[go: up one dir, main page]

WO2019039502A1 - 反射光学素子およびステレオカメラ装置 - Google Patents

反射光学素子およびステレオカメラ装置 Download PDF

Info

Publication number
WO2019039502A1
WO2019039502A1 PCT/JP2018/030949 JP2018030949W WO2019039502A1 WO 2019039502 A1 WO2019039502 A1 WO 2019039502A1 JP 2018030949 W JP2018030949 W JP 2018030949W WO 2019039502 A1 WO2019039502 A1 WO 2019039502A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal substrate
optical system
imaging optical
stereo camera
camera device
Prior art date
Application number
PCT/JP2018/030949
Other languages
English (en)
French (fr)
Inventor
嘉則 杉浦
勝元 細川
裕之 久保
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018153927A external-priority patent/JP2019174781A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201880054278.3A priority Critical patent/CN111065940B/zh
Priority to CN202210659545.8A priority patent/CN114994815A/zh
Publication of WO2019039502A1 publication Critical patent/WO2019039502A1/ja
Priority to US16/787,246 priority patent/US11693222B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0663Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present invention relates to, for example, a reflective optical element excellent in lightness and vibration controllability, which is used as a vehicle.
  • the reflective optical system is easy to make the entire optical system smaller as compared with the refractive optical system, and has advantages such as no shift in imaging due to wavelength.
  • imaging devices have become smaller and more sophisticated, they have been actively mounted not only on conventional cameras, videos and smartphones, but also on mobile objects such as drone and automobiles, and visual recognition of the surrounding environment has been made In addition, it is used for more extensive and high-precision applications such as ranging.
  • Patent Document 1 discloses a lightweight, relatively inexpensive mirror and a method of manufacturing the same.
  • an aluminum die-cast product is used as a substrate, a soft and hard radiation-cured resin layer is provided thereon, and a metal reflection film such as aluminum is further formed thereon.
  • Such a mirror having a configuration using aluminum as a substrate is lightweight, it can be used for moving objects such as cars, aircrafts, drones, ships, and cameras such as cameras having a physical drive unit in the vicinity, copying machines, etc.
  • Deterioration of optical performance due to vibration may be a problem in the application of the device. This is a problem caused by the fact that aluminum and its alloys are generally low damping materials.
  • the present invention has been made in view of the above problems, and provides a reflective optical element that is lightweight and has excellent vibration controllability.
  • a reflection optical element comprising a resin layer having an optical surface on a metal substrate, and a mirror provided with a reflection film on the optical surface, wherein the metal substrate has a first connection.
  • a first opening for taking light into an imaging optical system, a plurality of mirrors of a first imaging optical system for reflecting light taken in from the first opening, and a light for taking a second imaging optical system A second opening and a plurality of mirrors of a second imaging optical system for reflecting light taken in from the second opening are provided, and the metal substrate contains an alloy containing Mg as a main component
  • a reflective optical element is provided.
  • FIG. 1 is a perspective view showing an embodiment of a reflective optical element according to the present invention. It is a sectional view showing one embodiment of an optical device concerning the present invention. It is a sectional view showing one embodiment of an optical device concerning the present invention.
  • FIG. 1 is a schematic cross-sectional view of a stereo camera body according to an embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Typical sectional drawing which shows the structure of the reflective surface of embodiment of this invention.
  • FIG. 1 is an external perspective view of a stereo camera body according to an embodiment of the present invention.
  • FIG. 1 is an external perspective view of a stereo camera body according to an embodiment of the present invention. The figure which shows the structure of the metal substrate of the stereo camera main body of embodiment of this invention.
  • FIG. 1 is an external perspective view of a stereo camera device according to an embodiment of the present invention.
  • FIG. 1 is a front view of a stereo camera device according to an embodiment of the present invention.
  • the flowchart which shows the manufacture procedure of embodiment of this invention.
  • the schematic diagram which shows the manufacturing method of a metal substrate.
  • FIG. 5 is a schematic view showing a method of manufacturing a reflective film according to an embodiment of the present invention.
  • the schematic diagram which shows the optical axis adjustment by the support stand of embodiment of this invention.
  • the problem of the present invention can be solved by the above configuration, and specifically, the following embodiments can be employed.
  • the reflective optical element according to the present invention is a reflective optical element including a resin layer having an optical surface on a metal substrate, and a mirror provided with a reflective film on the optical surface, wherein the metal substrate includes: A first opening for taking light into a first imaging optical system, a plurality of mirrors of the first imaging optical system for reflecting light taken in from the first opening, and a second imaging optical system A second opening for taking in light and a plurality of mirrors of a second imaging optical system for reflecting the light taken in from the second opening are provided, and the metal substrate is mainly composed of Mg. It is characterized in that it comprises an alloy, more preferably a Mg-Li alloy, which will be described in detail below based on its embodiment.
  • FIG. 1 A schematic perspective view of an example of a reflective optical element according to a first embodiment of the present invention is shown in FIG.
  • 1 is a metal substrate
  • 2 is a resin layer formed on the metal substrate 1
  • the resin layer 2 has an optical surface.
  • the present embodiment is configured as a reflective optical element by providing the reflective film 3 on the optical surface.
  • the metal substrate 1 is characterized in that it is an alloy mainly composed of Mg, more preferably a Mg—Li alloy.
  • the metal substrate 1 in the present embodiment is formed of an alloy containing Mg as a main component, more preferably a Mg—Li alloy.
  • Mg-Li alloy is not particularly limited, it is a magnesium-lithium alloy in which at least lithium is added to magnesium, preferably 5% by mass or more and 20% by mass or less of lithium, and 0.5% by mass of aluminum As mentioned above, 15 mass% or less may be contained, and also 5 mass% or less of calcium may be contained, and the remainder consists of magnesium. That is, the metal substrate 1 contains Mg as a main component, and specifically contains 60% by mass or more of Mg. The amount of unavoidable impurities is preferably smaller.
  • LA Dex (trade name; Li, Al, Mg alloy containing Ca) manufactured by Santoku Co., Ltd., ALZ manufactured by Anritsu Materials Technology Co., Ltd. (trade name: Mg alloy containing Al, Li, Zn) And alloys such as
  • Mg materials have high damping properties, but their specific strength is low, and they are flammable and are therefore less practical.
  • alloyed Mg materials such as AZ91 (9% Al-1% Zn-Mg) and AM60 (6% Al-0.4% Zn-Mg) are suitably improved in specific strength etc.
  • Mg alloys are classified as dislocation type in the damping alloy category, but Mg-Li alloys may belong to other different categories such as composite types, and the inventors of the present invention have their unique characteristics. I found it. This characteristic can effectively damp the vibration when used in a moving object or in a member close to a vibration source, and can effectively reduce the deterioration of functions originally possessed by the imaging device etc. .
  • the material of the resin layer in the present invention is not particularly limited, and various known resins can be used.
  • the resin used for the resin layer in the present invention is not particularly limited as long as it satisfies the desired properties, but acrylic resins, ester resins, ether resins, amide resins, imide resins, olefin resins, fluorine resins, etc. are known. Resin can be used. When it is desired to particularly suppress deformation due to water absorption of the resin layer, it is preferable to use an olefin-based resin, more preferably a cyclic olefin-based resin.
  • the desired radiation curing resin is between a mold having a desired optical surface and an alloy mainly composed of Mg as a substrate, more preferably a Mg-Li alloy. It can be installed, filled and cured by radiation.
  • the resin to be used is not particularly limited as long as it satisfies the desired characteristics, but known resins such as acrylic resins, epoxy resins, cyanate resins and fluorine resins can be used.
  • resins such as acrylic resins, epoxy resins, cyanate resins and fluorine resins can be used.
  • an acrylic type or an epoxy type can be used.
  • a radiation curable resin having a small cure shrinkage can be used.
  • the thickness of the resin layer is not particularly limited, but is preferably 20 ⁇ m or more and 2000 ⁇ m or less, more preferably 50 ⁇ m or more and 1000 ⁇ m or less, in particular when distortion of the optical surface due to thermal expansion is particularly concerned. If the thickness of the resin layer is too thin, it may be affected by the surface roughness of the Mg-based alloy serving as the substrate, more preferably Mg-Li alloy, and the surface roughness of the optical surface may not be the desired roughness. . If the thickness of the resin layer is too thick, the effect of reducing distortion of the optical surface due to thermal expansion of the resin due to the support of the substrate is not sufficiently exerted, and the desired optical surface may not be maintained in the temperature range in the use environment. Come out.
  • annealing may be performed after the formation of the resin layer.
  • Reflective film As a reflective film provided on the optical surface of the resin layer in the present embodiment, a known reflective film made of aluminum, silver, chromium or the like can be used. From the viewpoint of reflectance, a reflective film of preferably aluminum or silver, more preferably silver can be used. Furthermore, a protective film, a reflection increasing film, etc. may be provided on the surface of the reflecting film, and various known film configurations can be used within the range showing desired characteristics.
  • FIG. 2 shows an example of an optical apparatus holding an optical unit having a plurality of mirrors by a connecting unit. Specifically, it shows an image projection apparatus having a projection optical system which projects an image displayed on the image display panel 23 on a screen in an enlarged manner.
  • M1 to M6 are mirrors which are functional units. 22 is a protective glass.
  • the mirrors M1 to M6 are positioned by the base portion 21.
  • the base portion 21 is formed by the metal portion 211 made of metal and the resin portion 212 made of resin, but the invention is not limited thereto, and it is possible to hold the mirrors M1 to M6. It may be in any form.
  • the metal portion 211 can be an alloy in which all or at least a portion thereof contains Mg as a main component, more preferably a Mg—Li alloy.
  • Reference numeral 24 denotes a connecting part for attaching the optical part having the mirrors M1 to M6 as the functional part and the base part 21 to another member.
  • the connecting portion 24 may be a single member integrally formed with the base portion 21 or may be a separate member from the base portion 21. That is, the optical device according to the present embodiment may be formed of the optical portion and the connecting portion.
  • the connecting part 24 for attaching the optical part having the mirrors M1 to M6 and the base part 21 as the functional part to another member is made of an alloy mainly composed of Mg, more preferably a Mg-Li alloy. It is characterized by being formed.
  • the portion 25 of the connecting portion 24 may be formed of an alloy mainly composed of Mg, more preferably a Mg—Li alloy, and the other portion may be formed of another metal.
  • the connecting portion formed of an alloy mainly composed of Mg, more preferably a Mg—Li alloy is excellent in damping property and lightweight, and is suitable as a damping member.
  • the mirrors M1 to M6, which are functional units, may be the reflective optical elements described in the first embodiment. That is, it is a mirror in which a reflective film is formed on the surface of a metal substrate (hereinafter also referred to as a substrate portion), and the substrate portion is formed of an alloy containing Mg as a main component, more preferably Mg-Li alloy It is also good.
  • a metal substrate hereinafter also referred to as a substrate portion
  • the substrate portion is formed of an alloy containing Mg as a main component, more preferably Mg-Li alloy It is also good.
  • the mirror in which the reflective film is formed on the surface of the substrate portion it may be a mirror in which the reflective film is formed directly on the base portion 21.
  • the base portion 21 also serves as a substrate portion.
  • a known reflective film made of aluminum, silver, chromium or the like can be used as the reflective film. From the viewpoint of reflectance, a reflective film of preferably aluminum or silver, more preferably silver can be used.
  • a protective film, a reflection increasing film, etc. may be further provided on the surface of the above-mentioned reflective film, and various known film configurations can be used within the range showing desired characteristics.
  • the Mg—Li alloy is not particularly limited, but is a magnesium-lithium alloy in which at least lithium is added to magnesium, preferably 5% by mass of lithium As mentioned above, 20 mass% or less, 0.5 mass% or more and 15 mass% or less of aluminum may be contained, calcium may be further contained 5 mass% or less, and the balance is made of magnesium. That is, the Mg—Li alloy contains Mg as a main component and contains 60% by mass or more of Mg. The amount of unavoidable impurities is preferably smaller.
  • LAX (trade name) manufactured by Santoku Co., Ltd. having a composition described above
  • ALZ manufactured by Anritsu Materials Technology Co., Ltd., and the like
  • FIG. 3 shows a metal substrate, a first opening for taking light into a first imaging optical system, and a plurality of mirrors of the first imaging optical system for reflecting light taken from the first opening.
  • Stereo camera apparatus provided with a second opening for taking light into a second imaging optical system, and a plurality of mirrors of the second imaging optical system for reflecting light taken from the second opening An example is shown. Specifically, it shows a schematic cross section of a device having a shape similar to the imaging device described in, for example, JP-A-2017-044722.
  • FIG. 3 shows how light is taken in from the two openings SP1 and SP2, respectively, reflected sequentially by the reflecting surface mirrors R2 to R8, and imaged on the imaging elements IMG1 and IMG2.
  • R2 to R8 are mirrors which are functional units.
  • the mirrors R2 to R8 are positioned by the base portion 31, respectively.
  • the base portion 31 is formed by the metal portion 311 made of metal and the resin portion 312 made of resin, but the invention is not limited thereto, and it is possible to hold the mirrors R2 to R8. It may be in any form.
  • the metal portion 311 can be an alloy in which all or at least a portion thereof contains Mg as a main component, more preferably a Mg—Li alloy.
  • Reference numeral 34 denotes a connecting portion for attaching the optical portion having the function units, ie, the mirrors R2 to R8 and the base portion 31, to another member.
  • the connecting portion 34 may be a single member integrally formed with the base portion 31 or may be a separate member from the base portion 31. That is, the optical device according to the present embodiment may be formed of the optical unit and the connection unit.
  • the connecting part 34 for attaching the optical part having the mirrors R2 to R8 as the functional part and the base part 31 to another member is made of an alloy containing Mg as a main component, more preferably Mg-Li alloy. It is characterized by being formed.
  • a part 35 of the connection part 34 may be formed of an alloy mainly composed of Mg, more preferably a Mg—Li alloy, and the other part may be formed of another metal.
  • the connecting portion formed of an alloy mainly composed of Mg, more preferably a Mg—Li alloy is excellent in damping property and lightweight, and is suitable as a damping member.
  • the mirrors R2 to R8 which are functional units may be the reflection optical elements described in the first embodiment. That is, it is a mirror in which a reflective film is formed on the surface of a metal substrate (hereinafter also referred to as a substrate portion), and the substrate portion is formed of an alloy containing Mg as a main component, more preferably Mg-Li alloy It is also good.
  • a metal substrate hereinafter also referred to as a substrate portion
  • the substrate portion is formed of an alloy containing Mg as a main component, more preferably Mg-Li alloy It is also good.
  • the mirror may be a mirror in which the reflection film is formed directly on the base 31 instead of the mirror in which the reflection film is formed on the surface of the substrate.
  • the base portion 31 also serves as the substrate portion.
  • a known reflective film made of aluminum, silver, chromium or the like can be used as the reflective film. From the viewpoint of reflectance, a reflective film of preferably aluminum or silver, more preferably silver can be used.
  • a protective film, a reflection increasing film, etc. may be further provided on the surface of the above-mentioned reflective film, and various known film configurations can be used within the range showing desired characteristics.
  • the mirror which is the functional part is not only made of the mirror in which the reflective film is formed on the surface of the substrate as described above, but may also include the mirror in which the reflective film is directly formed on the base 31. Good. In this case, the base portion 31 also serves as the substrate portion.
  • the Mg—Li alloy is not particularly limited, but is a magnesium-lithium alloy in which at least lithium is added to magnesium, preferably 5% by mass of lithium As mentioned above, 20 mass% or less, 0.5 mass% or more and 15 mass% or less of aluminum may be contained, calcium may be further contained 5 mass% or less, and the balance is made of magnesium. That is, the Mg—Li alloy contains Mg as a main component and contains 60% by mass or more of Mg. The amount of unavoidable impurities is preferably smaller.
  • LAX (trade name) manufactured by Santoku Co., Ltd. having a composition described above
  • ALZ manufactured by Anritsu Materials Technology Co., Ltd., and the like
  • the vibration loss coefficient is used as an index to indicate the damping property of various metal substrates such as Mg-Li alloy substrate, Mg alloy substrate and Al alloy substrate. It measured by.
