[go: up one dir, main page]

WO2019031387A1 - 金型の製造方法 - Google Patents

金型の製造方法 Download PDF

Info

Publication number
WO2019031387A1
WO2019031387A1 PCT/JP2018/029069 JP2018029069W WO2019031387A1 WO 2019031387 A1 WO2019031387 A1 WO 2019031387A1 JP 2018029069 W JP2018029069 W JP 2018029069W WO 2019031387 A1 WO2019031387 A1 WO 2019031387A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
base
resin layer
manufacturing
dry etching
Prior art date
Application number
PCT/JP2018/029069
Other languages
English (en)
French (fr)
Inventor
山本 和也
達哉 村山
幸暢 西尾
佳代子 藤村
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to JP2019535160A priority Critical patent/JP7076147B2/ja
Publication of WO2019031387A1 publication Critical patent/WO2019031387A1/ja
Priority to US16/752,082 priority patent/US11186512B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/11Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/16Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/412Profiled surfaces fine structured, e.g. fresnel lenses, prismatic reflectors, other sharp-edged surface profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses

Definitions

  • the present invention relates to a method of manufacturing a mold, in particular, a method of manufacturing a mold of an optical element.
  • the time required for manufacturing is approximately proportional to the number of microlenses.
  • the number of microlenses of a microlens array used for an intermediate screen, in which microlenses are arranged at a pitch of 100 micrometers in a business card size range is about 500,000. It is not practical to machine such a microlens array mold in view of the time required for manufacturing. Also, in the case of manufacturing by machining, in addition to the problem of time required for manufacturing, there is also a problem of shape change due to tool wear.
  • An object of the present invention is to provide a method of manufacturing a mold for manufacturing a mold having a complicated shape of an optical element, in a relatively short time and with a sufficient shape accuracy.
  • a method of manufacturing a mold according to the present invention comprises the steps of: forming a metal base into a first shape by machining; coating a resin layer on the base; and forming the resin layer into a second shape And forming the base into a third shape by dry etching.
  • the third shape is decomposed into the first shape and the second shape and the first shape is formed by machining, the third shape is complicated. Compared with the method of forming the shape of 3 by direct machining, the manufacturing time can be significantly reduced. Further, since the first shape is formed by machining, high accuracy of the shape of the mold can be obtained.
  • the first shape is a shape including one or more grooves, a shape having a constant cross section perpendicular to one direction in the plane of the base, Alternatively, the shape is axially symmetrical about an axis perpendicular to the plane of the base.
  • the formation time by machining of the first shape is significantly reduced.
  • the second shape is a shape including one or more grooves, a shape having a constant cross section perpendicular to one direction in the plane of the base, Alternatively, the shape is axially symmetrical about an axis perpendicular to the plane of the base.
  • the forming time is significantly reduced when forming the second shape by machining.
  • the step of forming the resin layer into a second shape is carried out by machining.
  • the step of forming the resin layer into a second shape is performed by a lithography technique.
  • the first shape is a shape consisting of a groove along a first direction in the surface of the base
  • the second shape is The shape is a groove formed along a second direction perpendicular to the first direction in the surface of the resin layer
  • the third shape corresponds to a microlens array.
  • the microlens mold in a significantly shorter time and with a sufficient shape accuracy as compared with the case of using only machining.
  • the ratio of the etching rate of the base to the etching rate of the resin layer is 0. It is in the range of 1 to 0.9.
  • the seventh method of manufacturing a mold represents the base and the etching rate of the resin layer, respectively r1 and r2, represent one direction coordinate on the base surface at x 1, Coordinates in a direction perpendicular to the plane of the base after dry etching are represented by z with the position of the plane of the base after dry etching as zero, and the x 1 z cross section of the target shape of the base corresponding to the first shape
  • the coordinate of the direction perpendicular to the surface of the base before dry etching is represented by z 01 with the position of the surface of the base before dry etching as zero, x 1 z 01 of the first shape Cross section To be satisfied.
  • the target shape of the base corresponding to the first shape can be obtained by appropriately determining the first shape according to the etching rate of the base and the resin layer.
  • the eighth method of manufacturing a mold represents the base and the etching rate of the resin layer, respectively r1 and r2, represent one direction coordinate on the base surface at x 2, Coordinates in the direction perpendicular to the surface of the base after dry etching are represented by z with the position of the surface of the base after dry etching as zero, and the x 2 z cross section of the target shape of the base corresponding to the second shape
  • the coordinate of the direction perpendicular to the surface of the base before dry etching is represented by z 02, where the position of the surface of the resin layer before dry etching is zero, x 2 z of the second shape 02 cross section To be satisfied.
  • the target shape of the base corresponding to the second shape can be obtained by appropriately setting the second shape according to the etching rate of the base and the resin layer.
  • the third shape is at least partially overlapping a shape resulting from the first shape and a shape resulting from the second shape. It is formed.
  • the third shape is a combination of the shape resulting from the first shape and the shape resulting from the second shape without overlapping. It is formed.
  • FIG. 8A It is a figure which shows the cross section of the target shape of the base corresponding to the 1st shape shown to FIG. 8A. It is a figure which shows the cross section of the 2nd shape of the resin layer before dry etching. It is a figure which shows the cross section of the target shape of the base corresponding to the 2nd shape shown to FIG. 9A. It is a top view of an optical element provided with a diffraction grating around a lens. It is a side view of an optical element provided with a diffraction grating around a lens. It is a top view of an optical element provided with a diffraction grating around a lens. It is a side view of an optical element provided with a diffraction grating around a lens. It is a side view of an optical element provided with a diffraction grating around a lens. It is a figure which shows arrangement
