙酸(29.43mg,258.10μmol,19.11μL,1eq)。混合物在0℃下搅拌1小时后加入石油醚/乙酸乙酯(10mL,1/3)并搅拌5分钟,过滤并收集滤饼,滤饼通过制备型高效液相色谱(柱:Phenomenex Synergi C18 150×25×10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:1%-30%,9分钟)纯化得化合物35。
1H NMR(400MHz,D 2O)δ=7.17(d,J=9.2Hz,1H),7.01(s,1H),6.92-6.78(m,2H),5.06(br s,1H),4.57-4.43(m,1H),4.58-4.37(m,5H),4.28(br s,1H),3.29(br t,J=6.7Hz,2H),3.04-2.92(m,2H),1.96-1.83(m,2H),1.12(br d,J=4.9Hz,3H)ppm;LCMS(ESI)m/z:654.3(M+1)。
实施例36
Figure PCTCN2019073699-appb-000108
Figure PCTCN2019073699-appb-000109
步骤一:向36_1(5g,26.56mmol,1eq)的甲醇(50mL)溶液中加入醋酸钠(5.45g,66.40mmol,2.5eq)和溴化腈(5.63g,53.12mmol,2eq)。混合物在10℃下搅拌3小时后倒入饱和碳酸氢钠(20mL)溶液中并搅拌5分钟,然后用乙酸乙酯(100mL*2)萃取。将合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并真空浓缩,残余物通过硅胶色谱(石油醚/乙酸乙酯=3/1至0/1)纯化得化合物36_2。
步骤二:向化合物36_2(5.6g,26.26mmol,1eq)的四氢呋喃(50mL)溶液中加入吡唑盐酸盐(2.74g,26.26mmol,1eq)。将混合物在70℃下搅拌12小时后过滤并收集滤饼得化合物36_3。
步骤三:向化合物36_3(6g,18.88mmol,1eq,HCl)的二氯甲烷(60mL)溶液中加入三氟乙酸酐(3.97g,18.88mmol,2.63mL,1eq)和三乙胺(3.82g,37.76mmol,5.26mL,2eq)。混合物在0℃搅拌30分钟后倒入水(20mL)中并搅拌5分钟。水相用二氯甲烷(100mL)萃取,合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物36_4。
步骤四:向化合物32_2(1.5g,4.11mmol,1eq,TFA)的DMF(15mL)溶液中加入三乙胺(2.08g,20.55mmol,5eq)和化合物36_4(1.55g,4.11mmol,1eq)。混合物在40℃下搅拌12小时后倒入水(30mL)中并搅拌5分钟,混合物水相用乙酸乙酯(100mL*2)萃取。将合并的有机相用饱和氯化钠(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱(石油醚/乙酸乙酯=10/1至0/1)纯化得化合物36_5。
步骤五:向化合物36_5(1g,1.78mmol,1eq)的甲醇(15mL)溶液中加入氢氧化钠(178.39mg,4.46mmol,2.5eq)。混合物在15℃搅拌12小时后再加入氢氧化钠(178.39mg,4.46mmol,2.5eq),混合物在15℃再搅拌17小时后再将它的pH值调至6~7,然后减压浓缩得化合物36_6。
步骤六:向化合物36_6(770mg,1.76mmol,1eq)的MeOH(10mL)溶液中加入二苯基重氮甲烷(1.03g,5.29mmol,3eq)。混合物在15℃搅拌12小时后减压浓缩浓缩,残余物通过硅胶色谱(二氯甲烷/甲醇=50/1至10/1)纯化得化合物36_7。
步骤七:向化合物36_7(500mg,829.57μmol,1eq)和2-羟基异吲哚啉-1,3-二酮(202.99mg,1.24mmol,1.5eq)的四氢呋喃(5mL)溶液中加入三苯基膦(326.38mg,1.24mmol,1.5eq)和偶氮二甲酸二异丙酯(335.49mg,1.66mmol,2eq)。混合物在15℃下搅拌12小时后减压浓缩,残余物通过硅胶色谱(石油醚/乙酸乙酯=10/1至0/1)纯化得化合物36_8。
步骤八:向化合物36_8(400mg,408.91μmol,1eq)的乙醇(4mL)溶液中加入NH 2NH 2·H 2O(24.08mg,408.91umol,23.38μL,85%纯度,1eq)。混合物在15℃搅拌30分钟后过滤并将滤液减压浓缩,然后将残余物倒入水(10mL)中并搅拌5分钟后用二氯甲烷(100mL)萃取。合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并真空浓缩得化合物36_9。
步骤九:向化合物36_9(230mg,372.33μmol,eq)的甲醇(3mL)和二氯甲烷(1mL)溶液中加入中间体A2(138.89mg,335.10μmol,0.9eq)。混合物在15℃搅拌30分钟后减压浓缩得化合物36_10。
步骤十:向化合物36_10(200mg,197.20μmol,1eq)的DMF(2mL)溶液中加入N,N'-二异丙基碳二亚胺(49.77mg,394.40μmol,61.07eq)和HOBt(53.29mg,394.40μmol,2eq)。将混合物在15℃下搅拌1小时后加入中间体A1(62.18mg,295.80μmol,1.5eq)和碳酸氢钠(66.26mg,788.80μmol,4eq)。混合物在15℃再搅拌15小时后倒入水(10mL)中并搅拌5分钟,过滤收集滤饼得化合物36_11。
步骤十一:向化合物36_11(230.00mg,190.65μmol,1eq)的二氯甲烷(1mL)溶液中加入三乙胺(21.74mg,190.65μmol,14.12μL,1eq)。混合物在0℃下搅拌1小时加入石油醚/乙酸乙酯(10mL,1/3)并搅拌5分钟,过滤,收集滤饼并通过制备型高效液相色谱(柱:Boston Green ODS 150×30 5μ;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:1%-30%,10分钟)纯化得化合物36。
1H NMR(400MHz,D 2O)δ=7.23(br d,J=8.9Hz,1H),7.07(s,1H),6.89(br s,2H),5.07(br d,J=5.7Hz,1H),4.65-4.55(m,5H),4.52-4.32(m,2H),3.29(br s,2H),2.99(br t,J=6.4Hz,2H),1.68(br s,4H),1.41-1.36(m,3H),1.01(s,3H)ppm;LCMS(ESI)m/z:698.4(M+1)。
实施例37
Figure PCTCN2019073699-appb-000110
步骤一:向化合物36_10(120mg,118.32μmol,1eq)的DMF(1mL)溶液中加入N,N'-二异丙基碳二亚胺(29.86mg,236.64μmol,36.64 2eq)和HOBt(31.98mg,236.64μmol,2eq)。混合物在15℃下搅拌1小时后加入中间体A3(25.58mg,141.99μmol,1.2eq)和碳酸氢钠(39.76mg,473.28umol,18.41μL,4eq)。混合物在15℃搅拌11小时后加水(10mL)并搅拌5分钟,过滤并得到滤饼得化合物37_1。
步骤二:向化合物37_1(100mg,85.01μmol,1eq)的二氯甲烷(1mL)溶液中加入三氟乙酸(3.08g,27.01mmol,2mL,317.76eq)。混合物在0℃下搅拌1小时后加入石油醚/乙酸乙酯(10mL,1/3)中并搅拌5分钟,过滤,收集滤饼并通过制备型高效液相色谱(柱:Phenomenex Synergi C18 150×25×10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:1%-30%,9分钟)纯化得化合物37。
1H NMR(400MHz,D 2O)δ=7.22(br d,J=9.2Hz,1H),7.06(s,1H),6.92(br s,2H),5.09(br s,1H),4.63-4.51(m,5H),4.49-4.41(m,1H),4.33(br s,1H),3.63(br s,1H),3.27(br t,J=6.1Hz,2H),2.98(br t,J=6.7Hz,2H),1.66(br s,4H),1.17(br d,J=6.1Hz,3H)ppm;LCMS(ESI)m/z:(M+1)。
实施例38
Figure PCTCN2019073699-appb-000111
Figure PCTCN2019073699-appb-000112
步骤一:向化合物38_1(4.7g,21.93mmol,1eq)的甲醇(50mL)溶液中加入醋酸钠(4.50g,54.83mmol,2.5eq)和溴化腈(4.65g,43.86mmol,,2eq)。混合物在10℃下搅拌3小时后倒入饱和碳酸氢钠(20mL)中并搅拌5分钟。水相用乙酸乙酯(100mL*2)萃取。将合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物38_2。
步骤二:向化合物38_2(5.2g,21.73mmol,1eq)的THF(50mL)溶液中加入吡唑(2.27g,21.73mmol,1eq)盐酸盐。将混合物在70℃下搅拌12小时后冷却,过滤并得到滤饼得化合物38_3。
步骤三:向化合物38_3(6.6g,19.19mmol,1eq,HCl)的二氯甲烷(60mL)溶液中加入三氟乙酸酐(4.03g,19.19mmol,2.67mL,1eq)和三乙胺(3.88g,38.39mmol,5.34mL,2eq)。将混合物在0℃搅拌30分钟后倒入水(20mL)中并搅拌5分钟。水相用二氯甲烷(100mL)萃取。合并的有机相用饱和氯化钠(20mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物38_4。
步骤四:向化合物38_4(2g,4.96mmol,0.60eq)的DMF(30mL)溶液中加入三乙胺(4.16g,41.06mmol,5.72mL,5eq)和32_2(3g,8.21mmol,1eq)的三氟乙酸盐。混合物在40℃下搅拌12小时后倒入水(100mL)中并搅拌5分钟。混合物用乙酸乙酯(200mL)萃取,得到的有机相用饱和氯化钠(30mL) 洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱(石油醚/乙酸乙酯=10/1至0/1)纯化得化合物38_5。
