KR102775247B1 - Electrode material for electrode for saf using isotropic coke and manufacturing method thereof - Google Patents
Electrode material for electrode for saf using isotropic coke and manufacturing method thereof Download PDFInfo
- Publication number
- KR102775247B1 KR102775247B1 KR1020220096579A KR20220096579A KR102775247B1 KR 102775247 B1 KR102775247 B1 KR 102775247B1 KR 1020220096579 A KR1020220096579 A KR 1020220096579A KR 20220096579 A KR20220096579 A KR 20220096579A KR 102775247 B1 KR102775247 B1 KR 102775247B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode material
- weight
- manufacturing
- electrode
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000000571 coke Substances 0.000 title abstract description 30
- 238000002156 mixing Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000003245 coal Substances 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 238000003763 carbonization Methods 0.000 claims abstract description 15
- 238000004458 analytical method Methods 0.000 claims abstract description 13
- 238000000921 elemental analysis Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 238000002407 reforming Methods 0.000 claims description 4
- 238000004898 kneading Methods 0.000 abstract description 5
- 240000005809 Prunus persica Species 0.000 description 17
- 235000006040 Prunus persica var persica Nutrition 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 238000010304 firing Methods 0.000 description 13
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 9
- 239000003830 anthracite Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000011049 filling Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000004484 Briquette Substances 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/08—Heating by electric discharge, e.g. arc discharge
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
본 발명은 등방코크스를 이용한 전극용 전극재의 제조방법 및 그에 의하여 제조된 전극재에 관한 것으로, 원소분석 시, 중량%로 C: 95.00~99.00%, H: 0.01~0.05%, N: 0.5~1.2%, S: 0.15~0.50%, 공업석탄분석 시 중량%로 Ash(회분): 0.2~0.5%, VM(휘발분): 1~5%, Fixed Carbon(탄화수율): 95~98%의 조건을 만족하는 골재와 원소분석 시, 중량%로 C: 90~95%, H: 2~6%, N: 1~4%, S: 0.2~1.0%, 공업석탄분석 시 중량%로 Ash(회분): 0.10~0.40%, VM(휘발분): 50~59.8%, Fixed Carbon(탄화수율) 40~49.8%, 연화점: 75~125℃의 조건을 만족하는 피치를 배합하는 단계; 및 혼련하는 단계;를 포함한다.The present invention relates to a method for manufacturing an electrode material using isotropic coke and to an electrode material manufactured thereby, wherein the aggregate satisfies the conditions of C: 95.00 to 99.00% in weight %, H: 0.01 to 0.05%, N: 0.5 to 1.2%, S: 0.15 to 0.50% in weight % in element analysis, and Ash (ash content): 0.2 to 0.5% in weight %, VM (volatile matter): 1 to 5%, Fixed Carbon (carbonization yield): 95 to 98% in industrial coal analysis, and wherein the aggregate satisfies the conditions of C: 90 to 95% in weight %, H: 2 to 6%, N: 1 to 4%, S: 0.2 to 1.0% in weight % in element analysis, and Ash (ash content): 0.10 to 0.40% in weight %, VM (volatile matter): 50 to 59.8%, Fixed Carbon (carbonization yield) in industrial coal analysis. A step of mixing pitch satisfying the conditions of 40 to 49.8% and softening point: 75 to 125℃; and a step of kneading.
Description
본 발명은 등방코크스를 이용한 전극용 전극재의 제조방법 및 그에 의하여 제조된 전극재에 관한 것으로, 보다 상세하게는 기존의 하소 무연탄을 골재로 사용하는 전극재에 비하여 기계적 특성, 탄소 함량 등이 높은 등방코크스를 골재로 사용한 전극재 및 전극재를 이용하여 전극으로 사용 시, 자가소성된 후, 높은 기계적 강도, 낮은 전기비저항, 높은 탄화수율, 낮은 Ash(회분) 함량 등의 특성을 지니는 SAF(Submerged Arc Furnace)용 자가소성 전극에 적합한 전극재에 관한 것이다.The present invention relates to a method for manufacturing an electrode material using isostatic coke and to an electrode material manufactured thereby, and more specifically, to an electrode material using isostatic coke as an aggregate which has higher mechanical properties and carbon content than electrode materials using existing calcined anthracite coal as an aggregate, and an electrode material suitable for a self-firing electrode for a SAF (Submerged Arc Furnace) which, when used as an electrode using the electrode material, has characteristics such as high mechanical strength, low electrical resistivity, high carbonization yield, and low ash content after self-firing.
인조흑연 및 탄소 전극 등과 같은 전기로용 전극과 용접봉 및 저항식 발열체 등과 같은 각종 발열체는 전기 에너지를 열에너지로 전환하기 위해 사용되며, 전극은 주로 전극간 또는 전극과 피처리물 사이에 발생하는 아크 열에 의하여 피처리물을 가열, 용융시키는 데 이용된다. 인조흑연 전극은 주로 전기제강용 아크로에서 많이 사용되고 있으나, 그 외에도 비철금속(non-ferrous metal), 합금철(ferroalloy), 이황화탄소 등 각종 제품 제조용 전기로에 널리 사용되고 있다.Electrodes for electric furnaces, such as artificial graphite and carbon electrodes, and various heating elements, such as welding rods and resistance heating elements, are used to convert electrical energy into heat energy, and the electrodes are mainly used to heat and melt the workpiece by the arc heat generated between the electrodes or between the electrode and the workpiece. Artificial graphite electrodes are mainly used in electric arc furnaces for steelmaking, but are also widely used in electric furnaces for manufacturing various products, such as non-ferrous metals, ferroalloys, and carbon disulfide.
