WO2019014917A1 - 一种基因编辑系统及应用其对植物基因组进行编辑的方法 - Google Patents
一种基因编辑系统及应用其对植物基因组进行编辑的方法 Download PDFInfo
- Publication number
- WO2019014917A1 WO2019014917A1 PCT/CN2017/093837 CN2017093837W WO2019014917A1 WO 2019014917 A1 WO2019014917 A1 WO 2019014917A1 CN 2017093837 W CN2017093837 W CN 2017093837W WO 2019014917 A1 WO2019014917 A1 WO 2019014917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cas9
- gene
- sgrna
- transcription unit
- promoter
- Prior art date
Links
- 238000010362 genome editing Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 21
- 241000196324 Embryophyta Species 0.000 claims abstract description 53
- 240000008042 Zea mays Species 0.000 claims abstract description 43
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims abstract description 41
- 108091033409 CRISPR Proteins 0.000 claims abstract description 40
- 238000013518 transcription Methods 0.000 claims abstract description 23
- 230000035897 transcription Effects 0.000 claims abstract description 23
- 101150108854 DMC1 gene Proteins 0.000 claims abstract description 21
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims abstract description 5
- 235000005822 corn Nutrition 0.000 claims abstract description 5
- 239000005547 deoxyribonucleotide Substances 0.000 claims abstract description 4
- 125000002637 deoxyribonucleotide group Chemical group 0.000 claims abstract description 4
- 108091027544 Subgenomic mRNA Proteins 0.000 claims abstract 9
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 36
- 235000009973 maize Nutrition 0.000 claims description 36
- 230000009261 transgenic effect Effects 0.000 claims description 18
- 241000209140 Triticum Species 0.000 claims description 12
- 235000021307 Triticum Nutrition 0.000 claims description 11
- 238000010367 cloning Methods 0.000 claims description 8
- 239000012634 fragment Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 108020004414 DNA Proteins 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 4
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 230000007017 scission Effects 0.000 claims description 4
- 241000209510 Liliopsida Species 0.000 claims description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 3
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 3
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical class OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 210000001161 mammalian embryo Anatomy 0.000 claims description 2
- 206010020649 Hyperkeratosis Diseases 0.000 abstract description 13
- 208000003643 Callosities Diseases 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 17
- 230000035772 mutation Effects 0.000 description 17
- 230000009466 transformation Effects 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 14
- 241000589158 Agrobacterium Species 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000010354 CRISPR gene editing Methods 0.000 description 12
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 10
- 210000002257 embryonic structure Anatomy 0.000 description 9
- 210000001938 protoplast Anatomy 0.000 description 9
- 229940088594 vitamin Drugs 0.000 description 9
- 239000011782 vitamin Substances 0.000 description 9
- 229930003231 vitamin Natural products 0.000 description 9
- 235000013343 vitamin Nutrition 0.000 description 9
- 150000003722 vitamin derivatives Chemical class 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 7
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000011550 stock solution Substances 0.000 description 7
- 239000005720 sucrose Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 5
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 229960004295 valine Drugs 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 4
- 229960004261 cefotaxime Drugs 0.000 description 4
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 230000002363 herbicidal effect Effects 0.000 description 4
- 239000004009 herbicide Substances 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 4
- 230000000284 resting effect Effects 0.000 description 4
- 229910001961 silver nitrate Inorganic materials 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 206010064571 Gene mutation Diseases 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 108010059993 Vancomycin Proteins 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 230000005782 double-strand break Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 229960003165 vancomycin Drugs 0.000 description 3
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 3
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- 229930003451 Vitamin B1 Natural products 0.000 description 2
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 229960000367 inositol Drugs 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229960003512 nicotinic acid Drugs 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- RADKZDMFGJYCBB-UHFFFAOYSA-N pyridoxal hydrochloride Natural products CC1=NC=C(CO)C(C=O)=C1O RADKZDMFGJYCBB-UHFFFAOYSA-N 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229960003495 thiamine Drugs 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- 235000010374 vitamin B1 Nutrition 0.000 description 2
- 239000011691 vitamin B1 Substances 0.000 description 2
- 235000019158 vitamin B6 Nutrition 0.000 description 2
- 239000011726 vitamin B6 Substances 0.000 description 2
- 229940011671 vitamin b6 Drugs 0.000 description 2
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- 101150033839 4 gene Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000010453 CRISPR/Cas method Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000012881 co-culture medium Substances 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- -1 fatty acid methyl sulfonic acid Salt Chemical class 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008263 repair mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
Definitions
- the present disclosure relates to the field of plant genetic engineering technology, and in particular to a gene editing system and a method for editing the plant genome.
