WO2019134416A1 - 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 - Google Patents
一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 Download PDFInfo
- Publication number
- WO2019134416A1 WO2019134416A1 PCT/CN2018/110449 CN2018110449W WO2019134416A1 WO 2019134416 A1 WO2019134416 A1 WO 2019134416A1 CN 2018110449 W CN2018110449 W CN 2018110449W WO 2019134416 A1 WO2019134416 A1 WO 2019134416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lignosulfonate
- healing
- polyurea coating
- self
- coating
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/02—Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/50—Polyethers having heteroatoms other than oxygen
- C08G18/5021—Polyethers having heteroatoms other than oxygen having nitrogen
- C08G18/5024—Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/64—Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
- C08G18/6492—Lignin containing materials; Wood resins; Wood tars; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/721—Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
- C08G18/724—Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D197/00—Coating compositions based on lignin-containing materials
- C09D197/005—Lignin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
Definitions
- the invention belongs to the technical field of polymer materials, and particularly relates to a lignosulfonate dispersed self-healing polyurea coating, a preparation method thereof and a coating and application thereof.
- Steel structures have a large number of applications in the construction of marine facilities, such as offshore oil platforms, subsea pipelines, tunnels, and underwater parts such as ships.
- the salt spray content is high and the humidity is high. It is easy to form a corrosive water film on the surface of the steel. The corrosion effect is strong.
- the corrosion rate of the steel exposed to the long-saturated air of the sea fog is in the ordinary atmosphere. 8 times. Therefore, the marine atmospheric corrosion causes the service life of the steel structure to be greatly shortened, and the maintenance cost is doubled in the later stage, so the steel structure must be protected.
- Polyurea is a new type of green marine steel structure anti-corrosion material. Compared with traditional anti-corrosion coatings, it has the advantages of temperature, humidity, chemical corrosion resistance, wear resistance, aging resistance and mechanical properties. The hardness and color of the polyurea can be optionally adjusted according to requirements. In addition, the polyurea has its own strength which does not depend on the substrate, that is, the polyurea can also be used as a coating as a lining. However, when subjected to external forces such as marine organisms, marine debris, etc., the polyurea coating will cause cracks, which in turn penetrate and erode the steel structure.
- the improvement method for polyurea coating is to adjust the ratio of soft and hard segments or to adopt new components to improve the performance of polyurea coating; another low-cost and effective method is to self-heal the polyurea coating. Combined performance, when the coating is damaged, it can be automatically repaired to prevent the steel structure from coming into contact with corrosive media to avoid corrosion.
- Self-healing materials have been widely used in military, satellite, aircraft, electronics and other fields. Self-healing of materials is generally achieved by liquid core fiber method, microcapsule method, dynamic chemical bond, etc., and the most commonly used method is microcapsule method.
- microcapsule method By dispersing the microcapsules encapsulating the healing agent into the material, part of the microcapsules rupture under the action of external force, and the repair agent flows out and penetrates into the crack of the material to chemically react with the catalyst or other medium to achieve healing.
- microencapsulation the physical properties of the healing agent can be improved, the stability of the healing agent can be improved, and the release can be controlled. At present, there is no report on self-healing polyurea self-healing coating.
- the self-healing epoxy self-healing coating is prepared.
- Yang et al. used isophorone diisocyanate (IPDI) and prepolymer as a healing agent to prepare different polyurea microcapsules by interfacial polymerization of 1,4-butanediol, and studied the particle size of microcapsules. Effects of wall thickness and molecular weight, etc. (Macromolecules, 2008, 41, 9650-9655). Further, the polyurea microcapsules prepared by Huang et al. were dried and mixed with an epoxy resin to obtain a self-healing coating (J. Mater. Chem.
- epoxy resin is poor in flexibility, and it is prone to cracking under external impact or alternating temperature, and the poorer the low temperature flexibility of epoxy resin, the epoxy resin is greatly limited in the anti-erosion application of marine steel. Therefore, it is necessary to develop a high-performance self-healing polyurea coating.
- Lignosulfonate is a natural amphiphilic polymeric surfactant containing active reactive groups such as phenolic hydroxyl groups and alcoholic hydroxyl groups. Therefore, the present invention utilizes a lignosulfonate to prepare a polyurea self-healing coating which can emulsify a healing agent while also reacting with an isocyanate component of polyurea to obtain a modified isocyanate having microcapsules. The component is further reacted with a terminal amino polyether and a chain extender to obtain a polyurea material having a self-healing function.
- Another object of the present invention is to provide a process for preparing the above lignosulfonate-dispersed self-healing polyurea coating.
- Still another object of the present invention is to provide the use of the above lignosulfonate-dispersed self-healing polyurea coating in the field of material surface protection.
- a lignosulfonate-dispersed self-healing polyurea coating obtained by reacting the following mass parts: 1 to 10 parts of microcapsules of a lignosulfonate-embedded healing agent; 10 to 100 parts of polyurea pre-polymerization a mixture of 20 to 120 parts of an amino terminated polyether and a hindered amine chain extender.
- microcapsules of the lignosulfonate-embedded healing agent are prepared by the following steps: 10 to 100 parts by weight of an aqueous solution of lignosulfonate and 1 to 50 parts by weight of an aromatic isocyanate and an aliphatic isocyanate
- the formed microcapsule healing agent is mixed, emulsified, and dried at room temperature.
- the mass ratio of the aromatic isocyanate to the aliphatic isocyanate is preferably from 10:1 to 3:1.
- the aromatic isocyanate is a highly reactive aromatic isocyanate.
- the aliphatic isocyanate is a low reactivity aliphatic isocyanate.
- the weight ratio of the aqueous solution of lignosulfonate to the microcapsule healing agent is from 10:1 to 1:0.4.
- the mass concentration of the aqueous lignosulfonate solution is preferably 0.5 to 2%.
- the emulsification is carried out under high speed shear, and the speed of high speed shearing is preferably from 6,000 to 11,000 rpm/min.
- the emulsification time is preferably from 30 s to 3 min.