步骤五:向化合物38_5(1.8g,3.07mmol,1eq)的甲醇(20mL)溶液中加入氢氧化钠(306.83mg,7.67mmol,2.5eq),混合物在15℃下搅拌15小时后再加入NaOH(306mg),再搅拌12小时后用稀盐酸调节pH至5~6,然后减压浓缩得化合物38_6。
步骤六:向化合物38_6(1.4g,3.03mmol,1eq)的甲醇(15mL)溶液中加入二苯基重氮甲烷(1.76g,9.08mmol,3eq)。将混合物在15℃搅拌12小时后减压浓缩,残余物通过硅胶色谱法(二氯甲烷/甲醇=50/1至10/1)纯化得化合物38_7。
步骤七:向化合物38_7(680mg,1.08mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(264.64mg,1.62mmol,1.5eq)的THF(8mL)溶液中加入三苯基膦(425.49mg,1.62mmol,1.5eq)和偶氮二甲酸二异丙酯(437.38mg,2.16mmol,420.55μL,2eq)。将混合物在15℃下搅拌12小时后减压浓缩,残余物通过硅胶色谱法(二氯甲烷/甲醇=50/1至10/1)纯化得化合物38_8。
步骤八:向化合物38_8(500mg,646.10μmol,1eq)的乙醇(2mL)溶液中加入NH 2NH 2·H 2O(38.05mg,646.10μmol,36.94μL,85%纯度,1eq)。混合物在15℃搅拌30分钟后减压浓缩得化合物38_9。
步骤九:向化合物38_9(500mg,776.67μmol,1eq)的二氯甲烷(2mL)和甲醇(6mL)溶液中加入中间体A2(289.72mg,699.01umol,0.9eq)。将混合物在15℃搅拌30分钟后减压浓缩化合物38_10。
步骤十:向化合物38_10(200mg,192.26umol,1eq)的DMF(2mL)溶液中加入N,N'-二异丙基碳二亚胺(48.53mg,384.53g胺ol,59.54 2eq)和HOBt(51.96mg,384.53geql,2eq)。将混合物在15℃搅拌1小时后加入中间体A1(60.62mg,288.40μmol,1.5eq)和碳酸氢钠(64.61mg,769.06μmol,29.91μL,4eq),将混合物在15℃再搅拌11小时加入水(10mL)并搅拌五分钟,抽滤后收集滤饼干燥后得化合物38_11。
步骤十一:向化合物38_11(200mg,162.28μmol,1eq)的二氯甲烷(1mL)溶液中加入三氟乙酸(3.08g,27.01mmol,2mL,166.45eq)。混合物在0℃下搅拌1小时后加石油醚/乙酸乙酯(10mL,1/3),过滤,得到滤饼用制备高效液相色谱(柱:Boston Prime C18 150*30mm 5μm水(0.1%三氟乙酸)-乙腈)纯化得化合物38。
1H NMR(400MHz,D 2O)δ=7.23(br d,J=9.0Hz,1H),7.08(s,1H),6.94-6.86(m,2H),5.10(br s,1H),4.61(br s,1H),4.58(br s,3H),4.50(br d,J=9.5Hz,2H),4.46-4.36(m,1H),3.44(br s,1H),3.19(br s,1H),2.10(br d,J=5.6Hz,4H),1.51(br t,J=9.1Hz,4H),1.43(s,3H),1.05(s,3H)ppm;LCMS(ESI)m/z:724.3(M+1)。
实施例39
Figure PCTCN2019073699-appb-000113
Figure PCTCN2019073699-appb-000114
步骤一:向化合物38_10(100mg,96.13μmol,1eq)的DMF(1mL)溶液中加入N,N'-二异丙基碳二亚胺(24.26mg,192.27μmol,29.77 2eq)和HOBt(25.98mg,192.27μmol,2eq)。将混合物在15℃下搅拌1小时后加入中间体A3(20.79mg,115.36μmol,1.2eq)和碳酸氢钠(32.30mg,384.53μmol,14.96μL,4eq),混合物在15℃再搅拌11小时加入到水(10mL)中,过滤并收集滤饼得化合物39_1。
步骤二:向化合物39_1(100mg,83.17μmol,1eq)的二氯甲烷(1mL)溶液中加入三氟乙酸(3.08g,27.01mmol,2mL,324.79eq)。混合物在0℃下搅拌1小时后加入石油醚/乙酸乙酯(10mL,1/3),过滤后收集滤饼并通过制备型高效液相色谱(柱:Boston Prime C18 150×30mm 5μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:10%-27%,7min)纯化得化合物39。
1H NMR(400MHz,D 2O)δ=7.31-7.18(m,1H),7.04(s,1H),6.94(br s,2H),5.00(br s,1H),4.53(br d,J=11.7Hz,3H),4.46-4.39(m,2H),4.34(m,2H),3.76-3.56(m,1H),3.43(br s,1H),3.18(br s,1H),2.17-1.99(m,4H),1.49(br s,4H),1.18(br d,J=2.9Hz,3H)ppm;LCMS(ESI)m/z:694.4(M+1)。
实施例40
Figure PCTCN2019073699-appb-000115
Figure PCTCN2019073699-appb-000116
步骤一:向化合物32_2(10.5g,21.91mmol,1eq,2TFA)的DMF(80mL)溶液中加入三乙胺(6.65g,65.73mmol,5mL)和化合物12_4(8.55g,21.91mmol,1eq)。将混合物在40℃下搅拌14小时,将残余物倒入水(50mL)中并搅拌5分钟。水相用乙酸乙酯(100mL*2)萃取,将合并的有机相用饱和氯化钠(30mL)洗涤,用无水硫酸钠干燥后过滤并减压浓缩,残余物通过硅胶色谱法(SiO 2,石油醚/乙酸乙酯=10/1至0/1)纯化得化合物40_1;
步骤二:向化合物40_1(5g,8.73mmol,1eq)的甲醇(50mL)溶液中加入氢氧化钠(1.40g,34.93mmol,4eq)。混合物在25℃下搅拌14小时后将混合物的pH值调至3-5,然后将混合物在40℃减压浓缩得化合物40_2;
步骤三:向化合物40_2(3.9g,8.70mmol,1eq)的甲醇(40mL)溶液中分批加入二苯基重氮甲烷(4.5g,23.17mmol,2.66eq)。混合物在20℃下搅拌12小时后减压浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=1/0至10/1)纯化得化合物40_3;
步骤四:向化合物40_3(3g,4.88mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(875.72mg,5.37mmol,1.1eq)的四氢呋喃(30mL)溶液中加入三苯基膦(1.92g,7.32mmol,1.5eq)和DIAD(1.97g,9.76mmol, 1.90mL,2eq)。混合物在25℃下搅拌12小时后减压真空浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=50/1至10/1)纯化得化合物40_4。LCMS(ESI)m/z:760.4(M+1);
步骤五:向化合物40_4(2.5g,3.29mmol,1eq)的乙醇(25mL)溶液中加入NH 2NH 2·H 2O(193.77mg,3.29mmol,188.13μL,85%纯度,1eq)。将混合物在15℃搅拌30分钟后减压浓缩,将残余物过滤并得到过滤液体,真空浓缩得化合物40_5。
步骤六:向化合物40_5(2g,3.18,1eq)的甲醇(12mL)和二氯甲烷(4mL)溶液中加入中间体A2(1.19g,2.86mmol,0.9eq)。将混合物在15℃搅拌30分钟后减压浓缩得化合物40_6。LCMS(ESI)m/z:1026.6(M+1);
步骤七:向化合物40_6(3g,2.92mmol,1eq)的DMF(30mL)溶液中加入N,N’-二异丙基碳二亚胺(737.01mg,5.84mmol,904.30μL,2eq)和HOBt(789.10mg,5.84mmol,2eq)。混合物在25℃下搅拌1小时后加入中间体A1(920.71mg,4.38mmol,1.5eq)和碳酸氢钠(981.20mg,11.68mmol,4eq),将混合物在25℃再搅拌12小时后倒入水(20mL)中并搅拌5分钟。将混合物过滤后收集滤饼干燥后得化合物40_7。
步骤八:向化合物40_7(4.00g,3.28mmol,1eq)的二氯甲烷(30mL)溶液中加入三氟乙酸(46.20g,405.18mmol,30.00mL,123.42eq)。混合物在0℃持续1小时后加入石油醚/乙酸乙酯(50mL,v/v=1/2)并搅拌5分钟。将混合物过滤并收集滤饼,将其通过制备型高效液相色谱(柱:Phenomenex Synergi Max-RP 250*50mm*10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:5%-35%,20分钟,40%分钟)纯化得化合物40。
1H NMR(400MHz,d 6-DMSO)δ=7.28-7.21(m,1H),7.08(d,J=2.3Hz,1H),6.91(br s,2H),5.09(br s,1H),4.69-4.68(m,1H),4.68-4.65(m,1H),4.62(br s,2H),4.60(s,1H),4.54-4.47(m,1H),4.43(br s,1H),3.84-3.72(m,1H),3.50(br d,J=13.8Hz,2H),3.08(br t,J=12.1Hz,2H),2.24(br d,J=13.7Hz,2H),1.93-1.77(m,2H),1.42(s,3H),1.01(s,3H)ppm;LCMS(ESI)m/z:710.3(M+1)。
实施例41
Figure PCTCN2019073699-appb-000117
Figure PCTCN2019073699-appb-000118
步骤一:向化合物41_1(10g,49.93mmol,1eq)的甲醇(10mL)溶液中加入溴化腈(11g,103.85mmol,7.64mL,2.08eq)和醋酸钠(10.24g,124.83mmol,2.5eq)。混合物在20℃下搅拌1小时倒入水(50mL)中并搅拌5分钟,水相用乙酸乙酯(100mL*3)萃取,将合并的有机相用饱和氯化钠(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物41_2;
步骤二:向化合物41_2(11g,48.83mmol,1eq)的四氢呋喃(80mL)溶液中加入吡唑盐酸盐(5.61g,53.71mmol,1.1当量)。将混合物在70℃下搅拌12小时后过滤,滤液减压浓缩得化合物41_3;LCMS(ESI)m/z:294.0(M+1);
