WO2019003746A1 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- WO2019003746A1 WO2019003746A1 PCT/JP2018/020230 JP2018020230W WO2019003746A1 WO 2019003746 A1 WO2019003746 A1 WO 2019003746A1 JP 2018020230 W JP2018020230 W JP 2018020230W WO 2019003746 A1 WO2019003746 A1 WO 2019003746A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- drain
- semiconductor
- layer
- source
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 83
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 127
- 239000000758 substrate Substances 0.000 claims description 22
- 239000011229 interlayer Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 229910002601 GaN Inorganic materials 0.000 description 75
- 229910002704 AlGaN Inorganic materials 0.000 description 29
- 239000000969 carrier Substances 0.000 description 14
- 230000005684 electric field Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 230000003071 parasitic effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/80—FETs having rectifying junction gate electrodes
- H10D30/801—FETs having heterojunction gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/106—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/257—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are characterised by top-view geometrical layouts, e.g. interdigitated, semi-circular, annular or L-shaped electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/517—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
- H10D64/519—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their top-view geometrical layouts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/343—Gate regions of field-effect devices having PN junction gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/50—Physical imperfections
- H10D62/53—Physical imperfections the imperfections being within the semiconductor body
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Definitions
- the present disclosure relates to a hetero-structure including a first GaN-based semiconductor layer and a second GaN-based semiconductor layer, such as stacking gallium nitride (hereinafter referred to as GaN) and aluminum gallium nitride (hereinafter referred to as AlGaN) on a substrate.
- GaN gallium nitride
- AlGaN aluminum gallium nitride
- the present invention relates to a semiconductor device provided with a junction structure.
- this semiconductor device has an active region constituting a channel through which carriers flow and an inactive region surrounding the active region, and the source electrode, the drain electrode, the first gate electrode, and the second gate electrode are appropriately arranged. It is done.
- the source electrode and the drain electrode have a comb shape, and are arranged such that the comb teeth mesh with each other in the active region.
- the first gate electrode and the second gate electrode are disposed between the source electrode and the drain electrode.
- the second gate electrode is drawn from the inside of the active region to the inactive region, and a part of the second gate electrode is disposed between the source electrode and the drain electrode even in the inactive region.
- the hetero junction structure is formed by laminating the i-GaN layer and the i-AlGaN layer on a substrate such as sapphire. Then, a gate electrode of a MOS structure (hereinafter referred to as a MOS gate electrode) is formed to penetrate the i-AlGaN layer and reach the i-GaN layer, and the MOS gate electrode on the surface of the i-AlGaN layer is sandwiched. Source and drain electrodes are formed on both sides.
- a stacked structure of a u-GaN layer and a p-GaN layer is formed on the surface of the i-AlGaN layer between the MOS gate electrode and the drain electrode, and a junction gate is further formed on the surface of the p-GaN layer.
- An electrode hereinafter referred to as a JG electrode is formed.
- the first gate electrode corresponds to a MOS gate electrode
- the second gate electrode corresponds to a JG electrode.
- the JG electrode is formed in the inactive region, the u-GaN layer and the p-GaN layer disposed below the JG electrode are also formed in the inactive region together with the JG electrode.
- the inactive region when the inactive region is formed by ion implantation or the like to form a defect, carriers (for example, electrons) may be trapped at the defect. That is, carriers may be trapped below the JG electrode located in the inactive region. In this case, there is a concern that the characteristics of the semiconductor device may change due to fluctuations in the threshold voltage of the JG electrode.
- carriers for example, electrons
- the present disclosure aims to provide a semiconductor device capable of suppressing change in characteristics.
- the active region is formed on a substrate
- a second semiconductor composed of a first semiconductor layer composed of a first GaN based semiconductor forming the drift region and a second GaN based semiconductor having a larger band gap energy than the first GaN based semiconductor
- a channel forming layer having a heterojunction structure formed of layers, in which a recess is formed in the second semiconductor layer, a gate insulating film formed in the recess, and a MOS formed on the gate insulating film
- a third GaN-based semiconductor which is disposed on the drain electrode and the second semiconductor layer at a position apart from the drain electrode between the gate structure portion and the drain electrode, and is formed of a third GaN-based semiconductor not doped with impur
- the JG electrode is disposed on the region where carriers (for example, electrons) are trapped. Not the configuration. For this reason, it can suppress that the threshold value of a JG electrode changes, and can suppress that the characteristic of a semiconductor device changes.
- FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
- the semiconductor device in the first embodiment will be described with reference to FIG. 1 to FIG.
- the semiconductor device of the present embodiment has an active region 1 and an inactive region 2 surrounding the active region 1, as shown in FIG.
- a lateral switching device provided with a HEMT of four-terminal structure is formed.
- the active region 1 has a substantially rectangular shape whose longitudinal direction is the vertical direction in the drawing of FIG.
- the semiconductor device is a compound semiconductor substrate in which an undoped GaN (hereinafter referred to as u-GaN) layer 12 is formed on one surface 11 a of the substrate 11. It is formed using as. Then, on the surface of the u-GaN layer 12, an undoped AlGaN (hereinafter referred to as u-AlGaN) layer 13 is formed, and the u-GaN layer 12 and the u-AlGaN layer 13 form a heterojunction structure. There is.
- the switching device uses the u-GaN layer 12 and the u-AlGaN layer 13 as channel formation layers.
- 2DEG ie, two-dimensional electron gas
- the substrate 11 is made of a conductive material such as a semiconductor material such as Si (111) or SiC.
- the u-GaN layer 12 may be formed directly on the substrate 11. However, in order to form the u-GaN layer 12 with good crystallinity, it is formed through the buffer layer to be the base film as needed. It may be done. When the u-GaN layer 12 can be deposited with good crystallinity on the substrate 11, the buffer layer may be omitted. Further, the term “crystallinity” as used herein refers to defects, dislocations, and the like in the u-GaN layer 12, which have an influence on electrical and optical characteristics.
- the u-GaN layer 12 is a portion constituting an electron transit layer operating as a drift region, and corresponds to a first GaN-based semiconductor layer.
- the u-GaN layer 12 is formed of a GaN-based semiconductor material, and 2DEG carriers are induced in the surface layer portion on the u-AlGaN layer 13 side.
- the u-AlGaN layer 13 corresponds to a second GaN-based semiconductor layer, and is composed of a GaN-based semiconductor material having a larger band gap energy than the GaN-based semiconductor material forming the u-GaN layer 12. It constitutes a supply unit.
- the u-AlGaN layer 13 is composed of Al x Ga 1 -xN, where the Al mixed crystal ratio is x. Then, the concentration of 2DEG carriers formed in the vicinity of the surface of the u-GaN layer 12 is determined by the Al mixed crystal ratio x and the film thickness of the u-AlGaN layer 13. Therefore, in the present embodiment, the concentration of 2DEG carriers is adjusted by adjusting the Al mixed crystal ratio x and the film thickness of the u-AlGaN layer 13, and the concentration of 2DEG carriers does not greatly fluctuate depending on the thickness.
- the crystal ratio is designed to uniquely determine the concentration of 2DEG carrier.