- Transgenic technology is to obtain certain excellent traits such as insect-resistant and herbicide-resistant by introducing exogenous DNA fragments of interest into the genome of plants by artificial means.
- the characteristics of transgenic technology make the obtained transgenic plants contain exogenous genetic material, so the safety of genetically modified foods is also a concern of the public.
- the Genome editing technology developed in recent years offers new opportunities for crop functional genomics research and breeding.
- the main genome editing techniques include three types: zinc finger nuclease (ZFN), Transcription activator like effector nuclease (TALEN), and clustered regular intervals of short back. Repeated regular interspaced short palindromic repeats/CRISPR associated protein 9, CRISPR/Cas9. All three techniques can generate DNA double strand break (DSB) at specific target sites in the genome, and obtain the insertion or deletion of genomic-specific sites by means of the endogenous DSB repair mechanism. Implement the editing of the genome. Due to the relatively simple and efficient use of the CRISPR/Cas9 system, it has been widely used in plant basic and applied research. The CRISPR/Cas9 system has been successfully applied in major crops such as rice, wheat, corn, and soybeans, demonstrating a strong potential for breeding applications.
- ZFN zinc finger nuclease
- TALEN Transcription activator like effector nuclease
- CRISPR/Cas9 Clustered regular intervals of short back. Repeated
- the editing efficiency of the CRISPR/Cas9 system is a factor that must be considered in crop basic research and applied research. High editing efficiency not only saves manpower and resource costs, but also makes large-scale gene editing of the whole genome easy to implement, thus promoting the discovery of new genes or genetic loci.
- the editing efficiency of the CRISPR/Cas9 system is mainly affected by the following factors: A promoter for driving expression of Cas9, a promoter for driving expression of sgRNA, a target site for editing, and the like. Targeted optimization of these factors (such as finding promoters that are more efficiently expressed in callus) will have the potential to improve the efficiency of gene editing.
- the CRISPR/Cas9 system is used in the practice of crops to drive the expression of the Cas9 gene mainly using two constitutively expressed promoters: the 35S promoter of tobacco mosaic virus and the ubiquitin gene promoter of maize.
- the average frequency of homozygous or biallelic mutant plants reported in the existing reports is ⁇ 1% (35S), 13% (Ubi) and 30% (Ubi), respectively.
- the editing efficiency reported in wheat is around 10% and is based on the gene gun transformation system. There are no reports on wheat based on the Agrobacterium transformation system.
- the present disclosure provides a novel gene editing system comprising a sgRNA (Single Guide RNA) transcription unit, and DMC1p-Cas9 transcription consisting of a sequentially linked maize-derived DMC1 gene promoter and a Cas9 gene.
- a unit wherein the target site recognized by the sgRNA conforms to a 5'-Nx-NGG-3' or 5'-CCN-Nx-3' sequence rule, and N represents any one of A, T, C, and G, 14 ⁇ X ⁇ 30, and X is an integer, and N X represents X consecutive deoxyribonucleotides.
- DMC1 gene promoter is represented by DMC1p, and the sequence thereof is preferably as shown in SEQ ID NO.
- the present disclosure also provides a recombinant vector comprising the aforementioned gene editing system.
- the present disclosure also provides a method of constructing the aforementioned recombinant vector, comprising the steps of:
- the sequence of the DMC1 gene promoter is preferably as shown in SEQ ID NO.
- the promoter of the DMC1 gene is preferably cloned by using the genomic DNA of maize B73 as a template and the primers shown in SEQ ID NO. 2 and SEQ ID NO. 3 as amplification primer pairs.
- the PCR reaction is carried out to obtain a fragment having the sequence shown in SEQ ID NO. 1, which is the DMC1 gene promoter.