步骤三:向化合物41_3(11g,37.50mmol,1eq)的二氯甲烷(100mL)溶液中加入三氟乙酸酐(7.88g,37.50mmol,5.22mL,1eq)和三乙胺(7.59g,74.99mmol,10.44mL,2eq)。将混合物在15℃搅拌1小时后倒入水(50mL)中并搅拌5分钟。水相用二氯甲烷(100mL*2)萃取,合并的有机相用饱和氯化钠(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物41_4;
步骤四:向化合物32_2的三氟乙酸盐(10g,27.37mmol,1eq)的DMF(100mL)溶液中加入三乙胺(11.08g,109.50mmol,15.24mL,4eq)和化合物41_4(10g,25.68mmol,0.94eq)。将该混合物在40℃下搅拌12小时后倒入水(50mL)中并搅拌5分钟。水相用乙酸乙酯(200mL*2)萃取,将合并的有机相用盐水(50mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱法(SiO 2,石油醚/乙酸乙酯=1/0至0/1)纯化得化合物41_5。
步骤五:向化合物41_5(6g,10.48mmol,1eq)的甲醇(60mL)溶液中加入氢氧化钠(1.68g,41.92mmol,4eq)。将混合物在20℃下搅拌12小时后在35℃再搅拌3小时,将混合物的pH值调至4~5并减压浓缩得化合物41_6。
步骤六:向化合物41_6(4.7g,10.48mmol,1eq)的甲醇(60mL)溶液中滴加到二苯基重氮甲烷(5.9g,30.38mmol,2.90eq)的二氯甲烷(60mL)溶液中。混合物在20℃下搅拌1小时后用二氯甲烷(100mL)萃取。将合并的有机相用饱和氯化钠(100mL*2)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=1/0至10/1)纯化得化合物41_7。
步骤七:向化合物41_7(1.92g,7.32mmol,1.5eq)的四氢呋喃(30mL)溶液中加入2-羟基异吲哚啉-1,3-二酮(835.91mg,5.12mmol,1.05eq),三苯基膦(1.92g,7.32mmol,1.5eq)和DIAD(1.97g,9.76mmol,1.90mL,2eq)。将混合物在20℃下搅拌12小时减压浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=50/1至20/1)纯化得化合物41_8。LCMS(ESI)m/z:760.6(M+1)。
步骤八:向化合物41_8(2.7g,2.97mmol,1eq)的乙醇(30mL)溶液中加入NH 2NH 2·H 2O(174.64mg,2.97mmol,169.55μL,85%纯度,1eq)。混合物在20℃下搅拌20分钟,过滤混合物并减压浓缩得化合物41_9。
步骤九:向化合物41_9(1.24g,3.00mmol,3.13mmol,1eq)的甲醇(27mL)和二氯甲烷溶液(9mL)加入中间体A2(1.24g,3.00mmol,0.9eq))。混合物在20℃下搅拌30分钟后减压浓缩,所得固体用石油醚/乙酸乙酯(30mL,v/v=1/1)洗涤得化合物41_10。LCMS(ESI)m/z:1026.4(M+1);
步骤十:向化合物41_10(3g,2.53mmol,1eq)的DMF(30mL)溶液中加入HOBt(682.58mg,5.05mmol,2eq)和DIC(637.52mg,5.05mmol,782.23μL,2eq)。混合物在20℃下搅拌1小时后加入中间体A1(796.42mg,3.79mmol,1.5eq)和碳酸氢钠(848.77mg,10.10mmol,392.95μL,4eq),将混合物在20℃下搅拌12小时倒入水(30mL)中并搅拌5分钟,然后过滤并收集滤饼得化合物41_11。
步骤十一:向化合物41_11(3.5g,2.87mmol,1eq)的二氯甲烷(10mL)溶液中加入三氟乙酸(13.48g,118.18mmol,8.75mL,41.14eq)。混合物在0℃下搅拌1小时后加入石油醚/乙酸乙酯(30mL,v/v=1/3)中并搅拌5分钟,过滤并获得滤饼。残余物通过制备高效液相色谱(柱:Kromasil 250*50mm*10um;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:2乙腈%-30乙腈%,25分钟,69%分钟)纯化得化合物41。 1H NMR(400MHz,d 6-DMSO)δ=7.26(br d,J=8.8Hz,1H),7.10(br s,1H),6.92(br s,2H),5.21-5.09(m,1H),5.06-4.92(m,1H),4.62-4.60(m,2H),4.57(br s,2H),4.47-4.37(m,2H),3.96-3.81(m,1H),3.54(br d,J=12.2Hz,1H),3.34(br d,J=12.8Hz,1H),3.07-2.91(m,2H),2.17(br s,1H),2.03(br d,J=9.7Hz,1H),1.87-1.64(m,2H),1.42(s,3H),1.00(br s,3H)ppm;LCMS(ESI)m/z:710.4(M+1)。
实施例42
Figure PCTCN2019073699-appb-000119
步骤一:向化合物42_1(6g,32.21mmol,5.45mL,1eq)的甲醇(50mL)溶液中加入溴化腈(6.82g,64.43mmol,4.74mL,2eq),醋酸钠(13.21g,161.07mmol,5eq)。反应在室温(15-25℃)下搅拌2小时后用水(50mL)稀释,混合物用乙酸乙酯(50mL*2)萃取并将合并的有机相用饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤后减压浓缩得到化合物42_2;
步骤二:向化合物42_2(7g,33.13mmol,1eq)的四氢呋喃(50mL)溶液中加入吡唑盐酸盐(2.26g,21.58mmol,0.65eq)。将混合物在65℃下搅拌12小时后减压出去溶剂得化合物42_3;
步骤三:向化合物42_3(10g,31.67mmol,1eq,HCl)的二氯甲烷(100mL)溶液中加入三氟乙酸酐(6.65g,31.67mmol,4.40mL,1eq)和三乙胺(9.61g,95.00mmol,13.22mL,3eq)。将混合物在0℃下搅拌1小时倒入水(30mL)中并搅拌5分钟,将水相用二氯甲烷(100mL)萃取,合并的有机相用稀盐酸(30mL,0.5M)洗涤,饱和氯化钠盐水(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩得化合物42_4;
步骤四:向化合物32_2(6.3g,17.25mmol,1eq,TFA)的DMF(60mL)溶液中加入三乙胺
(6.98g,68.98mmol,4eq)和化合物42_4(5.83g,15.52mmol,0.9eq)。将混合物在20℃下搅拌2小时后减压浓缩,将残余物倒入水(20mL)中并搅拌5分钟。水相用乙酸乙酯(100mL*2)萃取,合并的有机相用饱和氯化钠(30mL*2)洗涤,无水硫酸钠干燥,过滤并减压浓缩,残余物通过硅胶色谱法(SiO 2,石油醚/乙酸乙酯=5/1至0/1)纯化得化合物42_5;
步骤五:向化合物42_5(4.7g,8.41mmol,1eq)的甲醇溶液中加入氢氧化钠(1.35g,33.66mmol,4eq),混合物在20℃下搅拌14小时后调节pH值至4~5,并在40℃下减压浓缩得化合物42_6;
步骤六:向化合物42_6(3.6g,8.29mmol,1eq)的甲醇(30mL)溶液中滴加二苯基重氮甲烷(4.83g,24.87mmol,3eq)的二氯甲烷(50mL)溶液。将混合物在20℃下搅拌12小时小时后减压浓缩,残余物通过硅胶色谱法(SiO 2,二氯甲烷/甲醇=50/1至10/1)纯化得化合物42_7;
步骤七:向化合物42_7(1.6g,2.66mmol,1eq)和2-羟基异吲哚啉-1,3-二酮(477.95mg,2.93mmol,1.1eq量)的四氢呋喃(20mL)溶液中加入三苯基膦(1.05g,4.00mmol,1.5eq)和DIAD(1.08g,5.33mmol,1.04mL,2eq)。混合物在20℃下搅拌12小时后减压浓缩,残余物通过硅胶色谱(SiO 2,二氯甲烷/甲醇=50/1至10/1)纯化得化合物42_8;
步骤八:向化合物42_8(1.2g,1.61mmol,1eq)的乙醇(10mL)溶液中加入NH 2NH 2·H 2O(94.76mg,1.61mmol,92.00μL,85%纯度,1eq),混合物在20℃下搅拌1小时后减压浓缩,过滤后减压出去溶剂得化合物42_9;
步骤九:向化合物42_9(810mg,1.32mmol,1eq)的甲醇(6mL)和二氯甲烷(2mL)溶液中加入中间体A2(545.26mg,1.32mmol,1eq)。混合物在20℃下搅拌30分钟后减压浓缩得化合物42_10;
步骤十:向化合物42_10(1.2g,1.19mmol,1eq)的DMF(12mL)溶液中加入DIC(299.23mg,2.37mmol,367.16μL,2eq)和HOBt(320.39mg,2.37mmol,2eq)。混合物在20℃下搅拌1小时后加入中间体A1(373.82mg,1.78mmol,1.5eq)和碳酸氢钠(398.38mg,4.74mmol,4eq),将混合物在20℃再搅拌12小时倒入水(30mL)中并搅拌5分钟,过滤后收集滤饼干燥后得化合物42_11;
步骤十一:向化合物42_11(1.4g,1.16mmol,1eq)的二氯甲烷(10mL)溶液中加入三氟乙酸(15.40g,135.06mmol,10mL,116.19eq)。混合物在0℃下搅拌1小时倒入石油醚/乙酸乙酯(30mL,v/v=1/4)中并搅拌5分钟,过滤收集滤饼通过制备型高效液相色谱柱(Phenomenex Synergi C18 150×25×10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:5%-35%,9分钟)纯化得化合物42。LCMS(ESI)m/z:696.6(M+1). 1H NMR(400MHz,D 2O)δ=7.24(br d,J=9.0Hz,1H),7.09(s,1H),6.94-6.88(m,2H),5.15(br d,J=5.9Hz,2H),4.64-4.63(m,1H),4.60(s,2H),4.53(br s,1H),4.50(br s,1H),4.47-4.40(m,2H),3.64(dd,J=6.7,12.7Hz,1H),3.58-3.49(m,1H),3.47-3.40(m,2H),2.48-2.36(m,1H),2.21(dt,J=5.8,13.4Hz,1H),1.42(s,3H),1.00(s,3H)ppm。
