WO2019085114A1 - 实时单次快照多频解调空间频域成像方法 - Google Patents
实时单次快照多频解调空间频域成像方法 Download PDFInfo
- Publication number
- WO2019085114A1 WO2019085114A1 PCT/CN2017/113692 CN2017113692W WO2019085114A1 WO 2019085114 A1 WO2019085114 A1 WO 2019085114A1 CN 2017113692 W CN2017113692 W CN 2017113692W WO 2019085114 A1 WO2019085114 A1 WO 2019085114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- real
- modulation
- spatial
- frequency
- imaging method
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7228—Signal modulation applied to the input signal sent to patient or subject; Demodulation to recover the physiological signal
Definitions
- the invention relates to a real-time single-shot multi-frequency demodulation spatial frequency domain imaging method.
- the present invention provides a real-time single-shot multi-frequency demodulation spatial frequency domain imaging method.
- the invention provides a real-time single-shot multi-frequency demodulation spatial frequency domain imaging method, which comprises the following steps:
- the spatial modulation pattern comprising components of a plurality of modulation frequencies
- the modulation depth is obtained. ,among them Is the intensity of the ith modulation frequency component of the incident, Is the incident DC component intensity;
- a spatial modulation pattern is applied to the object to be tested through the beam splitter.
- the single-shot multi-frequency demodulation method can resolve the DC values I DC and the shunt values I AC of the respective reflected light intensities of the plurality of spatial modulation frequencies in a single pattern of the plurality of spatially modulated frequencies . i , to obtain optical information of different depths.
- a real-time single-shot multi-frequency demodulation spatial frequency domain imaging method based on the above-mentioned application in depth-resolved imaging.
- the invention has the beneficial effects of solving the problem that the traditional demodulation technology is slow and has motion ghosting, and the demodulation technology has a high signal to noise ratio, and the SSMD-SFDI system constructed by the technology can demodulate the MTF in real time. Therefore, optical information and physiological information can be acquired in real time.
- Figure 1 is a schematic diagram of the comparison between SSMD and standard three-phase shifting technology.
- Figure 2 is a schematic diagram of an SSMD-SFDI device.
- Figure 3 shows the concentration of oxyhemoglobin in a typical subject in a forearm reactive hyperemia experiment.
- Figure 4 is a graphical representation of melanin content and skin layer thickness in a forearm reactive hyperemia experiment.
- Fig. 5 is a graph showing the absorption coefficient at each wavelength of the epidermal layer (a-c) and the dermis layer (d-f) and the scattering coefficient (g) and scattering ability (h) of the skin.
- Figure 6 shows the measured area under the SSMD-SFDI system, and the dotted rectangular area is the area of interest.
- Fig. 7 is a distribution diagram of normal tissue and black sputum optical parameters (absorption coefficient (a-f), scattering coefficient (g) and scattering ability (h) of each wavelength layer).
- Figure 8 shows normal tissue and black sputum physiological parameters (oxygenated hemoglobin (a), hypoxic hemoglobin (b), total oxygenated hemoglobin (c), oxygen saturation (d), melanin (e) and epidermal thickness (f)) Distribution map.
- the invention provides a real-time single-shot multi-frequency demodulation spatial frequency domain imaging method
- the single-shot multi-frequency demodulation method can separately analyze the DC values I DC and the shunt values I AC, i of the respective reflected light intensities of a plurality of spatial modulation frequencies in a pattern composed of a plurality of spatial modulation frequencies. Deep optical information;
- the single-shot multi-frequency demodulation method can demodulate the DC value I DC of the reflected light intensity and the shunt value I AC, i for each modulation frequency for a single spatial modulation frequency pattern .
- the incident light intensity I 0 is used to obtain the modulation depth. among them Is the incident light intensity of the reflected light intensity I AC,i at each modulation frequency, Is the incident light intensity of the I DC ;
- the invention can be applied to modeling on 3D reconstruction.
- the invention can be applied to large areas of skin imaging.
- the invention can be applied to large area imaging of the mucosal layer of the endoscope surface.
- the invention can project a spatial modulation pattern of a phase through the DMD, and other equipment can also be used, and then the CCD can be used to acquire the reflected light intensity after the diffuse reflection of the object to be tested, and CCD, spectrometer, fiber optic probe and the like can also be used here. .
- the invention can quickly resolve the MTF by a spatial modulation pattern of a single phase, and solves the problem of the traditional three-phase shift.