- microcapsules of the lignosulfonate-embedded healing agent are prepared by the following steps: 10 to 100 parts by weight of an aqueous solution of lignosulfonate and 1 to 50 parts by weight of an aromatic isocyanate and The microcapsule healing agent formed by the aliphatic isocyanate is mixed and emulsified at a high speed shearing condition of 3000 to 25000 rpm/min for 5 s to 10 min to obtain an O/W type pickering emulsion, which is dried at room temperature to obtain a lignosulfonate-embedded healing agent. Microcapsules.
- the polyurea prepolymer is prepared by the following steps: mixing a terminal amino polyether having a molar ratio of 0.5:1 to 2:1 with an aliphatic isocyanate, and heating to 20 ° C to 100 ° C for 10 min to 24 h. get.
- the molar ratio of the terminal amino polyether to the aliphatic isocyanate is preferably from 1:1 to 1.5:1.
- the temperature rise is preferably raised to 35 to 75 °C.
- the molar ratio of the terminal amino polyether to the hindered amine chain extender is preferably 0.5:0.1 to 2:0.1, more preferably 0.5. : 0.1 to 1:0.1.
- the lignosulfonate comprises bamboo pulp lignosulfonate, wheat straw pulp lignosulfonate, reed lignosulfonate, bagasse pulp lignosulfonate, beech grass wood Sulfonated products of industrial lignin (including alkali lignin, solvent lignin, enzymatic lignin, etc.) and sulfomethylation products of industrial lignin, such as sulfonate, cotton pulp lignin sulfonate One or more of them.
- industrial lignin including alkali lignin, solvent lignin, enzymatic lignin, etc.
- sulfomethylation products of industrial lignin such as sulfonate, cotton pulp lignin sulfonate One or more of them.
- the aromatic isocyanate includes toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymeric diphenylmethane diisocyanate (PMDI), polymethylene polyphenyl polyisocyanate (PAPI), and the like. One or more.
- the aliphatic isocyanate includes one or more of isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), HDI trimer, and the like.
- IPDI isophorone diisocyanate
- HDI hexamethylene diisocyanate
- HDI trimer and the like.
- the terminal amino polyether includes one or more of polyetheramine D230, polyetheramine D400, polyetheramine D2000, and the like.
- the sterically hindered amine chain extender comprises isobutanol 3,5-diamino-4-chlorobenzoate, diacetylethylenediamine, diacetylm-phenylenediamine, 4,4-diacetylaminodi One or more of phenylmethane, diethyltoluenediamine, and the like.
- the invention also provides a preparation method of the above lignosulfonate-dispersed self-healing polyurea coating, comprising the steps of: encapsulating the microcapsule, the terminal amino polyether and the bit of the healing agent with the lignosulfonate at room temperature; The mixed solution of the amine-type chain extender is added to the polyurea prepolymer and reacted at room temperature for 10 min to 4 h to obtain a lignosulfonate-dispersed self-healing polyurea coating.
- the reaction time is preferably from 30 min to 2 h.
- the invention participates in the reaction by using a terminal amino polyether as an amino component, and reacts with a lignosulfonate by using a microcapsule healing agent formed by a highly reactive aromatic isocyanate and a low reactivity aliphatic isocyanate to obtain a lignosulfonic acid.
- a microcapsule healing agent formed by a highly reactive aromatic isocyanate and a low reactivity aliphatic isocyanate to obtain a lignosulfonic acid.
- Microcapsules of salt-embedded healing agents are examples of salt-embedded healing agents.
- the invention also provides a coating based on the above-mentioned lignosulfonate-dispersed self-healing polyurea coating, the coating of the invention is mixed according to the above preparation method, and then coated on the surface of the substrate, and after the reaction, the lignosulfonic acid is obtained.
- the salt is dispersed from the healing polyurea coating.
- the lignosulfonate-embedded healing agent microcapsule has a particle diameter of 30 to 90 ⁇ m
- the inner package is IPDI and PMDI
- the polyurea coating has a thickness of 230 to 500 ⁇ m.
- the lignosulfonate dispersing self-healing polyurea coating overcomes the problem that the polyurea coating is difficult to repair after stress damage, and can be better applied to steel structure anti-corrosion, and can be applied in the field of material surface protection, as The application of marine steel structural materials has a good prospect.
- the mechanism of the invention is:
- the self-healing mechanism of the coating of the invention adopts the microcapsule method, and the lignin sulfonate is used as a dispersing agent, and the highly reactive aromatic isocyanate and the low-reactive aliphatic isocyanate are encapsulated to form a microcapsule healing agent, and the surface lignin is used.
- the sulfonate reacts with the aliphatic isocyanate to form an isocyanate component containing the lignin-based healing agent microcapsules, which reacts with the amino component to form a lignin-based healing agent microcapsule polyurea coating. Under the action of external force, the microcapsules are scratched or crushed, and the healing agent inside reacts with water in the air or excess amino component in the polyurea coating, thereby self-healing.
- the lignosulfonate contains a hydrophilic group such as a sulfonic acid group, and an active reaction site such as a phenolic hydroxyl group and an alcoholic hydroxyl group.
- the present invention disperses and dissolves the lignosulfonate in water, and the oil phase is a highly reactive aromatic.
- the family isocyanate and the less reactive aliphatic isocyanate form a microcapsule healing agent which, under high shear, disperses the oil phase to form an O/W type Pickering emulsion.
- the emulsion of the healing agent The phenolic hydroxyl group and the alcoholic hydroxyl group in the outer layer of sodium lignosulfonate can react with the aliphatic isocyanate to form an isocyanate component.
- the isocyanate component reacts with the amino component to form a lignin-based healing agent microcapsule polyurea coating.
- the invention obtains a self-healing polyurea coating by incorporating microcapsules of a lignin sulfonate-embedded healing agent in a polyurea coating, and the preparation of the self-healing polyurea coating expands the lignin in the polymer material.