- the u-GaN layer 12 corresponds to a first semiconductor layer
- the u-AlGaN layer 13 corresponds to a second semiconductor layer
- the u-GaN layer 12 and the u-AlGaN layer 13 are channel forming layers. Is equivalent to
- the inactive region 2 of the present embodiment is configured by forming a plurality of defects d more than the active region 1 so that 2DEG carriers are not induced.
- the inactive region 2 of the present embodiment is a device isolation region.
- a u-GaN layer 14 not doped with impurities is partially formed on the surface of the u-AlGaN layer 13.
- the u-AlGaN layer 13 is formed on the entire top surface of the u-GaN layer 12.
- the u-GaN layer 14 is formed in the vicinity of a MOS gate electrode 17 which will be described later in the u-AlGaN layer 13, and is extended so as to extend toward the drain electrode 19 which will be described later.
- the u-AlGaN layer 13 and the u-GaN layer 14 are removed in the recess portion 15.
- the recess portion 15 extends in one direction, specifically, a direction normal to the cross section of FIG. 2 as a longitudinal direction.
- the recess portion 15 when viewed from the normal direction to the one surface 11 a of the substrate 11, the recess portion 15 extends along the extension direction of the source electrode 18 described later, and the two recess portions 15 sandwiching the source electrode 18 extend It is set as the structure connected by the both ends of the installation direction. That is, when viewed from the normal direction to the one surface 11 a of the substrate 11, the recess portion 15 has an annular shape surrounding the source electrode 18 described later.
- a MOS gate electrode 17 is embedded in the recess portion 15 as a gate structure portion via the gate insulating film 16. Specifically, gate insulating film 16 having a predetermined film thickness is formed on the inner wall surface of recess portion 15, and MOS gate electrode 17 is further formed on gate insulating film 16 to form a gate structure portion. It is configured. Since the gate structure including the MOS gate electrode 17 is formed along the recess 15, it is formed to surround the source electrode 18, which will be described later, in the same manner as the recess 15.
- the gate insulating film 16 and the MOS gate electrode 17 are formed in the recess 15 to form a gate structure of the MOS structure.
- the MOS gate electrode 17 can be entirely formed of a poly-semiconductor or the like, in order to reduce the wiring resistance of the MOS gate electrode 17, a metal layer is formed on the surface portion of the MOS gate electrode 17 in this embodiment. 17a is arranged.
- a source electrode 18 and a drain electrode 19 are formed on both sides of the surface of the u-AlGaN layer 13 across the gate structure.
- the source electrode 18 and the drain electrode 19 are both arranged at a distance from the u-GaN layer 14, and the distance from the end of the u-GaN layer 14 to the drain electrode 19 is a predetermined length.
- the source electrode 18 and the drain electrode 19 are in ohmic contact with the u-AlGaN layer 13 respectively.
- the source electrode 18 and the drain electrode 19 are extended along one direction in the surface direction of the substrate 11, and more specifically, extended in the direction intersecting the longitudinal direction of the active region 1 .
- the source electrodes 18 and the drain electrodes 19 are alternately formed in the direction orthogonal to the extending direction.
- the source electrode 18 and the drain electrode 19 are extended in the left-right direction in the drawing of FIG. 1 and alternately formed in the up-down direction in the drawing of FIG. 1.
- a p-GaN layer 20 of p-type is formed on the surface of the portion of the u-GaN layer 14 located between the MOS gate electrode 17 and the drain electrode 19, a p-GaN layer 20 of p-type is formed.
- the p-GaN layer 20 is disposed such that the end face on the drain electrode 19 side is flush with the end face on the drain electrode 19 side of the u-GaN layer 14 or on the MOS gate electrode 17 side thereof.
- the u-GaN layer 14 corresponds to a third semiconductor layer formed of a third GaN-based semiconductor
- the p-GaN layer 20 includes a fourth GaN-based semiconductor. 4 corresponds to the semiconductor layer.
- the JG electrode 21 is formed on the surface of the p-GaN layer 20.
- the JG electrode 21 is connected to the source electrode 18 described above, and has the same potential as the source electrode 18.
- the interlayer insulating film 22 is disposed so as to cover the MOS gate electrode 17 and the u-GaN layer 14 and the like, and the electrode layer 23 is formed so as to cover the interlayer insulating film 22.
- the electrode layer 23 is in contact with the u-AlGaN layer 13 through a contact hole formed in the interlayer insulating film 22 and in contact with the p-GaN layer 20. Therefore, the portion of the electrode layer 23 in contact with the u-AlGaN layer 13 constitutes the source electrode 18, and the portion in contact with the p-GaN layer 20 constitutes the JG electrode 21. There is.
- the source electrode 18 and the JG electrode 21 are thus configured by the same electrode layer 23. For this reason, it is possible to reduce the wiring resistance and the inductance as compared with the case of connecting these with a bonding wire or the like.
- the portion connecting the source electrode 18 and the JG electrode 21 in the electrode layer 23 in FIG. 2 is omitted. That is, in FIG. 1, the portion of the electrode layer 23 in FIG. 2 which is located above the MOS gate electrode 17 is omitted.
- the JG electrode 21 is formed in an annular shape surrounding the drain electrode 19 when viewed from the normal direction to the one surface 11 a of the substrate 11. That is, in the present embodiment, the JG electrode 21 is disposed between the source electrode 18 and the drain electrode 19.
- the u-GaN layer 14 and the p-GaN layer 20 located below the JG electrode 21 are disposed along the JG electrode 21. That is, the u-GaN layer 14 and the p-GaN layer 20 are formed to surround the drain electrode 19 when viewed from the normal direction to the one surface 11 a of the substrate 11.
- the switching device including the four terminals of the MOS gate electrode 17, the source electrode 18, the drain electrode 19 and the JG electrode 21 is configured.
- the back surface electrode 24 is formed on the back surface side of the substrate 11, and is electrically connected to the source electrode 18 through, for example, a wiring (not shown) to be at the same potential as the source electrode 18.
- a gate pad 25 for the MOS gate electrode 17, a source pad 26, and a drain pad 27 are formed.
- the MOS gate electrode 17 is connected to the gate pad 25 via the gate interconnection 25 a drawn from the active region 1 to the inactive region 2. Also, the source electrode 18 is connected to the source pad 26 via the source wiring 26 a drawn out from the active region 1 to the inactive region 2. Drain electrode 19 is electrically connected to drain pad 27 via source interconnection 26 a drawn from active region 1 to inactive region 2.
- the gate pad 25, the source pad 26, the drain pad 27, the gate wiring 25a, the source wiring 26a, and the drain wiring 27a are formed on an interlayer insulating film (not shown).
- the JG electrode 21 is formed so as to surround the drain electrode 19 so as to be located only in the active region 1.
- the JG electrode 21 is connected to the source electrode 18 in the active region 1 so as to have the same potential as the source electrode 18.
- the equivalent circuit of the switching device in this embodiment has a circuit configuration shown in FIG.
- the switching device is connected to the load 28, and the gate driver 29 controls the gate voltage to drive the load 28 by turning the switching device on and off.
- the switching device has a structure in which a normally-off MOSFET unit 30 by the MOS gate electrode 17 and a normally-on JFET unit 40 by the JG electrode 21 are connected in series.