  • FIG. 1 is a flow chart showing a method of manufacturing a mold of the present invention.
  • FIGS. 2A to 2D are diagrams for explaining the method of manufacturing a mold according to the first embodiment of the present invention.
  • FIGS. 3A to 3D are views for explaining a method of manufacturing a mold according to the second embodiment of the present invention.
  • 3A to 3D are cross-sectional views including the central axis of the mold.
  • step S1010 of FIG. 1 the shape of the base before dry etching, ie, the first shape, and the shape of the resin layer before dry etching, ie, the second shape, are determined. How to determine the first shape and the second shape will be described later.
  • step S1020 of FIG. 1 the metal base is machined into a first shape.
  • FIG. 4 is a flowchart for explaining step S1020 of FIG.
  • step S2010 of FIG. 4 a base made of metal is prepared.
  • step S2020 of FIG. 4 the metal base is machined to obtain a first shape.
  • step S2030 in FIG. 4 it is determined whether the shape of the base is a desired first shape. If the shape of the base is the desired first shape, the processing is ended. If the shape of the base is not the desired first shape, the process returns to step S2010.
  • FIG. 2A is a view showing a base made of metal machined into a first shape after step S1010 of the method of manufacturing a mold of the first embodiment.
  • the base 101 is obtained by applying a nickel and phosphorus film 101A on a steel material 101B.
  • the first shape is a plurality of cylindrical grooves arranged in a predetermined direction.
  • FIG. 3A is a view showing a base made of a machined metal after completion of step S1010 of the method of manufacturing a mold of the second embodiment.
  • the base 101 is obtained by applying a nickel and phosphorus film 101A on a steel material 101B.
  • the first shape is a diffraction grating pattern and a Fresnel lens pattern that are axially symmetric with respect to the central axis.
  • the first shape is a shape of a plurality of grooves arranged in a predetermined direction, a shape having a constant cross section perpendicular to one direction in the plane of the base, or an axis perpendicular to the plane of the base With a shape that is axisymmetric, the time required for machining is significantly reduced.
  • step S1030 of FIG. 1 a resin layer is coated on the base.
  • FIG. 2B is a view showing a base coated with a resin layer after step S1020 in the method of manufacturing a mold according to the first embodiment.
  • a resin layer 103 is coated on the base 101.
  • FIG. 3B is a view showing a base coated with a resin layer after step S1020 in the method of manufacturing a mold according to the second embodiment.
  • a resin layer 103 is coated on the base 101.
  • step S1040 of FIG. 1 the resin layer is formed into a second shape.
  • FIG. 5 is a flowchart for explaining step S1040 of FIG.
  • step S3010 of FIG. 5 it is determined whether to use machining or a lithography technique to make the resin layer into a second shape. If the resin layer is not photosensitive, lithographic techniques can not be used. If the lithography technique can be used, it is determined whether to use the machining or the lithography technique in consideration of the characteristics of the machining and lithography technique shown in Table 1 below and the second shape.
  • the pitch, height and aspect ratio indicate the range of pitch, height and aspect ratio of the periodic uneven structure when forming the periodic uneven structure such as a grating.
  • the corner R indicates the range of the radius of curvature of the corner portion of the mold. The minimum radius of curvature of the machined corner of the mold is greater than with lithographic techniques.
  • the binary shape means a shape whose height is one of high and low binary values.
  • step S3020 If it is determined that machining is to be used, the process proceeds to step S3020. If it is determined that the lithography technique is to be used, the process proceeds to step S3030.
  • step S3020 machining is used to form the second shape.
  • step S3030 lithographic techniques are used to form the second shape.
  • step S3040 in FIG. 5 it is determined whether the shape of the resin layer is a desired second shape. If the shape of the resin layer is the desired second shape, the processing is ended. If the shape of the resin layer is not the desired second shape, the process returns to step S3020.
  • FIG. 2C is a view showing the resin layer formed in the second shape after completion of step S1030 of the method of manufacturing a mold according to the first embodiment.
  • the second shape is a plurality of cylindrical grooves arranged orthogonal to the grooves of the base.
  • FIG. 3C is a view showing the resin layer formed in the second shape after completion of step S1030 of the method of manufacturing the mold of the second embodiment.
  • the second shape is a sine curve as a diffusion structure.
  • step S1050 in FIG. 1 the base is formed into a third shape by dry etching.
  • FIG. 6A is a view showing a cross section perpendicular to the direction of the groove of the member in which the resin layer 103 is coated on the base 101 having the groove formed on the surface.
  • the depth of the groove is represented by a1.
  • FIG. 6B is a view showing a cross section perpendicular to the direction of the groove of the base 101 after dry etching is performed on the member shown in FIG. 6A to remove the resin layer 103.
  • FIG. The depth of the groove is represented by b1.
  • the cross section of the groove in FIGS. 6A and 6B is assumed to be rectangular as indicated by the dashed line.
  • the etching rate of the base 101 is represented by r1
  • the etching rate of the resin layer 103 is represented by r2.
  • the base 101 around the groove is not etched to the depth a1.
  • the depth of the bottom of the groove is the difference between the time when the base 101 around the groove is etched to the depth a1 and the time when the resin layer 103 in the groove is etched to the bottom of the groove at the depth a1
  • the etching further deepens by b1.
  • a groove having a depth b1 is formed in the base as shown in FIG. 6B.
  • the depth b1 of the base 101 shown in FIG. 6B can be expressed by the following equation.
  • the ratio between the depth b1 and the depth a1 can be expressed by the following equation.
  • the ratio between the depth b1 and the depth a1 is determined by the etching rate r1 of the base 101 and the etching rate r2 of the resin layer.
  • FIG. 7A is a view showing a cross section perpendicular to the direction of the groove of the member in which the groove is formed on the surface of the resin layer 103 coated on the base 101.
  • the depth of the groove is represented by a2.
  • FIG. 7B is a view showing a cross section perpendicular to the direction of the groove of the base 101 after dry etching is performed on the member shown in FIG. 7A to remove the resin layer 103.
  • the depth of the groove is represented by b2.