- the sequence is sequentially ligated to the Cas9 gene, preferably by adopting the following method: replacing the obtained DMC1 gene promoter with the 35S promoter in the 35S-Cas9-SK vector,
- the pDMC1-Cas9-SK recombinant vector was obtained, and the DMC1p-Cas9 transcription unit was transferred to the binary vector pTF101.1 using two restriction sites of Xma I and EcoR I to obtain a recombinant vector pDMC1-Cas9.
- Step (2) preferably adopts the following procedure: the DNA sequence of the target site conforming to the 5'-Nx-NGG-3' or 5'-CCN-Nx-3' sequence is ligated into the pU3-sgRNA vector by primer annealing.
- the transcription unit of sgRNA was subcloned into the recombinant vector pDMC1-Cas9 by Hind III cleavage site to obtain a transcript unit including sgRNA, and DMC1p- consisting of a SGC-derived DMC1 gene promoter and a Cas9 gene.
- Recombinant vector for the Cas9 transcription unit Recombinant vector for the Cas9 transcription unit.
- the present disclosure also provides a method for identifying the editing activity of the aforementioned recombinant vector, comprising: transforming the recombinant vector into a plant protoplast, and determining the editing activity of the recombinant vector by identifying the efficiency of genome editing in the protoplast .
- the present disclosure also provides a genetically engineered bacterium comprising the aforementioned recombinant vector.
- the present disclosure also provides a method for editing a plant genome using the aforementioned gene editing system, comprising: converting the aforementioned genetically engineered bacteria into a recipient plant tissue to obtain an edited transgenic plant material.
- the plant is preferably a monocotyledonous plant, more preferably corn or wheat.
- the recipient plant tissue is preferably an immature immature embryo.
- the plant genome was edited using the gene editing system of the present disclosure, and a plant having a high proportion of homozygous or biallelic mutants in the T0 generation was realized in maize; for plants with a low mutation ratio obtained by the T0 generation, selfing
- the progeny T1 generation can also produce new mutant plants; for wheat Agrobacterium-based transformation systems, chimeric plants containing a certain proportion of mutations can be obtained, and plants with homozygous or biallelic mutants are expected to be obtained in the T1 generation.
- the application of this promoter to the plant genome editing system has not been reported prior to the present disclosure, and the present disclosure is a pioneer.
- the improved CRISPR/Cas9 system of the present disclosure is expected to improve genome editing efficiency in monocots, promote crop genetic improvement, and basic research.
- Figure 1 shows the resistant callus of 4 transgenic events obtained in the fourth example of the maize gene 1 (international general number GRMZM2G027059) (3 samples each) using PCR (Polymerase Chain Reaction)-enzyme digestion The method of performing mutation identification results.
- Figure 2 shows the phenotypic results of the homozygous or biallelic mutants obtained in Example 4.
- Figure 3 shows the results of PCR-enzyme electrophoresis of the T1 generation plant mutation identification in Example 4.
- Figure 4 shows the results of deletion mutations in the T0 transgenic wheat plants of Example 4.
- the inventors of the present disclosure have explored a new promoter for driving the expression of Cas9 gene in maize through a large number of screening experiments and repeated practice verification, and constructed a recombinant vector convenient for its application. Genetically engineered strains. Agrobacterium transformation experiments have shown that the present disclosure can significantly improve the efficiency of gene editing using the CRISPR/Cas9 system in plants, particularly monocot corn, compared to other promoters already reported in the prior art, in transgenic T0 generations. 100% of the resistant callus can be regenerated to obtain homozygous or biallelic mutant plants, and the proportion of homozygous or biallelic mutant plants in all regenerated plants is above 65%. The present disclosure is also expected to obtain homozygous or biallelic mutant plants of multiple gene loci in the wheat T1 generation.