- the application overcomes the problem that the polyurea coating is difficult to repair after stress damage, and can be better applied to steel structure anti-corrosion, and can be applied to the surface protection of materials, and has a good application as a marine steel structural material. prospect.
- the present invention has the following advantages and beneficial effects:
- the industrial lignin with abundant source and low price is directly used as raw material, dispersed in water, without additional emulsifier and cross-linking agent, the lignin sulfonate-embedded healing agent microcapsule is prepared by one-step method, and the preparation process is simple and the process is simple. Green and environmentally friendly, the invention is low in cost. At the same time, the phenolic hydroxyl structure with ultraviolet absorption in lignin is retained.
- the invention adopts an amphiphilic lignosulfonate with good dispersibility, and the reactivity of the hydroxyl group in the lignin is favorable for the subsequent preparation of the self-healing coating.
- the lignin used in the invention is derived from plants, and the structure of the natural polymer makes it have good photostability.
- As a wall material not only can the stability of the microcapsule be improved, but also the coating can be used to reduce the degradation of the material by sunlight radiation. .
- the present invention incorporates the microcapsules encapsulating the healing agent into the polyurea coating, which has significant corrosion resistance compared to the polyurea coating without the addition of microcapsules, and significantly prolongs the service life of the steel sheet.
- the flexibility, high strength, corrosion resistance and aging resistance of the polyurea coating itself the self-healing properties of the polyurea coating are imparted, and the advantages of the polyurea coating are better exerted. Therefore, it has a good application prospect and market potential in marine steel structural materials.
- Figure 1 is an erosion resistant photograph of the self-healing polyurea coating of Example 1.
- Figure 2 is an erosion resistant photograph of a conventional polyurea coating.
- step (1) After adding the step (1) emulsion to the prepolymer of step (2) at room temperature, 0.001 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.05 mol of the amino terminated polyether D-2000 are added. The mixture was mechanically stirred at 300 rpm for 1 h.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 500 ⁇ m thick, and allowed to stand at room temperature for 24 hours, and then subjected to an erosion resistance test.
- Figure 1 is a self-healing polyurea coating with microcapsules added to the present invention
- Figure 2 is a polyurea coating without microcapsules. It can be seen that the conventional polyurea coating has a significant rust at the scratches, whereas the self-healing polyurea coating of the present invention does not.
- the scanning electron micrographs of the self-healing coatings of Figures 3 and 4 also show a new coating formed by the reaction of the microcapsules with water or excess terminal amino polyether after rupture.
- step (1) After adding the step (1) emulsion to the prepolymer of step (2) at room temperature, 0.001 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.05 mol of the amino terminated polyether D-2000 are added. The reaction was stirred at 200 rpm for 30 min.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 500 ⁇ m thick, and allowed to stand at room temperature for 24 hours, and then subjected to an erosion resistance test.
- step (1) After adding the step (1) emulsion to the prepolymer of step (2) at room temperature, 0.001 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.05 mol of the amino terminated polyether D-2000 are added. The reaction was stirred at 300 rpm for 40 min.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 500 ⁇ m thick, and allowed to stand at room temperature for 24 hours, and then subjected to an erosion resistance test.
- step (1) After adding the step (1) emulsion to the prepolymer of step (2) at room temperature, 0.005 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.01 mol of the amino terminated polyether D-2000 are added. The reaction was stirred at 300 rpm for 40 min.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 500 ⁇ m thick, and allowed to stand at room temperature for 24 hours, and then subjected to an erosion resistance test.
- step (1) After adding the step (1) emulsion to the prepolymer of step (2) at room temperature, 0.005 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.05 mol of the amino terminated polyether D-2000 are added. The mixture was mechanically stirred at 300 rpm for 30 min.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 500 ⁇ m thick, and allowed to stand at room temperature for 24 hours, and then subjected to an erosion resistance test.
- step (1) After adding the step (1) emulsion reaction to the prepolymer of step (2) for 30 minutes at room temperature, 0.001 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.005 mol of the amino terminated polyether D- are added. 2000, mechanical stirring at 300 rpm for 1 h.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 300 ⁇ m thick, and was subjected to an erosion resistance test after standing at room temperature for 24 hours.
- step (1) After adding the step (1) emulsion reaction to the prepolymer of step (2) for 30 minutes at room temperature, 0.001 mol of a hindered amine chain extender dissolved in 1 mL of toluene and 0.002 mol of the amino terminated polyether D- are added. 2000, mechanical stirring at 300 rpm for 1 h.
- step (3) Polish the steel sheet with sandpaper, rinse with acetone and dry.
