WO2019131829A1 - 標的遺伝子改変用組成物 - Google Patents
標的遺伝子改変用組成物 Download PDFInfo
- Publication number
- WO2019131829A1 WO2019131829A1 PCT/JP2018/048034 JP2018048034W WO2019131829A1 WO 2019131829 A1 WO2019131829 A1 WO 2019131829A1 JP 2018048034 W JP2018048034 W JP 2018048034W WO 2019131829 A1 WO2019131829 A1 WO 2019131829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rna
- seq
- nucleic acid
- cell
- composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/7105—Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/28—Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4707—Muscular dystrophy
- C07K14/4708—Duchenne dystrophy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
- C12N15/907—Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
Definitions
- the present invention relates to a composition capable of introducing a substance used in a CRISPR system as an active ingredient into cells. Furthermore, the present invention relates to a method of inducing genetic modification at a target locus in cells using such a composition, for example, a method of preventing or treating muscular dystrophy by modifying the dystrophin gene of muscle cells.
- class 1 and class 2 are known, and in class 1, type I, type III, type IV are known, and in class 2, type II, type V, and type VI are known.
- Cas9 of class 2 type II which binds and cuts DNA is widely used, but Cpf1 (Cas12a) and C2c1 (Cas12b) of class 2 type V which similarly bind and cut DNA It's being used.
- Cas13a (C2c2) and Cas13b of class 2 type VI which bind to and cleave RNA, have also been reported.
- lipid nanoparticles capable of encapsulating nucleic acids such as gRNA and mRNA are known.
- LNP lipid nanoparticles
- prior art documents describing delivery of a gene modification tool of CRISPR / Cas9 system by LNP to hepatocytes include the following.
- Non-Patent Document 1 uses C12-200 (a lipid-like molecule), cholesterol, C14 PEG 2000 (a polyethylene glycol lipid), DOPE (1,2-dioleyl-sn-glycero-3-phosphoethanolamine) and arachidonic acid.
- C12-200 a lipid-like molecule
- C14 PEG 2000 a polyethylene glycol lipid
- DOPE 1,2-dioleyl-sn-glycero-3-phosphoethanolamine
- arachidonic acid arachidonic acid.
- Patent Document 1 describes a lipid particle containing gRNA, a cationic lipid and a noncationic lipid.
- cationic lipids include 1,2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA).
- LNP containing Cas9 mRNA and gRNA into a mouse, indel was observed in Pcsk9 gene and HBV RT gene of hepatocytes.
- Non-patent Document 2 mRNA of SpCas9 and modified sgRNA are expressed in mice using cKK-E12 (a lipid-like molecule that is a derivative from a lysine based dipeptide), cholesterol, C14PEG2000 and LNP made using DOPE. It is described that indel was observed in the Pcsk9 gene, Fah gene and Rosa26 gene of hepatocytes by intravenous injection.
- Patent Document 2 discloses a viral vector (for example, adeno-associated virus (AAV)) of a gene encoding gRNA and Cas9 for the purpose of correcting deficiency of mouse dystrophin gene (Dmd) to treat Duchenne muscular dystrophy. It is described to be used for delivery to muscle cells and the like.
- AAV adeno-associated virus
- a recombinant AAV including a vector carrying sgRNA and spCas9 gene for skipping the exon is administered by injection. It has been described that dystrophin is positive in parts of myofibers and cardiomyocytes.
- Patent Document 3 also describes that genes such as Dmd can be corrected by delivering genes encoding gRNA and Cas9 to muscle cells and the like.
- Examples Examples 9, 11 and the like
- Non-Patent Document 3 describes that gRNA and mRNA of SaCas9 or mRNA of SpCas9 were intravenously or intramuscularly administered to mdx mice (muscular dystrophy model) by AAV, and deletion of exon 23 was observed in cardiac muscle and skeletal muscle. It is done.
- An object of the present invention is to provide a delivery technique for delivering a gene modification tool capable of realizing high gene modification efficiency in various cells.
- a lipid particle formed of a compound represented by the following formula (a kind of cationic lipid) or a salt thereof and another structural lipid Can efficiently deliver guide RNA (gRNA), RNA-inducible nuclease protein represented by Cas9 or a nucleic acid containing a sequence encoding the same, etc. into various cells, and the above problems can be solved
- gRNA guide RNA
- Cas9 RNA-inducible nuclease protein represented by Cas9
- nucleic acid containing a sequence encoding the same etc.
- Formula (I) [In the formula (I), n is an integer of 2 to 5, R represents a linear C 1-5 alkyl group, a linear C 7-11 alkenyl group or a linear C 11 alkadienyl group Each wavy line indicates a cis or trans bond independently. ]
- a compound represented by or a salt thereof 2) structured lipids, and 3) A composition for inducing genetic modification at a target locus in a cell, comprising a guide RNA or a DNA comprising a sequence encoding the same, and / or a nucleic acid comprising an RNA-inducible nuclease or a sequence encoding the same.
- the RNA-inducible nuclease is Cas9; Guide RNA is (A) chimeric RNA, or (b) two or more RNAs including crRNA and tracrRNA
- the composition according to Item 1 which is [2a] The composition according to Item 1, wherein the RNA-inducible nuclease is Cpf1. [3] Item 3. The composition according to item 1 or 2, wherein Cas9 is purulent Streptococcus-derived Cas9. [4] Item 4. The composition according to any one of Items 1 to 3, wherein the guide RNA is two or more types of guide RNAs. [5] Item 5. The composition according to any one of Items 1 to 4, wherein the cells are muscle cells.
- Guide RNA is (1) a chimeric RNA comprising the nucleic acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 or (2) (i) a crRNA comprising the nucleic acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 4; Or tracrRNA comprising the nucleic acid sequence as shown in SEQ ID NO: 8 7.
- the RNA-inducible nuclease is Cas9; Guide RNA is (A) chimeric RNA, or (b) two or more RNAs including crRNA and tracrRNA 9.
- Cas9 is purulent Streptococcus-derived Cas9.
- the target locus comprises a nucleotide sequence of a dystrophin gene.
- Guide RNA is (1) a chimeric RNA comprising the nucleic acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 or (2) (i) a crRNA comprising the nucleic acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 4; Or tracrRNA comprising the nucleic acid sequence as shown in SEQ ID NO: 8
- Item 14 A cell in which a target locus obtained by the method according to any one of items 8 to 13 is modified.
- a medicament comprising the composition according to item 6.
- RNA-inducible nuclease is Cas9; Guide RNA is (A) chimeric RNA, or (b) two or more RNAs including crRNA and tracrRNA
- Guide RNA is (A) chimeric RNA, or (b) two or more RNAs including crRNA and tracrRNA
- Item 17 The medicament according to Item 15 or 16, wherein Cas9 is S. pylori-derived Cas9.
- Guide RNA is (1) a chimeric RNA comprising the nucleic acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 or (2) (i) a crRNA comprising the nucleic acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 4; Or tracrRNA comprising the nucleic acid sequence as shown in SEQ ID NO: 8
- Item 20 The medicine according to any one of Items 15 to 19, which is a repairable dystrophin protein producing agent.
- a method for preventing and / or treating muscular dystrophy in a mammal which comprises administering an effective amount of the composition according to item 6 or 7 to the mammal.
- Item 8. A method for producing repairable dystrophin protein in a mammal, which comprises administering an effective amount of the composition according to Item 6 or 7 to a mammal.
- composition according to item 6 or 7 for use in the prophylaxis or treatment of muscular dystrophy.
- Item 8. A method for producing a cell having a modified target locus, which comprises the step of contacting the cell with the composition according to any one of items 1 to 7. [26] (1) contacting the composition according to any one of items 1 to 7 with a non-human mammal fertilized egg, an embryonic stem cell or an oocyte; (2) selecting the fertilized egg, embryonic stem cell or oocyte in which the target locus has been modified, and (3) selecting the selected fertilized egg, embryonic stem cell or oocyte as a non-human mammal A method of producing a non-human mammal having a modified target locus, which comprises the step of implanting in a female animal.
- Formula (I) [In the formula (I), n is an integer of 2 to 5, R represents a linear C 1-5 alkyl group, a linear C 7-11 alkenyl group or a linear C 11 alkadienyl group Each wavy line indicates a cis or trans bond independently.
- a lipid particle dispersion comprising a compound represented by the formula: or a salt thereof, and 2) a structured lipid, 3) mixing with a guide RNA or a DNA containing a sequence encoding the same, and / or an aqueous solution containing an RNA-inducible nuclease or a nucleic acid containing a sequence encoding the same;
- Item 28 The production method according to Item 27, wherein the guide RNA is two or more types of guide RNAs.
- the compound represented by the formula (I) may be described as “the compound (I)”.
- the “compound represented by the formula (I) or a salt thereof” may be referred to as “the compound of the present invention”.
- the “lipid particle containing the compound represented by the formula (I) or a salt thereof (the compound of the present invention)” may be referred to as “the lipid particle of the present invention”.
- a DNA comprising a guide RNA or a sequence encoding the same, and / or a nucleic acid comprising an RNA-inducible nuclease or a sequence encoding the same may be referred to as "the active ingredient of the present invention”.
- a guide RNA or a DNA containing a sequence encoding it may be referred to as “gRNA etc.”
- an "RNA-inducible nuclease or a nucleic acid containing a sequence encoding this” may be referred to as “RNA-inducible nuclease etc.”
- a composition containing the compound of the present invention, a structural lipid, gRNA or the like and an RNA-inducible nuclease or the like may be referred to as "the composition of the present invention”.
- the shape of the lipid particle of the present invention is not particularly limited.
- a complex in which the compound of the present invention or the like is assembled so as to constitute a sphere a complex which is assembled without constituting a specific shape, a complex dissolved in a solvent And a complex uniformly or nonuniformly dispersed in a dispersion medium.
- RNA-inducible nuclease or the like such as gRNA used for the CRISPR system as an active ingredient into various cells, tissues or organs.
- FIG. 1 shows the results of [1-3] “Evaluation of DNA mutation transduction efficiency using MmRosa26sgRNA in C57BL / 6J mice” in Example 1.
- FIG. 1 shows the results of [1-3] “Evaluation of DNA mutation transduction efficiency using MmRosa26sgRNA in C57BL / 6J mice” in Example 1.
- FIG. 2 shows an electropherogram for [2-4] “evaluation of DNA mutation introduction efficiency in skeletal muscle” in Example 2 and the result of mutation (indel) introduction efficiency calculated from its concentration.
- FIG. 3 shows an electropherogram for [2-5] “exon skipping efficiency evaluation in skeletal muscle” in Example 2 and the result of the exon skipping efficiency calculated from its concentration.
- FIG. 4 shows the results of Western blotting and the expression level of dystrophin protein (relative value of dystrophin / Gapdh) calculated from the concentration of [2-6] “evaluation of dystrophin protein recovery in skeletal muscle” in Example 2. Indicates FIG.
- FIG. 5 shows the results of the electrophoresis diagram and the mutation (indel) introduction efficiency calculated from the concentration for [3-4] “evaluation of DNA mutation introduction efficiency in human iPS cell-derived myoblasts” in Example 3.
- FIG. 6 shows an electropherogram for [3-5] “exon skipping efficiency evaluation in human iPS cell-derived myoblasts” in Example 3 and the result of the exon skipping efficiency calculated from the concentration thereof.
- FIG. 7 shows an electropherogram for [4-5] “exon skipping efficiency evaluation in human iPS cell-derived myoblasts” in Example 4 and the result of the exon skipping efficiency calculated from the concentration thereof.
- FIG. 6 shows an electropherogram for [3-5] “exon skipping efficiency evaluation in human iPS cell-derived myoblasts” in Example 3 and the result of the exon skipping efficiency calculated from the concentration thereof.
- FIG. 7 shows an electropherogram for [4-5] “exon skipping efficiency evaluation in human iPS cell-derived myoblasts”
- FIG. 8 shows Western blot and the expression amount of dystrophin protein (distrophin / GAPDH calculated from [4-6] “evaluation of dystrophin protein recovery in human iPS cell-derived myoblasts” in Example 4). Relative value) is shown.
- FIG. 9 shows the results of the mutagenesis efficiency in Example 5 “Analysis of DNA cleavage activity in various tissues upon intravenous administration of LNP”.
- FIG. 10 shows the results of the exon skipping efficiency in Example 6 “exon skipping efficiency evaluation in skeletal muscle using Dual sgRNAs”.
- the dystrophin protein shown in FIGS. 4 and 8 is a repairable dystrophin protein (human dystrophin protein translated from mRNA in which exon 43 and exon 46 are linked).
- linear C 1-5 alkyl group examples include methyl, ethyl, propyl, butyl and pentyl.
- examples of the “linear C 7-11 alkenyl group” include 1-heptenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 1-octenyl, 2 -Octenyl, 3-octenyl, 4-octenyl, 5-octenyl, 6-octenyl, 7-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 4-nonenyl, 5-nonenyl, 6-nonenyl, 7-nonenyl , 8-nonenyl, 1-decenyl, 2-decenyl, 3-decenyl, 4-decenyl, 5-decenyl, 6-decenyl, 7-decenyl, 8-decenyl, 9-decenyl, 1-undecenyl, 2-undecenyl, 2-unde
- examples of the “linear C 11 alkadienyl group” include 1,3-undecadienyl, 1,4-undecadienyl, 1,5-undecadienyl, 1,6-undecadienyl, 1,7-undecadienyl, 1 , 8-Undecadienyl, 1,9-Undecadienyl, 1,10-Undecadienyl, 2,4-Undecadienyl, 2,5-Undecadienyl, 2,6-Undecadienyl, 2,7-Undecadienyl, 2, 8-Undecadienyl, 2, 9 -Undecadienyl, 2,10-undecadienyl, 3,5-undecadienyl, 3,6-undecadienyl, 3,7-undecadienyl, 3,8-undecadienyl, 3,9-undecadienyl, 3,10-undecadienyl, 4,
- n and wavy line in formula (I) are as follows.
- n is preferably an integer of 3 to 5, and more preferably 3.
- the wavy lines are preferably both cis bonds.
- Compound (I) a compound wherein n is an integer of 3 to 5 and R is a linear C 7-11 alkenyl group in cis form, and both wavy lines are cis form.
- Compound (B) a compound wherein n is 4 and R is a linear C 11 alkadienyl group in cis form at both of two carbon-carbon double bonds, and the wave lines are both cis form bonds .
- Compound (A1) a compound wherein n is an integer of 3 to 5 and R is a cis form of 5-heptenyl, 7-nonenyl or 9-undecenyl and the wave line is a cis form.
- Compound (B1) A compound wherein n is 4 and R is a cis-form 2,5-undecadienyl at both of two carbon-carbon double bonds, and the wave lines are both cis-form bonds.
- Compound (C1) A compound wherein n is 2 or 3, R is methyl, propyl or pentyl and the wave lines are both cis-linkage.
- a further preferred embodiment of the compound (I) is 3-((4- (dimethylamino) butanoyl) oxy) -2,2-bis (((9Z, 9'Z) -tetradeca-9-enoyloxy) methyl) Propyl (9Z) -tetradeca-9-enoate.
- the salt of compound (I) is preferably a pharmacologically acceptable salt, such as a salt with an inorganic base, a salt with an organic base, a salt with an inorganic acid, a salt with an organic acid, basicity or acidity Salts with amino acids may be mentioned.
- a pharmacologically acceptable salt such as a salt with an inorganic base, a salt with an organic base, a salt with an inorganic acid, a salt with an organic acid, basicity or acidity Salts with amino acids may be mentioned.
- salts with inorganic bases include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts; aluminum salts and ammonium salts. Preferred are sodium salts, potassium salts, calcium salts and magnesium salts, and more preferred are sodium salts and potassium salts.
- salts with organic bases include trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, tromethamine [tris (hydroxymethyl) methylamine], tert-butylamine, cyclohexylamine, benzylamine, Examples thereof include salts with dicyclohexylamine, N, N-dibenzylethylenediamine.
- salts with inorganic acids include salts with hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid and phosphoric acid.
- salts with organic acids include formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid And salts with p-toluenesulfonic acid.
- salts with basic amino acids include salts with arginine, lysine and ornithine.
- salts with acidic amino acids include salts with aspartic acid and glutamic acid.
- the compounds of the invention form lipid particles with a structured lipid.
- this lipid particle encapsulates a guide RNA or a DNA containing a sequence encoding the same, and / or a nucleic acid containing an RNA-inducible nuclease or a sequence encoding the same.
- the structured lipid is not particularly limited as long as it can form lipid particles after being mixed with the compound of the present invention to prepare a mixed lipid component.