- the intermediate potential point A between the MOSFET portion 30 and the JFET portion 40 is an intermediate potential located below the JG electrode 21 in the surface portion of the u-GaN layer 12 as shown in FIG. It points to the part that becomes.
- the JG electrode 21 is connected to the source electrode 18 and is at the same potential. Between these, although there is a parasitic impedance 50 due to the wiring, since the parasitic impedance 50 is directly connected through the electrode layer 23, the value of the parasitic impedance 50 is low. Further, in the switching device having such a configuration, in the JFET portion 40, the capacitance C1 to the capacitance between the JG electrode 21 and the drain electrode 19 and the intermediate potential point A, and between the drain electrode 19 and the intermediate potential point A. C3 is configured. In the MOSFET unit 30, capacitances C4 to C6 are formed between the MOS gate electrode 17 and the intermediate potential point A and the source electrode 18, and between the intermediate potential point A and the source electrode 18.
- FIG. 5 shows the turn-off waveform of the switching device in an H-bridge circuit with an inductive load.
- the electric charge Vds of the drain electrode 19 is increased by the charge of the feedback capacitance C1. Also, the drain current Id is decreasing.
- the JFET unit 40 is turned off. This turns off the entire switching device.
- the JG electrode 21 and the source electrode 18 are directly connected through the electrode layer 23, the resistance value of the parasitic impedance 50 due to the wiring resistance existing therebetween is lowered. It can be suppressed. Therefore, it is possible to reduce the impedance between the JG electrode 21 and the source electrode 18.
- the potential Vds of the drain electrode 19 is increased, but the JG electrode 21 having the same potential as the source electrode 18 is disposed so as to surround the drain electrode 19. Therefore, as shown in FIG. 6, the high electric field caused by the drain electrode 19 can be blocked by the JG electrode 21, and the high electric field can be prevented from invading the source electrode 18 side. Therefore, it is possible to suppress the occurrence of the leak current in the region under the source electrode 18.
- the JG electrode 21 is disposed only in the active region 1. That is, the JG electrode 21 is not disposed on the region where electrons can be trapped. For this reason, it can suppress that the threshold value of the JG electrode 21 changes, and can suppress that the characteristic of a semiconductor device changes.
- the JG electrode 21 is formed so as to surround the drain electrode 19 when viewed from the normal direction to the one surface 11 a of the substrate 11. Therefore, it is possible to suppress that the high electric field caused by the drain electrode 19 intrudes into the source electrode 18 side. Therefore, it is possible to suppress the occurrence of the leak current in the region under the source electrode 18.
- the JG electrode 21 and the source electrode 18 are directly connected through the electrode layer 23. Therefore, the resistance value of the parasitic impedance 50 can be reduced, and the impedance between the JG electrode 21 and the source electrode 18 can be reduced. Further, by arranging the u-GaN layer 14 and the p-GaN layer 20 separately from the drain electrode 19, the facing area between the p-GaN layer 20 and the 2DEG carrier is made as small as possible. For this reason, it is also possible to reduce the feedback capacitance C1.
- the MOS gate electrode 17 is formed to penetrate the u-GaN layer 14. Therefore, the electric field strength in the u-GaN layer 14 becomes smaller toward the MOS gate electrode 17 and the electric field strength of the gate insulating film 16 becomes smaller, so that the reliability can be improved.
- the present embodiment is the same as the first embodiment except that the arrangement location of the JG electrode 21 is changed with respect to the first embodiment, and therefore only the parts different from the first embodiment will be described.
- the JG electrode 21 is disposed so as not to intersect with the drain wiring 27 a when viewed in the normal direction to the one surface 11 a of the substrate 11. That is, the JG electrode 21 is disposed at a position different from that of the drain wiring 27 a so as to surround the drain electrode 19. In other words, the JG electrode 21 is substantially C-shaped.
- the JG electrode 21 is disposed so as not to intersect the drain wiring 27 a when viewed in the normal direction to the one surface 11 a of the substrate 11. Therefore, generation of parasitic capacitance between JG electrode 21 and drain interconnection 27a can be suppressed, and fluctuation of the characteristics of JFET portion 40 can be suppressed.
- the JG electrode 21 is disposed so as not to intersect the drain wiring 27 a when viewed in the normal direction to the one surface 11 a of the substrate 11. Further, when viewed from the normal direction to the one surface 11 a of the substrate 11, the JG electrode 21 includes all of the source electrode 18, the source pad 26, the source wire 26 a, the drain electrode 19, the drain pad 27 and the drain wire 27 a It is arranged to be located between. That is, the JG electrode 21 is a virtual connecting the source electrode 18, the source pad 26, and the source wire 26a, and the drain electrode 19, the drain pad 27, and the drain wire 27a when viewed from the normal direction to the one surface 11a of the substrate 11. It is arranged to always cross the line.
- the JG electrode 21 has the source electrode 18, the source pad 26, the source wiring 26 a, the drain electrode 19, the drain pad 27, and the drain wiring 27 a It is arranged to be located between all of them. Therefore, all high electric fields resulting from the drain electrode 19, the drain pad 27 and the drain wiring 27 a can be cut off by the JG electrode 21. That is, it is possible to prevent the high electric field caused by the drain electrode 19, the drain pad 27, and the drain wiring 27a from invading the source electrode 18, the source pad 26, and the source wiring 26a. Therefore, the generation of a leak current in the region under source electrode 18, source pad 26, and source interconnection 26a is suppressed.
- the depth of the recess portion 15 is set to a depth until the surface layer portion of the u-GaN layer 12 is partially removed, but this is also merely an example.
- the recess portion 15 may have a depth to which the surface of the u-GaN layer 12 is exposed, or a portion of the u-AlGaN layer 13 to the extent that 2DEG carriers are not formed on the bottom surface of the recess portion 15 It may be considered to be deep enough to remain.
- the case where the first and second GaN-based semiconductor layers constituting the channel formation layer are formed of the u-GaN layer 12 and the u-AlGaN layer 13 has been described as an example.
- these are only examples and other channel forming layers may be formed as long as the first GaN-based semiconductor layer and the second GaN-based semiconductor layer having a larger band gap energy than this are used. It may be a material.
- the source electrode 18 and the JG electrode 21 may not be integrated, and may be electrically connected by, for example, wire bonding or the like. Even with such a configuration, by disposing the JG electrode 21 only in the active region 1, it is possible to suppress changes in the characteristics of the semiconductor device.
- the configuration of the inactive region 2 can be changed as appropriate.
- the recess 60 is formed so as to remove the upper portions of the u-AlGaN layer 13 and the u-GaN layer 12 so that 2DEG carriers are not formed. May be composed of In this case, the recess 60 may be formed so as to remove only the u-AlGaN layer 13 as long as the inactive region 2 does not have a 2DEG carrier.
- gate interconnection 25a is drawn to inactive region 2 at the shortest distance from the portion connected to MOS gate electrode 17, and is routed in inactive region 2. And may be connected to the gate pad 25.
- the drain electrode 19 or the like may be extended to the portion where the gate wiring 25a is formed in the first embodiment or to the vicinity of the portion. That is, the drain electrode 19 or the like may be extended to the vicinity of the boundary between the active region 1 and the inactive region 2. According to this, the active region 1 can be effectively used, and the area efficiency can be improved.