实施例43
Figure PCTCN2019073699-appb-000120
步骤一:在-30~-10℃下,向化合物13_5(130g,508.33mmol,1eq)的THF(1200mL)和DMF(300mL)溶液中加入NaH(38.22g,955.67mmol,60%纯度,1.88eq),搅拌15分钟后将中间体A10(53.80g,432.08mmol,0.85eq)分批次缓慢地加入到反应液中,将混合物加热至70-75℃反应3小时后冷却至室温,将混合物用水(1500mL)稀释后用乙酸乙酯(500mL*2)洗涤,合并的有机层用水(500mL)洗涤,合并水层后用稀盐酸(1M)酸化至pH=1,然后用乙酸乙酯(700mL*3)萃取,合并有机相用盐水(500mL)洗涤后浓缩,再向残余物中加入乙酸乙酯/石油醚(1500mL,1/1)并搅拌直至沉淀出大部分固体,过滤收集固体得化合物43_1。
步骤二:在0-5℃下,向化合物43_1(60g,185.56mmol,1eq)的DCM(420mL)溶液中加入三氟乙酸(215.60g,1.89mol,140mL,10.19eq),搅拌1.5小时后减压浓缩得化合物43_2。
步骤三:向化合物43_2(52.15g,154.63mmol,1eq,TFA)的水(500mL)溶液中加入碳酸氢钠(64.95g,773.17mmol,5当量),然后冷却至0-5℃,将BrCN(19.65g,185.56mmol,13.65mL,1.2eq)一次性加入混合物中,搅拌3小时后将DCM(1500mL)加入到混合物中,然后用稀盐酸(1M)酸化至pH=1,沉淀出大部分灰色固体,过滤收集固体,水层用乙酸乙酯(500mL*3)萃取,合并的有机层用无水硫酸钠干燥,过滤并将滤液浓缩至约200mL析出固体,过滤收集固体,合并固体干燥后得化合物43_3。
步骤四:向化合物43_3(3.5g,14.10mmol,1eq)的乙醇(35mL)溶液中加入A10_2(2.48g,14.10mmol,1.0eq)和A10(3.00g,14.10mmol,1.0eq,HCl),混合物在在90℃氮气氛下搅拌12小时后过滤,收集固体得到化合物43_4;LCMS(ESI)m/z:425.2(M+1)。
步骤五:向化合物43_4(1.3g,2.30mmol,1eq)的甲醇(20mL)溶液中加入二苯基重氮甲烷(1.78g,9.18mmol,4eq)的二氯甲烷(10mL)溶液。混合物在25℃下搅拌1小时后减压浓缩,残余物通柱色谱(SiO 2,DCM/MeOH=30/1至10/1)纯化得化合物43_5;LCMS(ESI)m/z:591.3(M+1)。
步骤六:向化合物43_5(900mg,1.52mmol,1eq)的THF(10mL)中溶液加入2-羟基异二氢吲哚-1,3-二酮(272.75mg,1.67mmol,1.1eq),三苯基膦(438.54mg,1.67mmol,1.1eq)和DIAD(307.36mg,1.52mmol,295.53uL,1eq)。将反应在室温(10-15℃)下搅拌12小时后减压浓缩,残余物通过柱色谱(SiO 2,DCM/MeOH=50/1至10/1)纯化得化合物43_6。
步骤七:向化合物43_6(470mg,638.78μmol,1eq)的乙醇(2mL)和二氯甲烷(2mL)溶液中加入NH 2NH 2·H 2O(37.62mg,638.78g50),36.528g,85%纯度,1eq)。将反应在室温(15-20℃)下搅拌1小时。后过滤并减压浓缩滤液,将残余物用二氯甲烷(5mL)稀释并用盐水洗涤,无水硫酸钠干燥,减压浓缩后得化合物43_7。
步骤八:向化合物43_7(390mg,643.90得化合物,1eq)的乙醇(3mL)和二氯甲烷(2mL)溶液中加入中间体A2(266.88mg,643.90mg合物,1eq)。将混合物在室温(15-20℃)下搅拌1小时后减压浓缩,残余物在石油醚/乙酸乙酯(10mL,4/1)中搅拌后过滤得化合物43_8。
步骤九:向化合物43_8(550mg,548.83化合物物,1eq)的DMF(3mL)溶液中加入二异丙基碳二亚胺(138.52mg,1.10mmol,169.97μL,2eq)和HOBt(148.32mg,1.10mmol,2eq),混合物在20℃下搅拌1小时后加入中间体A1(161.51mg,768.36mg物物,1.4eq)和NaHCO 3(184.42mg,2.20mmol,85.38mo,4eq),将混合物在20℃下搅拌11小时后倒入水(20mL)中,过滤收集的固体用二氯甲烷(100mL)溶解,经无水硫酸钠干燥后过滤,减压浓缩得到的残余物用柱色谱(SiO 2,DCM/MeOH=30/1至20/1)纯化得化合物43_9;LCMS(ESI)m/z:1194.9(M+1)。
步骤十:在0℃下向化合物43_9(120mg,93.609 30,1eq)的二氯甲烷(0.6mL)溶液中加入的三氟乙酸(924.00mg,8.10mmol,0.6mL,86.58eq),混合物在0℃下搅拌1小时后用石油醚/乙酸乙酯(20mL,1/4)稀释并搅拌10分钟,过滤收集的固体通过制备型高效液相色谱(三氟乙酸柱:Phenomenex luna C18150×25mm×10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:2%-25%,10分)纯化得化合物43。 1H NMR(400MHz,d 6-DMSO)δ=7.22(br d,J=9.1Hz,1H),7.04(s,1H),6.92-6.86(m,2H),5.04(br s,1H),4.76(d,J=3.8Hz,3H),4.59(s,2H),4.46(br d,J=10.9Hz,1H),4.40-4.32(m,1H),4.21-4.14(m,2H),3.32(t,J=4.6Hz,2H),1.38(s,3H),0.94(s,3H);LCMS(ESI)m/z:686.5(M+1)。
实施例44
Figure PCTCN2019073699-appb-000121
步骤一:向化合物43_3(3g,12.09mmol,1eq)的乙醇(30mL)溶液中加入N-叔丁基酯(2-氨基乙基)氨基甲酸酯(2.38g,12.09mmol,2.33mL,1eq,HCl)和N-(2-氨基乙基)氨基甲酸叔丁酯(1.94g,12.09mmol,1.90mL,1eq)。将混合物在90℃下搅拌12小时后加入乙酸乙酯(30mL),搅拌5分钟后过滤收集固体得化合物44_1;LCMS(ESI)m/z:409.1(M+1)。
步骤二:向化合物44_1(4g,7.83mmol,1eq)的甲醇(40mL)溶液中逐滴加入稀盐酸(8.00mL,0.5M)和二苯基重氮甲烷(3.04g,15.67mmol,2eq)。将混合物在25℃下搅拌30分钟后将混合物用二氯甲烷(50mL*2)萃取水相。将合并的有机相用饱和氯化钠(30mL)洗涤,无水硫酸钠干燥,过滤并减压浓缩后残余物通过柱色谱(SiO 2,DCM/MeOH=50/1至10/1)纯化得化合物44_2;LCMS(ESI)m/z:575.3(M+1)。
步骤三:向化合物44_2(3.7g,6.17mmol,1eq)的THF(40mL)溶液中加入2-羟基异吲哚啉-1,3-二酮(1.11g,6.79mmol,1.1eq),三苯基膦(2.43g,9.26mmol,1.5eq)和DIAD(2.50g,12.35mmol,2.40mL,2eq)。将混合物在25℃下搅拌1小时后减压浓缩,残余物通过硅胶色谱(SiO 2,DCM/MeOH=50/1至10/1)纯化得化合物44_3。
步骤四:向化合物44_3(4.4g,6.11mmol,1eq)的乙醇(45mL)溶液中加入NH 2NH 2·H 2O(312.26mg,6.11mmol,303.17mg,98%纯度,1eq)。将混合物在25℃下搅拌30分钟后过滤,然后减压浓缩滤液得化合物44_4。
步骤五:向化合物44_4(3.6g,6.11mmol,1eq)的甲醇(24mL)和二氯甲烷(8mL)溶液中加入中间体A2(2.02g,4.88mmol,0.8eq)。将混合物在25℃下搅拌30分钟后减压浓缩,残余物用石油醚/乙酸乙酯(30mL,1/1)洗涤,过滤收集固体得化合物44_5。
步骤六:向化合物44_5(2.5g,2.54mmol,1eq)的DMF(25mL)溶液加入DIC(639.86mg,5.07mmol,785.11μL,2eq)和HOBt(685.11mg,5.07mmol,2eq)。将混合物在25℃下搅拌1小时后加入碳酸氢钠(851.87mg,10.14mmol,394.39mo,4eq)和中间体A1(639.49mg,3.04mmol,1.2eq)。将混合物在25℃下再搅拌11小时后倒入水(50mL)中,搅拌5分钟后过滤收集固体得化合物44_6。
步骤七:在-40℃下向化合物44_6(2.9g,2.46mmol,1eq)的二氯甲烷(10mL)溶液中分批加入三氟乙酸(30.80g,270.12mmol,20.00mL,109.76eq)中,将混合物在0℃下搅拌1小时后倒入石油醚/乙酸乙酯(30mL,v/v=1/2)并搅拌5分钟,过滤收集滤饼并通过制备型高效液相色谱(柱:Phenomenex Luna C18 250×50mm×10μm;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:1%-25%,10分钟)纯化得化合物44。
1H NMR(400MHz,d 6-DMSO)δ=7.26(br d,J=8.4Hz,1H),7.13-7.02(m,1H),6.92(s,2H),5.10(br s,1H),4.94(br s,2H),4.62(br s,2H),4.54-4.46(m,2H),4.39(br s,1H),3.62(br t,J=5.9Hz,2H),3.24(br t,J=5.7Hz,2H),1.42(s,3H),0.98(s,3H);LCMS(ESI)m/z:670.2(M+1)。
实施例45
Figure PCTCN2019073699-appb-000122
Figure PCTCN2019073699-appb-000123
步骤一:向化合物45_1(24g,232.63mmol,25.13mL,1eq)的THF(250mL)溶液中加入叔丁基咪唑-1-羧酸酯(78.26g,465.27mmol,2eq)。将混合物在60℃下搅拌12小时后减压浓缩,将残余物用水(50mL)稀释后用乙酸乙酯(100mL)萃取。将有机层用饱和氯化钠(150mL*2)洗涤,无水硫酸钠干燥,过滤后减压浓缩,将残余物用石油醚/甲基叔丁基醚(200mL,1/1)搅拌洗涤,过滤收集固体得化合物45_2; 1H NMR(400MHz,CDCl 3)δ=4.97(br s,1H),3.22(q,J=5.7Hz,2H),2.74(t,J=5.8Hz,2H),1.46(s,9H).