- structural lipids for example, Sterols (eg, cholesterol, cholesterol ester, cholesterol hemisuccinic acid, etc.); Phospholipids (eg, phosphatidyl choline (eg, dipalmitoyl phosphatidyl choline, distearoyl phosphatidyl choline, lysophosphatidyl choline, dioleoylphosphatidyl choline, palmitoyl oleoyl phosphatidyl choline, dilinorenoyl phosphatidyl choline, MC-1010 (NOF CORPORATION), MC-2020 (NOF CORPORATION)) , MC-4040 (NOF CORPORATION, etc.), Phosphatidylserine (eg, dipalmitoyl
- the ratio of the compound of the present invention to the structured lipid in the composition of the present invention can be appropriately adjusted depending on the purpose.
- the structural lipid when a lipid particle is formed by a mixed lipid component containing the compound of the present invention and a structural lipid, the structural lipid is usually 0.008 to 1 mol per 1 compound of the present invention.
- the ratio is 4 moles, preferably 0.4 to 1.5 moles.
- the compound of the present invention is usually 1 to 4 moles, sterols are usually 0 to 3 moles, phospholipids are usually 0 to 2 moles, polyethylene glycol lipids are usually It is a ratio of 0 to 1 mole.
- a more preferable embodiment when the compound of the present invention and other lipid component are mixed and used is 1 to 1.5 mol of the compound of the present invention, 0 to 1.25 mol of sterols, 0 to 0.5 mol of phospholipid And a ratio of 0 to 0.125 moles of polyethylene glycol lipid.
- a substance for inducing genetic modification at a target locus in a cell specifically, a DNA containing a guide RNA or a sequence encoding the same, and / or an RNA corresponding to the CRISPR system
- a nucleic acid containing an inducible nuclease or a sequence encoding it is used.
- basic matters about substances corresponding to the CRISPR system for genetic modification are well known, and various applied matters are also known, and those well known or known matters are also known for the present invention. It can be applied (see, for example, the prior art documents listed above). Those skilled in the art can design, select, and manufacture appropriate ones for each element of the target locus and the CRISPR system, depending on the purpose.
- Cells and target loci can be appropriately selected depending on the purpose of genetic modification, and are not particularly limited, but typically, cells involved in genetic diseases and that may be targets for gene therapy And the locus.
- compositions of the invention can be used to introduce active ingredients into many types of cells, tissues or organs.
- the cells to which the present invention can be applied include, for example, mesenchymal stem cells, neural stem cells, skin stem cells, squamous cells, nerve cells, glial cells, pancreatic B cells, bone marrow cells, mesangial cells, Langerhans cells, epidermal cells, Epithelial cells, endothelial cells, fibroblasts, fiber cells, muscle cells (eg, skeletal muscle cells, cardiomyocytes, myoblasts, muscle satellite cells, smooth muscle cells), adipocytes, blood cells (eg, macrophages, T cells) , B cells, natural killer cells, mast cells, leukocytes, neutrophils, basophils, eosinophils, monocytes, megakaryocytes, hematopoietic stem cells), synoviocytes, chondrocytes, osteocytes, osteoblasts, rupture Osteocytes, mamm
- any tissue or organ in which the above-mentioned cells are present for example, brain, each part of brain (eg, olfactory bulb, bald nucleus, basal bulb, cerebrum, hippocampus, Thalamus, hypothalamus, subthalamic nucleus, cerebral cortex, medulla, cerebellum, occipital lobe, frontal lobe, temporal lobe, putamen, caudate nucleus, brain stain, substantia nigra), spinal cord, pituitary, stomach, pancreas, kidney, Liver, gonads, thyroid, gallbladder, bone marrow, adrenal, skin, lung, digestive tract (eg, large intestine, small intestine), blood vessels, heart, thymus, spleen, submandibular gland, peripheral blood, peripheral blood cells, prostate, placenta, uterus , Bones, joints
- the cells are muscle cells (eg cardiomyocytes, skeletal muscle cells, muscle satellite cells), fibroblasts, mesenchymal stem cells, blood cells or iPS cells, more preferably muscle cells (In particular, skeletal muscle cells or muscle satellite cells) are preferred.
- muscle cells are collected from humans (patients or healthy persons) or other mammals (eg, non-human primates (cynomolgus monkeys, rhesus monkeys, chimpanzees etc.), disease model animals such as cattle, pigs, mice, rats etc.) Muscle cells, muscle cells of living bodies (eg, in vivo), muscle cell lines, and muscle cells induced to differentiate from stem cells (eg, iPS cells, ES cells).
- mammals eg, non-human primates (cynomolgus monkeys, rhesus monkeys, chimpanzees etc.), disease model animals such as cattle, pigs, mice, rats etc.
- Muscle cells muscle cells of living bodies (eg, in vivo), muscle cell lines, and muscle cells induced to differentiate from stem cells (eg, iPS cells, ES cells).
- the target locus comprises the nucleotide sequence of the dystrophin gene.
- the dystrophin gene is a large gene of over 2.2 million bases, which is present on the X chromosome. There are various isoforms depending on the transcription start point, and there are various isoforms, Dp71 expressed in whole body, Dp116 expressed in terminal nerve cells, Dp140 expressed in brain and kidney, Dp260 expressed in retina, Dp417p expressed in Purkinje nerve cells , Dp 427 b expressed in the brain, and D p 427 m expressed in skeletal muscle are known.
- the dystrophin protein produced from Dp 427m isoform is a protein mainly expressed in muscle cells, which binds to cytoskeleton actin through the actin binding domain present on the N-terminal side, and is high on the C-terminal side
- the cysteine domain also binds to the dystroglycan complex and constitutes a cytoskeleton with actin.
- the dystrophin gene of the Dp 427m isoform is composed of 79 exons.
- Duchenne muscular dystrophy functional by having a deletion or duplication mutation of any exon of the dystrophin gene, or by point mutation (nonsense mutation) or insertion deletion mutation (frame shift mutation) of bases in the exon
- the dystrophin protein is scarcely expressed (less than 3% of the protein content of a healthy person as detected by Western blotting).
- Becker's muscular dystrophy patients who are relatively milder than Duchenne muscular dystrophy, normal dystrophin protein if there is no stop codon in the middle even if exon deletion or base point mutation is present. It expresses a dystrophin protein in which the amino acid sequence is shorter or in which some amino acids are substituted.
- deletion of one or more exons accounts for more than half.
- the exon 44 and the exon 55 is known as a site where many deletions are often found.
- exon skipping is performed for any exon by referring to previously reported articles (eg van Deutekom JC, van Ommen GJ., Nat Rev Genet. 2003). It can be confirmed that the appropriate repair type dystrophin can be expressed.
- a method of adjusting the reading frame by introducing a microdeletion or insertion into the dystrophin gene other than exon skipping, or homologous recombination of the deleted exon can also be implemented by inserting by means of, for example.
- dystrophin gene If there is an abnormality in the dystrophin gene as described above, (i) by not incorporating (skipping) one or more exons into the mRNA, the exons before and after that will be prevented so that a frame shift does not occur. Correct the abnormality by any operation such as linking, (ii) correcting a frameshift by inserting or deleting one or more bases, (iii) knocking in a deleted exon can do.
- a dystrophin protein is produced in which the amino acid sequence is shorter or longer than that of a normal dystrophin protein, or in which some amino acids are substituted.
- normal dystrophin protein can also be produced by the above (ii) or (iii). Such modification of the dystrophin gene makes it possible to prevent or treat diseases such as muscular dystrophy.
- the nucleotide sequence of the human dystrophin gene is available, for example, from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/gene/1756).
- the guide RNA may be in the form of a single RNA linked with crRNA and tracrRNA, ie, a chimeric RNA (sometimes referred to as a single guide RNA, sgRNA etc.), or one unlinked one. It may be in the form of RNA (combination of two RNAs, or combination of more RNAs).
- the composition of the present invention may contain such a guide RNA in the form of RNA itself or in the form of a DNA (such as an expression plasmid) containing a sequence encoding the guide RNA.
- the guide RNA may be in a form targeting one base sequence (one sgRNA, or one set of crRNA and tracrRNA), or a form targeting two or more base sequences (two or more sgRNA, or two or more sets of crRNA and tracrRNA).
- each target base sequence may be referred to as a “type” of guide RNA. Therefore, in the present specification, a guide RNA in a form targeted to two or more base sequences may be described as “two or more types of guide RNAs”.
- the guide RNA is preferably two or more types.
- the distance between the base sequences targeted by these guide RNAs is not particularly limited, but it is preferable that the target sequences of two guide RNAs do not overlap. Moreover, it is preferable that the target sequences of two guide RNAs are separated by one or more bases.
- the DNA cleavage site generated by the CRISPR system using these two types of guide RNAs is a specific base sequence on a target locus or target locus in a cell that induces genetic modification. It is preferred to include.
- including the nucleotide sequence means that a DNA cleavage site is present upstream and downstream of the nucleotide sequence.
- the target sequences of the two types of guide RNAs are not particularly limited.
- the target recognition sequences of SEQ ID NO: 3 and SEQ ID NO: 4 can be a base sequence to be hybridized.
- the crRNA of the present invention is a nucleic acid sequence (about 18 to 20 bases in length) that hybridizes to a specific base sequence (sometimes referred to herein as "target sequence") in a target locus in a cell. In the text, it may be referred to as "target recognition sequence”.
- the target recognition sequence is preferably the nucleic acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 4.
- the crRNA comprises the nucleic acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 4.
- the crRNA comprises the nucleic acid sequence set forth in SEQ ID NO: 5 or SEQ ID NO: 6.
- the target sequence is flanked by a short sequence (PAM (proto-spacer flanking motif)) recognized by the CRISPR system.
- PAM proto-spacer flanking motif
- Conditions for PAM sequence and length vary depending on the type of nuclease used, but PAM is typically a 2-5 base pair sequence adjacent to the target sequence.
- the guide RNA is a chimeric RNA (sgRNA) comprising the nucleic acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.
- sgRNA chimeric RNA
- the guide RNA comprises (i) a crRNA comprising the nucleic acid sequence as shown in SEQ ID NO: 3 or SEQ ID NO: 4 and (ii) the nucleic acid sequence as shown in SEQ ID NO: 7 or SEQ ID NO: 8 It is a combination of tracrRNA.
- Sequence number 1 Example “HsDMDEx 45 # 1” corresponding sgRNA whole sequence 5′-U (M) ⁇ G (M) ⁇ G (M) ⁇ UAUCUACAAGGACACUCGUUUAGAGCUGAAAUAUAGCAAGUUAAAAAGGCUAGUCCAUUACAACUGAAAAGUGAGCCAGCAGAGUCG (M) ⁇ U (M) ⁇ (M) 3 ' SEQ ID NO: 2: Example “HsDMDEx 45 # 23” corresponding sgRNA whole sequence 5′-A (M) ⁇ G (M) ⁇ C (M) UG AG 3 ' SEQ ID NO: 3: Target recognition sequence of SEQ ID NO: 5'- U (M) ⁇ G (M) ⁇ G (M) ⁇ UAUCUUACAGGAACUCC-3 ' SEQ ID NO: 4: Target recognition sequence of SEQ ID NO 2 5′-A (M) ⁇ G (M) ⁇ C (M) ⁇ UGUCAGACAGAAAAAA G
- the bond between 2'-O-methyl riboses or the bond between 2'-O-methyl ribose and ribose represented by " ⁇ " in SEQ ID NOs: 1 to 8 is a phosphodiester bond, although it may be a phosphorothioate bond, it is preferably a phosphorothioate bond.
- the target recognition sequence of the present invention has a sequence substantially identical to the nucleic acid sequence represented by any of SEQ ID NOs: 3 and 4 above.
- the crRNA and chimeric RNA (sgRNA) of the present invention have substantially the same sequence as the nucleic acid sequence represented by any of SEQ ID NOs: 1, 2, 5 and 6 above in the sequences other than the target recognition sequence.
- the tracrRNA of the present invention has a sequence substantially identical to the nucleic acid sequence represented by any of SEQ ID NOS: 7 and 8 above.
- substantially identical sequences herein is meant sequences having at least about 75% sequence identity.
- the target recognition sequences of the present invention have at least 75%, 76%, 77%, 78%, 79, and the corresponding SEQ ID NOs. %, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, It may have 96%, 97%, 98%, 99% or 100% sequence identity.
- the sequence identity is preferably at least 85% or 90%, more preferably at least 95% or 97%, particularly preferably at least 99%.
- sequence identity means the percentage (%) of base pairs that match between the two sequences when the two gene sequences are aligned so as to maximize the base pair match.
- Sequence identity may be determined by any method known to the person skilled in the art. For example, it can be determined by Clustal (Gene 73, 1,237-244, 1988), which is a multiple alignment program by Higgins et al. The Clustal program is available, for example, on the Internet website of the European Bioinformatics Institute (EBI).
- RNA-inducible nucleases used in the present invention include RNA-inducible endonucleases.
- RNA-inducible endonuclease comprises at least one nuclease domain and at least one domain that interacts with gRNA.
- RNA-inducible endonucleases are induced by gRNA to target sites in the genome.
- RNA-inducible endonucleases may be derived from a clustered regulated interspersed short palindromic repeats (Crisps) / Crisps-associated (Cas) system.
- the CRISPR / Cas system can be Type I, Type III, Type IV in Class 1, or Type II, Type V, and Type VI systems in Class 2.
- Non-limiting examples of suitable CRISPR / Cas proteins include Cas3, Cas4, Cas5, Cas5e (or CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8a1, Cas8a2, Cas8a, Cas8b, Cas8c, Cas9, Cas10, Cas10d, Cas12a (or Cpf1), Cas12b (or C2c1), Cas12c, Cas13a1 (or C2c2), Cas13a2, Cas13b, CasF, CasG, CasH, Csy1, Csy2, Csy3, Cse1 (or CasA), Cse2 (or CasB), Cse3 (or CasE), Cse4 (or CasC), Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cm 3, Cmr4, Cmr5, C
- the RNA-inducible endonuclease is from a class 2 type II CRISPR / Cas system. In certain embodiments, the RNA inducible endonuclease is derived from a Cas9 protein.
- the Cas9 protein is a purulent Streptococcus (Streptococcus pyogenes), Streptococcus thermophilus, Streptococcus, Staphylococcus aureus, Staphylococcus, Nocardiposis rouge viei, Streptomyces pristinae espilalis, Streptomyces viridochromogene Ness (Streptomyces viridochromogenes), Streptosporium roseum, Alicyclobacillus acidocaldarius, Bacillus pseudomycoides, Bacillus selenithedos, Iggiobacterium sibiricum (Exiguobacterium sibiricum), Franciella nobiida (Francisella novicida) ), Lactobacillus ⁇ L.
- the RNA-inducible endonuclease is from the class 2 type V CRISPR-Cas 12a / Cpf1 system. In certain embodiments, the RNA-inducible endonuclease is derived from a Cpf1 protein.
- the Cpf1 protein may be derived from Acidaminococci, Lachnospiraceae, Chlamydomonas reinhardtii, Francisella nonicida.
- the CRISPR / Cas protein may be a wild type CRISPR / Cas protein, a modified CRISPR / Cas protein, or a fragment of a wild type or modified CRISPR / Cas protein.
- the CRISPR / Cas protein may be modified to increase nucleic acid binding affinity and / or specificity, alter enzyme activity, or alter other properties of the protein.
- the RNA-inducible nuclease may be a Cas nuclease or a Cas nickase.
- Cas nuclease or Cas nickase refers to an essential protein component in the CRISPR / Cas system, and forms a complex with two RNAs called CRISPR RNA (crRNA) and trans-activated crRNA (tracrRNA).
- CRISPR RNA CRISPR RNA
- tracrRNA trans-activated crRNA
- nickase refers to a DNA cleaving enzyme that puts a nick only in one DNA strand.
- the Cas9 protein contains at least two nuclease (ie, DNase) domains.
- the Cas9 protein can comprise a RuvC-like nuclease domain and an HNH-like nuclease domain.
- the RuvC and HNH domains cooperate to cleave a single strand to effect a duplex cleavage in DNA (Jinek et al., Science, 337: 816-821).
- the Cas9-derived protein may be modified to include only one functional nuclease domain (either RuvC-like or HNH-like nuclease domain).
- the protein from Cas9 may be modified such that one of the nuclease domains is deleted or mutated such that it is no longer functional (ie there is no nuclease activity).
- the Cas9-derived protein can introduce a nick into the double stranded nucleic acid but can not cleave double stranded DNA.
- aspartate to alanine conversion (D10A) in the RuvC-like domain converts a Cas9 derived protein to a nickase.
- histidine to alanine conversion (H840A or H839A) in the HNH domain converts the Cas9 derived protein into a nickase.