- the SSMD technology can improve the signal-to-noise ratio of the image.
- the single-shot multi-frequency demodulation method used in the third step can demodulate the DC value I DC of the reflected light intensity in a single spatial modulation frequency pattern and corresponding to each modulation frequency, compared with the conventional standard three-phase shift method.
- the shunt value I AC,i is maintained and a high signal to noise ratio is maintained. It overcomes the problem that the traditional standard three-phase shifting method requires three spatial modulation frequency patterns of different phases to work normally, and the motion ghosts and the inability to resolve in real time. Due to the different spatial modulation frequencies, the detection depths are different (the larger the spatial frequency, the shallower the detection depth). Therefore, multiple spatial modulation frequencies can be combined to obtain optical information of different depths, which can be used for 3D reconstruction.
- the SSMD technology is used to quickly demodulate the DC and AC information of the reflected pattern.
- FIG 3 shows the typical changes in oxyhemoglobin concentration, deoxyhemoglobin concentration, total hemoglobin concentration, and oxygen saturation in a forearm reactive hyperemia experiment.
- the cuff blocks blood flow to the veins and arteries, blood is deposited in the subcutaneous blood vessels due to obstruction of the distal vein, causing the blood vessels to swell and expand, resulting in a total increase in total hemoglobin (the sum of HbO 2 and Hb, (Fig. 3(c)).
- Vascular obstruction leads to rapid depletion of oxygen in the tissue, resulting in a rapid decrease in tissue oxyhemoglobin (HbO 2 concentration, Figure 3 (a)) and an increase in tissue deoxyhemoglobin concentration (Hb, Figure 3 (b)).
- Skin black mites were detected using the SSMD-SFDI system in combination with a layered structure mapping model.
- Figure 8 shows oxyhemoglobin (a), hypoxic hemoglobin (b), total hemoglobin (c), blood oxygen saturation (d), melanin (e) and epidermal layer thickness (f), respectively.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明提供一种实时单次快照多频解调空间频域成像方法,其包括以下步骤:一、投影一个空间调制图案在待测物体上,该调制图案可以包括多个调制频率的成分;二、采集待测物体漫反射后的反射光强;三、通过SSMD公式获取反射光强的直流值和分流值;四、获取反射光强的直流值和分流值之后,利用入射光强,得到调制深度;五、根据获得的调制深度,通过与光在介质中的传播模型比较获取相应的调制深度MTF对应的光学参数,解决了传统解调技术速度慢,有运动鬼影的问题,并且此解调技术有很高的信噪比,以此技术搭建的SSMD-SFDI系统能够实时解调出MTF,因此可实时获取光学信息和生理信息。
Description
本发明具体涉及一种实时单次快照多频解调空间频域成像方法。
传统的SFDI系统通常使用传统三相移法进行解调,但是传统三相移法需要三个不同的相位(0,2π/3,and 4π/3)的空间调制图像才能完整解析单个频率的调制深度(MTF),存在解调速度慢,有运动鬼影等问题。