  • the cross section of the groove in FIGS. 7A and 7B is assumed to be rectangular as indicated by the dashed line.
  • the etching rate of the base 101 is represented by r1
  • the etching rate of the resin layer 103 is represented by r2.
  • the portion of the base 101 corresponding to the groove of the resin layer 103 is etched at such a time that the resin layer 103 around the groove is etched to a depth a2 as compared to the portion around the groove of the resin layer 103. Gets deeper by b2.
  • a groove having a depth b2 is formed in the base as shown in FIG. 7B.
  • the depth b2 of the base 101 shown in FIG. 7B can be expressed by the following equation.
  • the ratio between the depth b2 and the depth a2 can be expressed by the following equation.
  • the ratio between the depth b1 and the depth a1 is determined by the etching rate r1 of the base 101 and the etching rate r2 of the resin layer.
  • the shape of the cross section of the groove in FIGS. 6A and 7A is rectangular.
  • the shape of the cross section of the groove in FIGS. 6A and 7A may be, for example, an arc as shown by a solid line in FIGS. 6A and 7A.
  • the cross-sectional shape of the groove shown in FIG. 6B is an ellipse whose major axis is a1 and the minor axis is b1 and the cross-sectional shape of the groove shown in FIG. It becomes.
  • FIG. 8A is a view showing a cross section of the first shape of the base 101 before dry etching.
  • FIG. 8B is a view showing a cross section of a target shape of the base 101 corresponding to the first shape shown in FIG. 8A.
  • FIG. 8B represents one direction coordinate on the surface of the base 101 in x 1, a vertical direction coordinate on the surface of the base 101 after dry etching, the position of the surface of the base 101 after dry etching
  • the coordinate in one direction is represented by x 1
  • the coordinate in the direction perpendicular to the surface of the base 101 before dry etching is z 01 where the position of the surface of the base 101 before dry etching is zero.
  • the shape of the base 101 before dry etching that is, the x 1 z 01 cross section of the first shape
  • FIG. 9A is a view showing a cross section of a second shape of the resin layer 103 before dry etching.
  • FIG. 9B is a view showing a cross section of a target shape of the base 101 corresponding to the second shape shown in FIG. 9A.
  • the coordinate in one direction on the surface of the base 101 is represented by x 2
  • the coordinate in the direction perpendicular to the surface of the base 101 after dry etching is the position of the surface of the base 101 after dry etching.
  • the coordinate in one direction is represented by x 2
  • the coordinate in the direction perpendicular to the surface of the base 101 before dry etching is represented by z where the position of the surface of the resin layer 103 before dry etching is zero.
  • the shape of the resin layer 103 before dry etching that is, the x 2 z 02 cross section of the second shape
  • FIG. 2D is a view showing a base made of a metal formed in a third shape by dry etching after completion of step S1040 of the method of manufacturing a mold of the first embodiment.
  • the first shape for the etching rate r1 of the base 101 and the etching rate r2 for the resin layer ie, the shape of the groove of the base 101 before dry etching
  • the second shape ie, the groove of the resin layer before dry etching
  • the shape of the desired mold for the microlens can be obtained by appropriately determining the shape and overlapping the shape resulting from the first shape and the shape resulting from the second shape after dry etching.
  • FIG. 3D is a view showing a base made of a metal formed in a third shape by dry etching after completion of step S1040 of the method of manufacturing a mold according to the second embodiment.
  • the third shape is a shape of a diffraction grating having a diffusion structure and a mold of a Fresnel lens.
  • the first shape, ie, the shape of the base 101 before dry etching, and the second shape, ie, the shape of the resin layer before dry etching By defining and overlapping the shape resulting from the first shape and the shape resulting from the second shape after dry etching, it is possible to obtain the shape of the mold of the diffraction grating and the Fresnel lens having the desired diffusion structure.
  • FIG. 10A is a plan view of an optical element provided with a diffraction grating around the lens.
  • FIG. 10B is a side view of an optical element provided with a diffraction grating around the lens.
  • the lens 201A in FIGS. 10A and 10B is formed by the first shape in step S1010 in FIG.
  • the diffraction grating 203A is formed by the second shape in step S1040 of FIG.
  • the shape resulting from the first shape and the shape resulting from the second shape are combined without overlapping.
  • the periphery of the lens 201A can be shielded by the diffraction grating 203A.
  • FIG. 10C is a plan view of an optical element provided with a diffraction grating around the lens.
  • FIG. 10D is a side view of an optical element provided with a diffraction grating around the lens.
  • the lens 201B in FIGS. 10C and 10D is formed by the first shape in step S1010 in FIG.
  • the diffraction grating 203B is formed by the second shape in step S1040 of FIG.
  • the shape resulting from the first shape and the shape resulting from the second shape are combined without overlapping.
  • a mold having a desired shape can be manufactured in a relatively short time and with sufficient accuracy by combining or overlapping a plurality of shapes.
  • Table 2 is a table showing manufacturing conditions.
  • the base material is a nickel-phosphorus coating on steel.
  • the thickness of the membrane is 100-200 micrometers.
  • the resin layer is polymethyl methacrylate resin PMMA (Tokyo Ohka Kogyo Co., Ltd .: OEBR-1000).
  • the thickness of the resin layer is 12 micrometers.
  • the cross section perpendicular to the longitudinal direction of the linear groove formed on the base and the resin layer is a circular arc having a radius of 50 micrometers, and the groove depth is 5 micrometers.
  • the width of the grooves is about 44 micrometers.
  • Ion beam etching was used as the dry etching in step S1040 of FIG.
  • Other embodiments may be reactive ion etching. Assuming that the etching rate of the resin layer is 1, the etching rate of the base is 0.85.
  • FIG. 10 is a view showing the arrangement of linear grooves on the base and the resin layer.
  • the linear grooves G1 on the base and the linear grooves G2 on the resin layer are disposed to be orthogonal to each other.
  • FIG. 11 is a diagram showing the result of measuring the shape of the base after the completion of step S1040 of FIG. Since the depth b1 of the groove corresponding to G1 is about 0.76 micrometers and the depth a1 of G1 is 5 micrometers, it is confirmed that the equation (1) is satisfied. In addition, since the depth b2 of the groove corresponding to G2 is about 4.20 micrometers and the depth a2 of G2 is 5 micrometers, it was confirmed that the equation (2) is satisfied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