- gate interconnection 25a is drawn to inactive region 2 at the shortest distance from the portion connected to MOS gate electrode 17, and pulled in inactive region 2. It may be rotated and connected to the gate pad 25.
Landscapes
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
活性領域(1)と不活性領域(2)とを有する半導体装置において、活性領域(1)は、第1、第2半導体層(12、13)にて構成されるヘテロジャンクション構造を有するチャネル形成層と、MOSゲート電極(17)を有するゲート構造部と、第2半導体層(13)の上において、ゲート構造部を挟んだ両側に配置されたソース電極(18)およびドレイン電極(19)と、ゲート構造部とドレイン電極(19)との間におけるドレイン電極(19)から離れた位置に配置され、不純物がドープされていない第3半導体層(14)と、第3半導体層(14)の上に形成されたp型の第4半導体層(20)と、第4半導体層(20)に接触させられたJG電極(21)と、を備える構成とする。そして、JG電極(21)は、ソース電極(18)と電気的に接続されて当該ソース電極(18)と同電位とされ、かつ活性領域(1)内にのみ配置されるようにする。
Description
本出願は、2017年6月26日に出願された日本特許出願番号2017-124349号に基づくもので、ここにその記載内容が参照により組み入れられる。
本開示は、基板の上に、窒化ガリウム(以下、GaNという)や窒化アルミニウムガリウム(以下、AlGaNという)を積層する等、第1のGaN系半導体層と第2のGaN系半導体層とによるヘテロジャンクション構造を備えた半導体装置に関する。
従来より、4端子構造のスイッチングデバイスが形成された半導体装置が提案されている(例えば、特許文献1参照)。すなわち、この半導体装置は、キャリアの流れるチャネルを構成する活性領域と、当該活性領域を囲む不活性領域とを有し、ソース電極、ドレイン電極、第1ゲート電極、および第2ゲート電極が適宜配置されている。
詳しくは、ソース電極およびドレイン電極は、それぞれ櫛歯形状とされており、活性領域内にて互いの櫛歯が噛み合うように配置されている。また、第1ゲート電極および第2ゲート電極は、ソース電極とドレイン電極との間に配置されている。なお、第2ゲート電極は、活性領域内から不活性領域まで引き出され、一部が不活性領域においてもソース電極とドレイン電極との間に配置されている。
ところで、近年では、ヘテロジャンクション構造を備えたスイッチングデバイスに上記のような4端子構造を適用することが検討されている。つまり、近年では、例えば、以下のような4端子構造のHEMT(High electron mobility transistor:高電子移動度トランジスタ)が検討されている。
すなわち、4端子構造のHEMTは、サファイア等の基板の上に、i-GaN層とi-AlGaN層とが積層されることでヘテロジャンクション構造が構成される。そして、i-AlGaN層を貫通してi-GaN層に達するように、MOS構造のゲート電極(以下、MOSゲート電極という)が形成され、i-AlGaN層の表面上におけるMOSゲート電極を挟んだ両側にソース電極とドレイン電極とが形成される。また、MOSゲート電極とドレイン電極との間において、i-AlGaN層の表面にはu-GaN層とp-GaN層との積層構造が形成されており、さらにp-GaN層の表面にジャンクションゲート電極(以下、JG電極という)が形成される。
なお、このような構成では、例えば、上記第1ゲート電極がMOSゲート電極に相当し、上記第2ゲート電極がJG電極に相当する。また、JG電極を不活性領域に形成する場合、JG電極の下方に配置されるu-GaN層およびp-GaN層は、JG電極と共に不活性領域にも形成される。
ここで、例えば、不活性領域がイオン注入等されて欠陥が形成されることで構成されると、当該欠陥にてキャリア(例えば、電子)がトラップされる可能性がある。つまり、不活性領域に位置するJG電極の下方にてキャリアがトラップされてしまうことがある。この場合、JG電極の閾値電圧が変動することで半導体装置の特性が変化することが懸念される。
本開示は上記点に鑑み、特性が変化することを抑制できる半導体装置を提供することを目的とする。
本開示の1つの観点によれば、活性領域と、当該活性領域を囲む不活性領域とを有し、活性領域に横型のスイッチングデバイスが形成された半導体装置では、活性領域は、基板上に形成され、ドリフト領域を構成する第1のGaN系半導体にて構成された第1半導体層および第1のGaN系半導体よりもバンドギャップエネルギーが大きい第2のGaN系半導体にて構成された第2半導体層にて構成されるヘテロジャンクション構造を有し、第2半導体層にリセス部が形成されたチャネル形成層と、リセス部内に形成されたゲート絶縁膜および当該ゲート絶縁膜の上に形成されたMOS構造のゲート電極となるMOSゲート電極を有するゲート構造部と、第2半導体層の上において、ゲート構造部を挟んだ両側に配置されたソース電極およびドレイン電極と、第2半導体層の上において、ゲート構造部とドレイン電極との間におけるドレイン電極から離れた位置に配置され、不純物がドープされていない第3のGaN系半導体にて構成された第3半導体層と、第3半導体層の上に形成されたp型の第4のGaN系半導体によって構成された第4半導体層と、第4半導体層に接触させられたジャンクションゲート電極と、を備えるスイッチングデバイスを有し、ジャンクションゲート電極は、ソース電極と電気的に接続されて当該ソース電極と同電位とされ、かつ活性領域内にのみ配置されている。
これによれば、例えば、不活性領域がイオン注入等されて多数の欠陥が導入されることで構成されていたとしても、キャリア(例えば、電子)がトラップされる領域上にJG電極が配置されていない構成となる。このため、JG電極の閾値が変動することを抑制でき、半導体装置の特性が変化してしまうことを抑制できる。
なお、上記および特許請求の範囲における括弧内の符号は、特許請求の範囲に記載された用語と後述の実施形態に記載される当該用語を例示する具体物等との対応関係を示すものである。
以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
第1実施形態における半導体装置について、図1~図5を参照して説明する。本実施形態の半導体装置は、図1に示されるように、活性領域1と当該活性領域1を囲む不活性領域2とを有している。そして、活性領域1には、図2に示されるように、4端子構造のHEMTを備えた横型のスイッチングデバイスが形成されている。なお、特に限定されるものではないが、本実施形態では、活性領域1は、図1中の紙面上下方向を長手方向とする略長方形状とされている。
第1実施形態における半導体装置について、図1~図5を参照して説明する。本実施形態の半導体装置は、図1に示されるように、活性領域1と当該活性領域1を囲む不活性領域2とを有している。そして、活性領域1には、図2に示されるように、4端子構造のHEMTを備えた横型のスイッチングデバイスが形成されている。なお、特に限定されるものではないが、本実施形態では、活性領域1は、図1中の紙面上下方向を長手方向とする略長方形状とされている。
具体的には、半導体装置は、図2および図3に示されるように、基板11の一面11a上に、アンドープのGaN(以下、u-GaNという)層12が形成されたものを化合物半導体基板として用いて形成されている。そして、u-GaN層12の表面には、アンドープのAlGaN(以下、u-AlGaNという)層13が形成されており、u-GaN層12とu-AlGaN層13によってヘテロジャンクション構造が構成されている。スイッチングデバイスは、これらu-GaN層12およびu-AlGaN層13をチャネル形成層とする。そして、スイッチングデバイスは、AlGaN/GaN界面のu-GaN層12側にピエゾ効果および自発分極効果によって2DEG(すなわち、2次元電子ガス)キャリアが誘起され、その領域がキャリアの流れるチャネルとなることで動作する。
基板11は、Si(111)やSiCといった半導体材料等の導電性材料によって構成されている。u-GaN層12は、基板11の上に直接形成されていてもよいが、u-GaN層12を結晶性良く成膜するために、必要に応じて下地膜となるバッファ層を介して形成されていてもよい。なお、基板11の上に結晶性良くu-GaN層12が成膜できる場合には、バッファ層は無くても構わない。また、ここでの結晶性とは、u-GaN層12中の欠陥や転位等であり、電気的および光学的な特性に対して影響を及ぼすものを意味している。
u-GaN層12は、ドリフト領域として作動する電子走行層を構成する部分であり、第1のGaN系半導体層に相当する。u-GaN層12は、GaN系半導体材料にて形成されており、u-AlGaN層13側の表層部において2DEGキャリアが誘起される。