- Plasmid 35S-Cas9-SK is disclosed in the literature "Feng Z.Y. et al., Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 2013";
- the plasmid pU3-sgRNA is disclosed in the literature "Feng C. et al., Efficient Targeted Genome Modification in Maize Using CRISPR/Cas9 System. J Genet. Genomics 2016”;
- the plasmid pTF101.1 is disclosed in the literature "Paz M. M. et al., Assessment of conditions affecting Agrobacterium mediated Systems transformation using the cotyledonary node explant. Euphytica 2004";
- Agrobacterium strain EHA105 can be purchased from commercial companies, such as Youbao Bio Company, product number: ST1140;
- HiII The maize variety HiII is disclosed in the literature "Armstrong CL, Green CE & Phillips RLD and and germplasm germplasm with high type II culture formation response. Maize Genet. Coop. News Lett. 65, 92-93 (1991)"; Access to the Maize Genetics and Genomics Database (MaizeGDB) website;
- Maize variety B73 is disclosed in the literature "Russell W.A. Registration of B70 and B73parental lines of maize. Crop Sci. 12, 721 (1972)”; publicly available from the Maize Genetics and Genomics Database (MaizeGDB) website;
- DNA extraction kit (Cat. No. DP305-03), Plasmid Extraction Kit (DP103-03), EsayGeno Rapid Recombination Cloning Kit (Cat. No. VI201-02), etc. were purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.;
- the T vector for PCR product cloning (Cat. No. CT111-01) was purchased from Beijing Quanjin Biotechnology Co., Ltd.;
- the full length of the maize DMC1 gene (gene ID: GRMZM2G109618) was obtained from the Maize Genetics and Genomics Database (MaizeGDB) website.
- the primers dmc-F (the sequence is shown in SEQ ID NO. 2) and dmc-R (the sequence is shown in SEQ ID NO. 3) were designed as amplification primers according to the full-length sequence at the 5' non-coding region of the gene.
- Maize B73 Za mays L.
- a 3614 bp fragment (sequence shown in SEQ ID NO. 1) was obtained by PCR amplification, which is adjacent to the start codon.
- the above 3614 bp fragment DNA was used as a template for PCR amplification.
- the amplified fragment was then integrated into the 35S-Cas9-SK (XhoI digestion) vector to replace the 35S promoter using the EsayGeno Rapid Recombination Cloning Kit (purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.) to obtain recombinant pDMC1- Cas9-SK vector.
- the DMC1p-Cas9 transcription unit was then subcloned into the binary vector pTF101.1 using two cleavage sites of Xma I and EcoR I to obtain the recombinant vector pDMC1-Cas9.
- the maize genome conforms to 5'-Nx-NGG-3' or 5'-CCN-Nx-3' (N represents any of A, T, C, and G, 14 ⁇ X ⁇ 30, and X is an integer,
- the site where N X represents X consecutive deoxyribonucleotides) sequence is selected as the target site for editing by the CRISPR/Cas9 system.
- the DNA sequence of the target site can be ligated into the pU3-sgRNA vector by primer annealing (Bbs I digestion).
- the transcription unit of the sgRNA was then subcloned into the aforementioned pDMC1-Cas9 vector by a Hind III restriction site.
- the pDMC1-Cas9 vector was then transferred into Agrobacterium strain EHA105, and the resulting recombinant genetically engineered strain was used for transformation of maize.
- the main solution is formulated as follows:
- Enzymatic hydrolysate 1.5% cellulase, 0.4% eductase R10, 0.4 M mannitol, 20 mM potassium chloride, 20 mM fatty acid methyl ester sulfonate, pH 5.7. 10 mM chlorine was added after 10 min in a 55 ° C water bath. Calcium, 0.1% bovine serum albumin and 5 mM ⁇ -mercaptoethanol;
- Seedlings were germinated under dark conditions of 25 ° C, and the youngest leaves were cut to 0.5 mm wide pieces until the seedlings grew to about 10 cm;
- the recombinant vector pDMC1-Cas9 obtained in Example 1 was transferred into Escherichia coli strain DH5 ⁇ to prepare a plasmid.
- the plasmid was extracted using a plasmid extraction kit produced by Tiangen Biochemical Technology (Beijing) Co., Ltd. Take 190 ⁇ l of protoplast solution, add 10 ⁇ l of plasmid (greater than 5 ⁇ g), add 200 ⁇ l of 40% PEG solution, mix gently with a pipette tip, and place at 25 ° C for 18 min;
- the method of genetic transformation of maize mainly refers to the existing reports (Frame B.R. et al., Agrobacterium-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 2002).
- the transformed acceptor material is HiII.