发明内容
为了解决以上技术问题,本发明提出一种实时单次快照多频解调空间频域成像方法。
本发明提供一种实时单次快照多频解调空间频域成像方法,其包括以下步骤:
一、实时投影一个空间调制图案在待测物体上,该空间调制图案包括多个调制频率的成分;
二、采集待测物体漫反射后的反射光强,获取空间调制图像I(x,y);
三、通过单次快照多频解调法
获取反射光强的直流值IDC和针对每一调制频率相应的分流值IAC,i,其中I(x,y)为测得的二维图像,fx,i,fy,i是第i个调制成分的x、y轴的空间频率,T1、T2是所有1/fx,i,1/fy,i的最小公倍数;
五、根据获得的调制深度,通过与光在介质中传播的模型比较获取介质的光学参数。
步骤一中,将一个空间调制图案通过分光镜作用在待测物体上。
步骤三中,单次快照多频解调法可对由多个空间调制频率组成的图案中单幅解析出多个空间调制频率的各自的反射光强的直流值IDC和分流值IAC,i,获取不同深度的光学信息。
一种基于上述的实时单次快照多频解调空间频域成像方法在深度分辨的成像上的应用。
一种基于上述的实时单次快照多频解调空间频域成像方法在3D重构上建模的应用。
一种基于上述的实时单次快照多频解调空间频域成像方法在皮肤大面积成像的应用。
一种基于上述的实时单次快照多频解调空间频域成像方法在内窥镜表面粘膜层大面积成像的应用。
本发明的有益效果:解决了传统解调技术速度慢,有运动鬼影的问题,并且此解调技术有很高的信噪比,以此技术搭建的SSMD-SFDI系统能够实时解调出MTF,因此可实时获取光学信息和生理信息。
图1为SSMD与标准三相移技术的对比示意图。
图2为SSMD-SFDI装置示意图。
图3为典型被测者在前臂反应性充血实验中氧合血红蛋白浓度
(a)、脱氧血红蛋白浓度(b)、总血红蛋白浓度(c)和血氧饱和度变化过程(d)的示意图。
图4为在前臂反应性充血实验中黑色素含量和表皮层厚度的示意图。
图5为表皮层(a-c)和真皮层(d-f)各波长下的吸收系数和皮肤的散射系数(g)和散射能力(h)的示意图。
图6为SSMD-SFDI系统下被测区域,虚线矩形区域为感兴趣区域。
图7为正常组织和黑痣光学参数(各波长各层吸收系数(a-f),散射系数(g)和散射能力(h))的分布图。
图8为正常组织和黑痣生理参数(,含氧血红蛋白(a),缺氧血红蛋白(b),总含氧血红蛋白(c),血氧饱和度(d),黑色素(e)和表皮层厚度(f))的分布图。
下面结合附图对本发明实施例作进一步说明:
本发明提供一种实时单次快照多频解调空间频域成像方法,
其包括以下步骤:
一、实时投影一个空间调制图案,通过分光镜作用在待测物体上,该空间调制图案包括多个调制频率的成分;
二、采集待测物体漫反射后的反射光强,获取空间调制图像I(x,y);
三、通过单次快照多频解调法
获取反射光强的直流值IDC和针对每一调制频率相应的分流值
IAC,i,其中I(x,y)为测得的二维图像,fx,i,fy,i是第i个调制成分的x、y轴的空间频率,T1、T2是所有1/fx,i,1/fy,i的最小公倍数;
单次快照多频解调法可对由多个空间调制频率组成的图案中单幅解析出多个空间调制频率的各自的反射光强的直流值IDC和分流值IAC,i,获取不同深度的光学信息;
单次快照多频解调法可对单幅空间调制频率图案解调出反射光强的直流值IDC和针对每一调制频率相应的分流值IAC,i
五、根据获得的调制深度,通过与光在介质中传播的模型比较获取介质的光学参数。
本发明可以在3D重构上建模的应用。
本发明可以在皮肤大面积成像的应用。
本发明可以在内窥镜表面粘膜层大面积成像的应用。
本发明可以通过DMD投影一个相位的空间调制图案,同时也可以采用其他设备,而后则可以利用CCD获取采集待测物体漫反射后的反射光强,这里也可以使用CCD,光谱仪,光纤探头等技术。
本发明可以通过单个相位的空间调制图案,快速的解析出MTF,解决了传统三相移存在的问题,同时,SSMD技术可以提高图像的信噪比。
步骤三中采用的单次快照多频解调法与传统标准三相移法相比,可在单幅空间调制频率图案中解调出反射光强的直流值IDC和针对每
一调制频率相应的分流值IAC,i,并且保持较高的信噪比。克服了传统标准三相移法需3幅不同相位的空间调制频率图案才能正常工作,而引起的运动鬼影和无法实时解析的问题。由于不同的空间调制频率探测深度各不相同(空间频率越大探测深度越浅)。因此,多个空间调制频率组合,可以得到不同深度的光学信息,可以用于3D重构。
应用实例1:前臂反应性充血实验
实验方案:
使用我们设计的实时SSMD-SFDI设备对志愿者(n=6)手臂背面进行实时检测,DMD设备投射波长为623nm,540nm和460nm,空间频率f=0.2的调制图案,探测器(Point Grey Grasshop3 GS3-U3-51S5C)以每秒3帧的速度进行采集。志愿者按照如下实验方案:正常状3分钟,压脉带给手臂产生压强(200mmg)维持4分钟,释放压脉带休息3分钟,共采集10分钟。使用SSMD技术快速的解调出反射图案的直流和交流信息。
整个实验现象分析:
图3显示了一个典型的被测者在前臂反应性充血实验中氧合血红蛋白浓度、脱氧血红蛋白浓度、总血红蛋白浓度和血氧饱和度变化过程。当袖带阻塞静脉和动脉的血流量时,由于远端静脉阻塞,血液淤积在皮下血管,使血管充血扩张,导致总血红蛋白(HbO2和Hb之和,(图3(c))轻微上升。血管阻塞导致组织中的氧快速消耗,使组织氧合血红蛋白(HbO2浓度,图3(a))快速下降,组织脱氧血红蛋白浓度(Hb,图3(b))增加。在袖口释放时,表现出典型的充血反应,大量新鲜血液流入在阻塞期间已耗尽血氧的组织中。如图3(a)袖带释放段。组织氧饱和度(StO2)最初为0.82,在袖带阻塞后降至0.56,最后在袖带释放后迅速回升到0.85。结合
SSMD-SFDI系统和层状结构映射模型很好的剥离表皮层黑色素(图4)的影响,得到真皮层血氧变化(图3),表皮层厚度和各层的光学信息(图5)(散射系数和各层的吸收系数)。
应用实例2:黑痣生理信息和光学信息检测
使用SSMD-SFDI系统与层状结构映射模型相结合对皮肤的黑痣进行检测。
