WO2019035580A1 - Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including same - Google Patents
Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including same Download PDFInfo
- Publication number
- WO2019035580A1 WO2019035580A1 PCT/KR2018/008762 KR2018008762W WO2019035580A1 WO 2019035580 A1 WO2019035580 A1 WO 2019035580A1 KR 2018008762 W KR2018008762 W KR 2018008762W WO 2019035580 A1 WO2019035580 A1 WO 2019035580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- primary particles
- particles
- negative electrode
- active material
- electrode active
- Prior art date
Links
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 43
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000011164 primary particle Substances 0.000 claims abstract description 78
- 239000011163 secondary particle Substances 0.000 claims abstract description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000011230 binding agent Substances 0.000 claims abstract description 26
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 239000000571 coke Substances 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 10
- 239000002010 green coke Substances 0.000 claims description 9
- 238000010000 carbonizing Methods 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000011300 coal pitch Substances 0.000 claims description 2
- 239000011301 petroleum pitch Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 abstract description 11
- 239000007770 graphite material Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 21
- 238000000227 grinding Methods 0.000 description 10
- 238000003763 carbonization Methods 0.000 description 9
- 239000011295 pitch Substances 0.000 description 9
- 239000006183 anode active material Substances 0.000 description 7
- 239000010405 anode material Substances 0.000 description 7
- 229910021383 artificial graphite Inorganic materials 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005087 graphitization Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000003039 volatile agent Substances 0.000 description 4
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000011329 calcined coke Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000009818 secondary granulation Methods 0.000 description 3
- 238000013517 stratification Methods 0.000 description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000002000 Electrolyte additive Substances 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011802 pulverized particle Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/522—Graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62204—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6267—Pyrolysis, carbonisation or auto-combustion reactions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63496—Bituminous materials, e.g. tar, pitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Lithium secondary batteries are widely used because of their advantages such as high energy density and high voltage among secondary batteries, and commercial lithium secondary batteries generally employ cathode active materials of metal oxide system and carbonaceous anode active materials such as graphite.
- Graphite which is an anode active material, is mined from a mine, subjected to physical selection and high purity, and subjected to a heat treatment of a carbonaceous coke obtained by heat treating an organic matter such as natural carvings and coal or petroleum residues, .
- the natural hctical anode material is advantageous in high capacity battery construction compared to artificial graphite, but has a problem of reducing capacity due to the progression of charge / discharge cycle.
- Natural corundum generally has a form of impression (plate shape). Therefore, in order to increase the filling density and improve the output characteristic in the production of electrodes, generally spheroidizat ion is used for processing. Milling (milling) is generally used in the process of spheroidizing the impression cylinder, It is known that the capacity is decreased during the layer discharging process of the battery due to the increase in the stress in the inside of the particle and the defect.
- artificial carpets have a disadvantage in that the capacity is somewhat lower than natural carpets, and the price is high due to the manufacturing process cost, but the carpets have a merit of relatively long lifetime characteristics and are favored as materials for portable electronic devices that emphasize long life characteristics. At the same time, it is replacing natural rust.
- coal or petroleum residue black is manufactured through carbonization and high-temperature heat treatment (softening) process of the pitch, which is a processed product, and a small amount of a substance capable of catalytic graphitization to increase the capacity is added And a softening heat treatment process is applied.
- composite anode materials in which natural graphite and artificial graphite are mixed are sometimes used.
- a process for producing an anode material having high capacity, high output and long life characteristics has been proposed through a catalytic softening heat treatment using a catalyst material added after combining a spherical natural grain and a synthetic grain powder.
- a process for producing an anode material by combining the coke and the spheroidized natural wood chips, which are the raw materials of the synthetic wood lump, and then completing the final lump heat treatment has been proposed.
- a method of manufacturing a composite anode material by coating a natural graphite and an artificial graphite with a pitch material, carbonizing the carbonaceous layer, forming a carbonaceous layer on the surface, adding a catalyst, and finally performing a final graphitization heat treatment is proposed.
- the graphitization heat treatment temperature is maintained at a high level to increase the softening degree, or the catalytic material is added for the catalytic graphitization induction.
- the surface coating of artificial carbohydrates minimizes the exposure of the edges of the particles on the particle surface through grinding, etc., so that the excessive formation of the passivated fi lm through electrolytic decomposition The use of suppression is also used.
- irregular adjustment of the mutual orientation of the graphite particles in the processed product of the artificial hue, or a carbonaceous coating is introduced on the particle surface.
- the porosity of the inside and the surface of the artificial graphite increases due to the pore generated during the thermal decomposition of the catalyst, and the surface area of the resulting graphite and the electrolyte And side effects of deterioration of the battery life characteristics are caused by the increase in the half strength.
- the diffusion length of lithium ion is shortened by reducing the size of artificial graphite particles, the high-speed layer discharge characteristics can be improved, but the battery life may also decrease due to the increase of the specific surface area derived from small particle size.
- a high discharge capacity, a high charging / discharging efficiency, an excellent high output characteristic, and a small volume change during discharging of a layer is a high discharge capacity, a high charging / discharging efficiency, an excellent high output characteristic, and a small volume change during discharging of a layer.
- anode active material for a lithium secondary battery comprising: preparing a primary particle by pulverizing a carbon raw material containing 4 to 10% by weight of volatile matter; Preparing secondary particles by coalescing the primary particles with a binder; And graphitizing the secondary particles to produce a hammered material.
- the carbon source may include green coke or raw coke.
- the D50 particle size of the primary particles may be 10 [beta] eta or less.
- the sphericity of primary particles is 0. 75 to < / RTI >
- the step of finishing the primary particles may be further included.
- the method may further include a step of raising the primary particles at a rate of 1 to 10 t / min.
- the step of heat-treating the primary particles may remove the volatile components in the primary particles.
- the heat treatment temperature may be 800 to 150CTC.
- 2 to 20 parts by weight of the binder may be mixed with 100 parts by weight of the primary particles.
- the binder may include coal-based pitches or petroleum-based pitches.
- the binder may have a softening point of 80 to 300 ° C.
- the step of preparing the secondary particles may be carried out for 1 to 5 hours using a shear force at a silver of 110 to 500 ° C.
- the D50 particle size of the secondary particles may be 14 to 25.
- the step of carbonizing the secondary particles may further include the step of carbonizing the secondary particles.
- the carbonization step can be carried out at a temperature of 800 to 150 (TC.
- the step of producing the graphite material can be carried out at a temperature of 2800 to 3200 ° C.
- the prepared graphite sheet may have a specific surface area of 1.7 m 2 / g or less, and a tap density
- a lithium secondary battery according to an embodiment of the present invention includes: a positive electrode; cathode; And an electrolyte; and the negative electrode includes a negative electrode active material for a lithium secondary battery manufactured from the above-described recipe.
- the discharge capacity and the initial layer discharging efficiency are high when the negative electrode active material for a lithium secondary battery manufactured by the manufacturing method according to an embodiment of the present invention is used. At the same time, the electrode expansion due to the stratified charge discharge is low and the high-speed discharge characteristic is improved.
- FIG. 1 is a schematic flowchart of a method of manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
- Fig. 2 is a scanning electron microscope (SEM) photograph of primary particles ground and ground in Example 1.
- FIG. 3 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Example 1.
- FIG. 5 is a scanning electron microscope (SEM) photograph of the primary particles pulverized and ground in Comparative Example 1.
- SEM scanning electron microscope
- first, second and third, etc. are used to describe various portions, components, regions, layers and / or sections, but are not limited thereto. These terms are only used to distinguish any moiety, element, region, layer or section from another moiety, moiety, region, layer or section. Thus, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
- the D50 particle diameter refers to the particle size of the active material particles having various particle sizes distributed in a volume ratio of 50%.
- FIG. 1 schematically shows a flowchart of a method of manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
- the flowchart of the method for producing the negative electrode active material for lithium secondary battery of FIG. 1 is for illustrating the present invention only, and the present invention is not limited thereto. Therefore, the manufacturing method of the negative electrode active material for a lithium secondary battery can be variously modified.
- a method for producing an anode active material for a lithium secondary battery includes the steps of (S10) producing a primary particle by pulverizing a carbon raw material containing 4 to 10% by weight of volatile matter, A step (S20) of producing secondary particles, and a step (S30) of producing a graphite by softening the secondary particles.
- the manufacturing method of the negative electrode active material for a lithium secondary battery may further include other steps.
- a carbon raw material containing 4 to 10 wt% of volatile matter is pulverized to produce primary particles.
- the volatiles (matter) are generally solid carbonaceous residues remaining in the carbon stock.
- a carbon material containing an appropriate amount of volatile matter is used as a starting material.
- the specific surface area of the finally prepared negative electrode active material becomes large, The tap density becomes small, the rate of electrode expansion becomes large, and the high-speed discharge characteristic becomes poor.
- the affinity between the particle surface and the binder material during the preparation of the secondary particles may decrease, which may limit the increase of the particle size of the secondary particles produced.
- the particle porosity and the specific surface area may increase due to the generation of the inner and surface pores due to the generation of excessive volatiles.
- the carbon raw material may include green coke or raw coke.
- Green coke or raw coke can be produced from coal or petroleum residue, or processed product, through coking reaction under high pressure and high temperature conditions.
- Anisotropic or needle coke having a high carbon carbon texture orientation in a uniaxial direction or an isotropic or pitch coke having a low carbonaceous texture orientation may be obtained depending on the composition of the raw material and the caulking process conditions, tch coke) is obtained.
- Green or green is a state obtained immediately after the caulking process and contains a certain fraction of volatile matter without being subjected to heat treatment such as calcination or carbonization.
- heat treated products that are calcined or carbonized and volatile components are removed are named as calcined coke.
- the D50 particle size of the ground primary particles in step S10 may be 10 or less. If the D50 particle diameter of the primary particles is too large, there may arise a problem that the particle diameter of the secondary particles produced by using the particles is excessively increased or the number of primary particles constituting the unit secondary particles becomes too small. More specifically, the D50 particle size of the primary particles may be 3 to 8 [mu] m.
- step S10 since the carbon raw material containing volatile components is pulverized in step S10, primary particles with low roughness can be produced.
- step S10 since the carbon raw material containing volatile components is pulverized in step S10, primary particles having high sphericity can be produced.
- primary particles having a sphericity of 0.75 to 1 can be prepared.
- Step S10 When the sphericity of the primary particles produced by the step S10 is not sufficient, Step < / RTI > When the sphericity of the primary particles satisfies an appropriate range, the tap density becomes large, the rate of electrode expansion becomes small, and the high-speed discharge characteristic becomes excellent.
- the apparatus for the grinding process is not particularly limited, and a general pulverizer or a modified pulverizer capable of improving the spheroidizing effect and differentiating the pulverizer may be used.
- the crusher for crushing the carbon raw material in step S10 is not particularly limited. Specifically, it is possible to use a general type continuous or batch type pulverizer capable of performing jet-mill, roller mill or air classification simultaneously with pulverization.
- the method may further include a step of raising the primary particles at a rate of 1 to 10 ° C / minute.
- the primary particles after the step S10 are present at a normal temperature (10 to 30 ° C).
- the discharge capacity of the negative electrode active material can be further increased by controlling the rate of temperature rise in the step of increasing the temperature.
- the temperature raising rate may be 1 to 10 ° C / minute. If the temperature raising rate is too high, the degree of laminating the network or the degree of crystallization may decrease and the discharge capacity may drop.
- the step of heat treating the primary particles to remove volatile components in the primary particles may be further included.
- the heat treatment temperature may be 800 to 1500 ° C. If the heat treatment temperature is too low, the volatile components may not be properly removed. If the heat treatment temperature is too high, the effect of removing volatile components is the same, but the equipment configuration and operation cost may increase excessively.
- the primary particles may contain less than 0.5% by weight of volatiles.
- step S20 the primary particles are mixed with a binder to prepare secondary particles.
- Secondary particles are particles formed by collecting primary particles.
- the binder is added to 100 parts by weight of primary particles, To 20 parts by weight. If the amount of the binder is too small, the binding effect is small and smooth secondary granulation may not be achieved. If the amount of the binder is too large, the capacity and life characteristic of the battery may decrease.
- the binder may be a coal pitch or a petroleum pitch. . Pitch materials generally have an advantage of being wettable with the surface of the raw carbon material as compared with polymeric binders, and have a merit that they can form a dense bonding interface. The yield of carbonization or graphitization after heat treatment is high, There is an advantage that it can be obtained easily and cheaply.
- the binder may have a softening point of 80 to 300 ° C.
- the softening point is too low, it is difficult to bond smoothly primary particles and form secondary particles because the binding force is low, and it may be difficult to realize an economical manufacturing process due to low carbonization yield.
- the softening point is too high, the operation temperature of the equipment for melting the binder material is high, and the manufacturing cost of the equipment is increased, and heat denaturation and carbonization of some samples may occur due to use at high temperatures.