步骤二:在0骤二下,向化合物45_2(10g,32.96mmol,1eq)的乙酸乙酯(100mL)溶液中缓慢滴加HCl/EtOAc(8.24mL,4M,1eq)溶液。将混合物在0℃下搅拌10分钟后过滤,收集固体得化合物45_3。
步骤三:向化合物43_3(3.2g,12.79mmol,1eq)的叔丁醇(40mL)溶液中加入化合物45_2(3.88g,12.79mmol,1eq)和化合物45_3(4.35g,12.79mmol,1eq),然后在氮气氛下将混合物在100℃下搅拌反应12小时,减压浓缩得到的粗产物用水(50mL)稀释后用稀氢氧化锂(1M)调节pH至9-10,混合物用乙酸乙酯(50mL*2)洗涤,将水层冷却至0℃后用稀盐酸(0.5M)调节pH至3-4,将水层冻干后得化合物45_4。LCMS(ESI)m/z:552.4(M+1)。
步骤四:向化合物45_4(6.5g,11.78mmol,1eq)的甲醇(70mL)溶液中加入二苯基重氮甲烷(4.58g,23.57mmol,2eq)的二氯甲烷(50mL)溶液。将混合物在25℃下搅拌1小时后减压浓缩,得到的残余物用水(50mL)稀释,混合物用二氯甲烷(100mL)萃取,合并的有机层用无水硫酸钠干燥,过滤并减压浓缩,得到残余物通过柱色谱(SiO 2,DCM/MeOH=20/1至10/1)纯化得化合物45_5。LCMS(ESI)m/z:718.4(M+1)。
步骤五:向化合物45_5(1.3g,957.46μmol,1eq)的THF(15mL)中加入2-羟基异吲哚啉-1,3-二酮(312.38mg,1.91mmol,2eq),三苯基膦(502.26mg,1.91mmol,2eq)和DIAD(387.21mg,1.91mmol,372.32ol,2eq)。将混合物在20℃下搅拌0.5小时后减压浓缩,得到的残余物通过柱色谱(SiO 2,DCM/MeOH=20/1至10/1)纯化得化合物45_6。LCMS(ESI)m/z:863.5(M+1)。
步骤六:向化合物45_6(1.2g,1.08mmol,1eq)的乙醇(15mL)溶液中加入,加入NH 2NH 2·H 2O(64.87mg,1.30mmol,62.98mo,1.2eq)。将混合物在20℃下搅拌1小时后过滤,浓缩滤液得到的残余物用二氯甲烷(20mL)溶解,无水硫酸钠干燥,过滤并减压浓缩后得化合物45_7。LCMS(ESI)m/z:733.4(M+1)。
步骤七:向化合物45_7(850mg,863.61液l0/,1eq)的乙醇(8mL)和二氯甲烷(8mL)溶液中加入中间体A2(357.95mg,863.61mg体/,1eq),在氮气氛下将混合物在20℃下搅拌1小时后减压浓缩,得到残余物通过柱色谱(SiO 2,DCM/MeOH=20/1至10/1)纯化得化合物45_8。LCMS(ESI)m/z:1129.6(M+1)。
步骤七:向化合物45_8(780mg,690.68 20谱,1eq)的DMF(5mL)溶液中加入HOBt(186.65mg,1.38mmol,2eq)和DIC(174.33mg,1.38mmol,213.90ol,2eq),混合物在室温搅拌1小时候加入中间体A2(217.78mg,1.04mmol,1.5eq)和碳酸氢钠(232.09mg,2.76mmol,107.45ol,4eq)。将混合物在20℃下搅拌11小时后倒入水(50mL)搅拌10分钟后过滤,得到的固体用二氯甲烷(20mL)溶解,无水硫酸钠干燥后过滤减压浓缩得化合物45_9。LCMS(ESI)m/z:1322.3(M+1)。
步骤八:在0℃下,向化合物45_9(910mg,688.60在l拌,,1eq)的二氯甲烷(6mL)溶液中加入三氟乙酸(4.62g,40.52mmol,3mL,58.84eq)。将混合物在0℃下搅拌1小时后用石油醚/乙酸乙酯(60mL,1/4)稀释,然后过滤收集固体并通过制备型高效液相色谱(三氟乙酸,柱:Phenomenex luna C18250*50mm*10微米;流动相:[水(0.1%三氟乙酸)-乙腈];乙腈%:1%-30%,10分钟)纯化得化合物45。
1H NMR(400MHz,DEUTERIUM OXIDE)δ=7.25(br d,J=8.1Hz,1H),7.09(s,1H),6.96-6.88(m,2H),5.13(br s,1H),4.94-4.82(m,4H),4.64(s,1H),4.51(br d,J=10.8Hz,1H),4.42-4.34(m,1H),3.70(br t,J=6.8Hz,4H),3.28(br t,J=6.8Hz,4H),1.42(s,3H),0.97(s,3H);LCMS(ESI)m/z:713.3(M+1)。
实施例46
Figure PCTCN2019073699-appb-000124
步骤一:向化合物43_1(20g,61.85mmol,1eq)的DMF(200mL)溶液中加入BnBr(11.64g,68.04mmol,8.08mL,1.1eq)和碳酸钾(17.10g,123.71mmol,2eq)。将反应在室温(20-25℃)下搅拌12小时后倒入水(200mL)中,混合物用甲基叔丁基醚(100mL*3)萃取,将合并的有机相用水(100mL*2)和饱和氯化钠(100mL)洗涤,无水硫酸钠干燥,减压浓缩后得化合物46_1。
步骤二:在0℃下向化合物46_1(10g,24.19mmol,1eq)的二氯甲烷(50mL)溶液中加入滴加三氟乙酸(20mL)。将反应混合物在室温(15-20℃)下搅拌1小时后减压浓缩得化合物46_2。
步骤三:向化合物46_2(14g,34.27mmol,1eq)的二氧六环(140mL)溶液中加入二异丙基胺(6.64g,51.40mmol,8.95mL,1.5eq)和中间体A11(14.65g,34.27mmol,1eq,三氟乙酸盐)。混合物为在60℃ 下搅拌1小时后减压浓缩,残余物通过柱色谱(SiO 2,石油醚/乙酸乙酯=1/0至8/1)纯化得化合物46_3;
LCMS(ESI)m/z:722.3(M+1)。
步骤四:向化合物46_3(6.8g,9.42mmol,1eq)的MeOH(50mL)溶液中加入氢氧化钠(753.59mg,18.84mmol,2eq)。反应在室温(10-15℃)下搅拌1小时后用稀盐酸(1M)调节至pH至3至4得到化合物46_4的甲醇溶液;LCMS(ESI)m/z:633.1(M+1)。
步骤五:向上述化合物46_4(4.92g,25.32mmol,2eq)的甲醇溶液中滴加二苯基重氮甲烷(8g,12.66mmol,1eq)的二氯甲烷(50mL)溶液。将混合物在室温(10-20℃)下搅拌反应1小时后减压浓缩,残余物用二氯甲烷(50mL)稀释,有机相用水(30mL),饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤后减压浓缩滤液,残余物通过柱色谱(SiO 2,DCM/MeOH=100/1至10/1)纯化得化合物46_5;LCMS(ESI)m/z:798.5(M+1)。
步骤六:向化合物46_5(6g,7.52mmol,1eq)和2-羟基异吲哚-1,3-二酮(1.47g,9.02mmol,1.2eq)的THF(60mL)溶液中加入三苯基膦(2.96g,11.28mmol,1.5eq)和DIAD(2.28g,11.28mmol,2.19mL,1.5eq)。将反应在室温(10-15℃)下搅拌1小时后减压浓缩,残余物通过柱色谱(SiO 2,DCM/MeOH=50/1至10/1)纯化得化合物46_6;LCMS(ESI)m/z:944.3(M+1)。
步骤七:向化合物46_6(5.00g,5.30mmol,1eq)在乙醇(50mL)溶液中加入NH 2NH 2·H 2O(291.95mg,5.83mmol,283.44ol,1.1eq)。将混合物在20℃下搅拌1小时后减压浓缩,残余物用二氯甲烷(70mL)溶解后用水(20mL*2)洗涤,无水硫酸钠干燥后过滤,减压浓缩得到化合物46_7;LCMS(ESI)m/z:813.4(M+1)。
步骤八:向化合物46_7(1.92g,4.62mmol,0.8eq)的EtOH(20mL)和DCM(20mL)溶液中加入中间体A2(4.7g,5.78mmol,1eq)。将混合物在20℃下搅拌1小时后减压浓缩得化合物46_8;LCMS(ESI)m/z:967.4(M-243+1)。
步骤九:向化合物46_8(1g,826.82+1物0,1eq)的DMF(10mL)溶液加入HOBt(167.58mg,1.24mmol,1.5eq)和DIC(156.52mg,1.24mmol,192.04ol,1.5eq)。将混合物在该温度下搅拌1小时后加入(225.95mg,1.07mmol,1.3eq)和碳酸氢钠(277.83mg,3.31mmol,128.63μL,4eq)。将所得混合物在25℃下搅拌11小时后用水(80mL)稀释,过滤并在减压下干燥滤饼得到化合物46_9。
步骤十:向化合物46_9(1.2g,856.14μmol,1eq)的DCM(6mL)溶液中加入三氟乙酸(6.16g,54.02mmol,4mL,63.10eq)。将混合物在20℃下搅拌1小时后减压浓缩,残余物通过制备型高效液相色谱(柱:Luna C18 150×25mm×5μm;流动相:[水(0.075%三氟乙酸)-乙腈];乙腈%:1%-30%,9分钟)纯化得化合物46;LCMS(ESI)m/z:793.2(M+1); 1H NMR(400MHz,d 6-DMSO+D 2O)δ=7.30(d,J=8.4Hz,1H),7.00-6.90(m,2H),6.81(s,1H),4.99-4.70(m,5H),4.57-4.50(m,1H),4.33(br s,2H),3.60(br s,2H),3.29(br d,J=12.1Hz,2H),2.90-2.65(m,5H),2.33(br s,2H),2.17(br s,2H),1.92(br s,2H),1.67(br d,J=8.1Hz,4H),1.37(s,3H),1.02(s,3H)。
实验例1:化合物抑菌作用检测
用3株克雷伯氏肺炎杆菌K.pneumoniae ATCC BAA-205(TEM-1/SHV-1/SHV-12),K.pneumoniae ATCC BAA-1705(KPC-2),K.pneumoniae ATCC BAA-2470(NDM-1);3株铜绿假单胞菌P.aeruginosa  NCTC13437(VIM-10;VEB-1),P.aeruginosa PA 14和P.aeruginosa ATCC 35151;4株大肠杆菌E.coli NCTC 13476(IMP-1type),E.coli ATCC BAA-2523(OXA-48),E.coli MG1655Δtol C,E.coli ATCC25922;1株鲍曼不动杆菌A.baumannii ATCC 17978和1株金黄色葡萄球菌S.aureus NRS384,按照临床和实验室标准协会(Institute of clinical and laboratory standard,CLSI)要求通过微量液体稀释法测定各化合物的最低抑菌浓度(Minimum Inhibitory Concentration,MIC)。在圆底96-孔板(Catalog#3788,Corning)中加入2倍系列梯度稀释化合物(终浓度范围0.125μg/ml-128μg/ml),从过夜辛顿米勒琼脂培养基Mueller Hinton II Agar(MHA,Cat.No.211438,BD BBLTM)平板上挑取新鲜细菌单克隆,悬浮于灭菌生理饱和氯化钠水溶液,调节浓度为1x108CFU/ml,再用阳离子调节的辛顿米勒培养基Cation-Adjusted Mueller Hinton II Broth(MHB,Catalog#212332,BD BBLTM)稀释到5x105CFU/ml,取100μl加入到含有药物的圆底96-孔板。平板倒置于37℃培养20-24h后读取MIC值,将抑制细菌生长的最低药物浓度定为MIC。具体测试结果见表1。
表1 化合物的抑菌作用检测结果
Figure PCTCN2019073699-appb-000125
实验结果显示:本发明化合物(MIC范围为0.25-16μg/mL)相对于氨曲南,美罗培南和舒巴坦(MIC范围为16->128μg/mL)对K.pneumoniae ATCC BAA-205,K.pneumoniae ATCC BAA-1705,K.pneumoniae ATCC BAA-2470和E.coli ATCC BAA-2523的抑菌活性较好;该活性数据同时也表明本发明化合物对多种革兰氏阴性菌具有较好活性;本发明设计和合成的新型单环β-内酰胺化合物能够有效提高单环β-内酰胺的抗菌活性,对革兰氏阴性菌有较好的抑菌效果。
实验例2:化合物对鲍曼不动杆菌抑菌作用检测
用12株鲍曼不动杆菌A.baumannii ATCC 17978(ATCC-BAA-1605,ATCC-BAA-1789,ATCC-BAA-1790,ATCC-BAA-1791,ATCC-BAA-1792,ATCC-BAA-1793,ATCC-BAA-1794,ATCC-BAA-1795,ATCC-BAA-1799,ATCC-BAA-1800,ATCC 19606,ATCC 17978)按照临床和实验室标准协会(Institute of clinical and laboratory standard,CLSI)要求通过微量液体稀释法测定各化合物的最低抑菌浓度(Minimum Inhibitory Concentration,MIC)。在圆底96-孔板中加入2倍系列梯度稀释化合物(终浓度范围0.125μg/mL-128μg/mL),从过夜辛顿米勒琼脂培养基Mueller Hinton II Agar(MHA,Cat.No.211438,BD BBLTM)平板上挑取新鲜细菌单克隆,悬浮于灭菌生理盐水,调节浓度为1×108CFΜ/mL,再用阳离子调节的辛顿米勒培养基Cation-Adjusted Mueller Hinton II Broth(MHB,BD BBLTM)稀释到5×105CFΜ/mL,取100μL加入到含有药物的圆底96-孔板。平板倒置于37℃培养20-24h后读取MIC值,将抑制细菌生长的最低药物浓度定为MIC。具体测试结果见表2。
