WO2018198084A1 - Cyclic di-nucleotide compounds with tricyclic nucleobases - Google Patents
Cyclic di-nucleotide compounds with tricyclic nucleobases Download PDFInfo
- Publication number
- WO2018198084A1 WO2018198084A1 PCT/IB2018/052936 IB2018052936W WO2018198084A1 WO 2018198084 A1 WO2018198084 A1 WO 2018198084A1 IB 2018052936 W IB2018052936 W IB 2018052936W WO 2018198084 A1 WO2018198084 A1 WO 2018198084A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- purin
- formula
- oxo
- dihydro
- alkyl
- Prior art date
Links
- 125000004122 cyclic group Chemical group 0.000 title abstract description 8
- 150000001875 compounds Chemical class 0.000 claims abstract description 421
- 238000000034 method Methods 0.000 claims abstract description 73
- 150000003839 salts Chemical class 0.000 claims abstract description 56
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 7
- 239000003814 drug Substances 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 61
- 239000000203 mixture Substances 0.000 claims description 59
- 125000000217 alkyl group Chemical group 0.000 claims description 53
- 239000001257 hydrogen Substances 0.000 claims description 53
- 206010028980 Neoplasm Diseases 0.000 claims description 44
- -1 perhaloalkyl Chemical group 0.000 claims description 43
- 229910052736 halogen Inorganic materials 0.000 claims description 39
- 150000002367 halogens Chemical group 0.000 claims description 39
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 36
- 238000011282 treatment Methods 0.000 claims description 30
- 210000004027 cell Anatomy 0.000 claims description 24
- 201000010099 disease Diseases 0.000 claims description 24
- 230000004913 activation Effects 0.000 claims description 22
- 201000011510 cancer Diseases 0.000 claims description 16
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 229940002612 prodrug Drugs 0.000 claims description 14
- 239000000651 prodrug Substances 0.000 claims description 14
- 208000032839 leukemia Diseases 0.000 claims description 13
- 239000012453 solvate Substances 0.000 claims description 13
- 208000035475 disorder Diseases 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 239000000427 antigen Substances 0.000 claims description 9
- 108091007433 antigens Proteins 0.000 claims description 9
- 102000036639 antigens Human genes 0.000 claims description 9
- 125000001072 heteroaryl group Chemical group 0.000 claims description 9
- 125000000623 heterocyclic group Chemical group 0.000 claims description 9
- 230000009286 beneficial effect Effects 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 208000035473 Communicable disease Diseases 0.000 claims description 6
- 206010025323 Lymphomas Diseases 0.000 claims description 6
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000009169 immunotherapy Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 230000009385 viral infection Effects 0.000 claims description 6
- 208000036142 Viral infection Diseases 0.000 claims description 5
- 238000011374 additional therapy Methods 0.000 claims description 5
- 125000004043 oxo group Chemical group O=* 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 4
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 claims description 4
- 208000035143 Bacterial infection Diseases 0.000 claims description 4
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 claims description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 4
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 claims description 4
- 208000033755 Neutrophilic Chronic Leukemia Diseases 0.000 claims description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 4
- 208000007452 Plasmacytoma Diseases 0.000 claims description 4
- 229910006074 SO2NH2 Inorganic materials 0.000 claims description 4
- 206010043276 Teratoma Diseases 0.000 claims description 4
- 208000022362 bacterial infectious disease Diseases 0.000 claims description 4
- 238000002512 chemotherapy Methods 0.000 claims description 4
- 201000010903 chronic neutrophilic leukemia Diseases 0.000 claims description 4
- 201000009277 hairy cell leukemia Diseases 0.000 claims description 4
- 201000005962 mycosis fungoides Diseases 0.000 claims description 4
- 238000001959 radiotherapy Methods 0.000 claims description 4
- 238000006467 substitution reaction Methods 0.000 claims description 4
- 239000012646 vaccine adjuvant Substances 0.000 claims description 4
- 229940124931 vaccine adjuvant Drugs 0.000 claims description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 3
- 208000000389 T-cell leukemia Diseases 0.000 claims description 3
- 208000028530 T-cell lymphoblastic leukemia/lymphoma Diseases 0.000 claims description 3
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 claims description 3
- 208000005017 glioblastoma Diseases 0.000 claims description 3
- 206010022000 influenza Diseases 0.000 claims description 3
- 201000010982 kidney cancer Diseases 0.000 claims description 3
- 208000030507 AIDS Diseases 0.000 claims description 2
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 claims description 2
- 241000710929 Alphavirus Species 0.000 claims description 2
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 claims description 2
- 206010003571 Astrocytoma Diseases 0.000 claims description 2
- 206010005003 Bladder cancer Diseases 0.000 claims description 2
- 206010005949 Bone cancer Diseases 0.000 claims description 2
- 208000018084 Bone neoplasm Diseases 0.000 claims description 2
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 claims description 2
- 201000009030 Carcinoma Diseases 0.000 claims description 2
- 208000005024 Castleman disease Diseases 0.000 claims description 2
- 208000005243 Chondrosarcoma Diseases 0.000 claims description 2
- 206010014733 Endometrial cancer Diseases 0.000 claims description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 claims description 2
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 claims description 2
- 208000036566 Erythroleukaemia Diseases 0.000 claims description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 claims description 2
- 201000001342 Fallopian tube cancer Diseases 0.000 claims description 2
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 2
- 208000022072 Gallbladder Neoplasms Diseases 0.000 claims description 2
- 206010051066 Gastrointestinal stromal tumour Diseases 0.000 claims description 2
- 201000010915 Glioblastoma multiforme Diseases 0.000 claims description 2
- 208000017604 Hodgkin disease Diseases 0.000 claims description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 2
- 206010053574 Immunoblastic lymphoma Diseases 0.000 claims description 2
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 claims description 2
- 206010024612 Lipoma Diseases 0.000 claims description 2
- 208000033724 Malignant tumor of fallopian tubes Diseases 0.000 claims description 2
- 208000032271 Malignant tumor of penis Diseases 0.000 claims description 2
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 claims description 2
- 208000035490 Megakaryoblastic Acute Leukemia Diseases 0.000 claims description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 2
- 208000034578 Multiple myelomas Diseases 0.000 claims description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 2
- 208000033833 Myelomonocytic Chronic Leukemia Diseases 0.000 claims description 2
- 206010033128 Ovarian cancer Diseases 0.000 claims description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 2
- 208000002471 Penile Neoplasms Diseases 0.000 claims description 2
- 206010034299 Penile cancer Diseases 0.000 claims description 2
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 claims description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 2
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 claims description 2
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 claims description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 claims description 2
- 208000005678 Rhabdomyoma Diseases 0.000 claims description 2
- 241000702670 Rotavirus Species 0.000 claims description 2
- 206010039491 Sarcoma Diseases 0.000 claims description 2
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 2
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 claims description 2
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 claims description 2
- 206010042971 T-cell lymphoma Diseases 0.000 claims description 2
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 claims description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 claims description 2
- 206010057644 Testis cancer Diseases 0.000 claims description 2
- 208000005485 Thrombocytosis Diseases 0.000 claims description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 2
- 206010046458 Urethral neoplasms Diseases 0.000 claims description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 2
- 208000002495 Uterine Neoplasms Diseases 0.000 claims description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 claims description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 claims description 2
- 230000001154 acute effect Effects 0.000 claims description 2
- 208000021841 acute erythroid leukemia Diseases 0.000 claims description 2
- 208000037833 acute lymphoblastic T-cell leukemia Diseases 0.000 claims description 2
- 208000013593 acute megakaryoblastic leukemia Diseases 0.000 claims description 2
- 208000020700 acute megakaryocytic leukemia Diseases 0.000 claims description 2
- 201000005188 adrenal gland cancer Diseases 0.000 claims description 2
- 208000024447 adrenal gland neoplasm Diseases 0.000 claims description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 claims description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 claims description 2
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 claims description 2
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 claims description 2
- 206010016629 fibroma Diseases 0.000 claims description 2
- 201000003444 follicular lymphoma Diseases 0.000 claims description 2
- 201000010175 gallbladder cancer Diseases 0.000 claims description 2
- 206010017758 gastric cancer Diseases 0.000 claims description 2
- 201000011243 gastrointestinal stromal tumor Diseases 0.000 claims description 2
- 201000011066 hemangioma Diseases 0.000 claims description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 2
- 201000007270 liver cancer Diseases 0.000 claims description 2
- 208000014018 liver neoplasm Diseases 0.000 claims description 2
- 201000010453 lymph node cancer Diseases 0.000 claims description 2
- 201000011649 lymphoblastic lymphoma Diseases 0.000 claims description 2
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 claims description 2
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 claims description 2
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 claims description 2
- 208000021937 marginal zone lymphoma Diseases 0.000 claims description 2
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 claims description 2
- 201000000248 mediastinal malignant lymphoma Diseases 0.000 claims description 2
- 206010028537 myelofibrosis Diseases 0.000 claims description 2
- 208000009091 myxoma Diseases 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 201000003913 parathyroid carcinoma Diseases 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 208000037244 polycythemia vera Diseases 0.000 claims description 2
- 208000016800 primary central nervous system lymphoma Diseases 0.000 claims description 2
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 claims description 2
- 206010038038 rectal cancer Diseases 0.000 claims description 2
- 201000001275 rectum cancer Diseases 0.000 claims description 2
- 201000000849 skin cancer Diseases 0.000 claims description 2
- 210000004872 soft tissue Anatomy 0.000 claims description 2
- 201000011549 stomach cancer Diseases 0.000 claims description 2
- 201000003120 testicular cancer Diseases 0.000 claims description 2
- 201000002510 thyroid cancer Diseases 0.000 claims description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 claims description 2
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 2
- 206010046766 uterine cancer Diseases 0.000 claims description 2
- 206010046885 vaginal cancer Diseases 0.000 claims description 2
- 208000013139 vaginal neoplasm Diseases 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 18
- 201000000050 myeloid neoplasm Diseases 0.000 claims 2
- 208000007887 Alphavirus Infections Diseases 0.000 claims 1
- 206010067470 Rotavirus infection Diseases 0.000 claims 1
- 238000002560 therapeutic procedure Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 93
- 238000003786 synthesis reaction Methods 0.000 abstract description 93
- 230000008569 process Effects 0.000 abstract description 4
- 125000000169 tricyclic heterocycle group Chemical group 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 538
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 318
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 278
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 257
- 239000011541 reaction mixture Substances 0.000 description 230
- 239000000243 solution Substances 0.000 description 197
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 190
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 186
- 230000002829 reductive effect Effects 0.000 description 141
- 238000006243 chemical reaction Methods 0.000 description 139
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 124
- 239000000047 product Substances 0.000 description 118
- 238000005160 1H NMR spectroscopy Methods 0.000 description 104
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 98
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 95
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 93
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 90
- 238000004809 thin layer chromatography Methods 0.000 description 82
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 78
- 239000002904 solvent Substances 0.000 description 69
- 239000008367 deionised water Substances 0.000 description 68
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 66
- 239000007787 solid Substances 0.000 description 63
- 239000012044 organic layer Substances 0.000 description 61
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 60
- 239000012043 crude product Substances 0.000 description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 54
- 229910021641 deionized water Inorganic materials 0.000 description 48
- 229910052938 sodium sulfate Inorganic materials 0.000 description 48
- 235000011152 sodium sulphate Nutrition 0.000 description 48
- 238000004679 31P NMR spectroscopy Methods 0.000 description 45
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 41
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 40
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 39
- 238000010511 deprotection reaction Methods 0.000 description 35
- 229960005215 dichloroacetic acid Drugs 0.000 description 33
- 239000010410 layer Substances 0.000 description 31
- 238000002953 preparative HPLC Methods 0.000 description 31
- 239000003480 eluent Substances 0.000 description 30
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 29
- 101710196623 Stimulator of interferon genes protein Proteins 0.000 description 29
- VKIGAWAEXPTIOL-UHFFFAOYSA-N 2-hydroxyhexanenitrile Chemical compound CCCCC(O)C#N VKIGAWAEXPTIOL-UHFFFAOYSA-N 0.000 description 28
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 28
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 28
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 28
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 27
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 27
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 26
- 238000003756 stirring Methods 0.000 description 26
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 26
- 238000003818 flash chromatography Methods 0.000 description 25
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 25
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 24
- 239000000178 monomer Substances 0.000 description 23
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 22
- 230000000694 effects Effects 0.000 description 20
- 239000002808 molecular sieve Substances 0.000 description 20
- 238000004440 column chromatography Methods 0.000 description 19
- IKGLACJFEHSFNN-UHFFFAOYSA-N hydron;triethylazanium;trifluoride Chemical compound F.F.F.CCN(CC)CC IKGLACJFEHSFNN-UHFFFAOYSA-N 0.000 description 19
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 18
- 239000008351 acetate buffer Substances 0.000 description 16
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 15
- 239000000872 buffer Substances 0.000 description 15
- 238000001914 filtration Methods 0.000 description 15
- 238000004128 high performance liquid chromatography Methods 0.000 description 15
- NXFFJDQHYLNEJK-UHFFFAOYSA-N 2-[4-[(4-chlorophenyl)methyl]-7-fluoro-5-methylsulfonyl-2,3-dihydro-1h-cyclopenta[b]indol-3-yl]acetic acid Chemical compound C1=2C(S(=O)(=O)C)=CC(F)=CC=2C=2CCC(CC(O)=O)C=2N1CC1=CC=C(Cl)C=C1 NXFFJDQHYLNEJK-UHFFFAOYSA-N 0.000 description 14
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 14
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 14
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 14
- 230000005484 gravity Effects 0.000 description 14
- 229910000027 potassium carbonate Inorganic materials 0.000 description 14
- 238000010898 silica gel chromatography Methods 0.000 description 14
- 239000002002 slurry Substances 0.000 description 14
- 239000000706 filtrate Substances 0.000 description 13
- AFQIYTIJXGTIEY-UHFFFAOYSA-N hydrogen carbonate;triethylazanium Chemical compound OC(O)=O.CCN(CC)CC AFQIYTIJXGTIEY-UHFFFAOYSA-N 0.000 description 13
- 235000011181 potassium carbonates Nutrition 0.000 description 13
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 12
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 12
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 12
- 235000017557 sodium bicarbonate Nutrition 0.000 description 12
- PTMFUWGXPRYYMC-UHFFFAOYSA-N triethylazanium;formate Chemical compound OC=O.CCN(CC)CC PTMFUWGXPRYYMC-UHFFFAOYSA-N 0.000 description 12
- KKJFZIQEWZVVIV-UHFFFAOYSA-N 5-[3,5-bis(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=CC(C2=NNN=N2)=C1 KKJFZIQEWZVVIV-UHFFFAOYSA-N 0.000 description 11
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 11
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 11
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 11
- QWTBDIBOOIAZEF-UHFFFAOYSA-N 3-[chloro-[di(propan-2-yl)amino]phosphanyl]oxypropanenitrile Chemical compound CC(C)N(C(C)C)P(Cl)OCCC#N QWTBDIBOOIAZEF-UHFFFAOYSA-N 0.000 description 10
- 238000007363 ring formation reaction Methods 0.000 description 10
- GZTYTTPPCAXUHB-UHFFFAOYSA-N 1,2-benzodithiol-3-one Chemical compound C1=CC=C2C(=O)SSC2=C1 GZTYTTPPCAXUHB-UHFFFAOYSA-N 0.000 description 9
- JBWYRBLDOOOJEU-UHFFFAOYSA-N 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene Chemical compound C1=CC(OC)=CC=C1C(Cl)(C=1C=CC(OC)=CC=1)C1=CC=CC=C1 JBWYRBLDOOOJEU-UHFFFAOYSA-N 0.000 description 9
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 9
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 9
- 0 C*CCC(C)*(C(C(C(C)I*)[N+])I)=C Chemical compound C*CCC(C)*(C(C(C(C)I*)[N+])I)=C 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 239000007853 buffer solution Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 125000001863 phosphorothioyl group Chemical group *P(*)(*)=S 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 9
- 102100035533 Stimulator of interferon genes protein Human genes 0.000 description 8
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 8
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- GRJJQCWNZGRKAU-UHFFFAOYSA-N pyridin-1-ium;fluoride Chemical compound F.C1=CC=NC=C1 GRJJQCWNZGRKAU-UHFFFAOYSA-N 0.000 description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 7
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 7
- DQZZHJFMIWNJRB-XNIJJKJLSA-N P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)CO)(O)=O Chemical compound P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)CO)(O)=O DQZZHJFMIWNJRB-XNIJJKJLSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 102000002689 Toll-like receptor Human genes 0.000 description 7
- 108020000411 Toll-like receptor Proteins 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 229910052740 iodine Inorganic materials 0.000 description 7
- 239000011630 iodine Substances 0.000 description 7
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- HRYAQLIYKSXPET-RFMFGJHUSA-N n-[9-[(2r,3r,4r,5r)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-3-[2-cyanoethoxy-[di(propan-2-yl)amino]phosphanyl]oxyoxolan-2-yl]purin-6-yl]benzamide Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC(OC)=CC=1)(C=1C=CC=CC=1)OC[C@@H]1[C@@H](O[Si](C)(C)C(C)(C)C)[C@@H](OP(OCCC#N)N(C(C)C)C(C)C)[C@H](N2C3=NC=NC(NC(=O)C=4C=CC=CC=4)=C3N=C2)O1 HRYAQLIYKSXPET-RFMFGJHUSA-N 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- IXGZXXBJSZISOO-UHFFFAOYSA-N s-(2-phenylacetyl)sulfanyl 2-phenylethanethioate Chemical compound C=1C=CC=CC=1CC(=O)SSC(=O)CC1=CC=CC=C1 IXGZXXBJSZISOO-UHFFFAOYSA-N 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 6
- JVSFQJZRHXAUGT-UHFFFAOYSA-N 2,2-dimethylpropanoyl chloride Chemical compound CC(C)(C)C(Cl)=O JVSFQJZRHXAUGT-UHFFFAOYSA-N 0.000 description 6
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 6
- 101000643024 Homo sapiens Stimulator of interferon genes protein Proteins 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- HUHKPYLEVGCJTG-UHFFFAOYSA-N [ditert-butyl(trifluoromethylsulfonyloxy)silyl] trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)O[Si](C(C)(C)C)(OS(=O)(=O)C(F)(F)F)C(C)(C)C HUHKPYLEVGCJTG-UHFFFAOYSA-N 0.000 description 6
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 6
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 6
- WRZFFQKBLYUWQJ-SPBWOXKUSA-N (2R,3R,4R,5R)-2-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-5-imidazo[2,1-f]purin-3-yloxolan-3-ol Chemical compound COC1=CC=C(C=C1)C(OC[C@H]1O[C@H]([C@@H]([C@@H]1O)O[Si](C)(C)C(C)(C)C)N1C=2N=CN3C(C=2N=C1)=NC=C3)(C1=CC=CC=C1)C1=CC=C(C=C1)OC WRZFFQKBLYUWQJ-SPBWOXKUSA-N 0.000 description 5
- HLIRTJZHVFDZDK-WGQQHEPDSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)O[Si](C)(C)C(C)(C)C)C(C)(C)C HLIRTJZHVFDZDK-WGQQHEPDSA-N 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- KRQPZVKNVMOTIL-UHFFFAOYSA-N P(OC1COCC1)(O)=O Chemical compound P(OC1COCC1)(O)=O KRQPZVKNVMOTIL-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 210000004443 dendritic cell Anatomy 0.000 description 5
- 238000005828 desilylation reaction Methods 0.000 description 5
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 5
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 208000011580 syndromic disease Diseases 0.000 description 5
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 4
- LOSXTWDYAWERDB-UHFFFAOYSA-N 1-[chloro(diphenyl)methyl]-2,3-dimethoxybenzene Chemical compound COC1=CC=CC(C(Cl)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1OC LOSXTWDYAWERDB-UHFFFAOYSA-N 0.000 description 4
- UCMYHULDFYFCNY-UHFFFAOYSA-N 2-(iodomethyl)-1,3-dioxolane Chemical compound ICC1OCCO1 UCMYHULDFYFCNY-UHFFFAOYSA-N 0.000 description 4
- BQDFHACIOUBBDF-UHFFFAOYSA-N 3-(8-chloro-2,3-dimethoxy-10-phenothiazinyl)-N,N-dimethyl-1-propanamine Chemical compound S1C2=CC=C(Cl)C=C2N(CCCN(C)C)C2=C1C=C(OC)C(OC)=C2 BQDFHACIOUBBDF-UHFFFAOYSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- ZSXGLVDWWRXATF-UHFFFAOYSA-N N,N-dimethylformamide dimethyl acetal Chemical compound COC(OC)N(C)C ZSXGLVDWWRXATF-UHFFFAOYSA-N 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- BHIIGRBMZRSDRI-UHFFFAOYSA-N [chloro(phenoxy)phosphoryl]oxybenzene Chemical compound C=1C=CC=CC=1OP(=O)(Cl)OC1=CC=CC=C1 BHIIGRBMZRSDRI-UHFFFAOYSA-N 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- VQFAIAKCILWQPZ-UHFFFAOYSA-N bromoacetone Chemical compound CC(=O)CBr VQFAIAKCILWQPZ-UHFFFAOYSA-N 0.000 description 4
- 229940125878 compound 36 Drugs 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- NRTYMEPCRDJMPZ-UHFFFAOYSA-N pyridine;2,2,2-trifluoroacetic acid Chemical compound C1=CC=NC=C1.OC(=O)C(F)(F)F NRTYMEPCRDJMPZ-UHFFFAOYSA-N 0.000 description 4
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 238000005987 sulfurization reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 3
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 3
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 3
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 3
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 3
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 3
- CKIIJIDEWWXQEA-UHFFFAOYSA-N 2-(bromomethyl)-1,3-dioxolane Chemical compound BrCC1OCCO1 CKIIJIDEWWXQEA-UHFFFAOYSA-N 0.000 description 3
- BVOITXUNGDUXRW-UHFFFAOYSA-N 2-chloro-1,3,2-benzodioxaphosphinin-4-one Chemical compound C1=CC=C2OP(Cl)OC(=O)C2=C1 BVOITXUNGDUXRW-UHFFFAOYSA-N 0.000 description 3
- VZMUCIBBVMLEKC-UHFFFAOYSA-N 2-chloro-5,5-dimethyl-1,3,2$l^{5}-dioxaphosphinane 2-oxide Chemical compound CC1(C)COP(Cl)(=O)OC1 VZMUCIBBVMLEKC-UHFFFAOYSA-N 0.000 description 3
- ONSASHBHHZNQQZ-UHFFFAOYSA-N 2-pyrrolidin-1-ium-1-ylacetonitrile;trifluoromethanesulfonate Chemical compound N#CC[NH+]1CCCC1.[O-]S(=O)(=O)C(F)(F)F ONSASHBHHZNQQZ-UHFFFAOYSA-N 0.000 description 3
- PLXIMCPBWGFGCJ-QGGAYTEESA-N 3-[(2R,3R,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-3-[tert-butyl(dimethyl)silyl]oxy-4-hydroxyoxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)O[Si](C)(C)C(C)(C)C)O)(C1=CC=CC=C1)C1=CC=C(C=C1)OC PLXIMCPBWGFGCJ-QGGAYTEESA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229940126657 Compound 17 Drugs 0.000 description 3
- 102100031256 Cyclic GMP-AMP synthase Human genes 0.000 description 3
- 108030002637 Cyclic GMP-AMP synthases Proteins 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 241000700721 Hepatitis B virus Species 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101001074035 Homo sapiens Zinc finger protein GLI2 Proteins 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 102100038192 Serine/threonine-protein kinase TBK1 Human genes 0.000 description 3
- 101710106944 Serine/threonine-protein kinase TBK1 Proteins 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 102100035558 Zinc finger protein GLI2 Human genes 0.000 description 3
- RAFKCLFWELPONH-UHFFFAOYSA-N acetonitrile;dichloromethane Chemical compound CC#N.ClCCl RAFKCLFWELPONH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000000304 alkynyl group Chemical group 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- RFCBNSCSPXMEBK-INFSMZHSSA-N c-GMP-AMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]3[C@@H](O)[C@H](N4C5=NC=NC(N)=C5N=C4)O[C@@H]3COP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 RFCBNSCSPXMEBK-INFSMZHSSA-N 0.000 description 3
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 3
- 229910000024 caesium carbonate Inorganic materials 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 229940125758 compound 15 Drugs 0.000 description 3
- 229940126142 compound 16 Drugs 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 229940126214 compound 3 Drugs 0.000 description 3
- 229940126545 compound 53 Drugs 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 229960004397 cyclophosphamide Drugs 0.000 description 3
- 229940127089 cytotoxic agent Drugs 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 3
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000002601 intratumoral effect Effects 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- VAZILBVKONTPCO-NYASUXCWSA-N n'-[9-[(4ar,6r,7r,7ar)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4h-furo[3,2-d][1,3,2]dioxasilin-6-yl]-6-oxo-3h-purin-2-yl]-n,n-dimethylmethanimidamide Chemical compound C([C@H]1O2)O[Si](C(C)(C)C)(C(C)(C)C)O[C@H]1[C@@H](O[Si](C)(C)C(C)(C)C)[C@@H]2N1C=NC2=C1NC(/N=C/N(C)C)=NC2=O VAZILBVKONTPCO-NYASUXCWSA-N 0.000 description 3
- FFXHNCNNHASXCT-RFMFGJHUSA-N n-[9-[(2r,3r,4r,5r)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-3-[tert-butyl(dimethyl)silyl]oxy-4-[2-cyanoethoxy-[di(propan-2-yl)amino]phosphanyl]oxyoxolan-2-yl]purin-6-yl]benzamide Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC(OC)=CC=1)(C=1C=CC=CC=1)OC[C@@H]1[C@@H](OP(OCCC#N)N(C(C)C)C(C)C)[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](N2C3=NC=NC(NC(=O)C=4C=CC=CC=4)=C3N=C2)O1 FFXHNCNNHASXCT-RFMFGJHUSA-N 0.000 description 3
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 125000003835 nucleoside group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- FDBYIYFVSAHJLY-UHFFFAOYSA-N resmetirom Chemical compound N1C(=O)C(C(C)C)=CC(OC=2C(=CC(=CC=2Cl)N2C(NC(=O)C(C#N)=N2)=O)Cl)=N1 FDBYIYFVSAHJLY-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 2
- ABJSOROVZZKJGI-OCYUSGCXSA-N (1r,2r,4r)-2-(4-bromophenyl)-n-[(4-chlorophenyl)-(2-fluoropyridin-4-yl)methyl]-4-morpholin-4-ylcyclohexane-1-carboxamide Chemical compound C1=NC(F)=CC(C(NC(=O)[C@H]2[C@@H](C[C@@H](CC2)N2CCOCC2)C=2C=CC(Br)=CC=2)C=2C=CC(Cl)=CC=2)=C1 ABJSOROVZZKJGI-OCYUSGCXSA-N 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- IZIDQEXWNHZSHD-UHFFFAOYSA-N (2-acetyloxy-3-bromopropyl) acetate Chemical compound CC(=O)OCC(CBr)OC(C)=O IZIDQEXWNHZSHD-UHFFFAOYSA-N 0.000 description 2
- ODQIDMJXBUSMRW-SPBWOXKUSA-N (2R,3R,4S,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-2-imidazo[2,1-f]purin-3-yloxolan-3-ol Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=CN3C(C=2N=C1)=NC=C3)O)O[Si](C)(C)C(C)(C)C)(C1=CC=CC=C1)C1=CC=C(C=C1)OC ODQIDMJXBUSMRW-SPBWOXKUSA-N 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 2
- YJLIKUSWRSEPSM-WGQQHEPDSA-N (2r,3r,4s,5r)-2-[6-amino-8-[(4-phenylphenyl)methylamino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1CNC1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O YJLIKUSWRSEPSM-WGQQHEPDSA-N 0.000 description 2
- VIJSPAIQWVPKQZ-BLECARSGSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-acetamido-5-(diaminomethylideneamino)pentanoyl]amino]-4-methylpentanoyl]amino]-4,4-dimethylpentanoyl]amino]-4-methylpentanoyl]amino]propanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(C)=O VIJSPAIQWVPKQZ-BLECARSGSA-N 0.000 description 2
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 2
- UDQTXCHQKHIQMH-KYGLGHNPSA-N (3ar,5s,6s,7r,7ar)-5-(difluoromethyl)-2-(ethylamino)-5,6,7,7a-tetrahydro-3ah-pyrano[3,2-d][1,3]thiazole-6,7-diol Chemical compound S1C(NCC)=N[C@H]2[C@@H]1O[C@H](C(F)F)[C@@H](O)[C@@H]2O UDQTXCHQKHIQMH-KYGLGHNPSA-N 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- IHMGDCCTWRRUDX-VMPITWQZSA-N (ne)-n-[(2-nitrophenyl)methylidene]hydroxylamine Chemical compound O\N=C\C1=CC=CC=C1[N+]([O-])=O IHMGDCCTWRRUDX-VMPITWQZSA-N 0.000 description 2
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- PJBTXTKAGXQCNH-UUOKFMHZSA-N 1,2-diamino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-one Chemical compound C1=NC=2C(=O)N(N)C(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PJBTXTKAGXQCNH-UUOKFMHZSA-N 0.000 description 2
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 2
- GVZJRBAUSGYWJI-UHFFFAOYSA-N 2,5-bis(3-dodecylthiophen-2-yl)thiophene Chemical compound C1=CSC(C=2SC(=CC=2)C2=C(C=CS2)CCCCCCCCCCCC)=C1CCCCCCCCCCCC GVZJRBAUSGYWJI-UHFFFAOYSA-N 0.000 description 2
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- GZNOAEIELWUUGL-QHHYFVSCSA-N 2-amino-9-[(2R,3S,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-5-[[tert-butyl(dimethyl)silyl]oxymethyl]-3-fluorooxolan-2-yl]-1H-purin-6-one Chemical compound NC=1NC(C=2N=CN(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@@H]1F)O[Si](C)(C)C(C)(C)C)CO[Si](C)(C)C(C)(C)C)=O GZNOAEIELWUUGL-QHHYFVSCSA-N 0.000 description 2
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 2
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 2
- CFIBTBBTJWHPQV-UHFFFAOYSA-N 2-methyl-n-(6-oxo-3,7-dihydropurin-2-yl)propanamide Chemical compound N1C(NC(=O)C(C)C)=NC(=O)C2=C1N=CN2 CFIBTBBTJWHPQV-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- CZZOLQFRRINDOW-WOUKDFQISA-N 3-[(2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3-methoxyoxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound O[C@H]1[C@H]([C@@H](O[C@@H]1CO)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)OC CZZOLQFRRINDOW-WOUKDFQISA-N 0.000 description 2
- PKGGXVZBXTWZIX-BBKOCAQVSA-N 3-[(2R,3R,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-3-[tert-butyl(dimethyl)silyl]oxy-4-hydroxyoxolan-2-yl]-6,7-dihydro-5H-pyrrolo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C3N(C(C=2N=C1)=O)CCC3)O[Si](C)(C)C(C)(C)C)O)(C1=CC=CC=C1)C1=CC=C(C=C1)OC PKGGXVZBXTWZIX-BBKOCAQVSA-N 0.000 description 2
- OSQQPLSUSZOHLZ-DWCTZGTLSA-N 3-[(2R,3R,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-hydroxy-3-methoxyoxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)OC)O)(C1=CC=CC=C1)C1=CC=C(C=C1)OC OSQQPLSUSZOHLZ-DWCTZGTLSA-N 0.000 description 2
- NQQLBNLFFKZBND-WCGPTHBMSA-N 3-[(2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound F[C@@H]1[C@@H](O[C@@H]([C@H]1O)CO)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3 NQQLBNLFFKZBND-WCGPTHBMSA-N 0.000 description 2
- VOUFUHVBTHLCOT-DDFXLWFNSA-N 3-[(2R,3S,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-3-fluoro-5-(hydroxymethyl)oxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound [Si](C)(C)(C(C)(C)C)O[C@H]1[C@@H]([C@@H](O[C@@H]1CO)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)F VOUFUHVBTHLCOT-DDFXLWFNSA-N 0.000 description 2
- MLLLQUCZSNEFLW-IWQUTFRXSA-N 3-[(2R,3S,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-3-fluoro-4-hydroxyoxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@@H]([C@@H](O1)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)F)O)(C1=CC=CC=C1)C1=CC=C(C=C1)OC MLLLQUCZSNEFLW-IWQUTFRXSA-N 0.000 description 2
- UPECIMNJPHMJMP-IWQUTFRXSA-N 3-[(2R,3S,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-dihydroxyphosphinothioyloxy-3-fluorooxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C(C2=CC=CC=C2)(C(C=C2)=CC=C2OC)OC[C@H]([C@H]([C@@H]2F)OP(O)(S)=O)O[C@H]2N2C(N=C(NC=C3)N3C3=O)=C3N=C2)C=C1 UPECIMNJPHMJMP-IWQUTFRXSA-N 0.000 description 2
- KEQRVTIVMNEGDE-FGSUIDRYSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-6,7-dihydro-5H-pyrrolo[1,2-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)CCC3)O[Si](C)(C)C(C)(C)C)C(C)(C)C KEQRVTIVMNEGDE-FGSUIDRYSA-N 0.000 description 2
- BGAJNPLDJJBRHK-UHFFFAOYSA-N 3-[2-[5-(3-chloro-4-propan-2-yloxyphenyl)-1,3,4-thiadiazol-2-yl]-3-methyl-6,7-dihydro-4h-pyrazolo[4,3-c]pyridin-5-yl]propanoic acid Chemical compound C1=C(Cl)C(OC(C)C)=CC=C1C1=NN=C(N2C(=C3CN(CCC(O)=O)CCC3=N2)C)S1 BGAJNPLDJJBRHK-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- JOOXCMJARBKPKM-UHFFFAOYSA-M 4-oxopentanoate Chemical compound CC(=O)CCC([O-])=O JOOXCMJARBKPKM-UHFFFAOYSA-M 0.000 description 2
- IGPUFFYCAUBNIY-UHFFFAOYSA-N 4-oxopentanoyl 4-oxopentanoate Chemical compound CC(=O)CCC(=O)OC(=O)CCC(C)=O IGPUFFYCAUBNIY-UHFFFAOYSA-N 0.000 description 2
- QQJXZVKXNSFHRI-UHFFFAOYSA-N 6-Benzamidopurine Chemical compound N=1C=NC=2N=CNC=2C=1NC(=O)C1=CC=CC=C1 QQJXZVKXNSFHRI-UHFFFAOYSA-N 0.000 description 2
- OPCYCMNLAFXNMT-WVSUBDOOSA-N 9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-1,2-diaminopurin-6-one Chemical compound NN1C(=NC=2N(C=NC=2C1=O)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)N OPCYCMNLAFXNMT-WVSUBDOOSA-N 0.000 description 2
- XTVSZYWTVKZMQD-FGSUIDRYSA-N 9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-2-(3-hydroxypropyl)-1H-purin-6-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C(NC(C=2N=C1)=O)CCCO)O[Si](C)(C)C(C)(C)C)C(C)(C)C XTVSZYWTVKZMQD-FGSUIDRYSA-N 0.000 description 2
- NJFXIGIIGPQNRC-OPIJFSDVSA-N 9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-2-amino-1-(2,3-dihydroxypropyl)purin-6-one Chemical compound NC=1N(C(C=2N=CN(C=2N=1)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)=O)CC(CO)O NJFXIGIIGPQNRC-OPIJFSDVSA-N 0.000 description 2
- ODTQCFMKXFRNTI-WVSUBDOOSA-N 9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-2-hydrazinyl-1H-purin-6-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C(NC(C=2N=C1)=O)NN)O[Si](C)(C)C(C)(C)C)C(C)(C)C ODTQCFMKXFRNTI-WVSUBDOOSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 102100037435 Antiviral innate immune response receptor RIG-I Human genes 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- 101000952099 Homo sapiens Antiviral innate immune response receptor RIG-I Proteins 0.000 description 2
- 108010032038 Interferon Regulatory Factor-3 Proteins 0.000 description 2
- 102100040019 Interferon alpha-1/13 Human genes 0.000 description 2
- 102100029843 Interferon regulatory factor 3 Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 101100043703 Mus musculus Sting1 gene Proteins 0.000 description 2
- GDCQUQXRAKIFBB-ZRAXVTTISA-N N'-[9-[(2R,3S,4R,5R)-4-[tert-butyl(dimethyl)silyl]oxy-5-[[tert-butyl(dimethyl)silyl]oxymethyl]-3-fluorooxolan-2-yl]-6-oxo-1H-purin-2-yl]-N,N-dimethylmethanimidamide Chemical compound [Si](C)(C)(C(C)(C)C)O[C@H]1[C@@H]([C@@H](O[C@@H]1CO[Si](C)(C)C(C)(C)C)N1C=2N=C(NC(C=2N=C1)=O)N=CN(C)C)F GDCQUQXRAKIFBB-ZRAXVTTISA-N 0.000 description 2
- WMBBSSAYAZVMDE-KZQHXGCGSA-N N'-[9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-methoxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-1-(1,3-dioxolan-2-ylmethyl)-6-oxopurin-2-yl]-N,N-dimethylmethanimidamide Chemical compound O1C(OCC1)CN1C(=NC=2N(C=NC=2C1=O)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)OC)/N=C/N(C)C WMBBSSAYAZVMDE-KZQHXGCGSA-N 0.000 description 2
- KGQLMKSCJOUXED-BEGXHNNXSA-N N-[3-[(2R,3R,4S,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-3,4-dihydroxyoxolan-2-yl]triazolo[4,5-d]pyrimidin-7-yl]benzamide Chemical compound C(C1=CC=CC=C1)(=O)NC=1C2=C(N=CN=1)N(N=N2)[C@@H]1O[C@@H]([C@H]([C@H]1O)O)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC KGQLMKSCJOUXED-BEGXHNNXSA-N 0.000 description 2
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- GEDQPJSZUCEDLW-WCGPTHBMSA-N OC[C@H]([C@H]([C@@H]1F)OP(O)(S)=O)O[C@H]1N1C(N=C(NC=C2)N2C2=O)=C2N=C1 Chemical compound OC[C@H]([C@H]([C@@H]1F)OP(O)(S)=O)O[C@H]1N1C(N=C(NC=C2)N2C2=O)=C2N=C1 GEDQPJSZUCEDLW-WCGPTHBMSA-N 0.000 description 2
- SGIAWCVJBUSKIK-LSCFUAHRSA-N P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=CN3C(C=2N=C1)=NC=C3)CO)(O)=O Chemical compound P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=CN3C(C=2N=C1)=NC=C3)CO)(O)=O SGIAWCVJBUSKIK-LSCFUAHRSA-N 0.000 description 2
- CEKWQWNCZLYUGN-XNIJJKJLSA-N P(O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)(O)=O Chemical compound P(O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)(O)=O CEKWQWNCZLYUGN-XNIJJKJLSA-N 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 2
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 2
- MLHOXUWWKVQEJB-UHFFFAOYSA-N Propyleneglycol diacetate Chemical compound CC(=O)OC(C)COC(C)=O MLHOXUWWKVQEJB-UHFFFAOYSA-N 0.000 description 2