  • the vibration loss coefficient is a scale showing damping performance, and the higher the value, the higher the damping performance.
  • various metal substrates are cut out to a predetermined size and both ends of the substrate long sides are held, and then the metal substrates are subjected to vibration loading and unloading by a vibrating electromagnetic coil, and the substrate center after unloading.
  • the amount of amplitude variation was measured by a laser displacement meter.
  • the excitation frequency at this time is the resonance frequency of various metal substrates, the internode distance is 40 mm, the coil inductance is 101 K (100 ⁇ H), the voltage is a sine wave 1 Vp-p, and eddy currents generated on the sample surface are used. It vibrated.
  • the vibration loss coefficient was determined from Equation 1 from the time-dependent measurement value of the obtained amplitude variation.
  • x time
  • y amplitude variation amount
  • f frequency
  • vibration loss coefficient
  • Example 1 Vibration loss coefficient by the above method using Mg-Li alloy substrate (LAX1491 (trade name); 14% Li-9% Al-1% Ca-Mg made by Santoku Co., Ltd.) of 90 mm ⁇ 10 mm ⁇ 0.5 mm size was determined (excitation frequency: 1.04 kHz). The results are shown in Table 1. The specific gravity of LAX1491 (trade name) is also shown in Table 1.
  • Example 2 The vibration loss coefficient was determined by the above method using a 98 mm ⁇ 10 mm ⁇ 2 mm Mg alloy substrate (AZ91 (9% Al-1% Zn—Mg)) (excitation frequency: 2.82 kHz). The results are shown in Table 1. The specific gravity of AZ91 is also shown in Table 1.
  • the predetermined member is made of an alloy mainly composed of Mg, more preferably a Mg-Li alloy, it is possible to use a reflection optical element that is lightweight and has high damping performance, and a damping member I found that I could get it.
  • a stereo camera device according to a fourth embodiment of the present invention and a method of manufacturing the same will be described with reference to the drawings.
  • the fourth embodiment it is possible to provide a compact stereo camera device at low cost, in which the reduction in the accuracy of stereo measurement is suppressed even when heating or cooling is received locally.
  • FIG. 4A is a schematic cross-sectional view for illustrating the basic configuration of a stereo camera body according to the fourth embodiment.
  • the stereo camera body 101 includes a stereo imaging optical system STU, and the stereo imaging optical system STU is configured of a first imaging optical system LO1 on the right side in the drawing and a second imaging optical system LO2 on the left side in the drawing. .
  • the first imaging optical system LO1 has an opening SP11 as a first opening for receiving external light, a reflective surface R11, a reflective surface R12, a reflective surface R13, a reflective surface R14, and a reflective surface R15.
  • the second imaging optical system LO2 has an aperture SP12 as a second aperture for taking in external light, a reflective surface R21, a reflective surface R22, a reflective surface R23, a reflective surface R24, and a reflective surface R25. Each reflective surface is formed as a free-form surface mirror.
  • the opening SP11 and the opening SP12 may be used as a stop of the first imaging optical system LO1 and the second imaging optical system LO2.
  • reference axes (central chief rays) of the first imaging optical system LO1 and the second imaging optical system LO2 are indicated by alternate long and short dashed lines, but two reference axes are bent by a plurality of tilted reflecting surfaces.
  • An off-axial optical system (off-axial optical system) is configured.
  • the first imaging optical system LO1 and the second imaging optical system LO2 are configured to be symmetrical to each other. If the angle of view of the left and right optical systems is different, the range in which the distance can be measured by stereo measurement is determined by the image forming optical system having the narrower angle of view. In addition, if there is a difference between the f-numbers and focal lengths of the two optical systems, the accuracy of distance measurement may be reduced.
  • the stereo camera body 101 includes a first metal substrate (first metal frame) 102 and a second metal substrate (second metal frame) 103, and includes a first imaging optical system LO1 and a second imaging optical system.
  • LO2 is mounted on the metal substrate as follows.
  • the first metal substrate 102 has an opening SP11 as a stop surface for taking in external light into the first imaging optical system LO1, and a reflecting surface R12 that constitutes a part of the first imaging optical system LO1.
  • a reflective surface R14 is provided.
  • the first metal substrate 102 is provided with an opening SP12 as a stop surface for taking in external light into the second imaging optical system LO2, and a reflecting surface which constitutes a part of the second imaging optical system LO2.
  • R22 and a reflective surface R24 are also provided.
  • the image sensor IMG11 is fixed at a position corresponding to the imaging surface of the first imaging optical system LO1
  • the image sensor IMG12 is fixed at a position corresponding to the imaging surface of the second imaging optical system LO2. It is fixed.
  • an imaging element having sensitivity to visible light such as a CMOS image sensor or a CCD image sensor is used.
  • visible light it is more preferable if light in a wavelength band different from visible light (for example, a near infrared region around 1000 nm) can also be received and converted into an electrical signal.
  • an imaging optical system in which an optical surface having refractive power (optical power) is constituted only by a reflection surface, no chromatic aberration exists, and therefore, an imaging optical system constituted by a refractive optical system High imaging performance can be maintained in a wide wavelength band.
  • the light reception wavelength range of the imaging device is wide, information other than visible light can be acquired simultaneously. For this reason, since it becomes possible to miniaturize the system of whole system rather than the camera system which mounts an infrared camera device separately, it is preferable.
  • a reflecting surface R11 and a reflecting surface R13 which form a part of the first imaging optical system LO1 and a reflecting surface R21 and a reflection surface which forms a part of the second imaging optical system LO2 R23 is provided.
  • the support base 4 is provided with a final reflection surface R15 of the first imaging optical system LO1
  • the support base 5 is provided with a final reflection surface R25 of the second imaging optical system LO2.
  • Reflective surface R15 and reflective surface R25 can be adjusted in position and posture via the support 4 and the support 5 so that the imaging surfaces of the image sensor IMG11 and the image sensor IMG12 are appropriately imaged from the respective imaging optical systems It is supported by
  • the first metal substrate 102 and the second metal substrate 103 are aligned, and both ends thereof are held and fixed to each other by the fixing member 6 and the fixing member 7 to form a unit (unitization).
  • the reflecting surfaces provided on the two metal substrates face each other and are positioned and fixed so as to constitute two Off-Axial optical systems on the left and right.
  • the plurality of reflecting surfaces constituting the first imaging optical system LO1 and the second imaging optical system LO2 have rotationally asymmetric curvatures, and are disposed so as to be tilted so as to bend the reference axis. By providing such a reflective surface, aberration correction can be made easier, and imaging performance can be improved.
  • the reflection surfaces and the aperture surfaces of the left and right imaging optical systems are integrated on the same metal substrate, it is not necessary to adjust the positions of the two imaging optical systems at the time of assembly.
  • FIGS. 5 and 6 show an external perspective view of the stereo camera body 101.
  • FIG. FIG. 5 is a perspective view seen from the angle at which the odd-numbered reflecting surface is viewed
  • FIG. 6 is a perspective view viewed from the angle at which the even-numbered reflecting surface and the imaging surface of the image sensor are viewed. Note that although the even-numbered reflective surfaces in FIG. 6 and the odd-numbered reflective surfaces in FIG. 5 are at positions not directly visible, the metal substrate on the back side of the position where the reflective surfaces are disposed The numbers of the reflective surfaces are illustrated in the attached.
  • a resin portion with high shape accuracy is formed on the surface of a metal substrate or metal support which is a base, and a metal material, for example, is formed on the resin portion.
  • a metal material for example, is formed on the resin portion.
  • FIG. 4B is a schematic cross-sectional view showing the configuration of the reflective surface of the present embodiment, wherein 121 is a base, 122 is a resin part, and 123 is a reflective film.
  • the base material 121 shown in the figure is a support made of a metal substrate or metal.
  • the curved surface 121a which imitates the shape of a reflective surface is formed in the base material 121, it is not necessary to necessarily be formed with high shape accuracy, for example, a rough surface may be sufficient.
  • the resin portion 122 is a portion formed of resin at a predetermined position on the base 121 using, for example, an insert molding technique.
  • a curved surface 122a having a rotationally asymmetric curvature is formed with high accuracy by a method such as transferring a mold surface.
  • the reflective film 123 is formed on the highly accurate curved surface 122a by, for example, vapor deposition of metal.
  • Reflective surfaces are arranged on the two supports.
  • a metal substrate 102 on which a reflective surface that reflects even-numbered from the incident side is formed, and a metal on which a reflective surface that reflects odd-numbered on the incident side are formed The substrate 103 was a separate frame. Furthermore, the support 4 and the support 5 on which the reflection surface of the final stage is formed are provided. If it is not necessary to adjust the alignment between the imaging optical system and the image sensor based on the position and orientation of the reflection surface of the final stage, the reflection surface of the final stage may be formed on the metal substrate 103 as well.
  • Heat conduction path Next, a heat conduction path provided in the stereo camera body 101 of the present embodiment will be described with reference to FIG. 4A.
  • each frame of the stereo camera body is made of metal having excellent thermal conductivity, the temperature distribution in each frame can be kept small.
  • the problem is when a temperature difference occurs between the first metal substrate 102 and the second metal substrate 103. In this case, there is a possibility that the relative position, the direction, or the shape of the reflecting surface changes in the relationship between the reflecting surface that reflects odd-numbered and the reflecting surface that reflects even-numbered, and the imaging characteristics may be affected.
  • the first metal substrate 102 and the second metal substrate 103 abut each other in good heat conduction at both ends, so that a large temperature difference does not occur between the two metal substrates. That is, the first metal substrate 102 and the second metal substrate 102 are fixed using the fixing member 6 and the fixing member 7 which are heat conductive members so that a plurality of thermally conductive heat conduction paths are formed by direct contact between the metal substrates.
  • the metal substrate 103 is fixed. In FIG. 4A, the first metal substrate 102 and the second metal substrate 103 are in contact at the contact portion 8 and the contact portion 9, and two heat conduction paths for transferring heat well are formed.
  • the contact between the first metal substrate 102 and the second metal substrate 103 is previously mirror-finished or the like so as to enhance the flatness of the surface so that the contact area becomes sufficiently large at the contact portion 8 and the contact portion 9 It is good to apply In the case where a rough surface having low flatness is brought into contact, the total area of the contact portion 8 and the contact portion 9 is secured so that a substantially sufficient contact area can be secured. That is, in consideration of the flatness, the thermal conductance between the first metal substrate 102 and the second metal substrate 103 is provided by providing a contact portion of a size (total area) that can ensure a necessary contact area. Can be secured large enough.
  • the method of forming the heat conduction path is not limited to the contact between the surfaces of the metal substrate as described above.
  • the first metal substrate 102 and the second metal substrate 103 may be brought close to or locally in contact with each other, and a thermally conductive member may be disposed around the gap or the contact portion.
  • heat conductive member for example, silver grease containing heat conductive fine particles, ceramic grease, carbon grease, grease including nano diamond grease, and heat conductive gel may be used. Further, a sheet-like heat conductive material such as a heat conductive sheet or a heat conductive tape may be interposed between the first metal substrate 102 and the second metal substrate 103.
  • the heat conduction path may be formed by the fixing member itself for fixing the first metal substrate 102 and the second metal substrate 103.
  • a heat conductive adhesive may be used as a fixing member to fix them.
  • the preferable thermal conductivity of the thermally conductive adhesive is 0.1 [W / mK] or more and 5.0 [5.0 or more]. W / mK] or less.
  • the fixing member 6 and the fixing member 7 as a metal jig having elasticity with good thermal conductivity and holding them like a clip, the first metal substrate 102 and the second metal substrate 103 are fixed. It is also good.
  • the metal jig is not limited to an elastic metal member, and may be crimped and fixed using a plastically deformed metal material, or a heat conduction path using a mechanical fixing tool using a metal bolt and nut or the like. May be formed.
  • the heat conducting member may be provided at a position different from the fixing portion and the contact portion of the metal substrates.
  • a metal foil, a heat conductive sheet, or the like may be used so as to be in contact with the first metal substrate 102 and the second metal substrate 103.
  • the first metal substrate 102 and the second metal substrate 103 may be bonded together by a heat conductive member such as a metal wire or carbon fiber.
  • the formation place of the heat conduction member is not limited to the end of the metal substrate shown in FIG. 4A, and may be provided inside the end. However, it is preferable that the opening SP11 of the first metal substrate 102 and the opening SP12 of the first metal substrate 102 be provided outside the opening SP11, that is, on the end side of the metal substrate, for ease of mounting.
  • the heat conduction path is also along the direction in which the first imaging optical system and the second imaging optical system are arranged. It is desirable to arrange them symmetrically. Even if the temperature distribution is generated in the stereo imaging optical system STU, the effect on the stereo measurement is smaller if the temperature distribution is generated symmetrically in the first imaging optical system LO1 and the second imaging optical system LO2.
  • the heat conduction member is not limited to a mode in which only one place is provided on the side of the first imaging optical system LO1 and the second imaging optical system LO2, but more heat conduction members may be provided. May be In that case, a plurality of methods for forming the heat conduction path described above may be used in combination.
  • FIG. 8 is a view schematically showing an example in which a heat conducting member is provided at a plurality of places. For convenience of illustration, only the first imaging optical system LO1 side is shown, but a heat conduction path is also formed on the second imaging optical system LO2 side in line symmetry with this.
  • the heat conduction paths are disposed at three locations on the first imaging optical system LO1 side.
  • the contact portion 10 in which the first metal substrate 102 and the second metal substrate 103 are in contact with each other is provided outside the opening SP11. That is, the heat conduction path is disposed between the opening SP11 and the end of the metal substrate.
  • the metal fixing tool 11 for holding and fixing the end portions of the first metal substrate 102 and the second metal substrate 103 is provided. That is, the heat conduction member including the metal fixture 11 is disposed outside the end of the metal substrate.
  • metal is formed on the outer surface of the first metal substrate 102 and the outer surface of the second metal substrate 103 on the inner side of the opening SP11, that is, on the opposite side to the end of the first metal substrate 102 across the opening SP11.
  • a heat conduction path is provided by a heat conduction member which is a manufactured wire rod 12.
  • the stereo camera device protects the stereo camera body 101 in order to prevent unnecessary external light, dust, etc. from entering the stereo camera body 101 or to prevent the stereo camera body 101 from directly contacting an external object. Equipped with an enclosure for
  • the stereo camera body 101 is mounted in a double-structured casing in order to enhance the protection performance and to suppress the influence of heating and cooling from the external environment on the stereo camera body 101.
  • FIG. 9 is a cross-sectional view schematically showing a double-structured case, in which 800 is a stereo camera device, 101 is a stereo camera body, 603 is an inner case, and 605 is an outer case.
  • the stereo camera body 101 is housed in the inner casing 603, and supported and fixed in a state of being separated from the inner casing 603 using a plurality of support members 602.
  • the inner casing 603 is supported and fixed in a state of being separated from the outer casing 605 using a plurality of support members 604.
  • the support member 602 and the support member 604 have a structure in which one end is in contact with the other member at a point or a small area and supported.
  • the thermal insulation between the external environment and the stereo camera body 101 can be enhanced by providing a plurality of double gaps and using a plurality of supports having a small contact area. For this reason, even if the stereo camera device 800 is locally heated or cooled by direct sunlight or cold air from the outside, it is possible to reduce the thermal influence exerted on the stereo camera body 101.
  • the housing of this double structure and the heat conduction path provided in the stereo camera body 101 are combined, and the stereo camera device 800 of the present embodiment is also inside the stereo camera body 101 even if it receives heating and cooling from the external environment. Occurrence of the temperature distribution of Even if the temperature environment changes, since the change in the optical characteristics of the stereo imaging optical system is small, it is possible to stably acquire a stereo image reflecting appropriate parallax, and maintain the accuracy of stereo measurement.