- the composite of step (3) was coated on a steel sheet with an I-applicator, and the coating was 300 ⁇ m thick, and was subjected to an erosion resistance test after standing at room temperature for 24 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
Abstract
一种木质素磺酸盐分散自愈合聚脲涂料及制备方法。涂料由包括以下质量份组分反应得到:1~10份木质素磺酸盐包埋愈合剂的微胶囊;10~100份聚脲预聚体;20~120份端氨基聚醚和位阻型胺类扩链剂的混合液。涂料制备方法包括的步骤为室温下,将木质素磺酸盐包埋愈合剂的微胶囊、端氨基聚醚和位阻型胺类扩链剂的混合液加入聚脲预聚体中,室温反应10min~4h。该自愈合聚脲涂料,可应用于材料表面防护领域,即钢结构尤其是海洋钢结构的防腐蚀。
Description
本发明属于高分子材料技术领域,特别涉及一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用。
钢结构在海洋设施建设中有大量应用,例如海洋采油平台、海底管线、隧道、以及舰船等水下部位。然而海洋大气环境中盐雾含量较高、湿度较大,易在钢铁表面形成有腐蚀性的水膜,腐蚀作用强烈,暴露在海雾长期饱和的空气中的钢的腐蚀速度是在普通大气的8倍。因此,海洋大气腐蚀造成钢结构使用寿命大大缩短,后期维护费用成倍增加,所以必须对钢结构予以保护。
聚脲是一种新型绿色的海洋用钢结构防腐材料,与传统的防腐涂层相比,具有对温度、湿度不敏感、耐化学腐蚀、耐磨、耐老化性、力学性能好等优势。聚脲的硬度和颜色可以根据需求随意调配,此外聚脲还具有不依附于基材的自身强度,也就是聚脲可以作为涂料同样也可作为衬里来进行使用。但是,受外力影响如海洋生物、海洋垃圾等挤压和摩擦时,聚脲涂层将会产生裂缝,继而海水渗透并侵蚀钢结构。目前对于聚脲涂层的改善方法是通过调整软硬段的比例或者是采用新型的组分以提高聚脲涂层的性能;另一种低成本且有效的方法是予以聚脲涂层自愈合性能,当涂层破损时,能够自动修复,防止钢结构与腐蚀介质接触,从而避免腐蚀。
自愈合材料在军工、人造卫星、飞机、电子等领域已经得到了广泛地应用。材料自愈合一般通过液芯纤维法、微胶囊法、动态化学键等形式实现,其中最常用的是微胶囊法。通过将包裹愈合剂的微胶囊分散到材料中,在外力作用下部分微胶囊破裂,修复剂流出并渗透到材料的裂纹中会与催化剂或者其他介质发生化学反应实现愈合。通过微胶囊化,可以改善愈合剂的物理性质,提高愈 合剂的稳定性,控制释放等。目前,尚无自愈合聚脲自愈合涂层的报道,只有利用聚脲为壁材制备微胶囊与环氧树脂共混,制备自愈合环氧树脂自愈合涂层的尝试。Yang等利用异佛尔酮二异氰酸酯(IPDI)和预聚物作愈合剂,通过1,4-丁二醇引发界面聚合反应制备了不同聚脲微胶囊,并研究了转速对微胶囊粒径,壁厚和分子量等的影响(Macromolecules,2008,41,9650-9655)。进一步,Huang等将制备的聚脲微胶囊干燥后与环氧树脂混合得到自愈合涂层(J.mater.Chem.2011,21,11123-11130)。然而,环氧树脂柔韧性差,在外力撞击或者温度交替变化下极易出现开裂,而且环氧树脂低温柔韧性越差,使得环氧树脂在海洋用钢材抗侵蚀应用上受到很大的限制。因此,发展高性能的自愈合聚脲涂层十分必要。
木质素磺酸盐是天然的两亲高分子表面活性剂,同时含有酚羟基、醇羟基等活性反应基团。因此,本发明利用木质素磺酸盐制备聚脲自愈合涂层,木质素磺酸盐既可以乳化愈合剂,同时还能够与聚脲的异氰酸酯组分反应,得到具有微胶囊的改性异氰酸酯组分,进一步和端氨基聚醚、扩链剂反应制得具有自愈合功能的聚脲材料。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种木质素磺酸盐分散自愈合聚脲涂料。
本发明另一目的在于提供一种上述木质素磺酸盐分散自愈合聚脲涂料的制备方法。
本发明再一目的在于提供一种基于上述木质素磺酸盐分散自愈合聚脲涂料的涂层。
本发明再一目的在于提供上述木质素磺酸盐分散自愈合聚脲涂料在材料表面防护领域中的应用。
本发明的目的通过下述方案实现:
一种木质素磺酸盐分散自愈合聚脲涂料,由包括以下质量份组分反应得到:1~10份木质素磺酸盐包埋愈合剂的微胶囊;10~100份聚脲预聚体;20~ 120份端氨基聚醚和位阻型胺类扩链剂的混合液。
所述木质素磺酸盐包埋愈合剂的微胶囊由包括以下步骤方法制备得到:将10~100重量份的木质素磺酸盐水溶液与1~50重量份的由芳香族异氰酸酯和脂肪族异氰酸酯形成的微胶囊愈合剂混合,乳化,室温干燥得到。
所述芳香族异氰酸酯和脂肪族异氰酸酯的质量比优选为10:1~3:1。
所述的芳香族异氰酸酯为高反应活性的芳香族异氰酸酯。
所述的脂肪族异氰酸酯为低反应活性的脂肪族异氰酸酯。
为进一步更好地实现本发明目的,所用木质素磺酸盐水溶液与微胶囊愈合剂的重量比为10:1~1:0.4。
所述木质素磺酸盐水溶液的质量浓度优选为0.5~2%。
所述乳化在高速剪切下进行,高速剪切的速度优选为6000~11000rpm/min。
所述乳化的时间优选为30s~3min。
进一步的,所述木质素磺酸盐包埋愈合剂的微胶囊由包括以下步骤方法制备得到:将10~100重量份的木质素磺酸盐水溶液与1~50重量份的由芳香族异氰酸酯和脂肪族异氰酸酯形成的微胶囊愈合剂混合,在3000~25000rpm/min转速的高速剪切条件下乳化5s~10min得到O/W型pickering乳液,室温干燥,得到木质素磺酸盐包埋愈合剂的微胶囊。
所述聚脲预聚体由包括以下步骤方法制备得到:将摩尔比为0.5:1~2:1的端氨基聚醚与脂肪族异氰酸酯混合,升温到20℃~100℃下搅拌反应10min~24h得到。
所述端氨基聚醚与脂肪族异氰酸酯的摩尔比优选为1:1~1.5:1。
所述升温优选升温至35~75℃。
所述端氨基聚醚和位阻型胺类扩链剂的混合液中,端氨基聚醚和位阻型胺类扩链剂的摩尔比优选为0.5:0.1~2:0.1,更优选为0.5:0.1~1:0.1。
本发明涂料中,所述的木质素磺酸盐包括竹浆木质素磺酸盐、麦草浆木质素磺酸盐、芦苇木质素磺酸盐、蔗渣浆木质素磺酸盐、龙须草浆木质素磺酸盐、棉浆粕木质素磺酸盐等,工业木质素(包括碱木质素、溶剂型木质素、酶解木 质素等)的磺化产物及工业木质素的磺甲基化产物中的一种或一种以上。
所述的芳香族异氰酸酯包括甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、聚合二苯基甲烷二异氰酸酯(PMDI)、多亚甲基多苯基多异氰酸酯(PAPI)等中的一种或一种以上。
所述的脂肪族异氰酸酯包括异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)、HDI三聚体等中的一种或一种以上。
所述的端氨基聚醚包括聚醚胺D230、聚醚胺D400、聚醚胺D2000等中的一种或一种以上。
所述的位阻型胺类扩链剂包括3,5-二氨-4-氯苯甲酸异丁醇酯、二乙酰乙二胺、二乙酰间苯二胺、4,4-二乙酰氨基二苯甲烷、二乙基甲苯二胺等中的一种或一种以上。
本发明还提供一种上述木质素磺酸盐分散自愈合聚脲涂料的制备方法,包括以下步骤:室温下,将木质素磺酸盐包埋愈合剂的微胶囊、端氨基聚醚和位阻型胺类扩链剂的混合液加入聚脲预聚体中,室温反应10min~4h,得到木质素磺酸盐分散自愈合聚脲涂料。