- Step S20 may be performed at a temperature of 110 to 50 CTC for 1 to 5 hours. If the temperature is too low or the time is too short, uniform mixing between the primary particles and the binder may become difficult. If the temperature is too high or the time is too long, the problem of decreasing the capacity and efficiency characteristics of the lumps produced after the final heat treatment process is overcome due to excessive denaturation of the pitch (oxidation and thermal denaturation) Lt; / RTI >
- the D50 particle size of the secondary particles produced through step S20 may be 14 to 25.
- the specific surface area of the negative electrode active material may be excessively increased, thereby reducing the battery efficiency.
- the D50 particle diameter of the secondary particles is too large, it may be difficult to form a secondary battery electrode in which adequate cell performance is exhibited, such as a problem that an electrode layer having an appropriate electrode density is difficult to form because the tap density is excessively low. More specifically, the D50 particle size of the secondary particles may be 16 to 2 m.
- the D50 particle size can be controlled through the ratio of the primary particles and the binder, the silver of the step S20, the time, and the kind of the binder.
- the equipment for carrying out the step S20 is not particularly limited,
- the paste-like mixture can be put into equipment that can be mixed at high temperatures. More specifically, the present invention can be carried out by equipping primary particle and binder uniformly using a device for generating a shear force, such as a pair of rotating blades, into a device capable of producing a highly viscous paste-like mixture. If the D50 particle size of the secondary particles produced in step S20 is too large, the particle size can be controlled by pulverizing the particles using a pin mill to remove the particles. The rotation speed (rpm) of the crusher can be adjusted for proper particle size control of the fly ash.
- the present invention is not limited thereto, and various grinding machines can be used to achieve the target particle size.
- step S20 carbonization of the secondary particles may be further included. This removes volatiles from the binder and leads to pyrolysis, solidification and conversion to carbon dioxide.
- the carbonizing step can be carried out at a temperature of 800 to 1500 ° C.
- the atmosphere gas may be an inert gas, and may be performed in a nitrogen or argon atmosphere.
- the carbonization step can be carried out for 30 minutes to 5 hours.
- step S30 the secondary particles are subjected to liquefaction to produce a hammered material.
- Step S30 may be performed at a haze of 2800 to 3200 ° C.
- the equipment for performing the step S30 is not particularly limited and the Acheson furnace can be used.
- the softening can be performed according to the operation mode of Acheson without using a separate atmospheric gas, but if an atmospheric gas is used, an inert gas can be used and the operation can be performed in a nitrogen or argon atmosphere.
- Step S30 may be performed for 30 minutes to 20 days.
- the graphite may be pulverized or broken into pulverized materials if necessary.
- the negative electrode active material for a lithium secondary battery manufactured through one embodiment of the present invention has a small specific surface area and a high tap density, thereby increasing the densification and energy density of the electrode layer.
- the negative electrode active material for a lithium secondary battery manufactured through one embodiment of the present invention may have a specific surface area of 1.7 m 2 / g or less and a tap density of 0.7 g / cc or more. More specifically, it has a specific surface area of 0.8 to 1.6 mVg, The tap density may be 0.8 to 1.0 g / cc.
- cathode In another embodiment of the present invention, cathode; And an electrolyte, wherein the negative electrode comprises a negative active material prepared by the above-described method.
- the electrolyte is at least one selected from the group consisting of fluoro ethylene carbonate (FEC), vinylene carbonate (VC), ethylene sulfonate (ES) Or more of the electrolyte additive.
- FEC fluoro ethylene carbonate
- VC vinylene carbonate
- ES ethylene sulfonate
- the cycle characteristics can be further improved, and a stable solid electrolyte interphase (SEI) can be formed by the electrolyte additive. This fact is supported by the following embodiments.
- the characteristics of the negative electrode active material and thus the lithium secondary battery are as described above.
- the remaining battery configuration except for the negative electrode active material is generally known. Therefore, a detailed description will be omitted.
- green coke (VM content: about 5.0 wt%) as a carbon-based premium acicular coke product was used, and primary coke was prepared by primary crushing the green coke to a degree of D50 of 7 liters using an air clotting mill The pulverized particles were further polished using a pulverizer type pulverizer equipped with an air flow classifier, and the D50 of the obtained primary particles was 7. / m. In FIG. 2, SEM photographs of the primary particles are shown.
- the primary particles were heated at a rate of 5 ° C / min per minute and then heated for 1 hour in a nitrogen atmosphere of i2oo ° c to remove volatile matter. Obtained
- Secondary particles were prepared by mixing primary particles with a pitch having a softening point of 120 ° C in a weight ratio of 100: 10 and using a sieving mixer capable of heating after 2 hours.
- the D50 of the secondary particles was 19.5 zm. 120 CTC for 1 hour in a nitrogen atmosphere Then, the temperature was raised to 3 ° C and the mixture was softened for 1 hour to prepare an anode active material.
- the negative electrode active material was prepared in the same manner as in Example 1, except that the heat treatment step for removing volatile components was omitted in Example 1.
- the negative electrode active material was prepared in the same manner as in Example 1 except that the grinding step was omitted in Example 1.
- FIG. 4 shows SEM photographs of primary particles in the manufacturing process in Example 3.
- the negative electrode active material was prepared in the same manner as in Example 1, except that the weight ratio of the primary particles to the pitch in Example 1 was 100: 20.
- the negative electrode active material was prepared in the same manner as in Example 1, except that D50 was obtained after grinding and grinding of the primary particles in Example 1.
- the negative electrode active material was prepared in the same manner as in Example 1, except that the D50 was 5.5 plates after the pulverization and grinding of the primary particles in Example 1.
- An anode active material was prepared in the same manner as in Example 1, except that the rate of temperature increase after crushing and grinding of the primary particles in Example 1 was controlled to 20 ° C / min.
- FIG. 5 shows a scanning electron microscope (SEM) photograph of the ground and pulverized primary particles.
- SEM scanning electron microscope
- the negative electrode active material was prepared in the same manner as in Comparative Example 1, except that the weight ratio of the calcined coke to the pitch in Comparative Example 1 was 100: 20.
- the negative electrode active material was prepared in the same manner as in Comparative Example 1 except that the D50 was 10 after the pulverization and the grinding of the primary particles in Comparative Example 1.
- the specific surface area (BET) and D50 particle diameters of the negative electrode active materials prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were measured and summarized in Table 1 below.
- the specific surface area was measured by a nitrogen adsorption method.
- Example 1 and Example 2 when the primary particles were obtained, the tap density of the negative electrode active material produced through both of the pulverization and the finishing step was generally high and the specific surface area was low. Also, since the particle size of the primary particles increases, the specific surface area of the negative electrode active material produced is generally decreased, It can be confirmed that the particle size of the active material increases proportionally. As the tap density of the negative electrode active material increases, it is expected that the density of the electrode layer is increased and the energy density is increased. Therefore, it can be confirmed that this result can be usefully used for manufacturing a high capacity negative electrode active material.
- the weight ratio of the negative electrode active material, the binder (Carboxy Methyl Cellulose and styrene Butadiene Rubber) and the conductive material (Super P) prepared in Examples 1 to 7 and Comparative Examples 1 to 3 was 97: 2: 1
- the resultant mixture was uniformly applied to a copper (Cu) current collector, compressed by a roll press, and vacuum-dried in a 100 ° C vacuum oven for 12 hours to prepare a negative electrode. At this time, the electrode density was set to 1.4 to 1.6 g / cc.
- Li molybdenum Li-metal was used as a counter electrode, and 1 mol of LiPF 6 (1 mol) was added to a solvent having a volume ratio of ethylene carbonate (EC: Ethylene Carbonate): dimethyl carbonate 6 solution was used.
- EC Ethylene Carbonate
- a CR 2032 half-coin cell was fabricated according to a conventional manufacturing method.
- the batteries were driven under the conditions of 0.1 C, 5 mV, 0.005 C cut-off charging and 0.1 C 1.5 V cut-off discharge, and initial discharge capacity and efficiency were measured and are summarized in Table 2 below.
- Example 6 354 91.2
- Example 7 348 93
- Comparative Example 3 353 92.8 Referring to Table 2, the green coke was used as a raw material as in Example 1, and after the pulverization and the polish-pulverizing step were carried out at the time of obtaining the primary particles, the removal of volatile components The discharge capacity and efficiency of the battery were excellent.
- Example 7 the negative electrode active material after the removal of volatile components under the carbonization condition having a relatively high temperature-raising rate has a relatively low discharge capacity.
- Example 4 when the amount of the binder material used in the secondary granulation was increased, the discharge capacity of the prepared negative electrode active material decreased.
- a battery was prepared by the method described in Experimental Example 2.
- the expansion ratio was calculated by calculating the rate of change in thickness of the electrode measured by driving the battery for 10 cycles under the conditions of 0.1 C, 5 mV, 0.005 C cut-of-f lamination and 0.1 C and 1.5 V cut-of f discharging Respectively.
- Discharge rate was measured at 3C and 0.2C.
- a battery was prepared by the method described in Experimental Example 2.
- the high-speed stratification characteristics were evaluated by measuring the initial discharge capacity under the conditions of 0.1 C, 5 mV, 0.005 C cut-off layering, 0.1 C, and 1,5 V cut-off discharge, C, 1.0C, and 2.0C, and the charging and discharging cycles were repeated three times, respectively.
- the battery charging capacity was measured at 2C and 0.1C.
- Comparative Example 3 30.5 Referring to Table 4, it can be seen that the smaller the size of the primary particles and the size of the secondary particles, the higher the superplasticization property.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Presented is a method for producing a negative electrode active material which has a high discharge capacity, a high charge-discharge efficiency, and excellent high-output characteristics, and which experiences only a small volume change during charging/discharging. A method for producing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention comprises: a step for producing primary particles by crushing a carbon raw material containing 4 to 10 wt% of volatile components; a step for producing secondary particles by mixing the primary particles with a binder; and a step for producing a graphite material by graphitizing the secondary particles.
Description
【명세서】 【Specification】
【발명의 명칭】 Title of the Invention
리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지 METHOD FOR MANUFACTURING ANNEALDEAL ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
【기술분야】 TECHNICAL FIELD
리튬 이차 전지용 음극 활물질의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 관한 것이다. A negative electrode active material for a lithium secondary battery, and a lithium secondary battery comprising the same.
【발명의 배경이 되는 기술】 TECHNICAL BACKGROUND OF THE INVENTION
최근 휴대전화, 태블릿피씨 등의 포터블 전자기기의 고성능화 및 기능 집적화에 따른 소비전력의 증가 등에 의해 전지의 고용량화가 진행되고, 전동 공구, 특히 HEV (하이브리드 자동차), EV (전기자동차)용 고출력 전원이 필요함에 따라 충방전 속도가 우수한 고출력 특성을 지닌 2차 전지의 필요성이 크게 증가하고 있다. 또한 사용 시간의 증대에 따라 전지의 충전 /방전 주기가 감소하여 전지 사이클 수명의 대폭적인 향상이 요구되고 있으며 전지 소재의 열화에 의한 전지의 부피 변화 (팽창 및 수축)의 최소화 또한주요한 필요 특성으로 부각되고 있다. BACKGROUND ART [0002] In recent years, portable electronic devices such as mobile phones and tablet PCs have been increasing in capacity due to higher performance and increased power consumption due to functional integration, and electric power tools, especially HEVs (Hybrid Cars) and EVs The necessity of a secondary battery having a high output characteristic excellent in charging / discharging speed has been greatly increased. In addition, as the use time increases, the charging / discharging cycle of the battery is reduced and the life of the battery cycle is required to be greatly improved. Minimization of the volume change (expansion and contraction) .
2차 전지 중 고에너지 밀도, 고전압 등의 장점으로 인해 리튬 2차전지가 폭넓게 사용되고 있으며, 상용 리튬 2차전지는 일반적으로 금속산화물계의 양극활물질 및 흑연 등의 탄소계 음극활물질이 채용되고 있다. Lithium secondary batteries are widely used because of their advantages such as high energy density and high voltage among secondary batteries, and commercial lithium secondary batteries generally employ cathode active materials of metal oxide system and carbonaceous anode active materials such as graphite.
음극활물질인 흑연은 광산에서 채굴하여 물리적 선별 및 고순도화를 거쳐 가공된 천연혹연과 석탄 혹은 석유 잔사 (residue) 등의 유기물을 열처리하여 얻어진 탄소체인 코크스 (coke)를 가공 및 고온 열처리하여 얻은 인조혹연으로 구분된다. Graphite, which is an anode active material, is mined from a mine, subjected to physical selection and high purity, and subjected to a heat treatment of a carbonaceous coke obtained by heat treating an organic matter such as natural carvings and coal or petroleum residues, .