实验结果显示:本发明化合物(MIC范围在0.25-8μg/mL)相对于美罗培南,亚胺培南和氨曲南(MIC范围:32->128μg/mL)对耐药性鲍曼不动杆菌的活性,具有显著优势,该活性数据同时也表明本发明设计和合成的新型单环β-内酰胺化合物,能够有效的解决鲍曼不动杆菌对氨曲南,美罗培南和亚胺培南的耐药性问题。
表2 化合物对鲍曼不动杆菌抑菌作用检测
Figure PCTCN2019073699-appb-000126
实验例3:化合物临床分离菌抑菌作用检测
分别选取25株临床分离的鲍曼不动杆菌和27株铜绿假单胞菌,按照临床和实验室标准协会(Institute of clinical and laboratory standard,CLSI)要求通过微量液体稀释法测定各化合物的最低抑菌浓度(Minimum Inhibitory Concentration,MIC)。在圆底96-孔板中加入2倍系列梯度稀释化合物(终浓度范围0.125μg/mL-128μg/mL),从过夜辛顿米勒琼脂培养基Mueller Hinton II Agar(MHA,BD BBLTM)平板上挑取新鲜细菌单克隆,悬浮于灭菌生理盐水,调节浓度为1×108CFΜ/mL,再用阳离 子调节的辛顿米勒培养基Cation-Adjusted Mueller Hinton II Broth(MHB,BD BBLTM)稀释到5×105CFΜ/mL,取100μL加入到含有药物的圆底96-孔板。平板倒置于37℃培养20-24h后读取MIC值,将抑制细菌生长的最低药物浓度定为MIC。具体测试结果见表3。
表3化合物对临床分离鲍曼不动杆菌抑菌作用检测
Figure PCTCN2019073699-appb-000127
表4 化合物对临床分离铜绿假单胞菌抑菌作用检测
Figure PCTCN2019073699-appb-000128
结论:本发明化合物(MIC范围在0.25-8μg/mL)相对于美罗培南,亚胺培南和氨曲南(MIC范围:32->128μg/mL)对耐药性鲍曼不动杆菌,铜绿假单胞菌的活性,具有显著优势,该活性数据同时也表明本发明设计和合成的新型单环β-内酰胺化合物,能够有效的解决鲍曼不动杆菌对氨曲南,美罗培南和亚胺培南的耐药性问题。
实验例4:化合物对鲍曼不动杆菌(ATCC 17978)肺部感染模型的抑菌作用
给药前四天:30只CD-1雌鼠分成6笼,每笼5只(按下面表格做好标记);腹腔注射免疫抑制剂环磷酰胺(150mpk)。
Figure PCTCN2019073699-appb-000129
给药前一天:7笼小鼠再次腹腔注射免疫抑制剂环磷酰胺(100mpk);MHA平板复苏菌株ATCC-17978。
给药当天:挑取复苏的菌落溶于生理盐水中,制备浓度为1.0E+09CFU/ml的ATCC-17978菌液,用于小鼠肺部感染。实验小鼠使用滴鼻的方式进行感染,感染菌液量为50ul/只,实际菌液浓度为4.40E+09CFU/ml,每只小鼠感染量为2.20E+08CFU/mouse。
感染后2h,对照组小鼠取肺组织置于5ml生理盐水中,肺组织匀浆,梯度稀释点板;
按照上表所分组,对小鼠给药,具体给药情况如下(现溶现配现用):
(1)感染后2,4,6,8h:第2、3、4、5、6笼分别腹腔注射saline、150mpk的化合物32、150mpk的化合物34、150mpk的化合物13。
(2)感染后2,10h:第7笼腹腔注射15mpk的Tigecyclin。
给药后一天:第2~7笼小鼠感染24h终点,取肺组织置于5ml生理盐水中,肺组织匀浆,梯度稀释点板,每只小鼠两个重复。
给药后二天:对小鼠肺组织载菌量进行计数,整理实验结果,实验结果见图1。
结论:本发明化合物对环磷酰胺所致免疫抑制小鼠肺部感染鲍曼不动杆菌杆菌具有体内疗效,能显著降低肺组织荷菌量。
实验例5:化合物对大肠杆菌(ATCC 25922)大腿肌肉感染模型的抑菌作用
给药前四天:15只CD-1雌鼠分成5笼,每笼3只(按下面表格做好标记);腹腔注射免疫抑制剂环磷酰胺(150mpk)。
分组 受试化合物
1 2h对照组
2 感染组
3 环丙沙星   20mpk
4 实施例32   45mpk
5 实施例34   45mpk
给药前一天:5笼小鼠再次腹腔注射免疫抑制剂环磷酰胺(100mpk);MHA平板复苏菌株ATCC-25922。
给药当天:挑取复苏的菌落溶于生理盐水中,制备浓度为1.0E+07CFU/mL的ATCC-25922菌液,用于小鼠大腿肌肉感染。实验小鼠的大腿肌肉注射菌液量为100ul/只,即接种量为1.0E+07CFU/小鼠。感染后2h,对照组小鼠取大腿肌肉组织置于10ml生理盐水中,大腿肌肉组织匀浆,梯度稀释点板;按照上表所分组,对小鼠给药,具体给药情况如下:
(1)感染后2h:第3、4、5笼分别腹腔注射20mpk的、45mpk的化合物32、45mpk的化合物34;
(2)感染后4,8h:第4、5笼分别腹腔注射45mpk的化合物32、化合物34;
(3)感染后10h:第3、4、5笼分别腹腔注射20mpk的环丙沙星、45mpk的化合物32、45mpk的化合物34。
给药后一天:第2~5笼小鼠感染24h终点,取大腿肌肉组织置于10ml生理盐水中,大腿肌肉组织匀浆,梯度稀释点板,每只小鼠两个重复。
给药后两天:对小鼠大腿肌肉组织载菌量进行计数,整理实验结果。
实验结果:
结论:本发明化合物对环磷酰胺所致免疫抑制小鼠大腿肌肉感染大肠杆菌具有体内疗效,能显著降肌肉组织荷菌量。
实验例6:化合物在小鼠体内的药代动力学实验
实验设计和操作:
本实验中6只CD-1小鼠(雄性)按体重相近分成2组(2组)。第1组和第2组分别单次静脉和腹腔注射实施例13,实施例17,实施例32和实施例34,各个化合物均为2mg/kg。静注和腹腔注射的溶媒均为5%二甲亚砜/95%水(10%聚氧乙烯蓖麻油),K2-EDTA(抗凝剂)。
给药及采血细节见下表5和6。
所有实验动物从隐静脉采集血液样本约0.02mL,记录实际采血时间。本实验中实际采血时间与理论采血时间偏差符合规定(给药后1小时以内的点在±1分钟范围内,其它均在理论时间5%以内)。血样采集以后,立即转移至贴有标签的含K2EDTA(0.5M)的离心管中,随后离心处理(3,000g,4℃,15分钟)后取血浆。将血浆转移至预冷的离心管,在干冰中速冻,并储存在-60℃或更低的超低温冰箱中,直到进行LC-MS/MS分析。
表5
Figure PCTCN2019073699-appb-000130
表6
组别 基质 时间点
1 血浆 给药前,给药后0.083(5分钟),0.25(15分钟),0.5(30分钟),1,2,4,8和24小时
2 血浆 给药前,给药后0.083(5分钟),0.25(15分钟),0.5(30分钟),1,2,4,8和24小时
3 血浆 给药前,给药后0.083(5分钟),0.25(15分钟),0.5(30分钟),1,2,4,8和24小时
实验结果:见表7。
表7 化合物在小鼠体内的药代动力学数据
Figure PCTCN2019073699-appb-000131
结论:本发明化合物在小鼠体内的清除率较低,血液暴露量较高,腹腔给药生物利用度高,具有良好的药代动力学性质。
实验例7:化合物对小鼠肺部感染铜绿假单胞菌的实验(1)
1.实验菌株
铜绿假单胞菌PA14。
2.受试药物
(1)测试化合物:实施例32、实施例34
(2)参考化合物:I-g(WO2018065636),氨曲南(大连美仑生物技术有限公司产品)。
Figure PCTCN2019073699-appb-000132
3.培养基
Mueller-Hinton琼脂(MHA)和TSA培养基,均购自BD公司。
4.实验动物
CD-1(ICR)小鼠,北京维通利华实验动物技术有限公司提供,体重23~27g,7周龄,雌性,共计64只。
3.实验方法
(1)腹腔注射环磷酰胺形成免疫抑制小鼠
将64只小鼠于第1天、第4天腹腔注射环磷酰胺150mg/kg,即形成免疫抑制小鼠。
(2)实验分组
本实验设10组,分别为实施例34高、中、低剂量组,实施例32高、中、低剂量组,新抗生素3高、中剂量组,氨曲南组和模型组,每组6只动物,另余4只动物为肺部感染2h后取肺组织计细菌数。具体的分组情况见下表。
表8 小鼠肺部感染铜绿假单胞菌实验分组表
Figure PCTCN2019073699-appb-000133
(3)肺部感染铜绿假单胞菌
小鼠气道注射50μL菌液(2×10 3CFU)。感染后2小时脱颈椎处死4只模型组小鼠。
(4)给药
感染2小时后开始按组别给药,均于2h、4h、6h和8h各腹腔注射给药1次,共4次。
(5)细菌计数
感染后24小时脱颈椎处死各组小鼠,,无菌操作取肺和肾组织,放入灭菌组织匀浆管中,称重,加入适量生理盐水(NS),匀浆器匀浆1min,模型组动物肺组织稀释10 4、10 5、10 6倍,各给药组动物肺组织稀释10、100倍,模型组动物肾组织稀释10 2、10 3、10 4倍,各给药组动物肺组织稀释10倍,用螺旋涂布仪涂TSA板,37℃培养过夜,用菌落计数仪计数CFU。
(6)体重
试验开始后每天称重,记录体重变化。
(7)数据处理
采用Graphpad Prism作图软件制作肺组织CFU散点图。采用SPSS19.0软件统计CFU、体重平均值,采用方差分析分析组间差异。
4.实验结果
(1)免疫抑制小鼠肺部感染铜绿假单胞菌后的细菌荷载量
经腹腔注射2次环磷酰胺的4只免疫抑制小鼠肺部感染铜绿假单胞菌PA14约1.06×10 4CFU,2小时后取肺组织匀浆,计数细菌,计算小鼠细菌荷载量,其范围在,平均荷载量为5.10×10 3CFU。
(2)体重变化:各组动物体重见表9。
各给药组动物体重没有显著变化,说明本发明的化合物安全性好。
表9 新单环β内酰胺抗生素体内保护试验的动物体重变化
Figure PCTCN2019073699-appb-000134
(3)给药治疗后小鼠的肺组织细菌荷载量
于感染后2h、4h、6h和8h腹腔注射新单环β-内酰胺抗生素实施例32、实施例34、I-g及氨曲南,24h处死动物,无菌取肺组织,用生理盐水(NS)浸泡,组织匀浆,适当稀释后取50μL均匀涂布于TSA平板上,37℃孵箱中孵育过夜,计数菌落数,按稀释比例换算成每毫升的CFU,再将荷菌量以10为底作对数值,每组比较其均数和标准差,结果见表10、图1。模型组24h荷菌量由感染量1.06×10 4CFU增长为3.34×10 8CFU(荷菌量的LOG 10为8.14),各给药组荷菌量与显著低于模型组,基本得到清除,新抗生素2高、中、低剂量组得到完全清除。
表10 给药治疗免疫抑制小鼠肺部绿脓感染后的肺荷菌量
Figure PCTCN2019073699-appb-000135
注:**与模型组比,p<0.01,有非常显著性差异
实验结论:
本发明化合物对环磷酰胺所致免疫抑制小鼠肺部感染铜绿假单胞菌具有体内疗效,能显著降低肺组织荷菌量,清除肺上感染的绿脓杆菌。
实验例8:化合物对小鼠肺部感染铜绿假单胞菌的实验(2)
1.实验菌株
铜绿假单胞菌PA14。
2.受试药物
(1)测试化合物:实施例41、实施例44、实施例46
(2)参考化合物:I-g,氨曲南(大连美仑生物技术有限公司产品)。
3.培养基
Mueller-Hinton琼脂(MHA)和TSA培养基,均购自BD公司。
4.实验动物
CD-1(ICR)小鼠,北京维通利华实验动物技术有限公司提供,体重23~27g,7周龄,雌性,共计64只。
3.实验方法
(1)腹腔注射环磷酰胺形成免疫抑制小鼠
将60只小鼠于第1天、第4天腹腔注射环磷酰胺150mg/kg,即形成免疫抑制小鼠。
(2)实验分组
本实验设8组,分别为实施例41高、低剂量组,实施例44高、低剂量组,实施例46高、低剂量组,参考化合物组,氨曲南组,每组6只动物,另设模型组,12只动物,其中6只为2h模型组。具体的分组情况见表11。
表11 新抗生素对小鼠肺部感染铜绿假单胞菌的保护实验分组表
Figure PCTCN2019073699-appb-000136
(3)肺部感染铜绿假单胞菌
小鼠气道注射50μL菌液(2×10 3CFU)。感染后2小时脱颈椎处死4只模型组小鼠。
(4)给药
感染2小时后开始按组别给药,均于2h、4h、6h和8h各腹腔注射给药1次,共4次。
(5)细菌计数
感染后24小时脱颈椎处死各组小鼠,无菌操作取肺和肾组织,放入灭菌组织匀浆管中,称重,加入适量生理盐水(NS),匀浆器匀浆1min,模型组动物肺组织稀释10 4、10 5、10 6倍,各给药组动物肺组织稀释10、100倍,模型组动物肾组织稀释10 2、10 3、10 4倍,各给药组动物肺组织稀释10倍,用螺旋涂布仪涂TSA板,37℃培养过夜,用菌落计数仪计数CFU。
(6)体重
试验开始后每天称重,记录体重变化。
(7)数据处理
采用Graphpad Prism作图软件制作肺组织CFU散点图。采用SPSS19.0软件统计CFU、体重平均值,采用方差分析分析组间差异。
4.实验结果
于感染后2h、4h、6h和8h腹腔注射新单环β-内酰胺抗生素实施例41、实施例44、实施例46、I- g及氨曲南,24h处死动物,无菌取肺组织,用生理盐水(NS)浸泡,组织匀浆,适当稀释后取50μL均匀涂布于TSA平板上,37℃孵箱中孵育过夜,计数菌落数,按稀释比例换算成每毫升的CFU,再将荷菌量以10为底作对数值,每组比较其均数和标准差,结果见表12、图2。模型组24h荷菌量由感染量3.31×10 4增长为3.40×10 9CFU(荷菌量的LOG10为9.53),各给药组与模型组比,均显著降低。新抗生素WXFL70050164高、低剂量组荷菌量显著低于其他药物组,表明其体内疗效更忧。
表12 新单环β内酰胺抗生素治疗免疫抑制小鼠肺部绿脓感染的肺荷菌量
Figure PCTCN2019073699-appb-000137
注:**与模型组比,p<0.01,有非常显著性差异
实验结论:
本发明化合物对环磷酰胺所致免疫抑制小鼠肺部感染铜绿假单胞菌具有体内疗效,能显著降低肺组织荷菌量,清除肺上感染的绿脓杆菌。

Claims (22)

  1. 式(I’)或(II’)所示化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2019073699-appb-100001
    其中,