特に光学素子の複雑な形状の金型を比較的短時間で、かつ十分な形状の精度で製造する金型の製造方法を提供する。金型の製造方法は、金属からなるベースを機械加工によって第1の形状にするステップと、該ベース上に樹脂層をコーティングするステップと、該樹脂層を第2の形状にするステップと、該ベースをドライエッチングによって第3の形状にするステップと、を含む。

Description

金型の製造方法
 本発明は、金型の製造方法、特に、光学素子の金型の製造方法に関する。
 一例として、マイクロレンズアレイの金型の従来の製造方法を説明する。マイクロレンズアレイの金型を機械加工によって製造する場合(たとえば特許文献1)に、製造に必要とされる時間は、ほぼマイクロレンズの数に比例する。たとえば、中間スクリーンに使用されるマイクロレンズアレイであって、名刺サイズの範囲に100マイクロメータのピッチでマイクロレンズを並べたマイクロレンズアレイのマイクロレンズの数は約500,000万個である。このようなマイクロレンズアレイの金型を機械加工によって製造するのは製造に必要とされる時間の観点から現実的ではない。また、機械加工によって製造する場合には、製造に必要とされる時間の問題の他に、工具の摩耗による形状変化の問題も存在する。他方、マイクロレンズアレイの金型をリソグラフィ技術によって製造する場合には、三次元形状を高精度で形成するのが困難であり、レジストのレーザー描画の際にマイクロレンズアレイの稜線、すなわちマイクロレンズの辺をなす線が丸みを帯びてしまうことという問題がある。
 このように、多数のマイクロレンズを含むマイクロレンズアレイの金型などの複雑な形状の金型を比較的短時間で、かつ十分な形状の精度で製造する金型の製造方法は開発されていない。
JP1999142609A
 したがって、特に光学素子の複雑な形状の金型を比較的短時間で、かつ十分な形状の精度で製造する金型の製造方法に対するニーズがある。本発明の課題は、特に光学素子の複雑な形状の金型を比較的短時間で、かつ十分な形状の精度で製造する金型の製造方法を提供することである。
 本発明による金型の製造方法は、金属からなるベースを機械加工によって第1の形状にするステップと、該ベース上に樹脂層をコーティングするステップと、該樹脂層を第2の形状にするステップと、該ベースをドライエッチングによって第3の形状にするステップと、を含む。
 本発明によれば、第3の形状を第1の形状と第2の形状に分解し、第1の形状を機械加工によって形成するようにしたので、第3の形状が複雑な場合に、第3の形状を直接機械加工によって形成する方法と比較して製造時間を大幅に短縮できる。また、第1の形状を機械加工によって形成するので金型の形状の高い精度が得られる。
 本発明の第1の実施形態による金型の製造方法においては、該第1の形状が、1または複数の溝からなる形状、該ベースの面における一つの方向に垂直な断面が一定の形状、または該ベースの面に垂直な軸の周りに軸対称の形状である。
 本実施形態によれば、該第1の形状の機械加工による形成時間が大幅に短縮される。
 本発明の第2の実施形態による金型の製造方法においては、該第2の形状が、1または複数の溝からなる形状、該ベースの面における一つの方向に垂直な断面が一定の形状、または該ベースの面に垂直な軸の周りに軸対称の形状である。
 本実施形態によれば、該第2の形状を機械加工によって形成する場合に形成時間が大幅に短縮される。
 本発明の第3の実施形態による金型の製造方法においては、該樹脂層を第2の形状にするステップが機械加工によって実施される。
 本発明の第4の実施形態による金型の製造方法においては、該樹脂層を第2の形状にするステップがリソグラフィ技術によって実施される。
 本発明の第5の実施形態による金型の製造方法においては、該第1の形状が、該ベースの面における第1の方向に沿った溝からなる形状であり、該第2の形状が、該樹脂層の面における該第1の方向と垂直な第2の方向に沿った溝からなる形状であり、該第3の形状が、マイクロレンズアレイに対応する形状である。
 本実施形態によれば、マイクロレンズの金型を、機械加工のみを使用する場合と比較して大幅に短い時間で、かつ十分な形状の精度で製造することができる。
 本発明の第6の実施形態による金型の製造方法においては、該ベースをドライエッチングによって第3の形状にするステップにおいて、該ベースのエッチングレイトと該樹脂層のエッチングレイトとの比が0.1から0.9の範囲である。
 本発明の第7の実施形態による金型の製造方法においては、該ベース及び該樹脂層のエッチングレイトをそれぞれr1及びr2で表し、該ベースの面上の一方向の座標をx1で表し、ドライエッチング後の該ベースの面に垂直な方向の座標を、ドライエッチング後の該ベースの面の位置をゼロとしてzで表し、第1の形状に対応する該ベースの目標形状のx1z断面を
Figure JPOXMLDOC01-appb-M000005
で表し、ドライエッチング前の該ベースの面に垂直な方向の座標を、ドライエッチング前の該ベースの面の位置をゼロとしてz01で表した場合に、該第1の形状のx01断面を
Figure JPOXMLDOC01-appb-M000006
が満たされるように定める。
 本実施形態によれば、該ベース及び該樹脂層のエッチングレイトに応じて、第1の形状を適切に定めることにより、第1の形状に対応する該ベースの目標形状が得られる。
 本発明の第8の実施形態による金型の製造方法においては、該ベース及び該樹脂層のエッチングレイトをそれぞれr1及びr2で表し、該ベースの
面上の一方向の座標をxで表し、ドライエッチング後の該ベースの面に垂直な方向の座標を、ドライエッチング後の該ベースの面の位置をゼロとしてzで表し、第2の形状に対応する該ベースの目標形状のxz断面を
Figure JPOXMLDOC01-appb-M000007
で表し、ドライエッチング前の該ベースの面に垂直な方向の座標を、ドライエッチング前の該樹脂層の面の位置をゼロとしてz02で表した場合に、該第2の形状のx02断面を