그 중에서도 합금철 제조에 많이 사용되고 있는 SAF(Submerged Arc Furnaces) 전기로는 흑연전극에 전기를 가하여 열-플라즈마 열을 다량으로 발생시켜 원자재를 녹여 생산하는 방식으로 진행된다. 한편, 제강용 전극봉과는 달리, SAF 전극은 전극재를 투입하여 전극재가 용융이 되고 자체 하중으로 인해 충진이 되고 사용 중 소성되어 전극봉 역할을 하게 된다. 이로 인해 자가소성 및 연속적으로 조업이 가능하기 때문에 자소성 연속식 전극(Self-baking continuous electrode) 형식으로 볼 수 있으며, 케이스를 철판제 등으로 완전히 자소성 방식인 소더버그(Soderberg)식과 케이스를 소성 전극의 세그먼트로 조합하여 만들고 중심에 전극재를 채워 순차적으로 이어가는 반자소성식이 있다.Among them, Submerged Arc Furnaces (SAF) electric furnaces, which are widely used in alloy ferromagnetic manufacturing, produce raw materials by applying electricity to a graphite electrode to generate a large amount of thermal plasma heat. Meanwhile, unlike electrode rods for steelmaking, SAF electrodes are produced by inserting electrode material, melting the electrode material, filling it due to its own load, and baking it during use to play the role of an electrode rod. Because of this, self-baking and continuous operation are possible, it can be viewed as a self-baking continuous electrode type. There is a Soderberg type that is completely self-baking with a case made of sheet iron, and a semi-self-baking type that combines a case with segments of a baking electrode and fills the center with electrode material and connects them sequentially.
본 발명은 기존 전극재의 개선을 위하여 안출된 것으로, 기존 전극재에서 골재로 널리 사용되고 있는 하소 무연탄은 SiO2, Al2O3, CaO, MgO 등이 포함된, Ash(회분)의 함량이 높은 탄소재료이다. Ash(회분)의 함량이 높으면 자연스럽게 탄화수율(Fixed Carbon)이 줄어들기 때문에 전극재의 물성이나 소성 이후 전극 성형체의 물성에 영향을 미친다. 따라서, 본 발명은 기존의 골재인 하소 무연탄에 비해 고강도, 고탄소질 물질인 등방코크스로 대체함으로써 Ash(회분) 함량이 적고 탄화수율이 높은 고탄소질 전극재의 제조방법을 제공한다.The present invention has been devised to improve existing electrode materials, and calcined anthracite, which is widely used as an aggregate in existing electrode materials, is a carbon material with a high ash content, including SiO 2 , Al 2 O 3 , CaO, MgO, etc. When the ash content is high, the carbonization yield (fixed carbon) naturally decreases, which affects the properties of the electrode material or the properties of the electrode molded body after sintering. Therefore, the present invention provides a method for manufacturing a high-carbon electrode material with a low ash content and a high carbonization yield by replacing the existing aggregate, calcined anthracite, with isotropic coke, which is a high-strength, high-carbon material.
위 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 전극재의 제조방법은, 원소분석 시, 중량%로 C: 95.00~99.00%, H: 0.01~0.05%, N: 0.5~1.2%, S: 0.15~0.50%, 공업석탄분석 시, 중량%로 Ash(회분): 0.2~0.5%, VM(휘발분): 1~5%, Fixed Carbon(탄화수율): 95~98%의 조건을 만족하는 골재와 원소분석 시, 중량%로 C: 90~95%, H: 2~6%, N: 1~4%, S: 0.2~1.0%, 공업석탄분석 시, 중량%로 Ash(회분): 0.10~0.40%, VM(휘발분): 50~59.8%, Fixed Carbon(탄화수율) 40~49.8%, 연화점: 75~125℃의 조건을 만족하는 피치를 배합하는 단계; 및 혼련하는 단계;를 포함한다.In order to achieve the above object, a method for manufacturing an electrode material according to one embodiment of the present invention comprises an aggregate satisfying the conditions of C: 95.00 to 99.00% in weight %, H: 0.01 to 0.05%, N: 0.5 to 1.2%, S: 0.15 to 0.50% in weight % in elemental analysis, and Ash (ash content): 0.2 to 0.5% in weight %, VM (volatile matter): 1 to 5%, Fixed Carbon (carbonization yield): 95 to 98% in weight % in industrial coal analysis, and C: 90 to 95% in weight %, H: 2 to 6%, N: 1 to 4%, S: 0.2 to 1.0% in weight % in industrial coal analysis, Ash (ash content): 0.10 to 0.40% in weight %, VM (volatile matter): 50 to 59.8%, Fixed Carbon (carbonization yield) A step of mixing pitch satisfying the conditions of 40 to 49.8%, softening point: 75 to 125℃; and a step of kneading.