所述反应时间优选为30min~2h。
本发明以端氨基聚醚作为氨基组分参与反应,利用由高反应活性的芳香族异氰酸酯和低反应活性的脂肪族异氰酸酯形成的微胶囊愈合剂与木质素磺酸盐反应,得到木质素磺酸盐包埋愈合剂的微胶囊。
本发明还提供一种基于上述木质素磺酸盐分散自愈合聚脲涂料的涂层,将本发明涂料按上述制备方法混合后,涂覆于基材表面,反应后,得到木质素磺酸盐分散自愈合聚脲涂层。本发明涂层中,木质素磺酸盐包埋愈合剂微胶囊的粒径为30~90μm,内部包裹为IPDI和PMDI,聚脲涂层厚度为230~500μm。
本发明木质素磺酸盐分散自愈合聚脲涂料克服了聚脲涂层应力破坏后难以修复的问题,能够更好的应用到钢结构防腐蚀中,可应用于材料表面防护领域中,作为海洋用钢结构材料的应用有着很好的前景。
本发明的机理为:
本发明涂料的自愈合机理是采用微胶囊法,以木质素磺酸盐为分散剂,包裹高反应活性的芳香族异氰酸酯和低反应活性的脂肪族异氰酸酯形成微胶囊愈合剂,表层的木质素磺酸盐与脂肪族异氰酸酯反应,形成含有木质素基愈合剂微胶囊的异氰酸酯组分,与氨基组分反应形成含有木质素基愈合剂微胶囊聚脲涂层。在外力作用下,微胶囊被划破或挤破,里面的愈合剂会与空气中的水或者聚脲涂层中过量的氨基组分反应,从而起到自愈合的作用。
木质素磺酸盐既含有磺酸基等亲水基团,同时存在酚羟基和醇羟基等活性反应位点,本发明将木质素磺酸盐分散溶解于水中,油相为高反应活性的芳香族异氰酸酯和低反应活性的脂肪族异氰酸酯形成微胶囊愈合剂,在高速剪切下,木质素磺酸盐分散油相形成O/W型Pickering乳液。包裹愈合剂的乳滴外层木质素磺酸钠分子中的酚羟基和醇羟基能够和脂肪族异氰酸酯反应形成异氰酸酯组分。异氰酸酯组分与氨基组分反应形成含有木质素基愈合剂微胶囊聚脲涂料。本发明通过在聚脲涂层中掺入木质素磺酸盐包埋愈合剂的微胶囊得到自愈合聚脲涂料,该自愈合聚脲涂料的制备拓展了木质素在高分子材料中的应用,同时克服了聚脲涂层应力破坏后难以修复的问题,能够更好的应用到钢结构防腐蚀中,可应用于材料表面防护领域中,作为海洋用钢结构材料的应用有着很好的前景。
本发明相对于现有技术,具有如下的优点及有益效果:
1、来源丰富、价格低廉的工业木质素直接作为原料,分散在水中,无需额外添加乳化剂和交联剂,采用一步法制得木质素磺酸盐包埋愈合剂微胶囊,制备过程简单,过程绿色环保、本发明以成本低廉。同时保留了木质素中具有紫外吸收的酚羟基结构。
2、本发明采用具有两亲性的木质素磺酸盐,其分散性较好,木质素中羟基的反应性有利于后续制备自愈合涂层。
3、本发明使用的木质素来源于植物,天然高分子的结构使其具有良好的光稳定性,作为壁材不但可以提高微胶囊的稳定性,而且应用到涂层中减少材料受阳光辐射降解。
4、本发明将包裹愈合剂的微胶囊掺到聚脲涂层中,相比没有添加微胶囊 的聚脲涂层,具有明显的抗侵蚀性,显著延长钢片的使用寿命。在聚脲涂层本身具有柔韧性好、强度高、抗腐蚀、耐老化的特点的基础上,赋予了聚脲涂层自愈合性能,更好的发挥了聚脲涂层优势。因而在海洋用钢结构材料上有着很好的应用前景和市场潜力。
图1是实施例1自愈合聚脲涂层的抗侵蚀照片。
图2是普通聚脲涂层的抗侵蚀照片。
图3和图4是实施例1自愈合聚脲涂层的扫描电镜图。
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下列实施例中涉及的物料均可从商业渠道获得。
实施例1
(1)将10g的2%的麦草浆木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的0.5g的PMDI和2.5g的IPDI,在11000rpm/min转速下机械乳化3min,得到O/W型pickering乳液,备用。
(2)在室温下,在150mL烧杯中加入0.01mol端氨基聚醚D-2000和0.012molHDI,水浴锅匀速升温到75℃(5℃/min)机械搅拌300rpm反应1h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液后,加入0.001mol溶于1mL甲苯的位阻型胺类扩链剂和0.05mol端氨基聚醚D-2000,机械搅拌300rpm反应1h。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层500μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。
测试后的涂层如图所示,图1为本发明添加微胶囊的自愈合聚脲涂层,图2为未添加微胶囊的聚脲涂层。可以看出,普通聚脲涂层在划痕处锈迹明显,而本发明自愈合聚脲涂层则没有这种迹象。另外图3、图4的自愈合涂层的扫描电镜图也表明微胶囊破裂后与水或者过量的端氨基聚醚反应,形成的新的涂层。
实施例2
(1)将6g的0.5%的麦草浆木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的1g的MDI和5g的IPDI,在11000rpm/min转速下机械乳化30s,得到O/W型pickering乳液。
(2)在室温下,在150mL烧杯中加入0.01mol端氨基聚醚D-2000和0.012molHDI,水浴锅匀速升温到45℃(5℃/min)机械搅拌200rpm反应1.5h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液后,加入0.001mol溶于1mL甲苯的位阻型胺类扩链剂和0.05mol端氨基聚醚D-2000,机械搅拌200rpm反应30min。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层500μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。观察,划痕处无明显锈迹。
实施例3
(1)将4g的1%的竹浆木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的0.5g的PMDI和0.5g的IPDI,在11000rpm/min转速下机械乳化30s,得到O/W型pickering乳液。
(2)在室温下,在150mL烧杯中加入0.01mol端氨基聚醚D-2000和0.012molHDI,水浴锅匀速升温到60℃(5℃/min)机械搅拌300rpm反应1h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液后,加入0.001mol溶于1mL甲苯的位阻型胺类扩链剂和0.05mol端氨基聚醚D-2000,机械搅拌300rpm反应40min。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层500μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。观察,划痕处无明显锈迹。
实施例4
(1)将6g的1%的竹浆木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的4g的PMDI和1g的IPDI,在11000rpm/min转速下机械乳化30s,得到O/W型pickering乳液。