- the reagent preparation and main steps are as follows:
- N6 vitamin storage solution 1000 ⁇ : 2.0 g/L glycine, 1.0 g/L vitamin B1, 0.5 g/L vitamin B6, 0.5 g/L niacin, filter sterilization;
- MS vitamin storage solution 1000 ⁇ : 2.0 g/L glycine, 0.5 g/L vitamin B1, 0.5 g/L vitamin B6, 0.05 g/L niacin, filter sterilization;
- Infecting medium 4.0g/L N6 salt, 1ml/L N6 vitamin stock solution, 1.5mg/L 2,4-D, 0.7g/L L-valine, 68.4g/L sucrose, 36.0 g/L glucose, pH 5.2, filter sterilization, adding 100.0 ⁇ M acetosyringone;
- Co-cultivation medium 4.0 g/L N6 salt, 1.5 mg/L 2,4-D, 0.7 g/L L-valine, 30.0 g/L sucrose, 3.0 g/L plant gel, pH 5 .8; after autoclaving, add 1ml / L N6 vitamin stock solution, 100.0 ⁇ M acetosyringone, 300.0mg / L L-cysteine, 5.0 ⁇ M silver nitrate;
- Resting medium 4.0 g/L N6 salt, 1.5 mg/L 2,4-D, 0.7 g/L L-valine, 30.0 g/L sucrose, 0.5 g/L fatty acid methyl ester sulfonic acid Salt, 8.0g/L agar, pH 5.8; after autoclaving, add 1ml/L N6 vitamin stock solution, 100.0mg/L cefotaxime, 100.0mg/L vancomycin, 5.0 ⁇ M silver nitrate;
- Selection medium I 4.0 g/L N6 salt, 1.5 mg/L 2,4-D, 0.7 g/L L-valine, 30.0 g/L sucrose, 0.5 g/L fatty acid methyl sulfonic acid Salt, 8.0g/L agar, pH 5.8; add 1ml/L N6 vitamin stock solution after autoclaving, 100.0mg/L cefotaxime, 100.0mg/L vancomycin, 5.0 ⁇ M silver nitrate, 1.5mg/ L herbicide;
- Selection medium II 4.0 g/L N6 salt, 1.5 mg/L 2,4-D, 0.7 g/L L-valine, 30.0 g/L sucrose, 0.5 g/L fatty acid methyl ester sulfonic acid Salt, 8.0g/L agar, pH 5.8; add 1ml/L N6 vitamin stock solution after autoclaving, 100.0mg/L cefotaxime, 100.0mg/L vancomycin, 5.0 ⁇ M silver nitrate, 3.0mg/ L herbicide;
- Regeneration medium I 4.3 g / L MS salt, 1.0 ml / L MS vitamin stock solution, 100.0 mg / L inositol, 60.0 g / L sucrose, 3.0 g / L plant gel, pH 5.8; high temperature After autoclaving, 100.0 mg/L cefotaxime and 3.0 mg/L herbicide were added;
- Regeneration medium II 4.3 g/L MS salt, 1.0 ml/L MS vitamin stock solution, 100.0 mg/L inositol, 30.0 g/L sucrose, 3.0 g/L plant gel, pH 5.8; high temperature Autoclaved.
- the recombinant EHA105 genetically engineered strain obtained in Example 1 was inoculated into 10 ml of YEP medium one day before the infection experiment, and cultured in a shaker at 28 ° C, shaking at 200 rpm for 16-20 h.
- the Agrobacterium was collected by centrifugation and resuspended in the infecting medium (OD 550 value 0.3-0.4). Immature immature embryos (1.5-2.0 mm) were excised from maize ears, and the immature embryos were then placed in 2 ml EP tubes containing Agrobacterium infecting medium, inverted 5-10 times and allowed to stand for 5 min.
- the infested immature embryos are then placed on sterile filter paper and transferred to the co-culture medium with the scutellum of the young embryos facing up. Then, it was cultured in an incubator at 20 ° C for 3 days in the dark.
- the selected resistant calli were cultured to a sufficient size, transferred to regeneration medium I, and placed in an incubator for 14 days in the dark at 25 °C.