u-AlGaN層13は、第2のGaN系半導体層に相当し、u-GaN層12を構成するGaN系半導体材料よりもバンドギャップエネルギーの大きなGaN系半導体材料で構成されたものであり、電子供給部を構成している。
u-AlGaN層13は、Al混晶比をxとして、AlxGa1-xNで構成されている。そして、このu-AlGaN層13のAl混晶比xおよび膜厚により、u-GaN層12の表面近傍に形成される2DEGキャリアの濃度が決まる。したがって、本実施形態では、u-AlGaN層13のAl混晶比xおよび膜厚を調整することで2DEGキャリアの濃度を調整し、厚みによって2DEGキャリアの濃度が大きく変動する範囲ではなく、Al混晶比によって一義的に2DEGキャリアの濃度が決まるようにしてある。
なお、本実施形態では、u-GaN層12が第1半導体層に相当し、u-AlGaN層13が第2半導体層に相当し、u-GaN層12およびu-AlGaN層13がチャネル形成層に相当している。
ここで、本実施形態では、不活性領域2には、2DEGキャリアが誘起されないように、イオン注入等が施されることによって多数の欠陥dが形成されている。つまり、本実施形態の不活性領域2は、2DEGキャリアが誘起されないように、活性領域1よりも複数の欠陥dが形成されて構成されているともいえる。言い換えると、本実施形態の不活性領域2は、素子分離領域とされている。
活性領域1では、u-AlGaN層13の表面には、部分的に、不純物がドープされていないu-GaN層14が形成されている。
具体的には、u-AlGaN層13は、u-GaN層12における上面の全面に形成されている。u-GaN層14は、u-AlGaN層13のうち後述するMOSゲート電極17の近傍に形成され、後述するドレイン電極19側に向けて張り出すように延設されている。そして、これらu-AlGaN層13およびu-GaN層14は、リセス部15において除去されている。リセス部15は、一方向、具体的には図2の断面に対する法線方向を長手方向として延設されている。詳しくは、リセス部15は、基板11の一面11aに対する法線方向から視たとき、後述するソース電極18の延設方向に沿って延設され、ソース電極18を挟む2つのリセス部15が延設方向の両端部で連結された構成とされている。つまり、リセス部15は、基板11の一面11aに対する法線方向から視たとき、後述するソース電極18を囲む環状とされている。
リセス部15内には、ゲート構造部として、ゲート絶縁膜16を介してMOSゲート電極17が埋め込まれている。具体的には、リセス部15の内壁面に所定膜厚のゲート絶縁膜16が成膜されており、このゲート絶縁膜16の上にさらにMOSゲート電極17が形成されることでゲート構造部が構成されている。MOSゲート電極17を含むゲート構造部は、リセス部15に沿って形成されているため、リセス部15と同様に、後述するソース電極18を囲むように形成されている。
ゲート絶縁膜16は、シリコン酸化膜(すなわち、SiO2)やアルミナ(すなわち、Al2O3)等によって構成されており、MOSゲート電極17は、アルミニウム、プラチナ等の金属、または不純物がドープされたPoly-半導体等によって構成されている。そして、これらゲート絶縁膜16およびMOSゲート電極17がリセス部15内に形成されることでMOS構造のゲート構造部が構成されている。なお、MOSゲート電極17を全体的にPoly-半導体等によって構成することもできるが、MOSゲート電極17の配線抵抗を低減するために、本実施形態では、MOSゲート電極17の表面部に金属層17aを配置してある。
一方、u-AlGaN層13の表面のうちゲート構造部を挟んだ両側それぞれには、ソース電極18とドレイン電極19が形成されている。ソース電極18およびドレイン電極19は、共にu-GaN層14から離れた位置に配置されており、u-GaN層14の端部からドレイン電極19までの距離は所定長さとされている。これらソース電極18やドレイン電極19は、それぞれu-AlGaN層13とオーミック接触させられている。
本実施形態では、ソース電極18およびドレイン電極19は、基板11の面方向における一方向に沿って延設されており、詳しくは、活性領域1の長手方向と交差する方向に延設されている。そして、ソース電極18およびドレイン電極19は、延設方向と直交する方向に交互に形成されている。なお、図1中では、ソース電極18およびドレイン電極19は、図1中の紙面左右方向に沿って延設され、図1中の紙面上下方向に沿って交互に形成されている。
また、u-GaN層14のうちMOSゲート電極17とドレイン電極19との間に位置する部分の表面には、p型とされたp-GaN層20が形成されている。p-GaN層20は、ドレイン電極19側の端面がu-GaN層14のうちのドレイン電極19側の端面と面一、もしくはそれよりもMOSゲート電極17側に位置するように配置されている。なお、本実施形態では、u-GaN層14が第3のGaN系半導体にて構成された第3半導体層に相当し、p-GaN層20が第4のGaN系半導体にて構成された第4半導体層に相当している。
そして、p-GaN層20の表面には、JG電極21が形成されている。JG電極21は、上記したソース電極18と連結されており、ソース電極18と同電位とされている。
具体的には、MOSゲート電極17やu-GaN層14等を覆うように層間絶縁膜22が配置されており、層間絶縁膜22を覆うように電極層23が形成されている。この電極層23は、層間絶縁膜22に形成されたコンタクトホールを通じてu-AlGaN層13に接触させられると共に、p-GaN層20に接触させられている。このため、この電極層23のうち、u-AlGaN層13に接触させられている部分によってソース電極18が構成され、p-GaN層20に接触させられている部分によってJG電極21が構成されている。
本実施形態では、このようにしてソース電極18およびJG電極21を同じ電極層23によって構成している。このため、これらの間をボンディングワイヤ等によって接続する場合と比較して、配線抵抗とインダクタンスを低減することが可能となっている。
なお、図1では、各部のレイアウトが理解し易いように、図2中の電極層23のうちのソース電極18とJG電極21とを繋ぐ部分については省略して示してある。つまり、図1では、図2中の電極層23のうちのMOSゲート電極17の上方に位置する部分を省略して示してある。
また、本実施形態では、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ドレイン電極19を囲む環状に形成されている。つまり、本実施形態では、ソース電極18とドレイン電極19との間にJG電極21が配置された構成とされている。なお、図1では特に示していないが、JG電極21の下方に位置するu-GaN層14およびp-GaN層20は、JG電極21に沿って配置される。つまり、これらu-GaN層14およびp-GaN層20は、基板11の一面11aに対する法線方向から視たとき、ドレイン電極19を囲むように形成されている。
以上のようにして、活性領域1には、MOSゲート電極17、ソース電極18、ドレイン電極19およびJG電極21の4端子を備えたスイッチングデバイスが構成されている。なお、基板11の裏面側に形成されているのは裏面電極24であり、例えば図示しない配線を通じてソース電極18と電気的に接続される等により、ソース電極18と同電位とされる。
また、図1に示されるように、不活性領域2には、MOSゲート電極17用のゲートパッド(以下、ゲートパッドという)25、ソースパッド26、ドレインパッド27が形成されている。
そして、MOSゲート電極17は、活性領域1から不活性領域2へと引き出されたゲート配線25aを介してゲートパッド25と接続されている。また、ソース電極18は、活性領域1から不活性領域2へと引き出されたソース配線26aを介してソースパッド26と接続されている。ドレイン電極19は、活性領域1から不活性領域2へと引き出されたソース配線26aを介してドレインパッド27と電気的に接続されている。
なお、ゲートパッド25、ソースパッド26、ドレインパッド27、ゲート配線25a、ソース配線26a、およびドレイン配線27aは、図示しない層間絶縁膜上に形成されている。
これに対し、JG電極21は、活性領域1内にのみ位置するように、ドレイン電極19を囲むように形成されている。そして、JG電極21は、活性領域1内において、ソース電極18と接続されることでソース電極18と同電位とされている。
続いて、本実施形態におけるスイッチングデバイスを備えた半導体装置の作動ついて説明する。
上記のようなMOSゲート電極17とJG電極21の両方を備えたスイッチングデバイスは、MOSゲート電極17によって一般的なMOSFET動作が行われ、JG電極21によってJFET動作が行われる。このため、本実施形態におけるスイッチングデバイスの等価回路は、図4に示す回路構成となる。
図4に示されるように、スイッチングデバイスは、負荷28に接続され、ゲートドライバ29がゲート電圧を制御して本スイッチングデバイスをオンオフすることで負荷28の駆動を行う。