Figure JPOXMLDOC01-appb-M000008
が満たされるように定める。
 本実施形態によれば、該ベース及び該樹脂層のエッチングレイトに応じて、第2の形状を適切に定めることにより、第2の形状に対応する該ベースの目標形状が得られる。
 本発明の第9の実施形態による金型の製造方法においては、該第3の形状が該第1の形状に起因する形状と該第2の形状に起因する形状とを少なくとも部分的に重ね合わせて形成される。
 本発明の第10の実施形態による金型の製造方法においては、該第3の形状が該第1の形状に起因する形状と該第2の形状に起因する形状とを重ね合わせることなく組み合わせて形成される。
本発明の金型の製造方法を示す流れ図である。 本発明の第1の実施形態の金型の製造方法を説明するための図である。 本発明の第1の実施形態の金型の製造方法を説明するための図である。 本発明の第1の実施形態の金型の製造方法を説明するための図である。 本発明の第1の実施形態の金型の製造方法を説明するための図である。 本発明の第2の実施形態の金型の製造方法を説明するための図である。 本発明の第2の実施形態の金型の製造方法を説明するための図である。 本発明の第2の実施形態の金型の製造方法を説明するための図である。 本発明の第2の実施形態の金型の製造方法を説明するための図である。 図1のステップS1020を説明するための流れ図である。 図1のステップS1040を説明するための流れ図である。 表面に溝を形成したベース上に樹脂層をコーティングした部材の溝の方向に垂直な断面を示す図である。 図6Aに示した部材にドライエッチングを実施して樹脂層を除去した後のベースの溝の方向に垂直な断面を示す図である。 ベース上にコーティングした樹脂層の表面に溝を形成した部材の溝の方向に垂直な断面を示す図である。 図7Aに示した部材にドライエッチングを実施して樹脂層を除去した後のベースの溝の方向に垂直な断面を示す図である。 ドライエッチング前のベースの第1の形状の断面を示す図である。 図8Aに示す第1の形状に対応するベースの目標形状の断面を示す図である。 ドライエッチング前の樹脂層の第2の形状の断面を示す図である。 図9Aに示す第2の形状に対応するベースの目標形状の断面を示す図である。 レンズの周囲に回折格子を備えた光学素子の平面図である。 レンズの周囲に回折格子を備えた光学素子の側面図である。 レンズの周囲に回折格子を備えた光学素子の平面図である。 レンズの周囲に回折格子を備えた光学素子の側面図である。 ベース及び樹脂層上の線状の溝の配置を示す図である。 図1のステップS1040が終了した後のベースの形状を測定した結果を示す図である。
 図1は、本発明の金型の製造方法を示す流れ図である。
 図2A乃至図2Dは、本発明の第1の実施形態の金型の製造方法を説明するための図である。
 図3A乃至図3Dは、本発明の第2の実施形態の金型の製造方法を説明するための図である。図3A乃至図3Dは、金型の中心軸を含む断面図である。
 図1のステップS1010において、ドライエッチング前のベースの形状、すなわち第1の形状、及びドライエッチング前の樹脂層の形状、すなわち第2の形状を定める。第1の形状及び第2の形状の定め方は後で説明する。
 図1のステップS1020において、金属からなるベースを機械加工によって第1の形状にする。
 図4は、図1のステップS1020を説明するための流れ図である。
 図4のステップS2010において、金属からなるベースを準備する。
 図4のステップS2020において、第1の形状を得るように金属からなるベースを機械加工する。
 図4のステップS2030において、ベースの形状が所望の第1の形状であるか判断する。ベースの形状が所望の第1の形状であれば処理を終了する。ベースの形状が所望の第1の形状でなければステップS2010に戻る。
 図2Aは、第1の実施形態の金型の製造方法のステップS1010終了後の、第1の形状に機械加工された金属からなるベースを示す図である。ベース101は、鋼材101B上にニッケル・リン皮膜101Aを付したものである。本実施形態において、第1の形状は、一定方向に配置されたシリンダー形状の複数の溝である。
 図3Aは、第2の実施形態の金型の製造方法のステップS1010終了後の機械加工された金属からなるベースを示す図である。ベース101は、鋼材101B上にニッケル・リン皮膜101Aを付したものである。第1の形状は、中心軸に関して軸対称な回折格子パターン及びフレネルレンズパターンである。
 一般的に、第1の形状が、一定方向に配置された複数の溝の形状、ベースの面における一つの方向に垂直な断面が一定である形状、またはベースの面に垂直な軸の周りに軸対称である形状であれば、機械加工の所要時間は大幅に短縮される。
 図1のステップS1030において、ベース上に樹脂層をコーティングする。
 図2Bは、第1の実施形態の金型の製造方法のステップS1020終了後の樹脂層がコーティングされたベースを示す図である。ベース101上に樹脂層103がコーティングされている。
 図3Bは、第2の実施形態の金型の製造方法のステップS1020終了後の樹脂層がコーティングされたベースを示す図である。ベース101上に樹脂層103がコーティングされている。
 図1のステップS1040において、樹脂層を第2の形状にする。
 図5は、図1のステップS1040を説明するための流れ図である。
 図5のステップS3010において、樹脂層を第2の形状にするために機械加工を使用するかリソグラフィ技術を使用するか判断する。樹脂層が感光性でなければ、リソグラフィ技術は使用できない。リソグラフィ技術が使用できる場合には、以下の表1に示す機械加工とリソグラフィ技術の特性、及び第2の形状を考慮して機械加工を使用するかリソグラフィ技術を使用するか判断する。
Figure JPOXMLDOC01-appb-T000009