- the callus containing the somatic embryos was then transferred to regeneration medium II, and cultured in an incubator at 25 ° C until all the seedlings were regenerated.
- Example 2 The transformed protoplasts of Example 2 or the transgenic maize callus, the sample of the plant leaves, and the transgenic wheat sample of Example 3 were collected. Genomic DNA was extracted using a DNA extraction kit (purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.);
- PCR amplification was carried out using the primers of the corresponding target sites, and a part of the obtained PCR products were subjected to restriction enzyme digestion (purchased from NEB) using a corresponding target site, and then subjected to enzymatic digestion, and then subjected to agarose digestion.
- Gel electrophoresis (Fig. 1); Fig. 1 shows the results of mutation identification of resistant callus (3 samples each) of 4 transgenic events obtained with maize gene 1 (International GQZM2G027059) as target genes; Amplification of 651 bp DNA containing the target site Fragments, if the sequence is not mutated, can be digested into two fragments of 501 bp and 150 bp, and vice versa.
- the samples corresponding to each lane in Figure 1 are from left to right: 4 transgenic events #1, #3, #4, #6 (3 samples each), control and Marker, as can be seen from Figure 1 Three of the wounded samples contained homozygous or biallelic mutations.
- the PCR product can be sent directly to the sequencing company for sequencing; for other types of samples containing the mutation, the uncut unbroken mutant sequence band is cloned and cloned. Go to the commercial T-vector and pick the monoclonal delivery company for sequencing;
- the gene mutation theoretically showed a whitened phenotype.
- a total of 10 transgenic events were obtained in two batches of transformation experiments, 9 of which were obtained with albino phenotypes and identified as homozygous or biallelic mutants (Fig. 2); Plants with yellowing of the leaves were obtained and identified as biallelic mutants. Therefore, the transgenic event obtained by regenerating a homozygous or biallelic mutant plant was 100%; the proportion of homozygous or biallelic mutant plants in all regenerated plants was greater than 65%.
- the T1 generation was obtained by selfing or hybridization of the plants with lower mutation ratio in the T0 generation.
- Figure 3 shows a T0 generation plant and The results of identification of target gene mutations in wild-type hybrid progeny; the left side is the result of T0 generation plant identification, the corresponding samples of lanes are transgenic T0 plants, control and Marker; the right side is the result of T1 generation plant identification, and the corresponding samples of lanes are in turn 8 transgenic plants, controls and Marker for the T1 generation.
- Table 1 shows the mutant genotype statistics in Example 4.
- GRMZM2G456570 For maize gene 2 (internationally known as GRMZM2G456570), it is known that this gene mutation will theoretically produce a lethal phenotype, which has been confirmed in other species, transforming a large number of young embryos but only obtaining two In the callus of the resistance event, the transformation efficiency was significantly reduced. This has, to a certain extent, indicated that homozygous or biallelic mutations have occurred in most of the positive transgenic events. In addition, mutation identification of the callus of two positive events revealed that the two samples were chimeric mutants, and the mutation ratio was also 50% or more.
- the present disclosure provides a novel recombinant vector for plant gene editing.
- monocots, especially maize have shown that a high proportion of homozygous or biallelic mutant plant material can be obtained in maize in the T0 generation using the recombinant vector based on the Agrobacterium genetic transformation system.