  • FIG. 10 shows a specific configuration of a double-structured casing provided in the stereo camera device 800 of the embodiment.
  • the inner casing 603 is composed of an inner casing upper member 6031 and an inner casing lower member 6032.
  • the stereo camera body 101 is supported by being sandwiched between the inner casing upper member 6031 and the inner casing lower member 6032.
  • the outer housing 605 is composed of an outer housing upper member 6051 and an outer housing lower member 6052, and the outer housing 605 is supported by the outer housing upper member 6051 and the outer housing lower member 6052 so as to sandwich the inner housing 603. Do.
  • an attachment member 606 for mounting the stereo camera device on a windshield of a car or the like.
  • the slope 607 of the attachment member 606 is adjusted in shape so as to be in close contact with the other windshield to be mounted.
  • FIG. 11 is an external perspective view of the stereo camera device 800
  • FIG. 12 is a front view of the stereo camera device 800.
  • the front side of the inner case, the outer case, and the attachment member is provided with an outwardly-opened opening so that external light of a predetermined angle of view is incident on the opening SP11 and the opening SP12 of the stereo camera body. It is done.
  • 13A and 13B are examples of a car in which the stereo camera device 800 is mounted.
  • 1000 is a car
  • 1001 is a windshield
  • 1002 is a passenger seat.
  • the stereo camera device 800 is provided on the passenger seat 1002 side with respect to the windshield 1001 which is a window glass, and more specifically, mounted near the upper edge of the windshield 1001 There is.
  • the stereo camera device 800 is an automobile whose passenger seat is closed as illustrated in FIG. 13A or an automobile whose upper portion of the passenger seat as illustrated in FIG. 13B is open, It can be suitably mounted on a windshield.
  • the stereo camera device 800 can be used as a window glass on the rear side. It is also possible to mount it on the passenger seat side of the car. Even in such a case, in the stereo camera device according to the present embodiment, since the reduction in the accuracy of stereo measurement due to direct sunlight, cold air or the like is suppressed, it is possible to obtain highly reliable measurement results.
  • Embodiments of the present invention are not limited to the above-described embodiments, and can be appropriately modified or combined.
  • the number, shape, arrangement, and the like of free-form surface mirrors that constitute each imaging optical system can be changed as appropriate.
  • FIG. 14 is a flowchart for explaining the manufacturing procedure of the stereo camera device.
  • a first metal substrate 102, a second metal substrate 103, a support 4 made of metal, and a support 5 made of metal, which are to be a skeleton of the stereo camera body 101 are formed.
  • Reflective surfaces are arranged on two metal substrates and two supports. Specifically, as shown in FIG. 7, a first metal substrate 102 on which an even-numbered reflecting surface counting from the incident side is formed and a reflecting surface reflecting on an odd-numbered surface counting from the incident side are formed.
  • the second metal substrate 103 is used as a separate frame.
  • the metal substrate or the metal support can be manufactured by, for example, a press forming method, a die casting method, a mold forming method such as thixomold, a cutting method, or the like.
  • the metal material to be used includes an alloy containing Mg as a main component.
  • An alloy containing Mg as a main component is advantageous in that it is light in weight and excellent in damping property, and the frame and the support can be manufactured inexpensively, light in weight and highly rigid.
  • the metal barrel member can be manufactured with higher accuracy by the thixomolding method, which is advantageous in increasing the accuracy (surface accuracy and position accuracy) of the reflecting surface. It is.
  • FIG. 15 shows an injection molding apparatus for manufacturing a metal substrate or a metal support.
  • 60 is a mold
  • 61 is a cavity
  • 62 is a raw material hopper
  • 63 is a magnesium alloy chip
  • 64 is a heater
  • 65 is a screw
  • 66 is a cylinder
  • 67 is a reservoir
  • 68 is a high speed injection unit
  • 69 is a nozzle. is there.
  • a magnesium alloy chip 63 When, for example, a magnesium alloy chip 63 is charged into the raw material hopper 62 as a metal material, the metal material is heated and liquefied by the heater 64, pressed by the screw 65, and flows inside the cylinder 66 toward the storage portion 67. Then, the liquid metal at a temperature of 560 ° C. to 630 ° C. stored in the storage portion 67 is ejected from the nozzle 69 by the action of the high-speed injection unit 68.
  • the mold 60 is provided with a cavity 61 conforming to the shape of the metal frame or support to be formed, and the molten metal injected from the nozzle 69 into the cavity 61 is cooled and solidified, and then removed from the cavity Be done.
  • step S2 the resin portion 122 (see FIG. 4B) to be a base of the reflective surface is formed on each metal substrate and each support manufactured in step S1.
  • a molding technique using a mold such as an insert molding method, a thermocompression bonding method, or a replica molding method can be used.
  • a mold that satisfies the shape accuracy of the reflecting surface in advance, even if there is a manufacturing error in the metal substrate or the support, it is possible to absorb the influence and form a highly accurate reflecting surface shape.
  • FIG. 16A is a schematic cross-sectional view for showing an example of forming a resin portion on the second metal substrate 103 by insert molding
  • FIG. 16B is an insert mold in a direction along line XX in FIG. 16A. It is typical sectional drawing which cut off.
  • 71 is an upper mold
  • 72 is a lower mold
  • 103 is a second metal substrate
  • 611, 613, 621 and 623 are a base of reflective surface R11, reflective surface R13, reflective surface R21 and reflective surface R23 respectively. It is a formed resin part.
  • the second metal substrate 103 is sandwiched between the upper mold 71 and the lower mold 72 and fixed so as to be in close contact with the upper mold 71, and between the second metal substrate 103 and the lower mold 72.
  • a cavity is formed.
  • the inner surface of the lower mold 72 is processed with high precision so that a highly accurate free-form surface shape can be transferred to the resin portion that is the base of each reflective surface.
  • What is shown in the figure is a state in which a resin is injected into each cavity in the mold, and a resin portion 611, a resin portion 613, a resin portion 621 and a resin portion 623 are formed on the second metal substrate 103.
  • the mold is opened, the upper mold 71 and the lower mold 72 are separated, and the second metal substrate 103 on which the resin portion is formed is taken out of the mold .
  • the reflecting surface R11, the reflecting surface R13, the reflecting surface R21, and the reflecting surface R23 are disposed on the surface on one side of the second metal substrate 103, it is possible to easily form the resin portion by insert molding.
  • the respective resin portions of the first metal substrate 102, the metal support 4 and the metal support 5 can be formed in the same manner.
  • the material of the resin part is not limited as long as molding by a mold is possible, and in view of ease of molding, durability, and the like among thermosetting resins, thermoplastic resins, and ultraviolet curable resins.
  • polycarbonate resin, acrylic resin, MS resin, polyolefin resin, etc. can be used.
  • a polyolefin resin has low hygroscopicity, it is possible to suppress the change in shape of the reflecting surface due to the moisture absorption of the resin, and a reflective optical unit that achieves high distance measurement accuracy without being affected by the humidity environment using the unit.
  • ZEONEX trade name
  • distributed can also be used for the characteristic improvement as material, or functional provision.
  • it may be composed of a plurality of layers of different materials.
  • the resin portion may be provided independently for each of the reflecting surfaces, or may be integrated as a common base of a plurality of reflecting surfaces.
  • a reflective film is formed on each metal substrate and each support on which the resin portion is formed in step S2.
  • various film-forming methods can be used for formation of a reflective film, the vapor deposition, the sputtering method, etc. which are widely utilized generally can be used.
  • a metal having a high reflectance such as aluminum or silver may be used, and it is desirable to secure a reflectance of 90% or more for light in a wavelength range of 400 nm to 800 nm.
  • a dielectric film or the like may be added to form a multilayer film for the purpose of surface protection and reflectance improvement.
  • FIG. 17 is a schematic view for showing an example in which the reflective film 123 is formed on the resin portion 611, the resin portion 613, the resin portion 621 and the resin portion 623 of the second metal substrate 103 by vacuum evaporation.
  • a vacuum chamber of a vacuum deposition apparatus 81 is a deposition source, and 82 is a deposition mask.
  • the second metal substrate 103 is set at a predetermined position in the vacuum chamber 80 whose pressure is reduced to a predetermined degree of vacuum.
  • the predetermined position is a position where the resin portion 611, the resin portion 613, the resin portion 621, and the resin portion 623 can be seen from the vapor deposition source 81.
  • a vapor deposition mask 82 is disposed in the vacuum chamber 80 so that the reflective film material does not adhere to the surface of the second metal substrate 103 other than the resin portion 611, the resin portion 613, the resin portion 621, and the resin portion 623.
  • the reflective film material evaporated from the vapor deposition source 81 is deposited on the free curved surfaces of the resin portion 611, the resin portion 613, the resin portion 621, and the resin portion 623 to form a reflective film 123. Because the reflective surface R11, the reflective surface R13, the reflective surface R21, and the reflective surface R23 are disposed on the surface on one side of the second metal substrate 103, the reflective film of each reflective surface can be formed by a single vapor deposition process It is possible.
  • the respective reflective films of the first metal substrate 102, the metal support 4 and the metal support 5 can be manufactured in the same manner.
  • the mass productivity may be improved by setting a plurality of metal substrates and supports in a vacuum deposition apparatus so as to form a reflective film on a plurality of members by one deposition.
  • step S4 the first metal substrate 102 and the second metal substrate 103 on which the reflective film 123 is formed in step S3 are aligned and fixed.
  • the reflecting surfaces of the first metal substrate 102 and the second metal substrate 103 face each other and fixed so as to constitute two Off-Axial optical systems on the left and right.
  • the member 6 and the fixing member 7 are used to sandwich and unitize both ends. That is, the reflection surface of the first metal substrate and the reflection surface of the second metal substrate form a stereo imaging optical system including the first imaging optical system and the second imaging optical system. Align the second metal substrate with the second metal substrate. Then, at a position closer to one end of the first metal substrate than the opening SP1 and at a position closer to the other end of the first metal substrate than the opening SP2, the second metal substrate is Fix to metal substrate.
  • both metal substrates are fixed by heat conductive members at both ends in step S4.
  • the first metal substrate 102 and the second metal substrate 103 are fixed using the fixing member 6 and the fixing member 7 so that a plurality of thermally conductive heat conduction paths are formed by direct contact between the metal substrates.
  • the first metal substrate 102 and the second metal substrate 103 are in contact with each other at the contact portion 8 and the contact portion 9, and two heat conduction paths for transferring heat well are formed.
  • the heat conduction path may be formed in various forms as described above, depending on the form, a heat conduction path may be formed separately from the step S4 of aligning and fixing the metal substrate. You may insert into the process flow of FIG.
  • step S5 the image sensor is aligned and fixed to the metal substrate unitized in step S4. That is, in order to enable the image sensor IMG11 to be disposed at the imaging position of the first imaging optical system LO1 and the image sensor IMG12 to be disposed at the imaging position of the second imaging optical system LO2, Fix the image sensor IMG11 and the image sensor IMG12 to.
  • step S6 the positions of the metal support 4 and the support 5 on which the reflective surface closest to the image sensor is mounted are adjusted, the optical axes are aligned, and then fixed to the second metal substrate 103.
  • the optical axis adjustment is performed individually for the first imaging optical system LO1 and the second imaging optical system LO2.
  • FIG. 18 schematically shows a state in which the position and orientation of the reflecting surface R15 are adjusted in order to adjust the optical axis of the first imaging optical system LO1 in step S6.
  • the opening SP11 as a first opening for taking in external light
  • the reflecting surface R11, the reflecting surface R12, the reflecting surface R13, the reflecting surface R14, and the image sensor IMG11 are already relative to each other
  • the position is fixed.
  • the metal support 4 whose position and angle are adjusted is fixed to the second metal substrate 103.
  • the second imaging optical system LO2 after adjusting the position and angle of the support 5 made of metal using a jig (not shown) and aligning the optical axis of the reflective surface R25, the support 5 is fixed to the second metal substrate 103.
  • the stereo camera body 101 including the stereo imaging optical system STU is completed.
  • step S7 the stereo camera body 101 completed in step S6 is housed in the housing.
  • the stereo camera body 101 is supported so as to be sandwiched between the inner casing upper member 6031 and the inner casing lower member 6032, and the outer casing upper member 6051 and the outer casing lower member 6052 from the outside thereof. Support by sandwiching.
  • an attachment member 606 for mounting the stereo camera device on a windshield (windshield) of an automobile or the like is joined to the upper portion of the outer housing 605.
  • the stereo camera device mounting the stereo camera body 101 is completed. According to the manufacturing method of the present embodiment, even when heating or cooling is received locally, a reduction in the accuracy of stereo measurement is suppressed, and a compact stereo camera device can be manufactured at low cost.
  • the manufacturing method which is embodiment of this invention is not restricted to the example mentioned above, It is possible to change suitably and to combine it.
  • the metal substrate 102, the metal substrate 103, the support 4 and the support 5 of the stereo camera body 101 were formed by a thixomolding method of Mg alloy (AZ91D). On their inner surfaces, ten reflecting surfaces (five surfaces ⁇ 2) are formed to constitute two pairs of imaging optical systems for left and right eyes. Each reflective surface was configured such that a multilayer reflective film mainly composed of an Al film was coated on a layer of a polyolefin resin (NEON ZEON ZEONEX E48R (trade name)) having a thickness of about 1 mm.
  • a polyolefin resin NEON ZEON ZEONEX E48R (trade name)
  • the polyolefin resin is bonded to a metal substrate or a support by insert molding, and the multilayer reflective film is formed by vapor deposition.
  • a surface accuracy of at least an in-plane PV value of 2 ⁇ m or less is realized.
  • the heat conduction path is configured such that a metal fixing tool also functions as a heat conduction path.
  • a metal fixing tool In order to sufficiently increase the thermal conductance between the metal substrate 102 and the metal substrate 103, the metal substrate 102, the metal substrate 103, and the fixture made of metal have a thermal conductivity of 20 W / mK or more and 100 W or more. The following members were used.
  • the stereo camera body 101 was not housed in a double-structured casing provided with an inner casing 603 and an outer casing 605, and was installed near the windshield in an automobile exposed to direct summer sunlight. Then, direct sunlight is irradiated on the upper surface of the outer housing 605, and the temperature of the housing is measured in a state where the lower surface of the outer housing 605 receives cold air of the cooling equipment. As a result, the upper surface of the outer housing 605 is near 100 ° C., the lower surface of the outer housing 605 is 25 ° C., and the distribution of the ambient temperature in the inner housing 603 (difference between the highest temperature and the lowest temperature) is within about 4 ° C.
  • the stereo camera body 101 was not housed in a double-structured casing provided with an inner casing 603 and an outer casing 605, and was installed near the windshield in an automobile exposed to direct summer sunlight. Then, direct sunlight is irradiated on the upper surface of the outer housing 605, and the temperature of the housing is measured in a
  • the stereo camera body of the above embodiment was housed in the above-described double-structured casing, and distance measurement of an object present 50 m ahead was performed. At that time, it measured in two ways environment.
  • ⁇ T the distribution of the ambient temperature in the inner casing 603
  • the results of the ranging error in the two measurements are shown in Table 1.
  • the distance measurement error indicates how much the difference between the result originally calculated to be 50 m and the result to be calculated. Specifically, the error when calculated as 51 m is + 2%.
  • Comparative Example 2 Next, as a comparative example 2, a stereo camera device in which a resin is used as a material of the frame and the heat conduction path is not provided between the frames will be described.
  • the shape and layout of the reflecting surfaces of the two pairs of imaging optical systems in the left and right eyes are the same as in Example 3, but unlike Example 3, the material of the frame and the supporting member is Zeon ZEONEX E48R (trade name) was used. That is, the frame and the resin forming the base of the reflective surface were integrally molded by injection molding.
  • the stereo camera main body was housed in the same double structure as that of the third embodiment, and two distance measurement was performed on an object existing 50 m forward as in the third embodiment.
  • the error in distance measurement is suppressed even in an environment in which a cooling facility is operating in a car exposed to direct sunlight in midsummer as compared with the comparative example, and stable distance measurement is It was possible.
  • the reflective optical element of the present invention it is possible to provide a lightweight and highly damping reflective optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