ここで、スイッチングデバイスは、MOSゲート電極17によるノーマリオフのMOSFET部30とJG電極21によるノーマリオンのJFET部40とが直列接続された構造となる。これらMOSFET部30とJFET部40との間の中間電位点Aとは、図2中に示したように、u-GaN層12の表面部のうちJG電極21の下方に位置している中間電位となる部分を指している。
そして、JG電極21は、ソース電極18に接続されていて同電位とされている。これらの間は、配線による寄生インピーダンス50が存在しているが、電極層23を通じて直接連結されていることから、寄生インピーダンス50の値は低くなっている。また、このような構成のスイッチングデバイスにおいて、JFET部40では、JG電極21とドレイン電極19や中間電位点Aとの間、および、ドレイン電極19と中間電位点Aとの間に、容量C1~C3が構成される。また、MOSFET部30では、MOSゲート電極17と中間電位点Aやソース電極18との間、および、中間電位点Aとソース電極18との間に、容量C4~C6が構成される。
このような回路構成を有するスイッチングデバイスについて、ターンオフ時の動作は以下のようになる。
図5は、誘導負荷を持つHブリッジ回路における本スイッチングデバイスのターンオフの波形を示している。まず、図5の時点T1において、MOSゲート電極17へのゲート電圧の印加が停止されると、MOSFET部30のオフ過程が始まることで、中間電位点Aの電位が上昇していく。この中間電位点Aの電位の上昇により、JFETのゲートのオフ過程が始まる。すなわち、ドレイン電極19側からJG電極21を通ってGND側に抜ける経路で変位電流Ijgが流れることで、JFETの帰還容量C1がチャージされる。
そして、帰還容量C1のチャージによってドレイン電極19の電位Vdsが高くなる。また、ドレイン電流Idが低下していく。中間電位点Aの電位がJFET部40の閾値電圧を超えると、JFET部40がオフする。これによって、スイッチングデバイス全体がオフになる。
このようなターンオフ動作を高速化するには、帰還容量C1へのチャージを高速に行えるようにすることが必要である。そして、帰還容量C1へのチャージを高速に行うためには、JG電極21とソース電極18との間のインピーダンス低減と帰還容量C1の低減が重要である。
これに対して、本実施形態では、JG電極21とソース電極18との間が電極層23を通じて直接連結されていることから、これらの間に存在する配線抵抗による寄生インピーダンス50の抵抗値を低く抑えることができる。したがって、JG電極21とソース電極18との間のインピーダンス低減を図ることが可能となる。
また、ターンオフ時には、ドレイン電極19の電位Vdsが高くなるが、ドレイン電極19を囲むように、ソース電極18と同電位とされたJG電極21が配置されている。このため、図6に示されるように、ドレイン電極19に起因する高電界をJG電極21にて遮断することができ、ソース電極18側へと当該高電界が侵入することを抑制できる。したがって、ソース電極18下の領域でリーク電流が発生することを抑制できる。
以上説明したように、本実施形態では、JG電極21は、活性領域1内にのみ配置されている。つまり、JG電極21は、電子がトラップされ得る領域上には配置されていない。このため、JG電極21の閾値が変動することを抑制でき、半導体装置の特性が変化してしまうことを抑制できる。
また、本実施形態では、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ドレイン電極19を囲むように形成されている。このため、ドレイン電極19に起因する高電界がソース電極18側へと侵入することを抑制できる。したがって、ソース電極18下の領域でリーク電流が発生することを抑制できる。
また、本実施形態では、JG電極21とソース電極18とを電極層23を通じて直接連結している。このため、寄生インピーダンス50の抵抗値を低くすることが可能となり、JG電極21とソース電極18との間のインピーダンス低減を図ることが可能となる。また、ドレイン電極19からu-GaN層14およびp-GaN層20を離して配置することにより、p-GaN層20と2DEGキャリアとの対向面積をできるだけ小さくしている。このため、帰還容量C1を低減することも可能となる。
そして、JG電極21とソース電極18との間における配線抵抗の低減、インダクタンス低減および帰還容量C1の低減を図ることで、帰還容量C1を高速でチャージすることが可能となり、JFET部40を高速でオフすることができる。このため、よりスイッチングデバイスのターンオフを高速化することが可能となる。したがって、より高速スイッチングが可能なスイッチングデバイスとすることができる。
さらに、u-GaN層14を貫通するようにMOSゲート電極17を形成している。したがって、u-GaN層14中における電界強度がMOSゲート電極17に向かって小さくなりゲート絶縁膜16の電界強度が小さくなるため信頼性を向上することができる。
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対してJG電極21の配置箇所を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
第2実施形態について説明する。本実施形態は、第1実施形態に対してJG電極21の配置箇所を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
本実施形態では、図7に示されるように、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ドレイン配線27aと交差しないように配置されている。つまり、JG電極21は、ドレイン配線27aと異なる位置であって、ドレイン電極19を囲むように配置されている。言い換えると、JG電極21は、略C字状とされている。
以上説明したように、本実施形態では、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ドレイン配線27aと交差しないように配置されている。このため、JG電極21とドレイン配線27aとの間に寄生容量が生成されることを抑制でき、JFET部40の特性が変動してしまうことを抑制できる。
(第3実施形態)
第3実施形態について説明する。本実施形態は、第2実施形態に対してJG電極21の配置箇所を変更したものであり、その他に関しては第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
第3実施形態について説明する。本実施形態は、第2実施形態に対してJG電極21の配置箇所を変更したものであり、その他に関しては第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
本実施形態では、図8に示されるように、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ドレイン配線27aと交差しないように配置されている。また、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ソース電極18、ソースパッド26、およびソース配線26aと、ドレイン電極19、ドレインパッド27およびドレイン配線27aとの全ての間に位置するように配置されている。つまり、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ソース電極18、ソースパッド26、およびソース配線26aと、ドレイン電極19、ドレインパッド27およびドレイン配線27aとを結ぶ仮想線と必ず交差するように配置されている。
以上説明したように、JG電極21は、基板11の一面11aに対する法線方向から視たとき、ソース電極18、ソースパッド26、およびソース配線26aと、ドレイン電極19、ドレインパッド27およびドレイン配線27aとの全ての間に位置するように配置されている。このため、ドレイン電極19、ドレインパッド27、およびドレイン配線27aに起因する高電界を全てJG電極21にて遮断することができる。つまり、ドレイン電極19、ドレインパッド27、およびドレイン配線27aに起因する高電界がソース電極18、ソースパッド26、およびソース配線26a側に侵入することを抑制できる。したがって、ソース電極18、ソースパッド26、およびソース配線26a下の領域でリーク電流が発生することが抑制される。
(他の実施形態)
本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
例えば、上記各実施形態では、リセス部15の深さを、u-GaN層12の表層部が一部除去されるまでの深さとしたが、これも一例を示したに過ぎない。例えば、リセス部15は、u-GaN層12の表面が露出するまでの深さとされていてもよいし、当該リセス部15の底面において2DEGキャリアが形成されない程度にu-AlGaN層13の一部が残る程度の深さとされていてもよい。