通过SSMD-SFDI系统,可以区分黑痣区域与旁边正常区域丰富的光学信息和生理信息,如图6所示。
图7分别得到各波长下(λ=460nm,540nm,623nm)表皮层(a-c),真皮层的吸收系数(d-f),散射系数(λ=540nm,g)和散射能力(h)。图8分别得到了含氧血红蛋白(a),缺氧血红蛋白(b),总血红蛋白(c),血氧饱和度(d),黑色素(e)和表皮层厚度(f)。
通过2个实验的应用,充分证明了SSMD-SFDI系统和层状结构映射模型的可行性,以此我们可以得到区域组织实时的,连续的,2维的多个生理参数时间变化图。
实施例不应视为对本发明的限制,任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。
Claims (7)
- 一种实时单次快照多频解调空间频域成像方法,其特征在于:其包括以下步骤:一、实时投影一个空间调制图案在待测物体上,该空间调制图案包括多个调制频率的成分;二、采集待测物体漫反射后的反射光强,获取空间调制图像I(x,y);三、通过单次快照多频解调法获取反射光强的直流值IDC和针对每一调制频率相应的分流值IAC,i,其中I(x,y)为测得的二维图像,fx,i,fy,i是第i个调制成分的x、y轴的空间频率,T1、T2是所有1/fx,i,1/fy,i的最小公倍数;五、根据获得的调制深度,通过与光在介质中传播的模型比较获取介质的光学参数。
- 根据权利要求1所述的实时单次快照多频解调空间频域成像方法,其特征在于:步骤一中,将一个空间调制图案通过分光镜作用在待测物体上。
- 根据权利要求1所述的实时单次快照多频解调空间频域成像方法, 其特征在于:步骤三中,单次快照多频解调法可对由多个空间调制频率组成的图案中单幅解析出多个空间调制频率的各自的反射光强的直流值IDC和分流值IAC,i,获取不同深度的光学信息。
- 一种基于上述权利要求1、2或3所述的实时单次快照多频解调空间频域成像方法在深度分辨的成像上的应用。
- 一种基于上述权利要求1、2或3所述的实时单次快照多频解调空间频域成像方法在3D重构上建模的应用。
- 一种基于上述权利要求1、2或3所述的实时单次快照多频解调空间频域成像方法在皮肤大面积成像的应用。
- 一种基于上述权利要求1、2或3所述的实时单次快照多频解调空间频域成像方法在内窥镜表面粘膜层大面积成像的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711041861.4 | 2017-10-30 | ||
CN201711041861.4A CN107802269A (zh) | 2017-10-30 | 2017-10-30 | 实时单次快照多频解调空间频域成像方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019085114A1 true WO2019085114A1 (zh) | 2019-05-09 |
Family
ID=61582969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/113692 WO2019085114A1 (zh) | 2017-10-30 | 2017-11-30 | 实时单次快照多频解调空间频域成像方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107802269A (zh) |
WO (1) | WO2019085114A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI687200B (zh) * | 2018-07-16 | 2020-03-11 | 大立光電股份有限公司 | 光學脈波影像量測儀及脈波形變量測方法 |
CN111265188A (zh) * | 2020-01-21 | 2020-06-12 | 温州医科大学 | 一种基于局部微循环的糖尿病足风险评估装置及方法 |
CN114173030B (zh) * | 2021-11-04 | 2022-11-08 | 华中农业大学 | 基于智能手机的空间频域单次快照成像装置及其方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100079684A1 (en) * | 2008-09-29 | 2010-04-01 | Seiko Epson Corporation | Image processing device, projection system, and image processing method |
CN103679652A (zh) * | 2013-11-29 | 2014-03-26 | 北京空间机电研究所 | 一种大幅提高成像质量的图像复原系统 |
CN103954957A (zh) * | 2014-05-22 | 2014-07-30 | 北京空间机电研究所 | 一种基于分离大气mtf的遥感影像大气邻近效应校正方法 |
CN105245761A (zh) * | 2015-09-30 | 2016-01-13 | 温州医科大学 | 单次快照多频解调方法 |
-
2017
- 2017-10-30 CN CN201711041861.4A patent/CN107802269A/zh active Pending
- 2017-11-30 WO PCT/CN2017/113692 patent/WO2019085114A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100079684A1 (en) * | 2008-09-29 | 2010-04-01 | Seiko Epson Corporation | Image processing device, projection system, and image processing method |