軽量で制振性に優れた反射光学素子を提供すること。金属基板上に、光学面を有する樹脂層を有し、前記光学面に反射膜を設けた反射光学素子であって、前記金属基板がMgを主成分とする合金を含むことを特徴とする反射光学素子。

Description

反射光学素子およびステレオカメラ装置
 本発明は、例えば車載用として用いられる軽量性、制振性に優れた反射光学素子に関する。
 反射光学系は、屈折光学系と比較した場合、光学系全体を小さくすることが容易であり、波長による結像のずれが無いなどの利点を有する。
 また、近年、撮像デバイスは、小型化、高性能化が進み、従来のカメラ、ビデオ、スマートフォンのみならず、ドローンや自動車などの移動体にも積極的に搭載され、周辺環境の視覚的な認知の他、測距など、より広範、高精度な用途に活用されている。
 自動車を例に挙げれば、将来の自動運転を実現するために、赤外線レーザースキャナやミリ波レーダー以外にカメラを搭載することも研究されており、一車両に10台以上のカメラを用いる例も見られる。かかる用途にカメラを用いる場合、軽量性や、振動による性能劣化のしにくさが仕様上の非常に重要な要素となり得る。
 反射光学系では、光学素子として主にミラーを用いるが、特許文献1には軽量、かつ比較的安価なミラーおよびその製造方法が開示されている。当該ミラーにおいては、基板にはアルミダイカスト品を用い、その上に軟質および硬質の放射線硬化樹脂層を設け、更にその上にアルミニウム等の金属反射膜を形成している。
特開平5-107407号公報
 しかしながら、このような、基板にアルミニウムを用いた構成のミラーは軽量ではあるが、車、航空機、ドローン、船舶などの移動体や、近傍に物理的な駆動部を有するカメラ、複写機などの電子機器の用途において振動による光学性能の劣化が問題となる場合がある。これは、アルミニウムやその合金は一般に制振性の低い材料であるために引き起こされる問題である。
 本発明は、上記課題に鑑みてなされたものであり、軽量で制振性に優れた反射光学素子を提供するものである。
 本発明によれば、金属基板上に、光学面を有する樹脂層を有し、前記光学面に反射膜を設けたミラーを備えた反射光学素子であって、前記金属基板には、第一結像光学系に光を取り込む第一の開口部と、前記第一の開口部から取り込まれた光を反射する第一結像光学系の複数のミラーと、第二結像光学系に光を取り込む第二の開口部と、前記第二の開口部から取り込まれた光を反射する第二結像光学系の複数のミラーと、が設けられ、前記金属基板がMgを主成分とする合金を含むことを特徴とする反射光学素子が提供される。
 本発明によれば、軽量で制振性に優れた反射光学素子を提供することができる。
本発明に係る反射光学素子の一実施形態を示す斜視図である。 本発明に係る光学装置の一実施形態を示す断面図である。 本発明に係る光学装置の一実施形態を示す断面図である。 本発明の実施形態のステレオカメラ本体の模式的な断面図。 本発明の実施形態の反射面の構成を示す模式的な断面図。 本発明の実施形態のステレオカメラ本体の外観斜視図。 本発明の実施形態のステレオカメラ本体の外観斜視図。 本発明の実施形態のステレオカメラ本体の金属基板の構成を示す図。 複数の熱伝導路を設けた実施例の模式的な部分断面図。 本発明の実施形態の二重構造の筐体を模式的に示した断面図。 本発明の実施形態の二重構造の筐体の具体的構成を示す図。 本発明の実施形態のステレオカメラ装置の外観斜視図。 本発明の実施形態のステレオカメラ装置の正面図。 本発明の実施形態のステレオカメラ装置を装着した密閉型自動車。 本発明の実施形態のステレオカメラ装置を装着した開放型自動車。 本発明の実施形態の製造手順を示すフローチャート。 金属基板の製造方法を示す模式図。 本発明の実施形態の樹脂部の製造方法を示す模式的断面図。 本発明の実施形態の樹脂部の製造方法を示す模式的断面図。 本発明の実施形態の反射膜の製造方法を示す模式図。 本発明の実施形態の支持台による光軸調整を示す模式図。
 本発明によれば、上記の構成により上記本発明の課題を解決することができるが、具体的には以下のような実施形態に依ることができる。
 本発明に係る反射光学素子は、金属基板上に、光学面を有する樹脂層を有し、前記光学面に反射膜を設けたミラーを備えた反射光学素子であって、前記金属基板には、第一結像光学系に光を取り込む第一の開口部と、前記第一の開口部から取り込まれた光を反射する第一結像光学系の複数のミラーと、第二結像光学系に光を取り込む第二の開口部と、前記第二の開口部から取り込まれた光を反射する第二結像光学系の複数のミラーと、が設けられ、前記金属基板がMgを主成分とする合金、より好ましくはMg-Li合金を含むことを特徴とするが、以下その実施形態に基づいて詳細に説明する。
(第一の実施形態)
 本発明の第一の実施形態である反射光学素子の一例の概略斜視図を図1に示す。図1において、1は金属基板であり、2は金属基板1上に形成された樹脂層であり、樹脂層2は光学面を有している。本実施形態は、該光学面に反射膜3を設けることで反射光学素子として構成されている。ここで、金属基板1は、Mgを主成分とする合金、より好ましくはMg-Li合金であることを特徴としている。
[金属基板]
 本実施形態における金属基板1は、Mgを主成分とする合金、より好ましくはMg-Li合金から形成されている。Mg-Li合金は特に限定されるものではないが、マグネシウムに少なくともリチウムを添加したマグネシウム-リチウム合金であって、好ましくはリチウムを5質量%以上、20質量%以下、アルミニウムを0.5質量%以上、15質量%以下含有し、さらにカルシウムを5質量%以下含有してもよく、残部がマグネシウムからなる。すわなち、金属基板1はMgを主成分としており、具体的にはMgを60質量%以上含有する。なお、不可避的不純物の量はより少ないことが好ましい。
 より具体的には株式会社三徳社製LAX(商品名;Li、Al、Caを含むMg合金)、安立材料科技股▲ふん▼有限公司製ALZ(商品名;Al、Li、Znを含むMg合金)などの合金が挙げられる。
 Mg-Li合金基板の成形方法には特に制限はなく、鍛造や射出成形など公知の種々の方法で成形することができる。一般に、鍛造や射出成形などで一次加工された基板は、アニール処理後に二次加工により基板としての所望の寸法精度を満足させ、その後に防錆処理を施しても良い。
 従来、純Mg材料は、高い制振性を有していることは良く知られていたが、比強度が低く、また、燃えやすいため実用性に劣る面があった。一方、AZ91(9%Al-1%Zn-Mg)やAM60(6%Al-0.4%Zn-Mg)などの合金化されたMg材料は比強度等が好適に改善され、実用性の高い材料であるが、合金化されることにより、純Mg材料が有していた高い制振性は損なわれる。Mg合金は制振合金の分類では転位型に分類されているが、Mg-Li合金は複合型等の他の異なる分類に属している可能性があり、本発明者らはその特異な特性を見出した。この特性は移動体での用途、もしくは振動発生源に近接した部材に用いる場合において効果的に振動を減衰させ、撮像デバイスなどが本来有している機能の劣化を効果的に低減することができる。
[樹脂層]
 本発明における樹脂層の材料は特に限定されるものではなく、公知の種々の樹脂を用いることができる。
 熱プレス成形により樹脂層、およびその光学面を形成する場合は、所望の樹脂のペレット、フィルム、溶融体などを、所望の光学面を有する型と、基板となるMgを主成分とする合金、より好ましくは、Mg-Li合金の間に設置する。そして、溶融温度以上に加熱し公知の方法により加圧成形することができる。
 本発明における樹脂層に用いる樹脂としては、所望の特性を満足するものであれば特に制限はされないが、アクリル系、エステル系、エーテル系、アミド系、イミド系、オレフィン系、フッ素系など公知の樹脂を用いることができる。樹脂層の吸水による変形を特に抑制したい場合は、好ましくはオレフィン系、より好ましくは環状オレフィン系の樹脂を用いることができる。
 放射線硬化成形により樹脂層を形成する場合は、所望の放射線硬化樹脂を、所望の光学面を有する型と、基板となるMgを主成分とする合金、より好ましくはMg-Li合金との間に設置、充填し、放射線により硬化することができる。
 この場合、用いる樹脂としては、所望の特性を満足するものであれば特に制限はされないが、アクリル系、エポキシ系、シアナート系、フッ素系など公知の樹脂を用いることができる。樹脂層の光学面の安定性を考慮すると、好ましくはアクリル系、エポキシ系を用いることができる。光学面の面精度をより好適に制御したい場合は、硬化収縮率の小さな放射線硬化樹脂を用いることができる。
 樹脂層の厚さは特に制限されないが、熱膨張による光学面の歪みを特に懸念する場合において、好ましくは20μm以上2000μm以下であることが好ましく、より好ましくは50μm以上1000μm以下である。樹脂層の厚さが薄すぎると、基板となるMgを主成分とする合金、より好ましくはMg-Li合金の面粗さに影響され光学面の面粗さが所望の粗さとならない場合がある。樹脂層の厚さが厚すぎると、樹脂の熱膨張による光学面の歪みを基板の支持によって低減させる効果が十分に発揮されず、所望の光学面を使用環境での温度範囲において維持できない場合が出てくる。
 樹脂層と基板との密着性を改善するために、樹脂層を形成する前に基板の表面処理、プライマー処理など公知の手法を用いることができる。また、光学面の形状安定性において、樹脂層の成形による残留応力を低減させたい場合は、樹脂層の成形後にアニール処理を施しても良い。
[反射膜]
 本実施形態において樹脂層の光学面に設けられる反射膜としては、アルミニウム、銀、クロム等からなる公知の反射膜を用いることができる。反射率の観点からは好ましくはアルミニウムまたは銀、より好ましくは銀の反射膜を用いることができる。さらに反射膜の表面には保護膜や増反射膜などを設けても良く、所望の特性を示す範囲内において、種々の公知の膜構成を用いることができる。
(第二の実施形態)
 本発明の第二の実施形態である、連結部を有する光学装置の一例の概略断面を図2に示す。図2は、連結部によって複数のミラーを有する光学部を保持している光学装置の一例を示すものである。具体的には、画像表示パネル23に表示された画像をスクリーンに拡大投射する投射光学系を有する画像投射装置を示したものである。
 図2において、M1~M6は機能部であるミラーである。22は保護ガラスである。そして、ミラーM1~M6は、基体部21によって位置決めされている。本実施形態において、基体部21としては、金属からなる金属部211および樹脂からなる樹脂部212によって成形された例を示すが、これに限らず、ミラーM1~M6を保持することが可能であればどのような形態であってもよい。金属部211は、その全部または少なくとも一部がMgを主成分とする合金、より好ましくは、Mg-Li合金であることができる。また、24は、機能部であるミラーM1~M6および基体部21を有する光学部を他の部材に取り付けるための連結部である。連結部24は、基体部21と一体的に形成された単一部材であってもよいし、基体部21とは別部材であってもよい。つまり本実施形態に係る光学装置は、光学部と連結部から形成されていてもよい。
 本実施形態は、機能部であるミラーM1~M6および基体部21を有する光学部を他の部材に取り付けるための連結部24が、Mgを主成分とする合金、より好ましくはMg-Li合金から形成されていることを特徴としている。または、連結部24の一部25がMgを主成分とする合金、より好ましくはMg-Li合金から形成され、それ以外の部分は他の金属から形成されていてもよい。Mgを主成分とする合金、より好ましくはMg-Li合金から形成される連結部は、制振性に優れ、かつ軽量であり、制振部材として好適である。
 機能部であるミラーM1~M6は、それぞれ上記第一の実施形態で説明した反射光学素子であってもよい。つまり、金属基板(以下、基板部ともいう)の表面に反射膜が形成されたミラーであって、基板部がMgを主成分とする合金、より好ましくは、Mg-Li合金から形成されていてもよい。
 また、基板部の表面に反射膜が形成されたミラーではなく、基体部21に直接に反射膜が形成されたミラーであってもよい。この場合には、基体部21が基板部の役割を兼ねることになる。
 そして、反射膜としては、アルミニウム、銀、クロム等からなる公知の反射膜を用いることができる。反射率の観点からは、好ましくはアルミニウムまたは銀、より好ましくは銀の反射膜を用いることができる。
 上記反射膜の表面には、さらに保護膜や増反射膜などを設けてもよく、所望の特性を示す範囲内において、種々の公知の膜構成を用いることができる。
 本実施形態においては、第一の実施形態と同様、Mg-Li合金は特に限定されるものではないが、マグネシウムに少なくともリチウムを添加したマグネシウム-リチウム合金であって、好ましくはリチウムを5質量%以上、20質量%以下、アルミニウムを0.5質量%以上、15質量%以下含有し、さらにカルシウムを5質量%以下含有してもよく、残部がマグネシウムからなる。すわなち、Mg-Li合金は、Mgを主成分としており、Mgを60質量%以上含有する。なお、不可避的不純物の量は、より少ないことが好ましい。
 より具体的には、上述した組成を有する株式会社三徳社製LAX(商品名)、安立材料科技股▲ふん▼有限公司社製ALZなどが挙げられる。
(第三の実施形態)
 本発明の第三の実施形態である、反射光学素子の概略断面を図3に示す。図3は金属基板に、第一結像光学系に光を取り込む第一の開口部と、前記第一の開口部から取り込まれた光を反射する第一結像光学系の複数のミラーと、第二結像光学系に光を取り込む第二の開口部と、前記第二の開口部から取り込まれた光を反射する第二結像光学系の複数のミラーと、が設けられたステレオカメラ装置の一例を示すものである。具体的には、たとえば特開2017-044722号公報に記載されている撮像装置に近似した形状を有する装置の概略断面を示したものである。