천연혹연계 음극재는 인조흑연에 비해서 고용량의 전지 구성에 유리하나 층전 /방전 사이클 진행에 따른 용량 감소 정도가 열위한 문제점을 지니고 있다. 천연혹연은 일반적으로 인상 (판상)의 형태를 지니기 때문에 전극 제조 시 충진밀도의 증가, 출력 특성의 개선을 위해 일반적으로 구상화 (spheroidizat ion)한 형태로 가공하여 사용되고 있다. 인상혹연을 구상화 가공 시 일반적으로 밀링 (mi l l ing) 등을 사용하는 데, 해당 공정에
기인하여 발생하는 혹연 입자 내부의 응력 증대 및 결함 (defect )으로 인해 반복되는 전지의 층방전 과정 중 용량이 감소하여 수명 특성이 열화되는 것으로 알려져 있다. The natural hctical anode material is advantageous in high capacity battery construction compared to artificial graphite, but has a problem of reducing capacity due to the progression of charge / discharge cycle. Natural corundum generally has a form of impression (plate shape). Therefore, in order to increase the filling density and improve the output characteristic in the production of electrodes, generally spheroidizat ion is used for processing. Milling (milling) is generally used in the process of spheroidizing the impression cylinder, It is known that the capacity is decreased during the layer discharging process of the battery due to the increase in the stress in the inside of the particle and the defect.
한편 인조혹연은 용량이 천연혹연에 비해 다소 열위하고 제조 공정 비용으로 인해 가격이 높은 단점이 있지만 수명 특성이 상대적으로 우수한 장점이 있어, 장수명 특성이 강조되는 포터블 전자기기용 전지의 소재로 각광받으며, 빠른 속도로 천연혹연을 대체하고 있다. 일반적으로 인조흑연 음극재를 제조하기 위해 석탄 혹은 석유계 잔사 흑은 가공품인 핏치를 탄화 및 고온열처리 (혹연화) 공정을 통해 제조하며, 용량 증가를 위해 촉매 흑연화 반웅이 가능한 물질을 소량 첨가하여 혹연화 열처리 하는 공정을 적용하고 있다. 웅용 목적에 따라 양 소재가 지닌 단점을 보완하기 위해 천연흑연과 인조흑연을 흔합한 형태의 복합 음극재가사용되기도 한다. 예를 들어 구상화 천연혹연과 인조혹연 분말을 복합한 후 첨가한 촉매물질을 이용한 촉매 혹연화 열처리를 통해 고용량, 고출력, 장수명 특징을 지닌 음극재를 제조하는 공정이 제안되었다. 또한, 인조혹연의 원료가 되는 코크스 및 구상화된 천연혹연을 흔합한 후 복합화하고 최종 혹연화 열처리를 통해 음극재를 제조하는 공정이 제안되었다. 천연흑연과 인조흑연을 각각 핏치 물질로 코팅한 후 탄화하여 표면에 탄소질 층을 형성하고 촉매를 첨가하여 흔합한 후 최종 흑연화 열처리를 통해 복합 음극재를 제조하는 방법이 제안되었다. On the other hand, artificial carpets have a disadvantage in that the capacity is somewhat lower than natural carpets, and the price is high due to the manufacturing process cost, but the carpets have a merit of relatively long lifetime characteristics and are favored as materials for portable electronic devices that emphasize long life characteristics. At the same time, it is replacing natural rust. Generally, in order to manufacture artificial graphite anode materials, coal or petroleum residue black is manufactured through carbonization and high-temperature heat treatment (softening) process of the pitch, which is a processed product, and a small amount of a substance capable of catalytic graphitization to increase the capacity is added And a softening heat treatment process is applied. In order to compensate for the disadvantages of both materials depending on the purpose of use, composite anode materials in which natural graphite and artificial graphite are mixed are sometimes used. For example, a process for producing an anode material having high capacity, high output and long life characteristics has been proposed through a catalytic softening heat treatment using a catalyst material added after combining a spherical natural grain and a synthetic grain powder. In addition, a process for producing an anode material by combining the coke and the spheroidized natural wood chips, which are the raw materials of the synthetic wood lump, and then completing the final lump heat treatment has been proposed. A method of manufacturing a composite anode material by coating a natural graphite and an artificial graphite with a pitch material, carbonizing the carbonaceous layer, forming a carbonaceous layer on the surface, adding a catalyst, and finally performing a final graphitization heat treatment is proposed.
일반적으로 인조혹연 소재의 고용량화를 위해서는 흑연화 열처리 온도를 높게 유지하여 혹연화도를 증가시키거나 촉매흑연화 반웅 유도를 위해 촉매 물질을 첨가하여 열처리한다. 층방전 효율 개선을 위해서는 인조혹연 표면 코팅 흑은 입자 마쇄 (gr inding)등을 통해 입자 표면의 혹연 edge부의 노출을 최소화하여 전해액의 분해 등을 통해 생성되는 부동태막 (passivated f i lm)의 과도한 형성을 억제하는 방법을 사용하기도 한다. 고속 충방전 성능 개선을 위해서 인조혹연 가공품 내 흑연 입자들의 상호간 배향을 불규칙하게 조절하거나, 입자 표면에 탄소질 코팅을 도입하는 경우도 있다. 충방전에 따른 인조혹연 소재 및 전극 부피 변화를 감소시키기 위해서 인조흑연 가공품 내 흑연 입자들의 상호간 배향이
불규칙적 형태로 제조하거나 소재 자체의 강도를 높여 층방전 반웅 시 치수 안정성을 개선하는 방법을 사용하기도 한다. 언급한 사례 외에도 인조혹연의 전지소재 성능을 개선하기 위한 다양한 기술 개발이 이뤄지고 있으나, 일반적으로 성능 간에 trade-of f 관계가 존재하여 특정 성능을 개선할 경우, 다른 성능이 감소하는 문제가 생기게 된다. 예를 들어 용량 증대를 위해 촉매를 제조 공정 중 도입하여 촉매 혹연화 열처리를 하는 경우 촉매의 열분해 시 생성되는 기공 등쎄 의해 인조흑연 내부 및 표면의 기공 분율이 증가하고 이로 인한 소재 비표면적 및 전해액과의 부반웅성 증대로 인해 전지 수명 특성의 열화가 진행되는 부작용이 발생하게 된다. 인조흑연 입자의 크기를 감소시켜 리튬 이온의 확산거리를 단축시키는 경우 고속 층방전 특성을 개선할 수 있으나 작은 입자 크기에서 유래한 비표면적 증가로 인해 전지 수명이 역시 감소하는 문제가 발생할 수 있다. 층방전 중 발생하는 소재 및 전극 부피의 변화를 억제하기 위해서 입경이 작은 입자를 일정한 크기로 응집 및 복합화한 2차 입자 형태의 음극재를 형성하는 경우 2차 입자 내의 블규칙한 배향성을 지닌 1차 입자들로 인하여 층방전에 따른 소재 부피 변화가 상쇄되어 전극 전체 부피 변화가 감소하는 장점이 있다. 하지만 단위 1차 입자의 가공 형태나 2차 입자화 공정 조건에 따라 입자의 불규칙한 배향도가 층분하지 않고, 비표면적이 증가하거나 2차 입자 형상이 고르지 않아 층방전에 따른 소재 및 전극 팽창률의 감소가 층분하지 않고, 전지 수명이 감소하는 등의 부작용이 생길 수 있다. Generally, in order to increase the capacity of the artificial carburizing material, the graphitization heat treatment temperature is maintained at a high level to increase the softening degree, or the catalytic material is added for the catalytic graphitization induction. In order to improve the discharge efficiency of the layer, the surface coating of artificial carbohydrates minimizes the exposure of the edges of the particles on the particle surface through grinding, etc., so that the excessive formation of the passivated fi lm through electrolytic decomposition The use of suppression is also used. In order to improve the high-speed charging / discharging performance, there is a case where irregular adjustment of the mutual orientation of the graphite particles in the processed product of the artificial hue, or a carbonaceous coating is introduced on the particle surface. In order to reduce the change of the phosphorus content and the electrode volume due to charging and discharging, mutual orientation of graphite particles in artificial graphite processed product It is also possible to use irregular shapes or to increase the strength of the material itself to improve the dimensional stability during layer discharge. In addition to the above-mentioned cases, a variety of techniques have been developed to improve the performance of the battery material of synthetic hammocks. However, there is a trade-of-f relationship between the performance of the hammocks. For example, when the catalyst is introduced into the manufacturing process to increase the capacity, the porosity of the inside and the surface of the artificial graphite increases due to the pore generated during the thermal decomposition of the catalyst, and the surface area of the resulting graphite and the electrolyte And side effects of deterioration of the battery life characteristics are caused by the increase in the half strength. If the diffusion length of lithium ion is shortened by reducing the size of artificial graphite particles, the high-speed layer discharge characteristics can be improved, but the battery life may also decrease due to the increase of the specific surface area derived from small particle size. In order to suppress the change of the material and the electrode volume which occur during the discharge of the layer, in the case of forming a secondary particle type anode material in which particles of a small particle size are agglomerated and complexed to a certain size, primary particles The particles have a merit that the volume change of the electrode is reduced due to the offset of the material volume change due to the layer discharge. However, irregular orientation of the particles is not layered according to the processing form of the primary particles and the secondary granulation process conditions, and the specific surface area is increased or the secondary particle shape is uneven, And the battery life may be reduced.
【발명의 내용】 DISCLOSURE OF THE INVENTION
【해결하고자 하는 과제】 [Problem to be solved]
높은 방전 용량, 높은 충방전 효율 및 우수한 고출력 특성, 층방전 중 체적 변화가 작은 음극 활물질의 제조 방법을 제시한다. A high discharge capacity, a high charging / discharging efficiency, an excellent high output characteristic, and a small volume change during discharging of a layer.
【과제의 해결 수단】 MEANS FOR SOLVING THE PROBLEMS
본 발명의 일 구현예에 의한 리튬 이차 전지용 음극 활물질의 제조 방법은 휘발분을 4 내지 10 중량 % 포함하는 탄소 원료를 분쇄하여 1차 입자를 제조하는 단계 ; 1차 입자를 바인더와 흔합하여 2차 입자를 제조하는 단계; 및 2차 입자를 흑연화하여 혹연재를 제조하는 단계를 포함한다. According to an embodiment of the present invention, there is provided a method of manufacturing an anode active material for a lithium secondary battery, comprising: preparing a primary particle by pulverizing a carbon raw material containing 4 to 10% by weight of volatile matter; Preparing secondary particles by coalescing the primary particles with a binder; And graphitizing the secondary particles to produce a hammered material.
탄소 원료는 그린 코크스 또는 생 코크스를 포함할 수 있다.
1차 입자의 D50 입경은 10 βη 이하일 수 있다. The carbon source may include green coke or raw coke. The D50 particle size of the primary particles may be 10 [beta] eta or less.
1차 입자의 구형화도는 0 . 75 내지 1일 수 있다. The sphericity of primary particles is 0. 75 to < / RTI >
1차 입자를 제조하는 단계 이후, 1차 입자를 마쇄하는 단계를 더 포함할 수 있다. After the step of producing the primary particles, the step of finishing the primary particles may be further included.
1차 입자를 제조하는 단계 이후, 1차 입자를 1 내지 lo t: /분의 속도로 승온하는 단계를 더 포함할 수 있다. After the step of preparing the primary particles, the method may further include a step of raising the primary particles at a rate of 1 to 10 t / min.
1차 입자를 제조하는 단계 이후, 1차 입자를 열처리하여 1차 입자 내의 휘발분을 제거하는 단계를 더 포함할 수 있다. After the step of producing the primary particles, the step of heat-treating the primary particles may remove the volatile components in the primary particles.
1 '차 입자 내의 휘발분을 제거하는 단계에서, 열처리 온도는 800 내지 150CTC일 수 있다. In the step of removing the volatile matter in the 1 < th > -order particles, the heat treatment temperature may be 800 to 150CTC.
2차 입자를 제조하는 단계에서, 1차 입자 100 중량부에 대하여 바인더를 2 내지 20 중량부 흔합할 수 있다. In the step of producing the secondary particles, 2 to 20 parts by weight of the binder may be mixed with 100 parts by weight of the primary particles.
바인더는 석탄계 핏치 또는 석유계 핏치를 포함할 수 있다. The binder may include coal-based pitches or petroleum-based pitches.
바인더는 연화점이 80 내지 300 °C일 수 있다. The binder may have a softening point of 80 to 300 ° C.
2차 입자를 제조하는 단계는 110 내지 500 °C의 은도에서 전단력을 활용하여 1 내지 5시간 동안 수행할 수 있다. The step of preparing the secondary particles may be carried out for 1 to 5 hours using a shear force at a silver of 110 to 500 ° C.
2차 입자의 D50 입경은 14 내지 25 일 수 있다. The D50 particle size of the secondary particles may be 14 to 25.
2차 입자를 제조하는 단계 이후에, 2차 입자를 탄화하는 단계를 더 포함할 수 있다. After the step of producing the secondary particles, the step of carbonizing the secondary particles may further include the step of carbonizing the secondary particles.
탄화하는 단계는 800 내지 150(TC의 온도에서 수행할 수 있다. The carbonization step can be carried out at a temperature of 800 to 150 (TC.
흑연재를 제조하는 단계는 2800 내지 3200 °C의 온도에서 수행할 수 있다. The step of producing the graphite material can be carried out at a temperature of 2800 to 3200 ° C.