- 229940044665 STING agonist Drugs 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- 230000037453 T cell priming Effects 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 108091021474 TMEM173 Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 2
- SPXSEZMVRJLHQG-XMMPIXPASA-N [(2R)-1-[[4-[(3-phenylmethoxyphenoxy)methyl]phenyl]methyl]pyrrolidin-2-yl]methanol Chemical compound C(C1=CC=CC=C1)OC=1C=C(OCC2=CC=C(CN3[C@H](CCC3)CO)C=C2)C=CC=1 SPXSEZMVRJLHQG-XMMPIXPASA-N 0.000 description 2
- BBZQRXRDUANBQR-CPLTYXLBSA-N [(2R,3R,4R,5R)-2-(6-benzamidopurin-9-yl)-4-[tert-butyl(dimethyl)silyl]oxy-5-(hydroxymethyl)oxolan-3-yl] 4-oxopentanoate Chemical compound O=C(CCC(=O)O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)C BBZQRXRDUANBQR-CPLTYXLBSA-N 0.000 description 2
- KFEJWVLJAMAVKI-BKYOOZGASA-N [(2R,3R,4R,5R)-2-(6-benzamidopurin-9-yl)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxyoxolan-3-yl] 4-oxopentanoate Chemical compound O=C(CCC(=O)O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)C KFEJWVLJAMAVKI-BKYOOZGASA-N 0.000 description 2
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 2
- PSLUFJFHTBIXMW-WYEYVKMPSA-N [(3r,4ar,5s,6s,6as,10s,10ar,10bs)-3-ethenyl-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-6-(2-pyridin-2-ylethylcarbamoyloxy)-5,6,6a,8,9,10-hexahydro-2h-benzo[f]chromen-5-yl] acetate Chemical compound O([C@@H]1[C@@H]([C@]2(O[C@](C)(CC(=O)[C@]2(O)[C@@]2(C)[C@@H](O)CCC(C)(C)[C@@H]21)C=C)C)OC(=O)C)C(=O)NCCC1=CC=CC=N1 PSLUFJFHTBIXMW-WYEYVKMPSA-N 0.000 description 2
- WMWUDYHVHHQRGW-QTQZEZTPSA-N [(4aR,6R,7R,7aR)-2,2-ditert-butyl-6-(6-chloropurin-9-yl)-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-7-yl]oxy-tert-butyl-dimethylsilane Chemical compound ClC1=C2N=CN(C2=NC=N1)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)O[Si](C)(C)C(C)(C)C WMWUDYHVHHQRGW-QTQZEZTPSA-N 0.000 description 2
- SHDPDNWERLRNEN-QTQZEZTPSA-N [9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]purin-6-yl]hydrazine Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C2=NC=NC(=C2N=C1)NN)O[Si](C)(C)C(C)(C)C)C(C)(C)C SHDPDNWERLRNEN-QTQZEZTPSA-N 0.000 description 2
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940125833 compound 23 Drugs 0.000 description 2
- 229940125961 compound 24 Drugs 0.000 description 2
- 229940125807 compound 37 Drugs 0.000 description 2
- 229940125936 compound 42 Drugs 0.000 description 2
- 229940127271 compound 49 Drugs 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- OGOZBEAJXJAUHA-ARPAIRFRSA-N ethyl (E)-3-[9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-6-oxo-1H-purin-2-yl]prop-2-enoate Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C(NC(C=2N=C1)=O)/C=C/C(=O)OCC)O[Si](C)(C)C(C)(C)C)C(C)(C)C OGOZBEAJXJAUHA-ARPAIRFRSA-N 0.000 description 2
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 2
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- HXJZHJLLMIGFCM-UHFFFAOYSA-N hydroxy-imino-di(propan-2-yloxy)-$l^{5}-phosphane Chemical compound CC(C)OP(N)(=O)OC(C)C HXJZHJLLMIGFCM-UHFFFAOYSA-N 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 2
- IRGSDUKBHFNZBP-UHFFFAOYSA-N n,n-dimethyl-n'-(5-sulfanylidene-1,2,4-dithiazolidin-3-yl)methanimidamide Chemical compound CN(C)C=NC1NC(=S)SS1 IRGSDUKBHFNZBP-UHFFFAOYSA-N 0.000 description 2
- BPERWUJJTXWDQL-UHFFFAOYSA-N n-(2h-triazolo[4,5-d]pyrimidin-7-yl)benzamide Chemical compound N=1C=NC=2N=NNC=2C=1NC(=O)C1=CC=CC=C1 BPERWUJJTXWDQL-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229960003301 nivolumab Drugs 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- IOGXOCVLYRDXLW-UHFFFAOYSA-N tert-butyl nitrite Chemical compound CC(C)(C)ON=O IOGXOCVLYRDXLW-UHFFFAOYSA-N 0.000 description 2
- 239000012414 tert-butyl nitrite Substances 0.000 description 2
- 125000004192 tetrahydrofuran-2-yl group Chemical group [H]C1([H])OC([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 2
- ASGMFNBUXDJWJJ-JLCFBVMHSA-N (1R,3R)-3-[[3-bromo-1-[4-(5-methyl-1,3,4-thiadiazol-2-yl)phenyl]pyrazolo[3,4-d]pyrimidin-6-yl]amino]-N,1-dimethylcyclopentane-1-carboxamide Chemical compound BrC1=NN(C2=NC(=NC=C21)N[C@H]1C[C@@](CC1)(C(=O)NC)C)C1=CC=C(C=C1)C=1SC(=NN=1)C ASGMFNBUXDJWJJ-JLCFBVMHSA-N 0.000 description 1
- GHPYJLCQYMAXGG-WCCKRBBISA-N (2R)-2-amino-3-(2-boronoethylsulfanyl)propanoic acid hydrochloride Chemical compound Cl.N[C@@H](CSCCB(O)O)C(O)=O GHPYJLCQYMAXGG-WCCKRBBISA-N 0.000 description 1
- IMIMWQUJBGYFMP-DWCTZGTLSA-N (2R,3S,4R,5R)-2-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-5-imidazo[2,1-f]purin-3-yloxolane-3,4-diol Chemical compound COC1=CC=C(C=C1)C(OC[C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN3C(C=2N=C1)=NC=C3)(C1=CC=CC=C1)C1=CC=C(C=C1)OC IMIMWQUJBGYFMP-DWCTZGTLSA-N 0.000 description 1
- XHRJGHCQQPETRH-KQYNXXCUSA-N (2r,3r,4s,5r)-2-(6-chloropurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(Cl)=C2N=C1 XHRJGHCQQPETRH-KQYNXXCUSA-N 0.000 description 1
- LRPBXXZUPUBCAP-WOUKDFQISA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-imidazo[2,1-f]purin-3-yloxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CN2C3=NC=C2)=C3N=C1 LRPBXXZUPUBCAP-WOUKDFQISA-N 0.000 description 1
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 1
- XSAKVDNHFRWJKS-IIZANFQQSA-N (2s)-n-benzyl-1-[(2s)-1-[(2s)-2-[[(2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-3-methylbutanoyl]-methylamino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carboxamide Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC=2C=CC=CC=2)CCC1 XSAKVDNHFRWJKS-IIZANFQQSA-N 0.000 description 1
- HUWSZNZAROKDRZ-RRLWZMAJSA-N (3r,4r)-3-azaniumyl-5-[[(2s,3r)-1-[(2s)-2,3-dicarboxypyrrolidin-1-yl]-3-methyl-1-oxopentan-2-yl]amino]-5-oxo-4-sulfanylpentane-1-sulfonate Chemical compound OS(=O)(=O)CC[C@@H](N)[C@@H](S)C(=O)N[C@@H]([C@H](C)CC)C(=O)N1CCC(C(O)=O)[C@H]1C(O)=O HUWSZNZAROKDRZ-RRLWZMAJSA-N 0.000 description 1
- OMBVEVHRIQULKW-DNQXCXABSA-M (3r,5r)-7-[3-(4-fluorophenyl)-8-oxo-7-phenyl-1-propan-2-yl-5,6-dihydro-4h-pyrrolo[2,3-c]azepin-2-yl]-3,5-dihydroxyheptanoate Chemical compound O=C1C=2N(C(C)C)C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C(C=3C=CC(F)=CC=3)C=2CCCN1C1=CC=CC=C1 OMBVEVHRIQULKW-DNQXCXABSA-M 0.000 description 1
- YQOLEILXOBUDMU-KRWDZBQOSA-N (4R)-5-[(6-bromo-3-methyl-2-pyrrolidin-1-ylquinoline-4-carbonyl)amino]-4-(2-chlorophenyl)pentanoic acid Chemical compound CC1=C(C2=C(C=CC(=C2)Br)N=C1N3CCCC3)C(=O)NC[C@H](CCC(=O)O)C4=CC=CC=C4Cl YQOLEILXOBUDMU-KRWDZBQOSA-N 0.000 description 1
- MWWSFMDVAYGXBV-MYPASOLCSA-N (7r,9s)-7-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;hydrochloride Chemical compound Cl.O([C@@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-MYPASOLCSA-N 0.000 description 1
- IEXUMDBQLIVNHZ-YOUGDJEHSA-N (8s,11r,13r,14s,17s)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(3-hydroxypropyl)-13-methyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(O)CCCO)[C@@]2(C)C1 IEXUMDBQLIVNHZ-YOUGDJEHSA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical group C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- ROZCIVXTLACYNY-UHFFFAOYSA-N 2,3,4,5,6-pentafluoro-n-(3-fluoro-4-methoxyphenyl)benzenesulfonamide Chemical compound C1=C(F)C(OC)=CC=C1NS(=O)(=O)C1=C(F)C(F)=C(F)C(F)=C1F ROZCIVXTLACYNY-UHFFFAOYSA-N 0.000 description 1
- NPRYCHLHHVWLQZ-TURQNECASA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynylpurin-8-one Chemical compound NC1=NC=C2N(C(N(C2=N1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C NPRYCHLHHVWLQZ-TURQNECASA-N 0.000 description 1
- UXUZARPLRQRNNX-AYQXTPAHSA-N 2-amino-9-[(2r,3s,4r,5r)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F UXUZARPLRQRNNX-AYQXTPAHSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- FINYOTLDIHYWPR-UHFFFAOYSA-N 2-cyanoethoxy-n,n-di(propan-2-yl)phosphonamidous acid Chemical compound CC(C)N(C(C)C)P(O)OCCC#N FINYOTLDIHYWPR-UHFFFAOYSA-N 0.000 description 1
- FFRFGVHNKJYNOV-DOVUUNBWSA-N 3',4'-Anhydrovinblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C=C(C2)CC)N2CCC2=C1NC1=CC=CC=C21 FFRFGVHNKJYNOV-DOVUUNBWSA-N 0.000 description 1
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 1
- BIYNFYJJGQMPQB-XKLVTHTNSA-N 3-[(2R,3R,4R,5R)-3-[tert-butyl(dimethyl)silyl]oxy-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,7-dihydro-5H-pyrrolo[1,2-a]purin-9-one Chemical compound [Si](C)(C)(C(C)(C)C)O[C@H]1[C@@H](O[C@@H]([C@H]1O)CO)N1C=2N=C3N(C(C=2N=C1)=O)CCC3 BIYNFYJJGQMPQB-XKLVTHTNSA-N 0.000 description 1
- FPAHMICUEAHQMI-SPBWOXKUSA-N 3-[(2R,3R,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-3-[tert-butyl(dimethyl)silyl]oxy-4-hydroxyoxolan-2-yl]-6-methyl-5H-imidazo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C3N(C(C=2N=C1)=O)C=C(N3)C)O[Si](C)(C)C(C)(C)C)O)(C1=CC=CC=C1)C1=CC=C(C=C1)OC FPAHMICUEAHQMI-SPBWOXKUSA-N 0.000 description 1
- GQONOQGPPBGQRT-QGGAYTEESA-N 3-[(2R,3R,4S,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-3-hydroxyoxolan-2-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)O)O[Si](C)(C)C(C)(C)C)(C1=CC=CC=C1)C1=CC=C(C=C1)OC GQONOQGPPBGQRT-QGGAYTEESA-N 0.000 description 1
- QTQMAADZPARMQJ-UMCMBGNQSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-5,6-dimethylimidazo[1,2-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C=C(N3C)C)O[Si](C)(C)C(C)(C)C)C(C)(C)C QTQMAADZPARMQJ-UMCMBGNQSA-N 0.000 description 1
- JCNDANIISVEVLU-CIVUBGFFSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-5,7-dihydroimidazo[1,2-a]purine-6,9-dione Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)CC(N3)=O)O[Si](C)(C)C(C)(C)C)C(C)(C)C JCNDANIISVEVLU-CIVUBGFFSA-N 0.000 description 1
- UBRYUYVCHVHZDZ-ZDXOVATRSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-5-methylimidazo[1,2-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3C)O[Si](C)(C)C(C)(C)C)C(C)(C)C UBRYUYVCHVHZDZ-ZDXOVATRSA-N 0.000 description 1
- WFWPBOYKURGIHC-ZDXOVATRSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-6-methyl-5H-imidazo[1,2-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C=C(N3)C)O[Si](C)(C)C(C)(C)C)C(C)(C)C WFWPBOYKURGIHC-ZDXOVATRSA-N 0.000 description 1
- POUBZEUGYKAMJL-QTQZEZTPSA-N 3-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-7H-[1,2,4]triazolo[1,5-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)N=CN3)O[Si](C)(C)C(C)(C)C)C(C)(C)C POUBZEUGYKAMJL-QTQZEZTPSA-N 0.000 description 1
- MVLSMACOVAMDSQ-MJXUCMMTSA-N 3-[(4aR,6R,7R,7aS)-2,2-ditert-butyl-7-methoxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-4H-imidazo[1,2-a]purin-9-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)OC)C(C)(C)C MVLSMACOVAMDSQ-MJXUCMMTSA-N 0.000 description 1
- ZUFMOUFQBYZIHB-JFOZTMRSSA-N 3-[[(2r,3r,4r,5r)-2-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-5-(6-oxo-3h-purin-9-yl)oxolan-3-yl]oxy-[di(propan-2-yl)amino]phosphanyl]oxypropanenitrile Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC(OC)=CC=1)(C=1C=CC=CC=1)OC[C@@H]1[C@@H](OP(OCCC#N)N(C(C)C)C(C)C)[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](N2C3=C(C(N=CN3)=O)N=C2)O1 ZUFMOUFQBYZIHB-JFOZTMRSSA-N 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- KABRXLINDSPGDF-UHFFFAOYSA-N 7-bromoisoquinoline Chemical compound C1=CN=CC2=CC(Br)=CC=C21 KABRXLINDSPGDF-UHFFFAOYSA-N 0.000 description 1
- HWLSCQBMUFEJOI-QTQZEZTPSA-N 8-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-1H-[1,2,4]triazolo[4,3-a]purin-5-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C=NN3)O[Si](C)(C)C(C)(C)C)C(C)(C)C HWLSCQBMUFEJOI-QTQZEZTPSA-N 0.000 description 1
- OUXCRRFLRCPPGG-WGQQHEPDSA-N 8-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-3-methyl-1H-[1,2,4]triazolo[4,3-a]purin-5-one Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C3N(C(C=2N=C1)=O)C(=NN3)C)O[Si](C)(C)C(C)(C)C)C(C)(C)C OUXCRRFLRCPPGG-WGQQHEPDSA-N 0.000 description 1
- GHLCXDLCYWMYIJ-QSYCCZFCSA-N 9-[(2r,3r,4s,5r)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-3-hydroxyoxolan-2-yl]-3h-purin-6-one Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC(OC)=CC=1)(C=1C=CC=CC=1)OC[C@@H]1[C@@H](O[Si](C)(C)C(C)(C)C)[C@@H](O)[C@H](N2C3=C(C(N=CN3)=O)N=C2)O1 GHLCXDLCYWMYIJ-QSYCCZFCSA-N 0.000 description 1
- RZFIRFRTPQJVMB-QJXOJOFWSA-N 9-[(4aR,6R,7R)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-2-bromo-1H-purin-6-one Chemical compound BrC=1NC(C=2N=CN(C=2N=1)[C@H]1[C@@H](C2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)=O RZFIRFRTPQJVMB-QJXOJOFWSA-N 0.000 description 1
- ZASBWDKOEOJQMT-WVSUBDOOSA-N 9-[(4ar,6r,7r,7ar)-2,2-ditert-butyl-7-[tert-butyl(dimethyl)silyl]oxy-4a,6,7,7a-tetrahydro-4h-furo[3,2-d][1,3,2]dioxasilin-6-yl]-2-amino-3h-purin-6-one Chemical compound C1=NC(C(N=C(N)N2)=O)=C2N1[C@H]1[C@H](O[Si](C)(C)C(C)(C)C)[C@@H]2O[Si](C(C)(C)C)(C(C)(C)C)OC[C@H]2O1 ZASBWDKOEOJQMT-WVSUBDOOSA-N 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- 241000961634 Alphaflexiviridae Species 0.000 description 1
- 241000520665 Alphatetraviridae Species 0.000 description 1
- 241000025051 Alvernaviridae Species 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 241001206546 Ampullaviridae Species 0.000 description 1
- 241000712892 Arenaviridae Species 0.000 description 1
- 241000157873 Ascoviridae Species 0.000 description 1
- 241000977261 Asfarviridae Species 0.000 description 1
- 241001533362 Astroviridae Species 0.000 description 1
- 108010074708 B7-H1 Antigen Proteins 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000701412 Baculoviridae Species 0.000 description 1
- 241001533460 Barnaviridae Species 0.000 description 1
- 241000961645 Betaflexiviridae Species 0.000 description 1
- 241001340646 Bicaudaviridae Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- RZFIRFRTPQJVMB-WVSUBDOOSA-N BrC=1NC(C=2N=CN(C=2N=1)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)=O Chemical compound BrC=1NC(C=2N=CN(C=2N=1)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)=O RZFIRFRTPQJVMB-WVSUBDOOSA-N 0.000 description 1
- 241001533462 Bromoviridae Species 0.000 description 1
- 241000589562 Brucella Species 0.000 description 1
- WTXSTLCSPVTJTM-SAHKUVNLSA-N C(C)(C)N(P(O[C@H]1[C@@H](O[C@@H]([C@@H]1F)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)OCCC#N)C(C)C Chemical compound C(C)(C)N(P(O[C@H]1[C@@H](O[C@@H]([C@@H]1F)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)OCCC#N)C(C)C WTXSTLCSPVTJTM-SAHKUVNLSA-N 0.000 description 1
- 102100038078 CD276 antigen Human genes 0.000 description 1
- 101710185679 CD276 antigen Proteins 0.000 description 1
- 229940123189 CD40 agonist Drugs 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- XAIQBZNFPUNWMQ-CJEGOSRCSA-N COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C(NC(C=2N=C1)=O)NC(C(C)C)=O)O)O[Si](C)(C)C(C)(C)C)(C1=CC=CC=C1)C1=CC=C(C=C1)OC Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=2N=C(NC(C=2N=C1)=O)NC(C(C)C)=O)O)O[Si](C)(C)C(C)(C)C)(C1=CC=CC=C1)C1=CC=C(C=C1)OC XAIQBZNFPUNWMQ-CJEGOSRCSA-N 0.000 description 1
- BLULVNRLPZJKBC-UHFFFAOYSA-O CP([U]CCC#N)=S Chemical compound CP([U]CCC#N)=S BLULVNRLPZJKBC-UHFFFAOYSA-O 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 241000714198 Caliciviridae Species 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000520666 Carmotetraviridae Species 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- ZEIRWCWXVLZGTJ-WDZFZDKYSA-N Cc1c(C(/C=C(/CC=CN2)\C2=C)C=O)nc[nH]1 Chemical compound Cc1c(C(/C=C(/CC=CN2)\C2=C)C=O)nc[nH]1 ZEIRWCWXVLZGTJ-WDZFZDKYSA-N 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241001502567 Chikungunya virus Species 0.000 description 1
- 241000351651 Clavaviridae Species 0.000 description 1
- 241000973027 Closteroviridae Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 229940126639 Compound 33 Drugs 0.000 description 1
- 229940127007 Compound 39 Drugs 0.000 description 1
- 241000701520 Corticoviridae Species 0.000 description 1
- 229930188224 Cryptophycin Natural products 0.000 description 1
- 102100021906 Cyclin-O Human genes 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 241000615461 Dicistroviridae Species 0.000 description 1
- LQKSHSFQQRCAFW-UHFFFAOYSA-N Dolastatin 15 Natural products COC1=CC(=O)N(C(=O)C(OC(=O)C2N(CCC2)C(=O)C2N(CCC2)C(=O)C(C(C)C)N(C)C(=O)C(NC(=O)C(C(C)C)N(C)C)C(C)C)C(C)C)C1CC1=CC=CC=C1 LQKSHSFQQRCAFW-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000868840 Endornaviridae Species 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 241001658031 Eris Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- 241000710781 Flaviviridae Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000702463 Geminiviridae Species 0.000 description 1
- 241001136687 Globuloviridae Species 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 241001664989 Guttaviridae Species 0.000 description 1
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 1
- 101000897441 Homo sapiens Cyclin-O Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 1
- 101001054334 Homo sapiens Interferon beta Proteins 0.000 description 1
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 1
- 101000801234 Homo sapiens Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 1
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 241000543391 Hytrosaviridae Species 0.000 description 1
- 108010014726 Interferon Type I Proteins 0.000 description 1
- 102000002227 Interferon Type I Human genes 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 241000710842 Japanese encephalitis virus Species 0.000 description 1
- 102000002698 KIR Receptors Human genes 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- 241000712902 Lassa mammarenavirus Species 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 241000714210 Leviviridae Species 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 241000701365 Lipothrixviridae Species 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 241000253097 Luteoviridae Species 0.000 description 1
- 241000175209 Malacoherpesviridae Species 0.000 description 1
- 241001661687 Marnaviridae Species 0.000 description 1
- 241001009374 Mesoniviridae Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001112067 Metaviridae Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 101000574441 Mus musculus Alkaline phosphatase, germ cell type Proteins 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- KSRKTUMXZKNZOT-YZWLZBTQSA-N N'-[9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-methoxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-6-oxo-1H-purin-2-yl]-N,N-dimethylmethanimidamide Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=C(NC(C=2N=C1)=O)/N=C/N(C)C)OC)C(C)(C)C KSRKTUMXZKNZOT-YZWLZBTQSA-N 0.000 description 1
- MOFAXGFSOZBPJK-SXACZLHWSA-N N-[3-[(2R,3R,4S,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-3-hydroxyoxolan-2-yl]triazolo[4,5-d]pyrimidin-7-yl]benzamide Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1N=NC2=C1N=CN=C2NC(C1=CC=CC=C1)=O)O)O[Si](C)(C)C(C)(C)C)(C1=CC=CC=C1)C1=CC=C(C=C1)OC MOFAXGFSOZBPJK-SXACZLHWSA-N 0.000 description 1
- TVVPSEDSHAQKKZ-MHHBZGPPSA-N N-[9-[(2R,3S,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-fluoro-3-hydroxyoxolan-2-yl]purin-6-yl]benzamide Chemical compound COC1=CC=C(C=C1)C(OC[C@@H]1[C@@H]([C@H]([C@@H](O1)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)O)F)(C1=CC=CC=C1)C1=CC=C(C=C1)OC TVVPSEDSHAQKKZ-MHHBZGPPSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 241001336717 Nanoviridae Species 0.000 description 1
- 241001484257 Nimaviridae Species 0.000 description 1
- 241000723741 Nodaviridae Species 0.000 description 1
- 241000439378 Nyamiviridae Species 0.000 description 1
- 241000712464 Orthomyxoviridae Species 0.000 description 1
- DTVNXMNESJMDPG-NWIRRVQCSA-N P(O[C@@H]1[C@H](OC([C@H]1F)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)(O)=O Chemical compound P(O[C@@H]1[C@H](OC([C@H]1F)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)(O)=O DTVNXMNESJMDPG-NWIRRVQCSA-N 0.000 description 1
- CZUNUPRHWQBMHW-DWCTZGTLSA-N P(O[C@@H]1[C@H](O[C@H]([C@@H]1OC)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)(O)=O Chemical compound P(O[C@@H]1[C@H](O[C@H]([C@@H]1OC)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)(O)=O CZUNUPRHWQBMHW-DWCTZGTLSA-N 0.000 description 1
- HUPVRLIWDKNWBB-LSCFUAHRSA-N P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=C3N(C(C=2N=C1)=O)C=C(N3)C)CO)(O)=O Chemical compound P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=C3N(C(C=2N=C1)=O)C=C(N3)C)CO)(O)=O HUPVRLIWDKNWBB-LSCFUAHRSA-N 0.000 description 1
- HYHTUQHFUYBDBM-XKLVTHTNSA-N P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=C3N(C(C=2N=C1)=O)CCC3)CO)(O)=O Chemical compound P(O[C@@H]1[C@H](O[C@H]([C@@H]1O[Si](C)(C)C(C)(C)C)N1C=2N=C3N(C(C=2N=C1)=O)CCC3)CO)(O)=O HYHTUQHFUYBDBM-XKLVTHTNSA-N 0.000 description 1
- DTVNXMNESJMDPG-IWQUTFRXSA-N P(O[C@@H]1[C@H](O[C@H]([C@H]1F)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)(O)=O Chemical compound P(O[C@@H]1[C@H](O[C@H]([C@H]1F)N1C=2N=C3N(C(C=2N=C1)=O)C=CN3)COC(C1=CC=CC=C1)(C1=CC=C(C=C1)OC)C1=CC=C(C=C1)OC)(O)=O DTVNXMNESJMDPG-IWQUTFRXSA-N 0.000 description 1
- FZWLZYMMNRKUEY-XWCIJXRUSA-N P(O[C@H]1[C@@H](O[C@@H](C1)CO)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)(O)=O Chemical compound P(O[C@H]1[C@@H](O[C@@H](C1)CO)N1C2=NC=NC(=C2N=C1)NC(C1=CC=CC=C1)=O)(O)=O FZWLZYMMNRKUEY-XWCIJXRUSA-N 0.000 description 1
- LDNSGPBDGPDQPT-XWXWGSFUSA-N P(O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C=2N=C(NC(C=2N=C1)=O)NC(C(C)C)=O)(O)=O Chemical compound P(O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C=2N=C(NC(C=2N=C1)=O)NC(C(C)C)=O)(O)=O LDNSGPBDGPDQPT-XWXWGSFUSA-N 0.000 description 1
- JHDVBZGZCAPSMT-SDBHATRESA-N P(O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C=2N=CNC(C=2N=C1)=O)(O)=O Chemical compound P(O[C@H]1[C@@H](O[C@@H]([C@H]1O[Si](C)(C)C(C)(C)C)CO)N1C=2N=CNC(C=2N=C1)=O)(O)=O JHDVBZGZCAPSMT-SDBHATRESA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 241000711504 Paramyxoviridae Species 0.000 description 1
- 241000710936 Partitiviridae Species 0.000 description 1
- 241000520712 Permutotetraviridae Species 0.000 description 1
- 241000701253 Phycodnaviridae Species 0.000 description 1
- 241001627241 Picobirnaviridae Species 0.000 description 1
- 108091036414 Polyinosinic:polycytidylic acid Proteins 0.000 description 1
- 241001533393 Potyviridae Species 0.000 description 1
- 241000700625 Poxviridae Species 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 241000711931 Rhabdoviridae Species 0.000 description 1
- OWPCHSCAPHNHAV-UHFFFAOYSA-N Rhizoxin Natural products C1C(O)C2(C)OC2C=CC(C)C(OC(=O)C2)CC2CC2OC2C(=O)OC1C(C)C(OC)C(C)=CC=CC(C)=CC1=COC(C)=N1 OWPCHSCAPHNHAV-UHFFFAOYSA-N 0.000 description 1
- 108010011005 STAT6 Transcription Factor Proteins 0.000 description 1
- 102000013968 STAT6 Transcription Factor Human genes 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000702202 Siphoviridae Species 0.000 description 1
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 1
- 241001514388 Sphaerolipoviridae Species 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 241000701521 Tectiviridae Species 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 description 1
- 102100033117 Toll-like receptor 9 Human genes 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 102100033728 Tumor necrosis factor receptor superfamily member 18 Human genes 0.000 description 1
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 1
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 1
- 241000405439 Turriviridae Species 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000961586 Virgaviridae Species 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- XNXTXBGFLZWDNA-WGQQHEPDSA-N [(4aR,6R,7R,7aR)-2,2-ditert-butyl-6-([1,2,4]triazolo[3,4-f]purin-7-yl)-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-7-yl]oxy-tert-butyl-dimethylsilane Chemical compound C(C)(C)(C)[Si]1(OC[C@@H]2[C@@H](O1)[C@H]([C@@H](O2)N1C=2N=CN3C(C=2N=C1)=NN=C3)O[Si](C)(C)C(C)(C)C)C(C)(C)C XNXTXBGFLZWDNA-WGQQHEPDSA-N 0.000 description 1
- HACOWYFMFACSAS-DHDVCVOVSA-N [9-[(4aR,6R,7R,7aR)-2,2-ditert-butyl-7-methoxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl]-2-[(E)-dimethylaminomethylideneamino]-3,6-dihydropurin-6-yl] 2,4,6-tri(propan-2-yl)benzenesulfonate Chemical compound C(C)(C)C1=C(C(=CC(=C1)C(C)C)C(C)C)S(=O)(=O)OC1C=2N=CN(C=2N=C(N1)/N=C/N(C)C)[C@H]1[C@@H]([C@@H]2O[Si](OC[C@H]2O1)(C(C)(C)C)C(C)(C)C)OC HACOWYFMFACSAS-DHDVCVOVSA-N 0.000 description 1
- 229960004103 abiraterone acetate Drugs 0.000 description 1
- UVIQSJCZCSLXRZ-UBUQANBQSA-N abiraterone acetate Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CC[C@@H](CC4=CC[C@H]31)OC(=O)C)C=C2C1=CC=CN=C1 UVIQSJCZCSLXRZ-UBUQANBQSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- PAAZCQANMCYGAW-UHFFFAOYSA-N acetic acid;2,2,2-trifluoroacetic acid Chemical compound CC(O)=O.OC(=O)C(F)(F)F PAAZCQANMCYGAW-UHFFFAOYSA-N 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229950001104 anhydrovinblastine Drugs 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 108010044540 auristatin Proteins 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KXDAEFPNCMNJSK-UHFFFAOYSA-N benzene carboxamide Natural products NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- 229960002938 bexarotene Drugs 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- UBJAHGAUPNGZFF-XOVTVWCYSA-N bms-184476 Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3C[C@@H]([C@]2(C(=O)[C@H](OC(C)=O)C2=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)C=3C=CC=CC=3)C=3C=CC=CC=3)C[C@]1(O)C2(C)C)C)OCSC)C(=O)C1=CC=CC=C1 UBJAHGAUPNGZFF-XOVTVWCYSA-N 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 229950009017 cemadotin Drugs 0.000 description 1
- 108010046713 cemadotin Proteins 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 229940126086 compound 21 Drugs 0.000 description 1
- 229940126208 compound 22 Drugs 0.000 description 1
- 229940125846 compound 25 Drugs 0.000 description 1
- 229940125851 compound 27 Drugs 0.000 description 1
- 229940127204 compound 29 Drugs 0.000 description 1
- 229940125877 compound 31 Drugs 0.000 description 1
- 229940127573 compound 38 Drugs 0.000 description 1
- 229940126540 compound 41 Drugs 0.000 description 1
- 229940125844 compound 46 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 108010006226 cryptophycin Proteins 0.000 description 1
- PSNOPSMXOBPNNV-VVCTWANISA-N cryptophycin 1 Chemical compound C1=C(Cl)C(OC)=CC=C1C[C@@H]1C(=O)NC[C@@H](C)C(=O)O[C@@H](CC(C)C)C(=O)O[C@H]([C@H](C)[C@@H]2[C@H](O2)C=2C=CC=CC=2)C/C=C/C(=O)N1 PSNOPSMXOBPNNV-VVCTWANISA-N 0.000 description 1
- PSNOPSMXOBPNNV-UHFFFAOYSA-N cryptophycin-327 Natural products C1=C(Cl)C(OC)=CC=C1CC1C(=O)NCC(C)C(=O)OC(CC(C)C)C(=O)OC(C(C)C2C(O2)C=2C=CC=CC=2)CC=CC(=O)N1 PSNOPSMXOBPNNV-UHFFFAOYSA-N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 229960003603 decitabine Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 description 1
- 229930188854 dolastatin Natural products 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 229960004671 enzalutamide Drugs 0.000 description 1
- WXCXUHSOUPDCQV-UHFFFAOYSA-N enzalutamide Chemical compound C1=C(F)C(C(=O)NC)=CC=C1N1C(C)(C)C(=O)N(C=2C=C(C(C#N)=CC=2)C(F)(F)F)C1=S WXCXUHSOUPDCQV-UHFFFAOYSA-N 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- ZXDDITJXZPTHFE-BQYQJAHWSA-N ethyl (e)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-enoate Chemical compound CCOC(=O)\C=C\B1OC(C)(C)C(C)(C)O1 ZXDDITJXZPTHFE-BQYQJAHWSA-N 0.000 description 1
- JEFPWOBULVSOTM-PPHPATTJSA-N ethyl n-[(2s)-5-amino-2-methyl-3-phenyl-1,2-dihydropyrido[3,4-b]pyrazin-7-yl]carbamate;2-hydroxyethanesulfonic acid Chemical compound OCCS(O)(=O)=O.C=1([C@H](C)NC=2C=C(N=C(N)C=2N=1)NC(=O)OCC)C1=CC=CC=C1 JEFPWOBULVSOTM-PPHPATTJSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 1
- 229960004039 finasteride Drugs 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000011542 interferon-beta production Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 229950007056 liarozole Drugs 0.000 description 1
- UGFHIPBXIWJXNA-UHFFFAOYSA-N liarozole Chemical compound ClC1=CC=CC(C(C=2C=C3NC=NC3=CC=2)N2C=NC=C2)=C1 UGFHIPBXIWJXNA-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 229960003538 lonidamine Drugs 0.000 description 1
- WDRYRZXSPDWGEB-UHFFFAOYSA-N lonidamine Chemical compound C12=CC=CC=C2C(C(=O)O)=NN1CC1=CC=C(Cl)C=C1Cl WDRYRZXSPDWGEB-UHFFFAOYSA-N 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- PWSSOQNCOQRAIF-UBEDBUPSSA-N n-[3-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]triazolo[4,5-d]pyrimidin-7-yl]benzamide Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(NC(=O)C=3C=CC=CC=3)=C2N=N1 PWSSOQNCOQRAIF-UBEDBUPSSA-N 0.000 description 1
- QNPRMZLAAWKAPQ-GNECSJIWSA-N n-[9-[(2r,3r,4s,5r)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[tert-butyl(dimethyl)silyl]oxy-3-hydroxyoxolan-2-yl]purin-6-yl]benzamide Chemical compound C1=CC(OC)=CC=C1C(C=1C=CC(OC)=CC=1)(C=1C=CC=CC=1)OC[C@@H]1[C@@H](O[Si](C)(C)C(C)(C)C)[C@@H](O)[C@H](N2C3=NC=NC(NC(=O)C=4C=CC=CC=4)=C3N=C2)O1 QNPRMZLAAWKAPQ-GNECSJIWSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- IOMMMLWIABWRKL-WUTDNEBXSA-N nazartinib Chemical compound C1N(C(=O)/C=C/CN(C)C)CCCC[C@H]1N1C2=C(Cl)C=CC=C2N=C1NC(=O)C1=CC=NC(C)=C1 IOMMMLWIABWRKL-WUTDNEBXSA-N 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 229940099990 ogen Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- PIDFDZJZLOTZTM-KHVQSSSXSA-N ombitasvir Chemical compound COC(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)NC1=CC=C([C@H]2N([C@@H](CC2)C=2C=CC(NC(=O)[C@H]3N(CCC3)C(=O)[C@@H](NC(=O)OC)C(C)C)=CC=2)C=2C=CC(=CC=2)C(C)(C)C)C=C1 PIDFDZJZLOTZTM-KHVQSSSXSA-N 0.000 description 1
- 229950011093 onapristone Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229960002621 pembrolizumab Drugs 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229940115272 polyinosinic:polycytidylic acid Drugs 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 229950010550 resiquimod Drugs 0.000 description 1
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- OWPCHSCAPHNHAV-LMONGJCWSA-N rhizoxin Chemical compound C/C([C@H](OC)[C@@H](C)[C@@H]1C[C@H](O)[C@]2(C)O[C@@H]2/C=C/[C@@H](C)[C@]2([H])OC(=O)C[C@@](C2)(C[C@@H]2O[C@H]2C(=O)O1)[H])=C\C=C\C(\C)=C\C1=COC(C)=N1 OWPCHSCAPHNHAV-LMONGJCWSA-N 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- 229960002530 sargramostim Drugs 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229960003102 tasonermin Drugs 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000003970 toll like receptor agonist Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229950007217 tremelimumab Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 229950008737 vadimezan Drugs 0.000 description 1
- XGOYIMQSIKSOBS-UHFFFAOYSA-N vadimezan Chemical compound C1=CC=C2C(=O)C3=CC=C(C)C(C)=C3OC2=C1CC(O)=O XGOYIMQSIKSOBS-UHFFFAOYSA-N 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229960005212 vindesine sulfate Drugs 0.000 description 1
- 229960000922 vinflunine Drugs 0.000 description 1
- NMDYYWFGPIMTKO-HBVLKOHWSA-N vinflunine Chemical compound C([C@@](C1=C(C2=CC=CC=C2N1)C1)(C2=C(OC)C=C3N(C)[C@@H]4[C@@]5(C3=C2)CCN2CC=C[C@]([C@@H]52)([C@H]([C@]4(O)C(=O)OC)OC(C)=O)CC)C(=O)OC)[C@H]2C[C@@H](C(C)(F)F)CN1C2 NMDYYWFGPIMTKO-HBVLKOHWSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7084—Compounds having two nucleosides or nucleotides, e.g. nicotinamide-adenine dinucleotide, flavine-adenine dinucleotide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to cyclic di-nucleotide compounds containing tricyclic heterocycles as nucleobase and having the general Formula (I), (II) and (III) and their tautomeric forms, stereoisomers, pharmaceutically acceptable salts, and their combination with suitable medicament, corresponding processes for the synthesis and pharmaceutical compositions and uses of compounds containing the present invention.
- Stimulator of interferon genes is a signaling molecule that in humans is encoded by TMEM173 gene.
- STING is protein with 379 amino acids, consisting of several transmembrane regions. STING protein is expressed in several endothelial and epithelial cell types, as well as in haematopoietic lineage, such as T cells, dendritic cells (DCs) including plasmacytoid dendritic cells (pDCs) and macrophages.
- DCs dendritic cells
- pDCs plasmacytoid dendritic cells
- STING is associated with endoplasmic reticulum (ER) in the cell and has a major role in controlling the transcription of numerous host defence genes, including type I interferons (IFNs) and pro-inflammatory cytokines.
- IFNs type I interferons
- STING has been shown to undergo single nucleotide polymorphisms which gives rise to variants that have been characterized in humans: R71H-G230A-R293Q (HAQ), R232H, G230A-R293Q, R293Q and I200N (PLoS ONE 2013, 8(10): e77846; J Inflamm (Lond), 2017, 7, 14:11).
- Cytosolic DNA species can activate STING signaling following binding to cyclic GMP–AMP synthase (cGAS). Binding of cytosolic DNA to cGAS catalyses the production of a type of CDN known as cGAMP (cyclic GMP–AMP), which contains one 2 ⁇ ,5 ⁇ - phosphodiester linkage and a canonical 3 ⁇ ,5 ⁇ linkage (c[G(2 ⁇ ,5 ⁇ )pA(3 ⁇ ,5 ⁇ )p]). The binding of cGAMP and other bacterial CDNs induce changes in the conformation of STING protein and facilitates the binding of TANK-binding kinase 1 (TBK1).
- cGAMP cyclic GMP–AMP
- STING-TBK1 complex further transposes to perinuclear regions of the cell to transport TBK1 to endolysosomal compartments where it phosphorylates the transcription factors like, interferon regulatory factor 3 (IRF3).
- IRF3 interferon regulatory factor 3
- STAT6 and nuclear factor- ⁇ B also get activated downstream to STING activation.
- mice have shown that type I IFN signaling plays an important role in tumor-initiated T cell priming and tumor control (J. Exp. Med.2011, 208, 1989–2003).
- Mice lacking the IFN- ⁇ / ⁇ receptor in dendritic cells (DCs) failed to reject immunogenic tumors, and CD8 ⁇ + DCs from these mice are defective in antigen cross-presentation to CD8+ T cells.
- DCs dendritic cells
- Numerous studies have demonstrated that activation of the STING pathway in tumor-resident host APCs is required for induction of a spontaneous CD8+ T cell response against tumor-derived antigens in vivo (Immunity, 2014, 41, 830–842).
- TILs tumor-infiltrating lymphocytes
- STING activation partially contributing to the antitumor activity of chemotherapeutic agents as well as radiotherapy (Immunity, 2014, 41, 843–852). Further, STING activation and signaling has been discovered to be essential for protection against the development of cancer by promoting antitumor immune responses.
- STING mediated activation of innate immunity also primes promotes adaptive immune activation, enhanced systemic immune surveillance leading to abscopal effect, or the regression of distant, untreated tumors (J Immunother Cancer, 2014, 2(Suppl 3): P158).
- MDSCs myeloid derived suppressor cells
- STING activation is also known to effectively restrict the migration and metastasis of breast cancer and brain metastatic cancer via.
- NF- ⁇ B signaling induced cell death (Cancer Lett., 2017, 28, 402:203-212). So activation of STING represents a potential immunotherapy approach for cancer treatment.
- the present invention relates to compounds of general Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
- B1 and B2 are independently selected from formula (i)-(xviii) provided that at least one of B1 or B2 is selected from formula (i)-(vi)
- X is selected from the group consisting of CR or N ;
- Xb is -NR8c-
- Xc is selected from the group consisting of -O- or -S-;
- X1 and X2 are independently selected from the -O-, -C-, or -S-;
- X3 is selected from the group consisting of -O- , -S- , -OR9, and -SR9;
- X4 and X5 are selected from the group consisting of O or S;
- Y is selected from the group consisting of -O-, -S-, -C(R10)2-, and -CF2-;
- ring A is selected from substituted- or unsubstituted five to eight membered heterocycle or heteroaryl
- ring B is selected from substituted- or unsubstituted- aryl, substituted- or unsubstituted- five to six membered heteroaryl, substituted- or unsubstituted five to eight membered carbocycle, and substituted- or unsubstituted five to eight membered heterocycle;
- R1 and R1a are independently selected from hydrogen, perhaloalkyl, and substituted- or unsubstituted- alkyl;
- R6 and R6a are independently selected from hydrogen, halogen, -OR8b, perhaloalkyl, and substituted- or unsubstituted- alkyl;
- R8a is selected from substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, and substituted- or unsubstituted- heterocycle;
- R8b is selected from hydrogen, substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, substituted- or unsubstituted- heterocycle, or when two R8b groups are attached to the nitrogen atom they can form a substituted- or unsubstituted- heterocycle;
- R8c is selected from hydrogen, substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, and substituted- or unsubstituted- heterocycle;
- R9 is selected from hydrogen, and substituted- or unsubstituted- alkyl
- R10 is selected from hydrogen, substituted- or unsubstituted- alkyl, or two R10 groups together with the carbon atom to which they are attached form a substituted- or unsubstituted- carbocycle
- n is an integer selected from 1, 2, or 3;
- each R11 is independently selected from hydrogen, alkyl, and cycloalkyl
- each R11a is independently selected from alkyl, perhaloalkyl and cycloalkyl; R11b is selected from hydrogen, alkyl, perhaloalkyl, and cycloalkyl.
- the invention relates to a compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
- B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
- Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined above.
- the invention relates to a compound of Formula (I), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
- B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
- the invention relates to a compound of Formula (II), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
- B1 and B2 are independently selected from formula (i), (vii), and (viii) provided that at least one of B1 or B2 is formula (i) X5 is O;
- Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined above.
- the invention provides a compound of Formula (I), Formula (II) and Formula (III), or its pharmaceutically acceptable salt , wherein at least one of B1 or B2 are independently selected from
- the invention provides a compound of formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl.
- the invention provides a compound of formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R4, R4a or R5are hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl.
- the invention provides a compound of formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R1, R1a, R6 or R6a are hydrogen.
- R2a is hydrogen or halogen
- R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl
- R4, R4a or R5 are hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl
- R1, R1a, R6 or R6a are hydrogen and B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
- R2a is hydrogen or halogen
- R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl
- R4 or R4a are hydrogen, halogen, -OR8b, or substituted- or unsubstituted- alkyl
- R1, R1a, R6 or R6a are hydrogen and B1 and B2 are independently selected from formula (i), (vii), and (viii) provided that at least one of B1 or B2 is formula (i)
- w eren s ; a s– - or– - an s - c-, w eren c is hydrogen.