表1において、ピッチ、高さ及びアスペクト比は、格子など周期的な凹凸構造を形成する場合における周期的な凹凸構造のピッチ、高さ及びアスペクト比の範囲を示す。また、コーナーRとは、金型の隅の部分の曲率半径の範囲を示す。機械加工による金型の隅の部分の最小の曲率半径は、リソグラフィ技術によるものよりも大きい。バイナリー形状とは、高さが高低の二値のいずれかである形状を意味する。
 機械加工を使用すると判断すれば、ステップS3020に進む。リソグラフィ技術を使用すると判断すれば、ステップS3030に進む。
 ステップS3020において、第2の形状の形成に機械加工を使用する。
 ステップS3030において、第2の形状の形成にリソグラフィ技術を使用する。
 図5のステップS3040において、樹脂層の形状が所望の第2の形状であるか判断する。樹脂層の形状が所望の第2の形状であれば処理を終了する。樹脂層の形状が所望の第2の形状でなければステップS3020に戻る。
 図2Cは、第1の実施形態の金型の製造方法のステップS1030終了後の、第2の形状に形成された樹脂層を示す図である。本実施形態において、第2の形状は、ベースの溝と直交するように配置されたシリンダー形状の複数の溝である。
 図3Cは、第2の実施形態の金型の製造方法のステップS1030終了後の、第2の形状に形成された樹脂層を示す図である。本実施形態において、第2の形状は、拡散構造としてのサインカーブである。
 図1のステップS1050において、ベースをドライエッチングによって第3の形状にする。
 ここで、ドライエッチングによるベースの第3の形状への形成を説明する。
 図6Aは、表面に溝を形成したベース101上に樹脂層103をコーティングした部材の溝の方向に垂直な断面を示す図である。溝の深さをa1で表す。
 図6Bは、図6Aに示した部材にドライエッチングを実施して樹脂層103を除去した後のベース101の溝の方向に垂直な断面を示す図である。溝の深さをb1で表す。
 図6A及び図6Bの溝の断面は、破線で示すように矩形であるとする。ベース101のエッチングレイトをr1で表し、樹脂層103のエッチングレイトをr2で表す。ここで、r2>r1である。
 図6Aにおいて、樹脂層103の溝に対応する部分が深さa1の溝の底部までエッチングされたときに、溝の周囲のベース101は深さa1までエッチングされていない。溝の周囲のベース101が深さa1までエッチングされる時間と溝の中の樹脂層103が深さa1の溝の底部までエッチングされる時間との差の時間に、溝の底部の深さはエッチングによってさらにb1だけ深くなる。このようにして、ドライエッチングを実施して樹脂層103を除去した後に、図6Bに示すようにベースに深さb1の溝が形成される。
 したがって、図6Bに示されたベース101の深さb1は以下の式で表せる。
Figure JPOXMLDOC01-appb-M000010
また、深さb1と深さa1との比は以下の式で表せる。
Figure JPOXMLDOC01-appb-M000011
このように深さb1と深さa1との比はベース101のエッチングレイトr1、及び樹脂層のエッチングレイトr2によって定まる。
 図7Aは、ベース101上にコーティングした樹脂層103の表面に溝を形成した部材の溝の方向に垂直な断面を示す図である。溝の深さをa2で表す。
 図7Bは、図7Aに示した部材にドライエッチングを実施して樹脂層103を除去した後のベース101の溝の方向に垂直な断面を示す図である。溝の深さをb2で表す。
 図7A及び図7Bの溝の断面は、破線で示すように矩形であるとする。ベース101のエッチングレイトをr1で表し、樹脂層103のエッチングレイトをr2で表す。ここで、r2>r1である。
 図7Bにおいて、ベース101の樹脂層103の溝に対応する部分は、樹脂層103の溝の周囲の部分と比較して、溝の周囲の樹脂層103が深さa2までエッチングされる時間にエッチングによってb2だけ深くなる。このようにして、ドライエッチングを実施して樹脂層103を除去した後に、図7Bに示すようにベースに深さb2の溝が形成される。
 したがって、図7Bに示されたベース101の深さb2は以下の式で表せる。
Figure JPOXMLDOC01-appb-M000012
また、深さb2と深さa2との比は以下の式で表せる。
Figure JPOXMLDOC01-appb-M000013
このように深さb1と深さa1との比はベース101のエッチングレイトr1、及び樹脂層のエッチングレイトr2によって定まる。
 上記の説明において、図6A及び図7Aの溝の断面の形状は矩形であるとした。図6A及び図7Aの溝の断面の形状は一例として、図6A及び図7Aに実線で示すように円弧であってもよい。この場合に、図6Bに示す溝の断面の形状は、長軸がa1で短軸がb1の楕円となり、図7Bに示す溝の断面の形状は、長軸がa2で短軸がb2の楕円となる。
 ここで、ベース101のエッチングレイトr1、及び樹脂層のエッチングレイトr2に対してドライエッチング前のベース101の形状、及びドライエッチング前の樹脂層103の形状を定める方法を説明する。
 図8Aは、ドライエッチング前のベース101の第1の形状の断面を示す図である。
 図8Bは、図8Aに示す第1の形状に対応するベース101の目標形状の断面を示す図である。
 図8Bに示すように、ベース101の面上の一方向の座標をx1で表し、ドライエッチング後のベース101の面に垂直な方向の座標を、ドライエッチング後のベース101の面の位置をゼロとしてzで表し、第1の形状に対応するベース101の目標形状のx1z断面を
Figure JPOXMLDOC01-appb-M000014
で表す。
 図8Aに示すように、上記の一方向の座標をxで表し、ドライエッチング前のベース101の面に垂直な方向の座標を、ドライエッチング前のベース101の面の位置をゼロとしてz01で表した場合に、ドライエッチング前のベース101の形状、すなわち第1の形状のx01断面を、
Figure JPOXMLDOC01-appb-M000015
と定めれば、式(1)から図8Bに示すベース101の目標形状が得られる。
 図9Aは、ドライエッチング前の樹脂層103の第2の形状の断面を示す図である。
 図9Bは、図9Aに示す第2の形状に対応するベース101の目標形状の断面を示す図である。
 図9Bに示すように、ベース101の面上の一方向の座標をxで表し、ドライエッチング後のベース101の面に垂直な方向の座標を、ドライエッチング後のベース101の面の位置をゼロとしてzで表し、第2の形状に対応するベース101の目標形状のxz断面を
Figure JPOXMLDOC01-appb-M000016
で表す。
 図9Aに示すように、上記の一方向の座標をxで表し、ドライエッチング前のベース101の面に垂直な方向の座標を、ドライエッチング前の樹脂層103の面の位置をゼロとしてz02で表した場合に、ドライエッチング前の樹脂層103の形状、すなわち第2の形状のx02断面を、
Figure JPOXMLDOC01-appb-M000017
と定めれば、式(2)から図9Bに示すベース101の目標形状が得られる。
 図2Dは、第1の実施形態の金型の製造方法のステップS1040終了後の、ドライエッチングによって第3の形状に形成された金属からなるベースを示す図である。第1の形状、すなわちベースの複数の溝と、第2の形状、すなわちこれらの溝と直交する樹脂層の複数の溝と、を備えた図2Cの部材にドライエッチングを実施することにより、マイクロレンズアレイに対応する第3の形状が得られる。ベース101のエッチングレイトr1、及び樹脂層のエッチングレイトr2に対して第1の形状、すなわちドライエッチング前のベース101の溝の形状、及び第2の形状、すなわちドライエッチング前の樹脂層の溝の形状を適切に定め、ドライエッチング後に第1の形状に起因する形状及び第2の形状に起因する形状を重ね合わせることにより所望のマイクロレンズの金型の形状を得ることができる。
 図3Dは、第2の実施形態の金型の製造方法のステップS1040終了後の、ドライエッチングによって第3の形状に形成された金属からなるベースを示す図である。第3の形状は、拡散構造を有した回折格子及びフレネルレンズの金型の形状である。ベース101のエッチングレイトr1、及び樹脂層のエッチングレイトr2に対して第1の形状、すなわちドライエッチング前のベース101の形状、及び第2の形状、すなわちドライエッチング前の樹脂層の形状を適切に定め、ドライエッチング後に第1の形状に起因する形状及び第2の形状に起因する形状を重ね合わせることにより所望の拡散構造を有した回折格子及びフレネルレンズの金型の形状を得ることができる。
 他の実施形態を説明する。
 図10Aはレンズの周囲に回折格子を備えた光学素子の平面図である。
 図10Bはレンズの周囲に回折格子を備えた光学素子の側面図である。
 図10A及び図10Bにおけるレンズ201Aは、図1のステップS1010における第1の形状によって形成される。回折格子203Aは、図1のステップS1040における第2の形状によって形成される。本実施形態においては、第1の形状に起因する形状及び第2の形状に起因する形状は、重ね合わせることなく組み合わされる。回折格子203Aによってレンズ201Aの周囲を遮光することができる。
 図10Cはレンズの周囲に回折格子を備えた光学素子の平面図である。
 図10Dはレンズの周囲に回折格子を備えた光学素子の側面図である。
 図10C及び図10Dにおけるレンズ201Bは、図1のステップS1010における第1の形状によって形成される。回折格子203Bは、図1のステップS1040における第2の形状によって形成される。本実施形態においては、第1の形状に起因する形状及び第2の形状に起因する形状は、重ね合わせることなく組み合わされる。回折格子203Bによってレンズ201Bの周囲に干渉効果によるぼかし機能を与えることができる。
 本発明によれば、複数の形状を組み合わせるか重ね合わせることにより、所望の形状の金型を比較的短時間、かつ十分な精度で製造することができる。
 図1及び図2A-2Dに示す製造方法の実験結果について以下に説明する。
 表2は製造条件を示す表である。
Figure JPOXMLDOC01-appb-T000018
 ベースの材料は、鋼材上のニッケル・リン皮膜である。膜の厚さは100-200マイクロメータである。樹脂層は、ポリメタクリル酸メチル樹脂PMMA(東京応化工業社:OEBR-1000)である。樹脂層の厚さは12マイクロメータである。
 ベース及び樹脂層上に形成される線状の溝の長手方向に垂直な断面は、半径が50マイクロメータの円弧であり、溝の深さは5マイクロメータである。したがって、溝の幅は約44マイクロメータである。
 図1のステップS1040のドライエッチングとしてイオンビームエッチングを使用した。他の実施形態では反応性イオンエッチングでもよい。樹脂層のエッチングレイトを1とすると、ベースのエッチングレイトは0.85である。
 図10は、ベース及び樹脂層上の線状の溝の配置を示す図である。ベース上の線状の溝G1及び樹脂層上の線状の溝G2は互いに直交するように配置されている。
 図11は、図1のステップS1040が終了した後のベースの形状を測定した結果を示す図である。G1に対応する溝の深さb1は、約0.76マイクロメータであり、G1の深さa1は、5マイクロメータであるので、式(1)が満たされることが確認された。また、G2に対応する溝の深さb2は、約4.20マイクロメータであり、G2の深さa2は、5マイクロメータであるので、式(2)が満たされることが確認された。