 図3において、2つの開口部SP1、SP2からそれぞれ光を取り込み、反射面ミラーR2~ミラーR8で順次反射させて撮像素子IMG1とIMG2にそれぞれ結像する様子を示している。R2~R8は、機能部であるミラーである。そして、ミラーR2~R8は、基体部31によってそれぞれ位置決めされている。本実施形態において、基体部31としては、金属からなる金属部311および樹脂からなる樹脂部312によって成形された例を示すが、これに限らず、ミラーR2~R8を保持することが可能であればどのような形態であってもよい。金属部311は、その全部または少なくとも一部がMgを主成分とする合金、より好ましくは、Mg-Li合金であることができる。34は、機能部であるミラーR2~R8および基体部31を有する光学部を他の部材に取り付けるための連結部である。連結部34は、基体部31と一体的に形成された単一部材であってもよいし、基体部31とは別部材であってもよい。つまり、本実施形態に係る光学装置は、光学部と連結部から形成されていてもよい。
 本実施形態は、機能部であるミラーR2~R8および基体部31を有する光学部を他の部材に取り付けるための連結部34が、Mgを主成分とする合金、より好ましくはMg-Li合金から形成されていることを特徴としている。または、連結部34の一部35がMgを主成分とする合金、より好ましくはMg-Li合金から形成され、それ以外の部分は他の金属から形成されていてもよい。Mgを主成分とする合金、より好ましくはMg-Li合金から形成される連結部は、制振性に優れ、かつ軽量であり、制振部材として好適である。
 機能部であるミラーR2~R8は、それぞれ上記第一の実施形態で説明した反射光学素子であってもよい。つまり、金属基板(以下、基板部ともいう)の表面に反射膜が形成されたミラーであって、基板部がMgを主成分とする合金、より好ましくは、Mg-Li合金から形成されていてもよい。
 また、基板部の表面に反射膜が形成されたミラーではなく、基体部31に直接に反射膜が形成されたミラーであってもよい。この場合には、基体部31が基板部の役割を兼ねることになる。
 そして、反射膜としては、アルミニウム、銀、クロム等からなる公知の反射膜を用いることができる。反射率の観点からは、好ましくはアルミニウムまたは銀、より好ましくは銀の反射膜を用いることができる。
 上記反射膜の表面には、さらに保護膜や増反射膜などを設けてもよく、所望の特性を示す範囲内において、種々の公知の膜構成を用いることができる。あるいは、機能部であるミラーは、上述したような基板部の表面に反射膜が形成されたミラーのみからなるのではなく、基体部31に直接に反射膜が形成されたミラーを含んでいてもよい。この場合には、基体部31が基板部の役割を兼ねることになる。
 本実施形態においては、第一の実施形態と同様、Mg-Li合金は特に限定されるものではないが、マグネシウムに少なくともリチウムを添加したマグネシウム-リチウム合金であって、好ましくはリチウムを5質量%以上、20質量%以下、アルミニウムを0.5質量%以上、15質量%以下含有し、さらにカルシウムを5質量%以下含有してもよく、残部がマグネシウムからなる。すわなち、Mg-Li合金は、Mgを主成分としており、Mgを60質量%以上含有する。なお、不可避的不純物の量はより少ないことが好ましい。 
 より具体的には、上述した組成を有する株式会社三徳社製LAX(商品名)、安立材料科技股▲ふん▼有限公司社製ALZなどが挙げられる。
 以下、実施例および比較例を挙げて本発明を更に具体的に説明をするが、本発明はこれら実施例になんら限定されるものではない。
(振動損失係数の測定)
 下記の各実施例、比較例においてMg-Li合金基板、Mg合金基板、Al合金基板の各種金属基板の制振性を示す指標として振動損失係数を振動減衰法(日本工業規格(JIS) G0602)により測定した。振動損失係数とは制振性能を示す尺度であり、値が高いほど制振性能が高いことを示す。
 具体的には、各種金属基板を、所定の大きさに切りだし、基板長辺の両端を保持した後、加振用電磁コイルにより金属基板を加振除荷し、除荷後の基板中央の振幅変異量をレーザー変位計により計測した。この時の加振周波数は、各種金属基板の共振周波数とし、節間距離は40mm、コイルインダクタンスは101K(100μH)、電圧は正弦波1Vp-pとし、試料表面に生じる渦電流を利用することで加振した。
得られた振幅変異量の時間依存性の測定値から振動損失係数を式1より求めた。
Figure JPOXMLDOC01-appb-M000001
x:時間、y:振幅変異量、f:振動数、η:振動損失係数
[実施例1]
 90mm×10mm×0.5mmサイズのMg-Li合金基板(株式会社三徳社製LAX1491(商品名);14%Li-9%Al-1%Ca-Mg)を用いて上記の方法で振動損失係数を求めた(加振周波数:1.04kHz)。結果を表1に示す。また、LAX1491(商品名)の比重も表1に示す。
[実施例2]
 98mm×10mm×2mmサイズのMg合金基板(AZ91(9%Al-1%Zn-Mg))を用いて上記の方法で振動損失係数を求めた(加振周波数:2.82kHz)。結果を表1に示す。また、AZ91の比重も表1に示す。
[比較例1]
 98mm×10mm×2mmサイズのAl-Si-Mg系アルミ合金基板(AC4C(7.5%Si-0.45%Mg-Al))を用いて上記の方法で振動損失係数を求めた(加振周波数:3.30kHz)。結果を表1に示す。また、AC4Cの比重も表1に示す。
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、所定の部材の少なくとも一部がMgを主成分とする合金、より好ましくはMg-Li合金から形成されていると、軽量で制振性の高い反射光学素子、制振部材を得ることができることがわかった。
(第四の実施形態)
 以下、図面を参照して、本発明の第四の実施形態であるステレオカメラ装置とその製造方法について説明する。第四の実施形態によれば、局所的に加熱や冷却を受けた場合でもステレオ計測の精度の低下が抑制されていて、しかも小型なステレオカメラ装置を低コストで提供することができる。
(ステレオカメラ本体)
 図4Aは、第四の実施形態であるステレオカメラ本体の基本構成を示すための、模式的な断面図である。
 ステレオカメラ本体101は、ステレオ撮像光学系STUを含み、ステレオ撮像光学系STUは、図中右側の第一結像光学系LO1と図中左側の第二結像光学系LO2とにより構成されている。
 第一結像光学系LO1は、外光を取入れる第一開口部としての開口部SP11と、反射面R11、反射面R12、反射面R13、反射面R14、反射面R15を有する。第二結像光学系LO2は、外光を取入れる第二開口部としての開口部SP12と、反射面R21、反射面R22、反射面R23、反射面R24、反射面R25を有する。各反射面は、自由曲面ミラーとして形成されている。開口部SP11と開口部SP12は、第一結像光学系LO1および第二結像光学系LO2の絞りとして用いても良い。
 図4Aでは、一点鎖線で第一結像光学系LO1および第二結像光学系LO2の基準軸(中心主光線)を示しているが、チルトした複数の反射面により基準軸が折れ曲がった2つのOff-Axial光学系(オフアキシャル光学系)が構成されている。尚、第一結像光学系LO1と第二結像光学系LO2は、互いに左右対称になるよう構成されていることが好ましい。左右の光学系の画角が異なると、ステレオ計測で距離を測れる範囲が画角の狭い方の結像光学系で決まってしまうからである。また、2つの光学系のFナンバーや焦点距離に差異があると、距離測定の精度が低下してしまうおそれがあるからである。
 ステレオカメラ本体101は、第一の金属基板(第一の金属フレーム)102と第二の金属基板(第二の金属フレーム)103を備え、第一結像光学系LO1と第二結像光学系LO2は、以下のように金属基板に実装されている。
 第一の金属基板102には、第一結像光学系LO1に外光を取込むための絞り面としての開口部SP11と、第一結像光学系LO1の一部を構成する反射面R12と反射面R14が設けられている。また、第一の金属基板102には、第二結像光学系LO2に外光を取込むための絞り面としての開口部SP12と、第二結像光学系LO2の一部を構成する反射面R22と反射面R24も設けられている。さらに、第一の金属基板102には、第一結像光学系LO1の結像面に当たる位置にイメージセンサIMG11が固定され、第二結像光学系LO2の結像面に当たる位置にイメージセンサIMG12が固定されている。
 イメージセンサとしては、例えばCMOSイメージセンサやCCDイメージセンサ等の、可視光(波長380nm~700nm)に感度を有する撮像素子が用いられる。ただし、可視光の他に、可視光とは異なる波長帯域の光(例えば1000nm付近の近赤外領域)も受光し電気信号に変換可能なものであれば更に好ましい。本実施形態のように、屈折力(光学的パワー)を有する光学面を反射面だけで構成した結像光学系の場合、色収差が存在しないため、屈折光学系で構成した結像光学系よりも広い波長帯域で高い結像性能を維持することができる。よって、撮像素子の受光波長範囲が広ければ、可視光以外の情報も同時に取得することができる。このため、赤外カメラ装置を別途搭載したカメラシステムよりも全系のシステムを小型化することが可能となるため好ましい。
 第二の金属基板103には、第一結像光学系LO1の一部を構成する反射面R11と反射面R13、および第二結像光学系LO2の一部を構成する反射面R21と反射面R23が設けられている。
 また、第二の金属基板103には、金属製の支持台4と金属製の支持台5が設置されているが、これらは独立して位置および姿勢を調整可能である。支持台4には第一結像光学系LO1の最終の反射面R15が、支持台5には第二結像光学系LO2の最終の反射面R25が設けられている。イメージセンサIMG11およびイメージセンサIMG12の撮像面に各結像光学系から適切に結像されるように、反射面R15および反射面R25は支持台4および支持台5を介して位置および姿勢を調整可能に支持されている。
 第一の金属基板102と第二の金属基板103は、位置合わせされ、固定部材6および固定部材7により両端が挟持されて互いに固定され、ユニットを形成(ユニット化)している。2つの金属基板に設けられた反射面が対向して左右に2つのOff-Axial光学系を構成するように位置決め固定されている。第一結像光学系LO1と第二結像光学系LO2を構成する複数の反射面は、回転非対称な曲率を有しており、基準軸を折り曲げるようにチルトして対向配置されている。このような反射面を備えることで、収差補正をより容易にすることができ、結像性能の向上が可能となる。本実施形態では、左右の結像光学系の反射面や絞り面を同じ金属基板に一体化して設けているため、組立て時に2つの結像光学系同士の位置を調整する必要はない。
 ステレオカメラ本体101の構造の理解を容易にするため、図5および図6にステレオカメラ本体101の外観斜視図を示す。図5は奇数番目の反射面が見える角度から見た斜視図で、図6は偶数番目の反射面およびイメージセンサの撮像面が見える角度から見た斜視図である。尚、図6における偶数番目の反射面と、図5における奇数番目の反射面は、直接的には見えない位置にあるが、反射面が配置されている位置の裏側の金属基板に、( )付で反射面の番号を図示している。
(反射面)
 次に、実施形態の金属基板や金属製の支持台に設けられた反射面について、説明する。金属基板あるいは金属製の支持台の母材の表面を反射面として用いることも可能ではあるが、回転非対称な曲率を有した高い反射率の反射面に加工するには高度な加工技術が必要で、量産が期待できず、コスト的に現実的ではない。
 そこで、本実施形態では、図4Bに示すように、基体である金属基板あるいは金属製の支持台の表面に、形状精度が高い樹脂部を形成し、その樹脂部の上に例えば金属を材料とする反射膜を形成して、反射面として用いる。
 図4Bは、本実施形態の反射面の構成を示す模式的な断面図で、121は基材、122は樹脂部、123は反射膜である。図に示す基材121は、金属基板あるいは金属製の支持台である。基材121には、反射面の形状を模した曲面121aが形成されているが、必ずしも高い形状精度で形成されている必要はなく、例えば粗面であってもよい。樹脂部122は、基材121上の所定位置に、例えばインサート成形技術を用いて樹脂により形成された部分である。樹脂部122の表面には、回転非対称な曲率を有した曲面122aが、金型面を転写するなどの方法で高精度に形成されている。高精度な曲面122aの上には、例えば金属を蒸着するなどの方法で、反射膜123が形成されている。
 樹脂部や反射膜の製造方法を考慮すると、2つの結像光学系の全ての反射面を単一の金属基板上に形成するのは困難であるため、本実施形態では、2つの金属基板と2つの支持台に反射面を配置する構成としている。
 具体的には、図7に示すように、入射側から数えて偶数番目に反射する反射面が形成される金属基板102と、入射側から数えて奇数番目に反射する反射面が形成される金属基板103を、別フレームとした。さらに、最終段の反射面が形成される支持台4および支持台5を設けた。尚、結像光学系とイメージセンサの位置あわせを最終段の反射面の位置姿勢で調整する必要がない場合には、最終段の反射面も金属基板103に形成する構成としてよい。互いに対向する偶数番目と奇数番目の反射面を異なるフレームの片面に並べて配置する構成としたことにより、インサート成形や蒸着などの一般的な製造技術を用いて樹脂部の形成や反射膜の形成を高精度かつ低コストで行うことが可能となった。
(熱伝導路)
 次に、本実施形態のステレオカメラ本体101が備える熱伝導路について、図4Aを参照して説明する。