- the invention provides a compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug, wherein the compound is selected from: ’ ’
- the invention provides a compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug, wherein the compound is selected from:
- the present invention provides a pharmaceutical composition comprising a compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof and one or more of pharmaceutically acceptable excipients.
- the present invention provides a compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof for use in the treatment of a disease or condition in which activation of STING is beneficial.
- the present invention provides the use of a compound or pharmaceutical composition of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a disease or condition in which activation of STING is beneficial.
- the present invention provides a method of treatment of a disease or condition in which activation of STING is beneficial in a subject comprising administering a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
- the invention provides a method of treatment of disease or condition selected from cancer and infectious diseases, in a mammal in need thereof, which comprises administering to such mammal a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
- the invention provides a method of treatment of cancer such as solid tumors, leukemias and lymphomas.
- the invention provides a method of treatment of infectious diseases such as viral infection or bacterial infection.
- the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or its pharmaceutically acceptable salt thereof, and one or more additional therapies.
- the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof, and one or more additional therapies such as chemotherapy, immunotherapy or radiotherapy.
- the invention provides a vaccine adjuvant comprising a compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof.
- the invention provides a vaccine composition comprising compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof, and an antigen or antigen composition.
- DMOCP 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane-2-oxide
- the abbreviated monomers can be prepared using their respective protected mononers by methods known in the art.
- IUPAC names of the compounds were derived using ACD Labs name, software module: ACD name, version: 2017.2.1.
- a compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof for use in the treatment of a disease or condition in which activation of STING is beneficial.
- a method of the treatment of a disease or condition in which activation of STING is beneficial in a subject comprising administering a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
- the invention provides a method of treatment of disease or condition selected from cancer and infectious diseases, in a mammal in need thereof, which comprises administering to such mammal a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
- the invention provides a method of treatment cancer such as solid tumors, leukemias and lymphomas.
- the invention provides a method of treatment of infectious diseases such as viral infection or bacterial infection.
- solid tumors which may be treated with the compounds of present invention include, but are not limited to, breast cancer, pancreatic cancer, lung cancer, colon cancer, coloretal cancer, brain cancer, renal cancer, testicular cancer, cancer of urethra, rectal cancer, cancer of fallopian tubes, penile cancer, vaginal cancer, stomach cancer, skin cancer, melanoma, liver cancer, gastrointestinal stromal tumors, urothelial cancer, thyroid cancer, parathyroid gland cancer, adrenal cancer, bone cancer, oral cancer, ovarian cancer, uterine cancer, head and neck sqamous cell carcinoma, endometrial cancer, gall bladder cancer, bladder cancer, orophyrangeal cancer, lymph node cancer, glioblastoma, astrocytoma, glioblastoma multiforme or sarcomas of soft tissue, fibrosarcoma, chondrosarcoma, hemangioma
- leukemia which may be treated with the compounds of present invention include, but are not limited to Lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Acute lymphoblastic T cell leukemia, Acute myelobastic leukemia, Hairy-cell leukemia, Chronic neutrophilic leukemia, Mantle cell leukemia, Acute megakaryocytic leukemia, Multiple myeloma, Megakaryoblastic leukemia, Erythroleukemia, Plasmacytoma, Promyelocytic leukemia, Chronic myelomonocytic leukemia, Myelodysplastic syndrome, Myelofibrosis, Chronic myelogenous leukemia, Polycythemia vera, Thrombocythemia, Chronic lymphocytic leukemia, Prolymphocytic leukemia, Hairy cell leukemia, Waldenstrom's macroglobulinemia, Castleman's disease, Chronic neutrophilic leukemia, Immunoblastic large
- lymphoma which may be treated with the compounds of present invention include, but are not limited to, Hodgkin’s disease, non-Hodgkin’s lymphoma, Follicular lymphoma, Mantle cell lymphoma, Burkitt’s lymphoma, Lymphoblastic T-cell lymphoma, Marginal zone lymphoma, Cutaneous T cell lymphoma, CNS lymphoma, Small lymphocytic lymphoma, Lymphoplasmacytic lymphoma, Diffuse large B-cell lymphoma (DLBCL), Peripheral T-cell lymphoma, Anaplastic large cell lymphoma, Primary mediastinal lymphoma, Mycosis fungoides, Small non-cleaved cell lymphoma, Lymphoblastic lymphoma, Immunoblastic lymphoma, Primary effusion lymphoma and HIV associated (or AIDS related) lymphomas.
- Hodgkin’s disease non-Hodgkin’
- viral infection examples include, but are not limited to, human immune deficiency virus (HIV), Human papillomavirus(HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), Influenza (Orthomyxoviridae), Alphavirus, Rotavirus, Sendai, vaccinia, respiratory synctical virus, Lassa virus (Arenaviridae), Rabies virus (Rhabdoviridae), West nile virus, Dengue virus, Japanese encephalitis virus, and other Flaviviridae, RNA virus, DNA virus, virus belonging to the family of Alphaflexiviridae, Astroviridae, Alphatetraviridae, Alvernaviridae, Asfarviridae, Ampullaviridae, Adenoviridae, Ascoviridae, Betaflexiviridae, Bromoviridae, Barnaviridae, Bicaudaviridae.
- HCV human immune deficiency virus
- Baculoviridae Closteroviridae Closteroviridae, Caliciviridae, Carmotetraviridae, Clavaviridae, Corticoviridae, Dicistroviridae, Endornaviridae, Filoviridae, Globuloviridae, Guttaviridae, Geminiviridae, Hytrosaviridae, Leviviridae, Luteoviridae, Lipothrixviridae, Mesoniviridae, Marnaviridae, Metaviridae, Malacoherpesviridae, Nodaviridae, Nyamiviridae, Nimaviridae, Nanoviridae, Piconaviridae, Partitiviridae, Picobirnaviridae, Paramyxoviridae, Poxviridae, Pandoraviridae, Polymaviridae, Phycodnaviridae, Papillomaviridae, Polyd
- bacterial infection which may be treated with the compounds of present invention include, but are not limited to, infections caused by bacteria belonging to Brucella, Clostridium, Clostrodium, Campylobacter, Enterococcus, Fransicella, Listeria, Legionella, Mycobacteria, Pseudomonas, Salmonella, Staphylococcus, Yersinia genus.
- the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or its pharmaceutically acceptable salt thereof, and one or more additional therapies.
- the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof, and one or more additional therapies such as chemotherapy, immunotherapy or radiotherapy.
- Chemotherapy comprises administering one or more additional chemotherapeutic agents that may be used in combination with the compounds of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof.
- chemotherapeutic agents that may be used in combination includes topoisomerase II inhibitors, anti-tumor antibiotics, anti-metabolites, retinoids, antiviral agents, abiraterone acetate, altretamine, anhydrovinblastine, auristatin, bexarotene, bicalutamide, BMS 184476, 2,3,4,5,6- pentafluoro-N-(3-fluoro-4-methoxyphenyl)benzene sulfonamide, bleomycin, N,N- dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-proly- 1-Lproline-tbutylamide, cachectin, cemadotin, chlorambucil, cycl
- Immunotherapy comprises administering one or more additional immunostimulatory agents that may be used in combination with the compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof.
- Immunostimulatory agents that may be used in combination herein includes vaccine adjuvants, such as Toll-like receptor agonists, T-cell checkpoint blockers, CTLA4, PD-1, PD-L1, TIM3, OX40, LAG3, B7-H3, GITR, 4-1BB, ICOS, CD40 and KIR antibody.
- vaccine adjuvants such as Toll-like receptor agonists, T-cell checkpoint blockers, CTLA4, PD-1, PD-L1, TIM3, OX40, LAG3, B7-H3, GITR, 4-1BB, ICOS, CD40 and KIR antibody.
- CTLA-4 and PD-1 antagonists include, but are not limited to, ipilimumab, tremelimumab, nivolumab, pembrolizumab, CT-011, AMP-224, and MDX- 1106.
- the invention provides a vaccine adjuvant comprising a compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof.
- the invention provides a vaccine composition
- a vaccine composition comprising compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof, and an antigen or antigen composition.
- Antigens and adjuvants that may be used in combination with the compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof disclosed herein include B7 costimulatory molecule, interleukin-2, interferon- ⁇ , GM-CSF, CTLA-4 antagonists, OX-40 agonist, CD40 agonist, sargramostim, levamisol, vaccinia virus, Bacille Calmette-Guerin (BCG), liposomes, alum, Freund's complete or incomplete adjuvant, detoxified endotoxins, mineral oils, surface active substances such as lipolecithin, pluronic polyols, polyanions, peptides, and oil or hydrocarbon emulsions.
- BCG Bacille Calmette-Guerin
- Adjuvants such as aluminum hydroxide or aluminum phosphate
- Adjuvants can be added to increase the ability of the vaccine to trigger, enhance, or prolong an immune response.
- Additional materials such as cytokines, chemokines, and bacterial nucleic acid sequences, like CpG, a toll-like receptor (TLR) 9 agonist as well as additional agonists for TLR 2, TLR 4, TLR 5, TLR 7, TLR 8, TLR9, including lipoprotein, LPS, monophosphoryllipid A, lipoteichoic acid, imiquimod, resiquimod, and in addition retinoic acid- inducible gene I (RIG-I) agonists such as poly I:C, used separately or in combination with the described compositions are also potential adjuvants.
- TLR toll-like receptor
- compositions may be administered by a variety of means including non-parenterally, parenterally, by inhalation spray, topically, or rectally in formulations containing pharmaceutically acceptable carriers, adjuvants and vehicles.
- Intra-tumoral directly into the tumor mass
- peri-tumoral around the tumor mass
- administration of the compounds of the present invention can be defined as follows; however, the meaning stated should not be interpreted as limiting the scope of the term per se.
- alkyl refers to an alkane derived hydrocarbon radical that includes solely carbon and hydrogen atoms in the backbone, contains no unsaturation, has from one to six carbon atoms, and is attached to the remainder of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (isopropyl), n-butyl, n-pentyl, 1,1- dimethylethyl (t- butyl) and the like. Unless set forth or recited to the contrary, all alkyl groups described or claimed herein may be straight chain or branched, substituted or unsubstituted.
- alkenyl refers to a hydrocarbon radical containing from 2 to 10 carbon atoms and including at least one carbon-carbon double bond.
- alkenyl groups include ethenyl, 1-propenyl, 2-propenyl (allyl), iso-propenyl, 2-methyl-l- propenyl, 1-butenyl, 2-butenyl and the like. Unless set forth or recited to the contrary, all alkenyl groups described or claimed herein may be straight chain or branched, substituted or unsubstituted.
- alkynyl refers to a hydrocarbon radical containing 2 to 10 carbon atoms and including at least one carbon- carbon triple bond.
- Non- limiting examples of alkynyl groups include ethynyl, propynyl, butynyl and the like. Unless set forth or recited to the contrary, all alkynyl groups described or claimed herein may be straight chain or branched, substituted or unsubstituted.
- the term‘perhaloalkyl’, as used herein, means an alkyl group as defined hereinabove wherein all the hydrogen atoms of the said alkyl group are substituted with halogen.
- the perhaloalkyl group is exemplified by trifluoromethyl, pentafluoroethyl, and the like.
- cycloalkyl refers to a non-aromatic mono or multicyclic ring system having 3 to 12 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. Unless set forth or recited to the contrary, all cycloalkyl groups described or claimed herein may be substituted or unsubstituted.
- cycloalkenyl refers to a non-aromatic mono or multicyclic ring system having 3 to 12 carbon atoms and including at least one carbon-carbon double bond, such as cyclopentenyl, cyclohexenyl, cycloheptenyl and the like.
- aryl refers to a monovalent monocyclic, bicyclic or tricyclic aromatic hydrocarbon ring system. Examples of aryl groups include phenyl, naphthyl, anthracenyl, fluorenyl, indenyl, azulenyl, and the like.
- heteroaryl refers to a 5-14 membered monocyclic, bicyclic, or tricyclic ring system having 1-4 ring heteroatoms selected from O, N, or S, and the remainder ring atoms being carbon (with appropriate hydrogen atoms unless otherwise indicated), wherein at least one ring in the ring system is aromatic.
- heterocycle refers to substituted or unsubstituted non-aromatic 3- to 15- membered ring which consists of carbon atoms and with one or more (e.g., 2 or 3) heteroatom(s) independently selected from N, O or S.
- O divalent oxygen
- oxo attached to carbon forms a carbonyl
- oxo substituted on cyclohexane forms a cyclohexanone, and the like.
- the compounds of the present invention may have one or more chiral centers.
- the absolute stereochemistry at each chiral center may be‘R’ or‘S’.
- the compounds of the invention include all diastereomers and enantiomers and mixtures thereof. Unless specifically mentioned otherwise, reference to one stereoisomer applies to any of the possible stereoisomers. Whenever the stereoisomeric composition is unspecified, it is to be understood that all possible stereoisomers are included.
- stereoisomer refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures which are not interchangeable. The three-dimensional structures are called configurations.
- enantiomer refers to two stereoisomers whose molecules are nonsuperimposable mirror images of one another.
- chiral center refers to a carbon atom to which four different groups are attached.
- diastereomers refers to stereoisomers which are not enantiomers.
- racemate or “racemic mixture” refer to a mixture of equal parts of enantiomers.
- treating or “treatment” of a state, disease, disorder, condition or syndrome includes: (a) preventing or delaying the appearance of clinical symptoms of the state, disease, disorder, condition or syndrome developing in a subject that may be afflicted with or predisposed to the state, disease, disorder, condition or syndrome but does not yet experience or display clinical or subclinical symptoms of the state, disease, disorder, condition or syndrome; (b) inhibiting the state, disease, disorder, condition or syndrome, i.e., arresting or reducing the development of the disease or at least one clinical or subclinical symptom thereof; c) lessening the severity of a disease disorder or condition or at least one of its clinical or subclinical symptoms thereof; and/or (d) relieving the disease, i.e., causing regression of the state, disorder or condition or at least one of its clinical or subclinical symptoms.
- a “therapeutically effective amount” refers to the amount of a compound that, when administered to a subject in need thereof, is sufficient to cause a desired effect.
- the “therapeutically effective amount” will vary depending on the compound, the disease and its severity, age, weight, physical condition and responsiveness of the subject to be treated.
- Compounds disclosed herein and their tautomeric forms, stereoisomers, prodrugs may be prepared, for example, by techniques well known in the organic synthesis and familiar to a practitioner ordinarily skilled in art of this invention.
- the processes described herein may enable the synthesis of the compounds of the present invention. However, these may not be the only means by which the compounds described in the invention may be synthesized. Further, the various synthetic steps described herein may be performed in alternate sequences in order to furnish the desired compounds.
- Scheme 1 shows a method of preparation of the compound of the formula (5), (5a), (5b), (5c), and (7), wherein R3’ is -OTBS or -OCH3; R2a is H.
- the compound of the formula (11) is reacted with di-t-butylsilylbis(trifluoromethane sulfonate) and t-butyl dimethyl silyl chloride in presence of a suitable base such as imidazole, pyridine, dimethyl amino pyridine in a suitable solvent such as DMF, THF, DCM, chloroform, carbon tetrachloride to form a compound of formula (2).
- a suitable base such as imidazole, pyridine, dimethyl amino pyridine in a suitable solvent such as DMF, THF, DCM, chloroform, carbon tetrachloride
- the compound of formula (2) further reacted with 1-bromopropan-2-one in presence of sodium hydride in a suitable solvent such as DMSO, DMF to form a compound of formula (5b).
- a suitable solvent such as DMSO, DMF
- the compound of formula (5b) reacts with methyl iodide in presence of suitable base such as potassium carbonate and suitable solvent such as DMSO, DMF to form a compound of formula (5c).
- the compound of the formula (2) is reacted with 1, 1-dimethoxy-N,N- dimethylmethanamine in a suitable solvent such as methanol, dimethyl formamide, tetrahydrofuran, dichloromethane, chloroform, carbon tetrachloride to form a compound of formula (3) (wherein R3’ is -OTBS).
- a suitable solvent such as methanol, dimethyl formamide, tetrahydrofuran, dichloromethane, chloroform, carbon tetrachloride
- the compound of formula (3) further reacted with 2-(bromomethyl)-1,3-dioxolane or 2- (iodomethyl)-1,3-dioxolane in presence of a suitable base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane to form a compound of formula (4).
- a suitable base such as potassium carbonate, cesium carbonate
- suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane
- the compound of formula (4) further reacted with acetic acid or hydrochloric acid or trifluoroacetic acid in water or chlorinated solvent, to form a compound of formula (5).
- the compound of formula (3) is reacted with 3-bromopropane-1,2-diyl diacetate in presence of a suitable base such as potassium carbonate and a suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide to form a compound of formula (4a).
- a suitable base such as potassium carbonate
- a suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide
- the compound of formula (4a) further reacted with ammonia in methanol, to form a compound of formula (4a’).
- the compound of formula (4a’) reacted with sodium periodate in a suitable solvent such as acetonitrile, tetrahydrofuran or chlorinating solvents such as chloroform, dichloromethane followed by treatment with acetic acid to obtain the compound of formula (5).
- the compound of formula (5) reacts with methyl iodide in presence of suitable base such as potassium carbonate and suitable solvent
- Compound of formula (3) is reacted with ethyl bromoacetate in presence of a suitable a base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane to form a compound of formula (6).
- a suitable a base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane
- the compound of formula (6) reacted with ammonia in methanol or water, to form a compound of formula (7).
- the compound of the formula (2a) prepared as disclosed in Tetrahedron Letters 2016, vol 57, # 3, 268-271) is reacted with t-butyl dimethyl chlorosilane and in presence of a suitable base such as imidazole, pyridine or dimethyl amino pyridine to form a compound of formula (2b).
- a suitable base such as imidazole, pyridine or dimethyl amino pyridine
- the compound of the formula (2b) is reacted with 1, 1-dimethoxy-N,N- dimethylmethanamine in a suitable solvent such as methanol, dimethyl formamide, tetrahydrofuran, dichloromethane, chloroform, carbon tetrachloride to form a compound of formula (3a).
- the compound of formula (3a) is further reacted with 2-(bromomethyl)-1,3- dioxolane or 2-(iodomethyl)-1,3-dioxolane in presence of a suitable base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane to form a compound of formula (4b).
- a suitable base such as potassium carbonate, cesium carbonate
- suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane
- the compound of formula (4b) further reacted with trifluoroacetic acid acetic acid in the presence of chlorinated solvent dichloromethane to form a compound of formula (4c).
- the compound of formula (4c) reacts triethylamine trihydrogenfluoride (TEA.3HF) in presence of suitable solvent such as triethylamine and pyridine to form a compound of formula (4d).
- TEA.3HF triethylamine trihydrogenfluoride
- suitable solvent such as triethylamine and pyridine
- the compound of formula (4d) is reacted with 4,4'- (chloro(phenyl)methylene)bis(methoxybenzene) in the presence of suitable solvent such as pyridine to form a compound of formula (5d).
- the compound of the formula (2) is reacted with trimethyl silyl bromide and tert- butylnitrite in a suitable solvent such as dibromomethane to form a compound of formula (8).
- the compound of formula (8) is further reacted with hydrazine hydrate in presence of suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, water, ethanol to form a compound of formula (9).
- suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, water, ethanol.
- the compound of formula (9) further reacted with triethoxymethane or 1,1,1-triethoxyethane in dimethyl formamide, to form a compound of formula (10) [where R7– H, methyl]
- the compound of formula (8) is further reacted with (E)-ethyl 3-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)acrylate in presence of potassium phosphate, dibasic and Tetrakis(triphenylphosphine)palladium in suitable solvent(s) such as 1,4 dioxane and water, to form a compound of formula (8A).
- suitable solvent(s) such as 1,4 dioxane and water
- suitable solvent(s) such as 1,4 dioxane and water
- the compound of formula (8A) was treated with sodium borohydride and lithium borohydride in the presence of suitable solvent such as THF to form compound of formula (9A).
- the compound of formula (9A) was further reacted with triphenylphosphine and Diethyl azodicarboxylate (DEAD), in presence of suitable solvent such as THF to form a compound of formula (10A).
- the compound of the formula (11) is reacted with amino methyl hydrogen sulphate in presence of a base such as sodium hydroxide in water to form a compound of formula (12).
- the compound of the formula (12) is further reacted with di-t- butylsilylbis(trifluoromethanesulfonate) and t-butyldimethylchlorosilane in a suitable solvent such as dimethyl formamide in presence of a base such as imidazole to form a compound of formula (13).
- the compound of formula (13) is further reacted with formamide to form a compound of formula (14).
- Scheme 4 shows a method of preparation of the compound of the formula (18), when R3’is -OTBS.
- the compound of the formula (15) is reacted with di-t- butylsilylbis(trifluoromethanesulfonate) and t-butyldimethylchlorosilane in a suitable solvent such as dimethyl formamide in presence of a base such as imidazole to form a compound of formula (16).
- the compound of formula (16) is further reacted with hydrazine hydrate in suitable solvent such as methanol, ethanol, to form a compound of formula (17).
- the compound of formula (17) further reacted with triethyl orthoformate in presence of acid such as acetic acid to form a compound of formula (18).
- the compound of the formula (19) [prepared according to procedure reported in the European Journal of Organic Chemistry 2000, 12, (2315-2323)] is treated with dimethoxy trityl chloride (DMT-Cl) in presence of a base like pyridine to obtain the compound of formula (20).
- DMT-Cl dimethoxy trityl chloride
- the compound of formula (20) treated with t-butyl dimethyl silyl chloride in presence of a base such as pyridine to obtain the compounds of formula (21A) and (21B) after column purification.
- the compound of formula (21A) and (21B) can be converted to compound of formula (22A) and (22B) by reaction with phosphorus trichloride, 4- methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water.
- a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water.
- compound of formula (21A) and (21B) can be converted to compound of formula (22A) and (22B) by reaction with salicyl chlorophosphite (SalPCl) in a suitable solvent such as 1, 4-dioxane and a suitable base such as pyridine followed by treatment with dichloroacetic acid in dichloromethane and water.
- SalPCl salicyl chlorophosphite
- Step H When R3’ is -OTBS and R2a is H
- the compound of formula (23) is reacted with HF-Pyridine in a suitable solvent such as acetonitrile, tetrahydrofuran or chlorinating solvent such as chloroform, dichloromethane followed by treatment with dimethoxy trityl chloride (DMT-Cl) in presence of a base such as pyridine to obtain the compound of formula (24A).
- a suitable solvent such as acetonitrile, tetrahydrofuran or chlorinating solvent such as chloroform, dichloromethane
- DMT-Cl dimethoxy trityl chloride
- the compound of formula (24A) further treated with sodium bicarbonate (NaHCO3) (pH 9) to form a compound of formula (24B).
- NaHCO3 sodium bicarbonate
- the compound of formula (24A) and (24B) further converted to compound of formula (25A) and (25B) respectively by following similar method as described above in Scheme 5, for the conversion of compound of formula (
- the compound of formula (24A) and (24B) is reacted with 3-((chloro(diisopropylamino) phosphino)oxy)propanenitrile in presence of a base such as pyridine, imidazole, di- isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane to obtain the compound of formula (25C) and (25D) respectively.
- a base such as pyridine, imidazole, di- isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane
- a base such as pyridine, imidazole, di- isopropyl ethyl amine and 1-methyl imidazole
- solvent
- Step I When R3’is -OCH3 and R2a is H
- the compound of formula (23) is reacted with HF-Pyridine in a suitable solvent such as tetrahydrofuran or chlorinating solvent such as chloroform, dichloromethane in presence of a base such as pyridine to obtain the compound of formula (24C).
- a suitable solvent such as tetrahydrofuran or chlorinating solvent such as chloroform, dichloromethane in presence of a base such as pyridine
- the compound of formula (24D) is converted to compound of formula (25E) by reaction with phosphorus trichloride, 4-methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer (pH6).
- a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer (pH6).
- Step I When R3’is–H and R2a is F
- the compound of formula (24A) is converted to compound of formula (25F) by reaction with phosphorus trichloride, 4-methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer (pH6).
- a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer (pH6).
- Chem.2015, 80, 4835 ⁇ 4850] is reacted with 3-((chloro(diisopropylamino)phosphino)oxy)propanenitrile in presence of a base such as pyridine, imidazole, di-isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane to obtain the compound of formula (27).
- a base such as pyridine, imidazole, di-isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane
- solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane
- compound of formula (26) reacted with phosphorus trichloride, 4- methylmorpholine, and 1,2,4-triazole in a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water to form a compound of formula (27A).
- compound of formula (26) can be converted to compound of formula (27A) by reaction with salicyl chlorophosphite (SalPCl) in a suitable solvent such as 1, 4-dioxane and a suitable base such as pyridine followed by treatment with dichloroacetic acid in dichloromethane and water.
- the compound of formula (26) is reacted with 4-oxopentanoic anhydride in the presence of a base such as pyridine and solvent such as tetrahydrofuran or dichloromethane followed by N,N dimethyl amino pyridine to obtain the compound of formula (27B).
- a base such as pyridine
- solvent such as tetrahydrofuran or dichloromethane followed by N,N dimethyl amino pyridine
- the compound of formula (24B) is further reacted with triethylsilane in the presence of a solvent such as dichloromethane followed by dichloroacetic acid to form a compound of formula (27C).
- compound of the formula (26A) reacted with phosphorus trichloride, 4- methylmorpholine, and 1,2,4-triazole in a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water to form a compound of formula (27A’).
- a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water
- compound of formula (26A) can be converted to compound of formula (27A’) by reaction with salicyl chlorophosphite (SalPCl) in a suitable solvent such as 1, 4-dioxane and suitable a base such as pyridine followed by treatment with dichloroacetic acid in dichloromethane and water.
- SalPCl salicyl chlorophosphite
- activator such as 5-[3,5-bis(trifluoromethyl)phenyl]-1H-tetrazole (Activator 42) or pyridinium trifluoroacetate (Py.TFA) or 1-(cyanomethyl)pyrrolidin-1-ium trifluoromethanes
- DMOCP 2-chloro-5,5-dimethyl-1,3,2- dioxaphosphorinane-2-oxide
- the compound of formula (29A) can be form by reacting compound of formula (25C) and formula (27A) by following similar synthetic process as disclosed above for the conversion of compound of formula (25A) to compound of formula (29).
- the compound of the formula (29) and compound formula (29A) is reacted with solution of methylamine in alcohol or aqueous ammonia in methanol to obtain the compound of formula (30).
- solution of methylamine in alcohol or aqueous ammonia in methanol Preferably 30-35% solution of methyl amine in ethanol was used for the reaction at room temperature to 60°C.
- the compound of formula (30) was purified by preparative HPLC using triethyl ammonium acetate as a volatile buffer.
- the compound of the formula (31) as triethyl ammonium salt obtained is treated with aqueous sodium hydroxide on cation exchange resin to obtain the compounds of the formula (Ia) as di-sodium salt.
- the compound of formula (36) is further reacted with hydrazine hydrate in the presence of pyridine:acetic acid in suitable solvent such as acetonitrile, followed by addition of pentane-2,4-dione and aquoeus citric acid solution to form a compound of formula (37).
- the compound of formula (37) is converted to compound of formula (38) by reaction with phosphorus trichloride, 4-methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer in presence of acid such as dichloroacetic acid or acetic acid.
- a base such as pyridine
- activator such as
- DMOCP 2-chloro-5,5- dimethyl-1,3,2-dioxaphosphorinane-2-oxide
- diphenyl chlorophosphonate or pivaloyl chloride in presence of a base such as pyridine
- reaction mixture was cooled to 0-5 °C, and to this 3-((chloro(diisopropylamino)phosphino)oxy)propanenitrile (0.64 g, 2.71 mmol) was added in 5 minutes. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hrs. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (3 mL) and concentrated under reduced pressure to get crude sticky compound, which was purified by column chromatography. The desired product was eluted in 80 to 90% ethyl acetate in hexane to afford the title compound.
- Step-5 Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)- 5-(6-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- Step-4 1.1 g, 1.17 mmol was dissolved in acetonitrile (50 mL). To this solution were added water (0.04 mL, 2.34 mmol) and pyridinium trifluoroacetate (0.36 g, 1.87 mmol) and the resulting mixture was stirred for 15 minutes at room temperature.
- reaction mixture was cooled to 0-5 °C, and to this 3- ((chloro(diisopropylamino)phosphino)oxy)propanenitrile (6.61 g, 27.9 mmol) was added in 5 minutes. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hr. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (3 mL) and concentrated under reduced pressure to get crude sticky compound, which was purified by column chromatography. The desired product was eluted in 45 to 50% ethyl acetate in hexane to get title compound as off-white solid. [Yield: 12.10 gm (87%)]
- Step-7 Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(6-methyl-9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- Reaction mixture was stirred at room temperature for 16 hr.
- 5.5 M solution of t-butyl hydroperoxide (0.42 mL, 2.30 mmol) was added and stirred for 3 hrs at room temperature.
- Progress of reaction was monitored by TLC.
- the solution was filtered, and the molecular sieves were washed with dichloromethane (2 x 20 mL).
- the filtrate was concentrated under reduced pressure and co-evaporated with acetonitrile three times.
- the residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.32 mL) for 15 minutes at room temperature.
- Step-1 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-5,6-dimethyl- 3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
- the Compound 2 was prepared from Step-1 product (Example 2) according to the procedure (Step-3 to Step-11) analogous to those outlined in Example 1 above using appropriate monomers, described as preparations in the coupling step.
- Step-1 Synthesis of (E)-N'-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide
- reaction mixture was diluted by dichloromethane (100 mL) and washed with water (2 x 30 mL). Organic layer was separated, dried over sodium sulphate and evaporated to get crude product. The crude product is used without purification for step-2.
- Step-2 Synthesis of 3-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-((E)- ((dimethylamino)methylene)amino)-6-oxo-6,9-dihydro-1H-purin-1-yl)propane-1,2-diyl diacetate
- Step-4 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purin-9-one
- reaction mixture was diluted by dichloromethane (500 mL) and washed by water (2 x 200 mL). Organic layer was separated, dried over sodium sulphate and evaporated to get crude product. Reaction mass was passed through silica gel and eluted using 6-7% methanol in dichloromethane. The eluted mixture was concentrated under reduced pressure to obtain intermediate aldehyde.
- Step-5 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-5-methyl-3,5- dihydro-9H-imidazo[1,2-a]purin-9-one
- the Compound 3 was prepared from Step-5 product (Example 3) according to the procedure analogous to those outlined in Example 1 above using appropriate monomers, described as preparations in the coupling step.
- Step-1 Synthesis of (E)-N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((4aR,6R,7R,7aR)-2,2-di- tert-butyl-7-((tert-butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6- yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide
- Step-2 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purin-9-one
- Step-3 Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert-butyldimethylsilyl)oxy)-4- hydroxytetrahydrofuran-2-yl)-3H-imidazo[1,2-a]purin-9(5H)-one
- reaction mixture was stirred at 0 °C for 1 hr. Reaction mixture was quenched carefully with saturated sodium bicarbonate solution until neutral pH was attained and then extracted using ethyl acetate (3 x 50 mL). Organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude intermediate. Crude intermediate was dissolved in pyridine (50 mL) at 0 °C and 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene (3.02 g, 8.90 mmol) was added. The reaction mixture was stirred overnight at room temperature. Progress of the reaction was monitored by TLC.
- the aqueous layer was extracted with dichloromethane (3 x 20 mL), the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as a semisolid compound.
- the semisolid compound was treated with a 3% solution of dichloroacetic acid in dichloromethane (20 mL) and water (10 equivalent) for 15 min. Progress of reaction was monitored by TLC. The reaction was quenched with methanol (5 mL) and pyridine (5 mL). The solvents were removed in vacuum to get crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted in 25% methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product.
- Reaction mixture was stirred at room temperature for 16 hrs.
- 5.5 M solution of t-butyl hydroperoxide (0.30 mL, 1.64 mmol) was added and stirred for 3 hrs at room temperature.
- Progress of reaction was monitored by TLC.
- the solution was filtered and the molecular sieves were washed with dichloromethane (2 x 20 mL).
- the filtrate was concentrated under reduced pressure and co-evaporated thrice with acetonitrile.
- the residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.32 mL) for 15 minutes at room temperature.
- the reaction was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the residue, and the residue was purified by silica-gel column chromatography, using 15 to 60% methanol in dichloromethane as eluent to obtain the title compound.
- Step-7 product (0.45 g, 0.48 mmol) was co-evaporated in 10 mL dry acetonitrile, and to this (3.00 mL) dry pyridine was added and solution was heated to 50 °C and triethylamine trihydrofluoride (3.50 mL, 21.60 mmol) and triethylamine (6.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through c-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
- SOte Sp-1 S Ny N HntNhe Ns Nis N of O (2 NR N,3R y) phosphorroth N, iH4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethox oyl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo- 5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- Step-4A TBS deprotection of isolated peak 1 (Diastereomer 1) of step 3
- Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
- Step-4C TBS deprotection of isolated peak 3 (Diastereomer 3) of step 3
- Diastereomer 4 of step-3 (0.20 g, 0.20 mmol) was co-evaporated in dry acetonitrile (10 mL) and to this dry pyridine (3.0 mL) was added and solution was heated to 50 °C and triethylamine trihydrofluoride (1.53 mL, 9.38 mmol) and triethylamine (3.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Step-5D Synth Oesi Os of (2’, 3’)Cyclic-AIPM(PS)2 (Compound 8-Diastereomer 4)
- Step-1 Synthesis of 2-bromo-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethyl)
- reaction mixture was quenched slowly on vigorously stirred mixture of aqueous bicarbonate solution (300 mL) and dichloromethane (300 mL). Two layers were separated; aqueous layer was extracted with dichloromethane (1 x 200 mL). Combined organic layers were dried over sodium sulphate and concentrated under reduced pressure to get crude product; which was purified on flash using 35-45% ethyl acetate in hexane as eluent to afford desired product.
- Step-3 Synthesis of 8-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1,8-dihydro-5H-[1,2,4]triazolo[4,3- a] purin-5-one
- Step-1 Synthesis of ethyl (E)-3-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)acrylate.
- Step-1 Product of Example 6, 34.0 g, 56.5 mmol) in 1,4 dioxane (300 ml) was added (E)-ethyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (15.33 g, 67.8 mmol), Potassium Phosphate, dibasic (19.68 g, 113 mmol) and water (10 mL).
- Step-2 Synthesis of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-(3- hydroxypropyl)-1,9-dihydro-6H-purin-6-one.
- Step-3 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5,6,7- tetrahydro-9H-pyrrolo[1,2-a]purin-9-one.
- Step-4 Synthesis of 3-((2R,3R,4R,5R)-3-((tert-butyldimethylsilyl)oxy)-4-hydroxy-5- (hydroxymethyl)tetrahydrofuran-2-yl)-3,5,6,7-tetrahydro-9H-pyrrolo[1,2-a]purin-9-one.
- reaction mixture was stirred at 0 °C for 1 hr.
- Reaction mixture was quenched carefully with saturated aqueous sodium bicarbonate solution (up to neutral pH) and extracted using ethyl acetate (3 x 50 mL).
- Organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude residue.
- the residue was purified by column chromatography employing ethyl acetate in hexane as eluent. The title compound eluted in 90% ethyl acetate in hexane.
- Step-5 Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert-butyldimethylsilyl)oxy)-4- hydroxytetrahydrofuran-2-yl)-3,5,6,7-tetrahydro-9H-pyrrolo[1,2-a]purin-9-one.
- step-4 1.9 g, 4.50 mmol
- pyridine 30.0 mL
- 1-[chloro-(4-methoxyphenyl)- phenylmethyl]-4-methoxybenzene (1.52 g, 4.50 mmol).
- TLC TLC-(4-methoxyphenyl)- phenylmethyl]-4-methoxybenzene
- Step-6 Synthesis (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5- (9-oxo-5,6,7,9-tetrahydro-3H-pyrrolo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate.
- reaction was quenched by adding water (10 mL) and the solvent was evaporated under reduced pressure. Residue was diluted with ethyl acetate and washed with aqueous sodium bicarbonate solution (2 x 50 mL) and with brine (75 mL). The organic layer was dried over sodium sulphate filtered and concentrated to yield crude compound.
- Reaction mixture was stirred at room temperature for 16 hrs.
- 5.5 M solution of t-butyl hydroperoxide (0.27 mL, 1.53 mmol) was added and stirred for 3 hrs at room temperature.
- Progress of reaction was monitored by TLC.
- the solution was filtered, and the molecular sieves were washed with dichloromethane (2 x 20 mL).
- the filtrate was concentrated under reduced pressure and co-evaporated with acetonitrile three times.
- the residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL) in the presence of water (0.32 mL) for 15 minutes at room temperature.
- Step-6 product (0.12 g, 0.13 mmol) was co-evaporated in 10 mL dry acetonitrile, and to this (3.00 mL) dry pyridine was added and solution was heated to 50°C and triethylamine trihydrofluoride (1.35 mL, 13.10 mmol) and triethylamine (1.9 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50°C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mix was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt. [Yield- 0.06 gm]
- step-7 product (0.06 g) in 10 mL of deionized water was loaded in to the column.
- Column was eluted with 50 mL of deionized water; each 5 mL fractions were collected. The fractions those which show UV activity on TLC, were mixed and concentrated under reduced pressure to get the title compound as disodium salt.
- Step-1 Synthesis of 8-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3-methyl-1,8- dihydro-5H-[1,2,4]triazolo [4,3-a]purin-5-one
- Ote O O Pp- N1 Fa O O N S Ny Han2Nth Ne Os Nis OH of O (2R,3S,4S,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4-methoxy phenyl)(phenyl)methoxy)methyl)-4-fluorotetrahydrofuran-3-yl(2-cyanoethyl)diisopropyl phosphoramidite
- reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hrs. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (3 mL) and concentrated under reduced pressure to get crude sticky compound, which was purified by column chromatography. The desired product was eluted in 45 to 50% ethyl acetate in hexane to get title compound as off-white solid.
- Step-1 Synthesis of ethyl 2-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-(((E)- (dimethyl amino)methylene)amino)-6-oxo-6,9-dihydro-1H-purin-1-yl)acetate
- reaction mixture was stirred for 10 min, and then ethyl 2-bromoacetate (1.183 g, 7.08 mmol) was added to the reaction mixture.
- Reaction mixture was heated at 75 °C for 16 hrs. Progress of the reaction was monitored by TLC. Reaction was quenched by water (250 mL), resulting yellow solid was filtered and taken in dichloromethane (300 mL). Organic layer was washed with water (2 x 100 mL), separated organic layer was dried over sodium sulphate and evaporated to get crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted at 80% of ethyl acetate in hexane.
- Step-2 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purine-6,9(7H)-dione
- Example 13 was prepared from Step-2 product (Example 11) according to the procedure (Step-3 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
- Example 11 (2’, 3’) cyclic-AIPDMP (Compound 13)
- the Compound 14 was prepared from Step-2 product (Example 8) and commercially available (2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-2-((bis(4- methoxyphenyl)(phenyl)methoxy) methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropyl phosphoramidite, according to the procedure (Step-3 to Step-8) analogous to those outlined in Example 8 above using appropriate monomers, described as preparations in the coupling step.
- Step-1 Synthesis of 1,2-diamino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-1,9-dihydro-6H-purin-6-one
- Step-2 Synthesis of 1,2-diamino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethyl silyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1,9-dihydro-6H- purin-6-one
- Step-1 1,2 diamino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-1H-purin-6(9H)-one (Step-1, 15.0 g, 50.3 mmol) in dimethyl formamide (150 ml) was added di-t-butylsilylbis(trifluoromethanesulfonate) (19.69 mL, 60.4 mmol) in 15 minutes at 0 °C . The reaction mixture was stirred at 0 °C for 30 minutes.
- Step-3 Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- [1,2,4]triazolo[1,5-a]purin 9-one
- Step-2 1,2-diamino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)- one (Step-2, 15.0 g, 27.1 mmol) was dissolved in formamide (100 mL) and reaction mixture was stirred at 180°C for 2.5 hrs. Reaction mixture was cooled to room temperature, water (100 mL) was added and the reaction mixture was extracted with ethyl acetate (2 x 150 mL).
- Step-1 Synthesis of 6-chloro-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethyl silyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-9H-purine
- Step-2 Synthesis of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-hydrazinyl- 9H-purine
- Step-3 Synthesis of 7-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-7H-[1,2,4]triazolo[3,4-i]purine
- the Compound 16 was prepared from Step-3 product (Example 14) according to the procedure (Step-3 to Step-8) analogous to those outlined in Example 8 above using appropriate monomers, described as preparations in the coupling step.
- the Compound 17 was synthesized according to the procedure (Step-1 to Step-8) analogous to those outlined in Example 8 above using appropriate monomers, described as preparations in the coupling step.
- Step-1 Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxy methyl)- 2-(2-isobutyramido-6-oxo-1H-purin-9(6H)-yl)tetrahydrofuran-3-yl hydrogen phosphonate.
- Step-2 Synthesis of (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl) methoxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl) tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite.
- reaction mixture was cooled to 0-5 °C, and to this 3-((chloro(diisopropyl amino)phosphino)oxy)propanenitrile (3.31 g, 13.98 mmol) was added in 5 minutes. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hrs. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (10 mL) and concentrated under reduced pressure to get sticky compound which was purified by column chromatography. The desired product was eluted in 80% ethyl acetate in hexane. Fractions were concentrated to obtain title compound as white solid.
- reaction mixture was stirred at room temperature for 16 hrs.
- 2- phenylacetic dithioperoxyanhydride (2.84 g, 9.41 mmol) was added and the reaction mixture was stirred for another 2 hrs at room temperature.