- the proportion of mutations in some plants in the T1 generation obtained by selfing or cross-breeding was significantly increased.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims (12)
- 一种基因编辑系统,其包括sgRNA转录单元,以及由顺次连接的来源于玉米的DMC1基因启动子和Cas9基因组成的DMC1p-Cas9转录单元,其中,sgRNA识别的靶位点符合5’-Nx-NGG-3’或者5’-CCN-Nx-3’序列规则,N代表A、T、C和G中的任何一种,14≤X≤30,且X为整数,NX表示X个连续的脱氧核糖核苷酸。
- 根据权利要求1所述的基因编辑系统,其中,所述DMC1基因启动子的序列如SEQ ID NO.1所示。
- 一种包括如权利要求1或2所述的基因编辑系统的重组载体。
- 权利要求3所述重组载体的构建方法,其包括如下步骤:(1)克隆获得DMC1基因启动子并将其与Cas9基因顺次连接,组成DMC1p-Cas9转录单元;(2)构建识别靶位点的sgRNA转录单元,并将DMC1p-Cas9转录单元和sgRNA转录单元同时导入双元载体,得到重组载体,其中,sgRNA识别的靶位点符合5’-Nx-NGG-3’或者5’-CCN-Nx-3’序列规则,N代表A、T、C和G中的任何一种,14≤X≤30,且X为整数,NX表示X个连续的脱氧核糖核苷酸。
- 根据权利要求4所述的构建方法,步骤(1)中,所述DMC1基因启动子的序列如SEQ ID NO.1所示。
- 根据权利要求5所述的构建方法,步骤(1)中,克隆获得DMC1基因启动子采用如下方法:以玉米B73的基因组DNA为模板,以序列如SEQ ID NO.2和SEQ ID NO.3所示的引物为扩增引物对模板进行PCR反应,扩增得到序列如SEQ ID NO.1所示的片段,即为DMC1基因启动子。
- 根据权利要求4所述的构建方法,步骤(1)中,在克隆获得DMC1基因启动子之后,所述将其与Cas9基因顺次连接采用如下方法:将得到的DMC1基因启动子替换35S-Cas9-SK载体中的35S启动子,得到pDMC1-Cas9-SK重组载体,再利用Xma I和EcoR I两个酶切位点将DMC1p-Cas9转录单元转移到双元载体pTF101.1,得到重组载体pDMC1-Cas9。
- 根据权利要求7所述的构建方法,步骤(2)采用如下操作:将符合5’-Nx-NGG-3’或者5’-CCN-Nx-3’序列规则的靶位点的DNA序列通过引物退火连入pU3-sgRNA载体中,然后通过Hind III酶切位点将sgRNA的转录单元亚克隆到重组载体pDMC1-Cas9中,得到包括sgRNA转录单元,以及由顺次连接的来源于玉米的DMC1基因启动子和Cas9基因组成的DMC1p-Cas9转录单元的重组载体。
- 一种包括权利要求3所述重组载体的基因工程菌。
- 一种应用权利要求1所述的基因编辑系统对植物基因组进行编辑的方法,其包括:将权利要求9所述的基因工程菌转化受体植物组织,获得被编辑的转基因植物材料。
- 根据权利要求10所述的方法,其中,所述植物为单子叶植物,更优选玉米或小麦。
- 根据权利要求10所述的方法,其中,所述受体植物组织为未成熟的幼胚。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/093837 WO2019014917A1 (zh) | 2017-07-21 | 2017-07-21 | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/093837 WO2019014917A1 (zh) | 2017-07-21 | 2017-07-21 | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019014917A1 true WO2019014917A1 (zh) | 2019-01-24 |
Family
ID=65014871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/093837 WO2019014917A1 (zh) | 2017-07-21 | 2017-07-21 | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019014917A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110157715A (zh) * | 2019-05-15 | 2019-08-23 | 陈超 | 一种敲除ZmPAD1基因提升高直链玉米产量的实验方法 |
CN114591882A (zh) * | 2022-03-03 | 2022-06-07 | 东北林业大学 | 一种刺五加细胞瞬时转化的方法 |
CN114703224A (zh) * | 2022-04-09 | 2022-07-05 | 吉林省农业科学院 | 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法 |
CN117487847A (zh) * | 2023-10-31 | 2024-02-02 | 中国热带农业科学院橡胶研究所 | 一种获得橡胶树纯合基因编辑植株的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106318947A (zh) * | 2016-10-17 | 2017-01-11 | 北京大北农科技集团股份有限公司 | 基因组编辑系统及其用途 |
WO2017096237A1 (en) * | 2015-12-02 | 2017-06-08 | Ceres, Inc. | Methods for genetic modification of plants |
CN107338265A (zh) * | 2017-07-21 | 2017-11-10 | 中国科学院遗传与发育生物学研究所 | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 |
-
2017
- 2017-07-21 WO PCT/CN2017/093837 patent/WO2019014917A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017096237A1 (en) * | 2015-12-02 | 2017-06-08 | Ceres, Inc. | Methods for genetic modification of plants |