- Each nuclease domain can be modified using well known methods such as site-directed mutagenesis, PCR-mediated mutagenesis, and whole gene synthesis, as well as other methods known in the art.
- the RNA-inducing nucleases include, among others, Cas nucleases or Cas nickases derived from Streptococcus sp. (Streptococcus sp.) Or Staphylococcus sp. (Staphylococcus sp.), Francicella novicida (Francisella novicida), Campylobacter jejuni (Campylobacter jejuni) It can be used.
- S. pyogenes is preferred as a source of origin
- Staphylococcus spp. S. aureus is preferred.
- the Cas9 nuclease or Cas9 nickase from purulent Streptococcus recognizes NGG or NAG trinucleotides as PAM sequences.
- composition of the present invention may contain such RNA-inducible nuclease in the form of a protein, or a nucleic acid (mRNA or DNA such as an expression plasmid) containing a nucleotide sequence encoding the amino acid sequence of the protein Etc.) may be included.
- a nucleic acid mRNA or DNA such as an expression plasmid
- a nucleotide sequence encoding the amino acid sequence of the protein Etc.
- Cas9 is preferred.
- Cas9 is Cas9 (SpCas9) derived from S. pyogenes (P. pyogenes).
- S. pyogenes S. pyogenes
- Cas9 those derived from various bacteria or archaea are known, and in the present invention, Cas9 having a desired nuclease activity, for example, Cas9 (SaCas9) derived from Staphylococcus aureus (S. aureus), is also known. Can be used.
- the ratio of the active ingredient of the present invention to the compound of the present invention and the structured lipid (or lipid particles formed by them) in the composition of the present invention can be appropriately adjusted according to the purpose and the type of the active ingredient.
- the composition of the present invention when a lipid particle is formed by the mixed lipid component containing the compound of the present invention and the structural lipid, and RNA is encapsulated in the lipid particle as the active component of the present invention,
- the active ingredient of the present invention is usually in a proportion of 1 to 20% by mass, preferably 2 to 10% by mass, based on the mass of the lipid particles (that is, the total mass of the compound of the present invention and the structured lipid).
- RNA ribonucleic acid
- DNA deoxyribonucleic acid
- nucleic acid may contain only naturally occurring ribonucleotides or deoxyribonucleotides, and optionally in addition to them, nuclease resistant In order to improve, stabilize, improve the affinity to a complementary nucleic acid, improve the cell permeability, etc., it may contain nucleotide analogues in which a part of the structure of these molecules is modified.
- nucleotide analogues examples include sugar-modified nucleotides (2′-O-methyl ribose, 2′-O-propyl ribose, 2′-O-methoxyethoxy ribose, 2′-O-methoxyethyl ribose, 2′- O- [2- (guanidinium) ethyl] ribose, 2'-O-fluoro ribose etc .; Cross-linked artificial nucleic acid (BNA) (locked artificial nucleic acid (LNA), ethylene-cross-linked artificial nucleic acid (ENA) etc.); Phosphate diester bond modified nucleotides (such as substitution of phosphodiester bond to phosphorothioate bond, substitution of N3′-P5 ′ phosphoamidate bond, etc.) can be mentioned.
- BNA cross-linked artificial nucleic acid
- LNA locked artificial nucleic acid
- ENA ethylene-cross-linked artificial
- the nucleic acid may be 5'-polyamine adduct, cholesterol adduct, steroid adduct, bile acid adduct, vitamin adduct, fluorochrome adduct, biotin adduct derivative or the like.
- RNA may be single-stranded or double-stranded.
- the guide RNA is preferably the nucleotide analogue.
- nucleotide analogues sugar-modified nucleotides and phosphodiester bond-modified nucleotides are preferable, and more specifically, substitution of phosphorothioate bonds of 2'-O-methyl ribose and phosphodiester bonds is preferable.
- at least one base at both 3 'and 5' ends of the sequence is preferably a nucleotide analogue, and at least two bases or 3 'bases of both 3' and 5 'ends of the sequence are nucleotides More preferably, they are analogues.
- the guide RNA is a chimeric RNA
- both guide RNA and the like and RNA-inducible nuclease and the like are in the form of a gene construct such as an expression plasmid
- both a sequence encoding guide RNA and a sequence encoding RNA-inducible nuclease protein are contained in one gene construct. Or their sequences may be contained in separate gene constructs.
- the gene construct may optionally contain sequences of promoter, enhancer, start codon, stop codon, polyadenylation signal, nuclear localization signal (NLS), drug selection gene, reporter gene and the like.
- the composition of the present invention comprises (i) only a guide RNA or the like (a guide RNA or a DNA comprising a sequence encoding the same), and an RNA-inducible nuclease or the like (a RNA comprising an RNA-inducible nuclease or a sequence encoding the same) And (ii) an embodiment containing only an RNA-inducible nuclease etc., and an embodiment containing both a guide RNA etc. and an RNA-inducible nuclease etc. May be When a guide RNA or the like is included, the guide RNA may be of one type, or two or more types. In one aspect of the composition of the present invention, two or more types of guide RNAs are preferred.
- the lipid particle in the composition may encapsulate only one of a plurality of elements required for the CRISPR system, or may encapsulate a plurality of types (eg, mRNA of gRNA and Cas9). It may be done.
- a lipid particle encapsulates a plurality of elements, for example, an aqueous solution containing each element at an appropriate concentration (ratio) may be used at the time of its production.
- the composition of the present invention may contain multiple types of lipid particles encapsulating one type of element.
- lipid particles that encapsulate only gRNA and lipid particles that encapsulate Cas9 mRNA may be mixed in the composition.
- each element may be made to have an appropriate concentration (ratio) while considering the modification efficiency of the gene and the like.
- the lipid particle encapsulating the gRNA or the like and the lipid particle encapsulating the RNA-inducible nuclease or the like into the cell by the same composition (mixed solution) or by separate compositions. Is added.
- composition of the present invention comprising lipid particles encapsulating both gRNA etc and RNA inducible nuclease etc is added to cells.
- compositions of the present invention can be used stably, with low toxicity and safely.
- an effective amount of the active ingredient in the composition of the present invention is applied to the subject (human or non-human mammal, preferably human) to be administered.
- the composition may be administered to be delivered to targeted cells.
- the composition of the present invention When the composition of the present invention is used in vitro or as a reagent, the composition of the present invention (especially, the active ingredient contained therein) is encapsulated in cells being cultured, for example, by adding to the culture medium. The effective amount of the active ingredient may be transferred into cells by contacting the lipid particle).
- the concentration of the active components (guide RNA and the like and RNA-inducible nuclease and the like) in the composition of the present invention can be appropriately adjusted depending on the use of the composition, and is not particularly limited.
- the composition of the present invention when used in vitro, the composition is stored as a composition containing the active ingredient at a high concentration, and the composition diluted with an appropriate solvent to a suitable concentration is prepared.
- it may be added to a medium or the like to be used.
- a medium (culture fluid) to which a lipid particle having the active ingredient of the present invention encapsulated is added is also an embodiment of the composition of the present invention, and it is one of the active ingredients encapsulated in lipid particles in the medium.
- the concentration can also be adjusted accordingly.
- the raw materials and reagents used in each step of the following production method, and the obtained compound may each form a salt.
- Such salts include, for example, those similar to the salts in the aforementioned compounds of the present invention.
- the compound obtained in each step When the compound obtained in each step is a free compound, it can be converted to a target salt by a known method. Conversely, when the compound obtained in each step is a salt, it can be converted to a free form or another type of desired salt by known methods.
- the compound obtained in each step may be used as the reaction solution or as a crude product and then used in the next reaction, or the compound obtained in each step may be concentrated from the reaction mixture according to a conventional method It can be isolated and / or purified by separation means such as crystallization, recrystallization, distillation, solvent extraction, fractionation, chromatography and the like.
- the reaction time may vary depending on the reagent and solvent to be used, but unless otherwise specified, it is usually 1 minute to 48 hours, preferably 10 minutes to 8 hours.
- the reaction temperature may vary depending on the reagent and solvent to be used, but unless otherwise specified, it is usually -78 ° C to 300 ° C, preferably -78 ° C to 150 ° C.
- the pressure may differ depending on the reagent and solvent to be used, but unless otherwise specified, it is usually 1 to 20 atm, preferably 1 to 3 atm.
- a microwave synthesizer such as Biotage's Initiator may be used.
- the reaction temperature may vary depending on the reagent and solvent to be used, but unless otherwise specified, it is usually room temperature to 300 ° C., preferably room temperature to 250 ° C., more preferably 50 ° C. to 250 ° C.
- the reaction time may vary depending on the reagent and solvent used, but unless otherwise specified, it is usually 1 minute to 48 hours, preferably 1 minute to 8 hours.
- the reagent is used in an amount of 0.5 to 20 equivalents, preferably 0.8 to 5 equivalents, relative to the substrate, unless otherwise specified.
- the reagent is used as a catalyst, the reagent is used in 0.001 equivalent to 1 equivalent, preferably 0.01 equivalent to 0.2 equivalent, relative to the substrate.
- the reagent also serves as the reaction solvent, the amount of the solvent is used.
- Alcohols methanol, ethanol, isopropanol, isobutanol, tert-butyl alcohol, 2-methoxyethanol etc .
- Ethers diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, 1,2-dimethoxyethane etc .
- Aromatic hydrocarbons chlorobenzene, toluene, xylene etc .
- Saturated hydrocarbons cyclohexane, hexane, heptane etc .
- Amides N, N-dimethylformamide, N-methylpyrrolidone and the like
- Halogenated hydrocarbons dichloromethane, carbon tetrachloride etc .
- Nitriles acetonitrile, etc .
- Sulfoxides dimethyl sulfoxide and the like
- Aromatic organic bases pyridine and the like
- Acid anhydrides acetic anhydride etc .
- Inorganic bases sodium hydroxide, potassium hydroxide, magnesium hydroxide etc .
- Basic salts sodium carbonate, calcium carbonate, sodium hydrogen carbonate etc .
- Organic bases triethylamine, diethylamine, pyridine, 4-dimethylaminopyridine, N, N-dimethylaniline, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0]- 7-Undecene, imidazole, piperidine etc .
- Metal alkoxides sodium ethoxide, potassium tert-butoxide, sodium tert-butoxide etc .
- Alkali metal hydrides sodium hydride etc .
- Metal amides sodium amide, lithium diisopropylamide, lithium hexamethyldisilazide etc .
- Organic lithiums n-butyllithium, sec-butyllithium and the like.
- an acid or acidic catalyst is used in the reaction of each step, for example, the acid or acidic catalyst shown below, or the acid or acidic catalyst described in the examples is used.
- Inorganic acids hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid etc .
- Organic acids acetic acid, trifluoroacetic acid, citric acid, p-toluenesulfonic acid, 10-camphorsulfonic acid, etc .
- Lewis acid boron trifluoride diethyl ether complex, zinc iodide, anhydrous aluminum chloride, anhydrous zinc chloride, anhydrous iron chloride and the like.
- protection or deprotection reaction of a functional group is carried out according to a known method, for example, Wiley-Interscience 2007, “Protective Groups in Organic Synthesis, 4th Ed.” (Theodora W. Greene, Peter G. M. Wuts). The method is carried out according to the method described in Thieme Corporation 2004 “Protecting Groups 3rd Ed.” (P. J. Kocienski), etc. or the method described in the examples.
- protecting groups for hydroxyl group and phenolic hydroxyl group such as alcohol include, for example, ether type such as methoxymethyl ether, benzyl ether, p-methoxybenzyl ether, t-butyldimethylsilyl ether, t-butyldiphenylsilyl ether, tetrahydropyranyl ether and the like Protective groups; carboxylic acid ester type protective groups such as acetic acid ester; sulfonic acid ester type protective groups such as methane sulfonic acid ester; carbonate type protective groups such as t-butyl carbonate and the like.
- Examples of the protecting group for the carbonyl group of aldehyde include an acetal type protecting group such as dimethyl acetal; and a cyclic acetal type protecting group such as cyclic 1,3-dioxane.
- Examples of the protective group for the carbonyl group of ketone include ketal type protective groups such as dimethyl ketal; cyclic ketal type protective groups such as cyclic 1,3-dioxane; oxime type protective groups such as O-methyloxime; And hydrazone type protective groups such as dimethyl hydrazone.
- protecting groups for carboxyl groups include ester-type protecting groups such as methyl ester; and amide-type protecting groups such as N, N-dimethylamide.
- thiol protecting group examples include ether-type protecting groups such as benzyl thioether; and ester-type protecting groups such as thioacetic acid ester, thiocarbonate and thiocarbamate.
- the removal of the protecting group can be carried out by known methods, for example, acid, base, ultraviolet light, hydrazine, phenylhydrazine, sodium N-methyldithiocarbamate, tetrabutylammonium fluoride, palladium acetate, trialkylsilyl halide (eg, trimethylsilyl iodide) , Trimethylsilyl bromide), a reduction method, or the like.
- the reducing agent used is lithium aluminum hydride, sodium triacetoxyborohydride, sodium cyanoborohydride, diisobutylaluminum hydride (DIBAL-H), sodium borohydride
- Metal hydrides such as triacetoxyborohydride and tetramethylammonium hydride; boranes such as borane-tetrahydrofuran complex; Raney nickel; Raney cobalt; hydrogen; formic acid and the like.
- Raney nickel or Raney cobalt can be used in the presence of hydrogen or formic acid.
- a catalyst such as palladium-carbon or Lindlar catalyst.
- examples of the oxidizing agent used include m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, peracids such as t-butyl hydroperoxide, etc .; tetrabutyl ammonium perchlorate, etc.
- MCPBA m-chloroperbenzoic acid
- hydrogen peroxide hydrogen peroxide
- peracids such as t-butyl hydroperoxide, etc .
- tetrabutyl ammonium perchlorate etc.
- Perchlorates such as sodium chlorate; chlorites such as sodium chlorite; periodic acids such as sodium periodate; high-valent iodine reagents such as iodosylbenzene; manganese dioxide Reagents having manganese such as potassium manganate; Leads such as lead tetraacetate; pyridinium chlorochromate (PCC), pyridinium dichromate (PDC), reagents having chromium such as Jones reagent; N-bromosuccinimide (NBS) Halogen compounds such as; oxygen; ozone; sulfur trioxide / pyridine complex; male tetraoxide Um; dioxide Zeren; 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and the like.
- PCC pyridinium chlorochromate
- PDC pyridinium dichromate
- NBS N-bromosuccinimide
- radical initiator When performing radical cyclization reaction in each process, as a radical initiator used, azo compounds such as azobisisobutyronitrile (AIBN); 4-4′-azobis-4-cyanopentanoic acid (ACPA) Water soluble radical initiators; triethyl boron in the presence of air or oxygen; benzoyl peroxide and the like. Further, as a radical reaction agent to be used, tributylstannane, tristrimethylsilylsilane, 1,1,2,2-tetraphenyldisilane, diphenylsilane, samarium iodide and the like can be mentioned.
- AIBN azobisisobutyronitrile
- ACPA 4-4′-azobis-4-cyanopentanoic acid
- tributylstannane tristrimethylsilylsilane, 1,1,2,2-tetraphenyldisilane, diphenylsilane, samarium iod
- Examples of the Wittig reagent used include alkylidene phosphoranes and the like.
- Alkylidene phosphoranes can be prepared by known methods, for example, by reacting a phosphonium salt with a strong base.
- phosphonoacetic acid esters such as methyl dimethylphosphonoacetate and ethyl diethylphosphonoacetate
- bases such as alkali metal hydrides and organic lithiums It can be mentioned.
- examples of reagents used include Lewis acids and acid chlorides or alkylating agents (eg, halogenated alkyls, alcohols, olefins, etc.).
- Lewis acids eg, halogenated alkyls, alcohols, olefins, etc.
- an organic acid or inorganic acid can be used, and instead of the acid chloride, an acid anhydride such as acetic anhydride can be used.
- a nucleophile eg, amines, imidazole etc.
- a base eg, basic salts, organic bases etc.
- nucleophilic addition reaction When performing nucleophilic addition reaction with carbanion, nucleophilic 1,4-addition reaction with carbanion (Michael addition reaction), or nucleophilic substitution reaction with carbanion in each step, a base used to generate carbanion And organic lithiums, metal alkoxides, inorganic bases, organic bases and the like.
- examples of the Grignard reagent include aryl magnesium halides such as phenyl magnesium bromide; and alkyl magnesium halides such as methyl magnesium bromide and isopropyl magnesium bromide.
- the Grignard reagent can be prepared by a known method, for example, by reacting an alkyl halide or aryl halide with metallic magnesium using ether or tetrahydrofuran as a solvent.