- Progress of reaction was monitored by TLC.
- the reaction mixture was filtered, and the molecular sieves were washed with dichloromethane (2 x 50 mL).
- the filtrate was concentrated under reduced pressure and coevaporated three times with acetonitrile.
- the residue was treated with 10% dichloroacetic acid in dichloromethane (100 mL) in the presence of water (2 mL) for 15 minutes at room temperature.
- the reaction was quenched with solution of methanol (10 mL) in pyridine (10 mL). The solvents were removed under reduced pressure to get the residue.
- the crude product was purified using silica gel column chromatography, using 0- 100% ethyl acetate in hexane and then 20-60% methanol in dichloromethane as eluent to obtain the desired compound.
- Diastereomer 1 of step-5 (150 mg, 0.154 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (2 mL) and triethylamine (2 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (1.503 mL, 9.23 mmol). Reaction mixture was stirred at 50 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
- Step-6D TBS deprotection of isolated diastereomer 4 of step 5
- Step 7A Synthesis of (2’, 3’) cyclic-GIPM(PS)2 (Compound 18-Diastereomer 1)
- Step-1 Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)- 2-(6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- the compounds 22, 23 and 24 were prepared from Step-1 product (Example 17) according to the procedures (Step-2 to Step-7) analogous to those outlined in Example 16 above using appropriate monomer.
- Step-1 Synthesis of (2R,3R,5S)-2-(6-benzamido-9H-purin-9-yl)-5-((((((2R,3R,4R,5R)-4- ((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl)oxy)(2-cyanoethoxy)phosphorothioyl)oxy)methyl) tetrahydrofuran-3-yl hydrogen phosphonate
- the filtrate was concentrated under reduced pressure and co- evaporated three times with acetonitrile.
- the residue was treated with 10% dichloroacetic acid in dichloromethane (100 mL), in the presence of water (2 mL) for 15 minutes at room temperature.
- the red colored reaction mixture was quenched with methanol (10 mL) and pyridine (10 mL).
- the solvents were removed under reduced pressure to get the crude residue.
- the crude compound was purified by silica-gel column chromatography, using (20 - 100%) methanol in dichloromethane as eluent to obtain the title compound.
- Step 1 Synthesis of (2R,3R,4R,5R)-2-((((((2R,3S,4S,5R)-2-(6-benzamido-9H-purin-9- yl)-4-fluoro-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphorothioyl) oxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo- 5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- reaction mixture was stirred at room temperature for 16 hrs. Progress of reaction was monitored by TLC.
- 2-phenylacetic dithioperoxyanhydride (2.18 g, 7.21 mmol) in anhydrous pyridine (9.3 mL, 115 mmol) was added and the reaction mixture was stirred for another 2 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co- evaporated with acetonitrile (three times).
- Step-4A TBS deprotection of isolated peak 1 (Diastereomer 1) of step 3
- Diastereomer 1 of step-3 (0.030 g, 0.035 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this (2.00 mL) dry pyridine was added and the solution was heated to 60 °C and triethylamine trihydrofluoride (0.34 mL, 2.126 mmol) and triethylamine (2.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Diastereomer 2 of step 3 (0.050 g, 0.059 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this dry pyridine (2.0 mL) was added and solution was heated to 60 °C and triethylamine trihydrofluoride (0.577 mL, 3.54 mmol) and triethylamine (2.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Step-4C TBS deprotection of isolated peak 3 (Diastereomer 3) of step 3
- Diastereomer 3 of step 3 (0.050 g, 0.059 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this dry pyridine (2.0 mL) was added and solution was heated to 60 °C and triethylamine trihydrofluoride (0.577 mL, 3.54 mmol) and triethylamine (2.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Step-5B (2’, 3’) cyclic-3’- ⁇ FAIPM(PS)2 (Compound 29-Diastereomer 2)
- the compounds 31 and 32 were prepared from corresponding monomers according to the procedures analogous to those outlined in Example 19 above.
- Step-1 Synthesis of N-(3-((2R,3R,4S,5R)-5-((bis(4-methoxyphenyl)(phenyl) methoxy) methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl) benzamide:
- reaction mass was diluted with ethyl acetate (200 mL) and quenched with saturated aqueous solution of sodium bicarbonate (100 mL). Organic layer was washed with water and brine. Separated organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to obtain crude mass. Crude mass was purified by column chromatography using 10% methanol in dichloromethane to obtain title compound. (Yield: 11 g, 67.4 % yield).
- step-1 N-(3-((2R,3R,4S,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3H- [1,2,3]triazolo[4,5-d]pyrimidin-7-yl)benzamide (step-1, 11 g, 16.30 mmol) in pyridine (110 mL) was added imidazole (5.55 g, 82 mmol) followed by t-butyl dimethyl silyl chloride (2.95 g, 19.56 mmol) at room temperature and the reaction mixture was stirred for 16 hrs. The progress of the reaction was monitored by TLC.
- This compound is prepared from step 2 product by following analogous procedure of step 6 of example 1.
- the compounds 34 and 35 were synthesized by using appropriate monomers, (2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-2-((bis(4-methoxyphenyl) (phenyl) methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)tetrahydrofuran-3-yl(2-cyanoethyl) diisopropylphosphoramidite) (Prepared according to the procedure reported in the literature, Journal of Organic Chemistry, 1991 , vol.56, # 15 p.4608– 4615) and Step 4 product of example 4 by following analogous procedures (Step-1 to Step-5) those outlined in example 5.
- Step-1 Synthesis of 3-((2R,3R,4S,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-3- hydroxytetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
- reaction mixture was stirred at 0 °C for 1 hr. White solid separates out.
- reaction mixture was quenched carefully with saturated sodium bicarbonate solution (up to pH 9), and the basic reaction mixture was stirred for 2 hrs at room temperature.
- the solid was filtered.
- the filtered solid was dissolved in methanol in dichloromethane (1:1), dried over anhydrous sodium sulphate and evaporated under reduced pressure to obtain crude mass.
- reaction mixture was stirred at room temperature for 16 hrs. Progress of reaction was monitored by TLC. After 16 hrs, tert-butyl hydroperoxide (0.300 mL, 1.648 mmol) 5.5M was added to the reaction mixture and stirred for another 3 hrs. Progress of reaction was monitored by TLC. After completion, the solution was filtered through celite pad, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co- evaporated three times with acetonitrile. The residue was treated with 10% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.148 mL, 8.24 mmol) for 15 minutes at room temperature.
- the red coloured reaction mixture was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the crude residue.
- the crude compound was purified by silica-gel column chromatography, using 15 - 60% methanol in dichloromethane as eluent to obtain the title compound.
- e compoun was prepare rom corresponding monomers (Step 2 product of Example 16 and Step 2 product of Example 23) according to the procedures (Step 5 to Step 9) analogous to those outlined in Example 4.
- Step-1 (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl 4-oxopentanoate
- reaction mixture was stirred at 25 °C for 2 hour. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was diluted with ethyl acetate and then poured on water. The two layers were separated and the aqueous layer was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulphate and then concentrated under reduced pressure to obtain desired product in crude form which was directly used for further transformation without purification.
- Step-2 (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert-butyldimethylsilyl)oxy)- 5-(hydroxymethyl)tetrahydrofuran-3-yl 4-oxopentanoate
- reaction mixture was stirred at 25 °C for 30 minutes. The progress of the reaction was checked by TLC. Upon completion, the reaction mixture was diluted with dichloromethane and washed with water, organic layer was concentrated after drying over anhydrous sodium sulphate to obtain crude mass. The crude mass was purified by column chromatography employing ethyl acetate in hexane as eluent. The desired product eluted in 60-80% ethyl acetate in hexane. The fractions were collected and the solvent was removed under reduced pressure to obtain desired product. [Yield: 8.5 g, (76.50 %) over two steps].
- Step-3 Synthesis of 2-amino-9-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert- butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran-2-yl)-1,9-dihydro-6H-purin-6- one
- Step-7 Synthesis of 3-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5- (hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
- Step-8 Synthesis of 3-((2R,3S,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-fluoro-4-hydroxytetrahydrofuran-2-yl)-3,5- dihydro-9H-imidazo[1,2-a]purin-9-one
- Step-9 Synthesis of (2R,3R,4S,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 4-fluoro-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- the solution was stirred for 30 minutes at same temperature and then, upon completion, was neutralized by addtion of 1M triethylammoniumformate buffer solution (PH 6).
- the aqueous layer was extracted with dichloromethane, the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as semisolid compound.
- the semisolid crude compound was treated with 20% solution of dichloroacetic acid in dichloromethane (100 mL) and water (10.0 mL) for 15 min. Progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with solution of methanol (50 mL) and pyridine (50 mL). The solvents were removed in vacuo and the residue was triturated with methyltertbutylether, followed by acetonitrile to yield the title compound as crude solid.
- step 13 product 2.2 g, 2.314 mmol
- 33% methyl amine in ethanol 30 ml
- Progress of the reaction was monitored by LCMS.
- the volatiles were removed under reduced pressure.
- the obtained residue was triturated with acetonitrile to yield desired product as crude solid.
- Diastereomer 1 of step-14 (50 mg, 0.059 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (3 mL) and triethylamine (3 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (3 mL). The reaction mixture was stirred at 60 °C for 2 hour. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get desired compound as bis triethylammonium salt.
- Step 15C TBS deprotection of isolated diastereomer 3 of step 14
- Step 15D TBS deprotection of isolated diastereomer 4 of step 14
- Step 16C Synthesis of (2’, 3’) cyclic-A2’- ⁇ FIPM(PS)2 (Compound 40-Diastereomer 3)
- Step-1 Synthesis of (E)-N'-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-methoxytetrahydro- 4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N- dimethylformimidamide.
- Step-2 Synthesis of (E)-N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((4aR,6R,7R,7aR)-2,2-di- tert-butyl-7-methoxytetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro- 1H-purin-2-yl)-N,N-dimethylformimidamide.
- reaction mixture was stirred for 10 min, then added 2-(iodomethyl)-1, 3- dioxolane (20.05 mL, 169 mmol).
- the reaction mixture was heated at 75 °C for 12 hour. Progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with ice-cold water (1000 mL). Free solid precipitates out, which was filtered and the bed was washed with water (500 mL). The solid compound was dissolved in dichloromethane, dried over sodium sulphate and evaporated to get crude product. The crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted at 5% of methanol in dichloromethane.
- Step-3 Synthesis of 3-((4aR,6R,7R,7aS)-2,2-di-tert-butyl-7-methoxytetrahydro-4H- ,2-a]purin-9-one.
- Step-4 Synthesis of 3-((2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3- methoxytetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one.
- Step-5 Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-hydroxy-3-methoxytetrahydrofuran-2-yl)- 3,5-dihydro-9H-imidazo[1,2-a]purin-9-one.
- Step-6 Synthesis of (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 4-methoxy-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate.
- Step 1 (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)-5-(6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-3-yl (2- cyanoethyl) diisopropylphosphoramidite
- Step-1 Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethyl) phosphorothioyl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- the red coloured reaction mixture was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed in vacuo to get the residue.
- the crude product was purified using silica gel column chromatography, using 0-100% ethyl acetate in hexane and then 20-60% methanol in dichloromethane as eluent to obtain the desired compound.
- Step-2 Cyclization and oxidation of step 1 product
- step 2 product (step 2 product, 2.0 g, 1.818 mmol) was treated with 33% methylamine in ethanol (45 mL), and the resulting mixture was stirred at 60 °C in sealed tube for 3 hour. Progress of the reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 ⁇ m). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain two diastereomers
- Diastereomer 1 of step-3 (120 mg, 0.127 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (2 mL) and triethylamine (2 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (1.243 mL, 7.64 mmol). Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
- Step-4B TBS deprotection of isolated diastereomer 2 of step 3
- Step 5A (Compound 49-Diastereomer 1)
- Step-1 Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy) phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo [1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
- reaction mixture was stirred at room temperature for 16 hour. Progress of the reaction was monitored by TLC. After 16 hour, tert-butyl hydroperoxide (0.899 mL, 4.94 mmol) 5.5M was added to the reaction mixture and stirred for another 3 hour. Progress of the reaction was monitored by TLC. After completion, the solution was filtered through celite pad, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co-evaporated three times with acetonitrile. The residue was treated with 10% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.445 mL, 24.72 mmol) for 15 minutes at room temperature.
- the red colored reaction mixture was quenched with methanol (10 mL) and pyridine (10 mL). The solvents were removed under reduced pressure to get the crude residue.
- the crude compound was purified by silica-gel column chromatography, using 25-50 % methanol in dichloromethane as eluent to obtain the title compound.
- step 2 product (step 2 product, 1.3 g, 1.182 mmol) was treated with 33% methylamine in ethanol (45 mL), and the resulting mixture was stirred at 60 °C in sealed tube for 3 hrs. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 ⁇ m). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain two diastereomers
- Diastereomer 1 of step-3 (90 mg, 0.095 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (2 mL) and triethylamine (2 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (0.932 mL, 5.73 mmol). Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC.
- Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
- Step-4B TBS deprotection of isolated diastereomer 2 of step 3
- THP1-BlueTM ISG Invivogen, USA
- B16-BlueTM IFN- ⁇ / ⁇ Invivogen, USA
- SEAP-based reporter cell lines or HEK-293 cells overexpressing human or mouse STING coupled to Luciferase reporter.
- THP1-BlueTM ISG cells or B16-BlueTM IFN- ⁇ / ⁇ cells in 96 well plate were treated with varying concentrations of test and reference compounds and incubated at 37 ⁇ C with 5% CO2 for 18-20 hours. The control untreated cells were also set-up.
- the cell supernatant was tested for SEAP (Secreted Embryonic Alkaline Phosphatase) activity using the QuantiBlue substrate reagent (Invivogen, USA).
- SEAP Secreted Embryonic Alkaline Phosphatase
- the formation of blue coloured product was quantified by measuring absorbance at wavelength of 620 nm using PheraStar reader. Luciferase reporter activity was monitored using Bright- Glo (Promega, USA) or other suitable luciferase detection reagent and luminescence was estimated on Pherastar plate reader. The average of duplicate readouts for each data point was plotted in GraphPad Prism 6 against the concentration of test or reference compound to calculate EC50 value. The fold of SEAP induction or increase in luminescence at different data points was estimated against the un-stimulated cell control set.
- EC50 (effective concentration) was calculated using 4 parametric nonlinear regression (curve fit) and sigmoidal dose-response (variable slope) using Graph pad prism software. Human IFN ⁇ production was analysed in THP1-BlueTM ISG cells. Cells were treated for 5 h with various concentrations of the test compounds and fold induction of hIFN ⁇ in the supernatant was determined by ELISA (R&D systems).
- THP1 Blue cells Compounds with 1.1 to 5 fold activation @ 30 ⁇ M (THP1 Blue cells) are grouped under group A, compounds with 5.1 to 10 fold activation @ 30 ⁇ M (THP1 Blue cells) are grouped under group B, and compounds with 10.1 to 25 fold activation @ 30 ⁇ M (THP1 Blue cells) are grouped under group C.
- compounds of the present invention also activated the various hSTING variants viz. HAQ, H232, AQ and Q.
- Compounds 8, 22 and 35 showed a significant induction of hIFN ⁇ production in THP1- BlueTM ISG cells.
- Tumor volume was calculated by using the following formula:
- mice were randomized into treatment groups based on the tumor volume. Mice were administered with vehicle or the test article by intratumoral route (i.tu.) on defined days, e.g., Day-1, Day-3 and Day-5, and defined dose levels, e.g., 3, 10, 30, 50, 100 or 250 ⁇ g/mouse. Tumor sizes were measured with Vernier caliper twice weekly and body weights of mice were recorded daily.
- % TGI Percent tumor growth inhibition
- Tf and Ti are the final and initial test tumor volumes
- Cf and Ci are the final and initial control mean tumor volumes, respectively.
- % TR Percent Tumor Regression
- % TR [(Initial T.V. - Final T.V.)/(Initial T.V.)] ⁇ 100
- Compounds 8, 22 and 35 showed greater than 95% tumor regression with 50 microgram per mouse dose in 4T1 murine breast cancer allograft model.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Genetics & Genomics (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to cyclic di-nucleotide compounds containing tricyclic heterocycles as nucleobase and having the general Formula (I), (II) and (III) and their tautomeric forms, stereoisomers, pharmaceutically acceptable salts, and their combination with suitable medicament, corresponding processes for the synthesis and pharmaceutical compositions and uses of compounds containing the present invention.
Description
CYCLIC DI-NUCLEOTIDE COMPOUNDS WITH TRICYCLIC NUCLEOBASES FIELD OF THE INVENTION
The present invention relates to cyclic di-nucleotide compounds containing tricyclic heterocycles as nucleobase and having the general Formula (I), (II) and (III) and their tautomeric forms, stereoisomers, pharmaceutically acceptable salts, and their combination with suitable medicament, corresponding processes for the synthesis and pharmaceutical compositions and uses of compounds containing the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONS The present application claims the benefit of Indian Provisional Patent Application Nos. 201721015016 filed on April 27, 2017, 201721026067 filed on July 21, 2017, and 201821003447 filed on January 30, 2018, the disclosure of which are incorporated herein by reference in their entirety for all purposes.
BACKGROUND OF THE INVENTION
Stimulator of interferon genes (STING, also known as transmembrane protein 173/ TMEM173/MPYS/MITA/ERIS) is a signaling molecule that in humans is encoded by TMEM173 gene. STING is protein with 379 amino acids, consisting of several transmembrane regions. STING protein is expressed in several endothelial and epithelial cell types, as well as in haematopoietic lineage, such as T cells, dendritic cells (DCs) including plasmacytoid dendritic cells (pDCs) and macrophages. STING is associated with endoplasmic reticulum (ER) in the cell and has a major role in controlling the transcription of numerous host defence genes, including type I interferons (IFNs) and pro-inflammatory cytokines. STING has been shown to undergo single nucleotide polymorphisms which gives rise to variants that have been characterized in humans: R71H-G230A-R293Q (HAQ), R232H, G230A-R293Q, R293Q and I200N (PLoS ONE 2013, 8(10): e77846; J Inflamm (Lond), 2017, 7, 14:11).
Cytosolic DNA species can activate STING signaling following binding to cyclic GMP–AMP synthase (cGAS). Binding of cytosolic DNA to cGAS catalyses the production of a type of CDN known as cGAMP (cyclic GMP–AMP), which contains one 2ʹ,5ʹ-
phosphodiester linkage and a canonical 3ʹ,5ʹ linkage (c[G(2ʹ,5ʹ)pA(3ʹ,5ʹ)p]). The binding of cGAMP and other bacterial CDNs induce changes in the conformation of STING protein and facilitates the binding of TANK-binding kinase 1 (TBK1). STING-TBK1 complex, further transposes to perinuclear regions of the cell to transport TBK1 to endolysosomal compartments where it phosphorylates the transcription factors like, interferon regulatory factor 3 (IRF3). Similarly, STAT6 and nuclear factor-κB (NF-κB) also get activated downstream to STING activation. These transcription factors then translocate into the nucleus to initiate innate immune gene transcription and production of type I IFN and other cytokines. (Nature Reviews Immunol, 2015, 15, 760-770; Cell Reports, 2015, 11, 1018– 1030).
Studies in mice have shown that type I IFN signaling plays an important role in tumor-initiated T cell priming and tumor control (J. Exp. Med.2011, 208, 1989–2003). Mice lacking the IFN-α/β receptor in dendritic cells (DCs) failed to reject immunogenic tumors, and CD8α+ DCs from these mice are defective in antigen cross-presentation to CD8+ T cells. (Cancer Res.2009, 69, 3077–3085.). Numerous studies have demonstrated that activation of the STING pathway in tumor-resident host APCs is required for induction of a spontaneous CD8+ T cell response against tumor-derived antigens in vivo (Immunity, 2014, 41, 830–842). Extensive evidence directs that the tumor-infiltrating lymphocytes (TILs) are correlated with favorable prediction in diverse malignancies (J. Transl. Med. 2012, 10, 205) and predicts a positive clinical outcome in response to several immunotherapy strategies (Cancer J. 2012, 18, 153–159). STING activation partially contributing to the antitumor activity of chemotherapeutic agents as well as radiotherapy (Immunity, 2014, 41, 843–852). Further, STING activation and signaling has been discovered to be essential for protection against the development of cancer by promoting antitumor immune responses. STING mediated activation of innate immunity also primes promotes adaptive immune activation, enhanced systemic immune surveillance leading to abscopal effect, or the regression of distant, untreated tumors (J Immunother Cancer, 2014, 2(Suppl 3): P158). Studies suggest the potential role of STING in elimination of metastatic tumors, through mechanisms independent of CD8+T cell response, by induction of caspase- 3, decreasing myeloid derived suppressor cells (MDSCs) and upregulation of IL-12 expression. Further, STING activation is also known to effectively restrict the migration
and metastasis of breast cancer and brain metastatic cancer via. NF- βB signaling induced cell death (Cancer Lett., 2017, 28, 402:203-212). So activation of STING represents a potential immunotherapy approach for cancer treatment.
Studies have shown that direct intra-tumoral injection (I.Tu.) of modified CDNs into established B16F10 melanoma, CT26 colon, and 4T1 breast carcinomas resulted in rapid and significant tumor regression and long lasting systemic anti-tumor immunity. So, activation of the STING pathway in the TME by specific agonists might be an effective therapeutic strategy to promote broad tumor-initiated T cell priming and thereby treatment of cancer. (J. Immunol.2013, 190, 5216–5225; Cell Rep.2015, 19, 11(7), 1018-30). Parallel to the direct anticancer mechanism, STING activation also leads to induction of several antiviral genes which include IFN-β and several interferon stimulated genes (ISGs). Ablation of STING in murine embryonic fibroblasts made them susceptible to negative-stranded virus infection, including vesicular stomatitis virus. The first generation mouse STING agonist DMXAA shown to be effective in multiple in-vivo viral models like HBV (hepatitis B virus) DNA Hydrodynamic Mouse Model, Chikungunya virus, H1N1 PR8 influenza strain indicating the utility of STING agonist as antiviral agent against multiple viral infections. (Nature, 2008, 455, 674-678; PLoS Pathog.2015, 11, 12; Antimicrob. Agents Chemother.2015, 59, 21273-1281; J Leukocyte Bio.2011, 89, 3351- 357).
U.S. Patent. Nos. 7,592,326, 7,291,465 and 7,569,555, International publication numbers WO 2014/189805, WO 2014/093936, WO 2014/179335, WO 2015/077354, WO 2015/185565, WO 2016/120305, WO 2016/96174, WO 2017/027646, WO2017/093933, WO2017/0106740, WO2017/075477 and Elie J. Diner et.al; Cell Reports (2013), 3(5), 1355-1361 discloses cyclic dinucleotides (CDNs) compound and their analogs.
The compounds of present invention having STING modulator activity are described herein.
SUMMARY OF THE INVENTION
The present invention relates to compounds of general Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
wherein,
B1 and B2 are independently selected from formula (i)-(xviii) provided that at least one of B1 or B2 is selected from formula (i)-(vi)
X is selected from the group consisting of CR or N ;
Xb is -NR8c-;
Xc is selected from the group consisting of -O- or -S-;
X1 and X2 are independently selected from the -O-, -C-, or -S-;
X3 is selected from the group consisting of -O- , -S- , -OR9, and -SR9;
X4 and X5 are selected from the group consisting of O or S;
Y is selected from the group consisting of -O-, -S-, -C(R10)2-, and -CF2-;
ring A is selected from substituted- or unsubstituted five to eight membered heterocycle or heteroaryl;
ring B is selected from substituted- or unsubstituted- aryl, substituted- or unsubstituted- five to six membered heteroaryl, substituted- or unsubstituted five to eight membered carbocycle, and substituted- or unsubstituted five to eight membered heterocycle;
R1 and R1a are independently selected from hydrogen, perhaloalkyl, and substituted- or unsubstituted- alkyl;
R2, R2a and R3 are independently selected from hydrogen, halogen, -OTBS, -OR8b, - OC(=O)R8a, perhaloalkyl, and substituted- or unsubstituted- alkyl;
R4, R4a and R5 are independently selected from hydrogen, halogen, -OTBS, -OR8b, - OC(=O)R8a, perhaloalkyl, and substituted- or unsubstituted- alkyl;
R6 and R6a are independently selected from hydrogen, halogen, -OR8b, perhaloalkyl, and substituted- or unsubstituted- alkyl;
when R7 is substitution on carbocycle and heterocycle it is selected from hydrogen, halogen, oxo (=O), perhaloalkyl, substituted- or unsubstituted- alkyl, -OR8b, -SR8b, - C(=O)OR8b, -C(=O)N(R8b)2, -NR8bC(=O)R8a, and -N(R8b)2;
when R7 is substitution on aryl and heteroaryl it is selected from hydrogen, halogen, perhaloalkyl, substituted- or unsubstituted- alkyl, -OR8b, -SR8b, -C(=O)OR8b, - C(=O)N(R8b)2, -NR8bC(=O)R8a, and -N(R8b)2;
R8a is selected from substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, and substituted- or unsubstituted- heterocycle;
R8b is selected from hydrogen, substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, substituted- or unsubstituted- heterocycle, or when two R8b groups are attached to the nitrogen atom they can form a substituted- or unsubstituted- heterocycle;
R8c is selected from hydrogen, substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, and substituted- or unsubstituted- heterocycle;
R9 is selected from hydrogen, and substituted- or unsubstituted- alkyl;
R10 is selected from hydrogen, substituted- or unsubstituted- alkyl, or two R10 groups together with the carbon atom to which they are attached form a substituted- or unsubstituted- carbocycle;
n is an integer selected from 1, 2, or 3;
when‘alkyl’ is substituted, it is substituted with 1 to 4 substituents independently selected from oxo (=O), halogen, perhaloalkyl, cycloalkyl, substituted- or unsubstituted- aryl, - OR11b, -SO2R11a, -C(=O)OR11b, -OC(=O)R11a, -OC(=O)OR11a ,-C(=O)N(H)R11, - C(=O)N(alkyl)R11, -N(H)C(=O)R11a, -N(H)R11, and -N(alkyl)R11;
when‘carbocycle’ or‘cycloalkyl’ is substituted, it is substituted with 1 to 4 substituents independently selected from oxo (=O), halogen, alkyl, perhaloalkyl, -OR11b, -C(=O)OR11b, -OC(=O)R11a, -C(=O)N(H)R11, -C(=O)N(alkyl)R11, -N(H)C(=O)R11a, -N(H)R11, and - N(alkyl)R11;
when‘heterocycle’ is substituted, it is substituted with 1 to 4 substituents independently selected from oxo (=O), halogen, alkyl, perhaloalkyl, -OR11b, -C(=O)OR11b, -OC(=O)R11a, -C(=O)N(H)R11, -C(=O)N(alkyl)R11, -N(H)C(=O)R11a, -N(H)R11, and -N(alkyl)R11; when the‘aryl’ group is substituted, it is substituted with 1 to 4 substituents selected from halogen, alkyl, perhaloalkyl, cycloalkyl, -O-alkyl, -O-perhaloalkyl, -O-C(=O)-aryl, - N(alkyl)alkyl, -N(H)alkyl, -NH2, -N(alkyl)C(=O)alkyl, -N(H)C(=O)alkyl, - C(=O)N(alkyl)alkyl, -C(=O)N(H)alkyl, -C(=O)NH2, -SO2N(alkyl)alkyl, -SO2N(H)alkyl, - SO2NH2, -C(=O)OH, -C(=O)-alkyl, and -C(=O)O-alkyl;
when the‘heteroaryl’ group is substituted, it is substituted with 1 to 4 substituents selected from halogen, alkyl, perhaloalkyl, cycloalkyl, -O-alkyl, O-perhaloalkyl, -N(alkyl)alkyl, - N(H)alkyl, -NH2, -N(alkyl)C(=O)alkyl, -N(H)C(=O)alkyl, -C(=O)N(alkyl)alkyl, - C(=O)N(H)alkyl, -C(=O)NH2, -SO2N(alkyl)alkyl, -SO2N(H)alkyl, -SO2NH2, -C(=O)OH, - C(=O)-alkyl, and -C(=O)O-alkyl;
each R11 is independently selected from hydrogen, alkyl, and cycloalkyl;
each R11a is independently selected from alkyl, perhaloalkyl and cycloalkyl;
R11b is selected from hydrogen, alkyl, perhaloalkyl, and cycloalkyl.
According to another embodiment, the invention relates to a compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
wherein,
B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined above.
According to another embodiment, the invention relates to a compound of Formula (I), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
According to another embodiment, the invention relates to a compound of Formula (II), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
wherein,
B1 and B2 are independently selected from formula (i), (vii), and (viii) provided that at least one of B1 or B2 is formula (i)
X5 is O;
Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined above.
According to another embodiment,the invention provides a compound of Formula (I), Formula (II) and Formula (III), or its pharmaceutically acceptable salt , wherein at least one of B1 or B2 are independently selected from
g p p n o formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R2a is hydrogen or halogen.
According to another embodiment, the invention provides a compound of formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl.
According to another embodiment, the invention provides a compound of formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R4, R4a or R5are hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl.
According to another embodiment, the invention provides a compound of formula (I), (II) and (III), or its pharmaceutically acceptable salt, wherein R1, R1a, R6 or R6a are hydrogen.
According to another embodiment, there are provided compounds of formula (I) in which R2a is hydrogen or halogen; R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl; R4, R4a or R5are hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl; R1, R1a, R6 or R6a are hydrogen and B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
According to another embodiment, there are provided compounds of formula (II) in which R2a is hydrogen or halogen; R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl; R4 or R4a are hydrogen, halogen, -OR8b, or substituted- or unsubstituted- alkyl; R1, R1a, R6 or R6a are hydrogen and B1 and B2 are independently selected from formula (i), (vii), and (viii) provided that at least one of B1 or B2 is formula (i)
w eren s ; a s– - or– - an s - c-, w eren c is hydrogen.
In another embodiment, the invention provides a compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug, wherein the compound is selected from:
’ ’
In another embodiment, the invention provides a compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug, wherein the compound is selected from:
m n r r A r i in hrin mnl r
In a further embodiment, the present invention provides a pharmaceutical composition comprising a compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof and one or more of pharmaceutically acceptable excipients.
In a further embodiment, the present invention provides a compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof for use in the treatment of a disease or condition in which activation of STING is beneficial.
In a further embodiment, the present invention provides the use of a compound or pharmaceutical composition of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a disease or condition in which activation of STING is beneficial.
In a further embodiment, the present invention provides a method of treatment of a disease or condition in which activation of STING is beneficial in a subject comprising administering a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
In a further embodiment, the invention provides a method of treatment of disease or condition selected from cancer and infectious diseases, in a mammal in need thereof, which comprises administering to such mammal a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
In a further embodiment, the invention provides a method of treatment of cancer such as solid tumors, leukemias and lymphomas.
In a further embodiment, the invention provides a method of treatment of infectious diseases such as viral infection or bacterial infection.
In a further embodiment, the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or its pharmaceutically acceptable salt thereof, and one or more additional therapies.
In a further embodiment, the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof, and one or more additional therapies such as chemotherapy, immunotherapy or radiotherapy.
In a further embodiment, the invention provides a vaccine adjuvant comprising a compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof.
In a further embodiment, the invention provides a vaccine composition comprising compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof, and an antigen or antigen composition.
Detailed Description of the Invention
Abbreviations:
Structure Name Abbreviation
3-((2R,3R,4S,5R)-3,4-dihydroxy-5- 6-MIP (hydroxymethyl)tetrahydrofuran-2-yl)-6- methyl-3,5-dihydro-9H-imidazo[1,2-a]purin- 9-one 3-((2R,3R,4S,5R)-3,4-dihydroxy-5- 5,6-DMIP HO (hydroxymethyl)tetrahydrofuran-2-yl)-5,6- dimethyl-3,5-dihydro-9H-imidazo[1,2- a]purin-9-on
OH O O NH N O N N NH 3-((2R,3R,4S,5R)-3,4-dihydroxy-5- 5-MIP
(hydroxymethyl)tetrahydrofuran-2-yl)-5- methyl-3,5-dihydro-9H-imidazo[1,2-a]purin- 9-one
3-((2R,3R,4S,5R)-3,4-dihydroxy-5- IP (hydroxymethyl)tetrahydrofuran-2-yl)-3,5- dihydro-9H-imidazo[1,2-a]purin-9-one
8-((2R,3R,4S,5R)-3,4-dihydroxy-5- TP (hydroxymethyl)tetrahydrofuran-2-yl)-1,8- dihydro-5H-[1,2,4]triazolo[4,3-a]purin-5-one 8-((2R,3R,4S,5R)-3,4-dihydroxy-5- 3-MTP (hydroxymethyl)tetrahydrofuran-2-yl)-3-
MP: Mono-Phosphate
M(PS): Mono-Phosphorothioate DMT: dimethoxy trityl
TBS: t-butyl dimethyl silyl
DMOCP: 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane-2-oxide
DCA: dichloroacetic acid
Py.TFA: pyridinium trifluoroacetate
HF-Pyridine: Hydrogen fluoride pyridine
DMF: Dimethyl formamide
THF: Tetrahydrofuran
DCM: Dichloromethane
DMSO: Dimethylsulfoxide
The abbreviated monomers can be prepared using their respective protected mononers by methods known in the art.
IUPAC names of the compounds were derived using ACD Labs name, software module: ACD name, version: 2017.2.1.
In a further aspect, of the present invention, there is provided a compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof for use in the treatment of a disease or condition in which activation of STING is beneficial.
In a further aspect of the present invention, there is provided the use of a compound or pharmaceutical composition of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for use in the treatment of a disease or condition in which activation of STING is beneficial.
In a further aspect of the present invention, there is provided a method of the treatment of a disease or condition in which activation of STING is beneficial in a subject comprising administering a therapeutically effective amount of a compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
In a further aspect the invention provides a method of treatment of disease or condition selected from cancer and infectious diseases, in a mammal in need thereof, which comprises administering to such mammal a therapeutically effective amount of a compound
of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof.
In a further aspect the invention provides a method of treatment cancer such as solid tumors, leukemias and lymphomas.
In a further aspect the invention provides a method of treatment of infectious diseases such as viral infection or bacterial infection. Examples of solid tumors which may be treated with the compounds of present invention include, but are not limited to, breast cancer, pancreatic cancer, lung cancer, colon cancer, coloretal cancer, brain cancer, renal cancer, testicular cancer, cancer of urethra, rectal cancer, cancer of fallopian tubes, penile cancer, vaginal cancer, stomach cancer, skin cancer, melanoma, liver cancer, gastrointestinal stromal tumors, urothelial cancer, thyroid cancer, parathyroid gland cancer, adrenal cancer, bone cancer, oral cancer, ovarian cancer, uterine cancer, head and neck sqamous cell carcinoma, endometrial cancer, gall bladder cancer, bladder cancer, orophyrangeal cancer, lymph node cancer, glioblastoma, astrocytoma, glioblastoma multiforme or sarcomas of soft tissue, fibrosarcoma, chondrosarcoma, hemangioma, teratoma, lipoma, myxoma, fibroma, rhabdomyoma, teratoma, cholangiocarcinoma, Ewing’s sarcoma. Examples of leukemia, which may be treated with the compounds of present invention include, but are not limited to Lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Acute lymphoblastic T cell leukemia, Acute myelobastic leukemia, Hairy-cell leukemia, Chronic neutrophilic leukemia, Mantle cell leukemia, Acute megakaryocytic leukemia, Multiple myeloma, Megakaryoblastic leukemia, Erythroleukemia, Plasmacytoma, Promyelocytic leukemia, Chronic myelomonocytic leukemia, Myelodysplastic syndrome, Myelofibrosis, Chronic myelogenous leukemia, Polycythemia vera, Thrombocythemia, Chronic lymphocytic leukemia, Prolymphocytic leukemia, Hairy cell leukemia, Waldenstrom's macroglobulinemia, Castleman's disease, Chronic neutrophilic leukemia, Immunoblastic large cell leukemia, Plasmacytoma, and Leukemias in any other parts of body.
Examples of lymphoma, which may be treated with the compounds of present invention include, but are not limited to, Hodgkin’s disease, non-Hodgkin’s lymphoma, Follicular lymphoma, Mantle cell lymphoma, Burkitt’s lymphoma, Lymphoblastic T-cell lymphoma, Marginal zone lymphoma, Cutaneous T cell lymphoma, CNS lymphoma, Small lymphocytic lymphoma, Lymphoplasmacytic lymphoma, Diffuse large B-cell lymphoma (DLBCL), Peripheral T-cell lymphoma, Anaplastic large cell lymphoma, Primary mediastinal lymphoma, Mycosis fungoides, Small non-cleaved cell lymphoma, Lymphoblastic lymphoma, Immunoblastic lymphoma, Primary effusion lymphoma and HIV associated (or AIDS related) lymphomas. Examples of viral infection which may be treated with the compounds of present invention include, but are not limited to, human immune deficiency virus (HIV), Human papillomavirus(HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), Influenza (Orthomyxoviridae), Alphavirus, Rotavirus, Sendai, vaccinia, respiratory synctical virus, Lassa virus (Arenaviridae), Rabies virus (Rhabdoviridae), West nile virus, Dengue virus, Japanese encephalitis virus, and other Flaviviridae, RNA virus, DNA virus, virus belonging to the family of Alphaflexiviridae, Astroviridae, Alphatetraviridae, Alvernaviridae, Asfarviridae, Ampullaviridae, Adenoviridae, Ascoviridae, Betaflexiviridae, Bromoviridae, Barnaviridae, Bicaudaviridae. Baculoviridae Closteroviridae, Caliciviridae, Carmotetraviridae, Clavaviridae, Corticoviridae, Dicistroviridae, Endornaviridae, Filoviridae, Globuloviridae, Guttaviridae, Geminiviridae, Hytrosaviridae, Leviviridae, Luteoviridae, Lipothrixviridae, Mesoniviridae, Marnaviridae, Metaviridae, Malacoherpesviridae, Nodaviridae, Nyamiviridae, Nimaviridae, Nanoviridae, Piconaviridae, Partitiviridae, Picobirnaviridae, Paramyxoviridae, Poxviridae, Pandoraviridae, Polymaviridae, Phycodnaviridae, Papillomaviridae, Polydnaviruses, Polymaviridae, Permutotetraviridae, Potyviridae, Retroviridae, Siphoviridae, Sphaerolipoviridae, Virgaviridae, Togaviridae, Turriviridae, Tectiviridae. Examples of bacterial infection which may be treated with the compounds of present invention include, but are not limited to, infections caused by bacteria belonging to Brucella, Clostridium, Clostrodium, Campylobacter, Enterococcus, Fransicella, Listeria, Legionella, Mycobacteria, Pseudomonas, Salmonella, Staphylococcus, Yersinia genus.
In a further aspect, the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or its pharmaceutically acceptable salt thereof, and one or more additional therapies.
In a further aspect, the invention provides a composition comprising compound of Formula (I), Formula (II) and Formula (III), or a pharmaceutically acceptable salt thereof, and one or more additional therapies such as chemotherapy, immunotherapy or radiotherapy.
Chemotherapy comprises administering one or more additional chemotherapeutic agents that may be used in combination with the compounds of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof. chemotherapeutic agents that may be used in combination includes topoisomerase II inhibitors, anti-tumor antibiotics, anti-metabolites, retinoids, antiviral agents, abiraterone acetate, altretamine, anhydrovinblastine, auristatin, bexarotene, bicalutamide, BMS 184476, 2,3,4,5,6- pentafluoro-N-(3-fluoro-4-methoxyphenyl)benzene sulfonamide, bleomycin, N,N- dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-proly- 1-Lproline-tbutylamide, cachectin, cemadotin, chlorambucil, cyclophosphamide, 3',4'-didehydro-4'deoxy-8'-norvin- caleukoblastine, docetaxol, doxetaxel, cyclophosphamide, carboplatin, carmustine, cisplatin, cryptophycin, cyclophosphamide, cytarabine, dacarbazine (DTIC), dactinomycin, daunorubicin, decitabine dolastatin, doxorubicin (adriamycin), etoposide, 5- fluorouracil, finasteride, flutamide, hydroxyurea and hydroxyureataxanes, ifosfamide, liarozole, lonidamine, lomustine (CCNU), MDV3100, mechlorethamine (nitrogen mustard), melphalan, mivobulin isethionate, rhizoxin, sertenef, streptozocin, mitomycin, methotrexate, taxanes, nilutamide, onapristone, paclitaxel, prednimustine, procarbazine, RPR109881, stramustine phosphate, tamoxifen, tasonermin, taxol, tretinoin, vinblastine, vincristine, vindesine sulfate, and vinflunine.
Immunotherapy comprises administering one or more additional immunostimulatory agents that may be used in combination with the compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof. Immunostimulatory agents that may be used in combination herein includes vaccine adjuvants, such as Toll-like receptor agonists, T-cell checkpoint blockers, CTLA4, PD-1, PD-L1, TIM3, OX40, LAG3, B7-H3, GITR, 4-1BB, ICOS, CD40 and KIR antibody.
Examples of CTLA-4 and PD-1 antagonists include, but are not limited to, ipilimumab, tremelimumab, nivolumab, pembrolizumab, CT-011, AMP-224, and MDX- 1106.
In a further aspect the invention provides a vaccine adjuvant comprising a compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof.
In a further aspect the invention provides a vaccine composition comprising compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof, and an antigen or antigen composition.