また、上記各実施形態では、チャネル形成層を構成する第1、第2のGaN系半導体層がu-GaN層12とu-AlGaN層13によって構成される場合を例に挙げて説明した。しかしながら、これらは一例を示したものであり、第1のGaN系半導体層およびこれよりもバンドギャップエネルギーが大きな第2のGaN系半導体層によってチャネル形成層が構成されるものであれば、他の材料であってもよい。
さらに、上記各実施形態において、ソース電極18とJG電極21とは、一体化されておらず、例えば、ワイヤボンディング等によって電気的に接続されていてもよい。このような構成としても、JG電極21が活性領域1内にのみ配置されることにより、半導体装置の特性が変化することを抑制できる。
また、上記各実施形態において、不活性領域2の構成は適宜変更可能である。例えば、図9に示されるように、不活性領域2は、2DEGキャリアが構成されないように、u-AlGaN層13およびu-GaN層12の上層部を除去するように凹部60が形成されることで構成されていてもよい。この場合、凹部60は、不活性領域2に2DEGキャリアが構成されない深さとされていればよく、例えば、u-AlGaN層13のみを除去するように形成されていてもよい。
さらに、上記第1実施形態において、図10に示されるように、ゲート配線25aは、MOSゲート電極17と接続される部分から最短距離で不活性領域2に引き出され、不活性領域2で引き回されてゲートパッド25と接続されていてもよい。この場合、上記第1実施形態でゲート配線25aが形成されていた部分、または当該部分の近傍までドレイン電極19等が延設されていてもよい。つまり、活性領域1と不活性領域2との境界部の近傍までドレイン電極19等が延設されていてもよい。これによれば、活性領域1を有効に利用でき、面積効率を向上できる。また、特に図示しないが、上記第2、第3実施形態においても、ゲート配線25aは、MOSゲート電極17と接続される部分から最短距離で不活性領域2に引き出され、不活性領域2で引き回されてゲートパッド25と接続されていてもよい。
Claims (5)
- 活性領域(1)と、当該活性領域を囲む不活性領域(2)とを有し、前記活性領域に横型のスイッチングデバイスが形成された半導体装置であって、
前記活性領域は、
基板(11)上に形成され、ドリフト領域を構成する第1のGaN系半導体にて構成された第1半導体層(12)および前記第1のGaN系半導体よりもバンドギャップエネルギーが大きい第2のGaN系半導体にて構成された第2半導体層(13)にて構成されるヘテロジャンクション構造を有し、前記第2半導体層にリセス部(15)が形成されたチャネル形成層と、
前記リセス部内に形成されたゲート絶縁膜(16)および当該ゲート絶縁膜の上に形成されたMOS構造のゲート電極となるMOSゲート電極(17)を有するゲート構造部と、
前記第2半導体層の上において、前記ゲート構造部を挟んだ両側に配置されたソース電極(18)およびドレイン電極(19)と、
前記第2半導体層の上において、前記ゲート構造部と前記ドレイン電極との間における前記ドレイン電極から離れた位置に配置され、不純物がドープされていない第3のGaN系半導体にて構成された第3半導体層(14)と、
前記第3半導体層の上に形成されたp型の第4のGaN系半導体によって構成された第4半導体層(20)と、
前記第4半導体層に接触させられたジャンクションゲート電極(21)と、を備えるスイッチングデバイスを有し、
前記ジャンクションゲート電極は、前記ソース電極と電気的に接続されて当該ソース電極と同電位とされ、かつ前記活性領域内にのみ配置されている半導体装置。 - 前記ジャンクションゲート電極は、前記ドレイン電極を囲む環状とされている請求項1に記載の半導体装置。
- 前記ドレイン電極は、前記不活性領域に形成されたドレインパッド(27)と、前記活性領域から前記不活性領域まで延設されたドレイン配線(27a)を介して接続されており、
前記ジャンクションゲート電極は、前記ドレイン配線と異なる位置であって、前記ドレイン電極を囲むように配置されている請求項1に記載の半導体装置。 - 前記ソース電極は、前記不活性領域に形成されたソースパッド(26)と、前記活性領域から前記不活性領域まで延設されたソース配線(26a)を介して接続されており、
前記ドレイン電極は、前記不活性領域に形成されたドレインパッド(27)と、前記活性領域から前記不活性領域まで延設されたドレイン配線(27a)を介して接続されており、
前記ジャンクションゲート電極は、前記ソース電極、前記ソースパッドおよび前記ソース配線と、前記ドレイン電極、前記ドレインパッド、および前記ドレイン配線との全ての間に位置するように配置されている請求項1に記載の半導体装置。 - 前記ジャンクションゲート電極は、前記MOSゲート電極を覆う層間絶縁膜(22)の上に形成される電極層(23)を介して連結され、前記ソース電極と一体化されている請求項1ないし4のいずれか1つに記載の半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880042217.5A CN110785836B (zh) | 2017-06-26 | 2018-05-25 | 半导体装置 |
US16/693,598 US11056584B2 (en) | 2017-06-26 | 2019-11-25 | Semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-124349 | 2017-06-26 | ||
JP2017124349A JP6769400B2 (ja) | 2017-06-26 | 2017-06-26 | 半導体装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/693,598 Continuation US11056584B2 (en) | 2017-06-26 | 2019-11-25 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003746A1 true WO2019003746A1 (ja) | 2019-01-03 |
Family
ID=64740554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020230 WO2019003746A1 (ja) | 2017-06-26 | 2018-05-25 | 半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11056584B2 (ja) |
JP (1) | JP6769400B2 (ja) |
CN (1) | CN110785836B (ja) |
WO (1) | WO2019003746A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10529802B2 (en) * | 2017-09-14 | 2020-01-07 | Gan Systems Inc. | Scalable circuit-under-pad device topologies for lateral GaN power transistors |
JP7176475B2 (ja) * | 2019-05-29 | 2022-11-22 | 株式会社デンソー | 半導体装置 |
JP7586638B2 (ja) * | 2019-12-03 | 2024-11-19 | 株式会社東芝 | 半導体装置 |
DE102020112069B4 (de) * | 2020-02-27 | 2022-03-03 | Taiwan Semiconductor Manufacturing Co. Ltd. | Source-leckstromunterdrückung durch source-umgebende gate-struktur und verfahren zur herstellung der gate-struktur |
US12183815B2 (en) * | 2021-01-07 | 2024-12-31 | Semiconductor Components Industries, Llc | Non-linear HEMT devices |
US11664431B2 (en) * | 2021-01-08 | 2023-05-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Ring transistor structure |
WO2022217436A1 (en) * | 2021-04-12 | 2022-10-20 | Innoscience (Suzhou) Technology Co., Ltd. | Semiconductor device and method for manufacturing thereof |