(2)在室温下,在150mL烧杯中加入0.02mol端氨基聚醚D-400和0.03molHDI,水浴锅匀速升温到65℃(5℃/min)机械搅拌300rpm反应1h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液后,加入0.005mol溶于1mL甲苯的位阻型胺类扩链剂和0.01mol端氨基聚醚D-2000,机械搅拌300rpm反应40min。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层500μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。观察,划痕处无明显锈迹。
实施例5
(1)将5g的1%的芦苇木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的4g的PMDI和1g的IPDI,在11000rpm/min转速下机械乳化20s,得到O/W型pickering乳液。
(2)在室温下,在150mL烧杯中加入0.01mol端氨基聚醚D-2000和 0.015molHDI,水浴锅匀速升温到70℃(5℃/min)机械搅拌300rpm反应1h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液后,加入0.005mol溶于1mL甲苯的位阻型胺类扩链剂和0.05mol端氨基聚醚D-2000,机械搅拌300rpm反应30min。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层500μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。观察,划痕处无明显锈迹。
实施例6
(1)将5g的1%的芦苇木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的4g的MDI和1g的IPDI,在11000rpm/min转速下机械乳化30s,得到O/W型pickering乳液。
(2)在室温下,在150mL烧杯中加入0.01mol端氨基聚醚D-2000和0.012molHDI,水浴锅匀速升温到70℃(5℃/min)机械搅拌300rpm反应1h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液反应30min后,加入0.001mol溶于1mL甲苯的位阻型胺类扩链剂和0.005mol端氨基聚醚D-2000,机械搅拌300rpm反应1h。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层300μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。观察,划痕处无明显锈迹。
实施例7
(1)将6g的1%蔗渣浆木质素磺酸钠加入到30mL白色盖子玻璃样品后,在样品瓶中加入混合均匀的3g的PMDI和1g的IPDI,在11000rpm/min转速 下机械乳化30s,得到O/W型pickering乳液。
(2)在室温下,在150mL烧杯中加入0.01mol端氨基聚醚D-2000和0.012molHDI,水浴锅匀速升温到70℃(5℃/min)机械搅拌300rpm反应1h,得到粘稠透明的HDI预聚体,待预聚体室温冷却。
(3)室温下,在步骤(2)预聚体中加入步骤(1)乳液反应30min后,加入0.001mol溶于1mL甲苯的位阻型胺类扩链剂和0.002mol端氨基聚醚D-2000,机械搅拌300rpm反应1h。
(4)用砂纸打磨钢片,丙酮冲洗后干燥。用工字涂布器在钢片上涂覆步骤(3)的复合物,涂层300μm厚,室温放置24h后进行抗侵蚀测试。
(5)抗侵蚀测试:用剃须刀片在钢片表面划痕后放置到10%NaCl水溶液中48h。观察,划痕处无明显锈迹。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种木质素磺酸盐分散自愈合聚脲涂料,其特征在于由包括以下质量份组分反应得到:1~10份木质素磺酸盐包埋愈合剂的微胶囊;10~100份聚脲预聚体;20~120份端氨基聚醚和位阻型胺类扩链剂的混合液。
- 根据权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料,其特征在于:所述木质素磺酸盐包埋愈合剂的微胶囊由包括以下步骤方法制备得到:将10~100重量份的木质素磺酸盐水溶液与1~50重量份的由芳香族异氰酸酯和脂肪族异氰酸酯形成的微胶囊愈合剂混合,乳化,室温干燥得到。
- 根据权利要求2所述的木质素磺酸盐分散自愈合聚脲涂料,其特征在于:所述芳香族异氰酸酯和脂肪族异氰酸酯的质量比为10:1~3:1;所用木质素磺酸盐水溶液与微胶囊愈合剂的重量比为10:1~1:0.4;所述木质素磺酸盐水溶液的质量浓度为0.5~2%;所述乳化在高速剪切下进行,高速剪切的速度为6000~11000rpm/min;所述乳化的时间为30s~3min。
- 根据权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料,其特征在于:所述聚脲预聚体由包括以下步骤方法制备得到:将摩尔比为0.5:1~2:1的端氨基聚醚与脂肪族异氰酸酯混合,升温到20℃~100℃下搅拌反应10min~24h得到。
- 根据权利要求4所述的木质素磺酸盐分散自愈合聚脲涂料,其特征在于:所述端氨基聚醚与脂肪族异氰酸酯的摩尔比为1:1~1.5:1;所述升温为升温至35~75℃。
- 根据权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料,其特征在于:所述端氨基聚醚和位阻型胺类扩链剂的混合液中,端氨基聚醚和位阻型胺类扩链剂的摩尔比为0.5:0.1~2:0.1。
- 根据权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料,其特征在于:所述的木质素磺酸盐包括竹浆木质素磺酸盐、麦草浆木质素磺酸盐、芦苇木质素磺酸盐、蔗渣浆木质素磺酸盐、龙须草浆木质素磺酸盐、棉浆粕木质素磺酸盐、工业木质素磺化产物及工业木质素磺甲基化产物中的一种或一种以 上;所述的芳香族异氰酸酯包括甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、聚合二苯基甲烷二异氰酸酯、多亚甲基多苯基多异氰酸酯中的一种或一种以上;所述的脂肪族异氰酸酯包括异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、六亚甲基二异氰酸酯三聚体中的一种或一种以上;所述的端氨基聚醚包括聚醚胺D230、聚醚胺D400、聚醚胺D2000中的一种或一种以上;所述的位阻型胺类扩链剂包括3,5-二氨-4-氯苯甲酸异丁醇酯、二乙酰乙二胺、二乙酰间苯二胺、4,4-二乙酰氨基二苯甲烷、二乙基甲苯二胺中的一种或一种以上。
- 一种权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料的制备方法,其特征在于包括以下步骤:室温下,将木质素磺酸盐包埋愈合剂的微胶囊、端氨基聚醚和位阻型胺类扩链剂的混合液加入聚脲预聚体中,室温反应10min~4h,得到木质素磺酸盐分散自愈合聚脲涂料。
- 一种基于权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料的涂层。