Antigens and adjuvants that may be used in combination with the compound of Formula (I), Formula (II) and Formula (III) or a pharmaceutically acceptable salt thereof disclosed herein include B7 costimulatory molecule, interleukin-2, interferon- ^, GM-CSF, CTLA-4 antagonists, OX-40 agonist, CD40 agonist, sargramostim, levamisol, vaccinia virus, Bacille Calmette-Guerin (BCG), liposomes, alum, Freund's complete or incomplete adjuvant, detoxified endotoxins, mineral oils, surface active substances such as lipolecithin, pluronic polyols, polyanions, peptides, and oil or hydrocarbon emulsions. Adjuvants, such as aluminum hydroxide or aluminum phosphate, can be added to increase the ability of the vaccine to trigger, enhance, or prolong an immune response. Additional materials, such as cytokines, chemokines, and bacterial nucleic acid sequences, like CpG, a toll-like receptor (TLR) 9 agonist as well as additional agonists for TLR 2, TLR 4, TLR 5, TLR 7, TLR 8, TLR9, including lipoprotein, LPS, monophosphoryllipid A, lipoteichoic acid, imiquimod, resiquimod, and in addition retinoic acid- inducible gene I (RIG-I) agonists such as poly I:C, used separately or in combination with the described compositions are also potential adjuvants.
The pharmaceutical compositions may be administered by a variety of means including non-parenterally, parenterally, by inhalation spray, topically, or rectally in formulations containing pharmaceutically acceptable carriers, adjuvants and vehicles. Intra-tumoral (directly into the tumor mass) or peri-tumoral (around the tumor mass) administration of the compounds of the present invention.
General terms used in formula can be defined as follows; however, the meaning stated should not be interpreted as limiting the scope of the term per se. The term "alkyl" refers to an alkane derived hydrocarbon radical that includes solely carbon and hydrogen atoms in the backbone, contains no unsaturation, has from one to six carbon atoms, and is attached to the remainder of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1-methylethyl (isopropyl), n-butyl, n-pentyl, 1,1- dimethylethyl (t- butyl) and the like. Unless set forth or recited to the contrary, all alkyl groups described or claimed herein may be straight chain or branched, substituted or unsubstituted. The term "alkenyl" refers to a hydrocarbon radical containing from 2 to 10 carbon atoms and including at least one carbon-carbon double bond. Non-limiting examples of alkenyl groups include ethenyl, 1-propenyl, 2-propenyl (allyl), iso-propenyl, 2-methyl-l- propenyl, 1-butenyl, 2-butenyl and the like. Unless set forth or recited to the contrary, all alkenyl groups described or claimed herein may be straight chain or branched, substituted or unsubstituted. The term "alkynyl" refers to a hydrocarbon radical containing 2 to 10 carbon atoms and including at least one carbon- carbon triple bond. Non- limiting examples of alkynyl groups include ethynyl, propynyl, butynyl and the like. Unless set forth or recited to the contrary, all alkynyl groups described or claimed herein may be straight chain or branched, substituted or unsubstituted. The term‘perhaloalkyl’, as used herein, means an alkyl group as defined hereinabove wherein all the hydrogen atoms of the said alkyl group are substituted with halogen. The perhaloalkyl group is exemplified by trifluoromethyl, pentafluoroethyl, and the like. The term‘carbocycle’ or "cycloalkyl" refers to a non-aromatic mono or multicyclic ring system having 3 to 12 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. Unless set forth or recited to the contrary, all cycloalkyl groups described or claimed herein may be substituted or unsubstituted.
The term "cycloalkenyl" refers to a non-aromatic mono or multicyclic ring system having 3 to 12 carbon atoms and including at least one carbon-carbon double bond, such as cyclopentenyl, cyclohexenyl, cycloheptenyl and the like. Unless set forth or recited to the contrary, all cycloalkenyl groups described or claimed herein may be substituted or unsubstituted. The term‘aryl’, as used herein, refers to a monovalent monocyclic, bicyclic or tricyclic aromatic hydrocarbon ring system. Examples of aryl groups include phenyl, naphthyl, anthracenyl, fluorenyl, indenyl, azulenyl, and the like.
The term‘heteroaryl’, as used herein, refers to a 5-14 membered monocyclic, bicyclic, or tricyclic ring system having 1-4 ring heteroatoms selected from O, N, or S, and the remainder ring atoms being carbon (with appropriate hydrogen atoms unless otherwise indicated), wherein at least one ring in the ring system is aromatic. The term "heterocycle", unless otherwise specified, refers to substituted or unsubstituted non-aromatic 3- to 15- membered ring which consists of carbon atoms and with one or more (e.g., 2 or 3) heteroatom(s) independently selected from N, O or S. The term‘oxo’ means a divalent oxygen (=O) attached to the parent group. For example oxo attached to carbon forms a carbonyl, oxo substituted on cyclohexane forms a cyclohexanone, and the like. The compounds of the present invention may have one or more chiral centers. The absolute stereochemistry at each chiral center may be‘R’ or‘S’. The compounds of the invention include all diastereomers and enantiomers and mixtures thereof. Unless specifically mentioned otherwise, reference to one stereoisomer applies to any of the possible stereoisomers. Whenever the stereoisomeric composition is unspecified, it is to be understood that all possible stereoisomers are included. The term "stereoisomer" refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures which are not interchangeable. The three-dimensional structures are called configurations. As used herein, the term "enantiomer" refers to two stereoisomers whose molecules are
nonsuperimposable mirror images of one another. The term "chiral center" refers to a carbon atom to which four different groups are attached. As used herein, the term "diastereomers" refers to stereoisomers which are not enantiomers. The terms "racemate" or "racemic mixture" refer to a mixture of equal parts of enantiomers. The term "treating" or "treatment" of a state, disease, disorder, condition or syndrome includes: (a) preventing or delaying the appearance of clinical symptoms of the state, disease, disorder, condition or syndrome developing in a subject that may be afflicted with or predisposed to the state, disease, disorder, condition or syndrome but does not yet experience or display clinical or subclinical symptoms of the state, disease, disorder, condition or syndrome; (b) inhibiting the state, disease, disorder, condition or syndrome, i.e., arresting or reducing the development of the disease or at least one clinical or subclinical symptom thereof; c) lessening the severity of a disease disorder or condition or at least one of its clinical or subclinical symptoms thereof; and/or (d) relieving the disease, i.e., causing regression of the state, disorder or condition or at least one of its clinical or subclinical symptoms. The term "subject" includes mammals, preferably humans and other animals, such as domestic animals; e.g., household pets including cats and dogs. A "therapeutically effective amount" refers to the amount of a compound that, when administered to a subject in need thereof, is sufficient to cause a desired effect. The "therapeutically effective amount" will vary depending on the compound, the disease and its severity, age, weight, physical condition and responsiveness of the subject to be treated. Compounds disclosed herein and their tautomeric forms, stereoisomers, prodrugs may be prepared, for example, by techniques well known in the organic synthesis and familiar to a practitioner ordinarily skilled in art of this invention. In addition, the processes described herein may enable the synthesis of the compounds of the present invention. However, these may not be the only means by which the compounds described in the invention may be synthesized. Further, the various synthetic steps described herein may be performed in alternate sequences in order to furnish the desired compounds.
Scheme 1 shows a method of preparation of the compound of the formula (5), (5a), (5b), (5c), and (7), wherein R3’ is -OTBS or -OCH3; R2a is H.
The compound of the formula (11) is reacted with di-t-butylsilylbis(trifluoromethane sulfonate) and t-butyl dimethyl silyl chloride in presence of a suitable base such as
imidazole, pyridine, dimethyl amino pyridine in a suitable solvent such as DMF, THF, DCM, chloroform, carbon tetrachloride to form a compound of formula (2).
The compound of the formula (2A’) (prepared as disclosed in Bioorg. Med. Chem. Lett. 20 (2010) 129–131) is reacted with 2-nitrobenzaldoxime and N, N, N', N'- tetramethylguanidine in presence of solvent such as acetonitrile to form a compound of formula (3), (wherein R3’ is -OCH3).
Step-A:
The compound of formula (2) further reacted with 1-bromopropan-2-one in presence of sodium hydride in a suitable solvent such as DMSO, DMF to form a compound of formula (5b). The compound of formula (5b) reacts with methyl iodide in presence of suitable base such as potassium carbonate and suitable solvent such as DMSO, DMF to form a compound of formula (5c).
Step-B:
The compound of the formula (2) is reacted with 1, 1-dimethoxy-N,N- dimethylmethanamine in a suitable solvent such as methanol, dimethyl formamide, tetrahydrofuran, dichloromethane, chloroform, carbon tetrachloride to form a compound of formula (3) (wherein R3’ is -OTBS).
Step-D:
The compound of formula (3) further reacted with 2-(bromomethyl)-1,3-dioxolane or 2- (iodomethyl)-1,3-dioxolane in presence of a suitable base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane to form a compound of formula (4). The compound of formula (4) further reacted with acetic acid or hydrochloric acid or trifluoroacetic acid in water or chlorinated solvent, to form a compound of formula (5).
The compound of formula (5) reacts with methyl iodide in presence of suitable base such as potassium carbonate and suitable solvent such as DMSO, DMF to form a compound of formula (5a).
Step-C:
The compound of formula (3) is reacted with 3-bromopropane-1,2-diyl diacetate in presence of a suitable base such as potassium carbonate and a suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide to form a compound of formula (4a). The compound of formula (4a) further reacted with ammonia in methanol, to form a compound of formula (4a’). The compound of formula (4a’) reacted with sodium periodate in a suitable solvent such as acetonitrile, tetrahydrofuran or chlorinating solvents such as chloroform, dichloromethane followed by treatment with acetic acid to obtain the compound of formula (5). The compound of formula (5) reacts with methyl iodide in presence of suitable base such as potassium carbonate and suitable solvent such as DMSO, DMF to form a compound of formula (5a).
Step-E:
Compound of formula (3) is reacted with ethyl bromoacetate in presence of a suitable a base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane to form a compound of formula (6). The compound of formula (6) reacted with ammonia in methanol or water, to form a compound of formula (7).
R3 =H and R2a= F.
The compound of the formula (2a) prepared as disclosed in Tetrahedron Letters 2016, vol 57, # 3, 268-271) is reacted with t-butyl dimethyl chlorosilane and in presence of a suitable base such as imidazole, pyridine or dimethyl amino pyridine to form a compound of formula (2b). The compound of the formula (2b) is reacted with 1, 1-dimethoxy-N,N- dimethylmethanamine in a suitable solvent such as methanol, dimethyl formamide, tetrahydrofuran, dichloromethane, chloroform, carbon tetrachloride to form a compound of formula (3a). The compound of formula (3a) is further reacted with 2-(bromomethyl)-1,3- dioxolane or 2-(iodomethyl)-1,3-dioxolane in presence of a suitable base such as potassium carbonate, cesium carbonate and suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, dioxane to form a compound of formula (4b). The compound of formula (4b) further reacted with trifluoroacetic acid acetic acid in the presence of chlorinated solvent dichloromethane to form a compound of formula (4c). The compound of formula (4c) reacts triethylamine trihydrogenfluoride (TEA.3HF) in presence of suitable solvent such as triethylamine and pyridine to form a compound of formula (4d). The compound of formula (4d) is reacted with 4,4'-
(chloro(phenyl)methylene)bis(methoxybenzene) in the presence of suitable solvent such as pyridine to form a compound of formula (5d).
, When R3is -OTBS.
The compound of the formula (2) is reacted with trimethyl silyl bromide and tert- butylnitrite in a suitable solvent such as dibromomethane to form a compound of formula (8).
Step F:
The compound of formula (8) is further reacted with hydrazine hydrate in presence of suitable solvent such as dimethyl formamide, tetrahydrofuran, dimethyl sulphoxide, water, ethanol to form a compound of formula (9). The compound of formula (9) further reacted with triethoxymethane or 1,1,1-triethoxyethane in dimethyl formamide, to form a compound of formula (10) [where R7– H, methyl]
Step G:
The compound of formula (8) is further reacted with (E)-ethyl 3-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)acrylate in presence of potassium phosphate, dibasic and
Tetrakis(triphenylphosphine)palladium in suitable solvent(s) such as 1,4 dioxane and water, to form a compound of formula (8A). The compound of formula (8A) was treated with sodium borohydride and lithium borohydride in the presence of suitable solvent such as THF to form compound of formula (9A). The compound of formula (9A) was further reacted with triphenylphosphine and Diethyl azodicarboxylate (DEAD), in presence of suitable solvent such as THF to form a compound of formula (10A).
-OTBS.
The compound of the formula (11) is reacted with amino methyl hydrogen sulphate in presence of a base such as sodium hydroxide in water to form a compound of formula (12). The compound of the formula (12) is further reacted with di-t- butylsilylbis(trifluoromethanesulfonate) and t-butyldimethylchlorosilane in a suitable solvent such as dimethyl formamide in presence of a base such as imidazole to form a compound of formula (13). The compound of formula (13) is further reacted with formamide to form a compound of formula (14).
The compound of the formula (15) is reacted with di-t- butylsilylbis(trifluoromethanesulfonate) and t-butyldimethylchlorosilane in a suitable solvent such as dimethyl formamide in presence of a base such as imidazole to form a compound of formula (16). The compound of formula (16) is further reacted with hydrazine hydrate in suitable solvent such as methanol, ethanol, to form a compound of formula (17). The compound of formula (17) further reacted with triethyl orthoformate in presence of acid such as acetic acid to form a compound of formula (18).
c eme 5 s ows a met o o preparaton o t e compoun o t e ormua an B , when R3’and R5’ are -OTBS.
The compound of the formula (19) [prepared according to procedure reported in the European Journal of Organic Chemistry 2000, 12, (2315-2323)] is treated with dimethoxy trityl chloride (DMT-Cl) in presence of a base like pyridine to obtain the compound of formula (20). The compound of formula (20) treated with t-butyl dimethyl silyl chloride in presence of a base such as pyridine to obtain the compounds of formula (21A) and (21B) after column purification. The compound of formula (21A) and (21B) can be converted to compound of formula (22A) and (22B) by reaction with phosphorus trichloride, 4- methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic
acid in dichloromethane and water. Alternatively, compound of formula (21A) and (21B) can be converted to compound of formula (22A) and (22B) by reaction with salicyl chlorophosphite (SalPCl) in a suitable solvent such as 1, 4-dioxane and a suitable base such as pyridine followed by treatment with dichloroacetic acid in dichloromethane and water.
(25C), (25D), (25E) and (25F),[wherein R3’ and R5=-OTBS,-OCH3 or H and R2a and R4= H or F; B2=B1G].
Step H: When R3’ is -OTBS and R2a is H
The compound of formula (23) is reacted with HF-Pyridine in a suitable solvent such as acetonitrile, tetrahydrofuran or chlorinating solvent such as chloroform, dichloromethane followed by treatment with dimethoxy trityl chloride (DMT-Cl) in presence of a base such as pyridine to obtain the compound of formula (24A). The compound of formula (24A) further treated with sodium bicarbonate (NaHCO3) (pH 9) to form a compound of formula (24B).
The compound of formula (24A) and (24B) further converted to compound of formula (25A) and (25B) respectively by following similar method as described above in Scheme 5, for the conversion of compound of formula (21B) to formula (22B).
The compound of formula (24A) and (24B) is reacted with 3-((chloro(diisopropylamino) phosphino)oxy)propanenitrile in presence of a base such as pyridine, imidazole, di- isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane to obtain the compound of formula (25C) and (25D) respectively. Preferably 3- ((chloro(diisopropylamino)phosphino)oxy) propanenitrile, di-isopropyl ethyl amine and 1- methyl imidazole in dichloromethane.
Step I: When R3’is -OCH3 and R2a is H
The compound of formula (23) is reacted with HF-Pyridine in a suitable solvent such as tetrahydrofuran or chlorinating solvent such as chloroform, dichloromethane in presence of a base such as pyridine to obtain the compound of formula (24C).
The compound of formula (24C) is reacted with 1-[chloro-(4-methoxyphenyl)- phenylmethyl]-4-methoxybenzene, in presence of a base such as pyridine to obtain the compound of formula (24D).
The compound of formula (24D) is converted to compound of formula (25E) by reaction with phosphorus trichloride, 4-methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer (pH6).
Step I: When R3’is–H and R2a is F
The compound of formula (24A) is converted to compound of formula (25F) by reaction with phosphorus trichloride, 4-methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer (pH6).
(27C) [wherein R4=F, H; R5=H, F or R4=H, R5= -OTBS, B1G= N-(9H-purin-6- yl)benzamide, N-(6-oxo-6,9-dihydro-1H-purin-2-yl) isobutyramide; N-(3H-[1,2,3]triazolo [4,5-d]pyrimidin-7-yl) benzamide; 1,9-dihydro-6H-purin-6-one and B2 (including tricyclic nucleobases of formula (i)-(iv), also as prepared in formula (5), (5a), (5b), (5c), (5d), (7), (10), (14), (18)].
The compound of the formula (26), [prepared according to the procedure reported in the literature, Canadian Journal of Chemistry; 1982, 60, (111– 120), Nucleosides and Nucleotides, 1995, vol.14, # 6, p.1259– 1267 and J. Org. Chem.2015, 80, 4835−4850] is reacted with 3-((chloro(diisopropylamino)phosphino)oxy)propanenitrile in presence of a base such as pyridine, imidazole, di-isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane to obtain the compound of formula (27). Preferably 3- ((chloro(diisopropylamino)phosphino)oxy) propanenitrile, di-isopropyl ethyl amine and 1- methyl imidazole in dichloromethane.
The compound of the formula (26) reacted with phosphorus trichloride, 4- methylmorpholine, and 1,2,4-triazole in a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water to form a compound of formula (27A). Alternatively, compound of formula (26) can be converted to compound of formula (27A) by reaction with salicyl chlorophosphite (SalPCl) in a suitable solvent such as 1, 4-dioxane and a suitable base such as pyridine followed by treatment with dichloroacetic acid in dichloromethane and water.
The compound of formula (26) is reacted with 4-oxopentanoic anhydride in the presence of a base such as pyridine and solvent such as tetrahydrofuran or dichloromethane followed by N,N dimethyl amino pyridine to obtain the compound of formula (27B). The compound of formula (24B) is further reacted with triethylsilane in the presence of a solvent such as dichloromethane followed by dichloroacetic acid to form a compound of formula (27C).
Scheme 7A shows a method of preparation of the compound of the formula (27’), (27A’) and (27A”) [wherein R2a=F, H; R3=H, F or R2a=H, R3= -OTBS, B1G= N-(9H-purin-6- yl)benzamide, N-(6-oxo-6,9-dihydro-1H-purin-2-yl) isobutyramide; N-(3H-[1,2,3]triazolo [4,5-d]pyrimidin-7-yl) benzamide; 1,9-dihydro-6H-purin-6-one and B2 (including tricyclic
nucleobases of formula (i)-(iv), also as prepared in formula (5), (5a), (5b), (5c), (5d), (7), (10), (14), (18)]
The compound of the formula (26A), [prepared according to the procedure reported in the literature, Journal of Organic Chemistry (1991), 56 (15), 4608-4615] is reacted with 3- ((chloro(diisopropylamino)phosphino)oxy)propanenitrile in presence of a base such as pyridine, imidazole, di-isopropyl ethyl amine and 1-methyl imidazole and solvent such as acetonitrile, tetrahydrofuran, or chlorinating solvents such as chloroform, dichloromethane to obtain the compound of formula (27’). Preferably 3-((chloro(diisopropylamino) phosphino)oxy) propanenitrile, di-isopropyl ethyl amine and 1-methyl imidazole in dichloromethane.
The compound of the formula (26A) reacted with phosphorus trichloride, 4- methylmorpholine, and 1,2,4-triazole in a suitable solvent such as chloroform, dichloromethane acetonitrile, tetrahydrofuran followed by treatment with dichloroacetic acid in dichloromethane and water to form a compound of formula (27A’). Alternatively, compound of formula (26A) can be converted to compound of formula (27A’) by reaction with salicyl chlorophosphite (SalPCl) in a suitable solvent such as 1, 4-dioxane and suitable a base such as pyridine followed by treatment with dichloroacetic acid in dichloromethane and water.
Scheme 8 shows a method of preparation of the compound of the formula (Ia) [wherein R4=F or H, R5=F, OH or H, R3 = OH, H or OCH3, R2a=H or F, B1 and B2 = as defined earlier, X3’= O- , S-];
When bases are interchanged i.e B2 is taken as B1G and B1 or B1G is taken as B2, Scheme 8 can be followed using appropriate monomers for the preparation of the compound of the formula (Ia).
The compound of the formula (25A) is reacted with phospharamidite of formula (27) in presence of activator such as 5-[3,5-bis(trifluoromethyl)phenyl]-1H-tetrazole (Activator 42) or pyridinium trifluoroacetate (Py.TFA) or 1-(cyanomethyl)pyrrolidin-1-ium trifluoromethanesulfonate in a suitable solvent such as acetonitrile, tetrahydrofuran followed by oxidizing agent [when X4=O] such as t-butyl hydroperoxide (TBHP) followed by treatment with dichloroacetic acid in dichlomethane-water, or
Sulfurizing agent [when X4=S] such as 3-((N,N-dimethylaminomethylidene)amino)-3H- 1,2,4-dithiazole-5-thione (DDTT) or 2-phenylacetic dithioperoxyanhydride to obtain the compound of formula (28).
The compound of the formula (28) is treated with 2-chloro-5,5-dimethyl-1,3,2- dioxaphosphorinane-2-oxide (DMOCP) or diphenyl chlorophosphonate or pivaloyl chloride in presence of a base such as pyridine followed by oxidizing agent [when X4=O] such as iodine or sulfurizing agent [when X4=S] like 3-H-1,2-benzodithiol-3-one or sulfur to obtain the compound of formula (29).
The compound of formula (29A) can be form by reacting compound of formula (25C) and formula (27A) by following similar synthetic process as disclosed above for the conversion of compound of formula (25A) to compound of formula (29).
The compound of the formula (29) and compound formula (29A) is reacted with solution of methylamine in alcohol or aqueous ammonia in methanol to obtain the compound of formula (30). Preferably 30-35% solution of methyl amine in ethanol was used for the reaction at room temperature to 60°C. The compound of formula (30) was purified by preparative HPLC using triethyl ammonium acetate as a volatile buffer.
The compound of formula (30) [when X3’= S] was purified and diastereomers were separated by preparative HPLC using triethyl ammonium acetate as a volatile buffer. A separated diastereomers treated with triethylamine trihydrofluoride (Et3N.3HF) salt for the desilylation to obtain the compound of formula (31).
The compound of formula (30) [when X3’= O] was treated with triethylamine trihydrofluoride (Et3N.3HF) salt for the desilylation to obtain the compound of formula (31).
The compound of the formula (31) as triethyl ammonium salt obtained is treated with aqueous sodium hydroxide on cation exchange resin to obtain the compounds of the formula (Ia) as di-sodium salt.
The compound of the formula (27C) is reacted with compound of the formula (25F or 25E) in the presence of 2,6-Lutidine, pivaloyl chloride and in the presence of a solvent such as acetonitrile and /or, dichloromethane followed by sulfurizing agent [when X4=S] like 3-H- 1,2-benzodithiol-3-one or sulfur to obtain the compound of formula (36).
The compound of formula (36) is further reacted with hydrazine hydrate in the presence of pyridine:acetic acid in suitable solvent such as acetonitrile, followed by addition of pentane-2,4-dione and aquoeus citric acid solution to form a compound of formula (37). The compound of formula (37) is converted to compound of formula (38) by reaction with phosphorus trichloride, 4-methylmorpholine, and 1, 2, 4-triazole in a suitable solvent such as chloroform, dichloromethane, acetonitrile, tetrahydrofuran followed by treatment with triethylammoniumformate buffer in presence of acid such as dichloroacetic acid or acetic acid.
The compound of the formula (38) is treated with pivaloyl chloride or diphenyl chlorophosphonate in presence of a base such as pyridine followed by sulfurizing agent [when X4=S] like 3-H-1,2-benzodithiol-3-one or sulfur, the obtain the compound was purified and diastereomers were separated by preparative HPLC (High-performance liquid chromatography) using triethyl ammonium acetate as a volatile buffer. A separated diastereomers treated with triethylamine trihydrofluoride (Et3N.3HF) salt for the desilylation to obtain the compound of formula (Ia).
Scheme 9 shows a method of preparation of the compound of the formula (IIa) [wherein B1and B2= as defined earlier, X3’= O- , S-];
When bases are interchanged i.e. B2 is taken as B1G and B1 or B1G is taken as B2, Scheme 9 can be followed using appropriate monomers for the preparation of the compound of the formula (IIa).
The compound of the formula (25C) is reacted with compound of formula (27A’) in presence of activator such as 5-[3,5-bis(trifluoromethyl)phenyl]-1H-tetrazole (Activator 42) or pyridinium trifluoroacetate (Py.TFA) or 1-(cyanomethyl)pyrrolidin-1-ium trifluoromethane sulfonate in a suitable solvent such as acetonitrile, THF followed by oxidizing agent [when X4=O] such as t-butyl hydroperoxide (TBHP) followed by treatment with dichloroacetic acid in dichlomethane-water or
Sulfurizing agent [when X4=S] such as 3-((N,N-dimethylaminomethylidene)amino)-3H- 1,2,4-dithiazole-5-thione (DDTT) or 2-phenylacetic dithioperoxyanhydride to obtain the compound of formula (32). The compound of the formula (32) is treated with 2-chloro-5,5- dimethyl-1,3,2-dioxaphosphorinane-2-oxide (DMOCP) or diphenyl chlorophosphonate or pivaloyl chloride in presence of a base such as pyridine followed by oxidizing agent [when X4=O] such as iodine or sulfurizing agent [when X4=S] like 3-H-1,2-benzodithiol-3-one or sulfur to obtain the compound of formula (33). The compound of the formula (33) is reacted with solution of methylamine in alcohol or aqueous ammonia in methanol to obtain the compound of formula (34). Preferably 30-35% solution of methyl amine in ethanol was used for the reaction at room temperature to 60°C. The compound of formula (34) was purified by preparative HPLC using triethyl ammonium acetate as a volatile buffer. The compound of formula (34) [when X3’= S] was purified and diastereomers were separated by preparative HPLC using triethyl ammonium acetate as a volatile buffer. A separated diastereomers treated with triethylamine trihydrofluoride (Et3N.3HF) salt for the desilylation to obtain the compound of formula (35).
The compound of formula (34) [when X3’= O] was treated with triethylamine trihydrofluoride (Et3N.3HF) salt for the desilylation to obtain the compound of formula (35).
The compound of the formula (35) as triethyl ammonium salt obtained is treated with aqueous sodium hydroxide on cation exchange resin to obtain the compounds of the formula (Ia’) as di-sodium salt. EXPERIMENTAL
Example 1: (2’, 3’) cyclic-A6-MIPMP (Compound 1)
no-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)- one
) in dimethyl formamide (500 mL), was added di-t-butylsilylbis (trifluoromethanesulfonate) (76.0 mL, 233.0 mmol) at 0 °C and the reaction mixture stirred for 30 minutes. To this reaction mixture imidazole (72.1 gm, 1059.0 mmol) was added at room temperature and stirred for 30 minutes. To this t-butyl dimethyl silyl chloride (38.3 gm, 254 mmol) was added and the reaction mixture was stirred at 60 °C for 2 hrs. Progress of the reaction was monitored by Thin-layer chromatography (TLC). The white precipitate formed in the reaction was filtered off, washed with cold methanol and dried under reduced pressure to afford the desired product. [Yield- 50.0 gm (43.9 %)] 1H NMR (400 MHz, DMSO-d6) δ 10.68 (s, 1H), 7.93 (d, J = 2.4 Hz, 1H), 6.38 (s, 2H), 5.73 (s, 1H), 4.58 (d, J = 5.0 Hz, 1H), 4.37– 4.26 (m, 2H), 3.97 (s, 2H), 1.08 (d, J = 2.4 Hz, 9H), 1.02 (d, J = 2.5 Hz, 9H), 0.87 (d, J = 2.6 Hz, 9H), 0.10 (dd, J = 9.6, 2.5 Hz, 6H), MS: m/z = 538.33 (M+H)+.
Step-2:
O S Oynthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-methyl-3,5- dihydro-9H-imidazo[1,2-a] Npurin-9 O-one.
(4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)- one (Step-1, 10.0 g, 18.59 mmol) in dry dimethyl sulphoxide (200 mL), was added sodium hydride (0.82 mL, 20.45 mmol) at room temperature and reaction mixture was stirred at 60 °C for 1 hr. Reaction mixture was cooled to room temperature and to this a solution of 1- bromopropan-2-one (3.06 g, 22.31 mmol) in dry DMSO (10 mL) was added dropwise. The reaction mixture was stirred under darkness at room temperature for 18 hrs. Progress of the reaction was monitored by TLC. After completion the reaction mixture was quenched with water (30 mL) and extracted with ethyl acetate (3 x 100 mL). The organic layer was separated and dried over sodium sulphate. Separated organic layer was evaporated under reduced pressure to obtain the crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted at 1-2 % of methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 3.0 gm (28.0 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.33 (s, 1H), 8.11 (s, 1H), 7.38 (s, 1H), 4.65 (d, J = 5.0 Hz, 1H), 4.36 (t, J = 8.8 Hz, 2H), 3.34 (d, J = 2.1 Hz, 3H), 2.27 (s, 3H), 1.08 (s, 9H), 1.02 (s, 9H), 0.88 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H),
MS: m/z = 574.46 (M-H)- Step-3: Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert-butyldimethylsilyl)oxy)-4- hydroxytetrahydrofuran-2-yl)-6-methyl-3H-imidazo[1,2-a]purin-9(5H)-one
ert-butyl-7-((tert-butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-methyl-3H-imidazo[1,2-a]purin-9 (5H)-one (Step-2, 4.0 g, 6.95 mmol) in dichloromethane (40 mL) was added HF-Pyridine (4.43 mL, 31.3 mmol) in pyridine (5 mL) at 0 °C . Then reaction mixture was stirred at 0 °C for 1 hr. Reaction mixture was quenched carefully with saturated sodium bicarbonate solution (20 mL) and extracted using ethyl acetate (3 x 50 mL). Organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude intermediate. Crude intermediate was dissolved in pyridine (50 mL) at 0 °C and 1-[chloro- (4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene (2.59 g, 7.64 mmol) was added. The reaction mixture was stirred overnight at room temperature. Progress of the reaction was monitored by TLC. Reaction mixture was quenched with methanol (5 mL) and evaporated to obtain crude product. The crude mass was diluted with dichloromethane (200 mL). Organic layer was washed with saturated sodium bicarbonate solution (50 mL), dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted in ethyl acetate. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 4.0 gm (78.0 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.34 (d, J = 2.2 Hz, 1H), 8.01 (s, 1H), 7.39 (dd, J = 7.0, 2.0 Hz, 3H), 7.32– 7.16 (m, 7H), 6.85 (dd, J = 8.7, 5.8 Hz, 4H), 5.91 (d, J = 4.7 Hz, 1H), 5.09 (d, J = 6.3 Hz, 1H), 4.64 (t, J = 5.0 Hz, 1H), 4.19 (q, J = 5.4 Hz, 1H), 4.12– 4.06 (m, 1H), 3.73 (s, 6H), 3.27 (ddd, J = 27.8, 10.5, 4.2 Hz, 2H), 2.28 (s, 3H), 0.79 (s, 9H), -0.01 (s, 3H) -0.07 (s, 3H);
MS: m/z = 738.53 (M+H)+.
Step-4: Synthesis of (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 4-((tert-butyldimethylsilyl)oxy)-5-(6-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin- 3-yl)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite
((bis(4-methoxyphenyl)(phenyl)methoxy) droxytetrahydrofuran-2-yl)-6-methyl-3H- imidazo[1,2-a]purin-9(5H)-one (Step-3, 1.0 g, 1.35 mmol) in 50 mL dry dichloromethane was added diisopropyl ethyl amine (1.18 mL, 6.78 mmol) and 1-methyl imidazole (0.22 mL, 2.71 mmol) at room temperature. Reaction mixture was cooled to 0-5 °C, and to this 3-((chloro(diisopropylamino)phosphino)oxy)propanenitrile (0.64 g, 2.71 mmol) was added in 5 minutes. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hrs. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (3 mL) and concentrated under reduced pressure to get crude sticky compound, which was purified by column chromatography. The desired product was eluted in 80 to 90% ethyl acetate in hexane to afford the title compound. [Yield = 1.1 gm (87.0 %)] 1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 8.01 (d, J = 6.7 Hz, 1H), 7.39 (d, J = 5.4 Hz, 3H), 7.35– 7.10 (m, 7H), 6.86 (dt, J = 9.1, 5.1 Hz, 4H), 5.92 (dd, J = 8.6, 6.4 Hz, 1H), 4.88-4.82 (m, 1H), 4.21 (s, 2H), 3.82 (dt, J = 13.0, 6.3 Hz, 1H), 3.73 (s, 6H), 3.68– 3.52 (m, 3H), 3.40-3.23 (m, 1H), 2.79 (t, J = 6.0 Hz, 1H), 2.27 (s, 3H), 1.25– 0.98 (m, 14H), 0.73 (d, J = 5.9 Hz, 9H), 0.00 (s, 3H) -0.19 (d, J = 10.6 Hz, 3H);
MS: m/z = 938.80 (M+H)+.
Step-5: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)- 5-(6-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
ethoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyl oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl) tetrahydrofuran-3-yl (2-cyanoethyl)diisopropylphosphoramidite (Step-4, 1.1 g, 1.17 mmol) was dissolved in acetonitrile (50 mL). To this solution were added water (0.04 mL, 2.34 mmol) and pyridinium trifluoroacetate (0.36 g, 1.87 mmol) and the resulting mixture was stirred for 15 minutes at room temperature. t-butylamine (7.5 mL, 70.4 mmol) was added, to the reaction mixture and resulting reaction mixture was stirred for 15 minutes at room temperature. Progress of reaction was monitored by TLC. After completion, solvent was removed under reduced pressure to get the residue. This residue was dissolved in 20 mL of dichloromethane and treated with a 3% solution of dichloroacetic acid in dichloromethane (30 mL) and water (0.3 mL) at room temperature and stirred for 15 minutes at room temperature. The reaction was quenched with methanol (10 mL) and pyridine (10 mL). The solvents were removed under reduced pressure to get the crude product. Crude product was purified by silica-gel column chromatography, using 25% methanol in dichloromethane as eluent, to obtain the title compound. [Yield: 0.57 gm (97.0 %)]
1H NMR (400 MHz, DMSO-d6) δ 8.15 (d, J = 2.2 Hz, 1H), 7.51 (s, 1H), 7.37 (s, 1H), 6.02 (s, 1H), 5.88– 5.78 (m, 1H), 5.66 (s, 1H), 4.64 (d, J = 22.2 Hz, 2H), 4.10 (s, 1H), 3.78 - 3.60 (m, 3H), 2.28 (s, 3H), 0.74 (d, J = 2.3 Hz, 9H), -0.02 (s, 3H), -0.13 (d, J = 2.3 Hz, 3H); MS: m/z = 500.15 (M+H)+ Step-6: Synthesis of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite
nd N-(9-((2R,3R,4S,5R)-5-((bis(4- rt-butyldimethylsilyl)oxy)-3-hydroxy tetrahydrofuran-2-yl)-9H-purin-6-yl)benzamide (Prepared according to the procedure reported in the literature, [Canadian Journal of Chemistry; 1982, 60, 111– 120], (11 g, 13.96 mmol) in 150 mL dry dichloromethane was added diisopropyl ethyl amine (12.19 mL, 69.8 mmol) and 1-methyl imidazole (1.146 g, 13.96 mmol) at room temperature. Reaction mixture was cooled to 0-5 °C, and to this 3- ((chloro(diisopropylamino)phosphino)oxy)propanenitrile (6.61 g, 27.9 mmol) was added in 5 minutes. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hr. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (3 mL) and concentrated under reduced pressure to get crude sticky compound, which was purified by column chromatography. The desired product was eluted in 45 to 50% ethyl acetate in hexane to get title compound as off-white solid. [Yield: 12.10 gm (87%)]
1H NMR (400 MHz, DMSO-d6) δ 11.22 (s, 1H), 8.67 (s, 2H), 8.04 (d, J = 7.6 Hz, 2H), 7.64 (s, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 7.30– 7.16 (m, 7H), 6.90– 6.78 (m, 4H), 6.29– 6.16 (m, 1H), 5.27– 5.00 (m, 1H), 4.81– 4.71 (m, 1H), 4.12 (d, J = 7.2 Hz, 1H), 3.72 (s, 6H), 3.66– 3.40 (m, 5H), 3.21– 3.09 (m, 1H), 2.74– 2.56 (m, 2H), 1.10– 1.03 (m, 9H), 0.93– 0.67 (m, 12H), 0.17– 0.01 (m, 6H),
MS: m/z = 987.97 (M+H)+. Step-7: Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(6-methyl-9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a solution of 2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(6- methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step-5, 0.57 g, 1.2 mmol) and 5-[3,5-di(trifluoromethyl)phenyl]-2H-1,2,3,4- tetraazole (0.65 g, 2.30 mmol) in acetonitrile (70 mL) in the presence of molecular sieves (3 A0) was added, in one portion, (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl)(phenyl)methoxy) methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl(2-cyanoethyl)diisopropyl phosphoramidite (Step-6, 1.48 g, 1.49 mmol) in acetonitile (30 mL). Reaction mixture was stirred at room temperature for 16 hr. To the reaction mixture 5.5 M solution of t-butyl hydroperoxide (0.42 mL, 2.30 mmol) was added and stirred for 3 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered, and the molecular sieves were washed with dichloromethane (2 x 20 mL). The filtrate was concentrated under reduced pressure and co-evaporated with acetonitrile three times. The residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.32 mL) for 15 minutes at room temperature. The reaction was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the residue, and the residue was purified by silica-gel column chromatography, using 15 to 60% methanol in dichloromethane as eluent to obtain the title compound. [Yield: 0.9 gm (71.1 %)]
MS: m/z = 1100.5 [M+H]+.
Step-8: Cyclization and oxidation
(2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethyl silyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphoryl)oxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(6-methyl-9- oxo-5,9-dihydro-3H-imidazo[1,2-a] purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 7, 0.9 g, 0.82 mmol) was co-evaporated with dry pyridine (2 x 30 mL) and dissolved in 20 mL dry pyridine. To this solution was added 2-Chloro-5,5-dimethyl- 1,3,2-dioxaphophorinane-2-oxide (0.75 g, 4.09 mmol) at 0-5 °C and reaction mixture was stirred at room temperature for 16 hrs. To this reaction mixture was added iodine (0.26 g, 1.02 mmol), water (0.44 mL) and stirred for 1hr. Progress of reaction was monitored by TLC. After completion the reaction mixture was quenched with 15% aqueous sodium bisulphite solution (100 mL) until complete decolorization was observed. To this saturated sodium bicarbonate solution (100 mL) was added. Aqueous layer was extracted with ethyl acetate (2 x 250 mL). Combined organic layer was dried on sodium sulphate and concentrated under reduced pressure to get oily crude title compound. Crude product was used for further reaction. [Crude Yield: 1.80 gm]
MS: m/z = 1098.5 [M+H]+. Step-9: Benzoyl and cyanoethyl deprotection
yc ze pro uc rom sep- . g, 1.63 mmol) was treated with 33% methylamine in ethanol (38 mL), and the resulting mixture was stirred at 50 °C in sealed tube for 3 hr. Progress of reaction was monitored by Liquid chromatography–mass spectrometry (LCMS). Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid (1.8 gm). Crude solid was purified by preparative HPLC using triethyl ammonium acetate buffer. After preparative HPLC purification/separation the obtained fractions were concentrated to get the title compound. [Crude Yield: 0.25 gm (16.2 %)]
MS: m/z = 941.5 [M+H]+. Step-10: TBS deprotection of step 9 product
- . , . ol) was co-evaporated in 10 mL dry acetonitrile, and to this (3.00 mL) dry pyridine was added and the solution was heated to 50 °C and triethylamine trihydrofluoride (2.16 mL, 13.28 mmol) and triethylamine (3.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hr. Progress
of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution ammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through c-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt. [Yield- 0.10 gm (41.1 %)]
MS: m/z = 713.28 [M+H]+. Step-11: Synthesis of (2’, 3’)Cyclic-A6-MIPMP (Compound 1)
owex - y rogen orm (50-100 mesh), 10 gm was slurry packed into syringe column, washed with 40 mL of deionized water.30 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 40 mL of deionized water. After draining the excess of deionized water by gravity, step-10 product (0.10 g) in 10 mL of deionized water was loaded in to the column. Column was eluted with 50 mL of deionized water; each 5 mL fractions were collected. The fractions those which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.07 gm (84.6 %)]
1H NMR (400 MHz, DMSO-d6) δ 8.47 (s, 1H), 8.17 (s, 1H), 8.00 (s, 1H), 7.24 (s, 1H) 6.07 (d, J = 8.3 Hz, 1H), 5.92– 5.77 (m, 1H), 5.10– 4.90 (m, 3H), 4.38– 4.31 (m, 1H), 4.25– 3.97 (m, 4H), 3.76 (d, J = 11.5 Hz, 2H), 2.22 (d, J = 2.5 Hz, 3H),
31P NMR (161 MHz, DMSO-d6) δ 1.76, -0.31,
MS: m/z = 713.28 [M+H]+. Example 2: (2’, 3’)Cyclic-A5,6-DMIPMP (Compound 2)
Step-1: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-5,6-dimethyl- 3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
To a stirred solution of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-methyl-3,5- dihydro-9H-imidazo[1,2-a] purin-9-one (Step-2 of Example 1, 0.9 g, 1.563 mmol) in dimethyl formamide (10 mL) was added potassium carbonate (0.28 g, 2.03 mmol) followed by solution of methyl iodide (0.23 g, 1.64 mmol) in DMF (2 mL) dropwise over 5 minutes and stirring was continued for 12 hrs at room temperature. Progress of the reaction was monitored by TLC. After completion reaction mixture was quenched with water (20 mL) and extracted with ethyl acetate (3 x 30 mL). The organic layer was separated and dried over sodium sulphate. Separated organic layer was evaporated under reduced pressure to obtain the crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted at 2 % of methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield: 0.7g (76%)]
1H NMR (400 MHz, CDCl3) δ 7.78 (s, 1H), 7.47 (s, 1H), 5.96 (s, 1H), 4.58– 4.49 (m, 2H), 4.39– 4.31 (m, 1H), 4.29– 4.18 (m, 1H), 4.12– 4.02 (m, 1H), 3.64 (s, 3H), 2.37 (s, 3H), 1.10 (s, 9H), 1.07 (s, 9H), 0.96 (s, 9H), 0.19 (s, 3H), 0.17 (s, 3H),
MS: m/z = 590.44 (M+1)+.