 ステレオカメラ本体に外部環境からの局所的な加熱や冷却により温度分布が発生すると、ユニット各部に膨張や収縮が発生し、結像光学系が所定の性能を発揮しなくなる可能性がある。もっとも、ステレオカメラ本体の各フレームを熱伝導性に優れた金属製にすれば、それぞれのフレーム内における温度分布は小さく保たれる。問題となるのは、第一の金属基板102と第二の金属基板103の間で温度差が生じた場合である。この場合には、奇数番目に反射する反射面と偶数番目に反射する反射面の関係において、相対位置や向き、あるいは反射面の形状に変化が生じ、結像特性に影響が出るおそれがある。
 そこで、本実施形態では、第一の金属基板102と第二の金属基板103が両端部において熱伝導良好に当接し、両金属基板の間で大きな温度差が生じないように構成されている。すなわち、金属基板同士の直接接触により熱良導な熱伝導路が複数形成されるように、熱導電性部材である固定部材6および固定部材7を用いて第一の金属基板102と第二の金属基板103を固定している。図4Aにおいて、当接部8および当接部9において第一の金属基板102と第二の金属基板103は当接しており、熱を良好に伝える熱伝導路が2つ形成されている。
 当接部8および当接部9において接触面積が十分に大きくなるように、第一の金属基板102と第二の金属基板103が接触する部分は、表面の平坦性を高めるよう予め鏡面加工等を施しておくのがよい。また、平坦性が高くない粗面を当接させる場合には、実質的に十分な接触面積が確保できるように、当接部8および当接部9の総面積を確保する。すなわち、平坦性を考慮した上で、必要な接触面積を確保できる大きさ(総面積)の当接部を設けることにより、第一の金属基板102と第二の金属基板103の間の熱コンダクタンスを、十分に大きく確保することができる。
(熱伝導路の他の形態)
 図4Aの実施形態では、第一の金属基板102と第二の金属基板103の間で熱良導な熱伝導路を形成するために、両方の金属基板の端部において対向面同士を直接接触させた。本発明の実施形態は、これに限られるものではなく、要は、第一の金属基板102と第二の金属基板103の間の熱コンダクタンスを十分に大きくする熱伝導路を形成できればよい。
そこで、熱コンダクタンスを十分に大きくする熱伝導路の形成方法と形成場所について、以下に説明する。
 まず、熱伝導路の形成方法は、上述したような金属基板の面同士の接触には限らない。例えば、第一の金属基板102と第二の金属基板103を近接させるか局所的に当接させ、隙間あるいは当接部の周辺に熱導電性部材を配置させてもよい。
 熱導電性部材としては、例えば、熱導電性の微粒子を含むシルバーグリス、セラミックグリス、カーボングリス、ナノダイヤモンドグリスをはじめとするグリス類や、熱伝導ゲルが用いられ得る。また、熱伝導シートや熱伝導テープなどのシート状の熱伝導材料を、第一の金属基板102と第二の金属基板103の間に介在させてもよい。
 また、第一の金属基板102と第二の金属基板103を固定させる固定部材自身で熱伝導路を形成してもよい。例えば、第一の金属基板102と第二の金属基板103を位置あわせした後で、固定部材として熱伝導性接着剤を用いて両者を固定してもよい。第一の金属基板102と第二の金属基板103との間の熱コンダクタンスを大きくするという観点において、好ましい熱伝導性接着剤の熱伝導率は0.1[W/mK]以上5.0[W/mK]以下である。あるいは、固定部材6と固定部材7を熱伝導性が良好な弾性を有する金属製治具として用い、クリップのように挟持させて第一の金属基板102と第二の金属基板103を固定してもよい。もちろん、金属製治具は弾性金属部材には限られず、塑性変形する金属材を用いてかしめ固定してもよく、あるいは金属製ボルトナット等を用いた機械的な固定具を用いて熱伝導路を形成してもよい。
 また、熱伝導部材は、金属基板同士の固定部や当接部とは別位置に設けてもよい。例えば、第一の金属基板102と第二の金属基板103と接触するように、金属箔や熱伝導シート等を用いて両者を包んでもよい。あるいは、第一の金属基板102と第二の金属基板103の両者を結ぶように、金属線やカーボンファイバーなどの熱伝導性部材で結合してもよい。
熱伝導部材の形成場所は、図4Aに示した金属基板の端部には限られず、端部よりも内側に設けてもよい。もっとも、実装上の容易性から、第一の金属基板102の開口部SP11、開口部SP12よりも外側、すなわち金属基板の端部側に設けるのが好ましい。
 また、第一結像光学系LO1と第二結像光学系LO2は線対称に構成されていることから、熱伝導路も第一結像光学系と第二結像光学系が並ぶ方向に沿って対称に配置するのが望ましい。ステレオ撮像光学系STU内に温度分布が発生するとしても、第一結像光学系LO1と第二結像光学系LO2で対称に生じた方が、ステレオ計測への影響が小さいからである。
 また、熱伝導部材は、図4Aに示したように第一結像光学系LO1と第二結像光学系LO2の側に各1箇所だけ設ける態様には限られず、より多くの箇所に併設してもよい。その場合には、上述した熱伝導路の形成方法を複数組み合わせて用いてもよい。
 図8は、複数箇所に熱伝導部材を設けた一例を模式的に示した図である。図示の便宜上、第一結像光学系LO1側だけを示すが、第二結像光学系LO2側にも、これとは線対称に熱伝導路が構成されている。
 図8に示す例では、第一結像光学系LO1側には3箇所に熱伝導路を配置している。まず、開口部SP11の外側には、第一の金属基板102と第二の金属基板103を当接させた当接部10が設けられている。すなわち、開口部SP11と金属基板の端部との間に熱伝導路を配置している。そのさらに外側には、第一の金属基板102と第二の金属基板103の端部を挟持して固定する金属製の固定具11が設けられている。すなわち、金属基板の端部よりも外側に、金属製の固定具11よりなる熱伝導部材を配置している。また、開口部SP11よりも内側、すなわち開口部SP11を挟んで第一の金属基板102の端部と反対側には、第一の金属基板102の外面と第二の金属基板103の外面に金属製の線材12である熱伝導部材による熱伝導路を設けている。
 このように、ステレオ撮像光学系の各結像光学系に複数の熱伝導路を配置することにより、温度分布の発生をさらに効果的に低減することが可能である。
(ステレオカメラ装置)
 次に、ステレオカメラ本体101を実装したステレオカメラ装置について説明する。ステレオカメラ本体101内に不要な外光やごみ等が進入するのを防止したり、ステレオカメラ本体101が外部の物体と直接接触するのを防止するため、ステレオカメラ装置はステレオカメラ本体101を保護するための筐体を備える。
 本実施形態では、保護性能を高めるためと、外部環境からの加熱や冷却の影響がステレオカメラ本体101に及ぶのを抑制するために、ステレオカメラ本体101を二重構造の筐体内に実装する。
 図9は、二重構造の筐体を模式的に示した断面図で、800はステレオカメラ装置、101はステレオカメラ本体、603は内側筐体、605は外側筐体である。ステレオカメラ本体101は、内側筐体603内に収納され、複数の支持部材602を用いて内側筐体603との間に隙間をあけて離間された状態で支持固定されている。そして、内側筐体603は、複数の支持部材604を用いて外側筐体605との間に隙間をあけて離間された状態で支持固定されている。支持部材602および支持部材604は、片端が点あるいは微小面積で相手側部材と接触して支持する構造となっている。このように、隙間を二重に設け、かつ接触面積が小さな複数の支持体を用いることにより、外部環境とステレオカメラ本体101との間の熱的な絶縁性を高めることができる。このため、ステレオカメラ装置800が外部から直射日光や冷気で局所的に加熱されたり冷却されたとしても、ステレオカメラ本体101に与える熱的な影響を低減することが可能である。
 すなわち、この二重構造の筐体と、ステレオカメラ本体101が備える熱伝導路とがあいまって、本実施形態のステレオカメラ装置800は、外部環境から加熱や冷却を受けてもステレオカメラ本体101内の温度分布の発生が抑制される。温度環境が変化したとしても、ステレオ撮像光学系の光学特性の変化が小さいため、適正な視差を反映したステレオ画像を安定して取得することができ、ステレオ計測の精度を維持することができる。
 次に、図10に、前記実施形態のステレオカメラ装置800が備える二重構造の筐体の具体的な構成を示す。図示のように、内側筐体603は内側筐体上部材6031と内側筐体下部材6032からなる。ステレオカメラ本体101を、内側筐体上部材6031と内側筐体下部材6032で挟むようにして支持する。また、外側筐体605は外側筐体上部材6051と外側筐体下部材6052からなり、外側筐体605は外側筐体上部材6051と外側筐体下部材6052により内側筐体603を挟むようにして支持する。
 外側筐体605の上部には、ステレオカメラ装置を自動車等のフロントガラス(ウィンドシールド)に実装するためのアタッチメント部材606が接合される。アタッチメント部材606の斜面607は、実装する相手のフロントガラスに密着可能なように形状が調整されている。
 図11は、ステレオカメラ装置800の外観斜視図で、図12は、ステレオカメラ装置800の正面図である。図示のように、内側筐体、外側筐体、アタッチメント部材の前面側には、ステレオカメラ本体の開口部SP11および開口部SP12に所定画角の外光が入射するように外広がりの開口が設けられている。
 図13Aおよび図13Bは、ステレオカメラ装置800を実装した自動車の例である。両図において、1000は自動車、1001はフロントガラス(ウィンドシールド)、1002は乗員席である。ステレオカメラ装置800は、図13Aおよび図13Bに示すように、窓ガラスであるフロントガラス1001に対して乗員席1002側に設けられ、具体的にはフロントガラス1001の上縁部近傍に装着されている。
 本実施形態のステレオカメラ装置800は、図13Aに例示するような乗員席が密閉された自動車であっても、図13Bに例示するような乗員席の上方が開放された自動車であっても、フロントガラスに好適に実装することが可能である。
 なお、自動運転や運転支援を高度化する際に、後方を走行する他車との距離や、後退時における物体との距離を測定する必要があれば、ステレオカメラ装置800をリア側の窓ガラスの乗員席側に装着することも可能である。その場合であっても、本実施形態のステレオカメラ装置は、直射日光や冷気等によるステレオ計測の精度低下が抑制されているため、信頼性が高い測定結果を得ることが可能である。
 本発明の実施形態は、上述した実施形態に限られるものではなく、適宜変更したり、組み合わせたりすることが可能である。例えば、各結像光学系を構成する自由曲面ミラーの数、形状、配置等は、適宜変更することが可能である。
(製造方法)
 以下に、本発明の第四の実施形態であるステレオカメラ装置の製造方法を、図を参照しながら説明する。
 図14は、ステレオカメラ装置の製造手順を説明するためのフローチャートである。
 まず、工程S1において、ステレオカメラ本体101の骨格部となる第一の金属基板102、第二の金属基板103、金属製の支持台4、金属製の支持台5を形成する。上述したように、樹脂部や反射膜の製造方法を考慮すると、2つの結像光学系の全ての反射面を単一の金属フレーム上に形成するのは困難であるため、本実施形態では、2つの金属基板と2つの支持台に反射面を配置する構成としている。具体的には、図7に示すように、入射側から数えて偶数番目に反射する反射面が形成される第一の金属基板102と、入射側から数えて奇数番目に反射する反射面が形成される第二の金属基板103を、別フレームとしている。
 金属基板や金属製の支持台は、例えばプレス加工法やダイカスト法、チクソモールドなどのモールド形成法、切削加工法などによって製造することができる。用いる金属材料は、Mgを主成分とする合金を含むものである。Mgを主成分とする合金は、軽量で制振性に優れ、フレームや支持台を安価で軽量かつ高剛性に製造することができるというメリットがある。さらに、マグネシウム合金を用いると、チクソモールド法によって、より高精度に金属製鏡筒部材を製造することが可能になり、反射面の精度(面精度や位置精度)を高いものにする上で有利である。
 図15に、金属基板や金属製の支持台を製造するための射出成形装置を示す。図において、60は金型、61はキャビティ、62は原料ホッパ、63はマグネシウム合金チップ、64はヒータ、65はスクリュー、66はシリンダ、67は貯留部、68は高速射出ユニット、69はノズルである。
 金属材料として、例えばマグネシウム合金チップ63を原料ホッパ62に投入すると、金属材料はヒータ64で加熱されて液状化し、スクリュー65により押圧されてシリンダ66内を貯留部67に向けて流動する。そして、貯留部67に貯められた温度560℃乃至630℃の液状金属は、高速射出ユニット68の作用によりノズル69から射出される。金型60には、形成する金属フレームまたは支持台の形状に合わせたキャビティ61が設けられており、ノズル69からキャビティ61内に射出された溶融金属は、冷却して固化され、その後キャビティから取出される。
 図14に戻り、工程S2では、工程S1で製造した各金属基板、各支持台の上に、反射面の下地となる樹脂部122(図4B参照)を形成する。
 樹脂部を形成する方法としては、インサート成形法や熱圧着法、レプリカ成形法などの型による成形技術を利用することができる。予め反射面の形状精度を満足する型を準備することで、金属基板や支持台に製作誤差があったとしても、その影響を吸収して高精度な反射面形状を形成することができる。