CN103679652A (zh) * | 2013-11-29 | 2014-03-26 | 北京空间机电研究所 | 一种大幅提高成像质量的图像复原系统 |
CN103954957A (zh) * | 2014-05-22 | 2014-07-30 | 北京空间机电研究所 | 一种基于分离大气mtf的遥感影像大气邻近效应校正方法 |
CN105245761A (zh) * | 2015-09-30 | 2016-01-13 | 温州医科大学 | 单次快照多频解调方法 |
Non-Patent Citations (1)
Title |
---|
CAO, ZILI: "Research on Theory and Method of Real-Time Spatial Frequency Domain Imaging", BACHELOR THESIS, 28 February 2017 (2017-02-28), pages 19, 24 - 29 * |
Also Published As
Publication number | Publication date |
---|---|
CN107802269A (zh) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11653874B2 (en) | Method and system for characterizing tissue in three dimensions using multimode optical measurements | |
Jonathan et al. | Cellular phone‐based photoplethysmographic imaging | |
US20150374309A1 (en) | Method and system for characterizing tissue in three dimensions using multimode optical measurements | |
US11779246B2 (en) | Hemoglobin measurement from a single vessel | |
JP2009022745A (ja) | 肌組織を測定する方法及び装置 | |
Yang et al. | Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network | |
WO2019085114A1 (zh) | 实时单次快照多频解调空间频域成像方法 | |
WO2013168149A1 (en) | System and method for optical coherence tomography | |
US11058346B2 (en) | Optical imaging method based on mapping of layered structure | |
WO2015151586A1 (ja) | 測定装置、測定方法、プログラム及び記録媒体 | |
JP6745349B2 (ja) | 光干渉断層画像撮像装置および計測方法 | |
CN106137219B (zh) | 双波长的绝对差值加和计算动脉血氧饱和度方法及其装置 | |
JP6025888B2 (ja) | 光音響装置、装置および方法 | |
Merdasa et al. | Photoacoustic imaging of the spatial distribution of oxygen saturation in an ischemia-reperfusion model in humans | |
CN108135477A (zh) | 处理光学相干断层扫描 | |
JP2010051589A (ja) | 非侵襲ヒト皮膚メラニン計測法及びその装置 | |
JP5990906B2 (ja) | 測定装置、測定方法、プログラムおよび記録媒体 | |
Ewerlöf et al. | Multispectral snapshot imaging of skin microcirculatory hemoglobin oxygen saturation using artificial neural networks trained on in vivo data | |
CN103393425B (zh) | 用于近红外脑功能成像系统的实时信号质量评价算法 | |
WO2017100685A1 (en) | Methods and apparatus for measuring blood oxygenation of tissue | |
JP6218908B2 (ja) | 方法 | |
EP4014853A1 (en) | Device, method and systems for providing imaging of one or more aspects of blood perfusion | |
JP2012013432A (ja) | 断層画像処理装置及び方法、並びに光干渉断層画像診断装置 | |
Milanič et al. | Hyperspectral imaging for detection of cholesterol in human skin | |
Xue et al. | A synchronous detection algorithm for quasi-periodic signal components and its application in photoplethysmographic imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17930354 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17930354 Country of ref document: EP Kind code of ref document: A1 |