또한, 본 발명의 일 실시예에 따른 전극재의 제조방법은, 상기 골재의 입도분포는 중량%로, 11.2mm초과: 5~10%, 11.2mm~1mm: 35~70%, 및 1mm미만: 20~40%일 수 있다.In addition, in the method for manufacturing an electrode material according to one embodiment of the present invention, the particle size distribution of the aggregate may be, in wt%, over 11.2 mm: 5 to 10%, 11.2 mm to 1 mm: 35 to 70%, and less than 1 mm: 20 to 40%.
또한, 본 발명의 일 실시예에 따른 전극재의 제조방법은, 상기 배합하는 단계에서 배합되는 피치는, 중량%로 20~30%일 수 있다.In addition, in the method for manufacturing an electrode material according to one embodiment of the present invention, the pitch mixed in the mixing step may be 20 to 30% by weight.
또한, 본 발명의 일 실시예에 따른 전극재의 제조방법은, 상기 혼련하는 단계는 200~400℃ 온도로 3~6시간 동안 혼련하여 개질하는 단계일 수 있다.In addition, in the method for manufacturing an electrode material according to one embodiment of the present invention, the kneading step may be a step of reforming by kneading at a temperature of 200 to 400°C for 3 to 6 hours.
또한, 본 발명의 일 실시예에 따른 전극재는, 가소성이 10~20% 이상일 수 있다.Additionally, the electrode material according to one embodiment of the present invention may have a plasticity of 10 to 20% or more.
또한, 본 발명의 일 실시예에 따른 전극재의 성형체는, 밀도가 1.25~1.30 g/cm3일 수 있다.Additionally, the molded body of the electrode material according to one embodiment of the present invention may have a density of 1.25 to 1.30 g/cm 3 .
또한, 본 발명의 일 실시예에 따른 전극재의 성형체는, 전기비저항이 70~100 μΩm일 수 있다.Additionally, the molded body of the electrode material according to one embodiment of the present invention may have an electrical resistivity of 70 to 100 μΩm.
또한, 본 발명의 일 실시예에 따른 전극재의 성형체는, 압축강도가 5.0 MPa 이상일 수 있다.In addition, the molded body of the electrode material according to one embodiment of the present invention may have a compressive strength of 5.0 MPa or more.
또한, 본 발명의 일 실시예에 따른 전극재의 성형체는, 굽힘강도가 3.0 MPa 이상일 수 있다.In addition, the molded body of the electrode material according to one embodiment of the present invention may have a bending strength of 3.0 MPa or more.
본 발명에 의한 등방코크스를 이용한 SAF 자가소성 전극용 전극재 및 그 제조방법에 따르면, 기존 하소 무연탄을 골재로 사용한 전극재에 비해 Ash(회분) 함량 85~90% 감소, VM(휘발분) 함량 30~40% 감소, Fixed Carbon(탄화수율) 5~10% 증가, 전기비저항 10~20% 감소, 압축강도 0~10% 증가, 굽힘강도 10~40% 증가하는 바, 고탄소질이면서도, 기존 제품에 비해 물성이 개선된 고품질 전극재를 제공할 수 있다.According to the electrode material for SAF self-firing electrode using isostatic coke according to the present invention and the manufacturing method thereof, compared to the electrode material using existing calcined anthracite coal as aggregate, the ash content is reduced by 85 to 90%, the VM (volatile matter) content is reduced by 30 to 40%, the fixed carbon (carbonization yield) is increased by 5 to 10%, the electrical resistivity is reduced by 10 to 20%, the compressive strength is increased by 0 to 10%, and the bending strength is increased by 10 to 40%, so that a high-quality electrode material having high carbon content and improved physical properties compared to existing products can be provided.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention may be modified in various other forms, and the technical idea of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided in order to more completely explain the present invention to a person having average knowledge in the relevant technical field.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terminology used in this application is only used to describe specific examples. Therefore, for example, a singular expression includes a plural expression unless the context clearly requires it to be singular. In addition, it should be noted that the terms "comprise" or "have" used in this application are used to clearly indicate the presence of a feature, step, function, component, or combination thereof described in the specification, and are not used to preliminarily exclude the presence of other features, steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Meanwhile, unless otherwise defined, all terms used in this specification should be considered to have the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs. Accordingly, unless explicitly defined in this specification, specific terms should not be interpreted in an overly idealistic or formal sense. For example, singular expressions in this specification include plural expressions unless the context clearly indicates an exception.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.In addition, the terms "about", "substantially", etc. in this specification are used in the sense that they are at or close to the numerical values when manufacturing and material tolerances inherent in the meanings mentioned are presented, and are used to prevent unscrupulous infringers from unfairly using the disclosure contents in which exact or absolute numerical values are mentioned to help understanding of the present invention. The embodiments described in this specification and the configurations illustrated in the drawings are preferred examples of the disclosed invention, and there may be various modified examples that can replace the embodiments and drawings of this specification at the time of filing of the present application.