- active methylene compounds eg, malonic acid, diethyl malonate, malononitrile etc.
- bases eg, organic bases, etc. sandwiched between two electron withdrawing groups Metal alkoxides, inorganic bases
- examples of the azidation agent to be used include diphenylphosphoryl azide (DPPA), trimethylsilyl azide, sodium azide and the like.
- DPPA diphenylphosphoryl azide
- examples of azidation agent to be used include diphenylphosphoryl azide (DPPA), trimethylsilyl azide, sodium azide and the like.
- DPPA diphenylphosphoryl azide
- DBU 1,8-diazabicyclo [5,4,0] undec-7-ene
- the reducing agent used includes sodium triacetoxyborohydride, sodium cyanoborohydride, hydrogen, formic acid and the like.
- the substrate is an amine compound
- examples of the carbonyl compound used include paraformaldehyde as well as aldehydes such as acetaldehyde and ketones such as cyclohexanone.
- the amines to be used include ammonia, primary amines such as methylamine; secondary amines such as dimethylamine, and the like.
- azodicarboxylic acid esters eg, diethyl azodicarboxylate (DEAD), diisopropyl azodicarboxylate (DIAD), etc.
- triphenylphosphine eg, triphenylphosphine
- acyl chloride such as acid chloride and acid bromide
- acid anhydride active ester
- sulfuric acid ester And activated carboxylic acids.
- Carbodiimide-based condensing agents such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSCD) as a carboxylic acid activating agent; 4- (4,6-dimethoxy-1,3,5-) Triazine-based condensing agents such as triazin-2-yl) -4-methylmorpholinium chloride-n-hydrate (DMT-MM); Carbonate-based condensing agents such as 1,1-carbonyldiimidazole (CDI); diphenyl Phosphorus azide (DPPA); benzotriazol-1-yloxy-trisdimethylaminophosphonium salt (BOP reagent); 2-chloro-1-methyl-pyridinium iodide (Mukayama reagent); thionyl chloride; haloformic acid such as ethyl chloroformate Lower alkyl; O- (7-azabenzotriazol-1-yl)
- additives such as 1-hydroxybenzotriazole (HOBt), N-hydroxysuccinimide (HOSu), dimethylaminopyridine (DMAP) and the like may be further added to the reaction.
- HOBt 1-hydroxybenzotriazole
- HOSu N-hydroxysuccinimide
- DMAP dimethylaminopyridine
- the metal catalyst used is palladium (II) acetate, tetrakis (triphenylphosphine) palladium (0), dichlorobis (triphenylphosphine) palladium (II), dichlorobis (triethyl) Phosphine compounds such as phosphine) palladium (II), tris (dibenzylideneacetone) dipalladium (0), 1,1'-bis (diphenyl phosphino) ferrocene palladium (II) chloride, palladium (II) acetate etc; Nickel compounds such as phenyl phosphine) nickel (0); rhodium compounds such as tris (triphenyl phosphine) rhodium (III) chloride; cobalt compounds; copper compounds such as copper oxide and copper (I) iodide; platinum compounds etc. Be Furthermore, a base may be added to the reaction,
- diphosphorus pentasulfide is used as the thiocarbonylating agent, but in addition to diphosphorus pentasulfide, 2,4-bis (4-methoxyphenyl) Reagents with 1,3,2,4-dithiadiphosphetan-2,4-disulfide structure such as 1,3), 2,4-dithiadiphosphetan-2,4-disulfide (Lowesson's reagent) May be used.
- N-iodosuccinimide N-bromosuccinimide (NBS), N-chlorosuccinimide (NCS), bromine, sulfuryl chloride and the like
- NBS N-bromosuccinimide
- NCS N-chlorosuccinimide
- the reaction can be accelerated by adding a radical initiator such as heat, light, benzoyl peroxide, azobisisobutyronitrile or the like to the reaction.
- an acid halide of a hydrohalic acid and an inorganic acid specifically, in chlorination, hydrochloric acid, thionyl chloride, oxy
- a method of obtaining a halogenated alkyl from an alcohol by the action of triphenylphosphine and carbon tetrachloride or carbon tetrabromide may be used.
- a method may be used in which a halogenated alkyl is synthesized through a two-step reaction in which an alcohol is converted to a sulfonic acid ester and then reacted with lithium bromide, lithium chloride or sodium iodide.
- examples of the reagent to be used include alkyl halides such as ethyl bromoacetate; and phosphites such as triethyl phosphite and tri (isopropyl) phosphite.
- a sulfone esterification reaction is carried out in each step, as a sulfonating agent to be used, methanesulfonyl chloride, p-toluenesulfonyl chloride, methanesulfonic acid anhydride, p-toluenesulfonic acid anhydride, trifluoromethanesulfonic acid anhydride Things etc.
- an acid or a base is used as a reagent.
- formic acid, triethylsilane or the like may be added to reductively trap the by-produced t-butyl cation.
- examples of the dehydrating agent used include sulfuric acid, phosphorus pentoxide, phosphorus oxychloride, N, N'-dicyclohexylcarbodiimide, alumina, polyphosphoric acid and the like.
- Compound (I) can be produced, for example, by the following process.
- any of the compounds in which both of the wavy lines are in a cis form and the compounds in which one or both of the wavy lines are in a trans form are produced by the same production method as described below. be able to.
- it is possible to synthesize a compound (I) of a desired structure by using an appropriate raw material according to the structure of the target compound (I), particularly in esterification.
- the salt of compound (I) can be obtained by appropriate mixing with an inorganic base, an organic base, an organic acid, a basic or acidic amino acid.
- lipid particle containing the compound of the present invention a composition containing the lipid particle and a guide RNA or a DNA encoding the same, and / or a nucleic acid containing an RNA-inducible nuclease or a sequence encoding the same
- the manufacturing method of is described.
- the lipid particle of the present invention can be produced by a known method for preparing a lipid particle from a lipid component after the compound of the present invention (cationic lipid) is mixed with other lipid components.
- it can be produced as a lipid particle dispersion by dissolving the above (mixed) lipid component in an organic solvent and mixing the resulting organic solvent solution with water or a buffer (for example, an emulsification method).
- the above mixing can be performed using a microfluidic mixing system (for example, NanoAssemblr device (Precision NanoSystems)).
- the obtained lipid particles may be subjected to desalting or dialysis and sterile filtration.
- pH adjustment and osmotic pressure adjustment may be performed as necessary.
- Compound (I) can have a plurality of structures according to a combination of n, R and the definition of wavy line of formula (I).
- one type of compound having a specific structure may be used alone as the compound (I), or may be used as a mixture of a plurality of types of compounds having different structures.
- “Other lipid components” include structured lipids as described above, such as sterols, phospholipids, polyethylene glycol lipids.
- the “other lipid component” is used, for example, 0.008 to 4 mol, per 1 mol of the compound of the present invention.
- the compounds of the invention are preferably used in admixture with other lipid components, in particular cholesterol, phosphatidyl choline and polyethylene glycol lipids.
- Preferred embodiments when the compound of the present invention and the other lipid component are mixed and used are 1 to 4 mol of the compound of the present invention, 0 to 3 mol of sterols, 0 to 2 mol of phospholipid and 0 to 1 of polyethylene glycol lipid. It is a mixture of moles.
- a more preferable embodiment when the compound of the present invention and other lipid component are mixed and used is 1 to 1.5 mol of the compound of the present invention, 0 to 1.25 mol of sterols, 0 to 0.5 mol of phospholipid And a mixture of 0 to 0.125 moles of polyethylene glycol lipid.
- the concentration of the compound of the present invention or the mixture of the compound of the present invention and other lipid components in the organic solvent solution described above is preferably 0.5 to 100 mg / mL.
- organic solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butanol, acetone, acetonitrile, N, N-dimethylformamide, dimethylsulfoxide, or a mixture thereof.
- the organic solvent may contain 0-20% water or buffer.
- an acidic buffer eg, acetate buffer, citrate buffer, 2-morpholinoethanesulfonic acid (MES) buffer, phosphate buffer
- a neutral buffer eg, 4- (2) Hydroxyethyl) -1-piperazineethanesulfonic acid (HEPES) buffer, tris (hydroxymethyl) aminomethane (Tris) buffer, phosphate buffer, phosphate buffered saline (PBS)
- the flow rate of the mixture is preferably 0.1 to 10 mL / min, and the temperature is preferably 15 to 45 ° C.
- composition of the present invention can be used as a nucleic acid as an active ingredient in water or buffer when producing lipid particles or lipid particle dispersions (for example, a DNA containing a guide RNA or a sequence encoding the same, and / or an RNA derivative type
- lipid particles or lipid particle dispersions for example, a DNA containing a guide RNA or a sequence encoding the same, and / or an RNA derivative type
- a lipid particle dispersion containing an active ingredient can be prepared by adding and including a nuclease or a nucleic acid containing a sequence encoding the same.
- the active ingredient is preferably added such that the concentration of the active ingredient in water or buffer is 0.05 to 2.0 mg / mL.
- water or a buffer containing an active ingredient “includes an active ingredient (a guide RNA or a DNA comprising a sequence encoding the same, and / or an RNA-inducible nuclease or a nucleic acid comprising a sequence encoding the same) It may be described as "aqueous solution”.
- composition of the present invention containing two or more types of guide RNA as an active ingredient
- the composition of the present invention can also be produced as a lipid particle dispersion containing an active ingredient by mixing the lipid particle or lipid particle dispersion with the active ingredient or an aqueous solution thereof by a known method.
- the lipid particle dispersion can be prepared by dispersing lipid particles in a suitable dispersion medium.
- an aqueous solution of the active ingredient can be prepared by dissolving the active ingredient in a suitable solvent.
- the content of the compound of the present invention in the composition of the present invention excluding the dispersion medium and the solvent is preferably 40 to 70% by weight.
- the content of the active ingredient in the composition of the present invention excluding the dispersion medium and the solvent is preferably 1 to 20% by weight.
- the dispersion medium of the lipid particle dispersion or the dispersion containing the composition can be replaced by water or buffer by dialysis.
- the dialysis is performed at 4 ° C. to room temperature using an ultrafiltration membrane with a molecular weight cut off of 10 to 20 K. Repeated dialysis may be performed. Tangential flow filtration (TFF) may be used to replace the dispersion medium.
- pH adjustment and osmotic pressure adjustment may be performed as necessary.
- lipid particle containing the compound of the present invention a composition containing the lipid particle and a guide RNA or a DNA encoding the same, and / or a nucleic acid containing an RNA-inducible nuclease or a sequence encoding the same Describe the analysis method of
- the particle size of the lipid particles (in the composition) can be measured by known means. For example, using Zetasizer Nano ZS (Malvern Instruments), a particle size measurement device based on NIBS (non-contact back scattering) technology, it can be calculated as a Z average particle size by cumulant analysis of an autocorrelation function.
- the particle size (average particle size) of the lipid particles (in the composition) is preferably 10 to 200 nm.
- a nucleic acid Concentration and inside of a nucleic acid (specifically, a guide RNA or a DNA containing the sequence encoding the same, and / or a nucleic acid containing the RNA inducible nuclease or the sequence encoding the same) as an active ingredient in the composition of the present invention
- the sealing ratio can be measured by a known means. For example, fluorescently labeled nucleic acid using the Quant-iT TM RiboGreen (TM) (Invitrogen), it is possible to determine the concentration and the encapsulating rate by measuring the fluorescence intensity.
- TM Quant-iT TM RiboGreen
- the concentration of nucleic acid in the composition can be calculated using a standard curve generated from an aqueous solution of nucleic acid whose concentration is known, and the encapsulation rate is Triton-X100 (surfactant for disintegrating lipid particles) It can calculate based on the difference in the fluorescence intensity by the existence of addition of.
- the concentration in the composition refers to the total concentration of the nucleic acid encapsulated in the lipid particle and the nucleic acid not encapsulated, and the encapsulation ratio is encapsulated in the lipid particle of the entire nucleic acid in the composition. Refers to the proportion of
- composition of the present invention can, in one embodiment, be used in a method of modifying a target locus in a cell, comprising the step of contacting the cell with the composition of the present invention. Such methods yield cells in which the target locus has been altered.
- composition of the present invention can, in one embodiment, be used to produce a medicament comprising the composition of the present invention.
- the composition of the present invention can be prepared or formulated as a pharmaceutical.
- the medicament is an agent for the prophylaxis or treatment of dystrophin abnormality (eg, muscular dystrophy (Duchenne muscular dystrophy), dystrophin gene-related dilated cardiomyopathy), or restorable dystrophin protein producing agent.
- dystrophin abnormality eg, muscular dystrophy (Duchenne muscular dystrophy), dystrophin gene-related dilated cardiomyopathy), or restorable dystrophin protein producing agent.
- the composition of the present invention can be administered in an effective amount to cause dystrophinopathy (eg, muscular dystrophy (eg, Duchenne muscular dystrophy, Becker muscular dystrophy) in a mammal).
- dystrophinopathy eg, muscular dystrophy (eg, Duchenne muscular dystrophy, Becker muscular dystrophy) in a mammal).
- Dytrophin gene-related dilated cardiomyopathy in particular for the method for preventing and treating Duchenne muscular dystrophy or for the method for producing restorative dystrophin protein .
- Muscular dystrophy is defined as "a hereditary disease in which degeneration and necrosis of skeletal muscle are the main lesions, and clinically, progressive muscle weakness is observed".
- muscular dystrophies Duchenne muscular dystrophy, Becker muscular dystrophy, Emily-Dorpes muscular dystrophy, limb musculoskeletal dystrophy, congenital muscular dystrophy, triophile muscular dystrophy, distal muscular dystrophy, facial scapulohumeral muscular dystrophy, and myotonic dystrophy Etc. are known.
- Dystrophin abnormality refers to various diseases caused by a defective or dysfunctional dystrophin protein due to a dystrophin gene mutation. These include Duchenne muscular dystrophy, Becker muscular dystrophy, and dystrophin gene-related dilated cardiomyopathy. Skeletal myopathy is often the main symptom, but there are cases where skeletal muscle symptoms are not seen. It may be accompanied by hyper-CKemia, myoglobinuria, dilated cardiomyopathy, cognitive dysfunction, etc.
- Duchenne muscular dystrophy is the most common disease in children with muscular dystrophy, with a prevalence of 4-5 per 100,000 population. It is caused mainly by progressive muscle atrophy and dysfunction of the dystrophin gene on the X chromosome due to mutation. In Duchenne muscular dystrophy, more than half of the patients have single or multiple exon defects. The dystrophin gene mutation causes a shift in the protein reading frame, a stop codon appears along the way, and the dystrophin protein is not synthesized, leading to a series of symptoms.
- repairable dystrophin protein refers to dystrophin protein whose expression has been restored as a result of genome editing.
- it refers to a dystrophin protein retaining the N-terminal actin binding domain and the C-terminal high cysteine domain whose expression has been restored by using genome editing with respect to a dystrophin gene having a frameshift mutation or nonsense mutation.
- a frame shift mutation is generated due to exon duplication, if one of the overlapping exons is skipped by genome editing, expression of a repairable dystrophin protein having 100% homology with a healthy type may be restored.
- the repairable dystrophin protein particularly refers to a human dystrophin protein in which the exon 45 is skipped in the human dystrophin gene from which the exon 44 has been deleted, and translated from mRNA in which the exon 43 and the exon 46 are linked. Besides this, for example, in human dystrophin gene deleted in exons 12-44, 18-44, 46-47, 46-48, 46-49, 46-51, 46-53 or 46-55, respectively.
- the human dystrophin protein produced by skipping a predetermined exon is also included in the repairable dystrophin protein, but is not limited thereto.
- the repairable dystrophin protein has been produced by using the composition of the present invention can be confirmed, for example, by detecting mRNA encoding the repairable dystrophin protein in cells by PCR. it can. Alternatively, Western blotting can be performed using an antibody that recognizes dystrophin protein to confirm from the molecular weight of dystrophin protein.
- composition of the present invention can, in one embodiment, be used in a method of producing a target locus modified cell, comprising the step of contacting the cell with the composition of the present invention.
- the composition of the present invention comprises the steps of: (1) contacting the composition of the present invention with a fertilized egg, an embryonic stem cell or an oocyte of a non-human mammal, (2) a target locus Selecting the modified fertilized egg, embryonic stem cell or oocyte, and (3) implanting the selected fertilized egg, embryonic stem cell or oocyte into a non-human mammalian female animal It can be used in a method for producing a non-human mammal in which a target locus has been modified, including.
- the cells to be contacted with the composition of the present invention can be, for example, pluripotent stem cells such as iPS cells, germ cells such as sperm stem cells and primordial germ cells, in addition to the above cells .