 図16Aは、インサート成形法で第二の金属基板103に樹脂部を形成する例を示すための模式的な断面図で、図16Bは図16AのX-X線に沿った方向でインサート金型を切った模式的な断面図である。図中、71は上金型、72は下金型、103は第二の金属基板、611、613、621、623はそれぞれ反射面R11、反射面R13、反射面R21、反射面R23の下地として形成された樹脂部である。第二の金属基板103は、上金型71と下金型72に挟持されて上金型71と密着するように固定されており、第二の金属基板103と下金型72の間にはキャビティが形成されている。各反射面の下地となる樹脂部に高精度な自由曲面形状を転写できるように、下金型72の内面は高精度に加工されている。図に示すのは、型内の各キャビティに樹脂が注入されて、樹脂部611、樹脂部613、樹脂部621、樹脂部623が第二の金属基板103の上に形成された状態である。各キャビティに注入された樹脂が冷却されて固化すると、型開きして上金型71と下金型72が離間され、樹脂部が形成された第二の金属基板103が金型から取出される。第二の金属基板103の片側の面に反射面R11、反射面R13、反射面R21、反射面R23が配置されているため、インサート成形で容易に樹脂部を形成することが可能である。第一の金属基板102、金属製の支持台4、金属製の支持台5の各樹脂部も、同様にして形成することが可能である。 
 なお、樹脂部の材料は、型による成形が可能ならば何ら限定されるものではなく、熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂の中から成形のしやすさ、耐久性その他を鑑みて選ぶことができる。例えば、ポリカーボネート樹脂や、アクリル樹脂、MS樹脂、ポリオレフィン系樹脂などを用いることができる。特に、ポリオレフィン系樹脂は吸湿性が低いので、樹脂の吸湿に伴う反射面の形状変化を抑制することができ、ユニットを使用する湿度環境に影響されず高い測距精度を実現する反射光学ユニットを提供できる。ポリオレフィン系材料の具体例としては、例えば日本ゼオン株式会社製のZEONEX(商品名)などを用いることができる。また、必ずしも単一の材料から構成される必要はなく、材料としての特性向上や機能付与のため無機微粒子などが分散されたものを使用することもできる。また、材料の異なる複数の層から構成されても良い。
 なお、樹脂部は、各反射面ごとに独立して設けられていてもよいし、複数の反射面の共通の下地として一体化された形態であってもよい。
 図14に戻り、工程S3では、工程S2で樹脂部が形成された各金属基板および各支持台の上に、反射膜を形成する。反射膜の形成には、さまざまな成膜法を用いることができるが、広く一般的に利用されている蒸着やスパッタ法などを用いることができる。反射膜の材質には、アルミニウムや銀などの反射率の高い金属を用いればよく、400nmから800nmの波長域の光に対して、90%以上の反射率を確保するのが望ましい。さらには、表面保護や反射率向上を目的として誘電体膜などを付加して多層膜としてもよい。 
 図17は、第二の金属基板103の樹脂部611、樹脂部613、樹脂部621、樹脂部623の上に、真空蒸着法で反射膜123を形成する例を示すための模式図で、80は真空蒸着装置の真空チャンバ、81は蒸着源、82は蒸着マスクである。所定の真空度に減圧された真空チャンバ80内の所定位置に、第二の金属基板103をセットする。所定位置とは、蒸着源81から、樹脂部611、樹脂部613、樹脂部621、樹脂部623が見える位置である。樹脂部611、樹脂部613、樹脂部621、樹脂部623以外の第二の金属基板103の表面に反射膜材料が付着しないように、真空チャンバ80内には蒸着マスク82が配置されている。蒸着源81から蒸発した反射膜材料は、樹脂部611、樹脂部613、樹脂部621、樹脂部623の自由曲面上に堆積され、反射膜123を形成する。第二の金属基板103の片側の面に反射面R11、反射面R13、反射面R21、反射面R23を配置する構成のため、単一の蒸着プロセスで各反射面の反射膜を形成することが可能である。第一の金属基板102、金属製の支持台4、金属製の支持台5の各反射膜も、同様にして製造することが可能である。
 なお、真空蒸着装置内に複数の金属基板や支持台をセットできるようにして、一度の蒸着で複数の部材に反射膜を形成できるようにして、量産性を向上させてもよい。スパッタ法などの他の成膜技術を用いる場合も同様である。
 図14に戻り、工程S4では、工程S3で反射膜123が形成された第一の金属基板102および第二の金属基板103を位置合わせして固定する。図4A、図5、図6に示したように、第一の金属基板102と第二の金属基板103の反射面が対向して左右に2つのOff-Axial光学系を構成するように、固定部材6および固定部材7を用いて両端を挟持してユニット化する。すなわち、第一の金属基板の反射面と、第二の金属基板の反射面とが、第一結像光学系と第二結像光学系よりなるステレオ撮像光学系を形成するように、第一の金属基板と第二の金属基板を位置合わせする。そして、開口部SP1よりも第一の金属基板の一方の端部に近い位置および開口部SP2よりも第一の金属基板の他方の端部に近い位置において、第二の金属基板を第一の金属基板に固定する。
 本実施形態では、第一の金属基板102と第二の金属基板103の間で大きな温度差が生じない構造にするため、工程S4において、両金属基板を両端部において熱伝導性部材にて固定する。すなわち、金属基板同士の直接接触により熱良導な熱伝導路が複数形成されるように、固定部材6および固定部材7を用いて第一の金属基板102と第二の金属基板103を固定している。図4Aでは、当接部8および当接部9において第一の金属基板102と第二の金属基板103は当接しており、熱を良好に伝える熱伝導路を2つ形成する。なお、熱伝導路の形成方法は、すでに述べたように種々の形態があり得るが、形態によっては金属基板を位置合わせして固定する工程S4とは別途に、熱伝導路を形成する工程を図14の工程フローに挿入してもよい。
 図14に戻り、工程S5では、工程S4でユニット化された金属基板に、イメージセンサを位置合わせして固定する。すなわち、第一結像光学系LO1の結像位置にイメージセンサIMG11を、第二結像光学系LO2の結像位置にイメージセンサIMG12を配置可能にするため、第一の金属基板102の所定位置にイメージセンサIMG11とイメージセンサIMG12を固定する。
 次に、工程S6では、イメージセンサに最も近い反射面を実装している金属製の支持台4と支持台5の位置を調整し、光軸を合わせた後、第二の金属基板103に固定する。通常は、第一結像光学系LO1と第二結像光学系LO2について、それぞれ個別に光軸調整を行う。図18は、工程S6において、第一結像光学系LO1の光軸調整のため、反射面R15の位置姿勢を調整する状態を模式的に示している。第一結像光学系LO1については、外光を取入れる第一開口部としての開口部SP11と、反射面R11、反射面R12、反射面R13、反射面R14、およびイメージセンサIMG11は、すでに相対位置が固定されている。光軸調整を容易に行うためには、第一の結像光学系の中でイメージセンサに最も近い反射面R15を用いて光軸の調整を行うのが、有利である。そこで、図18のように、開口部SP11から光を入射させ、イメージセンサIMG11における結像状態を光像あるいはセンサ出力信号を見ながら観測し、不図示の治具を用いて金属製の支持台4の位置と角度を調整する。位置と角度が調整された金属製の支持台4は、第二の金属基板103に固定される。これと同様に、第二結像光学系LO2についても、不図示の治具を用いて金属製の支持台5の位置と角度を調整して反射面R25の光軸を合わせた後、支持台5を第二の金属基板103に固定する。この工程により、ステレオ撮像光学系STUを含むステレオカメラ本体101が完成する。
 図14に戻り、工程S7では、工程S6で完成したステレオカメラ本体101を筐体に収納する。図10に示したように、ステレオカメラ本体101を、内側筐体上部材6031と内側筐体下部材6032で挟むようにして支持し、さらにその外側から外側筐体上部材6051と外側筐体下部材6052により挟むようにして支持する。そして、外側筐体605の上部には、ステレオカメラ装置を自動車等のフロントガラス(ウィンドシールド)に実装するためのアタッチメント部材606を接合する。
 以上により、ステレオカメラ本体101を実装したステレオカメラ装置が完成する。本実施形態の製造方法によれば、局所的に加熱や冷却を受けた場合でもステレオ計測の精度の低下が抑制されていて、しかも小型なステレオカメラ装置を、低コストで製造可能である。なお、本発明の実施形態である製造方法は、上述した例に限られるものではなく、適宜変更したり、組み合わせたりすることが可能である
[実施例3]
 次に、具体的な実施例を挙げて説明する。
ステレオカメラ本体101の金属基板102、金属基板103、支持台4、支持台5は、Mg合金(AZ91D)のチクソモールド法により成形した。それらの内面には、左右両眼用の2対の結像光学系を構成する反射面が、合わせて10面(5面×2)形成されている。各反射面は、厚さ約1mmのポリオレフィン系樹脂(日本ゼオン製 ZEONEX E48R(商品名))の層上に、Al膜を主体とする多層反射膜が被覆された構成とした。
 ポリオレフィン系樹脂は、インサート成形により金属基板や支持台に接合され、多層反射膜は蒸着により成膜されたものである。各反射面は、少なくとも面内PV値が2μm以下の面精度が実現されている。
 熱伝導路は、金属基板102と金属基板103を当接させることに加え、金属製の固定具も熱伝導路として機能する構成とした。金属基板102と金属基板103の間の熱コンダクタンスを十分に大きくするために、金属基板102、金属基板103および金属製の固定具には熱伝導率が20[W/mK]以上で100[W/mK]以下の部材を使用した。
 次に、ステレオカメラ装置の筐体を用いて、次のような温度測定を行った。まず、内側筐体603と外側筐体605を備えた二重構造の筐体に、ステレオカメラ本体101を収納せずに、真夏の直射日光を浴びる自動車内のフロントガラス近傍に設置した。そして、外側筐体605上面には直射日光が照射され、外側筐体605下面が冷房設備の冷気を受けている状態で、筐体の温度測定を行った。その結果、外側筐体605上面は100℃近く、外側筐体605下面は25℃であり、内側筐体603内の雰囲気温度の分布(最高温度と最低温度の差異)は約4℃以内であった。
 次に、上記の二重構造の筐体に上記実施例のステレオカメラ本体を収納して、50m前方に存在する対象物の測距を行った。その際、二通りの環境下で測定した。
 第一に、通常の室温環境下で筐体の外部には温度分布がほぼなく、内側筐体603内の雰囲気温度の分布(以下、ΔTと記載)が0.5℃という状態での測定を行った。
 第二に、上述したように、真夏の直射日光を浴び、車内で冷房設備が稼動している自動車内のフロントガラス近傍に設置しΔT=4℃となっているときの測定を行った。
 二通りの測定における測距誤差の結果を表1に示す。測距誤差とは、本来、50mと算出されるべき結果に対し、どの程度ずれて算出されたか表す。具体的には、51mと算出された時の誤差は+2%となる。
 ΔT=0.5℃では誤差約±5%であったものが、ΔT=4℃での誤差は約±7%となったが、誤差の増大は抑制されており、安定した測距が可能であった。
Figure JPOXMLDOC01-appb-T000003
[比較例2]
 次に、比較例2として、フレームの材料に樹脂を用い、フレーム間に熱伝導路を設けなかったステレオカメラ装置について説明する。
 本比較例は、左右両眼の2対の結像光学系の反射面の形状やレイアウトは実施例3と同様であるが、実施例3とは異なり、フレームおよび支持部材の材質に日本ゼオン製 ZEONEX E48R(商品名)を用いた。つまり、フレームと、反射面の下地を構成する樹脂を、射出成形にて一体に成形した。
 そして、実施例3と同じ二重構造の筐体にステレオカメラ本体を収納し、実施例3と同様に50m前方に存在する対象物について二通りの測距を行った。
 二通りの測定における測距誤差の結果を表3に示す。ΔT=0.5℃では実施例と同等の誤差に収まったが、ΔT=4℃の環境下では誤差が大幅に増大することとなった。フレーム間で温度分布が生じ、結像光学系の特性が変化したためと考えられる。
Figure JPOXMLDOC01-appb-T000004
 以上のように、比較例に比べて実施例は、真夏の直射日光を浴び車内で冷房設備が稼動しているような環境においても、測距の誤差は抑制されており、安定した測距が可能であった。
 本発明に係る反射光学素子によれば、軽量で制振性の高い反射光学系を提供することができる。
 この出願は2017年8月24日に出願された日本国特許出願番号2017-161366、2018年4月3日に出願された日本国特許出願番号2018-071407、2018年4月3日に出願された日本国特許出願番号2018-071408、および2018年8月20日に出願された日本国特許出願番号2018-153927の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。
1 基板
2 樹脂層
3 反射膜
M1~M6 機能部(ミラー)
R2~R8 機能部(ミラー)
21、31 基体部
24、34 連結部
101 ステレオカメラ本体
102 第一の金属基板
103 第二の金属基板
4 金属製の支持台
5 金属製の支持台
6、7 固定部材
8、9 当接部
11 固定具
12 金属製の線材
121 基材
121a 曲面
122 樹脂部
123 反射膜
602 支持部材
603 内側筐体
604 支持部材
605 外側筐体
606 アタッチメント部材
800 ステレオカメラ装置
1000 自動車
1001 フロントガラス
1002 乗員席
IMG1、IMG2、IMG11、IMG12 イメージセンサ
LO1 第一結像光学系
LO2 第二結像光学系
R11~R15、R21~R25 反射面
SP1、SP2、SP11、SP12 開口部
STU ステレオ撮像光学系