CN106318947A (zh) * | 2016-10-17 | 2017-01-11 | 北京大北农科技集团股份有限公司 | 基因组编辑系统及其用途 |
CN107338265A (zh) * | 2017-07-21 | 2017-11-10 | 中国科学院遗传与发育生物学研究所 | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 |
Non-Patent Citations (1)
Title |
---|
EID, A ET AL.: "High efficiency of targeted mutagenesis in arabidopsis via meio-tic promoter-driven expression of Cas9 endonuclease", PLANT CELL REPORTS, vol. 35, no. 7, 31 July 2016 (2016-07-31), XP035976279, ISSN: 0721-7714 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110157715A (zh) * | 2019-05-15 | 2019-08-23 | 陈超 | 一种敲除ZmPAD1基因提升高直链玉米产量的实验方法 |
CN110157715B (zh) * | 2019-05-15 | 2023-03-31 | 陈超 | 一种敲除ZmPAD1基因提升高直链玉米产量的实验方法 |
CN114591882A (zh) * | 2022-03-03 | 2022-06-07 | 东北林业大学 | 一种刺五加细胞瞬时转化的方法 |
CN114703224A (zh) * | 2022-04-09 | 2022-07-05 | 吉林省农业科学院 | 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法 |
CN114703224B (zh) * | 2022-04-09 | 2023-06-20 | 吉林省农业科学院 | 一种利用基因编辑技术创制高类胡萝卜素甜玉米的方法 |
CN117487847A (zh) * | 2023-10-31 | 2024-02-02 | 中国热带农业科学院橡胶研究所 | 一种获得橡胶树纯合基因编辑植株的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7239266B2 (ja) | 一過性遺伝子発現により植物を正確に改変するための方法 | |
JP6505599B2 (ja) | 遺伝子標的化および形質スタッキングのための特別設計の導入遺伝子組み込みプラットフォーム(etip) | |
JP6916188B2 (ja) | プロトプラストからの全植物体の製造方法 | |
US9756871B2 (en) | TAL-mediated transfer DNA insertion | |
US20230365984A1 (en) | Compositions and methods for increasing shelf-life of banana | |
CN106480163B (zh) | 一种联合苹果愈伤组织细胞培养和遗传转化鉴定苹果抗病基因的方法 | |
WO2019219046A1 (zh) | 一种快速高效获得非转基因的定向基因突变植物的方法和应用 | |
CN100350042C (zh) | 不依赖品种的植物转化的快速方法 | |
CN103555711A (zh) | 一种主要农作物非转基因的基因组定向分子改良方法和应用 | |
CN107338265B (zh) | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 | |
WO2019014917A1 (zh) | 一种基因编辑系统及应用其对植物基因组进行编辑的方法 | |
CN106868036B (zh) | 一种定点突变创制玉米紧凑株型种质的方法及其应用 | |
US20150315601A1 (en) | Methods of site-directed transformation | |
CN107365772B (zh) | 一种植物花粉特异性启动子psp1及其应用 | |
CN108794610A (zh) | 玉米杂交不亲和相关蛋白ZmGa1S及其编码基因与应用 | |
CN112226456B (zh) | 一种实现染色体定点遗传重组的方法 | |
CN116103423A (zh) | 抗除草剂转基因玉米事件nCX-1、核酸序列及其检测方法 | |
JP2023526035A (ja) | 標的突然変異生成によって変異体植物を得るための方法 | |
CN112522299A (zh) | 一种利用OsTNC1基因突变获得分蘖增加的水稻的方法 | |
CN116083460B (zh) | 水稻核糖核酸酶基因OsRNS4及其编码蛋白与应用 | |
CN117305264A (zh) | 水稻籽粒大小调控相关蛋白OsSMG3及其编码基因与应用 | |
WO2023230459A2 (en) | Compositions and methods for targeting donor polynucelotides in soybean genomic loci | |
CN118955665A (zh) | OsWRKY10基因及其在调控水稻粒宽和千粒重中的应用 | |
CN118240832A (zh) | 一种水稻孕穗期耐冷基因OsACT1及其应用 | |
CN118620954A (zh) | 水稻生育期调控因子tn1编码基因及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918454 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918454 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918454 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918454 Country of ref document: EP Kind code of ref document: A1 |