The Compound 2, was prepared from Step-1 product (Example 2) according to the procedure (Step-3 to Step-11) analogous to those outlined in Example 1 above using appropriate monomers, described as preparations in the coupling step.
Example 2: (2’, 3’)Cyclic-A5,6-DMIPMP (Compound 2)
1H NMR (400 MHz, DMSO-d6) d 8.47-8.46 (m, 1H), 8.19 (s, 1H), 8.17 (s, 1H), 7.46 (s, 1H), 6.06 (d, J = 8 Hz, 1H), 5.89 (d, J = 8 Hz, 1H), 5.09-4.97 (m, 3H), 4.34-4.29 (m, 1H), 4.23-4.19 (m, 1H), 4.15-4.12 (m, 1H), 4.09-4.00 (m, 2H), 3.77-3.72 (m, 2H), 3.59 (s, 3H), 2.32 (s, 3H).31P NMR (400 MHz, DMSO-d6) d 1.90, -0.45.
MS: m/z = 727.28 [M+H]+.
Example 3: (2’, 3’)Cyclic-A5-MIPMP (Compound 3)
Step-1: Synthesis of (E)-N'-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide
To the stirred solution of 2-amino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyl dimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)-one (Step-1 of Example 1, 10 g, 18.59 mmol) in methanol (100 mL) was added 1,1-dimethoxy- N,N-dimethylmethanamine (9.96 mL, 74.4 mmol) and the reaction mixture was stirred at room temperature for 24 hrs. Progress of reaction was monitored by TLC. The reaction mixture was diluted by dichloromethane (100 mL) and washed with water (2 x 30 mL). Organic layer was separated, dried over sodium sulphate and evaporated to get crude product. The crude product is used without purification for step-2. [Yield: 10.0 gm (91%)] 1H NMR (400 MHz,CDCl3) δ 9.33 (s, 1H), 8.60 (s, 1H), 7.61 (s, 1H), 5.94 (s, 1H), 4.57– 4.47 (m, 1H), 4.42 (d, J = 3.5 Hz, 1H), 4.20 (m, 4.0 Hz, 2H), 4.08– 3.99 (m, 1H), 3.19 (s, 3H), 3.15 (s, 3H), 1.07 (d, J = 8.5 Hz, 18H), 0.94 (s, 9H), 0.15 (s, 6H). MS: m/z = 593.46 (M+H)+.
Step-2: Synthesis of 3-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-((E)- ((dimethylamino)methylene)amino)-6-oxo-6,9-dihydro-1H-purin-1-yl)propane-1,2-diyl diacetate
To the stirred solution of (E)-N'-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyl dimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro- 1H-purin-2-yl)-N,N-dimethylformimidamide (Step-1, 7.5 g, 12.65 mmol) in dimethyl formamide (30 mL) was added potassium carbonate (3.93 g, 28.5 mmol) at room temperature. The reaction mixture was stirred for 10 min, then a solution of 3- bromopropane-1,2-diyl diacetate (Prepared according to the procedure reported in the literature, Agricultural and Biological Chemistry, 1982, 46, 5, 1153-1157; 3.02 g, 12.65 mmol) in tetrahydrofuran (2 mL) was added to the reaction mixture. Reaction mixture was heated at 70 °C for 24 hrs. Progress of the reaction was monitored by TLC. Reaction was quenched by water (50 mL) and extracted by dichloromethane (2 x 200 mL) organic layer was separated dried over sodium sulphate and evaporated to get crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted at 2% of methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield: 8.2 gm (86%)]
1H NMR (400 MHz, DMSO-d6) δ 8.53 (d, J = 5.6 Hz, 1H), 8.05 (s, 1H), 5.95– 5.89 (m, 1H), 5.44– 5.35 (m, 1H), 4.62– 4.45 (m, 2H), 4.42– 4.29 (m, 3H), 4.27– 4.19 (m, 1H), 4.14– 3.94 (m, 3H), 3.19 (s, 3H), 3.11 (s, 3H), 2.02– 1.95 (m, 3H), 1.95– 1.85 (m, 3H), 1.06 (s, 9H), 1.02 (s, 9H), 0.87 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H). MS: m/z = 751.57 (M+H)+.
Step-3: Synthesis of 2-amino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1-(2,3- dihydroxypropyl)-1,9-dihydro-6H-purin-6-one
To 3-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl)oxy)tetrahydro- 4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-((E)-((dimethylamino)methylene)amino)-6-oxo- 6,9-dihydro-1H-purin-1-yl)propane-1,2-diyl diacetate (Step-2, 8.2 g, 10.92 mmol) was added ammonia in methanol (7 N solution) (400 mL, 10.92 mmol) in a sealed tube and the reaction mixture was heated at 70 °C for 48 hrs. Progress of the reaction was monitored by TLC. Reaction mass was concentrated under reduced pressure to get crude product. Crude compound was used without purification for Step-4.
MS: m/z = 612.47 (M+H)+.
Step-4: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purin-9-one
To the stirred solution of 2-amino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1-(2,3- dihydroxypropyl)-1,9-dihydro-6H-purin-6-one (Step-3, 10.0 g, 16.34 mmol) in acetonitrile (100 mL) was added a 0.1 M aqueous solution of sodium periodate (253.0 mL, 25.3 mmol) and the reaction mixture was stirred at room temperature for 16 hrs. Progress of the reaction was monitored by TLC. Reaction mixture was diluted by dichloromethane (500 mL) and washed by water (2 x 200 mL). Organic layer was separated, dried over sodium sulphate and evaporated to get crude product. Reaction mass was passed through silica gel and eluted using 6-7% methanol in dichloromethane. The eluted mixture was concentrated under reduced pressure to obtain intermediate aldehyde.
MS: m/z = 580 (M+H)+. To the stirred solution of aldehyde intermediate (5.0 g, 8.84 mmol) in dichloroethane (100 mL) was added acetic acid (1.87 mL, 32.7 mmol) and stirred at room temperature for 16 hrs. Progress of the reaction was monitored by TLC. Reaction was quenched by water (200 mL) and extracted by dichloromethane (2 x 500 mL). Organic layer was separated, dried over sodium sulphate and evaporated to get crude product. Crude product was purified by combiflash chromatography using methanol in dichloromethane. The product was eluted at 5 % of methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield: 3.0 gm (37.2%)] 1H NMR (400 MHz, DMSO-d6) δ 12.44 (s, 1H), 8.13 (s, 1H), 7.64 (d, J = 2.6 Hz, 1H), 7.45 (d, J = 2.8 Hz, 1H), 5.88 (s, 1H), 4.66 (d, J = 5.0 Hz, 1H), 4.43– 4.31 (m, 2H), 4.10– 3.95 (m, 2H), 1.08 (s, 9H), 1.02 (s, 9H), 0.88 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H).
MS: m/z = 562.35 (M+H)+.
Step-5: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-5-methyl-3,5- dihydro-9H-imidazo[1,2-a]purin-9-one
To a stirred solution of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purin-9-one (Step-4, 0.9 g, 1.563 mmol) in dimethyl formamide (10 mL) was added potassium carbonate (0.28 g, 2.03 mmol) followed by solution of methyl iodide (0.23 g, 1.64 mmol) in DMF (2 mL) dropwise over 5 minutes and stirring was continued for 12 hrs at room temperature. Progress of the reaction was monitored by TLC. After completion reaction mixture was quenched with water (20 mL) and extracted with ethyl acetate (3 x 30 mL). The organic layer was separated and dried over sodium sulphate. Separated organic layer was evaporated under reduced pressure to obtain the crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted at 2 % of methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield: 0.7g (76%)] MS: m/z = 576.44 (M+1)+.
The Compound 3 was prepared from Step-5 product (Example 3) according to the procedure analogous to those outlined in Example 1 above using appropriate monomers, described as preparations in the coupling step.
Example 3: (2’, 3’)Cyclic-A5-MIPMP (Compound 3)
1H NMR (400 MHz, DMSO-d6) d 8.46 (s, 1H), 8.21 (s, 1H), 8.16 (s, 1H), 7.65 (d, J = 2.7, 0.8 Hz, 1H), 7.49 (d, J = 2.6 Hz, 1H), 6.06 (d, J = 8.4 Hz, 1H), 5.90 (d, J = 7.5 Hz, 1H), 5.06– 4.97 (m, 3H), 4.32 (d, J = 4.4 Hz, 1H), 4.21 (dd, J = 10.8, 4.5 Hz, 1H), 4.16– 4.09 (m, 2H), 4.07– 4.00 (m, 1H), 3.78– 3.72 (m, 2H), 3.69 (s, 3H).
MS: m/z = 713.28 [M+H]+. Example 4: (2’, 3’) cyclic-AIPMP (Compound 4)
Step-1: Synthesis of (E)-N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((4aR,6R,7R,7aR)-2,2-di- tert-butyl-7-((tert-butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6- yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide
To the stirred solution of (E)-N'-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyl dimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro- 1H-purin-2-yl)-N,N-dimethylformimidamide (Step-1 of Example 3, 50.0 g, 84.00 mmol) in dimethyl formamide (250 mL) was added potassium carbonate (29.10 g, 211.50 mmol) at room temperature. The reaction mixture was stirred for 10 min, then 2-(bromomethyl)-
1, 3-dioxolane (11.44 g, 110.00 mmol) was added to the reaction mixture followed by addition of potassium iodide (11.0 g, 67.4 mmol). Reaction mixture was heated at 75°C for 16 hrs. Progress of the reaction was monitored by TLC. Reaction was quenched by water (250 mL), resulting yellow solid was filtered and taken in dichloromethane (300 mL). Organic layer was washed with water (2 x 100 mL), separated organic layer was dried over sodium sulphate and evaporated to get crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted at 70% of ethyl acetate in hexane. Fractions were concentrated under reduced pressure to obtain the desired product. [Yield: 20.0 gm (34.9%)]
1H NMR (400 MHz, DMSO-d6) δ 8.57– 8.48 (m, 1H), 8.04 (s, 1H), 5.91 (s, 1H), 5.37– 5.27 (m, 1H), 4.68– 4.58 (m, 1H), 4.34 (m, 11.2, 4H), 4.15– 3.89 (m, 5H), 3.83– 3.77 (m, 1H), 3.17 (s, 3H), 3.10 (s, 3H), 1.03 (d, J = 14.9 Hz, 18H), 0.88 (s, 9H), 0.13– 0.07 (m, 6H)
MS: m/z = 679.3 (M+H)+
Step-2: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purin-9-one
)-N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((4aR,6R,7R,7aR)-2,2- di-tert-butyl-7-((tert-butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6- yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (Step-1, 20.0 g, 29.5 mmol) in dichloromethane (250 mL) was added acetic acid (3.37 mL, 58.9 mmol) and hydrochloric acid (3.58 mL, 118 mmol) at room temperature and reaction mixture was stirred at 45 °C for 5 hrs. Progress of the reaction was monitored by TLC. Reaction mass
was cooled to room temperature and diluted by dichloromethane (400 mL) and washed with water (2 x 300 mL). Organic layer was separated dried over sodium sulphate and evaporated to get crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted in 2% methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 4.2 gm (25.4 %)] 1H NMR (400 MHz, DMSO-d6) δ 12.45 (s, 1H), 8.13 (s, 1H), 7.67– 7.63 (m, 1H), 7.48– 7.44 (m, 1H), 5.91– 5.86 (m, 1H), 4.68– 4.63 (m, 1H), 4.44– 4.30 (m, 2H), 4.08– 3.92 (m, 2H), 1.12– 0.98 (m, 18H), 0.91– 0.84 (m, 9H), 0.15– 0.06 (m, 6H)
MS: m/z = 562.1 (M+H)+
Step-3: Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert-butyldimethylsilyl)oxy)-4- hydroxytetrahydrofuran-2-yl)-3H-imidazo[1,2-a]purin-9(5H)-one
To the solution of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9- one (Step-2, 5.0 g, 8.90 mmol) in dichloromethane (40 mL) was added HF-Pyridine (5.67 mL, 40.0 mmol) in pyridine (5 mL) at 0 °C . Then reaction mixture was stirred at 0 °C for 1 hr. Reaction mixture was quenched carefully with saturated sodium bicarbonate solution until neutral pH was attained and then extracted using ethyl acetate (3 x 50 mL). Organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude intermediate. Crude intermediate was dissolved in pyridine (50 mL) at 0 °C and 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene (3.02 g, 8.90 mmol) was added. The reaction mixture was stirred overnight at room temperature. Progress of the reaction was monitored by TLC. Reaction mixture was quenched with methanol (5 mL) and evaporated to obtain crude product. The crude mass was diluted with dichloromethane
(200 mL). Organic layer was washed with saturated sodium bicarbonate solution (50 mL) and dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted in ethyl acetate. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 2.7 gm (41.9 %)] 1H NMR (400 MHz, DMSO-d6) δ 12.46 (s, 1H), 8.04 (s, 1H), 7.65 (d, J = 2.6 Hz, 1H), 7.46 (d, J = 2.7 Hz, 1H), 7.42– 7.34 (m, 2H), 7.31– 7.16 (m, 7H), 6.90– 6.79 (m, 4H), 5.96– 5.89 (m, 1H), 5.12– 5.06 (m, 1H), 4.68– 4.60 (m, 1H), 4.23– 4.14 (m, 1H), 4.12– 4.04 (m, 1H), 3.76– 3.70 (m, 6H), 3.27– 3.19 (m, 1H), 0.78 (s, 9H), -0.06 (s, 3H), -0.08 (s, 3H) MS: m/z = 724.2 (M+H)+ Step-4: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)- 5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a solution of phosphorus trichloride (1.63 mL, 18.65 mmol) and 4-methylmorpholine (20.73 mL, 186.0 mmol) in anhydrous dichloromethane (50 mL) was added 1,2,4-triazole (9.53 g, 138.0 mmol) under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C. To this dropwise added solution of 3-((2R,3R,4R,5R)-5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert- butyldimethylsilyl)oxy)-4-hydroxy tetrahydrofuran-2-yl)-3H-imidazo[1,2-a]purin-9(5H)- one (Step-3, 2.7 g, 3.73 mmol) in dichloromethane (5 mL). The solution was stirred for 30 minutes at same temperature and then hydrolyzed by addition of 1M triethylammonium formate buffer solution (pH~6). The aqueous layer was extracted with dichloromethane (3 x 20 mL), the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as a semisolid compound. The semisolid
compound was treated with a 3% solution of dichloroacetic acid in dichloromethane (20 mL) and water (10 equivalent) for 15 min. Progress of reaction was monitored by TLC. The reaction was quenched with methanol (5 mL) and pyridine (5 mL). The solvents were removed in vacuum to get crude product. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted in 25% methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 1.6 gm (88.0 %)] 1H NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H), 8.19 (s, 1H), 7.63 (d, J = 2.6 Hz, 1H), 7.44 (d, J = 2.7 Hz, 1H), 5.92– 5.85 (m, 1H), 4.76– 4.64 (m, 2H), 4.18– 4.12 (m, 1H), 3.76– 3.63 (m, 2H), 0.70 (s, 9H), -0.07 (s, 3H), -0.20 (s, 3H)
MS: m/z = 485.9 (M+H)+ Step-5: Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy) phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo [1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a solution of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step-4, 0.40 g, 0.82 mmol) (two time co-evaporated with acetonitrile) and 5-[3,5- di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetrazole (0.46 g, 1.64 mmol) in acetonitrile (70 mL) in the presence of molecular sieves (3 Ao) was added, in one portion, (two time co-
evaporated with acetonitrile) solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)- 5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (Step-6 of Example 1, 1.22 g, 1.64 mmol) in acetonitile (50 mL). Reaction mixture was stirred at room temperature for 16 hrs. To the reaction mixture 5.5 M solution of t-butyl hydroperoxide (0.30 mL, 1.64 mmol) was added and stirred for 3 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered and the molecular sieves were washed with dichloromethane (2 x 20 mL). The filtrate was concentrated under reduced pressure and co-evaporated thrice with acetonitrile. The residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.32 mL) for 15 minutes at room temperature. The reaction was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the residue, and the residue was purified by silica-gel column chromatography, using 15 to 60% methanol in dichloromethane as eluent to obtain the title compound.
[Yield: 0.55 gm (61.5 %)]
MS: m/z = 1086.3 (M+H)+ Step-6: Cyclization and oxidation
(2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethyl silyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphoryl)oxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl) tetrahydrofuran-3-yl hydrogen phosphonate (Step 5,
0.55 g, 0.50 mmol) was co-evaporated with dry pyridine (2 x 30 mL) and dissolved in 20 mL dry pyridine. To this solution was added 2-chloro-5,5-dimethyl-1,3,2- dioxaphophorinane-2-oxide (0.46 g, 2.53 mmol) at 0-5 °C and the reaction mixture was stirred at room temperature for 16 hrs. To this reaction mixture was added iodine (0.16 g, 0.63 mmol), water (0.27 mL) and stirred for 1 hr. Progress of reaction was monitored by TLC. After completion the reaction mixture was quenched with 15% aqueous sodium bisulphite solution (100 mL) until complete decolorization was observed. To this saturated sodium bicarbonate solution (100 mL) was added. Aqueous layer was extracted with ethyl acetate (2 x 250 mL). Combined organic layer was dried on sodium sulphate and concentrated under reduced pressure to get oily crude title compound. Crude product was used for further reaction. [Yield: 1.40 gm]
MS (m/z) = 1084.3 (M+H)+ Step-7: Benzoyl and cyanoethyl deprotection
yc ze pro uc rom sep- . 0 g, 1.29 mmol) was treated with 33% methylamine in ethanol (20 mL) and the resulting mixture was stirred at 50 °C in sealed tube for 3 hrs. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated and the resulting residue was dried under reduced pressure to get sticky solid (1.8 gm). Crude solid was purified by preparative HPLC using triethylammonium acetate buffer. After preparative HPLC purification/separation the obtained fractions were concentrated to get the title compound.
[Yield: 0.45 gm (37.6 %)]
MS (m/z) = 927.3 (M+H)+
Step-8: TBS deprotection of step 7 product
Step-7 product (0.45 g, 0.48 mmol) was co-evaporated in 10 mL dry acetonitrile, and to this (3.00 mL) dry pyridine was added and solution was heated to 50 °C and triethylamine trihydrofluoride (3.50 mL, 21.60 mmol) and triethylamine (6.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through c-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
[Yield- 0.15 gm]
MS: m/z = 699.0 N (M+H)+ SOte O O Pp-9 N OOaH: O S O OP Ny N Nn H Oat2Nhe Ns Oi Os O o NH Nf (2 O’, N 3 N’)c NyHclic-AIPMP (Compound 4)
Dowex 50WX2 -Hydrogen form (50-100 mesh), 10 gm was slurry packed into syringe column, washed with 40 mL of deionized water.30 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 40 mL of deionized water. After draining the excess of deionized water by gravity, step-8 product (0.15 g) in 10 mL of deionized water was loaded onto the column. Column was eluted with 50 mL of deionized water; each 5 mL fractions were collected. The fractions those which show UV activity on TLC, were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.085 gm] 1H NMR (400 MHz, DMSO-d6) δ 8.51– 8.43 (m, 1H), 8.18 (s, 1H), 8.00 (d, J = 14.1 Hz, 1H), 7.54–7.46 (m, 1H), 7.27– 7.17 (m, 1H), 6.06 (dd, J = 8.6, 1.8 Hz, 1H), 5.86 (dd, J = 8.0, 1.7 Hz, 1H), 5.08– 4.88 (m, 3H), 4.37– 4.30 (m, 1H), 4.21– 4.15 (m, 1H), 4.15– 4.11 (m
31P NMR (162 MHz, DMSO-d6) δ 1.87, -0.57
MS: m/z = 6 O99.0 (M+H)+
Ex Pam N OOpaH Ole OP S N 5:a2 (2’, O 3 O’ O)H N cyclic-AIPM(PS)2 (Compound 5, 6, 7, and 8)
SOte Sp-1: S Ny N HntNhe Ns Nis N of O (2 NR N,3R y) phosphorroth N, iH4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethox oyl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo- 5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a two t me co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step-4 of Example 4, 1.50 g, 3.09 mmol) and 5-[3,5-di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetrazole (0.46 g, 1.64 mmol) in acetonitrile (150 mL) in the presence of molecular sieves (3Ao) was added, in one portion, (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-2-(6- benzamido-9H-purin-9-yl)-5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy) tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (Step-6 of Example 1, 4.63 g, 4.58 mmol) in acetonitile (50 mL). Reaction mixture was stirred at room temperature for 16 hrs. To the reaction mixture 2-phenylacetic dithioperoxyanhydride (2.336 g, 7.72 mmol) was added and stirred for 2 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered and the molecular sieves were washed with dichloromethane (2 x 20 mL). The filtrate was concentrated under reduced pressure and co-evaporated with acetonitrile three times. The residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL) in the presence of water (0.50 mL) for 15 minutes at room temperature. The reaction was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the residue, and the residue was purified by silica-gel column chromatography, using 15 - 60% methanol in dichloromethane as eluent to obtain the title compound.
[Yield: 2.30 gm (67.5 %)]
MS: m/z = 1102.3 (M+H)+
ion
, , , - - , , , )-2-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethyl silyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphorothioyl) oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo- 5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 1, 2.30 g, 2.08 mmol) was co-evaporated with dry pyridine (2 x 50 mL) and dissolved in 100 mL dry pyridine. To this solution was added 2-chloro-5,5-dimethyl-1,3,2- dioxaphophorinane-2-oxide (1.54 g, 8.35 mmol) at 0-5 °C and reaction mixture was stirred at room temperature for 2 hrs. To this reaction mixture water (1.13 mL) and 3H-1,2- benzodithiol-3-one (1.053 g, 6.26 mmol) were added and stirred for 1 hr. Progress of reaction was monitored by TLC. To this saturated sodium bicarbonate solution (100 mL) was added. Aqueous layer was extracted with ethyl acetate (2 x 250 mL). Combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to get oily crude compound. Crude product was purified by flash column chromatography, using 5- 35% methanol in dichloromethane as eluent to obtain the title compound.
[Yield: 1.50 gm (65.5 %)]
MS: m/z = 1116.2 (M+H)+ Step-3: Benzoyl and cyanoethyl deprotection
tep cyc ze pro uct . g, .34 mmol) was treated with 33% methylamine in ethanol (90 mL) and the resulting mixture was stirred at 50 °C in sealed tube for 2 hrs. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid (1.5 gm). Isolated 1.5 gm solid compound. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 µm). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain four diastereomers Isolated Peak 1(Diastereomer 1- UPLC TR: 1.58 min) = 40 mg
MS: m/z = 959.2 [M+H]+
Isolated Peak 2 (Diastereomer 2- UPLC TR: 1.74 min) = 180 mg
MS: m/z = 959.2 [M+H]+
Isolated Peak 3 (Diastereomer 3- UPLC TR: 1.76 min) = 140 mg
MS: m/z = 959.2 [M+H]+
Isolated Peak 4 (Diastereomer 4- UPLC TR: 2.01 min) = 180 mg
MS: m/z = 959.2 [M+H]+ Step-4A: TBS deprotection of isolated peak 1 (Diastereomer 1) of step 3
astereomer o step- . g, 0.04 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this (1.00 mL) dry pyridine (1.00 mL) was added and the solution was heated to 50 °C and triethylamine trihydrofluoride (0.34 mL, 2.08 mmol) and triethylamine (1.0 mL) were added to athe stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
[Yield- 0.021 g]
MS: m/z = 731.1 [M+H]+ Step-4B: TBS deprotection of isolated peak 2 (Diastereomer 2) of step 3
- . , 0.18 mmol) was co-evaporated in dry acetonitrile (10 mL) and to this dry pyridine (3.0 mL) was added and solution was heated to 50 °C and
triethylamine trihydrofluoride (1.48 mL, 9.12 mmol) and triethylamine (3.0 mL) were added to the stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as bis triethylammonium salt.
[Yield- 0.09 g]
MS: m/z = 731.1 [M+H]+ Step-4C: TBS deprotection of isolated peak 3 (Diastereomer 3) of step 3
astereomer o step- . g, 0.14 mmol) was co-evaporated in dry acetonitrile (10 mL) and to this dry pyridine (2.00 mL) was added and solution was heated to 50°C and triethylamine trihydrofluoride (1.20 mL, 7.30 mmol) and triethylamine (2.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50°C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt. [Yield- 0.06 g]
MS: m/z = 731.1 [M+H]+ Step-4D: TBS deprotection of isolated peak 4 (Diastereomer 4) of step 3
Diastereomer 4 of step-3 (0.20 g, 0.20 mmol) was co-evaporated in dry acetonitrile (10 mL) and to this dry pyridine (3.0 mL) was added and solution was heated to 50 °C and triethylamine trihydrofluoride (1.53 mL, 9.38 mmol) and triethylamine (3.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50 °C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mix was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt. [Yield- 0.14 g]
MS: m/z = 731.1 [M+H]+ SOtep-5A: Synthesis of (2’, 3’) cyclic-AIPM(PS)2(Compound 5-Diastereomer 1)
o O P Swe N OOxaH O OP S N N N H Oa2N N O N - O O NyH Nro Og Ne Nn NoHrm (50-100 mesh), 2.0 gm was slurry packed into syringe column, washed with 10 mL of deionized water.20 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 40 mL of deionized water. After draining the
excess of deionized water by gravity. Diastereomer 1 (Step 4A, 0.025 g) in 25 mL of deionized water was loaded in to the column. Column was eluted with 20 mL of deionized water; each 3 mL fractions were collected. Fractions those which shows UV activity on TLC, mixed and concentrated under reduced pressure to get the title compound as disodium salt.
[Yield- 0.014 g] 1H NMR (400 MHz, DMSO-d6) δ 8.84 (s, 1H), 8.16 (s, 1H), 7.89– 7.85 (m, 1H), 7.44– 7.42 (m, 1H), 7.10 (d, J = 12.1 Hz, 1H), 6.11 (d, J = 8.4 Hz, 1H), 5.88 (d, J = 6.1 Hz, 1H), 5.29-5.24 (m , 2H), 4.81-4.78 (m , 1H) 4.43 (q, J = 5.4, 4.8 Hz, 1H), 4.21-4.03 (m , 4H), 3.84– 3.76 (m, 2H)
31P NMR (162 MHz, DMSO-d6) δ 56.94, 54.05
MS: m/z = 731.1 [M+H]+ SOte O P Sp-5 N OOaBH O: H2h tereomer 2)
Dowex 5 OP SW f N S N Ny
d Oant
X eNio Nn Oe N -H iz Osi
e Os Ny ro dH N of (2’, 3’)Cyclic-AIPM(PS)2 (Compound 6-Dias
w Og at Ne e Nn r b No yHrm (50-100 mesh), 5.0 gm was slurry packed into syringe column, washed with 20 mL of deionized water.30 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 70 mL of deionized water. After draining the excess o gravity. Diastereomer 2 (Step 4B, 0.08 g) in 25 mL of deionized water was loaded in to the column .Column was eluted with 60 mL of deionized water; each 3 mL fractions were collected. Fractions those which shows UV activity on TLC, mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.04 g]
1H NMR (400 MHz, DMSO-d6) δ 8.53– 8.52 (m, 1H), 8.17 (s, 1H), 7.94– 7.92 (m, 1H), 7.51– 7.41 (m, 1H), 7.17 (d, J = 8.1 Hz, 1H), 6.09 (d, J = 8.5 Hz, 1H), 5.89 (d, J = 8.2 Hz, 1H), 5.43 (dd, J = 8.9, 4.2 Hz, 1H), 5.30-5.28(m , 1H), 4.75-4.70 (m, 1H), 4.29 (m, 1H), 4.25– 4.00 (m, 4H), 3.74– 3.61 (m, 2H)
31P NMR (162 MHz, DMSO-d6) δ 59.78, 56.95
MS: m/z = 731.1 [M+H]+
SOte
s OOH O o OP Sf N S Ny
danth
eion Oe
iz Osi
e Os
dH N of (2’, 3’) cyclic-AIPM(PS)2(Compound 7-Diastereomer 3)
Dowe Nxa 5 NW H O2XN N N -H Ny ro
w Og at Ne e Nn r b No yHrm (50-100 mesh), 5.0 gm was slurry packed into syringe column, washed with 25 mL of deionized water.35 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 70 mL of deionized water. After draining the exces gravity. Diastereomer 3 (Step 4C, 0.06 g) in 25 mL of deionized water was loaded in to the column. Column was eluted with 60 mL of deionized water; each 3 mL fractions were collected. Fractions those which shows UV activity on TLC, mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.026 g] 1H NMR (400 MHz, DMSO-d6) δ 8.86 (s, 1H), 8.16 (s, 1H), 8.02– 7.90 (m, 1H), 7.57– 7.42 (m, 1H), 7.17 (d, J = 12.1 Hz, 1H), 6.10 (d, J = 8.4 Hz, 1H), 5.87 (d, J = 6.1 Hz, 1H), 5.21-5.19 (m , 1H), 5.17– 5.08 (m, 1H), 4.89 (q, J = 5.4, 4.8 Hz, 1H), 4.64 (d, J = 5.1 Hz, 1H), 4.31-4.26 (m , 1H), 4.19 (s, 1H), 4.16– 3.95 (m, 3H), 3.84– 3.76 (m, 1H)
31P NMR (162 MHz, DMSO-d6) δ 54.27, 48.49
MS
O: m/ Oz = 731.1 [M+H]+ Step-5D: Synth Oesi Os of (2’, 3’)Cyclic-AIPM(PS)2 (Compound 8-Diastereomer 4)
DOo P Swe Nxa 5 N0 NW Ha2XN N2 N -HyHdro Ogen form (50-100 mesh), 5.0 gm was slurry packed into syringe column, washed with 25 mL of deionized water.25 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 70 mL of deionized water. After draining the excess of deionized water by gravity. Diastereomer 4 (Step 4D, 0.085 g) in 25 mL of deionized water was loaded in to the column. Column was eluted with 60 mL of deionized water; each 3 mL fractions were collected. Those fractions which shows UV activity on TLC, mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.039 g]
1H NMR (400 MHz, DMSO-d6) δ 8.52 (s 1H), 8.17 (s, 1H), 8.04 (d, J = 4 Hz, 1H), 7.52 (d, J = 4 Hz, 1H), 7.25 (d, J = 2.5 Hz, 1H), 6.10 (d, J = 8.5 Hz, 1H), 5.89 (d, J = 7.3 Hz, 1H), 5.34– 5.24 (m, 2H), 4.94-4.91 (m, 1H), 4.42 (d, J = 4.3 Hz, 1H), 4.22– 4.15 (m, 2H), 4.12– 4.01 (m, 2H), 3.85– 3.78 (m, 1H), 3.71-3.68 (m, 1H)
31P NMR (162 MHz, DMSO-d6) δ 58.00, 52.22
MS: m/z = 731.1 [M+H]+ Example 6: (2’, 3’) cyclic-ATPMP (Compound 9)
Step-1: Synthesis of 2-bromo-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethyl
,2-d][1,3,2]dioxasilin-6-yl)-1,9-dihydro-6H purin-6-one
o a strre souton o -amino-9-((4aR,6R,7R)-2,2-di-tert-butyl-7-((tert-butyldimethyl silyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)-one (Step-1 of Example-1, 10.0 g, 18.59 mmol) in dibromomethane (100 mL) was added trimethyl silyl bromide (22.09 mL, 167 mmol) at room temperature, then mixture was cooled to 0 °C, tert- butylnitrite (44.2 mL, 372 mmol) was added dropwise and reaction mixture was allowed to proceed at room temperature. Progress of reaction was monitored by TLC. Reaction mixture was quenched slowly on vigorously stirred mixture of aqueous bicarbonate solution (300 mL) and dichloromethane (300 mL). Two layers were separated; aqueous layer was extracted with dichloromethane (1 x 200 mL). Combined organic layers were dried over sodium sulphate and concentrated under reduced pressure to get crude product; which was purified on flash using 35-45% ethyl acetate in hexane as eluent to afford desired product.. [Yield- 6.8 gm (60.8 %)] 1H NMR (400 MHz, DMSO-d6) δ 8.26 (s, 1H), 5.89 (s, 1H), 4.55 (s, 2H), 4.43– 4.36 (m, 1H), 4.13– 3.97 (m, 2H), 1.07 (s, 9H), 1.01 (s, 9H), 0.90 (s, 9H), 0.14 (s, 3H), 0.10 (s, 3H) MS: m/z = 601.6 [M+H]+
Step-2: Synthesis of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-hydrazinyl-1,9-dihydro-6H-purin- 6-one
o a s rre suspens on of 2-bromo-9-((4aR,6R,7R)-2,2-di-tert-butyl-7-((tert- butyldimethyl silyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)- one (Step-1, 22 g, 36.6 mmol) in ethanol (220 mL) was added hydrazine hydrate (26.6 mL, 548 mmol) at 25 °C and reaction mixture was stirred at 60 °C for 15 hrs. Progress of reaction was monitored by TLC and LCMS. Reaction mixture was concentrated under reduced pressure to get sticky solid which was dried well; then diethyl ether was added to it, solid get precipitated. Obtained solid was stirred for 15 minutes at room temperature and was filtered and dried to get crude compound (17.00 gm); which was used as such in the next step.
MS: m/z = 553.1 [M+H]+ Step-3: Synthesis of 8-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1,8-dihydro-5H-[1,2,4]triazolo[4,3- a] purin-5-one
-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-hydrazinyl-1H-purin-6(9H)-one , 30.8 mmol) in dimethylformamide (400 mL) was added triethoxymethane (82.0 mL, 492 mmol) at 25°C and reaction mixture was stirred at 100 °C for 1.5 hrs. Progress of reaction was monitored by TLC. Reaction mixture was concentrated under reduced
pressure to get crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted in 60% ethyl acetate in hexane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 2.8 gm (16.2 %)] 1H NMR (400 MHz, DMSO-d6) δ 14.12 (s, 1H), 9.11 (s, 1H), 8.19 (s, 1H), 5.88 (s, 1H), 4.65 (d, J = 5.0 Hz, 1H), 4.43– 4.34 (m, 2H), 4.10– 4.00 (m, 2H), 1.08 (s, 9H), 1.02 (s, 9H), 0.88 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H)
MS: m/z = 563.4 [M+H]+ The Compound 9, was prepared from Step-3 product (Example 6) according to the procedure (Step-3 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
Example 6: (2’, 3’) cyclic-ATPMP (Compound 9)
1H NMR (400 MHz, DMSO-d6) δ 8.63 (s, 1H), 8.45 (s, 1H), 8.17 (s, 1H), 7.91 (s, 1H), 6.07 (d, J = 8.4 Hz, 1H), 5.84 (d, J = 7.6 Hz, 1H), 5.05– 4.98 (m, 1H), 4.96– 4.88 (m, 2H), 4.40 – 4.32 (m, 1H), 4.23– 4.12 (m, 2H), 4.12– 3.95 (m, 2H), 3.82– 3.71 (m, 2H)
MS: m/z = 700.0 [M+H]+ Example 7: (2’, 3’) cyclic-ATPYPMP (Compound 53)
Step-1: Synthesis of ethyl (E)-3-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)acrylate.
To a solution of 2-bromo-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)- one (Step-1 Product of Example 6, 34.0 g, 56.5 mmol) in 1,4 dioxane (300 ml) was added (E)-ethyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (15.33 g, 67.8 mmol), Potassium Phosphate, dibasic (19.68 g, 113 mmol) and water (10 mL). The reaction mixture was purged with nitrogen for 5 min, Tetrakis(triphenylphosphine)palladium (6.53 g, 5.65 mmol) was added and stirred the resulting mixture at 100 °C for 16 h. Upon completion, the reaction mixture was diluted with ethyl acetate (100 mL) and water. The organic layer was separated and dried over sodium sulfate, filtered and concentrated under reduced pressure to get crude residue. The crude residue was purified by column chromatography using 30% ethyl acetate in hexane to afford title compound as a solid. [Yield: 12 g, (34.2 %)].
1H NMR (400 MHz, DMSO-d6) δ 12.76 (s, 1H), 8.37 (s, 1H), 7.39 (d, J = 15.8 Hz, 1H), 7.03 (d, J = 15.8 Hz, 1H), 5.99 (s, 1H), 4.65 (d, J = 5.0 Hz, 1H), 4.52– 4.46 (m, 1H), 4.40
(dd, J = 8.3, 4.3 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 4.12– 4.01 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 1.02 (s, 18H), 0.89 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H).
MS: m/z = 621.35 (M+H)+ Step-2: Synthesis of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-(3- hydroxypropyl)-1,9-dihydro-6H-purin-6-one.
To a stirred solution of (E)-ethyl 3-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)acrylate (step-1, 12 g, 19.33 mmol) in tetrahydrofuran (200 mL) was added sodium borohydride (18.28 g, 483 mmol) and stirred at room temperature for 16 h. To this reaction mixture, lithium borohydride (14.74 g, 676 mmol) was added and continued to stir for 32 h. The reaction mixture was quenched by adding saturated aqueous sodium bicarbonate (50 mL) and extracted with ethyl acetate (3 x 100 mL). The organic layer was washed with water (50 mL) and brine (50 mL), dried over sodium sulfate, filtered and concentrated to obtain crude residue. The crude residue was purified by column chromatography using 70% ethyl acetate in hexane to afford title compound as a solid. [Yield: 5 g, (44.5 %)].
1H NMR (400 MHz, DMSO-d6) δ 12.30 (s, 1H), 8.22 (s, 1H), 5.91 (s, 1H), 4.62 (d, J = 5.1 Hz, 1H), 4.57– 4.51 (m, 2H), 4.40– 4.36 (m, 1H), 4.03– 3.97 (m, 2H), 3.49– 3.39 (m, 2H), 2.73– 2.61 (m, 2H), 1.89– 1.80 (m, 2H), 1.06 (s, 9H), 1.01 (s, 9H), 0.86 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H).
MS: m/z = 581.28 (M+H)+
Step-3: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5,6,7- tetrahydro-9H-pyrrolo[1,2-a]purin-9-one.
To the stirred solution of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-(3- hydroxypropyl)-1H-purin-6(9H)-one (step-2, 5 g, 8.61 mmol) in tetrahydrofuran (100 mL) was added triphenylphosphine (6.77 g, 25.8 mmol) at 0 °C . To this reaction mixture diethyl azo dicarboxylate (4.09 ml, 25.8 mmol) was added dropwise and the reaction mixture was allowed to warm to room temperature and stirred for 16 hrs. Progress of reaction was monitored by TLC. Upon completion, the reaction mixture was poured into ice/water mixture and extracted with ethyl acetate (3 x 100 mL). Combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to get oily crude residue. The crude residue was purified by column chromatography using 40% ethyl acetate in hexane to afford title compound. [Yield: 4 gm (83%)] 1H NMR (400 MHz, DMSO-d6) δ 8.24 (s, 1H), 5.91 (s, 1H), 4.76– 4.70 (m, 1H), 4.57 (d, J = 4.9 Hz, 1H), 4.41– 4.36 (m, 1H), 4.25– 4.15 (m, 4H), 3.13– 3.02 (m, 2H), 2.26– 2.15 (m, 2H), 1.08 (s, 9H), 1.01 (s, 9H), 0.89 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H).
MS: m/z = 563.24 (M+H)+ Step-4: Synthesis of 3-((2R,3R,4R,5R)-3-((tert-butyldimethylsilyl)oxy)-4-hydroxy-5- (hydroxymethyl)tetrahydrofuran-2-yl)-3,5,6,7-tetrahydro-9H-pyrrolo[1,2-a]purin-9-one.
To the solution of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6,7-dihydro-3H- pyrrolo[1,2-a]purin-9(5H)-one (step-3, 4 g, 7.11 mmol) in dichloromethane (100 mL) was added HF-Pyridine (4.53 ml, 32.0 mmol) in pyridine (5 mL) at 0 °C . Then reaction mixture was stirred at 0 °C for 1 hr. Reaction mixture was quenched carefully with saturated aqueous sodium bicarbonate solution (up to neutral pH) and extracted using ethyl acetate (3 x 50 mL). Organic layer was dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude residue. The residue was purified by column chromatography employing ethyl acetate in hexane as eluent. The title compound eluted in 90% ethyl acetate in hexane.
[Yield: 2.1 g, (69.9 %)].
1H NMR (400 MHz, DMSO-d6) δ 8.31 (s, 1H), 5.88 (d, J = 5.5 Hz, 1H), 5.18 (d, J = 5.7 Hz, 1H), 5.12 (d, J = 5.4 Hz, 1H), 4.55 (t, J = 5.2 Hz, 1H), 4.14– 4.02 (m, 3H), 3.98 (q, J = 3.6 Hz, 1H), 3.74– 3.67 (m, 1H), 3.64– 3.55 (m, 1H), 3.15– 3.04 (m, 2H), 2.27– 2.17 (m, 2H), 0.77 (s, 9H), -0.04 (s, 3H), -0.13 (s, 3H).