- Selection in step (2) may be performed by a general screening method in a CRISPR system using a drug resistance gene, or may be performed by PCR and sequence confirmation.
- the drug resistant gene expression unit is included in a knockin or knockout vector, and after the drug resistant gene is expressed in a fertilized egg or the like in which knockin or knockout has occurred to a target locus by the CRISPR system, cell population By treating with a drug, it is possible to select a fertilized egg or the like whose target locus has been altered.
- composition used in the various methods, medicaments, and embodiments according to the present invention as described above are as described above, for example, a guide RNA etc. contained in the composition, an RNA-inducible nuclease etc.
- RNA-inducible nuclease etc.
- the details and preferred embodiments of the cells and target loci are the same as in the invention relating to the method using the composition, medicine, use and the like.
- the medicament of the present invention is preferably an injection such as intravenous injection, intraarterial injection, intramuscular injection, subcutaneous injection, intraperitoneal injection, etc. If delivery can be made, it is also possible to make it the dosage form adapted to it. As injections, intravenous injection or intramuscular injection is preferred.
- the medicament of the present invention can optionally contain a pharmaceutically acceptable substance, such as water for injection when prepared as an injection, a solvent, an additive and the like.
- a pharmaceutically acceptable substance such as water for injection when prepared as an injection, a solvent, an additive and the like.
- the amount or concentration of the active ingredient in the medicament of the present invention is a dosage form, administration route, dose per dose, so that an effective amount of the active ingredient for the desired prophylactic or therapeutic effect can be delivered to the target cells. It can adjust suitably, considering the administration frequency etc. in a fixed period.
- the administration route is preferably intravenous (systemic) administration or intramuscular administration.
- treatment refers to altering a gene at a target locus in a certain percentage of cells in a living body (in a tissue or in an organ) of a subject who has already developed a disease to cause the disease. It refers to repairing the base sequence of a certain gene.
- prevention can be a cause of disease by altering a gene at a target locus in a certain percentage of cells in a living body (in a tissue or in an organ) of a subject who has not yet developed a disease or condition. It refers to repairing the base sequence of a gene.
- Examples of the abnormality in the base sequence of the gene causing the above-mentioned disease include gene mutations involved in the disease (for example, deletion of exon 44, which is found in some patients with Duchenne muscular dystrophy).
- deletion of exon 44 which is found in some patients with Duchenne muscular dystrophy.
- production of repairable dystrophin protein is induced (sometimes called dystrophin protein recovery), As a result, the disease can be treated and prevented.
- Symptoms of muscular dystrophy include, but are not limited to, muscle weakness, muscle atrophy, loss of exercise capacity, gait disorder, myocardial disease and the like. Treatment of muscular dystrophy includes the amelioration of these symptoms, and the delay in onset or progression.
- the therapeutic effect of muscular dystrophy can be evaluated by determining whether it affects the onset, progression or symptoms of muscular dystrophy. More specifically, for example, the therapeutic effect of muscular dystrophy is measured by measuring muscle weight, muscle cross-sectional area, tension of isolated skeletal muscle, muscle force (eg, grip strength), exercise ability (eg, treadmill ability), etc. It can be confirmed.
- Root temperature in the following examples usually indicates about 10 ° C to about 35 ° C.
- the ratio shown in the mixed solvent indicates the volume ratio unless otherwise specified.
- 1 H NMR was measured by Fourier transform NMR.
- ACD / SpecManager (trade name) software etc. were used for the analysis of 1 H NMR.
- a very mild peak such as a hydroxyl group or an amino group is not described.
- MS was measured by LC / MS and MALDI / TOF MS.
- ESI method APCI method or MALDI method was used.
- CHCA was used as a matrix. Data described actual value (found).
- molecular ion peaks are observed, but sometimes as fragment ions.
- a molecular ion peak in free form, a cationic species, an anionic species or a fragment ion peak is usually observed.
- MS mass spectrum M: molar concentration N: normality CDCl 3: deuterated chloroform DMSO-d 6: deuterated dimethyl sulfoxide 1 H NMR: proton nuclear magnetic resonance LC / MS: liquid chromatograph mass spectrometer ESI: electrospray ionization, electrospray ionization APCI: atmospheric pressure chemical ionization, atmospheric pressure chemical ionization MALDI: Matrix-assisted laser desorption / ionization, Marixix Assisted laser desorption ionization TOFMS: Time-of-flight mass spectrometry, time-of-flight mass spectrometry CHCA: ⁇ -cyano-4-hydroxycinnamic acid DMF: N, N-dimethylformamide THF: tetrahydrofuran DMAP: 4-dimethylaminopyridine TBAF: tetrabutylammonium fluoride
- nucleotide sequences of MmRosa26 sgRNA SEQ ID NO: 9
- HsDMDEx 45 # 1 sgRNA and HsDMDEx 45 # 23 sgRNA respectively corresponding to SEQ ID NOs: 1 and 2 used in the following Examples are as follows: .
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- MmRosa26 sgRNA (Gene Design, see Table 1 above) was dissolved in 10 mM 2-MES solution pH 5.5 to obtain a 0.15 mg / mL nucleic acid solution.
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- Genomic DNA is extracted and purified from frozen muscle tissue using QIAamp Fast DNA Tissue Kit (Qiagen), and PCR (Forward primer; SEQ ID NO: 10, Reverse primer; SEQ ID NO: 11) is performed using PrimeSTAR GXL DNA polymerase (TAKARA)
- the PCR product was purified with QIAquick PCR purification kit (QIAGEN), treated with T7 Endonuclease I (NEB), and analyzed using Agilent 4200 TapeStation (Agilent). The results are shown in FIG. SEQ ID NO: 10 5'- CTCCGAGGCGGATCACAAGCAATAATAACCTGTAG-3 '
- SEQ ID NO: 11 5'- TGCAAGCACGTTTCCGACTTGAGTTGCCTCAAG-3 '
- Example 2 DNA mutagenic activity using HsDMDEx 45 # 1 sgRNA in human DMD exon 45 knock in-mouse Dmd exon 44 knockout mouse, exon skipping effect and repair type dystrophin protein expression effect
- HsDMDEx 45 # 1 sgRNA (Gene Design, see Table 1 above) was dissolved in 10 mM 2-morpholinoethanesulfonic acid (MES) solution pH 5.5 to obtain a 0.15 mg / mL nucleic acid solution.
- MES 2-morpholinoethanesulfonic acid
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- the ES cell line was microinjected into tetraploid blastocysts of ICR mice to obtain chimeric mice.
- Female human DMD exon 45 heteroknockin mice were obtained by in vitro fertilization between chimeric mice and female C57BL / 6J mice.
- SEQ ID NO: 12 5'- atgaatgtgcctacatatgg -3 ' SEQ ID NO: 13 5'- catagcatgcatttggcttc-3 ' SEQ ID NO: 14 5'-gaatgaggtagtgttgtagg -3 ' SEQ ID NO: 15 5'- gcaggaaatcatcttatagc-3 ' SEQ ID NO: 16 5'- gagcaagctgggttagaacaaaggtctgtcgatgggaatg aggtagtgtaggtag caggaaatagtgtggtttaggtctccccctctctgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
- PCR products were purified with QIAquick PCR purification kit (QIAGEN), re-annealed, treated with T7 Endonuclease I (NEB), electrophoresed using Agilent 4200 TapeStation (Agilent), and analyzed with the attached software.
- the mutation introduction efficiency was determined by the following equation (Equation 1) using the obtained numerical values.
- SEQ ID NO: 17 5'- CAAGTTTAAAATAGCAGAAAACCACTAACTAGCCA-3 '
- SEQ ID NO: 18 5'- CTGACACATAAAAGGTGTCTTTCTGTCTGTCTCTC-3 '
- Gapdh detection Sample buffer (Bio-Rad) containing a reducing agent (Thermo) was added to the supernatant adjusted to 0.02 ⁇ g / ⁇ L, and treated at 98 ° C. for 10 minutes. 0.2 ⁇ g / 10 ⁇ L of the reduced and heat-treated sample solution was added to a TGX ANY KD gel (Bio-Rad) and run at 200 V for 30 minutes. After the electrophoresis, the membrane was transferred to a PVDF membrane using Trasblot turbo system (Bio-Rad).
- a reducing agent Thermo
- the transferred PVDF membrane was blocked with iBind Solution (Thermo) for 5 minutes and subsequently HRP-labeled with anti-GAPDH antibody (1: 2000, Cell Signaling) diluted with dilution solution (TOYOBO) using iBind system (Themo) Blotting was performed with anti-rabbit IgG antibody (1: 5000, GE). After blotting, the PVDF membrane was washed with distilled water, immersed in ECL Prime Western Blotting Detection Reagent (GE) for about 5 minutes, and detected with ChemiDoc (Bio-Rad).
- GE ECL Prime Western Blotting Detection Reagent
- Dystrophin detection Sample buffer (Thermo) containing a reducing agent (Thermo) was added to the supernatant adjusted to 3 ⁇ g / ⁇ L, and treated at 70 ° C. for 10 minutes. 30 ⁇ g / 10 ⁇ L of the reduced and heat-treated sample solution was added to 3-8% Tris-Acetate gel (Thermo), and electrophoresed at 150 V for about 90 minutes. After the electrophoresis, the membrane was transferred to a PVDF membrane using Trasblot turbo system (Bio-Rad).
- Gapdh and dystrophin detected by ChemiDoc were analyzed by Image Lab software (Bio-Rad), and the relative expression level was calculated as repaired dystrophin / Gapdh. The above results are shown in FIG. Remarkable dystrophin expression was confirmed in the LNP administration group compared to the PBS administration group.
- the medium was changed to alpha Minimal Essential Medium (SIGMA) medium containing 5% KSR and 1 ⁇ g / mL doxycycline, and cultured for 3 days.
- the medium was reduced to 700 ⁇ L and a mixture of Cas9 mRNA-LNP (1,3 or 10 ⁇ g / well as mRNA) and HsDMDEx 45 # 1 sgRNA-LNP (1,3,10 ⁇ g / well as sgRNA) was added.
- 1.3 mL of medium alpha Minimal Essential Medium, 5% KSR, 1 ⁇ g / mL doxycycline
- the purified DNA fragments were reannealed, treated with T7 Endonuclease I (NEB), electrophoresed using an Agilent 4200 TapeStation (Agilent), and analyzed with the attached software.
- the calculation formula of the mutagenesis efficiency is the same as in [2-4] (see the above equation 1). The results are shown in FIG.
- TAKARA PrimeSTAR GXL DNA polymerase
- the resulting PCR products were purified by QIAquick PCR purification kit (Qiagen), electrophoresed using an Agilent 4200 TapeStation, and analyzed with the attached software.
- exon skipping efficiency is the same as in [2-5] (see the above equation 2).
- the results are shown in FIG. SEQ ID NO: 21 5'- CTACAGGAAGCTCTCTCCCA -3 '
- HsDMDEx 45 # 23 sgRNA-LNP Preparation of HsDMDEx 45 # 23 sgRNA-LNP
- HsDMDEx 45 # 1 sgRNA HsDMDEx 45 # 1 sgRNA in Example 4, see Table 1
- HsDMDEx45 # 23 sgRNA-LNP is similarly prepared except that “HsDmdEx45 # 23 sgRNA” (see “HsDMDEx45 # 23 sgRNA” in Table 1 above) is used instead, and the nucleic acid concentration, inner ring ratio, particle diameter And PDI were measured. The measurement results are shown in Table 5.
- Gapdh detection To a cell lysate prepared to 0.083 ⁇ g / ⁇ L, Sample buffer (Bio-Rad) containing a reducing agent (Thermo) was added, and treated at 98 ° C. for 10 minutes. 1 ⁇ g / 12 ⁇ L of the reduced / heat-treated sample solution was added to 10% mini-protean TGX precast gel (Bio-Rad), and electrophoresed at 150 V for 40 minutes. After the electrophoresis, the membrane was transferred to a PVDF membrane using Trasblot turbo system (Bio-Rad).
- Sample buffer Bio-Rad
- a reducing agent Thermo
- the transferred PVDF membrane was blocked with iBind Solution (Thermo) for 5 minutes and subsequently HRP-labeled with anti-GAPDH antibody (1: 1000, Cell Signaling) diluted with dilution solution (TOYOBO) using iBind system (Themo) Blotting was performed with anti-rabbit IgG antibody (1: 1000, GE). After blotting, the PVDF membrane was washed with distilled water, immersed in ECL Prime Western Blotting Detection Reagent (GE) for about 5 minutes, and detected with ChemiDoc (Bio-Rad).
- GE ECL Prime Western Blotting Detection Reagent
- Dystrophin detection Sample buffer (Thermo) containing a reducing agent (Thermo) was added to the supernatant adjusted to 0.58 ⁇ g / ⁇ L, and treated at 70 ° C. for 10 minutes. 7 ⁇ g / 12 ⁇ L of the reduced / heat-treated sample solution was added to a 3-8% Tris-Acetate gel (Thermo), and was run at 150 V for about 90 minutes. After the electrophoresis, the membrane was transferred to a PVDF membrane using Trasblot turbo system (Bio-Rad).
- GAPDH and dystrophin detected by ChemiDoc are analyzed by Image Lab (Bio-Rad), and the expression level of repairable dystrophin is corrected by GAPDH, and relative expression is made with 100% of dystrophin expression level in human iPS cells from healthy subjects The amount was calculated. The above results are shown in FIG.
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- MmRosa26 sgRNA (Gene Design, see Table 1 above) was dissolved in 10 mM 2-MES solution pH 5.5 to obtain a 0.15 mg / mL nucleic acid solution.
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- LNP From a tail vein of a 5-week-old male C57BL / 6J mouse, LNP in which 50 ⁇ g of mRosa26 sgRNA and 50 ⁇ g of SpCas9 mRNA were encapsulated was administered. After 7 days, after euthanasia by decapsidation bleeding under 3.5% isoflurane anesthesia, gastrocnemius muscle, tibialis anterior muscle, quadriceps femoris muscle, diaphragm and heart were collected and rapidly frozen with liquid nitrogen.
- Genomic DNA of frozen tissue is extracted and purified using QIAamp Fast DNA Tissue Kit (Qiagen), and Q5 High-Fidelity DNA Polymerase (New England Biolabs Japan) and the primer set (Forward primer: said SEQ ID NO: 17, Reverse primer) shown below : It amplified using said sequence number 18).
- the PCR product was purified with QIAquick 96 PCR BioRobot kit (QIAGEN), treated with T7 Endonuclease I (NEB), electrophoresed using an Agilent 4200 TapeStation (Agilent), and analyzed with the attached software.
- the mutation introduction efficiency was determined by the above equation (see equation 1) using the obtained numerical values.
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- the obtained lipid solution and nucleic acid solution are mixed at room temperature by NanoAssemblr (Precision NanoSystems) at a flow rate ratio of 2.7 mL / min: 5.3 mL / min, and a dispersion containing lipid particles encapsulating a nucleic acid Obtained.
- the resulting dispersion was dialyzed against water at 4 ° C. for 1 hour and PBS against PBS at 4 ° C. for 18 hours using Slyde-A-Lyzer (fractional molecular weight of 20 k, Thermo scientific).
- RNA Chloroform (WAKO) was added, and after mixing and centrifugation, a water bath containing RNA was separated and collected, and total RNA was extracted and purified using RNeasy Mini Kit (QIAGEN). Total RNA is reverse transcribed using the High Capacity RNA-to-cDNA kit (Thermo), followed by Q5 High-Fidelity DNA Polymerase (New England Biolabs Japan) and the primer set (Forward primer: above SEQ ID NO: 19, Reverse) shown below. primer: It amplified using said sequence number 20). The RT-PCR product was purified by QIAquick PCR purification kit (QIAGEN), electrophoresed using Agilent 4200 TapeStation (Agilent), and analyzed by the attached software. The exon skipping efficiency was determined by the above equation (see Equation 2) using the obtained numerical values.
- the compounds, lipid particles and compositions of the present invention make it possible to efficiently introduce gRNA and the like used in the CRISPR system, RNA-inducible nuclease and the like to various cells, tissues and organs.
- the compounds, lipid particles and compositions of the invention are available as DDS technology in CRISPR systems.