    环A选自苯基或5~6元杂芳基;
    m和m′分别独立的选自1或2;
    L 1和L 2分别独立地选自单键、-NH-、-C(=NH)-、-C(=NR 6)NH-、-CH=N-或-(CH 2) n-;
    R 6选自H,或者选自任选被1、2或3个R取代的3~6元杂环烷基;
    n选自:1、2、3或4;
    R 1选自H、NH 2,或选自任选被1、2或3个R取代的:C 1-6烷基、C 1-6杂烷基、C 3-6环烷基、3~6元杂环烷基;
    R选自F、Cl、Br、I,或选自任选被1、2或3个R’取代的:CH 3、NH 2
    Figure PCTCN2019073699-appb-100002
    Figure PCTCN2019073699-appb-100003
    5~6元杂环烷基;
    R’选自F、Cl、Br、I、CH 3、NH 2
    Figure PCTCN2019073699-appb-100004
    R 2选自C 1-3烷基;
    R 3和R 4分别独立地选自H或任选被1、2或3个R取代的C 1-3烷基;
    L选自:单键或-O-;
    R 5选自:H、COOH、OH、C(=O)NH 2、C(=O)CH 3或C(=O)OCH 3
    “杂”表示杂原子或杂原子团,所述5~6元杂芳基、C 1-6杂烷基、3~6元杂环烷基、5~6元杂环烷基之“杂”,分别独立地选自:N、-NH-、-C(=NH)-、-C(=NH)NH-、-O-、-S-、N、=O、=S、-C(=O)-;
    以上任何一种情况下,杂原子或杂原子团的数目分别独立地选自1、2或3。
  2. 根据权利要求1所述的化合物、其异构体或其药学上可接受的盐,其中,R选自:F、Cl、Br、I、CH 3、NH 2
    Figure PCTCN2019073699-appb-100005
    Figure PCTCN2019073699-appb-100006
  3. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,R 1选自H、NH 2,或选自任选被1、2或3个R取代的:C 1-4烷基、C 1-4杂烷基、C 3-6环烷基、3~6元杂环烷基。
  4. 根据权利要求3所述的化合物、其异构体或其药学上可接受的盐,其中,R 1选自H、NH 2,或选自任选被1、2或3个R取代的:CH 3、OCH 2CH 3
    Figure PCTCN2019073699-appb-100007
    Figure PCTCN2019073699-appb-100008
    环己烷基、吡咯烷基、哌啶基、哌嗪基。
  5. 根据权利要求4所述的化合物、其异构体或其药学上可接受的盐,其中,R 1选自:H、CH 3、OCH 2CH 2(NH 2)、NH 2
    Figure PCTCN2019073699-appb-100009
    Figure PCTCN2019073699-appb-100010
  6. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,R 6选自H,或者选自任选被1、2或3个R取代的哌啶基。
  7. 根据权利要求6所述的化合物、其异构体或其药学上可接受的盐,其中,R 6选自H和
    Figure PCTCN2019073699-appb-100011
  8. 根据权利要求1或5所述的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019073699-appb-100012
    选自:H、CH 3
    Figure PCTCN2019073699-appb-100013
    Figure PCTCN2019073699-appb-100014
  9. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,R 2选自CH 3
  10. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,环A选自苯基。
  11. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019073699-appb-100016
    选自:
    Figure PCTCN2019073699-appb-100017
    Figure PCTCN2019073699-appb-100018
  12. 根据权利要求11或8所述的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019073699-appb-100019
    选自:
    Figure PCTCN2019073699-appb-100020
    Figure PCTCN2019073699-appb-100021
    Figure PCTCN2019073699-appb-100022
  13. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019073699-appb-100023
    选自:
    Figure PCTCN2019073699-appb-100024
  14. 根据权利要求12所述的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019073699-appb-100025
    选自:
    Figure PCTCN2019073699-appb-100026
    Figure PCTCN2019073699-appb-100027
  15. 根据权利要求1或2所述的化合物、其异构体或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2019073699-appb-100028
    选自:
    Figure PCTCN2019073699-appb-100029
  16. 根据权利要求1~15任意一项所述的化合物、其异构体或其药学上可接受的盐,化合物选自:
    Figure PCTCN2019073699-appb-100030
    其中,R 1、R 2、R 3、R 4、L 1、L 2、L、m、m’和环A如权利要求1~15所定义。
  17. 根据权利要求16所述的的化合物、其异构体或其药学上可接受的盐,化合物选自:
    Figure PCTCN2019073699-appb-100031
    其中,R 1、R 2、R 3、R 4、L 1和L 2如权利要求16所定义。
  18. 下式化合物,其异构体或其药学上可接受的盐,
    Figure PCTCN2019073699-appb-100032
    Figure PCTCN2019073699-appb-100033
    Figure PCTCN2019073699-appb-100034
    Figure PCTCN2019073699-appb-100035
  19. 根据权利要求18所述的化合物、其异构体或其药学上可接受的盐,其中,化合物选自
    Figure PCTCN2019073699-appb-100036
    Figure PCTCN2019073699-appb-100037
    Figure PCTCN2019073699-appb-100038
    Figure PCTCN2019073699-appb-100039
  20. 一种药物组合物,包括作为活性成分的治疗有效量的根据权利要求1~19任意一项所述的化合物、其异构体或其药学上可接受的盐以及药学上可接受的载体。
  21. 根据权利要求1~19任意一项所述的化合物、其异构体或其药学上可接受的盐或根据权利要求20所 述的药物组合物在制备治疗细菌感染相关病症的药物上的应用。
  22. 根据权利要求21所述的应用,其中所述细菌为革兰氏阴性菌。
PCT/CN2019/073699 2018-01-29 2019-01-29 用于治疗细菌感染的单环β-内酰胺化合物 WO2019144969A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980006879.1A CN111511737B (zh) 2018-01-29 2019-01-29 用于治疗细菌感染的单环β-内酰胺化合物
US16/965,086 US11459323B2 (en) 2018-01-29 2019-01-29 Monocyclic β-lactam compound for treating bacterial infection
JP2020541574A JP7280273B2 (ja) 2018-01-29 2019-01-29 細菌感染を治療するための単環β-ラクタム化合物
EP19743987.0A EP3747883A4 (en) 2018-01-29 2019-01-29 B-LACTAM MONOCYCLIC COMPOUND FOR TREATMENT OF BACTERIAL INFECTION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810084282 2018-01-29
CN201810084282.6 2018-01-29
CN201810201654 2018-03-12
CN201810201654.9 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019144969A1 true WO2019144969A1 (zh) 2019-08-01

Family

ID=67396156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073699 WO2019144969A1 (zh) 2018-01-29 2019-01-29 用于治疗细菌感染的单环β-内酰胺化合物

Country Status (5)

Country Link
US (1) US11459323B2 (zh)
EP (1) EP3747883A4 (zh)
JP (1) JP7280273B2 (zh)
CN (1) CN111511737B (zh)
WO (1) WO2019144969A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098635A1 (zh) * 2018-11-13 2020-05-22 南京圣和药业股份有限公司 单环内酰胺化合物及其应用
WO2020125670A1 (zh) * 2018-12-18 2020-06-25 南京明德新药研发有限公司 单环β-内酰胺化合物在制药中的应用
WO2021121387A1 (zh) * 2019-12-19 2021-06-24 南京明德新药研发有限公司 化合物在制药中的应用
WO2022003610A1 (en) 2020-07-02 2022-01-06 Pi Industries Ltd. 2-(4,5-dihydroisoxazol-3-yl)isoindoline-5-carboxamide derivatives and similar compounds as pesticides for crop protection
WO2023037253A1 (en) 2021-09-08 2023-03-16 Pi Industries Ltd Isoxazoline compounds and their use as pest control agents
US20230159517A1 (en) * 2021-11-18 2023-05-25 Merck Sharp & Dohme Llc Chromane amidine monobactam compounds for the treatment of bacterial infections
CN118255695A (zh) * 2024-02-26 2024-06-28 广州艾奇西新药研究有限公司 一种β-内酰胺类化合物的中间体的纯化方法和制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484881A2 (en) 1990-11-05 1992-05-13 E.R. SQUIBB &amp; SONS, INC. Heteroaroyl derivatives of monocyclic beta-lactam antibiotics
EP0531976A1 (en) 1991-09-09 1993-03-17 E.R. SQUIBB &amp; SONS, INC. Heteroaryl derivatives of monocyclic beta-lactam antibiotics
WO2002022613A1 (en) 2000-09-14 2002-03-21 Pantherix Limited 3-(heteroaryl acetamido)-2-oxo-azetidine-1-sulfonic acids derivatives as antibacterial agents
WO2007065288A2 (en) 2005-12-07 2007-06-14 Basilea Pharmaceutica Ag Useful combinations of monobactam antibiotics with beta-lactamase inhibitors
WO2008116813A2 (en) 2007-03-23 2008-10-02 Basilea Pharmaceutica Ag Combination medicaments for treating bacterial infections
WO2010070523A1 (en) 2008-12-19 2010-06-24 Pfizer Inc. Monocarbams