또한, 본 명세서에서 사용한 용어는 실시예를 설명하기 위해 사용된 것으로, 개시된 발명을 제한 및/또는 한정하려는 의도가 아니다. 또한 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다.In addition, the terminology used in this specification is used for the purpose of describing embodiments, and is not intended to limit and/or restrict the disclosed invention. In addition, each step may be performed in a different order than stated, unless the context clearly indicates a specific order.
이하에서는 본 발명의 일 실시예에 따른 등방코크스를 이용한 SAF 전극용 전극재 및 그 제조방법에 대하여 상세하게 설명하도록 한다.Hereinafter, an electrode material for a SAF electrode using isotropic coke according to one embodiment of the present invention and a manufacturing method thereof will be described in detail.
본 발명의 일 실시예에 따른 전극재의 제조방법은, 원소분석 시, 중량%로 C: 95.00~99.00%, H: 0.01~0.05%, N: 0.5~1.2%, S: 0.15~0.50%, 공업석탄분석 시, 중량%로 Ash(회분): 0.2~0.5%, VM(휘발분): 1~5%, Fixed Carbon(탄화수율): 95~98%의 조건을 만족하는 골재와 원소분석 시, 중량%로 C: 90~95%, H: 2~6%, N: 1~4%, S: 0.2~1.0%, 공업석탄분석 시, 중량%로 Ash(회분): 0.10~0.40%, VM(휘발분): 50~59.8%, Fixed Carbon(탄화수율) 40~49.8%, 연화점: 75~125℃의 조건을 만족하는 피치를 배합하는 단계; 및 According to one embodiment of the present invention, a method for manufacturing an electrode material comprises aggregates that satisfy the conditions of C: 95.00 to 99.00% in weight %, H: 0.01 to 0.05%, N: 0.5 to 1.2%, S: 0.15 to 0.50% in weight %, and Ash (ash content): 0.2 to 0.5%, VM (volatile matter): 1 to 5%, and Fixed Carbon (carbonization yield): 95 to 98% in weight % upon elemental analysis, and C: 90 to 95% in weight %, H: 2 to 6%, N: 1 to 4%, S: 0.2 to 1.0% in weight %, and Ash (ash content): 0.10 to 0.40%, VM (volatile matter): 50 to 59.8%, and Fixed Carbon (carbonization yield): 40 to 49.8% in weight % upon elemental analysis. Softening point: a step of mixing pitch that satisfies the condition of 75 to 125℃; and
혼련하는 단계;를 포함한다.Includes a mixing step;
본 발명의 전극재의 제조방법은, 기존 골재로 사용되는 하소 무연탄 대신 등방코크스를 골재로 사용하게 되는데, 등방코크스는 하소 무연탄에 비해 강도가 높고, 높은 탄화수율과 낮은 Ash(회분) 함량을 지닌다. 반면, 기존 하소 무연탄 골재는 2~5% 정도의 CaO, MgO 함량으로 인해 소성 후에도 Ash(회분)가 남기 때문에 낮은 탄화수율을 가진다.The method for manufacturing an electrode material of the present invention uses isostatic coke as an aggregate instead of calcined anthracite coal, which is used as an existing aggregate. Isostatic coke has higher strength, higher carbonization yield, and lower ash content compared to calcined anthracite coal. On the other hand, existing calcined anthracite coal aggregate has a low carbonization yield because ash remains after calcination due to the CaO and MgO content of about 2 to 5%.
또한, 본 발명의 일 실시예에 따른 전극재의 제조방법은, 상기 골재의 입도분포는 중량%로, 11.2mm초과: 5~10%, 11.2mm~1mm: 35~70%, 및 1mm미만: 20~40%일 수 있다. 골재의 입도 분포는 추후 성형체의 강도 등을 결정하는 중요 인자이며, 1mm단위이하의 미분은 피치와의 결합 및 유동성을 잡아줄 수 있는 인자이다.In addition, in the method for manufacturing an electrode material according to one embodiment of the present invention, the particle size distribution of the aggregate may be, in wt%, over 11.2 mm: 5 to 10%, 11.2 mm to 1 mm: 35 to 70%, and less than 1 mm: 20 to 40%. The particle size distribution of the aggregate is an important factor that determines the strength of a later molded body, and fine particles of 1 mm or less are a factor that can secure bonding with the pitch and fluidity.
또한, 본 발명의 일 실시예에 따른 전극재의 제조방법은, 상기 배합하는 단계에서 배합되는 피치는, 중량%로 20~30%일 수 있다. 또한, 본 발명의 일 실시예에 따른 전극재의 제조방법은, 상기 혼련하는 단계는 200~400℃ 온도로 3~6시간 동안 혼련하여 개질하는 단계일 수 있다. 혼련 후에는, 몰드에 넣어 일정한 크기로 성형 후 굳혀 제조한다.In addition, in the method for manufacturing an electrode material according to one embodiment of the present invention, the pitch mixed in the mixing step may be 20 to 30% by weight. In addition, in the method for manufacturing an electrode material according to one embodiment of the present invention, the mixing step may be a step of modifying by mixing at a temperature of 200 to 400° C. for 3 to 6 hours. After mixing, the material is put into a mold, shaped into a certain size, and then hardened to manufacture.