- the compounds, lipid particles and compositions of the present invention can be used as agents for preventing and treating various diseases such as muscular dystrophy and as research reagents.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Pain & Pain Management (AREA)
- Neurology (AREA)
- Immunology (AREA)
- Toxicology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Education & Sports Medicine (AREA)
Abstract
Description
近年、ゲノム編集手段、例えばCRISPR(Clustered, regularly interspaced, short palindromic repeats)システムを利用して、様々な細胞中で遺伝子改変を行うための研究開発が進められている。しかしながら、注射等による生体への投与によって、目的とする細胞中に、CRISPRシステムで必要とされるgRNA(ガイドRNA)やRNA誘導型ヌクレアーゼ(Cas9等)をコードする遺伝子などの遺伝子改変ツールを送達し、遺伝子改変を行うことについては報告が少なく、例えば筋細胞における高い遺伝子改変効率の実現が可能な遺伝子改変ツールを送達するためのデリバリー手法の開発が望まれている。CRISPRシステムとしては、クラス1とクラス2が知られており、クラス1の中ではタイプI、タイプIII、タイプIVが、クラス2の中ではタイプII、タイプV、およびタイプVI知られている。遺伝子改変を行うにあたって、DNAに結合して切断するクラス2タイプIIのCas9が広く用いられているが、同じくDNAを結合・切断するクラス2タイプVのCpf1(Cas12a)やC2c1(Cas12b)なども利用されている。また、RNAに結合して切断するクラス2タイプVIのCas13a(C2c2)やCas13bなども報告されている。
[1]
1)式(I):
nは、2~5の整数を、
Rは、直鎖状C1-5アルキル基、直鎖状C7-11アルケニル基又は直鎖状C11アルカジエニル基を、
波線は、それぞれ独立して、シス型またはトランス型の結合を示す。]
で表される化合物又はその塩、
2)構造脂質、並びに、
3)ガイドRNAもしくはこれをコードする配列を含むDNA、及び/又はRNA誘導型ヌクレアーゼもしくはこれをコードする配列を含む核酸を含む、細胞中の標的遺伝子座における遺伝子改変を誘導するための組成物。
[2]
RNA誘導型ヌクレアーゼがCas9であり;
ガイドRNAが、
(a)キメラRNA、又は
(b)crRNA及びtracrRNAを含む2以上のRNA
である、項1記載の組成物。
[2a]
RNA誘導型ヌクレアーゼがCpf1である、項1記載の組成物。
[3]
Cas9が化膿性レンサ球菌由来Cas9である、項1または項2記載の組成物。
[4]
前記ガイドRNAが2種類以上のガイドRNAである、項1から項3のいずれかに記載の組成物。
[5]
細胞が筋細胞である、項1から項4のいずれかに記載の組成物。
[6]
標的遺伝子座が、ジストロフィン遺伝子のヌクレオチド配列を含む、項1から項5のいずれかに記載の組成物。
[7]
ガイドRNAが、
(1)配列番号1もしくは配列番号2で示される核酸配列を含むキメラRNA、又は
(2)(i) 配列番号3もしくは配列番号4で示される核酸配列を含むcrRNA、および
(ii)配列番号7もしくは配列番号8で示される核酸配列を含むtracrRNA
である、項1から項6のいずれかに記載の組成物。
[8]
項1記載の組成物と細胞とを接触させる工程を含む、細胞中の標的遺伝子座を改変する方法。
[9]
RNA誘導型ヌクレアーゼがCas9であり;
ガイドRNAが、
(a)キメラRNA、又は
(b)crRNA及びtracrRNAを含む2以上のRNA
である、項8記載の方法。
[9a]
RNA誘導型ヌクレアーゼがCpf1である、項8記載の方法。
[10]
Cas9が化膿性レンサ球菌由来Cas9である、項8または項9記載の方法。
[11]
細胞が筋細胞である、項8から項10のいずれかに記載の方法。
[12]
標的遺伝子座が、ジストロフィン遺伝子のヌクレオチド配列を含む、項8から項11のいずれかに記載の方法。
[13]
ガイドRNAが、
(1)配列番号1もしくは配列番号2で示される核酸配列を含むキメラRNA、又は
(2)(i) 配列番号3もしくは配列番号4で示される核酸配列を含むcrRNA、および
(ii)配列番号7もしくは配列番号8で示される核酸配列を含むtracrRNA
である、項8から項12のいずれかに記載の方法。
[14]
項8から項13のいずれかに記載の方法によって得られる標的遺伝子座が改変された細胞。
[15]
項6記載の組成物を含む、医薬。
[16]
RNA誘導型ヌクレアーゼがCas9であり;
ガイドRNAが、
(a)キメラRNA、又は
(b)crRNA及びtracrRNAを含む2以上のRNA
である、項15記載の医薬。
[16a]
RNA誘導型ヌクレアーゼがCpf1である、項15記載の医薬。
[17]
Cas9が化膿性レンサ球菌由来Cas9である、項15または項16記載の医薬。
[18]
ガイドRNAが、
(1)配列番号1もしくは配列番号2で示される核酸配列を含むキメラRNA、又は
(2)(i) 配列番号3もしくは配列番号4で示される核酸配列を含むcrRNA、および
(ii)配列番号7もしくは配列番号8で示される核酸配列を含むtracrRNA
である、項15から項17のいずれかに記載の医薬。
[19]
筋ジストロフィーの予防・治療薬である、項15から項18のいずれかに記載の医薬。
[20]
修復型ジストロフィンタンパク産生薬である、項15から項19のいずれかに記載の医薬。
[21]
哺乳動物に対して項6または項7記載の組成物の有効量を投与することを特徴とする、該哺乳動物における筋ジストロフィーの予防・治療方法。
[21a]
前記投与が静脈内投与である、項21記載の予防・治療方法。
[21b]
前記投与が筋肉内投与である、項21記載の予防・治療方法。
[22]
哺乳動物に対して項6または項7記載の組成物の有効量を投与することを特徴とする、該哺乳動物における修復型ジストロフィンタンパク産生方法。
[23]
筋ジストロフィーの予防・治療剤を製造するための、項6または項7記載の組成物の使用。
[24]
筋ジストロフィーの予防・治療に使用するための、項6または項7記載の組成物。
[25]
項1から項7のいずれかに記載の組成物と細胞とを接触させる工程を含む、標的遺伝子座が改変された細胞の製造方法。
[26]
(1)項1から項7のいずれかに記載の組成物と非ヒト哺乳動物の受精卵、胚性幹細胞もしくは卵母細胞とを接触させる工程、
(2)標的遺伝子座が改変された前記受精卵、胚性幹細胞もしくは卵母細胞を選択する工程、及び
(3)前記選択された受精卵、胚性幹細胞もしくは卵母細胞を非ヒト哺乳動物の雌性動物に移植する工程
を含む、標的遺伝子座が改変された非ヒト哺乳動物の作製方法。
[27]
1)式(I):
nは、2~5の整数を、
Rは、直鎖状C1-5アルキル基、直鎖状C7-11アルケニル基又は直鎖状C11アルカジエニル基を、
波線は、それぞれ独立して、シス型またはトランス型の結合を示す。]
で表される化合物又はその塩、および
2)構造脂質
を含む脂質粒子分散液と、
3)ガイドRNAもしくはこれをコードする配列を含むDNA、及び/又はRNA誘導型ヌクレアーゼもしくはこれをコードする配列を含む核酸
を含む水溶液とを混合する工程を含む、
細胞中の標的遺伝子座における遺伝子改変を誘導するための組成物の製造方法。
[28]
前記ガイドRNAが2種類以上のガイドRNAである、項27記載の製造方法。
nは、好ましくは3~5の整数であり、より好ましくは3である。
波線は、好ましくは両方ともシス型の結合である。
化合物(A):nが3~5の整数であり、Rがシス型の直鎖状C7-11アルケニル基であり、波線が両方ともシス型となる結合である化合物。
化合物(B):nが4であり、Rが、2つの炭素-炭素二重結合の両方においてシス型の、直鎖状C11アルカジエニル基であり、波線が両方ともシス型の結合である化合物。
化合物(C):nが2または3であり、Rが直鎖状C1-5アルキル基であり、波線が両方ともシス型の結合である化合物。
化合物(A1):nが3~5の整数であり、Rがシス型の5-ヘプテニル、7-ノネニルまたは9-ウンデセニルであり、波線が両方ともシス型となる結合である化合物。
化合物(B1):nが4であり、Rが、2つの炭素-炭素二重結合の両方においてシス型の、2,5-ウンデカジエニルであり、波線が両方ともシス型の結合である化合物。
化合物(C1):nが2または3であり、Rがメチル、プロピル、またはペンチルであり、波線が両方ともシス型の結合である化合物。
ステロール類(例えば、コレステロール、コレステロールエステル、コレステロールヘミコハク酸など);
リン脂質(例えば、ホスファチジルコリン(例えば、ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン、リソホスファチジルコリン、ジオレオイルホスファチジルコリン、パルミトイルオレオイルホスファチジルコリン、ジリノレノイルホスファチジルコリン、MC-1010(NOF CORPORATION)、MC-2020(NOF CORPORATION)、MC-4040(NOF CORPORATION)など)、ホスファチジルセリン(例えば、ジパルミトイルホスファチジルセリン、ジステアロイルホスファチジルセリン、ジオレオイルホスファチジルセリン、パルミトイルオレオイルホスファチジルセリンなど)、ホスファチジルエタノールアミン(例えば、ジパルミトイルホスファチジルエタノールアミン、ジステアロイルホスファチジルエタノールアミン、ジオレオイルホスファチジルエタノールアミン、パルミトイルオレオイルホスファチジルエタノールアミン、リソホスファチジルエタノールアミンなど)、ホスファチジルイノシトール、ホスファチジン酸など);および
ポリエチレングリコール脂質(PEG脂質)(例えば、PEG-DAA、PEG-DAG、PEG-phospholipid cunjugate、PEG-Cer、PEG-cholesterol、PEG-C-DOMG、2KPEG-CMG、GM-020(NOF CORPORATION)、GS-020(NOF CORPORATION)、GS-050(NOF CORPORATION)など)
からなる群より選ばれる少なくとも1種を用いることができる。本発明では、構造脂質として、ステロール類(特に、コレステロール)、リン脂質(特に、ホスファチジルコリン)およびポリエチレングリコール脂質の3種全てを用いることが好ましい。
5'- U(M)^G(M)^G(M)^UAUCUUACAGGAACUCCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGG(M)^U(M)^G(M)^C -3'
配列番号2:実施例「HsDMDEx45#23」対応sgRNA全配列
5'- A(M)^G(M)^C(M)^UGUCAGACAGAAAAAAGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGG(M)^U(M)^G(M)^C -3'
配列番号3:配列番号1の標的認識配列
5'- U(M)^G(M)^G(M)^UAUCUUACAGGAACUCC -3'
配列番号4:配列番号2の標的認識配列
5'- A(M)^G(M)^C(M)^UGUCAGACAGAAAAAAG -3'
配列番号5:配列番号1のcrRNA配列
5'- U(M)^G(M)^G(M)^UAUCUUACAGGAACUCCGUUUUAGAGCUA -3'
配列番号6:配列番号2のcrRNA配列
5'- A(M)^G(M)^C(M)^UGUCAGACAGAAAAAAGGUUUUAGAGCUA -3'
配列番号7:配列番号1のtracrRNA配列
5'- UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGG(M)^U(M)^G(M)^C -3'
配列番号8:配列番号2のtracrRNA配列
5'- UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGG(M)^U(M)^G(M)^C -3'
配列番号1~8において、「(M)」が右隣に示されているリボースは、天然の(修飾されていない)リボースであってもよいし、2’-O-メチルリボースまたはその他の修飾リボースであってもよいが、好ましくは2’-O-メチルリボースである。
また、配列番号1~8において「^」で表されている、2’-O-メチルリボース同士の結合または2’-O-メチルリボースとリボースとの結合は、リン酸ジエステル結合であってもよいし、ホスホロチオエート結合であってもよいが、好ましくはホスホロチオエート結合である。
エーテル類:ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、1,2-ジメトキシエタンなど;
芳香族炭化水素類:クロロベンゼン、トルエン、キシレンなど;
飽和炭化水素類:シクロヘキサン、ヘキサン、ヘプタンなど;
アミド類:N,N-ジメチルホルムアミド、N-メチルピロリドンなど;
ハロゲン化炭化水素類:ジクロロメタン、四塩化炭素など;
ニトリル類:アセトニトリルなど;
スルホキシド類:ジメチルスルホキシドなど;
芳香族有機塩基類:ピリジンなど;
酸無水物類:無水酢酸など;
有機酸類:ギ酸、酢酸、トリフルオロ酢酸など;
無機酸類:塩酸、硫酸など;
エステル類:酢酸エチル、酢酸イソプロピルエステルなど;
ケトン類:アセトン、メチルエチルケトンなど;
水。
上記溶媒は、二種以上を適宜の割合で混合して用いてもよい。
塩基性塩類:炭酸ナトリウム、炭酸カルシウム、炭酸水素ナトリウムなど;
有機塩基類:トリエチルアミン、ジエチルアミン、ピリジン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、イミダゾール、ピペリジンなど;
金属アルコキシド類:ナトリウムエトキシド、カリウムtert-ブトキシド、ナトリウムtert-ブトキシドなど;
アルカリ金属水素化物類:水素化ナトリウムなど;
金属アミド類:ナトリウムアミド、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジドなど;
有機リチウム類:n-ブチルリチウム、sec-ブチルリチウムなど。
有機酸類:酢酸、トリフルオロ酢酸、クエン酸、p-トルエンスルホン酸、10-カンファースルホン酸など;
ルイス酸:三フッ化ホウ素ジエチルエーテル錯体、ヨウ化亜鉛、無水塩化アルミニウム、無水塩化亜鉛、無水塩化鉄など。
MS:マススペクトル
M:モル濃度
N:規定度
CDCl3:重クロロホルム
DMSO-d6:重ジメチルスルホキシド
1H NMR:プロトン核磁気共鳴
LC/MS:液体クロマトグラフ質量分析計
ESI:electrospray ionization、エレクトロスプレーイオン化
APCI:atmospheric pressure chemical ionization、大気圧化学イオン化
MALDI:Matrix-assisted laser desorption/ionization、マ卜リックス支援レーザー脱離イオン化
TOFMS:Time-of-flight mass spectrometry、飛行時間型質量分析
CHCA:α-シアノ-4-ヒドロキシケイ皮酸
DMF:N,N-ジメチルホルムアミド
THF:テトラヒドロフラン
DMAP:4-ジメチルアミノビリジン
TBAF:テトラブチルアンモニウムフルオリド
A) 2-(((tert-ブチルジメチルシリル)オキシ)メチル)-2-(ヒドロキシメチル)プロパン-1,3-ジオール
2, 2-ビス(ヒドロキシメチル)プロパン-1,3-ジオール(5.45 g)、1H-イミダゾール(2.72 g)およびDMF(190 mL)の混合物に、tert-ブチルクロロジメチルシラン(3.01 g)のDMF(10 mL)溶液を室温で加えた。24時間撹拌後、反応混合物を減圧下濃縮した。残渣を酢酸エチルで希釈し、水で3回、飽和食塩水で1回洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製して標題化合物(2.25 g)を得た。
1H NMR (300 MHz, CDCl3) δppm 0.08 (6H, s), 0.90 (9H, s), 2.53 (3H, t, J = 5.5 Hz), 3.66 (2H, s), 3.73 (6H, d, J = 5.5 Hz)
2-(((tert-ブチルジメチルシリル)オキシ)メチル)-2-(ヒドロキシメチル)プロパン-1,3-ジオール(258 mg)、(9Z)-テトラデカ-9-エン酸(769 mg) および DMAP (126 mg)のDMF(3 mL)溶液に1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(790 mg)を室温で加えた。18時間撹拌後、反応混合物を酢酸エチルで希釈し、水で2回、飽和食塩水で1回洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(NH、酢酸エチル/ヘキサン)で精製して標題化合物(860 mg)を得た。
1H NMR (300 MHz, CDCl3) δppm 0.03 (6H, s), 0.81-0.96 (18H, m), 1.18-1.41 (36H, m), 1.53-1.67 (6H,m), 1.91-2.10 (12H, m), 2.29 (6H, t, J = 7.6 Hz), 3.58 (2H, s), 4.08 (6H, s), 5.27-5.43 (6H, m)
3-((tert-ブチル(ジメチル)シリル)オキシ)-2,2-ビス(((9Z)-テトラデカ-9-エノイルオキシ)メチル)プロピル(9Z)-テトラデカ-9-エノアート(5.91 g)のTHF(120 mL)溶液に、TBAFのTHF溶液(1 M, 14.85 mL)と酢酸(4.91 mL)の混合物を室温で加えた。3日間撹拌後、反応混合物を減圧下濃縮した。残渣を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製して標題化合物(4.96 g)を得た。
1H NMR (300 MHz, CDCl3) δppm 0.82-0.97 (9H, m), 1.16-1.42 (36H, m), 1.52-1.68 (6H, m), 1.90-2.12 (12H, m), 2.32 (6H, t, J = 7.6 Hz), 2.52 (1H, t, J = 7.0 Hz), 3.49 (2H, d, J = 7.0 Hz), 4.11 (6H, s), 5.26-5.42 (6H, m)
3-ヒドロキシ-2,2-ビス(((9Z)-テトラデカ-9-エノイルオキシ)メチル)プロピル(9Z)-テトラデカ-9-エノアート(4.96 g)、DMAP (796 mg)および4-(ジメチルアミノ)ブタン酸塩酸塩(2.19 g)のDMF(20 mL)溶液に1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(2.50 g)を室温で加えた。18時間撹拌後、反応混合物を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(NH、酢酸エチル/ヘキサン)で精製して標題化合物(5.31 g)を得た。
1H NMR (300 MHz, CDCl3) δppm 0.82-0.94 (9H, m), 1.20-1.42 (36H, m), 1.50-1.66 (6H, m), 1.69-1.83 (2H, m), 1.90-2.10 (12H, m), 2.20 (6H, s), 2.23-2.41 (10H, m), 4.11 (8H, s), 5.23-5.44 (6H, m)
脂質混合物(合成例1で得られたカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10% RNaseフリー水に溶解して6.9mg/mLの脂質溶液を得た。Cas9 mRNA(TriLink BioTechnologies)を、10 mM 2-MES溶液pH5.5に溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「Cas9 mRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。測定結果を表2に示す。
sgRNA-LNPの調製
脂質混合物(合成例1で得られたたカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10%RNaseフリー水に溶解して6.9 mg/mLの脂質溶液を得た。MmRosa26 sgRNA(GeneDesign、前記表1参照)を、10 mM 2-MES溶液pH5.5に溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「MmRosa26 sgRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。測定結果を表2に示す。