제조된 흑연재는 비표면적이 1 .7m2/g 이하가 될 수 있고, 탭밀도가The prepared graphite sheet may have a specific surface area of 1.7 m 2 / g or less, and a tap density
0 . 7g/cc 이상이 될 수 있다. 0 . 7 g / cc or more.
본 발명의 일 구현예에 의한 리튬 이차 전지는 양극; 음극; 및 전해질;을 포함하고, 음극은, 전술한 방밥으로 제조된 리튬 이차 전지용 음극 활물질을 포함한다. A lithium secondary battery according to an embodiment of the present invention includes: a positive electrode; cathode; And an electrolyte; and the negative electrode includes a negative electrode active material for a lithium secondary battery manufactured from the above-described recipe.
【발명의 효과】 【Effects of the Invention】
본 발명의 일 구현예에 따른 제조 방법을 통해 제조한 리륨 이차 전지용 음극 활물질을 사용하면 방전 용량 및 초기 층방전 효율이 높다.
동시에 층전 방전에 따른 전극 팽창을이 낮으며 고속 방전 특성이 향상된다 . 【도면의 간단한 설명】 The discharge capacity and the initial layer discharging efficiency are high when the negative electrode active material for a lithium secondary battery manufactured by the manufacturing method according to an embodiment of the present invention is used. At the same time, the electrode expansion due to the stratified charge discharge is low and the high-speed discharge characteristic is improved. BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 본 발명의 일 실시예에 따른 리튬 이차 전지용 음극 활물질의 제조 방법의 개략적인 순서도이다. 1 is a schematic flowchart of a method of manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention.
도 2는 실시예 1에서 분쇄 및 마쇄된 1차 입자의 주사 전자 현미경 (SEM) 사진이다. Fig. 2 is a scanning electron microscope (SEM) photograph of primary particles ground and ground in Example 1. Fig.
도 3은 실시예 1에서 제조한 음극 활물질의 주사 전자 현미경 (SEM) 사진이다. 3 is a scanning electron microscope (SEM) photograph of the negative electrode active material prepared in Example 1. Fig.
도 4는 실시예 3에서 분쇄된 1차 입자의 주사 전자 현미경 (SEM) 사진이다. 4 is a scanning electron microscope (SEM) photograph of the primary particles pulverized in Example 3. Fig.
도 5는 비교예 1에서 분쇄 및 마쇄된 1차 입자의 주사 전자 현미경 (SEM) 사진이다. FIG. 5 is a scanning electron microscope (SEM) photograph of the primary particles pulverized and ground in Comparative Example 1. FIG.
【발명을 실시하기 위한 구체적인 내용】 DETAILED DESCRIPTION OF THE INVENTION
제 1, 제 2 및 제 3 등의 용어들은 다양한 부분, 성분, 영역, 층 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서 , 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다. The terms first, second and third, etc. are used to describe various portions, components, regions, layers and / or sections, but are not limited thereto. These terms are only used to distinguish any moiety, element, region, layer or section from another moiety, moiety, region, layer or section. Thus, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the invention. The singular forms as used herein include plural forms as long as the phrases do not expressly express the opposite meaning thereto. Means that a particular feature, region, integer, step, operation, element and / or component is specified and that the presence or absence of other features, regions, integers, steps, operations, elements, and / It does not exclude addition.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에
부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Commonly used predefined terms are defined in the relevant technical literature and in the present disclosure Are interpreted as having a corresponding meaning, and are not to be construed as ideal or very formal unless defined otherwise.
아울러, 본 명세서에서 D50 입경은 다양한 입자 크기가 분포되어 있는 활물질 입자를 부피비로 50%까지 입자를 누적시켰을 때의 입자 크기를 의미한다 . In the present specification, the D50 particle diameter refers to the particle size of the active material particles having various particle sizes distributed in a volume ratio of 50%.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
도 1은 본 발명의 일 실시예에 따른 리륨 이차 전지용 음극 활물질의 제조 방법의 순서도를 개략적으로 나타낸다. 도 1의 리튬 이차 전지용 음극 활물질의 제조 방법의 순서도는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서 리튬 이차 전지용 음극 활물질의 제조 방법을 다양하게 변형할 수 있다. FIG. 1 schematically shows a flowchart of a method of manufacturing a negative electrode active material for a lithium secondary battery according to an embodiment of the present invention. The flowchart of the method for producing the negative electrode active material for lithium secondary battery of FIG. 1 is for illustrating the present invention only, and the present invention is not limited thereto. Therefore, the manufacturing method of the negative electrode active material for a lithium secondary battery can be variously modified.
도 1에 도시한 바와 같이, 리튬 이차 전지용 음극 활물질의 제조 방법은 휘발분을 4 내지 10 중량 % 포함하는 탄소 원료를 분쇄하여 1차 입자를 제조하는 단계 (S10) , 1차 입자를 바인더와 흔합하여 2차 입자를 제조하는 단계 (S20) , 및 2차 입자를 혹연화하여 흑연재를 제조하는 단계 (S30)를 포함한다. 이외에, 필요에 따라 리륨 이차 전지용 음극 활물질의 제조 방법은 다른 단계들을 더 포함할 수 있다. As shown in FIG. 1, a method for producing an anode active material for a lithium secondary battery includes the steps of (S10) producing a primary particle by pulverizing a carbon raw material containing 4 to 10% by weight of volatile matter, A step (S20) of producing secondary particles, and a step (S30) of producing a graphite by softening the secondary particles. In addition, if necessary, the manufacturing method of the negative electrode active material for a lithium secondary battery may further include other steps.
먼저, 단계 (S10)에서는 휘발분을 4 내지 10 중량 ¾> 포함하는 탄소 원료를 분쇄하여 1차 입자를 제조한다. 여기서, 휘발분 (vol at i l e matter )이란 일반적으로 탄소 원료 중에 잔존하는 고형 탄소화 되지 않은. 저분자량 유기화합물을 칭하는 것으로 불활성 분위기에서 가열할 경우 기상으로 전환되어 탄소 원료에서 분리될 수 있는 성분을 의미한다. 본 발명의 일 실시예에서 휘발분을 적당량 포함하는 탄소 원료를 시작물질로 한다. 휘발분을 포함하지 않거나, 적게 포함하는 탄소 원료 예컨데, 하소 (cal cinat i on) 또는 탄화 (carboni zat i on)된 코크스를 탄소 원료로 사용할 경우, 분쇄 단계 (S10)에서 입자 표면이 거칠어지고, 파단면의 노출이 증가한다. 궁극적으로 최종 제조된 음극 활물질의 비표면적은 커지고,
탭밀도는 작아져, 전극 팽창율이 커지고, 고속 방전 특성이 열악해지게 된다. 반면, 탄소 원료 내의 휘발분이 너무 많을 경우, 2차입자 제조 시 입자표면과 바인더 물질과의 친화성이 감소하여 제조된 2차입자의 입경을 증가시키는데 한계가 있을 수 있으며, 2차 입자 제조 후 열처리 단계에서 과도한 휘발분의 발생에 따른 입자 내부 및 표면 기공의 생성으로 인해 입자기공율 및 비표면적이 증가하는 문제가 발생할 수 있다. First, in step S10, a carbon raw material containing 4 to 10 wt% of volatile matter is pulverized to produce primary particles. Here, the volatiles (matter) are generally solid carbonaceous residues remaining in the carbon stock. Refers to a component that can be converted into a gas phase and separated from a carbon source when heated in an inert atmosphere by means of a low molecular weight organic compound. In one embodiment of the present invention, a carbon material containing an appropriate amount of volatile matter is used as a starting material. When a carbonaceous material such as calcined or carbonized material containing no or little volatile components is used as the carbon raw material, the particle surface becomes rough in the crushing step (S10) Exposure of the cross section increases. Ultimately, the specific surface area of the finally prepared negative electrode active material becomes large, The tap density becomes small, the rate of electrode expansion becomes large, and the high-speed discharge characteristic becomes poor. On the other hand, if the volatile content in the carbon raw material is too high, the affinity between the particle surface and the binder material during the preparation of the secondary particles may decrease, which may limit the increase of the particle size of the secondary particles produced. The particle porosity and the specific surface area may increase due to the generation of the inner and surface pores due to the generation of excessive volatiles.
구체적으로 탄소 원료는 그린 코크스 또는 생 코크스를 포함할 수 있다. 그린 코크스 또는 생 코크스는 석탄 또는 석유계 잔사, 또는 가공품인 ¾치를 고압 및 고온 조건에서 코킹 반응을 통하여 제조할 수 있다. 원료의 조성 및 코킹 공정 조건에 따라서 일축 방향으로 탄소질 조직 배향성도가 높은 이방성 또는 침상 코크스 (ani sotropic or needle coke)가 얻어지거나 또는 탄소질 조직 배향도가 낮은 등방성 혹은 핏치 코크스 ( i sotropi c or pi tch coke)가 얻어진다. 그린 또는 생이란 코킹 공정 직후 얻어진 상태로 하소 (calcinat ion) 또는 탄화 (carboni zat ion) 등의 열처리를 거치지 않아 일정한 분율의 휘발분을 포함하고 있는 상태를 의미한다ᅳ 본 명세서에서 그린 코크스 또는 생 코크스를 하소 또는 탄화하여 휘발분을 제거한 열처리 제품은 하소 코크스 (calcined coke)로 구분하여 명명한다. Specifically, the carbon raw material may include green coke or raw coke. Green coke or raw coke can be produced from coal or petroleum residue, or processed product, through coking reaction under high pressure and high temperature conditions. Anisotropic or needle coke having a high carbon carbon texture orientation in a uniaxial direction or an isotropic or pitch coke having a low carbonaceous texture orientation may be obtained depending on the composition of the raw material and the caulking process conditions, tch coke) is obtained. Green or green is a state obtained immediately after the caulking process and contains a certain fraction of volatile matter without being subjected to heat treatment such as calcination or carbonization. ᅳ In the present specification, the term "green coke" or "raw coke" Heat treated products that are calcined or carbonized and volatile components are removed are named as calcined coke.
단계 (S10)에서 분쇄된 1차 입자의 D50 입경은 10 이하일 수 있다. 1차 입자의 D50 입경이 너무 크면, 이를 이용해 제조한 2차 입자의 입경이 과도하게 증가하거나 단위 2차 입자를 구성하는 1차 입자의 개수가 너무 작아지는 문제가 발생할 수 있다. 더욱 구체적으로 1차 입자의 D50 입경이 3 내지 8//m일 수 있다. The D50 particle size of the ground primary particles in step S10 may be 10 or less. If the D50 particle diameter of the primary particles is too large, there may arise a problem that the particle diameter of the secondary particles produced by using the particles is excessively increased or the number of primary particles constituting the unit secondary particles becomes too small. More specifically, the D50 particle size of the primary particles may be 3 to 8 [mu] m.
전술하였듯이, 단계 (S10)에서 휘발분을 포함하는 탄소 원료를 분쇄하기 때문에 거칠기가 낮은 1차 입자를 제조할 수 있다. 또한, 단계 (S10)에서 휘발분을 포함하는 탄소 원료를 분쇄하기 때문에 구형도가 높은 1차 입자를 제조할 수 있다. 이 때 구형도란 입자가 구형에 가까운지를 수치적으로 표현한 것이며, 1에 가까울수록 구형과 유사함을 의미한다. 구체적으로 구형도가 0.75 내지 1인 1차 입자를 제조할 수 있다. 단계 (S10)에 의해 제조한 1차 입자의 구형도가 충분치 않은 경우, 1차 입자를 마쇄하는
단계를 더 포함할 수 있다. 1차 입자의 구형도가 적절한 범위를 만족할 경우, 탭밀도가 커져, 전극 팽창율이 작아지고, 고속 방전 특성이 우수해지게 된다. 마쇄 공정을 위한 장치는 특별히 제한되지 아니하며, 일반 분쇄 장비 (pulverizer) 또는 구상화 효과 개선 및 미분 분급이 가능한 개조 분쇄 장비 (modified pulverizer)를 사용할 수 있다. As described above, since the carbon raw material containing volatile components is pulverized in step S10, primary particles with low roughness can be produced. In addition, since the carbon raw material containing volatile components is pulverized in step S10, primary particles having high sphericity can be produced. At this time, it is a numerical representation that the spherical iris is close to the spherical shape, and the closer it is to 1, the more similar to the spherical shape. Specifically, primary particles having a sphericity of 0.75 to 1 can be prepared. When the sphericity of the primary particles produced by the step S10 is not sufficient, Step < / RTI > When the sphericity of the primary particles satisfies an appropriate range, the tap density becomes large, the rate of electrode expansion becomes small, and the high-speed discharge characteristic becomes excellent. The apparatus for the grinding process is not particularly limited, and a general pulverizer or a modified pulverizer capable of improving the spheroidizing effect and differentiating the pulverizer may be used.