상술한 바와 같이, 골재와 피치를 혼합한 후, 혼련 공정을 통해 고르게 혼합 및 골재와 피치의 혼련물을 개질하여 Briquette 성형체를 제조한다. 자가소성 방식의 전기로는 전극재를 투입하여 열과 자체의 하중으로 인해 충진이 되면서 소성되어, 전극봉 역할을 하게 된다. 이때 충진과 소성이 되는 과정에서 고려해야 할 인자 중 하나인 가소성(Plasticity)은 매우 중요한 인자이다. 가소성이 좋으면 잘 연화되지만, 고 유동성으로 인해 전극 형성 중 제대로 소성되지 못하고 밑으로 쏟아질 수 있으며, 가소성이 나쁘면 충분히 충진되지 못하고 기공이 남아, 소성 후 전극 성형체의 물성의 저하를 야기한다. 따라서, 최적의 가소성을 지닌 Briquette 성형체를 만들기 위해서는 혼련물의 적절한 개질이 필요하며, 200~400℃까지 승온하여 열처리 전후의 지름(diameter)의 변화를 통해 가소성을 측정한다. 이때 가소성의 값은 10~20%를 만족해야 전극 성형체 제조 시 최적의 조건을 만족할 수 있다. 혼련 온도와 시간 조건은 가소성에 영향을 미치는 중요한 인자이며, 본 발명의 제조방법에서 기재된 온도보다 낮거나 혼련 시간이 짧다면 피치가 개질이 되지 않아 가소성이 너무 높아져, 형태를 이루지 못하면서 성형이 되지 않는다. 또한, 온도가 높거나 혼련 시간이 너무 길다면, 너무 빠르게 고화되면서 생긴 기공으로 인해 밀도 감소, 전기비저항 증가, 및 강도 감소 등의 물성에 악영향을 미치게 된다.As described above, after mixing the aggregate and pitch, the briquette molded body is manufactured by evenly mixing and reforming the mixture of the aggregate and pitch through the kneading process. In the electric furnace of the self-firing method, the electrode material is put in, and it is filled and fired by the heat and its own load, and it acts as an electrode rod. At this time, plasticity, which is one of the factors to be considered in the process of filling and firing, is a very important factor. If the plasticity is good, it softens well, but due to high fluidity, it may not be properly fired during electrode formation and may spill down, and if the plasticity is bad, it may not be filled sufficiently and pores may remain, causing a deterioration in the properties of the electrode molded body after firing. Therefore, in order to manufacture a briquette molded body with optimal plasticity, appropriate reforming of the mixture is necessary, and the plasticity is measured through the change in diameter before and after heat treatment by raising the temperature to 200~400℃. At this time, the plasticity value must satisfy 10~20% to satisfy the optimal conditions for manufacturing the electrode molded body. The mixing temperature and time conditions are important factors affecting plasticity. If the temperature is lower than or the mixing time is shorter than the temperature described in the manufacturing method of the present invention, the pitch is not reformed, so the plasticity becomes too high, and the shape cannot be formed and molding is not possible. In addition, if the temperature is high or the mixing time is too long, the rapid solidification causes pores to be created, which adversely affects the physical properties such as a decrease in density, an increase in electrical resistance, and a decrease in strength.
또한, 혼련의 온도와 시간은 연화점이 75~125℃로 낮은 피치와 골재를 혼합한 혼합물(전극재)의 적절한 연화점을 형성함으로써, 전극의 제조 시 용융상을 거칠 때 연화점이 너무 낮은 경우 전극재가 흘러내려 전극의 유실 문제를 방지하며, 연화점이 너무 높은 경우 충진이 충분히 되지 않아 기공이 형성되어 소성 후 전극의 물성에 악영향을 미치는 문제를 방지해야 한다.In addition, the temperature and time of mixing should be such that the mixture (electrode material) with low pitch and aggregate having a softening point of 75 to 125°C is formed to form an appropriate softening point, thereby preventing the electrode from flowing out and being lost when passing through the molten phase during the manufacture of the electrode if the softening point is too low, and preventing the problem of pores being formed due to insufficient filling if the softening point is too high, which adversely affects the properties of the electrode after firing.
따라서, 상술한 방법에 의해 제조되는 본 발명의 일 실시예에 따른 전극재는 가소성이 10~20%일 수 있다.Therefore, the electrode material according to one embodiment of the present invention manufactured by the above-described method may have a plasticity of 10 to 20%.
또한, 상기 전극재를 소성하여 제조되는 성형체는, 밀도가 1.25~1.30 g/cm3일 수 있다. 즉, 본 발명에 따른 성형체의 밀도가 1.25~1.30 g/cm3를 만족하는 경우 충진이 잘되어 전기적 특성과 기계적 특성에 악영향을 미칠 수 있는 기공이 적어질 수 있다.In addition, the molded body manufactured by firing the electrode material may have a density of 1.25 to 1.30 g/cm 3 . That is, when the density of the molded body according to the present invention satisfies 1.25 to 1.30 g/cm 3 , the filling is good and the pores that may adversely affect the electrical and mechanical properties may be reduced.