Claims (11)

  1.  金属からなるベースを機械加工によって第1の形状にするステップと、
     該ベース上に樹脂層をコーティングするステップと、
     該樹脂層を第2の形状にするステップと、
     該ベースをドライエッチングによって第3の形状にするステップと、を含む、金型の製造方法。
  2.  該第1の形状が、1または複数の溝からなる形状、該ベースの面における一つの方向に垂直な断面が一定の形状、または該ベースの面に垂直な軸の周りに軸対称の形状である請求項1に記載の金型の製造方法。
  3.  該第2の形状が、1または複数の溝からなる形状、該ベースの面における一つの方向に垂直な断面が一定の形状、または該ベースの面に垂直な軸の周りに軸対称の形状である請求項1または2に記載の金型の製造方法。
  4.  該樹脂層を第2の形状にするステップが機械加工によって実施される請求項1から3のいずれかに記載の金型の製造方法。
  5.  該樹脂層を第2の形状にするステップがリソグラフィ技術によって実施される請求項1から3のいずれかに記載の金型の製造方法。
  6.  該第1の形状が、該ベースの面における第1の方向に沿った溝からなる形状であり、該第2の形状が、該樹脂層の面における該第1の方向と垂直な第2の方向に沿った溝からなる形状であり、該第3の形状が、マイクロレンズアレイに対応する形状である請求項1から5のいずれかに記載の金型の製造方法。
  7.  該ベースをドライエッチングによって第3の形状にするステップステップにおいて、該ベースのエッチングレイトと該樹脂層のエッチングレイトとの比が0.1から0.9の範囲である請求項1から6のいずれかに記載の金型の製造方法。
  8.  該ベース及び該樹脂層のエッチングレイトをそれぞれr1及びr2で表し、該ベースの面上の一方向の座標をx1で表し、ドライエッチング後の該ベースの面に垂直な方向の座標を、ドライエッチング後の該ベースの面の位置をゼロとしてzで表し、第1の形状に対応する該ベースの目標形状のx1z断面を
    Figure JPOXMLDOC01-appb-M000001
    で表し、ドライエッチング前の該ベースの面に垂直な方向の座標を、ドライエッチング前の該ベースの面の位置をゼロとしてz01で表した場合に、該第1の形状のx01断面を
    Figure JPOXMLDOC01-appb-M000002
    が満たされるように定める請求項1から7のいずれかに記載の金型の製造方法。
  9.  該ベース及び該樹脂層のエッチングレイトをそれぞれr1及びr2で表し、該ベースの
    面上の一方向の座標をxで表し、ドライエッチング後の該ベースの面に垂直な方向の座標を、ドライエッチング後の該ベースの面の位置をゼロとしてzで表し、第2の形状に対応する該ベースの目標形状のxz断面を
    Figure JPOXMLDOC01-appb-M000003
    で表し、ドライエッチング前の該ベースの面に垂直な方向の座標を、ドライエッチング前の該樹脂層の面の位置をゼロとしてz02で表した場合に、該第2の形状のx02断面を
    Figure JPOXMLDOC01-appb-M000004
    が満たされるように定める請求項1から8のいずれかに記載の金型の製造方法。
  10.  該第3の形状が該第1の形状に起因する形状と該第2の形状に起因する形状とを少なくとも部分的に重ね合わせて形成される請求項1から9のいずれかに記載の金型の製造方法。
  11.  該第3の形状が該第1の形状に起因する形状と該第2の形状に起因する形状とを重ね合わせることなく組み合わせて形成される請求項1から9のいずれかに記載の金型の製造方法。
PCT/JP2018/029069 2017-08-11 2018-08-02 金型の製造方法 WO2019031387A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019535160A JP7076147B2 (ja) 2017-08-11 2018-08-02 金型の製造方法
US16/752,082 US11186512B2 (en) 2017-08-11 2020-01-24 Mold manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762544185P 2017-08-11 2017-08-11
US62/544,185 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/752,082 Continuation US11186512B2 (en) 2017-08-11 2020-01-24 Mold manufacturing method