9週齡の雄性C57BL/6Jマウス(日本クレア)の右下肢腓腹筋に、MmRosa26 sgRNA-LNPおよびCas9 mRNA-LNPの混合溶液(sgRNAおよびmRNAとしての投与量が共に0.01、0.03、0.1、0.3又は1 μg/マウスとなるよう、それぞれのLNP分散液を混合して調製したもの)、またはPBSを投与した。投与4日後、3.5%イソフルラン麻酔下で断頭放血にて安楽死させた後、骨格筋を摘出し液体窒素で速やかに凍結させた。凍結筋組織からQIAamp Fast DNA Tissue Kit(Qiagen)を用いてゲノムDNAを抽出精製し、PrimeSTAR GXL DNA polymerase(TAKARA)を用いてPCR(Forward primer;配列番号10、Reverse primer;配列番号11)を行った。PCR産物をQIAquick PCR purification kit(QIAGEN)で精製し、T7 Endonuclease I(NEB)で処理後、Agilent 4200 TapeStation(Agilent)を用いて解析した。結果を図1に示す。
配列番号10
5'- CTCCGAGGCGGATCACAAGCAATAATAACCTGTAG -3'
配列番号11
5'- TGCAAGCACGTTTCCGACTTGAGTTGCCTCAAGAG -3'
実施例1の[1-1]に記載した手順で再度Cas9 mRNA-LNPを調製し、核酸濃度、内封率、粒子径およびPDIを測定した。測定結果を表3に示す。
脂質混合物(合成例1で製造したカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10% RNaseフリー水に溶解して6.9 mg/mLの脂質溶液を得た。HsDMDEx45#1 sgRNA(GeneDesign、前記表1参照)を、10 mM 2-モルホリノエタンスルホン酸(MES)溶液pH5.5に溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「HsDMDEx45#1 sgRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。測定結果を表3に示す。
44ノックアウトマウスの作製方法
10 μgのヒトDMD エクソン45およびその5’側0.7 kb、3’側0.6 kbを含む配列1.5kb、FRT配列で挟まれたネオマイシン耐性遺伝子発現ユニットおよびマウスDmd イントロン 44とイントロン 45由来配列各1.5 kbからなるノックインベクターを、2.5 μgのpCAG-Cas9発現ベクターおよび2種類の2.5 μgのpU6-sgRNA発現ベクター(ターゲット配列;配列番号12および配列番号13)とともに、5×105個のC57BL/6Jマウス由来のES細胞にエレクトロポレーションし、PCRおよびシーケンス確認により相同組み換え細胞株を選抜した。Flpe(フリッパーゼ)処理によりネオマイシン耐性ユニットを除去した後、当該ES細胞株をICRマウスの4倍体胚盤胞に顕微注入し、キメラマウスを取得した。キメラマウスと雌性C57BL/6Jマウスとの体外受精により雌性ヒトDMD エクソン45ヘテロノックインマウスを取得した。続いて、雄性C57BL/6Jマウスと雌性ヒトDMD エクソン45ヘテロノックインマウスの受精卵に100 ng/μLのCas9 mRNA(TriLink BioTechnologies)、2種類のマウスDmd エクソン 44ノックアウト用sgRNA(ターゲット配列;配列番号14および配列番号15、株式会社FASMAC)およびssODN 50 ng/μL(配列番号16、ユーロフィンジェノミクス株式会社)を顕微注入し、得られた雄性産仔について、PCRおよびシーケンス確認による遺伝子判定を行い、ヒトDMD エクソン45ノックイン-マウスDmd エクソン44ノックアウトマウスを選抜した。
配列番号12
5’- atgaatgtgcctacatatgg -3’
配列番号13
5’- catagcatgcatttggcttc -3’
配列番号14
5’- gaatgaggtagtgttgtagg -3’
配列番号15
5’- gcaggaaatcatcttatagc -3’
配列番号16
5’- gagcaagctgggttagaacaaaggtctgtcagagtcagcatgggaatgaggtagtgttgtagcaggaaatagtgtggtttaggtctctccccgccctctgtgtatgtgtgtgtgtgtgtt -3’
12週齡の雄性ヒトDMD エクソン45ノックイン-マウスDmd エクソン44ノックアウトマウスの右下肢腓腹筋に、3 μgのHsDMD Ex45#1 sgRNAを内封したLNPと3 μgのSpCas9 mRNAを内封したLNP([2-1]のCas9 mRNA-LNPと[2-2]のHsDMDEx45#1 sgRNA-LNPの混合溶液)を、左下肢腓腹筋にはPBSを、それぞれ6回/2週間投与した。初回投与から56日後に、3.5%イソフルラン麻酔下で安楽死させた後、骨格筋を摘出し液体窒素で速やかに凍結させた。凍結筋組織を3% protenase inhibitor cocktail(Sgima)と5 mM EDTA(WAKO)を含有したRIPA buffer(WAKO)でホモジナイズ後、QIAamp Fast DNA Tissue Kit(Qiagen)を用いてゲノムDNAを抽出精製し、PrimeSTAR GXL DNA polymerase(TAKARA)と配列番号17(Forward primer)および配列番号18(Reverse primer)のprimer setを用いて増幅した。PCR産物をQIAquick PCR purification kit(QIAGEN)で精製し、再アニーリングした後にT7 Endonuclease I(NEB)で処理し、Agilent 4200 TapeStation(Agilent)を用いて電気泳動し、付属のソフトウェアーで解析した。得られた数値を用いて、変異導入効率を下記の計算式(数1)で求めた。
配列番号17
5’- CAAGTTTAAAATAGCAGAAAACCACTAACTAGCCA -3’
配列番号18
5’- CTGACACATAAAAGGTGTCTTTCTGTCTTGTATCC -3’
ホモジネートの一部にQIAzol Lysis Reagent(QIAGEN)とクロロフォルム(WAKO)を添加し、混合・遠心後にRNAを含む水槽を分離回収し、RNeasy Mini Kit(QIAGEN)を用いて、total RNAを抽出精製した。Total RNAをHigh Capacity RNA-to-cDNA kit(Thermo)を用いて逆転写し、続けてPrimeSTAR GXL DNA polymerase(TAKARA)と配列番号19(Forward primer)および配列番号20(Reverse primer)のprimer setを用いて増幅させた。PCR産物をQIAquick PCR purification kit(QIAGEN)で精製後、Agilent 4200 TapeStation(Agilent)を用いて電気泳動し、付属のソフトウェアーで解析した。得られた数値を用いてエクソンスキッピング効率(exon skipping efficiency)を下記の計算式(数2)で求めた。
配列番号19
5’- GGTGAAAGTACAGGAAGCCGT -3’
配列番号20
5’- TTAGCTGCTGCTCATCTCCAA -3’
ホモジネートの一部を遠心し、上清を回収した。上清中の総タンパク質量をProtein assay kit(Thermo)で測定し、0.02 μg/uL及び3 μg/uLに調整した。
実施例1の[1-1]に記載した手順で再度Cas9 mRNA-LNPを調製し、核酸濃度、内封率、粒子径およびPDIを測定した。測定結果を表4に示す。
実施例2の[2-2]で作製したHsDMDEx45#1 sgRNA-LNPを再び使用した。実施例2のときの測定結果を表4に再掲する。
Doxycycline誘導型MyoD発現カセットを含むジストロフィンEx 45欠損DMD患者由来のヒトiPS細胞を、10 μM Y-27632を含むAK02N培地(Ajinomoto)に懸濁し、マトリゲルがコートされた6 well plateに3×105 cells/wellの密度で播種した。翌日、培地をPrimate ES Cell Medium(Reprocell)へと交換し、さらにその翌日に1 μg/mL doxycyclineを含むPrimate ES Cell培地に交換することによりMyoD遺伝子発現誘導を開始した。doxycycline添加から24時間後、5% KSRと1 μg/mL doxycyclineを含むalpha Minimal Essential Medium(SIGMA)培地に交換し、3日間培養した。培地を700 μLに減らし、Cas9 mRNA-LNP(mRNAとして1,3又は10μg/well)およびHsDMDEx45#1 sgRNA-LNP(sgRNAとして1,3,10 μg/well)の混合物を添加した。添加6時間後に、1.3 mLの培地(alpha Minimal Essential Medium,5% KSR,1μg/mL doxycycline)を加えた。
LNPの添加から72時間後、細胞を回収し、QIAamp DNA mini kit(Qiagen)を用いてDNAを抽出精製した。PrimeSTAR GXL DNA polymerase(TAKARA)を用いたPCR(Forward primer:前記配列番号17, Reverse primer:前記配列番号18)によって標的配列を含むゲノム領域を増幅し、得られたPCR産物をQIAquick PCR purification kit(Qiagen)によって精製した。精製したDNA断片を再アニーリングした後にT7 Endonuclease I(NEB)で処理し、Agilent 4200 TapeStation(Agilent)を用いて電気泳動し、付属のソフトウェアーで解析した。変異導入効率の計算式は[2-4]と同様である(前記数1参照)。結果を図5に示す。
回収した細胞から、RNA easy mini kit(Qiagen)を用いてtotal RNAを抽出精製した。Total RNAをHigh Capacity RNA-to-cDNA kit(Thermo)を用いて逆転写し、PrimeSTAR GXL DNA polymerase(TAKARA)を用いてPCR(Forward primer:配列番号21, Reverse primer:配列番号22)を行った。得られたPCR産物をQIAquick PCR purification kit(Qiagen)によって精製し、Agilent 4200 TapeStationを用いて電気泳動し、付属のソフトウェアーで解析した。エクソンスキッピング効率(exon skipping efficiency)の計算式は[2-5]と同様である(前記数2参照)。結果を図6に示す。
配列番号21
5’- CTACAGGAAGCTCTCTCCCA -3’
配列番号22
5’- TGCTTCCTCCAACCATAAAACA -3’
実施例1の[1-1]に記載した手順で再度Cas9 mRNA-LNPを調製し、核酸濃度、内封率、粒子径およびPDIを測定した。測定結果を表5に示す。
実施例2の[2-2]で作製したHsDMDEx45#1 sgRNA-LNPを再び使用した。実施例2のときの測定結果を表5に再掲する。
実施例2の[2-2]に記載した手順において、「HsDMDEx45#1 sgRNA」(実施例4におけるHsDMDEx45#1 sgRNA、前記表1参照)の代わりに「HsDmdEx45#23 sgRNA」(前記表1の「HsDMDEx45#23 sgRNA」参照)を用いたこと以外は同様にして、HsDMDEx45#23 sgRNA-LNPを調製し、核酸濃度、内封率、粒子径およびPDIを測定した。測定結果を表5に示す。
Doxycycline誘導型MyoD発現カセットを含むジストロフィンEx 45欠損DMD患者由来のヒトiPS細胞および健常人由来ヒトiPS細胞を、10 μM Y-27632を含むAK02N培地(Ajinomoto)に懸濁し、マトリゲルがコートされた6 well plateに1×105 cells/wellの密度で播種した。翌日、培地をPrimate ES Cell Medium(Reprocell)へと交換し、さらにその翌日に1 μg/mL doxycyclineを含む培地(Primate ES Cell Mediumに交換することによりMyoD遺伝子発現誘導を開始した。doxycycline添加から24時間後、5% KSRと1 μg/mL doxycyclineを含むalpha Minimal Essential Medium(SIGMA)培地に交換、3日間培養した。患者由来ヒトiPS細胞の培地を700 μLに減らし、LNPの混合物を添加した(下記表6参照)。添加6時間後に、1.3 mLの培地(alpha Minimal Essential Medium,5% KSR,1μg /mL doxycycline)を加えた。
LNP添加から72時間後に、冷却されたPBSで各wellを2回洗浄後、セルスクレーパーで細胞を回収し、4 ℃ 15,000 rpmで5分間遠心分離した。その後、上清を取り除きRIPA bufferで細胞を溶解した。細胞溶解液の一部から、RNA easy mini kit(Qiagen)を用いてtotal RNAを抽出精製した。Total RNAをHigh Capacity RNA-to-cDNA kit(Thermo)を用いて逆転写し、PrimeSTAR GXL DNA polymerase(TAKARA)を用いてPCR (Forward primer:前記配列番号21, Reverse primer:前記配列番号22)を行った。得られたPCR産物をQIAquick PCR purification kit(Qiagen)によって精製し、Agilent 4200 TapeStationを用いて電気泳動し、付属のソフトウェアーで解析した。エクソンスキッピング効率(exon skipping efficiency)の計算式は[2-5]と同様である(前記数2参照)。結果を図7に示す。
細胞溶解液の一部の総タンパク質量をProtein assay kit(Thermo)で測定し、0.083 μg/μL及び0.58 μg/μLに調製した。
脂質混合物(合成例1で得られたカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10% RNaseフリー水に溶解して6.9 mg/mLの脂質溶液を得た。Cas9 mRNA(TriLink BioTechnologies)を、10 mM 2-MES溶液pH5.5に溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「Cas9 mRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。結果を表7に示す。
脂質混合物(合成例1で得られたカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10% RNaseフリー水に溶解して6.9 mg/mLの脂質溶液を得た。MmRosa26 sgRNA(GeneDesign、前記表1参照)を、10 mM 2-MES溶液pH5.5に溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「MmRosa26 sgRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。結果を表7に示す。
[6-1]Cas9 mRNA-LNPの調製
脂質混合物(合成例1で得られたカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10% RNaseフリー水に溶解して6.9mg/mLの脂質溶液を得た。Cas9 mRNA(TriLink BioTechnologies)を、10 mM 2-MES溶液pH5.5に溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「Cas9 mRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。結果を表8に示す。
脂質混合物(合成例1で製造したカチオン性脂質:DPPC:コレステロール:GM-020=60:10.6:28.7:0.7,モル比)を、90% EtOH,10% RNaseフリー水に溶解して6.9 mg/mLの脂質溶液を得た。HsDMDEx45#1 sgRNAおよびHsDMDEx45#23 sgRNAを、10 mM 2-モルホリノエタンスルホン酸(MES)溶液pH5.5に等量ずつ溶解して0.15 mg/mLの核酸溶液を得た。得られた脂質溶液および核酸溶液を、室温で、NanoAssemblr(Precision NanoSystems)によって流速比2.7 mL/min:5.3 mL/minで混合し、核酸を内封する脂質粒子を含む分散液を得た。得られた分散液は、Slyde-A-Lyzer(20kの分画分子量、Thermo scientific)を用いて、水に対して4℃で1時間、PBSに対して4℃で18時間透析を行った。さらにAmicon(30kの分画分子量)を用いて遠心(3,000×g,4℃,一定体積に落ちるまで20分を数回)し、限外ろ過による濃縮を行った。続いて、0.2 μmのsyringe filter(Iwaki)を用いてフィルターろ過を行い、4℃に保存した。このようにして調製した分散液を「HsDMDEx45#1+#23 sgRNA-LNP」として後記試験で用いた。脂質粒子の粒子径および多分散指数(PDI)はZetasizer Nano ZS(Malvern Instruments)によって測定した。また、脂質粒子における核酸の濃度および内封率はQuant-iTTM RiboGreen(登録商標)(Thermo scientific)を用いて測定した。結果を表8に示す。
Claims (28)
- RNA誘導型ヌクレアーゼがCas9であり;
ガイドRNAが、
(a)キメラRNA、又は
(b)crRNA及びtracrRNAを含む2以上のRNA
である、請求項1記載の組成物。 - Cas9が化膿性レンサ球菌由来Cas9である、請求項2記載の組成物。
- 前記ガイドRNAが2種類以上のガイドRNAである、請求項1記載の組成物。
- 細胞が筋細胞である、請求項1記載の組成物。
- 標的遺伝子座が、ジストロフィン遺伝子のヌクレオチド配列を含む、請求項5記載の組成物。
- ガイドRNAが、
(1)配列番号1もしくは配列番号2で示される核酸配列を含むキメラRNA、又は
(2)(i) 配列番号3もしくは配列番号4で示される核酸配列を含むcrRNA、および
(ii)配列番号7もしくは配列番号8で示される核酸配列を含むtracrRNA
である、請求項5記載の組成物。 - 請求項1記載の組成物と細胞とを接触させる工程を含む、細胞中の標的遺伝子座を改変する方法。
- RNA誘導型ヌクレアーゼがCas9であり;
ガイドRNAが、
(a)キメラRNA、又は
(b)crRNA及びtracrRNAを含む2以上のRNA
である、請求項8記載の方法。 - Cas9が化膿性レンサ球菌由来Cas9である、請求項9記載の方法。
- 細胞が筋細胞である、請求項8記載の方法。
- 標的遺伝子座が、ジストロフィン遺伝子のヌクレオチド配列を含む、請求項11記載の方法。
- ガイドRNAが、
(1)配列番号1もしくは配列番号2で示される核酸配列を含むキメラRNA、又は
(2)(i) 配列番号3もしくは配列番号4で示される核酸配列を含むcrRNA、および
(ii)配列番号7もしくは配列番号8で示される核酸配列を含むtracrRNA
である、請求項11記載の方法。 - 請求項8記載の方法によって得られる標的遺伝子座が改変された細胞。
- 請求項6記載の組成物を含む、医薬。
- RNA誘導型ヌクレアーゼがCas9であり;
ガイドRNAが、
(a)キメラRNA、又は
(b)crRNA及びtracrRNAを含む2以上のRNA
である、請求項15記載の医薬。 - Cas9が化膿性レンサ球菌由来Cas9である、請求項16記載の医薬。
- ガイドRNAが、
(1)配列番号1もしくは配列番号2で示される核酸配列を含むキメラRNA、又は
(2)(i) 配列番号3もしくは配列番号4で示される核酸配列を含むcrRNA、および
(ii)配列番号7もしくは配列番号8で示される核酸配列を含むtracrRNA
である、請求項15記載の医薬。 - 筋ジストロフィーの予防・治療薬である、請求項15記載の医薬。
- 修復型ジストロフィンタンパク産生薬である、請求項15記載の医薬。
- 哺乳動物に対して請求項6記載の組成物の有効量を投与することを特徴とする、該哺乳動物における筋ジストロフィーの予防・治療方法。
- 哺乳動物に対して請求項6記載の組成物の有効量を投与することを特徴とする、該哺乳動物における修復型ジストロフィンタンパク産生方法。
- 筋ジストロフィーの予防・治療剤を製造するための、請求項6記載の組成物の使用。
- 筋ジストロフィーの予防・治療に使用するための、請求項6記載の組成物。
- 請求項1記載の組成物と細胞とを接触させる工程を含む、標的遺伝子座が改変された細胞の製造方法。
- (1)請求項1記載の組成物と非ヒト哺乳動物の受精卵、胚性幹細胞もしくは卵母細胞とを接触させる工程、
(2)標的遺伝子座が改変された前記受精卵、胚性幹細胞もしくは卵母細胞を選択する工程、及び
(3)前記選択された受精卵、胚性幹細胞もしくは卵母細胞を非ヒト哺乳動物の雌性動物に移植する工程
を含む、標的遺伝子座が改変された非ヒト哺乳動物の作製方法。 - 前記ガイドRNAが2種類以上のガイドRNAである、請求項27記載の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/958,006 US12031130B2 (en) | 2017-12-28 | 2018-12-27 | Composition for modifying target gene |
CA3086885A CA3086885A1 (en) | 2017-12-28 | 2018-12-27 | Composition for modifying target gene |
JP2019562142A JP7288282B2 (ja) | 2017-12-28 | 2018-12-27 | 標的遺伝子改変用組成物 |