또한, 상기 전극재를 소성하여 제조되는 성형체는, 전기비저항이 70~100 μΩm일 수 있다. 즉, 본 발명에 따른 성형체는 전기비저항이 상기 범위를 만족함으로써 전극으로 사용되기에 적절한 전기적 특성을 나타낼 수 있다.In addition, the molded body manufactured by firing the electrode material may have an electrical resistivity of 70 to 100 μΩm. That is, the molded body according to the present invention may exhibit electrical characteristics suitable for use as an electrode by satisfying the electrical resistivity within the above range.
또한, 상기 전극재를 소성하여 제조되는 성형체는, 압축강도가 5.0 MPa 이상이고, 굽힘강도는 3.0 MPa 이상일 수 있다. 즉, 본 발명에 따른 성형체는 상기 범위의 강도를 만족함으로써 전극으로 사용시 상부에서 하부로의 중력, 전극 자체의 하중 등의 다양한 응력을 견딜 수 있다.In addition, the molded body manufactured by firing the electrode material may have a compressive strength of 5.0 MPa or more and a bending strength of 3.0 MPa or more. That is, the molded body according to the present invention can withstand various stresses such as gravity from top to bottom and the load of the electrode itself when used as an electrode by satisfying the strength within the above range.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for illustrating the implementation of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the rights of the present invention is determined by the matters described in the patent claims and matters reasonably inferred therefrom.
[실시예][Example]
중량%로, 골재(등방코크스)의 입도 분포는 중량%로, 11.2mm초과: 5~10%, 11.2mm~1mm: 35~70%, 및 1mm미만: 20~40%, 피치는 중량%로 20~30%, 연화점은 75~125℃인 피치를 사용하여 배합한 원료를 200~400℃ 온도로 3~6시간동안 혼련하였고, 사용한 등방코크스의 원소분석 및 공업석탄분석에 대해서는 하기 표 1에 나타내었다.In weight%, the particle size distribution of aggregate (isostatic coke) is, in weight%, over 11.2 mm: 5 to 10%, 11.2 mm to 1 mm: 35 to 70%, and less than 1 mm: 20 to 40%, the pitch is 20 to 30% in weight%, and the raw material mixed using pitch having a softening point of 75 to 125°C was kneaded at a temperature of 200 to 400°C for 3 to 6 hours, and the elemental analysis and industrial coal analysis of the isostatic coke used are shown in Table 1 below.
(Fixed Carbon)FC
(Fixed Carbon)
표 1은 전극재의 골재로 사용되는 등방코크스의 원소분석 및 공업석탄분석 결과이다. 본 발명의 골재로 적합한 등방코크스는 본 발명의 범위를 모두 만족하여 높은 탄화수율을 만족하는 것을 확인할 수 있다. 이런 등방코크스의 입도 분포는 중량%로, 11.2mm초과: 5~10%, 11.2mm~1mm: 35~70%, 및 1mm미만: 20~40%로 혼합하여 골재로 사용하였다.Table 1 shows the results of element analysis and industrial coal analysis of isotropic coke used as aggregate of electrode material. It can be confirmed that isotropic coke suitable as aggregate of the present invention satisfies all the scope of the present invention and satisfies high carbonization yield. The particle size distribution of such isotropic coke was mixed as follows in weight %: over 11.2 mm: 5-10%, 11.2 mm~1 mm: 35-70%, and less than 1 mm: 20-40%, and used as aggregate.
%Ash
%
%VM
%
%Fixed Carbon
%
℃Softening point
℃
상기 표 2는 전극재의 피치로 사용되는 피치의 공업석탄분석 결과이다. 본 발명의 골재로 적합한 피치는 본 발명의 범위를 만족하는 반면, 비교예의 피치는 Ash의 범위 및/또는 VM의 범위를 만족하지 못하는 것을 확인할 수 있다. 이때 연화점은 혼련 시 혼련물의 유동성과 가소성에 영향을 미치므로, 바인더로서 피치는 골재와 7:3 ~ 8:2 비율로 혼합 후 혼련하여 전극재를 제작하였다.The above Table 2 shows the industrial coal analysis results of the pitch used as the pitch of the electrode material. It can be confirmed that the pitch suitable as the aggregate of the present invention satisfies the range of the present invention, whereas the pitch of the comparative example does not satisfy the range of Ash and/or VM. At this time, since the softening point affects the fluidity and plasticity of the mixed material during mixing, the pitch as a binder was mixed with the aggregate in a ratio of 7:3 to 8:2 and then mixed to produce the electrode material.