- 权利要求1所述的木质素磺酸盐分散自愈合聚脲涂料在材料表面防护领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/959,695 US11905430B2 (en) | 2018-01-03 | 2018-10-16 | Lignosulfonate dispersion self-healing polyurea coating, preparation method therefor, coating layer thereof and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810004406.5 | 2018-01-03 | ||
CN201810004406.5A CN108219641B (zh) | 2018-01-03 | 2018-01-03 | 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019134416A1 true WO2019134416A1 (zh) | 2019-07-11 |
Family
ID=62642666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/110449 WO2019134416A1 (zh) | 2018-01-03 | 2018-10-16 | 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11905430B2 (zh) |
CN (1) | CN108219641B (zh) |
WO (1) | WO2019134416A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112300357A (zh) * | 2020-11-06 | 2021-02-02 | 广州市嵩达新材料科技有限公司 | 一种光固化疏水型聚脲纳米粒子及其制备方法和应用 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108219641B (zh) | 2018-01-03 | 2019-08-20 | 华南理工大学 | 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 |
CN110172300B (zh) * | 2019-04-11 | 2021-05-11 | 常州巢典建筑科技有限公司 | 一种墙体损伤自修复装饰涂料及其制备方法 |
CN111690318B (zh) * | 2020-07-30 | 2021-10-26 | 广东嘉盛环保高新材料股份有限公司 | 一种自修复水性聚氨酯涂料组合物和涂层 |
CN112970749B (zh) * | 2021-01-25 | 2022-02-15 | 湖北福力德鞋业有限责任公司 | 一种缓释型抗菌微胶囊及其制备方法 |
CN112961583B (zh) * | 2021-02-04 | 2022-04-26 | 江苏凯伦建材股份有限公司 | 光固化聚脲涂料及其制备方法和防水材料 |
CN114181610B (zh) * | 2021-12-31 | 2022-08-05 | 武汉中科先进材料科技有限公司 | 一种微胶囊型自修复双重固化超疏水涂层及其制备方法 |
CN114957729B (zh) * | 2022-01-07 | 2024-11-08 | 燕山大学 | 一种SiO2双壳层自修复微胶囊及其制备方法 |
CN114736507B (zh) * | 2022-04-13 | 2022-10-14 | 广西科学院 | 一种生物质基改性无醛环保型人造板胶黏剂的制备方法 |
CN115505086B (zh) * | 2022-10-18 | 2023-05-30 | 西南石油大学 | 一种快速光响应自修复聚脲材料及其制备方法 |
US11851399B1 (en) | 2022-12-09 | 2023-12-26 | King Faisal University | Diselenide-based organic protective films |
CN116082928A (zh) * | 2023-02-14 | 2023-05-09 | 山东京博装备制造安装有限公司 | 一种高强度防腐涂层及其制备方法与应用 |
CN117586690B (zh) * | 2024-01-19 | 2024-03-19 | 潍坊市兴源防水材料股份有限公司 | 一种双组份喷涂聚脲防水涂料 |
CN117986985A (zh) * | 2024-01-31 | 2024-05-07 | 青岛国工高新材料有限公司 | 一种用于海洋钢结构的防腐蚀涂层材料及其制备工艺 |
CN118271131B (zh) * | 2024-03-29 | 2025-04-04 | 山东农业大学 | 一种自修复改性木质素基聚酯多元醇包衣材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4280833A (en) * | 1979-03-26 | 1981-07-28 | Monsanto Company | Encapsulation by interfacial polycondensation, and aqueous herbicidal composition containing microcapsules produced thereby |
CN85102011A (zh) * | 1984-06-12 | 1987-01-10 | 孟山都公司 | 以界面缩聚法进行高浓度包胶过程 |
CN101125290A (zh) * | 2007-07-30 | 2008-02-20 | 华东理工大学 | 聚脲微胶囊及其制备方法 |
CN106943969A (zh) * | 2017-04-07 | 2017-07-14 | 中国科学院山西煤炭化学研究所 | 一种复合外壳包覆液体异氰酸酯的自修复微胶囊的制备方法 |
CN107312140A (zh) * | 2017-06-27 | 2017-11-03 | 沈阳化工研究院有限公司 | 一种用于金属防腐涂料的自修复微胶囊及其制备方法 |
CN107474615A (zh) * | 2017-09-06 | 2017-12-15 | 中国科学院过程工程研究所 | 一种防腐自修复涂料 |
CN108219641A (zh) * | 2018-01-03 | 2018-06-29 | 华南理工大学 | 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101215408B (zh) * | 2008-01-18 | 2011-05-11 | 中山大学 | 一种高温自修复型环氧树脂材料及其制备方法 |
CN107088389A (zh) * | 2017-05-26 | 2017-08-25 | 天津工业大学 | 一种双组份胶囊及其制备方法 |
-
2018
- 2018-01-03 CN CN201810004406.5A patent/CN108219641B/zh active Active
- 2018-10-16 US US16/959,695 patent/US11905430B2/en active Active