MS: m/z = 423.13 (M+H)+
Step-5: Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert-butyldimethylsilyl)oxy)-4- hydroxytetrahydrofuran-2-yl)-3,5,6,7-tetrahydro-9H-pyrrolo[1,2-a]purin-9-one.
y roxyme y era y ro uran- -y - , - y ro- -pyrroo , -a purn- -one (step-4, 1.9 g, 4.50 mmol) in pyridine (30.0 mL) was added 1-[chloro-(4-methoxyphenyl)- phenylmethyl]-4-methoxybenzene (1.52 g, 4.50 mmol). The resulting mixture was stirred at room temperature for 16 hour. Progress of the reaction was monitored by TLC. Upon completion, the reaction was diluted with dichloromethane, quenched with methanol and basified with saturated aqueous sodium bicarbonate solution. The layers were separated and the aqueous layer was extracted thrice with dichloromethane. Combined organic layer was dried over anhydrous sodium sulphate and filtered and evaporated under reduced pressure to obtain crude mass. The crude mass was purified by column chromatography employing 60% ethyl acetate in hexane as eluent to obtain the title compound as a solid. [Yield: 1.5 g, (46 %)].
1H NMR (400 MHz, DMSO-d6) δ 8.15 (s, 1H), 7.44– 7.37 (m, 2H), 7.33– 7.19 (m, 7H), 6.90– 6.82 (m, 4H), 5.90 (d, J = 5.2 Hz, 1H), 5.17 (d, J = 5.7 Hz, 1H), 4.73 (t, J = 5.0 Hz, 1H), 4.18– 4.08 (m, 2H), 4.05 (d, J = 7.2 Hz, 2H), 3.74 (s, 6H), 3.28 (qd, J = 10.4, 4.4 Hz, 2H), 3.03– 2.93 (m, 1H), 2.85– 2.74 (m, 1H), 2.22– 2.10 (m, 2H), 0.78 (s, 9H), -0.02 (s, 3H), -0.10 (s, 3H).
MS: m/z = 725.36 (M+H)+
Step-6: Synthesis (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5- (9-oxo-5,6,7,9-tetrahydro-3H-pyrrolo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate.
To a solution of phosphorous trichloride (0.905 ml, 10.35 mmol) and 4-methylmorpholine (11.50 ml, 103 mmol) in anhydrous dichloromethane (50 mL), 1,2,4-triazole (5.29 g, 77 mmol) was added under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C. To this mixture, solution of 3- ((2R,3R,4R,5R)-5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-3-((tert- butyldimethylsilyl)oxy)-4-hydroxytetrahydrofuran-2-yl)-6,7-dihydro-3H-pyrrolo[1,2- a]purin-9(5H)-one (step-5, 1.5 g, 2.069 mmol) dissolved in dichloromethane (5 mL), was added dropwise. The solution was stirred for 30 minutes at same temperature and then hydrolyzed by addition of 1M triethylammoniumformate buffer solution (PH 6). The aqueous layer was extracted with dichloromethane (3x20 mL), the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as a semisolid compound. The semisolid compound was treated with a 3% solution of DCA (dichloroacetic acid) in dichloromethane (20 mL) and water (10 equiv) for 15 minutes. Progress of reaction was monitored by TLC. The reaction was quenched with a solution of methanol (5 mL) and pyridine (5 mL). The solvents were removed in vacuum. Crude product was purified by flash chromatography using 25% methanol in dichloromethane as eluent. Fractions were concentrated under reduced pressure to obtain the desired product as white solid. [Yield– 0.750 gm (74.5 %)]
1H NMR (400 MHz, DMSO-d6) δ 8.30 (s, 1H), 5.88 (d, J = 5.1 Hz, 1H), 4.72– 4.64 (m, 2H), 4.16 (q, J = 3.1 Hz, 1H), 4.06 (t, J = 7.3 Hz, 2H), 3.74– 3.61 (m, 2H), 3.12– 3.04 (m, 3H), 2.27– 2.14 (m, 2H), 0.75 (s, 9H), -0.04 (s, 3H), -0.18 (s, 3H).
MS: m/z = 486.97 (M+H)+
The Compound 53, was prepared from Step-6 product (Example 7) according to the procedure (Step-5 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
Example 7: (2’, 3’) cyclic-ATPYPMP (Compound 53)
1H NMR (400 MHz, DMSO-d6) δ 8.48 (dd, J = 4.1, 1.9 Hz, 1H), 8.31 (d, J = 3.6 Hz, 1H), 8.16 (d, J = 1.3 Hz, 1H), 6.06 (d, J = 8.4 Hz, 1H), 5.87 (dd, J = 8.1, 2.0 Hz, 1H), 4.99 (m, 2H), 4.82 (dd, J = 8.1, 4.3 Hz, 1H), 4.30 (t, J = 3.2 Hz, 1H), 4.24– 4.17 (m, 1H), 4.13 (s, 1H), 4.08– 3.93 (m, 4H), 3.75 (m, 2H), 3.12 (t, J = 8.0 Hz, 2H), 2.19 (m, 2H).
MS: m/z = 700.0 [M+H]+ Example 8: (2’, 3’) cyclic-AIPYMP (Compound 10)
,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 5-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3,4-diol
To a suspension of (2R,3S,4R,5R)-2-(hydroxymethyl)-5-(3H-imidazo[2,1-i]purin-3-yl) tetrahydrofuran-3,4-diol (5.0 g, 17.17 mmol) [prepared according to procedure reported in the European Journal of Organic Chemistry 2000, 12, (2315-2323)] in pyridine (100 mL) was added dimethoxy trityl chloride (DMT-Cl) (6.98 g, 20.60 mmol) at room temperature and stirred for 12 hrs. The progress of the reaction was monitored by TLC. After completion, reaction was quenched with addition of water (10 mL), the solvent was evaporated under reduced pressure. Residue diluted with ethyl acetate (200 mL) and washed with aqueous sodium bicarbonate solution (2 x 100 mL). The organic layer was separated and dried over sodium sulfate filtered and concentrated to get crude compound. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted in 25% methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 4.0 gm (39.3 %)]
1H NMR (400 MHz, DMSO-d6) δ 9.24 (s, 1H), 8.45 (s, 1H), 8.10 (d, J = 1.6 Hz, 1H), 7.58 (d, J = 1.5 Hz, 1H), 7.37 (d, J = 1.6 Hz, 2H), 7.26– 7.15 (m, 7H), 6.88– 6.75 (m, 4H), 6.08 (d, J = 4.5 Hz, 1H), 5.62 (d, J = 5.6 Hz, 1H), 5.31– 5.16 (m, 1H), 4.71 (q, J = 5.1 Hz, 1H), 4.32 (q, J = 5.3 Hz, 1H), 4.14– 4.09 (m, 1H), 3.70 (d, J = 5.6 Hz, 6H)
MS: m/z = 594.1 (M+H)+ Step-2: Synthesis of (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 4-((tert-butyldimethylsilyl)oxy)-5-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-ol
(2R,3R,4S,5R)-5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethyl silyl)oxy)-2-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-ol
o a s rre sou on o (2R,3S,4R,5R)-2-((bis(4-methoxyphenyl) (phenyl) methoxy)methyl)-5-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3,4-diol (Step-1, 4.0 g, 6.74 mmol) in pyridine (80 mL) was added imidazole (2.29 g, 33.7 mmol), followed by t- butyl dimethyl silyl chloride (1.52 g, 10.11 mmol) at room temperature and stirred for 12 hrs. The progress of the reaction was monitored by TLC. Upon completion, reaction was quenched by adding water (10 mL) and the solvent was evaporated under reduced pressure. Residue was diluted with ethyl acetate and washed with aqueous sodium bicarbonate solution (2 x 50 mL) and with brine (75 mL). The organic layer was dried over sodium sulphate filtered and concentrated to yield crude compound. Crude compound was purified by flash column chromatography, non-polar spot was eluted in 25-30% ethyl acetate in hexane were concentrated to obtain (2R,3R,4R,5R)-2-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyl dimethylsilyl)oxy)-5-(3H- imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-ol (1.37 g, 28.7 % yield) and the polar spot was eluted in 35-40% ethyl acetate in hexane to obtain (2R,3R,4S,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-2-(3H- imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-ol (1.10 g, 23.06 % yield). (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethyl silyl)oxy)-5-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-ol
1H NMR (400 MHz, DMSO-d6) δ 9.28– 9.19 (m, 1H), 8.44 (d, J = 1.3 Hz, 1H), 8.14– 8.05 (m, 1H), 7.58 (d, J = 1.5 Hz, 1H), 7.43– 7.36 (m, 3H), 7.36– 7.15 (m, 8H), 6.84 (ddd, J = 11.1, 5.5, 2.9 Hz, 4H), 6.07 (d, J = 5.1 Hz, 1H), 4.83 (t, J = 5.1 Hz, 1H), 4.22 (t, J = 4.7 Hz, 1H), 4.14 (q, J = 4.3 Hz, 1H), 4.02 (q, J = 7.1 Hz, 1H), 3.75– 3.66 (m, 6H), 0.73 (d, J = 1.2 Hz, 9H), -0.06 (d, J = 1.2 Hz, 3H), -0.16 (d, J = 1.3 Hz, 3H)
MS: m/z = 708.3 (M+H)+ (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethyl silyl)oxy)-5-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-ol
1H NMR (400 MHz, DMSO-d6) δ 9.26 (s, 1H), 8.52 (s, 1H), 8.15– 8.08 (m, 1H), 7.58 (d, J = 1.5 Hz, 1H), 7.35 (d, J = 1.6 Hz, 1H), 7.34– 7.13 (m, 9H), 6.89– 6.75 (m, 4H), 6.05 (d, J = 4.9 Hz, 1H), 5.49 (d, J = 6.1 Hz, 1H), 4.88– 4.79 (m, 1H), 4.54 (t, J = 4.8 Hz, 1H), 4.09– 4.05 (m, 1H), 3.70 (d, J = 4.0 Hz, 6H), 3.19– 3.11 (m, 1H), 0.84 (s, 9H), 0.09 (s, 6H). MS: m/z = 708.3 (M+H)+ Step-3: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)- 5-(3H-imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a stirred solution of phosphorus trichloride (0.432 mL, 4.94 mmol) and in anhydrous dichloromethane (15 mL) was added 4-methylmorpholine (5.44 mL, 49.4 mmol) and 1,2,4- triazole (2.53 g, 36.6 mmol) under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the mixture is cooled to 0 °C. To this solution of (2R,3R,4R,5R)-2- ((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(3H- imidazo [2,1-i]purin-3-yl)tetrahydrofuran-3-ol (Step-2, 0.7 g, 0.989 mmol) in dry dichloromethane (20 mL) was added in drop wise manner. The solution is stirred for another 30 minutes at 0 °C and then hydrolyzed by addition of 1M triethylammonium formate buffer solution (pH~6). The organic layer was separated and aqueous layer was extracted with dichloromethane (2 x 50 mL), the combined organic layer was dried over sodium sulfate filtered and concentrated to yield crude compound. The crude compound was dissolved in dichloromethane (30 mL) and water (0.6 mL), to this was added 5%
solution of dichloroacetic acid in dichoromethane (50 mL), till red color persists. Reaction mixture was stirred for 15 minutes and then solution of pyridine: methanol (1:1, 10 mL) was added to it. Colorless solution was stirred for 5 minutes and then concentrated to yield crude compound. Crude product was purified by flash column chromatography using 10- 15% methanol in dichloromethane to yield desired product [0.36 g, 78 %)
1H NMR (400 MHz, DMSO-d6) δ 9.33 (s, 1H), 8.59 (s, 1H), 8.09 (s, 1H), 7.58 (s, 1H), 7.52 (s, 1H), 6.05 (d, J = 5.5 Hz, 2H), 6.00 (s, 1H), 4.78– 4.63 (m, 1H), 4.18 (d, J = 3.8 Hz, 2H), 3.71 (m, 1H), 0.74 (s, 9H), -0.06 (s, 3H), -0.21 (s, 3H) MS: m/z = 469.9 (M+H)+ Step-4: Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy) phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(3H- imidazo[2,1-i]purin-3-yl) tetrahydrofuran-3-yl hydrogen phosphonate
To a (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(3H-imidazo[2,1-i]purin-3- yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step-3, 0.36 g, 0.76 mmol) and 5-[3,5- di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetrazole (0.43 g, 1.53 mmol) in acetonitrile (50 mL) in the presence of molecular sieves (3 A0) was added, in one portion, (two time co- evaporated with acetonitrile) solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)- 5-((bis(4-methoxyphenyl)(phenyl)methoxy) methyl)-4-((tert-
butyldimethylsilyl)oxy)tetrahydrofuran-3-yl(2-cyanoethyl)diisopropyl phosphoramidite (Step-6 of Example 1, 0.98 g, 0.99 mmol) in acetonitile (50 mL). Reaction mixture was stirred at room temperature for 16 hrs. To the reaction mixture 5.5 M solution of t-butyl hydroperoxide (0.27 mL, 1.53 mmol) was added and stirred for 3 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered, and the molecular sieves were washed with dichloromethane (2 x 20 mL). The filtrate was concentrated under reduced pressure and co-evaporated with acetonitrile three times. The residue was treated with 3% dichloroacetic acid in dichloromethane (60 mL) in the presence of water (0.32 mL) for 15 minutes at room temperature. The reaction was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the residue and the residue was purified by silica-gel column chromatography, using 15 - 60% methanol in dichloromethane as eluent to obtain the title compound. [Yield: 0.50 gm (61.5 %)]
MS: m/z = 1070.3 (M+H)+ Step-5: Cyclization and oxidation
(2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethyl silyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2-0 cyanoethoxy)phosphoryl)oxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(3H- imidazo[2,1-i]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 4, 0.50 g, 0.46 mmol) was co-evaporated with dry pyridine (2 x 30 mL) and dissolved in dry pyridine (20 mL). To this solution was added 2-chloro-5,5-dimethyl-1,3,2-dioxaphophorinane-2-oxide (0.26 g, 1.40 mmol) at 0-5 °C and reaction mixture was stirred at room temperature for
16 hrs. To this reaction mixture was added iodine (0.15 g, 0.58 mmol), water (0.27 mL) and stirred for 1 hr. Progress of reaction was monitored by TLC. After completion the reaction mixture was quenched with 15% aqueous sodium bisulphite solution (100 mL) until complete decolorization was observed. To this saturated sodium bicarbonate solution (100 mL) was added. Aqueous layer was extracted with ethyl acetate (2 x 250 mL). Combined organic layer was dried on sodium sulphate and concentrated under reduced pressure to get oily crude title compound. Crude product was used for further reaction. [Yield: 0.89 gm]
MS: m/z = 1068.3 (M+H)+ Step-6: Benzoyl and cyanoethyl deprotection
Cyclized product from step-5 (0.78 g, 0.73 mmol) was treated with 33% methylamine in ethanol (20 mL), and the resulting mixture was stirred at 25 °C in sealed tube for 1 hr. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid (0.7 gm). Crude solid was purified by preparative HPLC using triethylammonium acetate buffer. After preparative HPLC purification/separation the obtained fractions were concentrated to get the title compound. [Yield: 0.12 gm (18.8 %)] MS (m/z) = 911.3 (M+H)+ Step-7: TBS deprotection
Step-6 product (0.12 g, 0.13 mmol) was co-evaporated in 10 mL dry acetonitrile, and to this (3.00 mL) dry pyridine was added and solution was heated to 50°C and triethylamine trihydrofluoride (1.35 mL, 13.10 mmol) and triethylamine (1.9 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 50°C for 2 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mix was poured in to chilled solution of 1M solution triethylammonium bicarbonate (40 mL) and submitted for preparative HPLC for filtration through C-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt. [Yield- 0.06 gm]
MS: m/z = 682.9 (M+H)+ Step-8: Synthesis of (2’, 3’) cyclic-AIPYMP (Compound 10)
Dowex 50WX2 -Hydrogen form (50-100 mesh), 10 gm was slurry packed into syringe column, washed with 40 mL of deionized water.30 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 40 mL of deionized water. After draining the
excess of deionized water by gravity, step-7 product (0.06 g) in 10 mL of deionized water was loaded in to the column. Column was eluted with 50 mL of deionized water; each 5 mL fractions were collected. The fractions those which show UV activity on TLC, were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.04 gm] 1H NMR (400 MHz, DMSO-d6) δ 9.31 (d, J = 2.4 Hz, 1H), 8.60 (d, J = 2.4 Hz, 1H), 8.50 (s, 1H), 8.17(s, 1H), 8.09 (d, J = 1.5 Hz, 1H), 7.57 (d, J = 1.5 Hz, 1H), 6.04-6.06 (m, 2H), 5.06-5.02 (m, 2H), 4.33(d, J = 4.4 Hz, 1H), 4.23-4.26 (m, 1H), 4.14 (s, 1H), 4.11-4.01 (m, 2H), 3.75-3.80 (m, 2H), 3.51-3.49 (m, 1H)
MS: m/z = 682.9 (M+H)+ Example 9: (2’, 3’) cyclic-A3-MTPMP (Compound 11)
Step-1: Synthesis of 8-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3-methyl-1,8- dihydro-5H-[1,2,4]triazolo [4,3-a]purin-5-one
To a stirred O solution of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-hydrazinyl-
1H-purin-6(9H)-one (Step-2 of Example 6, 2.0 g, 3.62 mmol), in dimethylformamide (30 mL) was added 1,1,1-triethoxyethane (10.61 mL, 57.9 mmol) at 25 °C and reaction mixture was stirred at 100 °C for 1.5 hrs. Progress of reaction was monitored by TLC. Reaction mixture was concentrated under reduced pressure to get crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted in 60% ethyl acetate in hexane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 0.65 gm (31.1 %)] 1H NMR (400 MHz, DMSO-d6) δ 13.67 (s, 1H), 8.11 (s, 1H), 5.83 (d, J = 0.8 Hz, 1H), 4.63 (d, J = 5.1 Hz, 1H), 4.41– 4.31 (m, 2H), 4.09– 3.95 (m, 2H), 2.77 (s, 3H), 1.08 (s, 9H), 1.02 (s, 9H), 0.88 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H). MS: m/z = 577.1 (M+H)+. The Compound 11, was prepared from Step-1 product (Example 9) according to the procedure (Step-3 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
Example 9: (2’, 3’) cyclic-A3-MTPMP (Compound 11)
1H NMR (400 MHz, DMSO-d6) δ 8.55– 8.44 (m, 1H), 8.17 (s, 1H), 7.86– 7.74 (m, 1H), 6.06 (d, J = 8.4 Hz, 1H), 5.77 (d, J = 8.0 Hz, 1H), 5.75– 5.70 (m, 2H), 5.01 (s, 1H), 4.93 (s, 1H), 4.90– 4.79 (m, 1H), 4.36– 4.30 (m, 1H), 4.18– 4.10 (m, 2H), 4.07– 3.96 (m, 2H), 3.77– 3.73 (m, 2H), 2.73 (s, 3H) MS: m/z = 714.0 (M+H)+
Example 10: (2’, 3’) cyclic-3’-βFAIPMP (Compound 12)
Ote O O Pp- N1 Fa: O O N S Ny Han2Nth Ne Os Nis OH of O (2R,3S,4S,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4-methoxy phenyl)(phenyl)methoxy)methyl)-4-fluorotetrahydrofuran-3-yl(2-cyanoethyl)diisopropyl phosphoramidite
To a stirred solution of compound N-(9-((2R,3S,4R,5R)-5-((bis(4-methoxyphenyl) (phenyl) methoxy)methyl)-4-fluoro-3-hydroxytetrahydrofuran-2-yl)-9H-purin-6- yl)benzamide (Prepared according to the procedure reported in the literature, [Nucleosides and Nucleotides, 1995, vol.14, # 6, p.1259– 1267], (1.5 g, 2.220 mmol) in tetrahydrofuran (20 mL) were added diisopropyl ethyl amine (1.939 mL, 11.10 mmol), N,N- dimethylpyridin-4-amine (0.033 g, 0.266 mmol), and 3-((chloro (diisopropylamino)phosphino)oxy)propanenitrile (1.314 g, 5.55 mmol) at 0° to 5°C. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hrs. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (3 mL) and concentrated under reduced pressure to get crude sticky compound, which was purified by column chromatography. The desired
product was eluted in 45 to 50% ethyl acetate in hexane to get title compound as off-white solid. [Yield: 1.20 gm (61.7%)] 1H NMR (400 MHz, DMSO-d6) δ 11.25 (d, J = 1.6 Hz, 1H), 8.76 (d, J = 5.9 Hz, 1H), 8.39 (d, J = 3.5 Hz, 1H), 8.05 (dt, J = 8.6, 1.4 Hz, 2H), 7.69– 7.63 (m, 1H), 7.56 (t, J = 7.5 Hz, 2H), 7.45– 7.39 (m, 2H), 7.33– 7.20 (m, 7H), 6.90– 6.83 (m, 4H), 6.27 (dd, J = 29.2, 3.1 Hz, 1H), 5.51– 5.15 (m, 3H), 4.59 (ddd, J = 28.2, 7.3, 3.6 Hz, 1H), 3.82 (ttd, J = 11.9, 6.0, 5.4, 2.6 Hz, 1H), 3.73 (d, J = 2.3 Hz, 6H), 3.62– 3.54 (m, 3H), 3.49– 3.42 (m, 1H), 2.80 (t, J = 5.9 Hz, 1H), 2.60 (t, J = 6.0 Hz, 1H), 1.17– 1.08 (m, 9H), 0.97 (d, J = 6.7 Hz, 3H). The Com Npo H Ou2Nn Nd N 12 N, was prepared from Step-1 product (Example 10) according to the procedure (Step-1 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
EOx O O Pam N FOpa Ole O OP N 1 N0a: (2 O’, O 3 O’H, N) cy Oc Nli Nc-3 N’H-βFAIPMP (Compound 12)
δ 8.19 (s, 1H), 7.99 (s, 2H), 7.46 (d, J = 2.0 Hz, 1H), 7.14 (d, J = 1.9 Hz, 1H), 6.13 (s, 1H), 5.85 (d, J = 5.8 Hz, 1H), 5.70 (s, 1H), 5.58 (s, 1H), 4.84 (dd, J = 9.5, 3.5 Hz, 1H), 4.72 (t, J = 5.3 Hz, 1H), 4.58– 4.38 (m, 4H), 4.02– 3.99 (m, 2H) MS: m/z = 700.9 (M+H)+
Example 11: (2’, 3’) cyclic-AIPDMP (Compound 13)
Step-1: Synthesis of ethyl 2-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2-(((E)- (dimethyl amino)methylene)amino)-6-oxo-6,9-dihydro-1H-purin-1-yl)acetate
To the stirred solution of (E)-N-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyl dimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro- 1H-purin-2-yl)-N,N-dimethylformimidamide (Step-1 of Example 4, 3.5 g, 5.90 mmol) in dimethyl formamide (50 mL) was added potassium carbonate (2.44 g, 17.71 mmol) at room temperature. The reaction mixture was stirred for 10 min, and then ethyl 2-bromoacetate (1.183 g, 7.08 mmol) was added to the reaction mixture. Reaction mixture was heated at 75 °C for 16 hrs. Progress of the reaction was monitored by TLC. Reaction was quenched by water (250 mL), resulting yellow solid was filtered and taken in dichloromethane (300 mL). Organic layer was washed with water (2 x 100 mL), separated organic layer was dried over sodium sulphate and evaporated to get crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted at 80% of ethyl acetate in hexane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield: 2.4 gm (59.9%)]
1H NMR (400 MHz, DMSO-d6) δ 8.53 (s, 1H), 8.08 (s, 1H), 5.96– 5.91 (m, 1H), 4.90 (d, J = 4.9 Hz, 2H), 4.61 (d, J = 5.0 Hz, 1H), 4.36 (ddd, J = 20.1, 9.2, 5.0 Hz, 2H), 4.14– 3.96 (m, 4H), 3.17 (s, 3H), 3.03 (s, 3H), 1.26– 1.18 (t, J = 16.0 Hz,3H), 1.07 (s, 9H), 1.04 (s, 9H) , 0.88 (s, 9H), 0.10 (d, J = 11.8 Hz, 6H) MS: m/z = 679.3 (M+H)+
Step-2: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- imidazo[1,2-a]purine-6,9(7H)-dione
The solution of ethyl 2-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-2- ((E)((dimethylamino)methylene)amino)-6-oxo-6,9-dihydro-1H-purin-1-yl)acetate (step 1 product) (1.2 g, 1.76 mmol) in 7 N ammonia in methanol (10 mL) was stirred at 80°C for 14 hrs. Reaction progress was monitored by TLC. Methanol was evaporated under reduced pressure to get crude product. The product was eluted in 2% methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 0.61 gm (59.7 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.19 (s, 1H), 8.17 (s, 1H), 5.82 (d, J = 0.9 Hz, 1H), 4.65 (d, J = 5.1 Hz, 1H), 4.48 (d, J = 1.5 Hz, 2H), 4.34-4.30 (m, 2H), 4.07– 3.94 (m, 2H), 1.08 (s, 9H), 1.02 (s, 9H), 0.88 (s, 9H), 0.10 (d, J = 7.6 Hz, 6H) MS: m/z = 578.1 (M+H)+
The Compound 13, was prepared from Step-2 product (Example 11) according to the procedure (Step-3 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
Example 11: (2’, 3’) cyclic-AIPDMP (Compound 13)
H NMR (400 MHz, DMSO d6) δ 8.45 (d, 1H), 8.17 (d, J = 2.5 Hz, 1H), 7.91 (s, 1H), 6.06 (d, 1H), 5.77 (d, J = 8.0Hz, 1H), 5.04– 4.96 (m, 1H), 4.96– 4.91 (m, 1H), 4.89– 4.81 (m, 1H), 4.36– 4.30 (m, 1H), 4.22– 3.93(m, 5H), 3.78– 3.67 (m, 2H)
MS: m/z = 715.1 (M+H)+ Example 12: (2’, 3’) cyclic-IPYAMP (Compound 14)
The Compound 14, was prepared from Step-2 product (Example 8) and commercially available (2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-2-((bis(4- methoxyphenyl)(phenyl)methoxy) methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropyl phosphoramidite, according to the procedure (Step-3 to Step-8) analogous to those outlined in Example 8 above using appropriate monomers, described as preparations in the coupling step.
1H NMR (400 MHz, DMSO-d6) δ 9.31 (d, J = 2.2 Hz, 1H), 8.62 (s, 1H), 8.44 (s, 1H), 8.17 (s, 2H), 8.09(d, J = 1.6 Hz, 1H), 7.57 (d, J = 1.4 Hz, 1H), 6.05 (d, J = 7.1 Hz, 1H), 5.90 (d, J = 7.2 Hz, 1H), 4.99–4.86 (m, 2H), 4.81– 4.66 (m, 2H), 4.33– 4.18 (m, 3H), 4.04– 3.97 (m, 4H).
31P NMR (162 MHz, DMSO-d6) δ 0.19, 0.21.
MS: m/z = 682.9 (M+H)+
Example 13: (2’, 3’) cyclic-ATRPMP (Compound 15)
Step-1: Synthesis of 1,2-diamino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-1,9-dihydro-6H-purin-6-one
2-amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-1H- purin-6(9H)-one (50.0 g, 177.0 mmol) was dissolved in aqueous solution of 1N NaOH (790 mL) and added solution of amino methyl hydrogen sulphate (38.1 g, 300 mmol) in water (300 mL) at room temperature. Clear reaction mixture was stirred at room temperature for 20 hrs. During reaction precipitation of solid compound was observed. Precipitated white
solid was filtered, washed with water (300 mL), cold acetone (200 mL) and dried well to get desired compound as white solid compound. [Yield- 25.0 gm (48.0 %)] 1H NMR (400 MHz, DMSO-d6) δ 7.95 (s, 1H), 7.09 (s, 2H), 5.71 (d, J = 6.1 Hz, 1H), 5.40 (s, 1H), 5.38 (s, 2H), 5.12 (d, J = 4.7 Hz, 1H), 5.02 (t, J = 5.5 Hz, 1H), 4.41 (q, J = 5.8 Hz, 1H), 4.09 (td, J = 4.8, 3.3 Hz, 1H), 3.87 (q, J = 3.9 Hz, 1H), 3.62 (ddd, J = 11.9, 5.4, 4.2 Hz, 1H), 3.53 (ddd, J = 11.9, 5.7, 4.1 Hz, 1H) MS: m/z = 298.2 (M+H)+
Step-2: Synthesis of 1,2-diamino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethyl silyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1,9-dihydro-6H- purin-6-one
To a mixture of 1,2 diamino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-1H-purin-6(9H)-one (Step-1, 15.0 g, 50.3 mmol) in dimethyl formamide (150 ml) was added di-t-butylsilylbis(trifluoromethanesulfonate) (19.69 mL, 60.4 mmol) in 15 minutes at 0 °C . The reaction mixture was stirred at 0 °C for 30 minutes. Imidazole (17.12 g, 251 mmol) was added and the reaction mixture was stirred at 25 °C for 30 minutes and then t-butyldimethyl chlorosilane (9.10 g, 60.4 mmol) was added and the reaction mixture was heated at 60 °C for 2 hrs. The progress of reaction was monitored by TLC. Water was added to the reaction mixture. The white precipitate formed in the reaction was filtered off. The solid was dissolved in ethyl acetate (50 mL) and diethyl ether (150 mL) was added to it. White solid separates out. It was filtered and dried to get title compound [15.0 g, (54.0 %)]
1H NMR (400 MHz, DMSO-d6) δ 7.94 (s, 1H), 7.02 (s, 2H), 5.73 (d, J = 1.0 Hz, 1H), 5.39 (s, 2H), 4.59 (dd, J = 5.2, 1.1 Hz, 1H), 4.39– 4.33 (m, 1H), 4.29 (dd, J = 9.0, 5.3 Hz, 1H), 4.02– 3.91 (m, 2H), 1.07 (s, 9H), 1.01 (s, 9H), 0.87 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H) MS: m/z = 553.1 (M+H)+
Step-3: Synthesis of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H- [1,2,4]triazolo[1,5-a]purin 9-one
1,2-diamino-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-1H-purin-6(9H)- one (Step-2, 15.0 g, 27.1 mmol) was dissolved in formamide (100 mL) and reaction mixture was stirred at 180°C for 2.5 hrs. Reaction mixture was cooled to room temperature, water (100 mL) was added and the reaction mixture was extracted with ethyl acetate (2 x 150 mL). Combined organic layer was dried over anhydrous sodium sulphate and concentrated in vacuum to obtain crude mass. Crude mass was purified by column chromatography using methanol in dichloromethane as eluent. Desired compound eluted in 13-15% methanol in dichloromethane to obtain the title compound. [Yield - 6.0 g, (39.3 % yield)] 1H NMR (400 MHz, DMSO-d6) δ 7.90 (s, 1H), 7.87 (s, 1H), 5.85 (s, 1H), 4.71 (d, J = 5.2 Hz, 1H), 4.70– 4.63 (m, 1H), 4.36 (d, J = 4.3 Hz, 1H), 3.97 (d, J = 6.6 Hz, 2H), 1.09 (s, 9H), 1.03 (s, 9H), 0.87 (s, 9H), 0.10 (s, 3H), 0.08 (s, 3H)
MS: m/z = 563.1 (M+H)+ The Compound 15, was prepared from Step-3 product (Example 13) according to the procedure (Step-3 to Step-9) analogous to those outlined in Example 4 above using appropriate monomers, described as preparations in the coupling step.
Example 13: (2’, 3’) cyclic-ATRPMP (Compound 15)
1H NMR (400 MHz, DMSO-d6) δ 8.38 (s, 1H), 8.16 (s, 1H), 7.94 (s, 1H), 7.79(s, 1H), 6.07-6.03 (m, 1H), 5.84-5.88 (m, 1H), 4.99–4.88 (m, 4H), 4.41– 4.34 (m, 2H), 4.23– 4.18 (m, 2H), 4.04– 3.97 (m, 2H).
31P NMR (162 MHz, DMSO-d6) δ: 2.16, -0.56
MS: m/z = 700.1 (M+H)+
Example 14: (2’, 3’) cyclic-ATPYMP (Compound 16)
Step-1: Synthesis of 6-chloro-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethyl silyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-9H-purine
To a mixture of (2R,3R,4S,5R)-2-(6-chloro-9H-purin-9-yl)-5-(hydroxymethyl) tetrahydrofuran-3,4-diol (15.0 g, 52.3 mmol) in dimethyl formamide (150 mL) was added di-t-butylsilylbis(trifluoromethanesulfonate) (18.78 mL, 57.6 mmol) in 15 minutes at 0 °C . Then reaction mixture was stirred at 0 °C for 30 minute. Then imidazole (17.81 g, 262.0 mmol) was added and the reaction mixture was stirred at 25 °C for 30 minutes and then t- butyldimethyl chlorosilane (9.46 g, 62.8 mmol) was added and reaction mixture was heated at 60 °C for 2 hrs. The progress of reaction was monitored by TLC. Reaction mixture was poured on ice water and the white precipitate formed in the reaction was filtered off, and purified by flash chromatography, fractions eluted in 30% ethyl acetate in hexane were concentrated to obtain the title compound. [Yield - 22.2 g, 41.0 mmol, (78%)]
1H NMR (400 MHz, DMSO-d6) δ 8.88 (s, 1H), 8.79 (s, 1H), 6.10 (s, 1H), 4.72 (d, J = 4.8 Hz, 1H), 4.66 (dd, J = 9.1, 4.8 Hz, 1H), 4.40 (dd, J = 8.4, 4.5 Hz, 1H), 4.18– 4.03 (m, 2H), 1.07 (s, 9H), 1.02 (s, 9H), 0.90 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H). Step-2: Synthesis of 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-hydrazinyl- 9H-purine
To a stirred solution of 6-chloro-9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-9H-purine (Step- 1, 9.0 g, 16.63 mmol) in methanol (90 mL) was added hydrazine hydrate (12.23 mL, 249.0 mmol) at 25 °C and the resulting mixture was stirred at 50 °C for 1 hrs. Reaction mixture was cooled to 10°C and solid was filtered. Solid was dried to obtain the title compound. [Yield - 7.6 g, (85 %)]
1H NMR (400 MHz, DMSO-d6) δ 9.04 (s, 1H), 8.34 (s, 1H), 5.97 (d, J = 0.7 Hz, 1H), 4.76 – 4.64 (m, 2H), 4.43– 4.32 (m, 1H), 4.06– 3.95 (m, 2H), 3.33 (s, 2H), 1.08 (s, 9H), 1.02 (s, 9H), 0.87 (s, 9H), 0.09 (d, J = 8.3 Hz, 6H)
MS: m/z = 537.1 (M+H)+ Step-3: Synthesis of 7-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-7H-[1,2,4]triazolo[3,4-i]purine
To the compound 9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl) oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-hydrazinyl-9H-purine (Step-2, 7.5 g, 13.97 mmol) was added triethyl orthoformate (116.0 mL, 699 mmol) followed by acetic acid (8.00 mL, 140 mmol) at 25°C and the resulting mixture was stirred at 65 °C for 2 hrs. Reaction mixture was evaporated to dryness. Compound was purified by flash chromatography and the fractions eluted in 5% methanol in dichloromethane were concentrated to obtain title compound [Yield - 6.1 g, (80 %)].
1H NMR (400 MHz, DMSO-d6) δ 9.41 (s, 1H), 9.37 (s, 1H), 8.63 (s, 1H), 6.12 (s, 1H), 4.67 (d, J = 7.9 Hz, 2H), 4.45– 4.38 (m, 1H), 4.13– 4.04 (m, 2H), 1.09 (s, 9H), 1.03 (s, 9H), 0.90 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H)
MS: m/z = 547.1 (M+H)+
The Compound 16, was prepared from Step-3 product (Example 14) according to the procedure (Step-3 to Step-8) analogous to those outlined in Example 8 above using appropriate monomers, described as preparations in the coupling step.
Example 14: (2’, 3’) cyclic-ATPYMP (Compound 16)
z, -d6) δ 9.72– 9.66 (m, 1H), 8.86– 8.79 (m, 1H), 8.67– 8.62 (m, 1H), 8.52–8.44 (m, 1H), 8.17 (s, 1H), 6.11 (d, J = 7.6 Hz, 1H), 6.09– 6.04 (m, 1H), 5.12– 4.99 (m, 3H), 4.36– 4.25 (m, 2H), 4.18– 4.02 (m, 3H), 3.85– 3.72 (m, 2H) MS: m/z = 684.0 (M+H)+
Example 15: (2’, 3’) cyclic-A7-MIPYMP (Compound 17)
The Compound 17 was synthesized according to the procedure (Step-1 to Step-8) analogous to those outlined in Example 8 above using appropriate monomers, described as preparations in the coupling step.
Example 15: (2’, 3’) cyclic-A7-MIPYMP (Compound 17)
1H NMR (400 MHz, DMSO-d6) δ 9.07 (s, 1H), 8.48 (s, 1H), 8.59 (s, 1H), 7.32– 7.30 (m, 1H), , 6.07– 6.04 (m, 1H), 5.07– 5.04 (m, 1H), 4.33(d, J = 4.4 Hz, 1H), 4.23-4.26 (m, 2H), 4.14 (s, 1H), 4.11-4.01 (m, 2H), 3.75-3.80 (m, 2H), 3.51-3.49 (m, 3H), 2.56 (s,3 H) 31P NMR (162 MHz, DMSO-d6) δ - 0.51, 1.70.
MS: m/z = 696.9 (M+H)+ Example 16: (2’, 3’) cyclic-GIPM(PS)2 (Compound 18, 19, 20, and 21)
Step-1: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxy methyl)- 2-(2-isobutyramido-6-oxo-1H-purin-9(6H)-yl)tetrahydrofuran-3-yl hydrogen phosphonate.
To a souton o p osp orus trc loride (3.41 mL, 39.0 mmol) and 4-methylmorpholine (43.3 mL, 390 mmol) in anhydrous dichloromethane (100 mL), 1,2,4-triazole (19.91 g, 288 mmol) was added under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C. To this mixture, solution of N-(9- ((2R,3R,4S,5R)-5-((bis(4-methoxyphenyl)(phenyl) methoxy) methyl)-4-((tert- butyldimethylsilyl)oxy)-3-hydroxytetrahydrofuran-2-yl)-6-oxo-6,9-dihydro-1H-purin-2- yl)isobutyramide (Prepared by following reported literature procedure from patent US 2011/86813, 6.0 g, 7.79 mmol) dissolved in dichloromethane (30 mL), was added dropwise. The solution was stirred for 30 minutes at same temperature and then hydrolyzed by addition of 1M triethylammoniumformate buffer solution (PH 6). The aqueous layer was extracted with dichloromethane (3x100 mL), the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as a semisolid compound. The semisolid compound was treated with a 10% solution of DCA (dichloroacetic acid) in dichloromethane (20 mL) and water (10 equiv) for 15 minutes. Progress of reaction was monitored by TLC. The reaction was quenched with a solution of methanol (15 mL) and pyridine (15 mL). The solvents were removed in vacuum. Crude product was purified by flash chromatography using 25% methanol in dichloromethane as eluent. Fractions were concentrated under reduced pressure to obtain the desired product as white solid. [Yield - 2.7 gm (65.2 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.11 (s, 1H), 11.79 (s, 1H), 8.31 (s, 1H), 5.90 (d, J = 7.1 Hz, 1H), 5.09 (s, 1H), 4.40 (s, 1H), 3.93(q, J = 3.5 Hz, 1H), 3.61 (d, J = 13.9 Hz, 1H), 3.52 (dd, J = 12.1, 3.6 Hz, 1H), 2.97 (br s, 3H), 2.77 (p, J = 6.8 Hz, 1H), 1.12 (d, J = 6.8 Hz, 6H), 0.90 (s, 9H), 0.13 (d, J = 5.4 Hz, 6H).
MS: m/z = 532.03 (M+H)+
Step-2: Synthesis of (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl) methoxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl) tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite.
To a stirred solution of compound 3-((2R,3R,4R,5R)-5-((bis(4-methoxy phenyl) (phenyl)methoxy)methyl)-3-((tert-butyldimethylsilyl)oxy)-4-hydroxytetrahydrofuran-2- yl)-3H-imidazo[1,2-a]purin-9(5H)-one (Step 3 of Example 4, 4.6 g, 6.35 mmol) in 100 mL dry dichloromethane was added diisopropyl ethyl amine (5.55 mL, 31.8 mmol) and 1- methyl imidazole (1.013 mL, 12.71 mmol) at room temperature. Reaction mixture was cooled to 0-5 °C, and to this 3-((chloro(diisopropyl amino)phosphino)oxy)propanenitrile (3.31 g, 13.98 mmol) was added in 5 minutes. Reaction mixture was stirred at 0-5 °C for 30 minutes and at room temperature for 2 hrs. Progress of reaction was monitored by TLC. After completion, reaction mixture was quenched by addition of methanol (10 mL) and concentrated under reduced pressure to get sticky compound which was purified by column chromatography. The desired product was eluted in 80% ethyl acetate in hexane. Fractions were concentrated to obtain title compound as white solid. [Yield- 5.0 gm (85.0%)] 1H NMR (400 MHz, DMSO-d6) δ 12.43 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 2.7 Hz, 1H), 7.46 (t, J = 2.7 Hz, 1H), 7.43– 7.36 (m, 2H), 7.32– 7.20 (m, 8H), 6.86 (ddd, J = 9.1, 5.9, 3.2 Hz, 4H), 5.99– 5.90 (m, 1H), 5.25-5.17(m, 1H), 4.86 (ddd, J = 7.3, 5.1, 2.4 Hz, 1H), 4.28 (ddd, J = 12.1, 5.0, 2.7 Hz, 1H), 4.21 (dt, J = 5.5, 3.0 Hz, 1H), 4.11– 3.98 (m, 1H), 3.88– 3.77 (m, 1H), 3.64– 3.51 (m, 4H), 3.50 (s, 1H), 3.34– 3.21 (m, 3H), 2.80 (t, J = 5.9 Hz, 1H), 2.60 (t, J = 6.0 Hz, 1H), 1.20– 1.13 (m, 12H), 0.73 (d, J = 5.0 Hz, 9H), -0.03 (s, 3H), -0.20 (d, J = 8.6 Hz, 3H).