%Ash
%
%VM
%
%Fixed Carbon
%
%Plasticity
%
상기 표 3은 혼련 조건에 따른 전극재(소성 전)의 물성이다. 본 발명의 혼련 온도 및 혼련 시간 조건을 만족하는 경우 O로 표기, 만족하지 않을 경우 ×로 표기하였다. 혼련온도가 너무 낮은 경우 가소성이 너무 높게 측정되며, 혼련시간이 너무 짧은 경우 역시 가소성이 높게 측정되고, 따라서 혼련온도 및 훈련시간이 모두 본 발명의 범위를 만족하는 발명예 1 및 2는 연화점 및 가소성이 본 발명의 범위를 모두 만족하였으나, 혼련온도 또는 혼련시간을 만족하지 않는 비교예 1 내지 6은 가소성이 20%를 초과하는 것을 확인하였다. 전극재 제작 시, 혼련은 오버헤드 스터러(Overhead Stirrer)와 히팅맨틀을 동일하게 이용하였으며, 각 혼련 공정 후 지름 40mm의 원통형 몰드에 전극재를 넣어 가소성 시편을 제작하였고, 가소성 측정 시, 4번씩 측정하여 평균값을 이용하여 하기 표 4에 나타내었다.The above Table 3 shows the properties of electrode materials (before sintering) according to the mixing conditions. When the mixing temperature and mixing time conditions of the present invention are satisfied, they are marked as O, and when they are not satisfied, they are marked as ×. When the mixing temperature is too low, the plasticity is measured too high, and when the mixing time is too short, the plasticity is also measured high. Accordingly, inventive examples 1 and 2 in which both the mixing temperature and the training time satisfy the range of the present invention, both the softening point and the plasticity satisfy the range of the present invention, but it was confirmed that in comparative examples 1 to 6 that do not satisfy the mixing temperature or the mixing time, the plasticity exceeded 20%. When producing the electrode material, the mixing was performed using the same overhead stirrer and heating mantle, and after each mixing process, the electrode material was put into a cylindrical mold with a diameter of 40 mm to produce a plasticity specimen. When measuring the plasticity, the measurement was performed four times and the average value was used, which is shown in Table 4 below.
(g/cm3) apparent density
(g/cm 3)
(μΩm)Electrical resistivity
(μΩm)
(MPa)Compressive strength
(MPa)
(MPa)Bending strength
(MPa)
전극재의 소성은 전극재의 혼련 공정 이후 Briquette 성형기를 이용하여 지름 4cm의 타원형 Briquette를 제작 후 120Φ 스테인리스 원통형 몰드에 넣어 소성하였다. 소성 조건은 분당 1,000℃(승온 2℃/min, 1hr 유지, N2 분위기)로 진행하였다. 소성 후 물성은 KS L 3409(흑연 소재의 물리적 특성 시험방법)의 규격에 준하여 측정하였으며, 각 조건별 5회 샘플 측정하여 평균값을 이용하여, 상기 표 4에 나타내었다.즉, 본 발명에 따른 등방코크스와 피치를 혼합하고 본 발명에 따른 혼련 조건으로 제조된 전극재를 소성하여 제조한 성형체는 밀도가 1.25~1.30g/cm3을 만족하고, 전기비저항이 70~100 μΩm이었으며, 압축강도가 5.0 MPa 이상이고, 굽힘강도가 3.0 MPa 이상이며, 가소성이 10~20%인 것을 확인할 수 있었다. 반면, 골재가 하소 무연탄이거나, 혼련 조건이 맞지 않을 경우, 전극재 성형체의 물성은 본 발명의 범위를 만족하지 못하는 것을 확인할 수 있었다.The sintering of the electrode material was done by using a briquette molding machine after the mixing process of the electrode material to make oval briquettes with a diameter of 4 cm, and then putting them in a 120Φ stainless steel cylindrical mold and sintering them. The sintering conditions were 1,000℃ per minute (heating 2℃/min, holding for 1 hour, N 2 atmosphere). The physical properties after firing were measured according to the standard of KS L 3409 (Test method for physical properties of graphite materials), and the average value was used by measuring five samples for each condition, and is shown in Table 4 above. That is, it was confirmed that the molded body manufactured by mixing the isotropic coke and pitch according to the present invention and firing the electrode material manufactured under the mixing conditions according to the present invention had a density of 1.25 to 1.30 g/cm 3 , an electrical resistivity of 70 to 100 μΩm, a compressive strength of 5.0 MPa or more, a bending strength of 3.0 MPa or more, and a plasticity of 10 to 20%. On the other hand, it was confirmed that the physical properties of the electrode material molded body did not satisfy the range of the present invention when the aggregate was calcined anthracite coal or when the mixing conditions were not suitable.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.Although exemplary embodiments of the present invention have been described above, the present invention is not limited thereto, and those skilled in the art will understand that various changes and modifications are possible within the scope of the claims set forth below.
Claims (9)
혼련하는 단계;
를 포함하는 것을 특징으로 하는 전극재의 제조방법.In the case of elemental analysis, the aggregate satisfies the conditions of C: 98.25~99.00% in weight%, H: 0.01~0.05%, N: 0.5~1.2%, S: 0.15~0.50%, in the case of industrial coal analysis, Ash (ash content): 0.2~0.5% in weight%, VM (volatile matter): 1.5~4.8%, Fixed Carbon (carbonization yield): 95~98%, and in the case of elemental analysis, C: 90~95% in weight%, H: 2~6%, N: 1~4%, S: 0.2~1.0%, in the case of industrial coal analysis, Ash (ash content): 0.10~0.40%, VM (volatile matter): 50~59.8%, Fixed Carbon (carbonization yield): 40~49.8%, softening point: A step of mixing pitch that satisfies the conditions of 75~125℃; and
The mixing stage;
A method for manufacturing an electrode material, characterized by including a.