CN114975595A (zh) * | 2021-04-12 | 2022-08-30 | 英诺赛科(苏州)科技有限公司 | 半导体器件 |
CN116031284B (zh) * | 2023-02-09 | 2023-06-16 | 长鑫存储技术有限公司 | 半导体结构及其形成方法 |
US20250080063A1 (en) * | 2023-09-06 | 2025-03-06 | Wolfspeed, Inc. | Transistor with gate layout, device implementing the transistor with output pre-matching, and process of implementing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012238808A (ja) * | 2011-05-13 | 2012-12-06 | Sharp Corp | 電界効果トランジスタ |
JP2013055188A (ja) * | 2011-09-02 | 2013-03-21 | Sharp Corp | 電界効果トランジスタ |
JP2015207610A (ja) * | 2014-04-18 | 2015-11-19 | 株式会社パウデック | 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体 |
WO2016098391A1 (ja) * | 2014-12-18 | 2016-06-23 | シャープ株式会社 | 電界効果トランジスタ |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088441A (ja) | 1994-06-23 | 1996-01-12 | Sony Corp | デュアルゲート型電界効果トランジスタ |
US7250642B2 (en) | 2004-07-29 | 2007-07-31 | Matsushita Electric Industrial Co., Ltd. | Field-effect transistor |
JP5590967B2 (ja) | 2010-05-31 | 2014-09-17 | 富士通コンポーネント株式会社 | 高背型キースイッチ装置 |
US20120175679A1 (en) * | 2011-01-10 | 2012-07-12 | Fabio Alessio Marino | Single structure cascode device |
JP5712231B2 (ja) * | 2011-02-15 | 2015-05-07 | シャープ株式会社 | 半導体装置 |
US9748362B2 (en) * | 2011-09-19 | 2017-08-29 | Sensor Electronic Technology, Inc. | High-voltage normally-off field effect transistor with channel having multiple adjacent sections |
JP6014984B2 (ja) | 2011-09-29 | 2016-10-26 | 富士通株式会社 | 半導体装置及びその製造方法 |
US9147738B2 (en) * | 2012-11-30 | 2015-09-29 | Samsung Electronics Co., Ltd. | High electron mobility transistor including plurality of gate electrodes |
US9343562B2 (en) * | 2013-12-06 | 2016-05-17 | Infineon Technologies Americas Corp. | Dual-gated group III-V merged transistor |
JP2015173237A (ja) * | 2014-03-12 | 2015-10-01 | 株式会社東芝 | 半導体装置 |
US10290566B2 (en) * | 2014-09-23 | 2019-05-14 | Infineon Technologies Austria Ag | Electronic component |
JP6614116B2 (ja) | 2016-05-24 | 2019-12-04 | 株式会社デンソー | 半導体装置 |
-
2017
- 2017-06-26 JP JP2017124349A patent/JP6769400B2/ja active Active
-
2018
- 2018-05-25 CN CN201880042217.5A patent/CN110785836B/zh active Active
- 2018-05-25 WO PCT/JP2018/020230 patent/WO2019003746A1/ja active Application Filing
-
2019
- 2019-11-25 US US16/693,598 patent/US11056584B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012238808A (ja) * | 2011-05-13 | 2012-12-06 | Sharp Corp | 電界効果トランジスタ |
JP2013055188A (ja) * | 2011-09-02 | 2013-03-21 | Sharp Corp | 電界効果トランジスタ |
JP2015207610A (ja) * | 2014-04-18 | 2015-11-19 | 株式会社パウデック | 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体 |
WO2016098391A1 (ja) * | 2014-12-18 | 2016-06-23 | シャープ株式会社 | 電界効果トランジスタ |
Also Published As
Publication number | Publication date |
---|---|
JP6769400B2 (ja) | 2020-10-14 |
US11056584B2 (en) | 2021-07-06 |
JP2019009308A (ja) | 2019-01-17 |
CN110785836A (zh) | 2020-02-11 |
CN110785836B (zh) | 2023-09-26 |
US20200091332A1 (en) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11056584B2 (en) | Semiconductor device | |
US11699751B2 (en) | Semiconductor device | |
JP5548909B2 (ja) | 窒化物系半導体装置 | |
JP4002918B2 (ja) | 窒化物含有半導体装置 | |
CN103325828B (zh) | 氮化物半导体元件 | |
JP4645313B2 (ja) | 半導体装置 | |
CN104347698B (zh) | 半导体装置 | |
JP6614116B2 (ja) | 半導体装置 | |
JP5691267B2 (ja) | 半導体装置 | |
US20170352753A1 (en) | Field-effect transistor | |
JP2010219117A (ja) | 半導体装置 | |
KR20140042470A (ko) | 노멀리 오프 고전자이동도 트랜지스터 | |
CN102623498A (zh) | 半导体元件 | |
JP2013062298A (ja) | 窒化物半導体装置 | |
JP2019145703A (ja) | 半導体装置 | |
JP5548906B2 (ja) | 窒化物系半導体装置 | |
WO2012144100A1 (ja) | 窒化物系半導体装置 | |
JP7176475B2 (ja) | 半導体装置 | |
JP2009278028A (ja) | 半導体装置 | |
WO2013024752A1 (ja) | 窒化物系半導体装置 | |
US20240332370A1 (en) | Nitride semiconductor device | |
JP2023179139A (ja) | 窒化物半導体装置および半導体パッケージ | |
WO2017203849A1 (ja) | 半導体装置 | |
JP2009044035A (ja) | 電界効果半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18822737 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18822737 Country of ref document: EP Kind code of ref document: A1 |