단계 (S10)에서 탄소 원료를 분쇄하기 위한 분쇄기는 특별히 제한되지 아니한다. 구체적으로 jet-mill, roller mill 또는 분쇄와 동시에 기상 분급 (air classification)을 할 수 있는 일반적인 형태의 연속식 혹은 batch식의 분쇄 장치 (pulverizer)를 사용할 수 있다. The crusher for crushing the carbon raw material in step S10 is not particularly limited. Specifically, it is possible to use a general type continuous or batch type pulverizer capable of performing jet-mill, roller mill or air classification simultaneously with pulverization.
단계 (S10) 이후, 1차 입자를 1 내지 10°C/분의 속도로 승온하는 단계를 더 포함할 수 있다. 단계 (S10)을 거친 1차 입자는 상온 (10 내지 30°C)의 상태로 존재하게 된다. 이를 1차 입자 내의 휘발분 제거를 위한 열처리 온도로 승온하기 위해서는 단계 (S10) 이후, 승온하는 단계를 거칠 필요가 있다. 본 발명의 일 실시예에서 승온하는 단계에서의 승온 속도를 조절함으로써, 음극 활물질의 방전 용량을 더욱 높일 수 있다. 구체적으로 승온 속도는 1 내지 10°C/분이 될 수 있다. 승온 속도가 너무 빠른 경우, 혹연망면이 규칙적으로 적층하는정도 또는 결정화도가 감소하게 되어 방전 용량이 떨어질 수 있다. After step S10, the method may further include a step of raising the primary particles at a rate of 1 to 10 ° C / minute. The primary particles after the step S10 are present at a normal temperature (10 to 30 ° C). In order to raise the temperature to the heat treatment temperature for removing volatile components in the primary particles, it is necessary to perform a step of increasing the temperature after step S10. In one embodiment of the present invention, the discharge capacity of the negative electrode active material can be further increased by controlling the rate of temperature rise in the step of increasing the temperature. Specifically, the temperature raising rate may be 1 to 10 ° C / minute. If the temperature raising rate is too high, the degree of laminating the network or the degree of crystallization may decrease and the discharge capacity may drop.
단계 (S10) 이후, 1차 입자를 열처리하여 1차 입자 내의 휘발분을 제거하는 단계를 더 포함할 수 있다. After the step S10, the step of heat treating the primary particles to remove volatile components in the primary particles may be further included.
열처리 온도는 800 내지 1500°C일 수 있다. 열처리 온도가 너무 낮으면 휘발분이 적절히 제거되지 않을 수 있다. 열처리 온도가 너무 높으면, 휘발분의 제거 효과는 동일하지만 설비 구성 및 운전 비용이 과하게 증가할 수 있다. The heat treatment temperature may be 800 to 1500 ° C. If the heat treatment temperature is too low, the volatile components may not be properly removed. If the heat treatment temperature is too high, the effect of removing volatile components is the same, but the equipment configuration and operation cost may increase excessively.
열처리 단계를 통해 1차 입자는 휘발분을 0.5 중량 % 이하로 포함할 수 있다. Through the heat treatment step, the primary particles may contain less than 0.5% by weight of volatiles.
다음으로, 단계 (S20)에서는 1차 입자를 바인더와 흔합하여 2차 입자를 제조한다. 2차 입자란 1차 입자끼리 웅집하여 형성한 입자를 의미한다. Next, in step S20, the primary particles are mixed with a binder to prepare secondary particles. Secondary particles are particles formed by collecting primary particles.
구체적으로 단계 (S20)에서 1차 입자 100 중량부에 대하여 바인더를 2
내지 20 중량부 흔합할 수 있다. 바인더의 양이 너무 작으면, 결착 효과가 작아 원활한 2차 입자화가 이뤄지지 않을 수 있다. 바인더의 양이 너무 많으면, 전지의 용량 및 수명 특성이 감소하는 문제가 발생할 수 있다. 바인더는 석탄계 핏치 또는 석유계 핏치를. 포함할 수 있다. 핏치계 물질은 일반적으로 고분자계 바인더에 비하여 원료 탄소 물질 표면과의 젖음성 (wettabi l i ty)이 우수하여 치밀한 접착 계면을 형성하기 쉬운 장점이 있으며, 열처리 후 탄소화 혹은 흑연화 되는 수율이 높으며, 공업적으로 쉽고 저렴하게 구할 수 있는 장점이 있다. 바인더는 연화점이 80 내지 300 °C 일 수 있다. 연화점이 너무 낮으면 결착력이 낮아 원활한 1차 입자 간의 결합 및 2차 입자 형성이 어려우며, 탄화 수율이 낮아 경제적인 제조 공정 구현이 어려울 수 있다. 반대로 연화점이 너무 높으면 바인더 물질의 용융을 위한 장비의 운전 온도가 높아 설비 제작 비용이 증가하고 고온 사용에 따른 일부 시료의 열변성 및 탄소화가 진행되는 문제를 일으킬 수 있다. Specifically, in step S20, the binder is added to 100 parts by weight of primary particles, To 20 parts by weight. If the amount of the binder is too small, the binding effect is small and smooth secondary granulation may not be achieved. If the amount of the binder is too large, the capacity and life characteristic of the battery may decrease. The binder may be a coal pitch or a petroleum pitch. . Pitch materials generally have an advantage of being wettable with the surface of the raw carbon material as compared with polymeric binders, and have a merit that they can form a dense bonding interface. The yield of carbonization or graphitization after heat treatment is high, There is an advantage that it can be obtained easily and cheaply. The binder may have a softening point of 80 to 300 ° C. If the softening point is too low, it is difficult to bond smoothly primary particles and form secondary particles because the binding force is low, and it may be difficult to realize an economical manufacturing process due to low carbonization yield. On the contrary, if the softening point is too high, the operation temperature of the equipment for melting the binder material is high, and the manufacturing cost of the equipment is increased, and heat denaturation and carbonization of some samples may occur due to use at high temperatures.
단계 (S20)은 110 내지 50CTC의 온도에서 1 내지 5시간 동안 수행할 수 있다. 온도가 너무 낮거나, 시간이 너무 짧으면, 1차 입자와 바인더간의 균일한 흔합이 어려워 질 수 있다. 온도가 너무 높거나, 시간이 너무 길면, 과도한 과열로 인해 핏치의 변성 (산화 및 열변성)이 진행되어 최종적으로 열처리 공정을 마친 후에 생성된 혹연질이 발현하는 용량 및 효율 특성이 감소하는 문제가 발생할 수 있다. Step S20 may be performed at a temperature of 110 to 50 CTC for 1 to 5 hours. If the temperature is too low or the time is too short, uniform mixing between the primary particles and the binder may become difficult. If the temperature is too high or the time is too long, the problem of decreasing the capacity and efficiency characteristics of the lumps produced after the final heat treatment process is overcome due to excessive denaturation of the pitch (oxidation and thermal denaturation) Lt; / RTI >
단계 (S20)을 통해 제조된 2차 입자의 D50 입경은 14 내지 25 일 수 있다. 2차 입자의 D50 입경이 너무 작을 경우, 음극 활물질의 비표면적이 과도하게 증가하여 전지 효율이 감소할 수 있다. 반대로, 2차 입자의 D50 입경이 너무 클 경우는 탭밀도가 과도하게 낮아지고 적절한 전극밀도를 갖는 전극층 형성이 곤란한 문제 등 적절한 전지 성능이 발현되는 이차전지 전극을 형성하기 어려울 수 있다. 더욱 구체적으로 2차 입자의 D50 입경은 16 내지 2 m일 수 있다. The D50 particle size of the secondary particles produced through step S20 may be 14 to 25. When the D50 particle size of the secondary particles is too small, the specific surface area of the negative electrode active material may be excessively increased, thereby reducing the battery efficiency. On the other hand, when the D50 particle diameter of the secondary particles is too large, it may be difficult to form a secondary battery electrode in which adequate cell performance is exhibited, such as a problem that an electrode layer having an appropriate electrode density is difficult to form because the tap density is excessively low. More specifically, the D50 particle size of the secondary particles may be 16 to 2 m.
D50 입경은 1차 입자와 바인더의 흔합 비율, 단계 (S20)의 은도, 시간 및 바인더의 종류를 통해 조절될 수 있다. The D50 particle size can be controlled through the ratio of the primary particles and the binder, the silver of the step S20, the time, and the kind of the binder.
단계 (S20)을 수행하는 장비는 특별히 제한되지 아니하며, 고점도
페이스트 형태의 흔합물을 고온으로 흔합할 수 있는 장비에 넣고 수행할 수 있다. 보다 구체적으로는 회전하는 한 쌍의 블레이드 등 전단력을 생성하는 장비를 활용하여 1차 입자와 바인더를 균일하게 섞고 결합시켜 고점도 페이스트 형태의 흔합물을 제조할 수 있는 장비에 투입하여 수행할 수 있다. 단계 (S20)에서 제조된 2차 입자의 D50 입경이 너무 큰 경우, 해쇄를 위해 핀밀 (pin mi l l ) 등을 이용하여 분쇄하여 입도를 조절할 수 있다. 웅집 분체의 적절한 입도 조절을 위해서 분쇄기의 회전수 (rpm)를 조절할 수 있다. 그러나 이에 한정되는 것은 아니며 목표 입도 달성을 위해서 다양한분쇄기를 이용할 수 있다. The equipment for carrying out the step S20 is not particularly limited, The paste-like mixture can be put into equipment that can be mixed at high temperatures. More specifically, the present invention can be carried out by equipping primary particle and binder uniformly using a device for generating a shear force, such as a pair of rotating blades, into a device capable of producing a highly viscous paste-like mixture. If the D50 particle size of the secondary particles produced in step S20 is too large, the particle size can be controlled by pulverizing the particles using a pin mill to remove the particles. The rotation speed (rpm) of the crusher can be adjusted for proper particle size control of the fly ash. However, the present invention is not limited thereto, and various grinding machines can be used to achieve the target particle size.
단계 (S20) 이후, 2차 입자를 탄화하는 단계를 더 포함할 수 있다. 이를 통해 바인더 중 휘발분을 제거하고, 열분해, 고화 및 탄소질로의 전환을 유도한다. 탄화하는 단계는 800 내지 1500°C의 온도에서 수행할 수 있다. 분위기 가스는 불활성 가스를 사용할 수 있으며, 질소 또는 아르곤 분위기에서 수행할 수 있다. 탄화하는 단계는 30 분 내지 5 시간 동안 수행할 수 있다. After step S20, carbonization of the secondary particles may be further included. This removes volatiles from the binder and leads to pyrolysis, solidification and conversion to carbon dioxide. The carbonizing step can be carried out at a temperature of 800 to 1500 ° C. The atmosphere gas may be an inert gas, and may be performed in a nitrogen or argon atmosphere. The carbonization step can be carried out for 30 minutes to 5 hours.
다음으로, 단계 (S30)에서는 2차 입자를 혹연화하여 혹연재를 제조한다. 단계 (S30)은 2800 내지 3200°C의 은도에서 수행할 수 있다. 단계 (S30)을 수행하는 장비는 특별히 제한되지 아니하며 에치슨 (Acheson) 로를 사용할 수 있다. 일반적으로 별도의 분위기 가스 사용 없이 에치슨 (Acheson)로의 조업 방식에 의거 혹연화를 수행할 수 있으나 분위기 가스를 사용할 경우 불활성 가스를 사용할 수 있으며, 질소 또는 아르곤 분위기에서 수행할 수 있다. 단계 (S30)은 30 분 내지 20일 동안 수행할 수 있다. Next, in step S30, the secondary particles are subjected to liquefaction to produce a hammered material. Step S30 may be performed at a haze of 2800 to 3200 ° C. The equipment for performing the step S30 is not particularly limited and the Acheson furnace can be used. In general, the softening can be performed according to the operation mode of Acheson without using a separate atmospheric gas, but if an atmospheric gas is used, an inert gas can be used and the operation can be performed in a nitrogen or argon atmosphere. Step S30 may be performed for 30 minutes to 20 days.
단계 (S30)을 마친 흑연재는 필요에 따라 쇄 혹은 해쇄 공정을 거쳐 미분화할 수 있다. After completion of the step S30, the graphite may be pulverized or broken into pulverized materials if necessary.
본 발명의 일 실시예를 통해 제조된 리튬 이차 전지용 음극 활물질은 비표면적이 작고, 탭밀도가 높아, 전극층의 고밀도화 및 에너지 밀도가 증가된다. 구체적으로 본 발명의 일 실시예를 통해 제조된 리튬 이차 전지용 음극 활물잘은 비표면적이 1.7m2/g 이하가 될 수 있고, 탭밀도가 0.7g/cc 이상이 될 수 있다. 더욱 구체적으로 비표면적이 0.8 내지 1.6mVg,
탭밀도가 0.8 내지 1.0g/cc가 될 수 있다. The negative electrode active material for a lithium secondary battery manufactured through one embodiment of the present invention has a small specific surface area and a high tap density, thereby increasing the densification and energy density of the electrode layer. Specifically, the negative electrode active material for a lithium secondary battery manufactured through one embodiment of the present invention may have a specific surface area of 1.7 m 2 / g or less and a tap density of 0.7 g / cc or more. More specifically, it has a specific surface area of 0.8 to 1.6 mVg, The tap density may be 0.8 to 1.0 g / cc.