상기 골재의 입도분포는 중량%로, 11.2mm초과: 5~10%, 11.2mm~1mm: 35~70%, 및 1mm미만: 20~40%인 것을 특징으로 하는 전극재의 제조방법.In claim 1,
A method for manufacturing an electrode material, characterized in that the particle size distribution of the aggregate is, in weight %, over 11.2 mm: 5 to 10%, 11.2 mm to 1 mm: 35 to 70%, and less than 1 mm: 20 to 40%.
상기 배합하는 단계에서 배합되는 피치는, 중량%로 20~30%인 것을 특징으로 하는 전극재의 제조방법.In claim 1,
A method for manufacturing an electrode material, characterized in that the pitch mixed in the mixing step is 20 to 30% by weight.
상기 혼련하는 단계는 200~400℃ 온도로 3~6시간 동안 혼련하여 개질하는 단계인 것을 특징으로 하는 전극재의 제조방법.In claim 1,
A method for manufacturing an electrode material, characterized in that the above mixing step is a step of reforming by mixing at a temperature of 200 to 400°C for 3 to 6 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220096579A KR102775247B1 (en) | 2022-08-03 | 2022-08-03 | Electrode material for electrode for saf using isotropic coke and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220096579A KR102775247B1 (en) | 2022-08-03 | 2022-08-03 | Electrode material for electrode for saf using isotropic coke and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240020287A KR20240020287A (en) | 2024-02-15 |
KR102775247B1 true KR102775247B1 (en) | 2025-03-07 |
Family
ID=89899074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220096579A Active KR102775247B1 (en) | 2022-08-03 | 2022-08-03 | Electrode material for electrode for saf using isotropic coke and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102775247B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298231A (en) | 2004-04-07 | 2005-10-27 | Tokai Carbon Co Ltd | Manufacturing method of isotropic graphite material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190019430A (en) * | 2017-08-17 | 2019-02-27 | 주식회사 포스코 | Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same |
KR102240777B1 (en) * | 2018-12-19 | 2021-04-14 | 주식회사 포스코 | Method for manufacturing negative electrode material for rechargeable lithium battery |
KR20210090562A (en) * | 2020-01-10 | 2021-07-20 | 주식회사 엘지에너지솔루션 | Artificial graphite, Method for preparing the same, Anode Comprising the same, and Lithium Secondary Battery Comprising the same |
KR102508857B1 (en) * | 2020-11-26 | 2023-03-09 | 재단법인 포항산업과학연구원 | Manufacturing method of carbonized blocks used for manufacturing isotropic graphite |
-
2022
- 2022-08-03 KR KR1020220096579A patent/KR102775247B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298231A (en) | 2004-04-07 | 2005-10-27 | Tokai Carbon Co Ltd | Manufacturing method of isotropic graphite material |
Also Published As
Publication number | Publication date |
---|---|
KR20240020287A (en) | 2024-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2494161C (en) | Process of making graphite articles | |
CN112028613A (en) | Magnesia carbon brick using catalyst-added phenolic resin | |
CN100494507C (en) | High bulk density semi-graphitic cathode carbon block and production method thereof | |
CN110511000B (en) | Periclase-chromium corundum brick for upper groove of RH furnace and preparation method thereof | |
KR102775247B1 (en) | Electrode material for electrode for saf using isotropic coke and manufacturing method thereof | |
CN111423222A (en) | Method for producing chrome corundum brick for non-ferrous metal smelting fuming furnace or side-blown furnace with reduction reaction resistance and thermal shock resistance | |
JP6457313B2 (en) | Manufacturing method of magnesia chrome brick | |
JP3639635B2 (en) | Method for producing magnesia-carbon refractory brick | |
KR20240176648A (en) | Electrode paste and manufacturing method thereof | |
CN1786235A (en) | Method of preparing WB-FeNiCr composite material alnminothermic-fast solidification technology and its device | |
KR101672470B1 (en) | Refractory for slag dart, slag dart including the same and manufacturing method of slag dart | |
CN111362261B (en) | Method for improving graphitization degree of electrode/joint | |
JP2020158833A (en) | Method for manufacturing raw material for iron manufacture, and method for manufacturing pig iron | |
JP2540214B2 (en) | Refractory material | |
JP4234804B2 (en) | Plate brick for sliding nozzle device | |
CN115466125B (en) | Preparation method of multifunctional C/SiC gradient furnace eye brick for ferrosilicon ore furnace | |
CN119774916A (en) | Electrode paste and preparation method thereof | |
KR20240130355A (en) | Self baking electrode paste and manufacturing method therefor | |
KR20250001065A (en) | Graphite electrode paste and manufacturing method therefor | |
JP2728351B2 (en) | Conductive ramming refractories | |
JP2592221B2 (en) | Carbon-containing refractory and method for producing the same | |
JP2604820B2 (en) | Refractory material | |
KR101053365B1 (en) | Method for manufacturing ferro-chromium alloy using steel by-products | |
SU1008201A1 (en) | Electrode material | |
JPH10338569A (en) | Stopper head for tundish |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20220803 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240610 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20250224 |
|
PG1601 | Publication of registration |