Publications (1)

Publication Number Publication Date
WO2019031387A1 true WO2019031387A1 (ja) 2019-02-14

Family

ID=65271528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029069 WO2019031387A1 (ja) 2017-08-11 2018-08-02 金型の製造方法

Country Status (3)

Country Link
US (1) US11186512B2 (ja)
JP (1) JP7076147B2 (ja)
WO (1) WO2019031387A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132679A (ja) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd 無反射構造を有する光学素子の製造方法、及び当該方法により製造された無反射構造を有する光学素子
JP2006188416A (ja) * 2004-12-07 2006-07-20 Pentax Corp ガラス光学素子用成形型の製造方法
WO2010087208A1 (ja) * 2009-02-02 2010-08-05 パナソニック株式会社 回折光学素子およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842633A (en) * 1987-08-25 1989-06-27 Matsushita Electric Industrial Co., Ltd. Method of manufacturing molds for molding optical glass elements and diffraction gratings
EP0320887B1 (en) * 1987-12-14 1993-08-11 Ichikoh Industries Limited Method for forming fresnel-type prism lens
JP3147481B2 (ja) * 1992-04-21 2001-03-19 松下電器産業株式会社 ガラス製回折格子の成形用金型及びその製造方法及びガラス製回折格子の製造方法
JP4243779B2 (ja) 1997-11-14 2009-03-25 株式会社ニコン 拡散板の製造方法および拡散板、並びにマイクロレンズアレイの製造方法およびマイクロレンズアレイ
JP2001201609A (ja) * 2000-01-19 2001-07-27 Nippon Sheet Glass Co Ltd 平板状マイクロレンズの製造方法及びこの方法で製造された平板状マイクロレンズ
CN1584743A (zh) * 2003-07-24 2005-02-23 三星电子株式会社 微透镜的制造方法
EP1679532A1 (en) 2003-10-29 2006-07-12 Matsushita Electric Industrial Co., Ltd. Optical element having antireflection structure, and method for producing optical element having antireflection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132679A (ja) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd 無反射構造を有する光学素子の製造方法、及び当該方法により製造された無反射構造を有する光学素子
JP2006188416A (ja) * 2004-12-07 2006-07-20 Pentax Corp ガラス光学素子用成形型の製造方法
WO2010087208A1 (ja) * 2009-02-02 2010-08-05 パナソニック株式会社 回折光学素子およびその製造方法

Also Published As

Publication number Publication date
JPWO2019031387A1 (ja) 2020-07-09
JP7076147B2 (ja) 2022-05-27
US11186512B2 (en) 2021-11-30
US20200156983A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US10422934B2 (en) Diffraction gratings and the manufacture thereof
CN103185908B (zh) 混合式绕射光栅、模具及绕射光栅及其模具的制造方法
EP2752691A1 (en) Variable-efficiency diffraction grating
CN1705915A (zh) 二进制半色调光掩模和微型三维装置及其制作方法
GB2509536A (en) Diffraction grating
US5566023A (en) Stepped lens with Fresnel surface structure produced by lithography and process for manufacturing of same
TWI526720B (zh) 漫射板
WO2019031387A1 (ja) 金型の製造方法
JP2005084485A (ja) 回折光学素子
EP2641730A2 (en) Methods for fabricating a retroreflector tooling and retroreflective microstructures and devices thereof
US2854337A (en) Raster screen and a process for making the same
KR100911908B1 (ko) 금형의 제조방법 및 그것에 의하여 얻어진 성형품
CN103998984B (zh) 相移掩模、非对称图案的形成方法、衍射光栅的制造方法及半导体装置的制造方法
JP5156990B1 (ja) 金型加工方法
JP4760198B2 (ja) 露光用マスク、露光用マスクの設計方法および露光用マスクの設計プログラム
WO2019163630A1 (ja) 金型の製造方法
US20020144576A1 (en) Micro-cutting tool and production method for 3-dimensional microstructures
JP4396320B2 (ja) ブレーズド型回折格子の作製方法及びブレーズド型回折格子と光学シート
JPH08190135A (ja) 焦点板用金型および焦点板
JP2005037868A (ja) 反射防止面の形成方法、反射防止部材形成用金型の製造方法、金型、反射防止部材、金型製造用のマスター部材の製造方法
KR20250108885A (ko) 정밀금형 제조방법과 초정밀 사출물의 제조방법
JP6248240B1 (ja) 成形型及び光学素子の製造方法ならびに光学素子
JP2920990B2 (ja) 走査型電子顕微鏡、トンネル走査型顕微鏡等の深さ方向および横方向の倍率或は像の寸法の測定用基準格子板
JP3326333B2 (ja) 位相型回折素子およびそのグレーティングパターン製造方法
JP4462028B2 (ja) 光導波路の製造方法及びそれに用いる露光マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844459

Country of ref document: EP

Kind code of ref document: A1