본 발명의 또 다른 일 구현예에서는, 양극; 음극; 및 전해질;을 포함하고, 상기 음극은 전술한 방법으로 제조된 음극 활물질을 포함하는 리튬 이차 전지를 제공한다. In another embodiment of the present invention, cathode; And an electrolyte, wherein the negative electrode comprises a negative active material prepared by the above-described method.
구체적으로, 전해질은, 플루오로 에틸렌 카보네이트 (fluoro ethylene carbonate, FEC), 비닐렌 카보네이트 (vinylene carbonate, VC), 에틸렌 술포네이트 (ethylene sulfonate, ES), 및 이들의 조합을 포함하는 군에서 선택된 적어도 하나 이상의 전해질 첨가제를 더 포함하는 것일 수 있다. Specifically, the electrolyte is at least one selected from the group consisting of fluoro ethylene carbonate (FEC), vinylene carbonate (VC), ethylene sulfonate (ES) Or more of the electrolyte additive.
FEC 등 전해질 첨가제를 추가로 적용함으로써 그 싸이클 특성이 더욱 향상될 수 있으며, 상기 전해질 첨가제에 의하여 안정한 고체 전해질 계면 (solid electrolyte interphase, SEI)이 형성될 수 있기 때문이다. 이러한 사실은 후술할 실시예를 통해 뒷받침된다. FEC and the like, the cycle characteristics can be further improved, and a stable solid electrolyte interphase (SEI) can be formed by the electrolyte additive. This fact is supported by the following embodiments.
음극 활물질 및 그에 따른 리튬 이차 전지의 특성은 전술한 바와 같다. 또한, 음극 활물질을 제외한 나머지 전지 구성은 일반적으로 알려진 바와 같다. 따라서, 자세한 설명은 생략하기로 한다. The characteristics of the negative electrode active material and thus the lithium secondary battery are as described above. In addition, the remaining battery configuration except for the negative electrode active material is generally known. Therefore, a detailed description will be omitted.
이하, 본 발명의 바람직한 실시예, 이에 대비되는 비교예 및 이들의 평가예를 기재한다. . 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention, comparative examples thereof, and evaluation examples thereof will be described. . However, the following examples are only a preferred embodiment of the present invention, and the present invention is not limited to the following examples.
실시예 1 Example 1
탄소 원료로서, 석탄계 프리미엄 침상 코크스 제품인 그린 코크스 (VM 함량 약 5.0중량 를 사용하였다. 그린 코크스를 ai r cl assi fying mi l l 을 이용하여 D50이 7卿가 되도록 1차 분쇄하여 1차 입자를 제조하였다. 분쇄 입자는 기류 분급 장치가 달린 pulver izer형의 분쇄장비를 이용하여 추가적인 마쇄를 진행하였으며, 얻어진 1차 입자의 D50은 7. /m 이었다. 도 2에서는 1차 입자의 SEM사진을 나타내었다. As the carbon raw material, green coke (VM content: about 5.0 wt%) as a carbon-based premium acicular coke product was used, and primary coke was prepared by primary crushing the green coke to a degree of D50 of 7 liters using an air clotting mill The pulverized particles were further polished using a pulverizer type pulverizer equipped with an air flow classifier, and the D50 of the obtained primary particles was 7. / m. In FIG. 2, SEM photographs of the primary particles are shown.
1차 입자를 승온속도를 분당 5°C /분으로 조절하여 승은한 후, i2oo°c의 질소분위기에서 1시간 열처리하여 휘발분을 제거하였다. 얻어진The primary particles were heated at a rate of 5 ° C / min per minute and then heated for 1 hour in a nitrogen atmosphere of i2oo ° c to remove volatile matter. Obtained
1차 입자를 연화점이 120 °C인 핏치와 100 : 10의 중량 비율로 흔합 후 가열 가능한 흔합 믹서를 이용하여 2시간 흔합하여 2차 입자를 제조하였다. 이때 2차 입자의 D50은 19.5 zm 이었다. 120CTC의 질소분위기에서 1시간 탄화한
후, 3ooo°c로 승온하여 1시간 혹연화하여 음극 활물질을 제조하였다. 도Secondary particles were prepared by mixing primary particles with a pitch having a softening point of 120 ° C in a weight ratio of 100: 10 and using a sieving mixer capable of heating after 2 hours. The D50 of the secondary particles was 19.5 zm. 120 CTC for 1 hour in a nitrogen atmosphere Then, the temperature was raised to 3 ° C and the mixture was softened for 1 hour to prepare an anode active material. Degree
3에서는 최종 제조된 음극 활물질의 SEM사진을 나타내었다. 3 shows SEM photographs of the finally prepared negative electrode active material.
실시예 2 Example 2
실시예 1에서 휘발분을 제거하는 열처리 단계를 생략한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. The negative electrode active material was prepared in the same manner as in Example 1, except that the heat treatment step for removing volatile components was omitted in Example 1.
실시예 3 Example 3
실시예 1에서 마쇄 공정을 생략하는 것을 제외하고는 실시예 1파 동일한 방법으로 음극 활물질을 제조하였다. 도 4에서는 실시예 3에서의 제조 공정 중 1차 입자의 SEM사진을 나타내었다. The negative electrode active material was prepared in the same manner as in Example 1 except that the grinding step was omitted in Example 1. FIG. 4 shows SEM photographs of primary particles in the manufacturing process in Example 3. FIG.
실시예 4 Example 4
실시예 1에서 1차 입자와 핏치의 중량 비율이 100 : 20인 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. The negative electrode active material was prepared in the same manner as in Example 1, except that the weight ratio of the primary particles to the pitch in Example 1 was 100: 20.
실시예 5 Example 5
실시예 1에서 1차 입자의 분쇄 및 마쇄 후 D50이 인 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. The negative electrode active material was prepared in the same manner as in Example 1, except that D50 was obtained after grinding and grinding of the primary particles in Example 1.
실시예 6 Example 6
실시예 1에서 1차 입자의 분쇄 및 마쇄 후 D50이 5.5皿인 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. The negative electrode active material was prepared in the same manner as in Example 1, except that the D50 was 5.5 plates after the pulverization and grinding of the primary particles in Example 1.
실시예 7 Example 7
실시예 1에서 1차 입자의 분쇄 및 마쇄 후 승온 속도를 20°C /분으로 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. An anode active material was prepared in the same manner as in Example 1, except that the rate of temperature increase after crushing and grinding of the primary particles in Example 1 was controlled to 20 ° C / min.
비교예 1 Comparative Example 1
원료 코크스를 실시예 1에 사용된 그린 코크스가 아닌 하소 코크스 (calcined coke)로 사용 (VM 함량 약 0.25 중량 %)하고 1차 입자를 탄화하는 단계를 생략한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. 도 5에서 분쇄 및 마쇄된 1차 입자의 주사 전자 현미경 (SEM) 사진을 나타내었다. 도 2, 도 4 및 도 5에서 나타나듯이, 실시예 1 및 실시예 3에서의 1차 입자가 비교예 1의 1차 입자에 비해 파쇄된 입자 면이 날카롭지 않고 비교적 완만한 타원형과 유사한 1차 입자의 형상을 지니고
있음을 확인할 수 있다. 실시예 3과 같이 분쇄만 시행한 1차 입자에 비해, 분쇄 및 마쇄를 거친 실시예 1의 1차 입자의 거칠기가 더욱 감소했음을 확인할 수 있다. The raw coke was used in the same manner as in Example 1 except that the step of carbonizing the primary particles was omitted and the calcined coke used was not used as the green coke used in Example 1 (VM content: about 0.25% by weight) To prepare an anode active material. FIG. 5 shows a scanning electron microscope (SEM) photograph of the ground and pulverized primary particles. As shown in Figs. 2, 4 and 5, when the primary particles in Examples 1 and 3 were compared with the primary particles of Comparative Example 1, the particle surfaces of the primary particles were not sharper and comparatively gentle With the shape of . It can be confirmed that the roughness of the primary particles of Example 1 after crushing and grinding was further reduced as compared with that of the primary particles just pulverized as in Example 3. [
비교예 2 Comparative Example 2
비교예 1에서 하소 코크스와 핏치의 중량 비율이 100 : 20인 것을 제외하고는 비교예 1과 동일한 방법으로 음극 활물질을 제조하였다. The negative electrode active material was prepared in the same manner as in Comparative Example 1, except that the weight ratio of the calcined coke to the pitch in Comparative Example 1 was 100: 20.
비교예 3 Comparative Example 3
비교예 1에서 1차 입자의 분쇄 및 마쇄 후 D50이 10 인 것을 제외하고는 비교예 1과 동일한 방법으로 음극 활물질을 제조하였다. The negative electrode active material was prepared in the same manner as in Comparative Example 1 except that the D50 was 10 after the pulverization and the grinding of the primary particles in Comparative Example 1. [
실험예 1 : 비표면적 및 D50 입경 측정 Experimental Example 1: Measurement of specific surface area and D50 particle size
실시예 1 내지 실시예 7 및 비교예 1 내지 비교예 3에서 제조한 음극 활물질의 비표면적 (BET) 및 D50 입경을 측정하여 하기 표 1에 정리하였다. 비표면적은 질소 흡착법에 의하여 측정하였다. The specific surface area (BET) and D50 particle diameters of the negative electrode active materials prepared in Examples 1 to 7 and Comparative Examples 1 to 3 were measured and summarized in Table 1 below. The specific surface area was measured by a nitrogen adsorption method.
【표 1】 [Table 1]
실시예 1 및 실시예 2에서와 같이 1차 입자 수득 시, 분쇄 및 마쇄 단계를 모두 거쳐 만들어진 음극 활물질의 탭밀도가 대체로 높고 비표면적이 낮은 것을 확인할 수 있다. 또한 1차 입자의 입경이 증가할수톡 제조된 음극 활물질의 비표면적이 대체로 감소하고 2차 입자화된 음극
활물질의 입경이 비례하여 증가함을 확인할 수 있다. 음극 활물질의 탭밀도는 높을수록 전극층의 고밀도화 및 에너지 밀도의 증가를 기대할 수 있으므로 본 결과는 고용량의 음극 활물질을 제조하는 데 유용하게 사용될 수 있음을 확인할 수 있다. As in Example 1 and Example 2, when the primary particles were obtained, the tap density of the negative electrode active material produced through both of the pulverization and the finishing step was generally high and the specific surface area was low. Also, since the particle size of the primary particles increases, the specific surface area of the negative electrode active material produced is generally decreased, It can be confirmed that the particle size of the active material increases proportionally. As the tap density of the negative electrode active material increases, it is expected that the density of the electrode layer is increased and the energy density is increased. Therefore, it can be confirmed that this result can be usefully used for manufacturing a high capacity negative electrode active material.
실험예 2 : 리튬 이차 전지 (Half-cell)의 제작 및 초기 방전용량, 효율측정 Experimental Example 2 Preparation of Lithium Secondary Cell (Half-cell) and Measurement of Initial Discharge Capacity and Efficiency
실시예 1 내지 실시예 7 및 비교예 1 내지 비교예 3에서 제조한 음극 활물질, 바인더 (Carboxy Methyl Cellulose 및 styrene Butadiene Rubber), 도전재 (Super P)의 중량 비율이 97:2:1(기재순서는, 음극 활물질: 바인더: 도전재)이 되도록 중류수를 용매로 사용하여 균일하게 흔합하였다. The weight ratio of the negative electrode active material, the binder (Carboxy Methyl Cellulose and styrene Butadiene Rubber) and the conductive material (Super P) prepared in Examples 1 to 7 and Comparative Examples 1 to 3 was 97: 2: 1 Were uniformly mixed using a middle-stream water as a solvent so as to be a negative electrode active material: binder: conductive material.
상기의 흔합물을 구리 (Cu) 집전체에 고르게 도포한 후, 롤프레스에서 압착한 뒤, 100°C 진공오븐에서 12시간 진공 건조하여 음극을 제조하였다. 이때, 전극 밀도가 1.4 내지 1.6g/cc를 가지도록 하였다. The resultant mixture was uniformly applied to a copper (Cu) current collector, compressed by a roll press, and vacuum-dried in a 100 ° C vacuum oven for 12 hours to prepare a negative electrode. At this time, the electrode density was set to 1.4 to 1.6 g / cc.
상대 전극으로는 리륨 금속 (Li-metal)을 사용하고, 전해액으로는 에틸렌 카보네이트 (EC, Ethylene Carbonate): 디메틸 카보네이트 (DMC, Dimethyl Carbonate)의 부피 비율이 1:1인 흔합 용매에 1몰의 LiPF6용액을 용해시킨 것을사용하였다. Li molybdenum (Li-metal) was used as a counter electrode, and 1 mol of LiPF 6 (1 mol) was added to a solvent having a volume ratio of ethylene carbonate (EC: Ethylene Carbonate): dimethyl carbonate 6 solution was used.