 

Claims (15)

  1.  金属基板上に、光学面を有する樹脂層を有し、前記光学面に反射膜を設けたミラーを備えた反射光学素子であって、
     前記金属基板には、第一結像光学系に光を取り込む第一の開口部と、前記第一の開口部から取り込まれた光を反射する第一結像光学系の複数のミラーと、第二結像光学系に光を取り込む第二の開口部と、前記第二の開口部から取り込まれた光を反射する第二結像光学系の複数のミラーと、が設けられ
     前記金属基板がMgを主成分とする合金を含むことを特徴とする反射光学素子。
  2.  前記Mgを主成分とする合金は、Mg-Li合金であることを特徴とする請求項1記載の反射光学素子。
  3.  前記樹脂層の厚さが20μm以上2000μm以下であることを特徴とする請求項1または2に記載の反射光学素子。
  4.  前記樹脂層がオレフィン系の樹脂を含有することを特徴とする請求項1~3のいずれか一項に記載の反射光学素子。
  5.  請求項1~4のいずれか一項に記載の反射光学素子を備えたステレオカメラ装置。
  6.  前記金属基板は、第一の金属基板と第二の金属基板からなり、
     前記第一の金属基板は、第一結像光学系に光を取り込む第一開口部と、前記第一結像光学系の一部である複数のミラーと、第二結像光学系に光を取り込む第二開口部と、前記第二結像光学系の一部である複数のミラーと、が設けられており、
     前記第二の金属基板は、前記第一結像光学系の一部である他の複数のミラーと、前記第二結像光学系の一部である他の複数のミラーと、が設けられており、
     前記第一の金属基板に設けられた複数のミラーと、前記第二の金属基板に設けられた他の複数のミラーとが対向配置されて、前記第一結像光学系と前記第二結像光学系よりなるステレオ撮像光学系が形成されており、
     前記第一の金属基板と前記第二の金属基板は、前記第一開口部および前記第二開口部よりも前記第一の金属基板の端部側の位置において、互いに固定されてユニットを形成しており、
     前記第一の金属基板と前記第二の金属基板とが接触する部分に、熱導電性部材を設けている、
     ことを特徴とする請求項5に記載のステレオカメラ装置。
  7.  前記熱導電性部材は複数であり、前記第一結像光学系と前記第二結像光学系が並ぶ方向に沿って対称に配置されている、
     ことを特徴とする請求項6に記載のステレオカメラ装置。
  8.  前記熱導電性部材は、前記第一の金属基板と前記第二の金属基板の間に介在する熱伝導材料を含むグリスを含む、
     ことを特徴とする請求項6または7に記載のステレオカメラ装置。
  9.  前記熱導電性部材は、前記第一の金属基板と前記第二の金属基板の間に配置されたシート状の熱伝導材を含む、
     ことを特徴とする請求項6または7に記載のステレオカメラ装置。
  10.  前記熱導電性部材は、前記第一の金属基板と前記第二の金属基板を固定する熱伝導性接着剤を含む、
     ことを特徴とする請求項6または7に記載のステレオカメラ装置。
  11.  前記熱導電性部材は、前記第一の金属基板と前記第二の金属基板を固定する金属製治具を含む、
     ことを特徴とする請求項6または7に記載のステレオカメラ装置。
  12.  前記第一の金属基板と前記第二の金属基板を固定する前記位置とは別の位置において、前記第一の金属基板および前記第二の金属基板に結合された熱伝導性部材を有する、
     ことを特徴とする請求項6~11のいずれか一項に記載のステレオカメラ装置。
  13.  前記ミラーは、前記金属基板の上に配置され自由曲面が形成された樹脂部と、前記樹脂部の前記自由曲面に被覆された反射膜を有する自由曲面ミラーである、
     ことを特徴とする請求項6~12のいずれか一項に記載のステレオカメラ装置。
  14.  内側筐体と外側筐体を更に含み、前記ユニットは前記内側筐体と離間するように支持さ
    れ、前記内側筐体は前記外側筐体と離間するように支持されている、
     ことを特徴とする請求項6~13のいずれか一項に記載のステレオカメラ装置。
  15.  窓ガラスと、
     前記窓ガラスよりも乗員席側に設置された請求項5~14のいずれか一項に記載
    のステレオカメラ装置と、を備える、
     ことを特徴とする自動車。

     
PCT/JP2018/030949 2017-08-24 2018-08-22 反射光学素子およびステレオカメラ装置 WO2019039502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880054278.3A CN111065940B (zh) 2017-08-24 2018-08-22 反射光学元件和立体相机装置
CN202210659545.8A CN114994815A (zh) 2017-08-24 2018-08-22 反射光学元件和立体相机装置
US16/787,246 US11693222B2 (en) 2017-08-24 2020-02-11 Reflective optical element and stereo camera device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017161366 2017-08-24
JP2017-161366 2017-08-24
JP2018-071407 2018-04-03
JP2018071407 2018-04-03
JP2018071408 2018-04-03
JP2018-071408 2018-04-03
JP2018-153927 2018-08-20
JP2018153927A JP2019174781A (ja) 2017-08-24 2018-08-20 反射光学素子およびステレオカメラ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/787,246 Continuation US11693222B2 (en) 2017-08-24 2020-02-11 Reflective optical element and stereo camera device

Publications (1)

Publication Number Publication Date
WO2019039502A1 true WO2019039502A1 (ja) 2019-02-28

Family

ID=65440026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030949 WO2019039502A1 (ja) 2017-08-24 2018-08-22 反射光学素子およびステレオカメラ装置

Country Status (2)

Country Link
CN (1) CN114994815A (ja)
WO (1) WO2019039502A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107407A (ja) * 1991-10-18 1993-04-30 Hitachi Ltd 光学ミラー
JPH07191207A (ja) * 1993-11-17 1995-07-28 Asahi Optical Co Ltd 反射型複合光学素子
JP2000119787A (ja) * 1998-10-13 2000-04-25 Sharp Corp マグネシウム合金、マグネシウム合金の構造体、およびその製造方法
JP2001298277A (ja) * 2000-04-12 2001-10-26 Taisei Plas Co Ltd 電子機器筐体とその製造方法
JP2001326840A (ja) * 2000-05-17 2001-11-22 Sony Corp 撮像装置
JP2005024695A (ja) * 2003-06-30 2005-01-27 Canon Inc 結像光学系および光学装置
JP2007015337A (ja) * 2005-07-11 2007-01-25 Sharp Corp 筐体、電子機器および複合成形方法
JP2007248820A (ja) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2008090163A (ja) * 2006-10-04 2008-04-17 Nikon Corp 電子機器および電子カメラ
JP2009128890A (ja) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc 撮像装置
JP2016079451A (ja) * 2014-10-15 2016-05-16 住友電気工業株式会社 マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法
US20160227078A1 (en) * 2015-02-04 2016-08-04 Lg Electronics Inc. Stereo Camera
JP2016177257A (ja) * 2015-03-18 2016-10-06 株式会社リコー 撮像ユニット、車両制御ユニットおよび撮像ユニットの伝熱方法
JP2017044722A (ja) * 2015-08-24 2017-03-02 キヤノン株式会社 ステレオ撮像光学系および撮像装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223964B3 (de) * 2013-11-22 2015-05-13 Carl Zeiss Ag Abbildungsoptik sowie Anzeigevorrichtung mit einer solchen Abbildungsoptik

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107407A (ja) * 1991-10-18 1993-04-30 Hitachi Ltd 光学ミラー
JPH07191207A (ja) * 1993-11-17 1995-07-28 Asahi Optical Co Ltd 反射型複合光学素子
JP2000119787A (ja) * 1998-10-13 2000-04-25 Sharp Corp マグネシウム合金、マグネシウム合金の構造体、およびその製造方法
JP2001298277A (ja) * 2000-04-12 2001-10-26 Taisei Plas Co Ltd 電子機器筐体とその製造方法
JP2001326840A (ja) * 2000-05-17 2001-11-22 Sony Corp 撮像装置
JP2005024695A (ja) * 2003-06-30 2005-01-27 Canon Inc 結像光学系および光学装置
JP2007015337A (ja) * 2005-07-11 2007-01-25 Sharp Corp 筐体、電子機器および複合成形方法
JP2007248820A (ja) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2008090163A (ja) * 2006-10-04 2008-04-17 Nikon Corp 電子機器および電子カメラ
JP2009128890A (ja) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc 撮像装置
JP2016079451A (ja) * 2014-10-15 2016-05-16 住友電気工業株式会社 マグネシウム合金、マグネシウム合金板、マグネシウム合金部材、及びマグネシウム合金の製造方法
US20160227078A1 (en) * 2015-02-04 2016-08-04 Lg Electronics Inc. Stereo Camera
JP2016177257A (ja) * 2015-03-18 2016-10-06 株式会社リコー 撮像ユニット、車両制御ユニットおよび撮像ユニットの伝熱方法
JP2017044722A (ja) * 2015-08-24 2017-03-02 キヤノン株式会社 ステレオ撮像光学系および撮像装置

Also Published As

Publication number Publication date
CN114994815A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
JP7304869B2 (ja) 中空のトリプルパスの光学素子
EP3220186B1 (en) Head up display device
US7515345B2 (en) Compact objective lens assembly
US8439511B2 (en) Mirror and a method of manufacturing thereof
CN102540436B (zh) 光学补偿无热化长波红外光学系统
US6768592B2 (en) Optical combiners
US11693222B2 (en) Reflective optical element and stereo camera device
US12151407B2 (en) Forming mold for a PVB film for HUD
CN118271006A (zh) 车辆用玻璃和摄像头单元
CN113009668B (zh) 光学组件、摄像模组、电子设备和光学组件的制备方法
CN110941068A (zh) 光学成像模块
US20230305297A1 (en) Optical film, head up display, and vehicle
WO2019039502A1 (ja) 反射光学素子およびステレオカメラ装置
US20220382211A1 (en) Method for Producing a Curved Substrate Panel with a Hologram, Resulting Substrate Panel with Hologram and a Laminate Containing Such a Substrate Panel, in Particular a Vehicle Window
JP7134675B2 (ja) 光学素子の製造方法、光学素子、及び撮像装置
CN117666147A (zh) 复合型光学模组、可穿戴设备及vr系统
CN110941071A (zh) 光学成像模块
JP2021162825A (ja) 光学素子、撮像装置、及び移動体
JP5575473B2 (ja) 反射光学系及び反射光学系の製作
JP2019185012A (ja) 撮影装置
JP2020112657A (ja) 結像光学素子、結像光学素子の製造方法、ステレオカメラ装置、およびステレオカメラ装置の製造方法
WO2019193860A1 (ja) 撮影装置
US3520594A (en) Prismatic rear view mirror
JP2009541592A5 (ja)
JP2676738B2 (ja) 繊維強化プラスチック製反射鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849029

Country of ref document: EP

Kind code of ref document: A1