AU2018397951A AU2018397951B2 (en) | 2017-12-28 | 2018-12-27 | Composition for modifying target gene |
CN201880084068.9A CN111527204B (zh) | 2017-12-28 | 2018-12-27 | 靶基因改造用组合物 |
EP18894951.5A EP3733844B1 (en) | 2017-12-28 | 2018-12-27 | Composition for modifying target gene |
KR1020207018909A KR102799255B1 (ko) | 2017-12-28 | 2018-12-27 | 표적 유전자 개변용 조성물 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017254798 | 2017-12-28 | ||
JP2017-254798 | 2017-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131829A1 true WO2019131829A1 (ja) | 2019-07-04 |
Family
ID=67067613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/048034 WO2019131829A1 (ja) | 2017-12-28 | 2018-12-27 | 標的遺伝子改変用組成物 |
Country Status (9)
Country | Link |
---|---|
US (1) | US12031130B2 (ja) |
EP (1) | EP3733844B1 (ja) |
JP (1) | JP7288282B2 (ja) |
KR (1) | KR102799255B1 (ja) |
CN (1) | CN111527204B (ja) |
AU (1) | AU2018397951B2 (ja) |
CA (1) | CA3086885A1 (ja) |
TW (1) | TWI825057B (ja) |
WO (1) | WO2019131829A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020032185A1 (ja) * | 2018-08-10 | 2020-02-13 | 国立大学法人京都大学 | カチオン性脂質を用いた心筋細胞へのトランスフェクション方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9828582B2 (en) | 2013-03-19 | 2017-11-28 | Duke University | Compositions and methods for the induction and tuning of gene expression |
US10676726B2 (en) | 2015-02-09 | 2020-06-09 | Duke University | Compositions and methods for epigenome editing |
JP7108307B2 (ja) | 2015-11-30 | 2022-07-28 | デューク ユニバーシティ | 遺伝子編集によるヒトジストロフィン遺伝子の修正用の治療標的および使用方法 |
JP7490211B2 (ja) | 2016-07-19 | 2024-05-27 | デューク ユニバーシティ | Cpf1に基づくゲノム編集の治療適用 |
DK3733641T3 (da) | 2017-12-28 | 2024-07-22 | Takeda Pharmaceuticals Co | Kationiske lipider |
WO2022081612A1 (en) * | 2020-10-12 | 2022-04-21 | Duke University | Crispr/cas-based base editing composition for restoring dystrophin function |
CN113528437B (zh) * | 2021-07-07 | 2023-08-25 | 中国医学科学院血液病医院(中国医学科学院血液学研究所) | 一种增强基因编辑效率的试剂盒及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104116643A (zh) * | 2014-07-10 | 2014-10-29 | 上海应用技术学院 | 一种包覆曲酸双棕榈酸酯的纳米固体脂质载体及制备方法 |
WO2014197748A2 (en) | 2013-06-05 | 2014-12-11 | Duke University | Rna-guided gene editing and gene regulation |
WO2016025469A1 (en) | 2014-08-11 | 2016-02-18 | The Board Of Regents Of The University Of Texas System | Prevention of muscular dystrophy by crispr/cas9-mediated gene editing |
WO2016197133A1 (en) | 2015-06-04 | 2016-12-08 | Protiva Biotherapeutics, Inc. | Delivering crispr therapeutics with lipid nanoparticles |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7223887B2 (en) | 2001-12-18 | 2007-05-29 | The University Of British Columbia | Multivalent cationic lipids and methods of using same in the production of lipid particles |
AU2003240978A1 (en) | 2002-05-31 | 2003-12-19 | Genteric, Inc. | Multi-functional polyamines for delivery of biologically-active polynucleotides |
US8969543B2 (en) | 2003-04-03 | 2015-03-03 | Bioneer Corporation | SiRNA-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof |
CA2532228C (en) | 2003-07-16 | 2017-02-14 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering rna |
EP1781593B1 (en) | 2004-06-07 | 2011-12-14 | Protiva Biotherapeutics Inc. | Cationic lipids and methods of use |
EP2496700B1 (en) | 2009-11-04 | 2017-03-01 | The University Of British Columbia | Nucleic acid-containing lipid particles and related methods |
CN102884041B (zh) | 2010-04-28 | 2015-04-15 | 协和发酵麒麟株式会社 | 阳离子性脂质 |
WO2012028524A2 (en) | 2010-08-30 | 2012-03-08 | F. Hoffmann-La Roche Ag | Method for producing a lipid particle, the lipid particle itself and its use |
JP6108197B2 (ja) | 2012-07-02 | 2017-04-05 | 日油株式会社 | 三級アミノ基含有脂質の製造方法 |
EP3079726B1 (en) * | 2013-12-12 | 2018-12-05 | The Broad Institute, Inc. | Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components |
JP6389477B2 (ja) | 2014-01-09 | 2018-09-12 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | カチオン性脂質 |
US20170015994A1 (en) * | 2014-02-24 | 2017-01-19 | Massachusetts Institute Of Technology | Methods for in vivo genome editing |
CA2956554C (en) | 2014-08-07 | 2022-03-01 | Takeda Pharmaceutical Company Limited | Preparation of cationic lipid compounds and their salts as nucleic acid carriers |
BR112017001601A2 (pt) * | 2014-09-07 | 2017-11-21 | Selecta Biosciences Inc | métodos e composições para atenuar as respostas imunes do vetor de transferência antiviral de modulação da expressão genética |
AU2016237148A1 (en) | 2015-03-24 | 2017-11-23 | Kyowa Hakko Kirin Co., Ltd. | Nucleic acid-containing lipid nanoparticles |
CN104873976B (zh) | 2015-05-08 | 2016-04-20 | 厦门成坤生物技术有限公司 | 一类阳离子类脂化合物的应用 |
EP4279084B1 (en) | 2015-10-28 | 2025-06-11 | Vertex Pharmaceuticals Inc. | Materials and methods for treatment of duchenne muscular dystrophy |
CN111542338B (zh) | 2017-12-27 | 2024-06-18 | 武田药品工业株式会社 | 含核酸脂质纳米粒子及其用途 |
-
2018
- 2018-12-27 TW TW107147444A patent/TWI825057B/zh active
- 2018-12-27 WO PCT/JP2018/048034 patent/WO2019131829A1/ja active IP Right Grant
- 2018-12-27 CA CA3086885A patent/CA3086885A1/en active Pending
- 2018-12-27 EP EP18894951.5A patent/EP3733844B1/en active Active
- 2018-12-27 KR KR1020207018909A patent/KR102799255B1/ko active Active
- 2018-12-27 CN CN201880084068.9A patent/CN111527204B/zh active Active
- 2018-12-27 US US16/958,006 patent/US12031130B2/en active Active
- 2018-12-27 JP JP2019562142A patent/JP7288282B2/ja active Active
- 2018-12-27 AU AU2018397951A patent/AU2018397951B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014197748A2 (en) | 2013-06-05 | 2014-12-11 | Duke University | Rna-guided gene editing and gene regulation |
CN104116643A (zh) * | 2014-07-10 | 2014-10-29 | 上海应用技术学院 | 一种包覆曲酸双棕榈酸酯的纳米固体脂质载体及制备方法 |
WO2016025469A1 (en) | 2014-08-11 | 2016-02-18 | The Board Of Regents Of The University Of Texas System | Prevention of muscular dystrophy by crispr/cas9-mediated gene editing |
WO2016197133A1 (en) | 2015-06-04 | 2016-12-08 | Protiva Biotherapeutics, Inc. | Delivering crispr therapeutics with lipid nanoparticles |
Non-Patent Citations (18)
Title |
---|
"Organic Name Reaction", KODANSHA LTD., article "The Reaction Mechanism and Essence Revised Edition" |
AKITA HIDETAKA ET AL.: "A Neutral Envelope-Type Nanoparticle Containing pH-Responsive and SS-Cleavable Lipid-Like Material as a Carrier for Plasmid DNA", ADV. HEALTHCARE MATER., vol. 2, 2013, pages 1120 - 1125, XP055209940 * |
GENE, vol. 73, no. 1, 1988, pages 237 - 244 |
HIROSAWA, MOE ET AL.: "Cell -type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch", NUCLEIC ACID RES., vol. 45, no. 13, 19 May 2017 (2017-05-19), pages e118, XP055534718 * |
JIE JACK LI: "Modern Organic Synthesis in the Laboratory A Collection of Standard Experimental Procedures", vol. I to VII, 1989, KAGAKU-DOJIN PUBLISHING COMPANY, INC. |
JINEK ET AL., SCIENCE, vol. 337, pages 816 - 821 |
MAKITA, YUKIMASA; HOZUMI, HIROYUKI; HOTTA, AKITSU: "Advances in genome editing technologies for treating muscular dystrophy", CLINICAL CALCIUM, vol. 27, no. 3, 28 February 2017 (2017-02-28), Osaka, JP, pages 391 - 399, XP009522148, ISSN: 0917-5857 * |
P. J. KOCIENSKI: "Protecting Groups 3rd Ed.", 2004, THIEME MEDICAL PUBLISHERS |
SEIMITSU YUKI KAGAKU: "Precise Organic Chemistry", NANKODO CO., LTD., article "Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium" |
SHIN JIKKEN KAGAKU KOZA, NEW EXPERIMENTAL CHEMISTRY, vol. 14 and 15 |
TABEBORDBAR ET AL., SCIENCE, vol. 351, 2016, pages 407 - 411 |
THEODORA W. GREENEPETER G. M. WUTS: "Protective Groups in Organic Synthesis", 2007, WILEY-INTERSCIENCE PUBLICATION |
VAN DEUTEKOM JCVAN OMMEN GJ., NAT REV GENET., 2003 |
YIN ET AL., NAT. BIOTECH., 2017, pages 35 |
YIN ET AL., NAT. BIOTECH., vol. 34, 2016, pages 329 - 333 |
YIN HAO ET AL.: "Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing", NAT. BIOTECHNOL., vol. 35, no. 12, 13 November 2017 (2017-11-13), pages 1179 - 1187, XP055484407 * |
YIN HAO ET AL.: "Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo", NAT. BIOTECHNOL., vol. 34, no. 3, 2016, pages 328 - 333, XP055540393 * |
ZHANG LINGMIN ET AL.: "Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy", NPG ASIA MATERIALS, vol. 9, 27 October 2017 (2017-10-27), pages e441, XP055624557 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020032185A1 (ja) * | 2018-08-10 | 2020-02-13 | 国立大学法人京都大学 | カチオン性脂質を用いた心筋細胞へのトランスフェクション方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210371854A1 (en) | 2021-12-02 |
EP3733844A4 (en) | 2021-11-03 |
JPWO2019131829A1 (ja) | 2021-02-04 |
US12031130B2 (en) | 2024-07-09 |
AU2018397951A1 (en) | 2020-07-09 |
KR102799255B1 (ko) | 2025-04-24 |
TWI825057B (zh) | 2023-12-11 |
CN111527204A (zh) | 2020-08-11 |
AU2018397951B2 (en) | 2025-06-26 |
EP3733844B1 (en) | 2025-04-02 |
JP7288282B2 (ja) | 2023-06-07 |
TW201938202A (zh) | 2019-10-01 |
KR20200104318A (ko) | 2020-09-03 |
EP3733844A1 (en) | 2020-11-04 |
CA3086885A1 (en) | 2019-07-04 |
CN111527204B (zh) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7288282B2 (ja) | 標的遺伝子改変用組成物 | |
US11993570B2 (en) | Cationic lipids | |
JP7350749B2 (ja) | カチオン性脂質 | |
JP2019521659A (ja) | ゲノム編集分子の細胞内送達のためのペプチドおよびナノ粒子 | |
RU2782218C2 (ru) | Катионные липиды | |
EP4431489A1 (en) | Cationic lipid | |
BR112020012424B1 (pt) | Composto, partícula lipídica, e, composição para introdução de ácido nucleico |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18894951 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3086885 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019562142 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018397951 Country of ref document: AU Date of ref document: 20181227 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018894951 Country of ref document: EP Effective date: 20200728 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2018894951 Country of ref document: EP |