- 2018-10-16 WO PCT/CN2018/110449 patent/WO2019134416A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4280833A (en) * | 1979-03-26 | 1981-07-28 | Monsanto Company | Encapsulation by interfacial polycondensation, and aqueous herbicidal composition containing microcapsules produced thereby |
US4417916A (en) * | 1979-03-26 | 1983-11-29 | Monsanto Company | Encapsulation by interfacial polycondensation |
CN85102011A (zh) * | 1984-06-12 | 1987-01-10 | 孟山都公司 | 以界面缩聚法进行高浓度包胶过程 |
CN101125290A (zh) * | 2007-07-30 | 2008-02-20 | 华东理工大学 | 聚脲微胶囊及其制备方法 |
CN106943969A (zh) * | 2017-04-07 | 2017-07-14 | 中国科学院山西煤炭化学研究所 | 一种复合外壳包覆液体异氰酸酯的自修复微胶囊的制备方法 |
CN107312140A (zh) * | 2017-06-27 | 2017-11-03 | 沈阳化工研究院有限公司 | 一种用于金属防腐涂料的自修复微胶囊及其制备方法 |
CN107474615A (zh) * | 2017-09-06 | 2017-12-15 | 中国科学院过程工程研究所 | 一种防腐自修复涂料 |
CN108219641A (zh) * | 2018-01-03 | 2018-06-29 | 华南理工大学 | 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 |
Non-Patent Citations (1)
Title |
---|
HE, ZHENGLONG ET AL.: "Preparation of Polyurea Microcapsules and Its Application on Self-Healing Materials", PROCEEDINGS OF 18TH ANNUAL CONFERENCE OF CHINA POLYURETHANE INDUSTRY ASSOCIATION, 30 July 2016 (2016-07-30), pages 464 - 468 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112300357A (zh) * | 2020-11-06 | 2021-02-02 | 广州市嵩达新材料科技有限公司 | 一种光固化疏水型聚脲纳米粒子及其制备方法和应用 |
CN112300357B (zh) * | 2020-11-06 | 2022-07-05 | 广州市嵩达新材料科技有限公司 | 一种光固化疏水型聚脲纳米粒子及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
US11905430B2 (en) | 2024-02-20 |
CN108219641A (zh) | 2018-06-29 |
US20200369912A1 (en) | 2020-11-26 |
CN108219641B (zh) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019134416A1 (zh) | 一种木质素磺酸盐分散自愈合聚脲涂料及其制备方法和涂层与应用 | |
US8993066B2 (en) | Microencapsulation of reactive diisocyanates and the application to self-healing anticorrosion coatings | |
CN107961747A (zh) | 内修外固型聚脲基双壁自修复微胶囊及其制备方法 | |
CN107236106B (zh) | 含酰腙键的芳香族端羟基扩链剂、自修复聚氨酯及其制备方法 | |
CN107970868A (zh) | 外修内固型聚脲基双壁自修复微胶囊及其制备方法 | |
CN106221346B (zh) | 一种自修复型钢结构防火涂料及其制备方法 | |
KR101772903B1 (ko) | 고내구성을 지니는 폴리우레아 도막 방수재 조성물 | |
Qian et al. | Facile preparation of active lignin capsules for developing self-healing and UV-blocking polyurea coatings | |
CN108912870A (zh) | 一种自修复防腐户外建筑石墨烯涂料及制备方法 | |
CN110499092B (zh) | 一种刚性耐高温聚脲防腐涂料及其制备方法 | |
CN109762459B (zh) | 一种光可逆的疏水自修复无溶剂聚氨酯及其制备方法 | |
KR102533279B1 (ko) | 해양공정에 사용하는 열화 면역 바이오닉 보호 계면 및 제조방법 | |
CN113710717A (zh) | 潜在反应性胶粘剂配制品 | |
CN107961748B (zh) | 外修内固型多孔氮化硼-聚脲基双壁自修复微胶囊及其制备方法 | |
CN106867300A (zh) | 一种水工防护聚脲材料的混凝土底涂 | |
CN107952404A (zh) | 内修外固型多孔氮化硼-聚脲基双壁自修复微胶囊及其制备方法 | |
US10647859B2 (en) | Two-component putty, method for coating a substrate with such putty, substrates coated with such putty | |
CN105419612B (zh) | 一种自闭型聚氨酯防水涂料及其生产工艺 | |
CN113388321A (zh) | 一种钙钛矿锚定含氟两性离子聚氨酯发光防污涂层及其制备方法 | |
CN111704878A (zh) | 一种改性纤维素基螺纹密封剂及其制备方法 | |
CN111187563A (zh) | 一种高粘结力耐水解聚脲专用底涂料及其制备方法 | |
JP2017137207A (ja) | 水硬性ポリマーセメント組成物及びこれによる床構造 | |
CN108947319A (zh) | 具有胞状结构的外修内固型自修复微胶囊及其制备方法 | |
JPS6126676A (ja) | ウレタン樹脂塗料組成物 | |
CN112108085A (zh) | 一种相变微胶囊固化剂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18898949 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/10/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18898949 Country of ref document: EP Kind code of ref document: A1 |