상기 각 구성 요소를 사용하고, 통상적인 제조 방법에 따라 CR 2032 반쪽 전지 (half coin cell)를 제작하였다. Using each of the above components, a CR 2032 half-coin cell was fabricated according to a conventional manufacturing method.
0.1C, 5mV, 0.005C cut-off 충전 및 0.1C 1.5V cut-off 방전의 조건으로 전지를 구동하고, 초기 방전용량, 효율을 측정하여 하기 표 2에 정리하였다. The batteries were driven under the conditions of 0.1 C, 5 mV, 0.005 C cut-off charging and 0.1 C 1.5 V cut-off discharge, and initial discharge capacity and efficiency were measured and are summarized in Table 2 below.
【표 2】 [Table 2]
방전용량 (mAh/g) 효을 (%) Discharge capacity (mAh / g) Efficiency (%)
실시예 1 354 93.1 Example 1 354 93.1
실시예 2 353 92.9 Example 2 353 92.9
실시예 3 352 92.9 Example 3 352 92.9
실시예 4 348 92.5 Example 4 348 92.5
실시예 5 354 93.2 Example 5 354 93.2
실시예 6 354 91.2
실시예 7 348 93 Example 6 354 91.2 Example 7 348 93
비교예 1 353 92 비교예 2 347 92.2 Comparative Example 1 353 92 Comparative Example 2 347 92.2
비교예 3 353 92.8 표 2를 참조하면, 실시예 1에서와 같이 그린 코크스를 원료로 사용하여, 1차 입자 수득 시 분쇄 및 마쇄 단계를 모두 거치고, 승온 속도가 상대적으로 낮은 탄화 조건에서 휘발분의 제거를 거친 조건에서 전지의 방전 용량 및 효율이 우수하였다. Comparative Example 3 353 92.8 Referring to Table 2, the green coke was used as a raw material as in Example 1, and after the pulverization and the polish-pulverizing step were carried out at the time of obtaining the primary particles, the removal of volatile components The discharge capacity and efficiency of the battery were excellent.
이에 반하여 실시예 7과 같이 승온 속도가 상대적으로 빠른 탄화 조건에서 휘발분의 제거를 거친 음극 활물질은 방전 용량이 상대적으로 낮아졌다. On the contrary, as in Example 7, the negative electrode active material after the removal of volatile components under the carbonization condition having a relatively high temperature-raising rate has a relatively low discharge capacity.
실시예 4에서와 같이 2차 입자화 시 사 한 바인더 물질의 양이 증가했을 때, 제조된 음극 활물질의 방전 용량이 감소하였다. As in Example 4, when the amount of the binder material used in the secondary granulation was increased, the discharge capacity of the prepared negative electrode active material decreased.
실시예 6에서와 같이 1차 입자의 크기가 감소하였을 때 전지의 효율이 감소하였으며, 이는 음극 활물질의 비표면적이 상대적으로 높아 부동태막의 형성이 보다 활발하게 이루어졌기 때문이다. As in Example 6, when the size of the primary particles was decreased, the efficiency of the battery was decreased because the specific surface area of the negative electrode active material was relatively high and the formation of the passive film was more active.
실험예 3 : 팽창율 및 고속 방전 특성 측정 Experimental Example 3: Measurement of expansion rate and fast discharge characteristic
실험예 2에서 기재된 방법으로 전지를 제조하였다. A battery was prepared by the method described in Experimental Example 2.
팽창율은 0. 1C, 5mV, 0.005C cut-of f 층전 및 0. 1C, 1.5V cut-of f 방전의 조건으로 전지를 10 사이클 구동하고, 전지를 해체하여 측정한 전극의 두께 변화율을 계산하여 측정하였다. The expansion ratio was calculated by calculating the rate of change in thickness of the electrode measured by driving the battery for 10 cycles under the conditions of 0.1 C, 5 mV, 0.005 C cut-of-f lamination and 0.1 C and 1.5 V cut-of f discharging Respectively.
방전 속도는 3C와 0.2C의 조건에서 전지 용량을 측정하여 상대적인 값을 나타내었다. Discharge rate was measured at 3C and 0.2C.
팽창율 및 고속 방전 특성을 하기 표 3에 정리하였다. The expansion rate and fast discharge characteristics are summarized in Table 3 below.
【표 3】 [Table 3]
팽창을 (%) 고속 방전 특성 (%) 실시예 1 45 87 실시예 2 39 88 실시예 3 48 84
실시예 4 51 88 (%) High-speed discharge characteristics (%) Example 1 45 87 Example 2 39 88 Example 3 48 84 Example 4 51 88
실시예 5 43 77 Example 5 43 77
실시예 6 56 93 Example 6 56 93
실시예 7 46 87 Example 7 46 87
비교예 1 58 80 Comparative Example 1 58 80
비교예 2 49 74 Comparative Example 2 49 74
비교예 3 50 70 Comparative Example 3 50 70
표 3을 참조하면 분쇄된 1차 입자 크기 및 2차 입자의 크기가 작을수록 고속 방전 특성이 우수함을 확인할 수 있으며, 전극 팽창율은 입자의 크기가 클수록 대체로 감소함을 확인할수 있다. As shown in Table 3, it can be seen that the smaller the primary particle size and the secondary particle size of the pulverized particles are, the faster the discharge characteristics are, and the larger the particle size is, the smaller the electrode expansion rate is.
실험예 4 : 고속층전 특성 측정 Experimental Example 4: Measurement of fast stratification characteristics
실험예 2에서 기재된 방법으로 전지를 제조하였다. A battery was prepared by the method described in Experimental Example 2.
고속 층전 특성은 0.1C, 5mV, 0.005C cut-off 층전 및 0.1C, 1,5V cut-off 방전의 조건으로 초기 방전 용량을 확인한 후, 층전 속도 C- rate)를 0.1C, 0.2C, 0.5C, 1.0C, 2.0C의 조건 순으로 변화하여 각각 3회 층전 및 방전 사이클을 반복하고, 2C와 0.1C의 조건에서 전지 충전 용량을 측정하여 상대적인 값을 나타내었다. The high-speed stratification characteristics were evaluated by measuring the initial discharge capacity under the conditions of 0.1 C, 5 mV, 0.005 C cut-off layering, 0.1 C, and 1,5 V cut-off discharge, C, 1.0C, and 2.0C, and the charging and discharging cycles were repeated three times, respectively. The battery charging capacity was measured at 2C and 0.1C.
고속 층전 특성을 하기 표 4에 정리하였다. The fast stratification characteristics are summarized in Table 4 below.
【표 4】 [Table 4 ]
고속 충전 특성 (%) Fast Charging Characteristics (%)
실시예 1 39.2 Example 1 39.2
실시예 2 41.5 Example 2 41.5
실시예 3 37.5 Example 3 37.5
실시예 4 41.9 Example 4 41.9
실시예 5 31.1 Example 5 31.1
실시예 6 45.3 Example 6 45.3
실시예 7 40.8 Example 7 40.8
비교예 1 35.2 Comparative Example 1 35.2
비교예 2 36.4 Comparative Example 2 36.4
비교예 3 30.5
표 4을 참조하면 분쇄된 1차 입자 크기 및 2차 입자의 크기가 작을수록 고속 층전 특성이 우수함을 확인할 수 있다. Comparative Example 3 30.5 Referring to Table 4, it can be seen that the smaller the size of the primary particles and the size of the secondary particles, the higher the superplasticization property.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims. As will be understood by those skilled in the art. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.
Claims
【청구항 1】 [Claim 1]
휘발분을 4 내지 10 중량 % 포함하는 탄소 원료를 분쇄하여 1차 입자를 제조하는 단계; Pulverizing a carbon raw material containing 4 to 10% by weight of volatile matter to prepare primary particles;
상기 1차 입자를 바인더와흔합하여 2차 입자를 제조하는 단계; 및 상기 2차 입자를 흑연화하여 혹연재를 제조하는 단계 Mixing the primary particles with a binder to prepare secondary particles; And graphitizing the secondary particles to produce a hammered material
를 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법. And a negative electrode active material for lithium secondary batteries.
【청구항 2] [Claim 2]
제 1항에 있어서, The method according to claim 1,
상기 탄소 원료는 그린 코크스 또는 생 코크스를 포함하는 리륨 이차 전지용 음극 활물질의 제조 방법 . Wherein the carbon raw material comprises green coke or raw coke.
【청구항 3】 [Claim 3]
제 1항에 있어서, The method according to claim 1,
상기 1차 입자의 D50 입경은 10 卿 이하언 리륨 이차 전지용 음극 활물질의 제조 방법 . Wherein the D50 particle size of the primary particles is 10 L or less.
【청구항 4】 Claim 4
게 1항에 있어서, In Item 1,
상기 1차 입자의 구형화도는 0.75 내지 1인 리튬 이차 전지용 음극 활물질의 제조 방법 . Wherein the sphericity of the primary particles is in a range of 0.75 to 1. < RTI ID = 0.0 > 1. < / RTI >
【청구항 5】 [Claim 5]
거 U항에 있어서, In the above,
상기 1차 입자를 제조하는 단계 이후, 상기 1차 입자를 마쇄하는 단계를 더 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법 . The method of manufacturing a negative electrode active material for a lithium secondary battery according to claim 1, further comprising a step of crushing the primary particles.
【청구항 6] [Claim 6]
게 1항에 있어서, In Item 1,
상기 1차 입자를 제조하는 단계 이후, 상기 1차 입자를 1 내지 10°C/분의 속도로 승온하는 단계를 더 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법 . The method for manufacturing a negative electrode active material for a lithium secondary battery according to claim 1, further comprising a step of raising the primary particles at a rate of 1 to 10 ° C / minute after the step of preparing the primary particles.
【청구항 7] [7]
제 1항에 있어서,
상기 1차 입자를 제조하는 단계 이후, 상기 1차 입자를 열처리하여 상기 1차 입자 내의 휘발분을 제거하는 단계를 더 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법. The method according to claim 1, Further comprising the step of heat treating the primary particles to remove volatile components in the primary particles after the step of preparing the primary particles.
【청구항 8】 8.
계 7항에 있어서, In Item 7,
상기 1차 입자 내의 휘발분을 제거하는 단계에서, 열처리 온도는 800 내지 150C C인 리튬 이차 전지용 음극 활물질의 제조 방법. Wherein the step of removing volatile components in the primary particles has a heat treatment temperature of 800 to 150C.
【청구항 9】 [Claim 9]
제 1항에 있어서, The method according to claim 1,
상기 2차 입자를 제조하는 단계에서, 상기 1차 입자 100 중량부에 대하여 상기 바인더를 2 내지 20 중량부 흔합하는 리튬 이차 전지용 음극 활물질의 제조 방법 . Wherein, in the step of preparing the secondary particles, 2 to 20 parts by weight of the binder is mixed with 100 parts by weight of the primary particles.
【청구항 10】 Claim 10
제 1항에 있어서, The method according to claim 1,
상기 바인더는 석탄계 핏치 또는 석유계 핏치를 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법 . Wherein the binder includes a coal-based pitch or a petroleum-based pitch.
【청구항 11】 Claim 11
거 U항에 있어서, In the above,
상기 바인더는 연화점이 80 내지 300°C인 리륨 이차 전지용 음극 활물질의 제조 방법 . Wherein the binder has a softening point of 80 to 300 ° C.
【청구항 12】 Claim 12
제 1항에 있어서, The method according to claim 1,
상기 2차 입자를 제조하는 단계는 110 내지 500 °C의 온도에서 전단력을 활용하여 1 내지 5시간 동안 수행하는 리튬 이차 전지용 음극 활물질의 제조 방법 . Wherein the step of preparing the secondary particles is performed for 1 to 5 hours by utilizing shear force at a temperature of 110 to 500 ° C.
【청구항 13】 Claim 13
게 1항에 있어서, In Item 1,
상기 2차 입자의 D50 입경은 14 내지 2¾/m인 리튬 이차 전지용 음극 활물질의 제조 방법 . Wherein the D50 particle diameter of the secondary particles is 14 to 2 占 퐉 / m.
【청수항 14】
거 u항에 있어서, 【Cheolsu port 14】 In the above,
상기 2차 입자를 제조하는 단계 이후에, 상기 2차 입자를 탄화하는 단계를 더 포함하는 리튬 이차 전지용 음극 활물질의 제조 방법 . The method of manufacturing a negative electrode active material for a lithium secondary battery according to claim 1, further comprising the step of carbonizing the secondary particles after the step of preparing the secondary particles.
【청구항 15】 15.
5 제 14항에 있어서, [5] The method of claim 14,
상기 탄화하는 단계는 800 내지 1500 °C의 온도에서 수행하는 리튬 이차 전지용 음극 활물질의 제조 방법. Wherein the carbonizing is performed at a temperature of 800 to 1500 ° C.
【청구항 16] 16. The method of claim 16,
제 1항에 있어서, The method according to claim 1,
10. 상기 흑연재를 제조하는 단계는 2800 내지 3200°C의 온도에서 수행하는 리튬 이차 전지용 음극 활물질의 제조 방법. 10 . Wherein the step of preparing the graphite sheet is performed at a temperature of 2800 to 3200 ° C.