WO2013110643A1 (en) 2012-01-24 2013-08-01 Aicuris Gmbh & Co. Kg Amidine substituted beta - lactam compounds, their preparation and use as antibacterial agents
US20150266867A1 (en) 2014-03-24 2015-09-24 Novartis Ag Monobactam organic compounds for the treatment of bacterial infections
WO2017050218A1 (en) 2015-09-23 2017-03-30 Novartis Ag Salts and solid forms of monobactam antibiotic
WO2017106064A1 (en) 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Biaryl monobactam compounds and methods of use thereof for the treatment of bacterial infections
WO2017155765A1 (en) * 2016-03-07 2017-09-14 Merck Sharp & Dohme Corp. Bicyclic aryl monobactam compounds and methods of use thereof for the treatment of bacterial infections
WO2017206947A1 (zh) * 2016-06-03 2017-12-07 南京明德新药研发股份有限公司 新型β-内酰胺酶抑制剂
WO2018065636A1 (en) 2016-12-21 2018-04-12 Aicuris Anti-Infective Cures Gmbh COMBINATION THERAPY WITH AMIDINE SUBSTITUTED ß-LACTAM COMPOUNDS AND ß-LACTAMASE INHIBITORS FOR INFECTIONS WITH ANTIBIOTIC RESISTANT BACTERIAL STRAINS

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484881A2 (en) 1990-11-05 1992-05-13 E.R. SQUIBB &amp; SONS, INC. Heteroaroyl derivatives of monocyclic beta-lactam antibiotics
EP0531976A1 (en) 1991-09-09 1993-03-17 E.R. SQUIBB &amp; SONS, INC. Heteroaryl derivatives of monocyclic beta-lactam antibiotics
WO2002022613A1 (en) 2000-09-14 2002-03-21 Pantherix Limited 3-(heteroaryl acetamido)-2-oxo-azetidine-1-sulfonic acids derivatives as antibacterial agents
WO2007065288A2 (en) 2005-12-07 2007-06-14 Basilea Pharmaceutica Ag Useful combinations of monobactam antibiotics with beta-lactamase inhibitors
WO2008116813A2 (en) 2007-03-23 2008-10-02 Basilea Pharmaceutica Ag Combination medicaments for treating bacterial infections
WO2010070523A1 (en) 2008-12-19 2010-06-24 Pfizer Inc. Monocarbams
WO2013110643A1 (en) 2012-01-24 2013-08-01 Aicuris Gmbh & Co. Kg Amidine substituted beta - lactam compounds, their preparation and use as antibacterial agents
US20150266867A1 (en) 2014-03-24 2015-09-24 Novartis Ag Monobactam organic compounds for the treatment of bacterial infections
WO2015148379A1 (en) 2014-03-24 2015-10-01 Novartis Ag Monobactam organic compounds for the treatment of bacterial infections
WO2017050218A1 (en) 2015-09-23 2017-03-30 Novartis Ag Salts and solid forms of monobactam antibiotic
WO2017106064A1 (en) 2015-12-15 2017-06-22 Merck Sharp & Dohme Corp. Biaryl monobactam compounds and methods of use thereof for the treatment of bacterial infections
WO2017155765A1 (en) * 2016-03-07 2017-09-14 Merck Sharp & Dohme Corp. Bicyclic aryl monobactam compounds and methods of use thereof for the treatment of bacterial infections
WO2017206947A1 (zh) * 2016-06-03 2017-12-07 南京明德新药研发股份有限公司 新型β-内酰胺酶抑制剂
WO2018065636A1 (en) 2016-12-21 2018-04-12 Aicuris Anti-Infective Cures Gmbh COMBINATION THERAPY WITH AMIDINE SUBSTITUTED ß-LACTAM COMPOUNDS AND ß-LACTAMASE INHIBITORS FOR INFECTIONS WITH ANTIBIOTIC RESISTANT BACTERIAL STRAINS

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Remington: Science and Practice of Pharmacy", 2005, LIPPINCOTT, WILLIAMS & WILKINS
BERGE ET AL.: "Pharmaceutical Salts", JOURNAL OF PHARMACEUTICAL SCIENCE, vol. 66, 1977, pages 1 - 19, XP002675560, DOI: 10.1002/jps.2600660104
CLIN. INF. DIS., vol. 48, 2009, pages 1 - 12
NATURE, vol. 543, 2017, pages 15
REV. INFECT. DIS., vol. 7, 1985, pages 579 - 593
See also references of EP3747883A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098635A1 (zh) * 2018-11-13 2020-05-22 南京圣和药业股份有限公司 单环内酰胺化合物及其应用
WO2020125670A1 (zh) * 2018-12-18 2020-06-25 南京明德新药研发有限公司 单环β-内酰胺化合物在制药中的应用
US12310948B2 (en) 2018-12-18 2025-05-27 Shenzhen Optimum Biological Technology Co., Ltd Application of monocyclic β-lactam compound in pharmacy
CN114828850B (zh) * 2019-12-19 2024-08-13 深圳嘉科生物科技有限公司 化合物在制药中的应用
WO2021121387A1 (zh) * 2019-12-19 2021-06-24 南京明德新药研发有限公司 化合物在制药中的应用
CN114828850A (zh) * 2019-12-19 2022-07-29 南京明德新药研发有限公司 化合物在制药中的应用
EP4079305A4 (en) * 2019-12-19 2024-01-10 Shenzhen Optimum Biological Technology Co., Ltd APPLICATION OF A COMPOUND IN THE PREPARATION OF DRUG
WO2022003610A1 (en) 2020-07-02 2022-01-06 Pi Industries Ltd. 2-(4,5-dihydroisoxazol-3-yl)isoindoline-5-carboxamide derivatives and similar compounds as pesticides for crop protection
WO2023037253A1 (en) 2021-09-08 2023-03-16 Pi Industries Ltd Isoxazoline compounds and their use as pest control agents
US20230159517A1 (en) * 2021-11-18 2023-05-25 Merck Sharp & Dohme Llc Chromane amidine monobactam compounds for the treatment of bacterial infections
US11932637B2 (en) * 2021-11-18 2024-03-19 Merck Sharp & Dohme Llc Chromane amidine monobactam compounds for the treatment of bacterial infections
CN118255695A (zh) * 2024-02-26 2024-06-28 广州艾奇西新药研究有限公司 一种β-内酰胺类化合物的中间体的纯化方法和制备方法
CN118255695B (zh) * 2024-02-26 2025-03-14 广州艾奇西医药科技有限公司 一种β-内酰胺类化合物的中间体的纯化方法和制备方法

Also Published As

Publication number Publication date
JP2021512866A (ja) 2021-05-20
JP7280273B2 (ja) 2023-05-23
US20210115035A1 (en) 2021-04-22
US11459323B2 (en) 2022-10-04
EP3747883A4 (en) 2020-12-16
CN111511737A (zh) 2020-08-07
CN111511737B (zh) 2022-10-18
EP3747883A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2019144969A1 (zh) 用于治疗细菌感染的单环β-内酰胺化合物
CN109715630B (zh) β-内酰胺酶抑制剂化合物
CN115380026A (zh) 蛋白降解调节剂与其使用方法
CN114007605B (zh) 大环广谱抗生素
TW201434848A (zh) 巨環廣效抗生素
CN112135830B (zh) 氧代取代化合物
CN114728902B (zh) 作为金属-β-内酰胺酶抑制剂的1-氨基磺酰基-2-羧基吡咯衍生物
JP2019517501A (ja) 新規なβ−ラクタマーゼ阻害剤
CN114828850B (zh) 化合物在制药中的应用
WO2019137484A1 (zh) Cxcr2拮抗剂
CN113227088B (zh) 单环β-内酰胺化合物在制药中的应用
HK40034228A (zh) 用於治療細菌感染的單環β-內酰胺化合物
HK40034228B (zh) 用於治療細菌感染的單環β-內酰胺化合物
CN116615431A (zh) 硼酸类化合物
JP6986089B2 (ja) 新規な2−カルボキシペナム化合物またはその塩、それらを含有する医薬組成物およびその応用
HK40069085A (zh) 化合物在製藥中的應用
HK40048570A (zh) 單環β-內酰胺化合物在製藥中的應用
HK40048570B (zh) 單環β-內酰胺化合物在製藥中的應用
CN116462721A (zh) 抗菌性氨基糖苷衍生物
HK40081349A (zh) 蛋白降解调节剂与其使用方法
WO2025031214A1 (zh) 一种含脲三环的β-内酰胺酶抑制剂、其制备方法及其用途
HK40070082A (zh) 作為金屬-β-內酰胺酶抑制劑的1-氨基磺酰基-2-羧基吡咯衍生物
WO2019120212A1 (zh) Ido抑制剂
TW201833119A (zh) 具有亞磺醯基或磺醯基的三環性化合物及含有該三環性化合物的醫藥組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743987

Country of ref document: EP

Effective date: 20200831