【청구항 17】 17.
제 1항에 있어서, The method according to claim 1,
상기 흑연재는 비표면적이 1.7m2/g 이하이고, 탭밀도가 0.7g/cc 15 이상인 리튬 이차 전지용 음극 활물질의 제조 방법. Wherein the graphite has a specific surface area of 1.7 m 2 / g or less and a tap density of 0.7 g / cc or more.
【청구항 18】 Claim 18
양극; 음극; 및 전해질;을 포함하고, anode; cathode; And an electrolyte,
상기 음극은, 게 1항 내지 제 17항 중 어느 한 항에 따른 방법으로 제조된 리튬 이차 전지용 음극 활물질을 포함하는 리튬 이차 전지 . The lithium secondary battery according to any one of claims 1 to 17, wherein the negative electrode comprises a negative electrode active material for a lithium secondary battery.
20
20
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18846532.2A EP3670475A4 (en) | 2017-08-17 | 2018-08-01 | METHOD OF MANUFACTURING NEGATIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY THEREOF |
US16/639,841 US20210143425A1 (en) | 2017-08-17 | 2018-08-01 | Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including the same |
CN201880053281.3A CN111225888A (en) | 2017-08-17 | 2018-08-01 | Preparation method of negative electrode active material and lithium secondary battery including the same |
JP2020509018A JP2020532058A (en) | 2017-08-17 | 2018-08-01 | A method for manufacturing a negative electrode active material for a lithium secondary battery, and a lithium secondary battery containing the same. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170104302A KR20190019430A (en) | 2017-08-17 | 2017-08-17 | Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same |
KR10-2017-0104302 | 2017-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035580A1 true WO2019035580A1 (en) | 2019-02-21 |
Family
ID=65362585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/008762 WO2019035580A1 (en) | 2017-08-17 | 2018-08-01 | Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210143425A1 (en) |
EP (1) | EP3670475A4 (en) |
JP (1) | JP2020532058A (en) |
KR (1) | KR20190019430A (en) |
CN (1) | CN111225888A (en) |
WO (1) | WO2019035580A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021185014A1 (en) * | 2020-03-20 | 2021-09-23 | 宁德新能源科技有限公司 | Negative electrode active material and electrochemical device and electronic device using same |
CN114342111A (en) * | 2019-11-12 | 2022-04-12 | 株式会社Lg新能源 | Prelithiated negative electrode and secondary battery including the same |
CN115485237A (en) * | 2020-04-28 | 2022-12-16 | 浦项产业科学研究院 | Lithium secondary battery negative electrode material and preparation method thereof, and lithium secondary battery |
JP7497828B2 (en) | 2020-10-30 | 2024-06-11 | エルジー エナジー ソリューション リミテッド | Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102486245B1 (en) * | 2018-08-13 | 2023-01-10 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery and lithium secondary battery comprising the same |
KR102464666B1 (en) * | 2019-02-01 | 2022-11-08 | 주식회사 엘지에너지솔루션 | Anode for lithium secondary batteries and Lithium secondary batteries comprising the same |
KR20240165481A (en) * | 2019-12-03 | 2024-11-22 | 컨템포러리 엠퍼렉스 테크놀로지 (홍콩) 리미티드 | Secondary battery, device, artificial graphite, and preparation method |
KR20210079730A (en) * | 2019-12-20 | 2021-06-30 | 재단법인 포항산업과학연구원 | Negative electrode material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same |
EP3961769B1 (en) * | 2020-04-30 | 2023-04-19 | Contemporary Amperex Technology Co., Limited | Secondary battery and manufacturing method therefor, and apparatus comprising secondary battery |
KR102803076B1 (en) * | 2020-04-30 | 2025-05-08 | 컨템포러리 엠퍼렉스 테크놀로지 (홍콩) 리미티드 | Negative active material and method for producing the same, secondary battery, and device including secondary battery |
KR102163786B1 (en) | 2020-05-12 | 2020-10-08 | 에스아이에스 주식회사 | Artificial graphite production automation system |
KR102299254B1 (en) * | 2020-11-17 | 2021-09-06 | 주식회사 포스코 | Negative electrode active material for rechargeable lithium battery and the method for manufacturing the same, and rechargeable lithium battery including negative electrode prepared from the same |
CN115989600A (en) * | 2020-11-27 | 2023-04-18 | 株式会社Lg新能源 | Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same |
KR102682850B1 (en) * | 2021-09-10 | 2024-07-09 | 주식회사 엘지에너지솔루션 | Method for manufacturing negative electrode active material, negative electrode and secondary battery |
KR102699473B1 (en) * | 2021-12-10 | 2024-08-27 | (주)포스코퓨처엠 | A fast-charging anode material for lithium secondary battery, and preparing method of lithium secondary battery comprising thereof |
CN114388808B (en) * | 2022-01-13 | 2024-04-16 | 江西安驰新能源科技有限公司 | Long-cycle lithium ion battery |
CN114937758B (en) * | 2022-03-22 | 2024-04-05 | 珠海冠宇电池股份有限公司 | Negative electrode active material, negative electrode sheet and battery containing the negative electrode active material |
KR102775247B1 (en) * | 2022-08-03 | 2025-03-07 | 주식회사 포스코엠씨머티리얼즈 | Electrode material for electrode for saf using isotropic coke and manufacturing method thereof |
EP4474346A1 (en) * | 2023-06-08 | 2024-12-11 | Rain Carbon Germany GmbH | A process for producing isotropic carbonaceous precursor agglomerates |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007153661A (en) * | 2005-12-05 | 2007-06-21 | Showa Denko Kk | Graphite material, carbon material for battery electrode, and battery |
JP2011519332A (en) * | 2008-03-31 | 2011-07-07 | コノコフィリップス カンパニー | Anode powder for batteries |
KR20140085767A (en) * | 2012-12-27 | 2014-07-08 | 주식회사 포스코 | Carbon composite materials and method of manufacturing the same |
EP2913873A1 (en) | 2012-10-24 | 2015-09-02 | Tokai Carbon Co., Ltd. | Process for manufacturing graphite powder for lithium secondary battery negative electrode material |
KR20150138265A (en) * | 2013-03-28 | 2015-12-09 | 엠티 카본 컴퍼니, 리미티드 | Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries |
CN105938906A (en) | 2016-06-18 | 2016-09-14 | 湖南星城石墨科技股份有限公司 | Artificial graphite composite negative electrode material for lithium-ion battery and preparation method of artificial graphite composite negative electrode material |
KR20170076501A (en) * | 2015-12-24 | 2017-07-04 | 주식회사 포스코 | Manufacturing method of graphite material for rechargeable battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4233800B2 (en) * | 2002-04-02 | 2009-03-04 | 新日鐵化学株式会社 | Lithium secondary battery negative electrode material and manufacturing method thereof |
WO2006025376A1 (en) * | 2004-08-30 | 2006-03-09 | Mitsubishi Chemical Corporation | Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell |
JP2014086237A (en) * | 2012-10-23 | 2014-05-12 | Tokai Carbon Co Ltd | Method of producing graphite powder for negative electrode material of lithium secondary battery |
-
2017
- 2017-08-17 KR KR1020170104302A patent/KR20190019430A/en not_active Ceased
-
2018
- 2018-08-01 US US16/639,841 patent/US20210143425A1/en not_active Abandoned
- 2018-08-01 CN CN201880053281.3A patent/CN111225888A/en active Pending
- 2018-08-01 WO PCT/KR2018/008762 patent/WO2019035580A1/en unknown
- 2018-08-01 JP JP2020509018A patent/JP2020532058A/en not_active Ceased
- 2018-08-01 EP EP18846532.2A patent/EP3670475A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007153661A (en) * | 2005-12-05 | 2007-06-21 | Showa Denko Kk | Graphite material, carbon material for battery electrode, and battery |
JP2011519332A (en) * | 2008-03-31 | 2011-07-07 | コノコフィリップス カンパニー | Anode powder for batteries |
EP2913873A1 (en) | 2012-10-24 | 2015-09-02 | Tokai Carbon Co., Ltd. | Process for manufacturing graphite powder for lithium secondary battery negative electrode material |
KR20140085767A (en) * | 2012-12-27 | 2014-07-08 | 주식회사 포스코 | Carbon composite materials and method of manufacturing the same |
KR20150138265A (en) * | 2013-03-28 | 2015-12-09 | 엠티 카본 컴퍼니, 리미티드 | Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries |
KR20170076501A (en) * | 2015-12-24 | 2017-07-04 | 주식회사 포스코 | Manufacturing method of graphite material for rechargeable battery |
CN105938906A (en) | 2016-06-18 | 2016-09-14 | 湖南星城石墨科技股份有限公司 | Artificial graphite composite negative electrode material for lithium-ion battery and preparation method of artificial graphite composite negative electrode material |
Non-Patent Citations (1)
Title |
---|
See also references of EP3670475A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114342111A (en) * | 2019-11-12 | 2022-04-12 | 株式会社Lg新能源 | Prelithiated negative electrode and secondary battery including the same |
EP4040529A4 (en) * | 2019-11-12 | 2023-05-03 | LG Energy Solution, Ltd. | PRELITHIATED ANODE AND SECONDARY BATTERY CONTAINING IT |
CN114342111B (en) * | 2019-11-12 | 2025-06-06 | 株式会社Lg新能源 | Pre-lithiation negative electrode and secondary battery including the pre-lithiation negative electrode |
WO2021185014A1 (en) * | 2020-03-20 | 2021-09-23 | 宁德新能源科技有限公司 | Negative electrode active material and electrochemical device and electronic device using same |
JP2023516413A (en) * | 2020-03-20 | 2023-04-19 | 寧徳新能源科技有限公司 | Negative electrode active material, and electrochemical device and electronic device using the same |
JP7579873B2 (en) | 2020-03-20 | 2024-11-08 | 寧徳新能源科技有限公司 | Negative electrode active material, and electrochemical device and electronic device using the same |
CN115485237A (en) * | 2020-04-28 | 2022-12-16 | 浦项产业科学研究院 | Lithium secondary battery negative electrode material and preparation method thereof, and lithium secondary battery |
JP7497828B2 (en) | 2020-10-30 | 2024-06-11 | エルジー エナジー ソリューション リミテッド | Negative electrode active material for lithium secondary battery, negative electrode and lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
EP3670475A4 (en) | 2020-08-26 |
US20210143425A1 (en) | 2021-05-13 |
JP2020532058A (en) | 2020-11-05 |
CN111225888A (en) | 2020-06-02 |
KR20190019430A (en) | 2019-02-27 |
EP3670475A1 (en) | 2020-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019035580A1 (en) | Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including same | |
JP7471303B2 (en) | Negative electrode active material for lithium secondary battery and method for producing same | |
KR102240777B1 (en) | Method for manufacturing negative electrode material for rechargeable lithium battery | |
KR102176343B1 (en) | Method for manufacturing negative electrode material for rechargeable lithium battery | |
CN109742383B (en) | Hard carbon anode material for sodium ion battery based on phenolic resin and its preparation method and application | |
KR102087465B1 (en) | Process for manufacturing graphite powder for lithium secondary battery negative electrode material | |
JP6291414B2 (en) | Carbon material for negative electrode of lithium ion secondary battery, production method and use thereof | |
KR101564374B1 (en) | Method of preparing artificial graphite negative electrode material for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same | |
JP6927292B2 (en) | All-solid-state lithium-ion secondary battery | |
KR20190054045A (en) | Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same | |
JP2008059903A (en) | Carbon material for lithium-ion secondary battery anode, carbon material for low crystallinity carbon-impregnation lithium-ion secondary battery anode, anode electrode plate, and lithium-ion secondary battery | |
KR102699473B1 (en) | A fast-charging anode material for lithium secondary battery, and preparing method of lithium secondary battery comprising thereof | |
CN111755740B (en) | Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all-solid battery, and method for producing sulfide solid electrolyte | |
KR20250072583A (en) | An anode material for lithium secondary battery and lithium secondary battery comprising thereof | |
JP2016115418A (en) | Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery | |
JP2016189294A (en) | Negative electrode active material for lithium ion secondary battery and method for producing the same | |
TWI557971B (en) | A negative electrode active material for a lithium battery, a negative electrode electrode for a lithium secondary battery, a lithium battery for a vehicle for use, and a method for producing a negative electrode active material for a lithium battery | |
JP2002222650A (en) | Graphite particles for negative electrode of non-aqueous electrolyte secondary battery and method for producing the same, negative electrode of non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
KR101568022B1 (en) | Method of preparing artificial graphite negative electrode material for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same | |
CN114824213A (en) | Composite graphite, preparation method thereof, negative plate and secondary battery | |
KR20230052329A (en) | Carbon material for negative electrode active material, negative electrode active material, rechargeable lithium battery including the same, and method for manufacturing negative electrode active material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18846532 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020509018 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018846532 Country of ref document: EP Effective date: 20200317 |