MS: m/z = 924.53 (M+H)+
Step-3: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5- ((((((2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphorothioyl)oxy)methyl)-2-(2-isobutyramido-6-oxo-1,6-dihydro-9H- purin-9-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-5-(hydroxymethyl)-2-(2-isobutyramido-6-oxo-1H-purin-9(6H)- yl) tetrahydrofuran-3-yl hydrogen phosphonate (step 1, 2.0 g, 3.76 mmol) and 5-[3,5- di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetraazole (2.65 g, 9.41 mmol) in acetonitrile (200 mL) in the presence of molecular sieves (3 A°) was added, in one portion, (two time co- evaporated with acetonitrile) solution of (2R,3R,4R,5R)-2-((bis(4- methoxyphenyl)(phenyl) methoxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (step 2 product, 4.52 g, 4.89 mmol) in acetonitrile (75 mL). The reaction mixture was stirred at room temperature for 16 hrs. To the reaction mixture 2- phenylacetic dithioperoxyanhydride (2.84 g, 9.41 mmol) was added and the reaction mixture was stirred for another 2 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the reaction mixture was filtered, and the molecular sieves were washed with dichloromethane (2 x 50 mL). The filtrate was concentrated under reduced pressure and coevaporated three times with acetonitrile. The residue was treated with 10% dichloroacetic acid in dichloromethane (100 mL) in the presence of water (2 mL) for 15 minutes at room temperature. The reaction was quenched with solution of methanol (10 mL) in pyridine (10 mL). The solvents were removed under reduced pressure to get the residue. The crude product was purified using silica gel column chromatography, using 0-
100% ethyl acetate in hexane and then 20-60% methanol in dichloromethane as eluent to obtain the desired compound.
MS: m/z = 1084.44 (M+H)+ Step-4: Cyclization and sulfurization of step 3 product
(2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-((((((2R,3R,4R,5R)-4-((tert- butyldimethyl silyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl) tetrahydrofuran-3-yl)oxy)(2-cyanoethoxy)phosphorothioyl)oxy)methyl)-2- (2-isobutyramido-6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-3-yl hydrogen phosphonate (step 3 product, 3.0 g, 2.77 mmol) was co-evaporated with dry pyridine (2 x 10 mL) and dissolved in 30 mL dry Pyridine and 180 mL acetonitrile. To this solution was added diphenyl phosphorochloridate (7.43 g, 27.7 mmol) at 0-5°C and the reaction mixture was stirred at room temperature for 2 hrs. To this reaction mixture was added water (1.49 mL, 83 mmol) followed by 3H-1,2-benzodithiol-3-one (1.397 g, 8.30 mmol) and it was stirred for 1.5 hrs. Progress of reaction was monitored by TLC. To this saturated sodium bicarbonate solution 50 mL was added. The aqueous layer was extracted with ethyl acetate (3 x 100 mL). Combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to get oily crude compound. The crude product was purified by flash chromatography using methanol in dichloromathane as eluent. The desired product was eluted at 10-30 % of methanol in dichloromethane.
MS: m/z = 1098.27 (M+H)+ Step-5: Isobutyryl and cyanoethyl deprotection of step 4 product
Cyclized product of Step 4 (2.0 g, 1.821 mmol) was treated with 33% methylamine in ethanol (90 mL), and the resulting mixture was stirred at 60 °C in sealed tube for 3 hrs. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 µm). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain four diastereomers. Isolated diastereomer 1- UPLC TR: 1.47 min = 150 mg
MS: m/z = 975.24 (M+H)+
Isolated diastereomer 2- UPLC TR: 1.65 min = 300 mg
MS: m/z = 975.31 (M+H)+
Isolated diastereomer 3- UPLC TR: 1.66 min = 100 mg
MS: m/z = 975.24 (M+H)+
Isolated diastereomer 4- UPLC TR: 1.86 min = 350 mg
MS: m/z = 975.25 (M+H)+ Step-6A: TBS deprotection of isolated diastereomer 1 of step 5
Diastereomer 1 of step-5 (150 mg, 0.154 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (2 mL) and triethylamine (2 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (1.503 mL, 9.23 mmol). Reaction mixture was stirred at 50 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
MS: m/z = 747.08 (M+H)+ TBS deprotection of other diastereomers (2, 3, and 4) of step 5 were done analogously Step-6B: TBS deprotection of isolated diastereomer 2 of step 5
MS: m/z = 747.10 (M+H)+
Step-6D: TBS deprotection of isolated diastereomer 4 of step 5
: mz = . +
Step 7A: Synthesis of (2’, 3’) cyclic-GIPM(PS)2 (Compound 18-Diastereomer 1)
Dowex 50WX2-Hydrogen form (50-100 mesh), (1.5 gm) was slurry packed into syringe column, washed with de-ionized water (50 mL).1M NaOH (10 mL) was passed through syringe column followed by de-ionized water (300 mL). After draining the excess of de- ionized water by gravity, diastereomer 1 (Step 6A, 90 mg) in de-ionized water (25 mL) was loaded in to the column. Column was eluted with de-ionized water (20 mL); each (5 mL) fractions were collected. Those fractions which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 50 mg] Compound 18: 1H NMR (400 MHz, DMSO-d6) δ 8.20 (s, 1H), 7.86 (s, 1H), 7.43 (d, J = 1.9 Hz 1H), 7.11 (t, J = 1.6 Hz, 1H), , 5.89 (dd, J = 9.2, 7.0 Hz, 2H), 5.11 (dt, J = 8.7, 4.6 Hz, 2H), 4.77 (t, J = 5.3, Hz, 1H), 4.52 (d, J = 4.1 Hz, 1H), 4.22 (dt, J =9.3, 4.6 Hz, 1H), 4.13– 4.01 (m, 2H), 3.97-3.89 (m, 2H), 3.80 (d, J = 12.0 Hz, 1H).31P NMR (162 MHz, DMSO-d6) δ 56.63, 54.18
MS: m/z = 746.99 (M+H)+
Compounds 19, 20 and 21 were prepared following analogous procedure as step 7A Step 7B: (2’, 3’) cyclic-GIPM(PS)2 (Compound 19-Diastereomer 2) Compound 19: 1H NMR (400 MHz, DMSO-d6) δ 8.04 (s, 1H), 7.93 (d, J = 14.1 Hz, 1H), 7.47 (d, J = 2.1 Hz, 1H), 7.18– 7.10 (m, 1H), 5.92– 5.81 (m, 2H), 5.34 (dd, J = 8.6, 4.3 Hz, 1H), 5.19 (td, J = 9.0, 4.3 Hz, 1H), 4.78 (dd, J = 8.2, 4.3 Hz, 1H), 4.21 (d, J = 4.5 Hz, 2H), 4.14– 4.04 (m, 3H), 3.69 (d, J = 11.5 Hz, 2H).31P NMR (162 MHz, DMSO-d6) δ 59.62, 57.00
MS: m/z = 746.99 (M+H)+
Step 7C: (2’, 3’) cyclic-GIPM(PS)2 (Compound 20-Diastereomer 3) Compound 20: 1H NMR (400 MHz, DMSO-d6) δ 8.29 (s, 1H), 7.96 (s, 1H), 7.49 (s, 1H), 7.18 (d, J = 10.6 Hz, 1H), 5.97– 5.80 (m, 2H), 5.09 (dd, J = 8.8, 4.6 Hz, 2H), 4.87 (t, J = 5.4, Hz, 1H), 4.64 (d, J = 3.8 Hz, 1H), 4.31 (dt, J =10.4, 4.1 Hz, 1H), 4.23– 3.94 (m, 4H), 3.88-3.68 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 59.60, 54.40
MS: m/z = 747.02 (M+H)+
Step 7D: (2’, 3’) cyclic-GIPM(PS)2 (Compound 21-Diastereomer 4) Compound 21: 1H NMR (400 MHz, DMSO-d6) δ 8.05– 7.95 (m, 2H), 7.47 (dt, J = 4.0, 1.7 Hz, 1H), 7.16 (dt, J = 4.6, 2.2 Hz, 1H), 5.90– 5.83 (m, 2H), 5.22 (td, J = 8.1, 4.3 Hz, 2H), 4.42 (d, J = 4.2 Hz, 1H), 4.25– 3.97 (m, 4H), 3.87 (dt, J = 9.9, 5.0 Hz, 1H), 3.77– 3.68 (m, 1H), 3.56 (dt, J = 9.5, 4.6 Hz, 1H).31P NMR (162 MHz, DMSO-d6) δ 58.08, 50.83. MS: m/z = 747.02 (M+H)+.
Example 17: Synthesis of (2’, 3’) cyclic-IIPM(PS)2 (Compound 22, 23 and 24)
Step-1: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)- 2-(6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-3-yl hydrogen phosphonate
p p ichloride (2.87 mL, 32.9 mmol) and 4-methylmorpholine (36.1 mL, 329 mmol) in anhydrous dichloromethane (120.0 mL), 1,2,4-triazole (16.79 g, 243 mmol) was added under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C and 9-((2R,3R,4S,5R)-5-((bis(4- methoxyphenyl) (phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-3- hydroxytetrahydrofuran-2-yl)-1H-purin-6(9H)-one (Prepared by following reported literature procedure from Synthetic Communications; (2000), 30(21), 3963– 3969) (4.5 g,
6.57 mmol) dissolved in dichloromethane (40.0 mL) was added dropwise. The solution was stirred for 30 minutes at same temperature and then hydrolyzed by addition of 1M triethylammoniumformate buffer solution (PH 6). The aqueous layer was extracted with dichloromethane (2 x 200 mL), the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as a semisolid compound. This semisolid was carried further without purification. To this semisolid a 10% solution of DCA (dichloroacetic acid) in dichloromethane and water (10 equiv.) was added and the red coloured solution was stirred for 15 minutes. Progress of reaction was monitored by TLC. The reaction was quenched with a solution of methanol (4 mL) and pyridine (4 mL). The solvents were removed in vacuum, and the residue was purified by silica-gel column chromatography, using methanol in dichloromethane as eluent. The title compound eluted in 40% methanol in dichloromethane. Fractions were concentrated under reduced pressure to obtain desired compound as white solid. Yield (2.3 g, 78 %)
1H NMR (400 MHz, DMSO-d6) δ 12.53 (s, 1H), 8.35 (s, 1H), 8.05 (s, 1H), 5.97 (d, J = 6.7 Hz, 1H), 5.21 (s, 1H), 5.09 (ddd, J = 11.1, 6.7, 4.7 Hz, 1H), 4.43 (dd, J = 4.7, 2.4 Hz, 1H), 3.95 (td, J = 4.2, 2.4 Hz, 1H), 3.71 (s, 2H), 3.64 (dd, J = 11.8, 4.5 Hz, 1H), 3.53 (d, J = 12.0 Hz, 1H), 0.91 (s, 9H), 0.14 (d, J = 2.3 Hz, 6H).
MS: m/z = 446.88 (M+H)+.
The compounds 22, 23 and 24 were prepared from Step-1 product (Example 17) according to the procedures (Step-2 to Step-7) analogous to those outlined in Example 16 above using appropriate monomer.
(2’, 3’) cyclic-IIPM(PS)2 (Compound 22-Diastereomer 1)
ompoun : Hz, DMSO-d6) δ 8.64 (s, 1H), 8.35 (s, 1H), 7.91 (s, 1H), 7.47 (d, J = 2.0 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 6.03 (d, J = 8.6 Hz, 1H), 5.83 (d, J = 6.6 Hz, 1H), 5.36 (s, 2H), 4.91 (t, J = 6.0 Hz, 1H), 4.42 (d, J = 4.1 Hz, 1H), 4.19– 4.13 (m, 2H), 4.13– 3.99 (m, 2H), 3.85– 3.74 (m, 2H).31P NMR (162 MHz, DMSO-d6) δ 56.66, 53.06.
MS: m/z = 731.9 (M+H)+ (2’, 3’) cyclic-IIPM(PS)2 (Compound 23-Diastereomer 2)
Compound 23: 1H NMR (400 MHz, DMSO-d6) δ 8.44 (s, 1H), 8.35 (s, 1H), 8.06 (s, 1H), 7.57 (d, J = 2.4 Hz, 1H), 7.34 (d, J = 2.4 Hz, 1H), 6.03 (d, J = 8.5 Hz, 1H), 5.86 (d, J = 8.3 Hz, 1H), 5.49 (dd, J = 8.6, 4.8 Hz, 1H), 5.39 (s, 1H), 4.80 (dd, J = 8.1, 4.6 Hz, 1H), 4.35– 4.12 (m, 4H), 4.05 (dd, J = 10.9, 4.1 Hz, 1H), 3.70 (dd, J = 10.5, 5.2 Hz, 2H).31P NMR (162 MHz, DMSO-d6)δ 59.63, 56.83.
MS: m/z = 731.9 (M+H)+
(2’, 3’) cyclic-IIPM(PS)2 (Compound 24-Diastereomer 3)
Compound 24: 1H NMR (400 MHz, DMSO-d6) δ 8.45 (s, 1H), 8.28 (s, 1H), 8.02 (s, 1H), 7.52 (d, J = 2.2 Hz, 1H), 7.25 (d, J = 2.2 Hz, 1H), 6.04 (d, J = 8.6 Hz, 1H), 5.85 (d, J = 7.1 Hz, 1H), 5.40– 5.27 (m, 2H), 5.05– 4.94 (m, 1H), 4.44 (d, J = 4.2 Hz, 1H), 4.24– 4.02 (m, 4H), 3.88– 3.78 (m, 1H), 3.74– 3.68 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 57.88, 51.60.
MS: m/z = 731.9 (M+H)+ Example 18: Synthesis of (2’, 3’) cyclic-3’-DAIPM(PS)2 (Compound 25, 26 and 27)
Step-1: Synthesis of (2R,3R,5S)-2-(6-benzamido-9H-purin-9-yl)-5-((((((2R,3R,4R,5R)-4- ((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl)oxy)(2-cyanoethoxy)phosphorothioyl)oxy)methyl) tetrahydrofuran-3-yl hydrogen phosphonate
onitrile) solution of (2R,3R,5S)-2-(6-benzamido- 9H-purin-9-yl)-5-(hydroxymethyl)tetrahydrofuran-3-yl hydrogen phosphonate (3.0 g, 7.15 mmol) (Prepared by following reported literature procedure from patent WO 2017/075477) and (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethyl silyl)oxy)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (Step 2 product of Example 16, .59 g, 9.30 mmol) in acetonitrile (500 mL) in the presence of molecular sieves
(3 Ao) was added dropwise a solution of 1-(cyanomethyl)pyrrolidin-1-ium trifluoromethanesulfonate (Prepared by following reported literature procedure. Journal of the American Chemical Society; (2003), 125(27), 8307– 8317, 3.17 g, 12.16 mmol) in acetonitrile (50 mL). The reaction mixture was stirred at room temperature for 2 hrs. After 2 hrs a solution of 2-phenylacetic dithioperoxyanhydride (5.41 g, 17.89 mmol) in pyridine (23.15 mL, 286 mmol) was added. The reaction mixture was stirred for another 2 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered through cealite pad, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co- evaporated three times with acetonitrile. The residue was treated with 10% dichloroacetic acid in dichloromethane (100 mL), in the presence of water (2 mL) for 15 minutes at room temperature. The red colored reaction mixture was quenched with methanol (10 mL) and pyridine (10 mL). The solvents were removed under reduced pressure to get the crude residue. The crude compound was purified by silica-gel column chromatography, using (20 - 100%) methanol in dichloromethane as eluent to obtain the title compound.
MS: m/z = 972.08 (M+H)+ Step 2: Cyclization and sulfurization of step 1 product:
(2R,3R,5S)-2-(6-benzamido-9H-purin-9-yl)-5-((((((2R,3R,4R,5R)-4-((tert-butyldimethy lsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl) tetrahydrofuran-3-yl)oxy)(2-cyanoethoxy)phosphorothioyl)oxy)methyl)tetrahydrofuran- 3-yl hydrogen phosphonate (step 1 product, 3.4 g, 3.50 mmol) was co-evaporated with dry
pyridine (2 x10 mL) and dissolved in dry pyridine (100 mL). To the reaction mixture was added 2-chloro-5,5-dimethyl-1,3,2-dioxaphophorinane-2-oxide (2.58 g, 13.99 mmol) at 0 - 5 oC and the reaction mixture was stirred at room temperature for 2 hrs. To this reaction mixture was added water (1.891 g, 105 mmol) followed by 3H-1,2-benzodithiol-3-one (1.765 g, 10.49 mmol) and the reaction mixture was stirred for another 1 hr. After 1 hr, reaction mixture was poured into 100 mL saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3 x 200 mL). Combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to get oily crude residue. The crude residue was purified by column chromatography using methanol in dichloromethane as eluent. The title compound eluted in 10-25% methanol in dichloromethane. Fractions were concentrated under reduced pressure to obtain title compound as diastereomeric mixture.
MS: m/z = 985.96 (M+H)+ The compounds 25, 26 and 27 were prepared from step-2 product (Example 18) according to the procedures (step-5 to step-7) analogous to those outlined in Example 16 above. (2’, 3’) cyclic-3’-DAIPM(PS)2 (Compound 25-Diastereomer 1)
0 MHz, DMSO-d6) δ 8.58 (s, 1H), 8.15 (s, 1H), 8.00 (s, 1H), 7.50 (d, J = 2.2 Hz, 1H), 7.21 (d, J = 2.2 Hz, 1H), 5.96 (d, J = 4.4 Hz, 1H), 5.91 (d, J = 4.9 Hz, 1H), 5.33– 5.26 (m, 1H), 5.08– 5.02 (m, 1H), 4.73 (t, J = 4.6 Hz, 1H), 4.39– 4.33 (m, 1H), 4.31– 4.22 (m, 1H), 4.20– 4.15 (m, 1H), 4.13– 4.04 (m, 1H), 3.86– 3.77 (m, 2H), 2.72– 2.63 (m, 1H), 2.35– 2.32 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 53.81, 52.40. MS: m/z = 714.77 (M+H)+
(2’, 3’) cyclic-3’-DAIPM(PS)2 (Compound 26-Diastereomer 2)
Compound 26: 1H NMR (400 MHz, DMSO-d6) δ 8.49 (s, 1H), 8.16 (s, 1H), 8.01 (s, 1H), 7.52 (d, J = 2.2 Hz, 1H), 7.24 (d, J = 2.4 Hz, 1H), 5.95 (d, J = 3.6 Hz, 1H), 5.91 (d, J = 4.0 Hz, 1H), 5.21– 5.16 (m, 1H), 4.90– 4.84 (m, 1H), 4.83– 4.78 (m, 1H), 4.40– 4.33 (m, 1H), 4.25– 4.11 (m, 3H), 3.90– 3.83 (m, 2H), 2.69– 2.66 (m, 1H), 2.40– 2.30 (m, 1H). 31P NMR (162 MHz, DMSO-d6) δ 52.68, 52.14.
MS: m/z = 714.77 (M+H)+ (2’, 3’) cyclic-3’-DAIPM(PS)2 (compound 27-Diastereomer 3)
Compound 27: 1H NMR (400 MHz, DMSO-d6) δ 8.33 (s, 1H), 8.17 (s, 1H), 8.03 (d, J = 2.4 Hz, 1H), 7.51 (s, 1H), 7.24– 7.17 (m, 1H), 5.99 (d, J = 2.8 Hz, 1H), 5.89– 5.83 (m, 1H), 5.15 (t, J = 4.8 Hz, 1H), 4.92– 4.85 (m, 1H), 4.84– 4.77 (m, 1H), 4.53– 4.35 (m, 2H), 4.19– 3.91 (m, 4H), 2.81 - 2.71 (m, 1H), 2.35 - 2.31 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 59.07, 53.96.
MS: m/z = 714.77 (M+H)+ Example 19: Synthesis of (2’, 3’) cyclic-3’- βFAIPM(PS)2 (Compound 28, 29 and 30)
Step 1: Synthesis of (2R,3R,4R,5R)-2-((((((2R,3S,4S,5R)-2-(6-benzamido-9H-purin-9- yl)-4-fluoro-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphorothioyl) oxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo- 5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 4 product of Example 4, 1.400 g, 2.88 mmol) and 5-[3,5-Di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetraazole (2.034 g, 7.21 mmol) in acetonitrile (200 mL) in the presence of molecular sieves (3Ao) was added, in one portion, (two time co-evaporated with acetonitrile) solution of (2R,3S,4S,5R)-2-(6- benzamido-9H-purin-9-yl)-5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4- fluorotetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (Step 1 product of Example 10, 3.28 g, 3.75 mmol) in acetonitile (50 mL). Reaction mixture was stirred at room temperature for 16 hrs. Progress of reaction was monitored by TLC. Upon consumption of starting material, 2-phenylacetic dithioperoxyanhydride (2.18 g, 7.21 mmol) in anhydrous pyridine (9.3 mL, 115 mmol) was added and the reaction mixture was stirred for another 2 hrs at room temperature. Progress of reaction was monitored by TLC. After completion, the solution was filtered, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co- evaporated with acetonitrile (three times). The residue was treated with 10% dichloroacetic acid in dichloromethane (100 mL), in the presence of water (2 mL) for 15 minutes at room temperature. The red coloured reaction mixture was quenched with methanol (10 mL) and pyridine (10 mL). The solvents were removed under reduced pressure to get the residue, and the residue was purified by silica-gel column chromatography using 0-100% ethyl acetate in hexane and then methanol in dichloromethane as eluent. The title compound
eluted in 20 - 40% methanol in dichloromethane. Fractions were concentrated under reduced pressure to obtain title compound.
MS: m/z = 989.96 (M+H)+ Step-2: Cyclization and sulfurization of step 1 product
(2R,3R,4R,5R)-2-((((((2R,3S,4S,5R)-2-(6-benzamido-9H-purin-9-yl)-4-fluoro-5- (hydroxy methyl)tetrahydrofuran-3-yl)oxy)(2-cyanoethoxy)phosphorothioyl)oxy)methyl)- 4-((tert-butyl dimethylsilyl)oxy)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)tetrahydrofuran-3-yl hydrogen phosphonate (step 1 product, 2.0 g, 2.020 mmol) was co- evaporated with dry pyridine (2 x 50 mL) and dissolved in 100 mL dry pyridine. To this solution was added 2-chloro-5,5-dimethyl-1,3,2-dioxaphophorinane-2-oxide (1.491 g, 8.08 mmol) at 0-5 °C and the reaction mixture was stirred at room temperature for 2 hrs. To this reaction mixture water (1.092 g, 60.6 mmol) and 3H-1,2-benzodithiol-3-one (1.020 g, 6.06 mmol) were added and the reaction mixture was stirred for another 1.5 hr. Progress of reaction was monitored by TLC. To this, saturated sodium bicarbonate solution (50 mL) was added. Aqueous layer was extracted with ethyl acetate (3 x 100 mL). Combined organic layer was dried on sodium sulphate and concentrated under reduced pressure to get oily crude compound. Crude product was purified by flash column chromatography using methanol in dichloromethane as eluent. The title compound eluted in 20-50% methanol in dichloromethane. Fractions were concentrated under reduced pressure to obtain desired compound as mixture of diastereomers.
MS: m/z = 1004.15 (M+H)+
Step-3: Benzoyl and cyanoethyl deprotection
Step 2 cyclized product (2 g, 1.992 mmol) was treated with 33% methylamine in ethanol (46.9 mL), and the resulting mixture was stirred at 60 °C in sealed tube for 3 hrs. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid (2.0 gm). Isolated 2.0 gm solid. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 µm). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain three diastereomers Isolated Peak 1(Diastereomer 1- UPLC TR: 1.36 min) = 30 mg
MS: m/z = 847.07 [M+H]+
Isolated Peak 2 (Diastereomer 2- UPLC TR: 1.39 min) = 50 mg
MS: m/z = 847.07 [M+H]+
Isolated Peak 3 (Diastereomer 3- UPLC TR: 1.46 min) = 50 mg
MS: m/z = 847.07 [M+H]+
Step-4A: TBS deprotection of isolated peak 1 (Diastereomer 1) of step 3
Diastereomer 1 of step-3 (0.030 g, 0.035 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this (2.00 mL) dry pyridine was added and the solution was heated to 60 °C and triethylamine trihydrofluoride (0.34 mL, 2.126 mmol) and triethylamine (2.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (70 mL) and submitted for preparative HPLC for filtration through C-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt. [Yield- 0.020 g]
MS: m/z = 733.9 [M+H]+ Step-4B: TBS deprotection of isolated peak 2 (Diastereomer 2) of step 3
Diastereomer 2 of step 3 (0.050 g, 0.059 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this dry pyridine (2.0 mL) was added and solution was heated to 60 °C and triethylamine trihydrofluoride (0.577 mL, 3.54 mmol) and triethylamine (2.0 mL) were
added to a stirring reaction mixture. Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (70 mL) and submitted for preparative HPLC for filtration through C-18 column using triethyl ammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as bis triethylammonium salt. [Yield- 0.020 g]
MS: m/z = 733.78 [M+H]+ Step-4C: TBS deprotection of isolated peak 3 (Diastereomer 3) of step 3
Diastereomer 3 of step 3 (0.050 g, 0.059 mmol) was co-evaporated in dry acetonitrile (10 mL), and to this dry pyridine (2.0 mL) was added and solution was heated to 60 °C and triethylamine trihydrofluoride (0.577 mL, 3.54 mmol) and triethylamine (2.0 mL) were added to a stirring reaction mixture. Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured in to chilled solution of 1M solution triethylammonium bicarbonate (70 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as bis triethylammonium salt. [Yield- 0.020 g]
MS: m/z = 733.78 [M+H]+ Step-5A: (2’, 3’) cyclic-3’- βFAIPM(PS)2 (Compound 28-Diastereomer 1)
Dowex 50WX2 Hydrogen form (50-100 mesh), 2.0 gm was slurry packed into syringe column, washed with 20 mL of deionized water.10 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 20 mL of deionized water. After draining the excess of deionized water by gravity. Diastereomer 1 (Step 4A, 0.020 g) in 50 mL of deionized water was loaded in to the column. Column was eluted with 20 mL of deionized water; each 3 mL fractions were collected. Fractions which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.012 g]
Compound 28: 1H NMR (400 MHz, DMSO-d6) δ 8.18 (s, 1H), 8.02 (s, 1H), 7.94 (s, 1H), 7.40 (d, J = 1.9 Hz, 1H), 7.04 (d, J = 1.8 Hz, 1H), 6.18 (d, J = 8.5 Hz, 1H), 5.84 (d, J = 6.1 Hz, 1H), 5.67 (d, J = 50.2 Hz, 1H), 5.01 (dd, J = 9.9, 5.3 Hz, 1H), 4.83– 4.70 (m, 2H), 4.57 (s, 1H), 4.43 (dd, J = 30.2, 10.8 Hz, 1H), 4.16– 3.93 (m, 4H).31P NMR (162 MHz, DMSO- d6) δ 59.37, 51.66.
MS: m/z = 733.9 (M+H)+
Step-5B: (2’, 3’) cyclic-3’- βFAIPM(PS)2 (Compound 29-Diastereomer 2)
Dowex 50WX2 -Hydrogen form (50-100 mesh), 2.0 gm was slurry packed into syringe column, washed with 20 mL of deionized water.10 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 20 mL of deionized water. After draining the excess of deionized water by gravity. Diastereomer 2 (Step 4B, 0.020 g) in 50 mL of deionized water was loaded in to the column .Column was eluted with 20 mL of deionized water; each 3 mL fractions were collected. Fractions which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.008 g]
Compound 29: 1H NMR (400 MHz, DMSO-d6) δ 8.18 (s, 1H), 7.98 (s, 1H), 7.87 (s, 1H), 7.43 (d, J = 1.9 Hz, 1H), 7.09 (d, J = 1.9 Hz, 1H), 6.13 (s, 1H), 5.91 (s, 1H), 5.59 (d, J = 49.1 Hz, 1H), 4.99 (s, 1H), 4.68 (s, 1H), 4.52 (s, 2H), 4.35– 4.17 (m, 2H), 4.18– 4.01 (m, 2H), 3.9-5 (dd, J = 19.1, 12.5 Hz, 1H) .31P NMR (162 MHz, DMSO-d6) δ 52.98, 51.74. MS: m/z = 731.78 (M)+ Step-5C: (2’, 3’) cyclic-3’- βFAIPM(PS)2 (Compound 30-Diastereomer 3)
Dowex 50WX2 -Hydrogen form (50-100 mesh), 2.0 gm was slurry packed into syringe column, washed with 20 mL of deionized water.10 mL 1M aqueous sodium hydroxide was passed through syringe column followed by 20 mL of deionized water. After draining the excess of deionized water by gravity. Diastereomer 3 (Step 4C, 0.020 g) in 50 mL of deionized water was loaded in to the column. Column was eluted with 20 mL of deionized water; each 3 mL fractions were collected. Fractions which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 0.009 g]
Compound 30: 1H NMR (400 MHz, DMSO-d6) δ 8.19 (s, 1H), 8.01 (s, 1H), 7.90 (s, 1H), 7.40 (s, 1H), 7.03 (s, 1H), 6.12 (d, J = 8.5 Hz, 1H), 5.82 (d, J = 6.0 Hz, 1H), 5.61-5.55 (m, 1H), 5.06– 4.94 (m, 1H), 4.81 (d, J = 5.2 Hz, 1H), 4.61 (d, J = 5.2 Hz, 1H), 4.51– 4.34 (m, 2H), 4.20– 3.93 (m, 4H).31P NMR (162 MHz, DMSO-d6) δ 59.41, 54.14.
MS: m/z = 733.78 (M+H)+ Example 20: Synthesis of (2’, 3’) cyclic-3’- αFAIPM(PS)2 (Compounds 31 and 32)
The compounds 31 and 32 were prepared from corresponding monomers according to the procedures analogous to those outlined in Example 19 above.
Monomer 1: (2R,3S,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4-methoxyphenyl) (phenyl)methoxy)methyl)-4-fluorotetrahydrofuran-3-yl(2-cyanoethyl)
diisopropylphosphoramidite. [Synthesized according to the procedure reported in the literature, Nucleosides and Nucleotides, 1995, vol.14, # 6, p.1259– 1267 and J. Org. Chem.2015, 80, 4835−4850)
Monomer 2: (2R,3R,4R,5R) 4 ((tert butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate. (Step 4 of Example 4) (2’, 3’) cyclic-3’- αFAIPM(PS)2 (Compound 31-Diastereomer 1)
Compound 31: H NMR (400 MHz, DMSO-d6) δ 8.84 (s, 1H), 8.17 (s, 1H), 8.14 (s, 1H), 7.61 (d, J = 2.8 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 6.08 (d, J = 8.4 Hz, 1H), 5.89 (d, J = 6.8 Hz, 1H), 5.57– 5.40 (m, 2H), 5.33– 5.22 (m, 1H), 4.94 (dd, J = 6.8, 4.4 Hz, 1H), 4.53– 4.43 (m, 1H), 4.42– 4.36 (m, 1H), 4.15– 4.03 (m, 2H), 3.91– 3.82 (m, 1H), 3.82– 3.72 (m, 1H).
31P NMR (162 MHz, DMSO-d6) δ 54.02, 53.66.
MS: m/z = 733.1 [M+H]+ (2’, 3’) cyclic-3’- αFAIPM(PS)2 (Compound 32-Diastereomer 2)
Compound 32: 1H NMR (400 MHz, DMSO-d6) δ 8.53 (s, 1H), 8.18 (s, 1H), 8.16 (s, 1H), 7.60 (d, J = 2.8 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 6.09 (d, J = 8.8 Hz, 1H), 5.91 (d, J = 6.8 Hz, 1H), 5.55– 5.42 (m, 2H), 5.26 (dd, J = 53.4, 3.5 Hz, 1H), 4.91– 4.82 (m, 1H), 4.50 (d,
J = 26.4 Hz, 1H), 4.25– 4.16 (m, 2H), 4.14– 4.05 (m, 1H), 3.75– 3.69 (m, 1H), 3.67– 3.63 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 57.79, 55.69.
MS: m/z = 733.1 [M+H]+ Example 21: Synthesis of (2’, 3’) cyclic-8- ^AIPM(PS)2 (Compound 33-Diastereomer 1)
Step-1: Synthesis of N-(3-((2R,3R,4S,5R)-5-((bis(4-methoxyphenyl)(phenyl) methoxy) methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl) benzamide:
To a stirred solution of N-(3-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl) tetrahydrofuran-2-yl)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl)benzamide (Prepared according to the procedure reported in literature WO 2017/161349, 9 g, 24.17 mmol) in pyridine (90 mL) was added 4,4'-(chloro(phenyl)methylene)bis(methoxybenzene) (12.29 g, 36.3 mmol) at room temperature and the reaction mixture was stirred for 16 hrs. Progress of the reaction was monitored by TLC. Upon completion, reaction mass was diluted with ethyl acetate (200 mL) and quenched with saturated aqueous solution of sodium bicarbonate (100 mL). Organic layer was washed with water and brine. Separated organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to obtain crude mass. Crude mass was purified by column chromatography using 10% methanol in dichloromethane to obtain title compound. (Yield: 11 g, 67.4 % yield).
1H NMR (400 MHz, DMSO-d6) δ 11.96 (s, 1H), 8.94 (s, 1H), 8.14– 8.06 (m, 2H), 7.73– 7.67 (m, 1H), 7.59 (dd, J = 8.4, 7.0 Hz, 2H), 7.32– 7.27 (m, 2H), 7.22– 7.13 (m, 7H), 6.83 – 6.73 (m, 4H), 6.38 (d, J = 3.3 Hz, 1H), 5.80 (d, J = 5.3 Hz, 1H), 5.37 (d, J = 6.2 Hz, 1H), 4.93 (q, J = 4.6 Hz, 1H), 4.51 (q, J = 5.7 Hz, 1H), 4.28– 4.16 (m, 1H), 3.70 (s, 6H), 3.20 (dd, J = 10.4, 3.1 Hz, 1H), 3.09 (dd, J = 10.4, 5.7 Hz, 1H).
MS: m/z = 674.78 (M)+ Step 2: Synthesis of N-(3-((2R,3R,4S,5R)-5-((bis(4-methoxyphenyl)(phenyl)methoxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-3-hydroxytetrahydrofuran-2-yl)-3H- [1,2,3]triazolo [4,5-d]pyrimidin-7-yl)benzamide
To a mixture of N-(3-((2R,3R,4S,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3,4-dihydroxytetrahydrofuran-2-yl)-3H- [1,2,3]triazolo[4,5-d]pyrimidin-7-yl)benzamide (step-1, 11 g, 16.30 mmol) in pyridine (110 mL) was added imidazole (5.55 g, 82 mmol) followed by t-butyl dimethyl silyl chloride (2.95 g, 19.56 mmol) at room temperature and the reaction mixture was stirred for 16 hrs. The progress of the reaction was monitored by TLC. Upon completion, reaction mass was diluted with ethyl acetate (200 mL), quenched with saturated solution of sodium bicarbonate (100 mL). Organic layer was washed with water and brine. Separated organic layer was evaporated under reduced pressure and purified by column chromatography using 70% ethyl acetate in hexane as eluent to obtain title compound (Yield: 5.5 g, 42.8 % ) 1H NMR (400 MHz, DMSO-d6) δ 11.94 (s, 1H), 8.98 (s, 1H), 8.12– 8.05 (m, 2H), 7.75– 7.66 (m, 1H), 7.59 (t, J = 7.6 Hz, 2H), 7.30– 7.09 (m, 9H), 6.84– 6.73 (m, 4H), 6.36 (d, J = 3.6 Hz, 1H), 5.72 (d, J = 5.7 Hz, 1H), 5.07– 4.98 (m, 1H), 4.72 (t, J = 5.1 Hz, 1H), 4.17 (q, J = 4.5 Hz, 1H), 3.70 (d, J = 3.9 Hz, 6H), 3.30 (dd, J = 10.6, 3.5 Hz, 1H), 2.99 (dd, J = 10.6, 4.7 Hz, 1H), 0.83 (s, 9H), 0.08 (s, 3H), 0.03 (s, 3H).
MS: m/z = 789.34 (M+H)+
Step 3: Synthesis of (2R,3R,4R,5R)-2-(7-benzamido-3H-[1,2,3]triazolo[4,5-d]pyrimidin- 3-yl)-5-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)
- - -
This compound is prepared from step 2 product by following analogous procedure of step 6 of example 1.
1H NMR (400 MHz, DMSO-d6) δ 11.99 (s, 1H), 8.97 (s, 1H), 8.12– 8.04 (m, 2H), 7.74– 7.64 (m, 1H), 7.58 (t, J = 7.7 Hz, 2H), 7.27– 7.08 (m, 9H), 6.86– 6.71 (m, 4H), 5.26– 5.16 (m, 1H), 5.12– 4.97 (m, 1H), 4.25– 4.12 (m, 1H), 3.86– 3.73 (m, 1H), 3.73– 3.65 (m, 6H), 3.65– 3.50 (m, 4H), 3.01– 2.91 (m, 1H), 2.74 (t, J = 5.9 Hz, 1H), 2.65– 2.56 (m, 2H), 1.27– 1.06 (m, 12H), 0.86– 0.73 (m, 9H), 0.13– -0.07 (m, 6H).
MS: m/z = 906.2 (M-83)+ The compound 33 was prepared from step-3 product of example 21, according to the procedures (Step-1 to Step-5) analogous to those outlined in Example 5 above.
(2’, 3’) cyclic-8- ^AIPM(PS)2 (Compound 33-Diastereomer 1)
MHz, DMSO-d6) δ 8.35 (s, 1H), 8.02 (s, 1H), 7.49 (d, J = 2.2 Hz, 1H), 7.19 (d, J = 2.2 Hz, 1H), 6.20 (d, J = 8.5 Hz, 1H), 5.88 (d, J = 7.5 Hz, 1H),
5.70 - 5.57 (m, 1H), 5.25– 5.16 (m, 1H), 5.01 - 4.91 (m, 1H), 4.60 - 4.54 (m, 1H), 4.41– 4.30 (m, 2H), 4.23 (s, 1H), 4.07 - 3.93 (m, 2H), 3.80 -3.77 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 59.03, 48.29.
MS: m/z = 732.03 [M+H]+ Example 22: Synthesis of (3’, 3’) cyclic-AIPM(PS)2 (Compound 34 and 35)
The compounds 34 and 35 were synthesized by using appropriate monomers, (2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-2-((bis(4-methoxyphenyl) (phenyl) methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)tetrahydrofuran-3-yl(2-cyanoethyl) diisopropylphosphoramidite) (Prepared according to the procedure reported in the literature, Journal of Organic Chemistry, 1991 , vol.56, # 15 p.4608– 4615) and Step 4 product of example 4 by following analogous procedures (Step-1 to Step-5) those outlined in example 5.
(3’, 3’) cyclic-AIPM(PS)2 (Compound 34-Diastereomer 1)
Compound 34: 1H NMR (400 MHz, DMSO-d6) δ 8.46 (s, 1H), 8.23– 8.14 (m, 2H), 7.60 (s, 1H), 7.38 (s, 1H), 5.97– 5.82 (m, 2H), 5.04– 4.60 (m, 4H), 4.26– 3.89 (m, 6H).31P NMR (162 MHz, DMSO-d6) δ 57.51, 54.33.
MS: m/z = 732.15 [M+H]+ (3’, 3’) cyclic-AIPM(PS)2 (Compound 35-Diastereomer 2)
Compound 35: 1H NMR (400 MHz, DMSO-d6) δ 8.45 (s, 1H), 8.21 (s, 1H), 8.18 (s, 1H), 7.62 (d, J = 2.8 Hz, 1H), 7.43 (d, J = 2.8 Hz, 1H), 5.93– 5.84 (m, 2H), 4.95– 4.80 (m, 4H), 4.26– 3.99 (m, 6H).31P NMR (162 MHz, DMSO-d6) δ 58.69, 58.60.
MS: m/z = 731.28 [M+H]+ Example 23: Synthesis of (2’, 3’) cyclic-IPAMP (Compound 36)
Step-1: Synthesis of 3-((2R,3R,4S,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-3- hydroxytetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
To the solution of 3-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert-butyldimethylsilyl)oxy) tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-
one (Step-2 product of Example 4, 18.0 g, 32.0 mmol) in dichloromethane (300 mL) was added HF-Pyridine (20.41 mL, 144 mmol) in pyridine (20.4 mL) at 0 °C . Then reaction mixture was stirred at 0 °C for 1 hr. White solid separates out. Upon completion, the reaction mixture was quenched carefully with saturated sodium bicarbonate solution (up to pH 9), and the basic reaction mixture was stirred for 2 hrs at room temperature. The solid was filtered. The filtered solid was dissolved in methanol in dichloromethane (1:1), dried over anhydrous sodium sulphate and evaporated under reduced pressure to obtain crude mass. Crude intermediate was co-evaporated in pyridine (50 mL) and then dissolved in pyridine (50 mL) at 0 °C and 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4- methoxybenzene (11.94 g, 35.2 mmol) was added. The reaction mixture was stirred overnight at room temperature. Progress of the reaction was monitored by TLC. Reaction mixture was quenched with methanol (5 mL) and evaporated to obtain crude product. The crude mass was diluted with dichloromethane (200 mL). Organic layer was washed with saturated sodium bicarbonate solution (50 mL) and dried over anhydrous sodium sulfate and evaporated under reduced pressure to obtain crude product. Crude product was purified by flash chromatography using ethyl acetate in hexane. The product was eluted in ethyl acetate. Fractions were concentrated under reduced pressure to afford the desired product. [Yield- 1.8 gm (7.76 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.45 (s, 1H), 8.09 (s, 1H), 7.65 (d, J = 2.7 Hz, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.38– 7.33 (m, 2H), 7.28– 7.21 (m, 7H), 6.86– 6.81 (m, 4H), 5.87 (d, J = 5.3 Hz, 1H), 5.45 (d, J = 6.3 Hz, 1H), 4.65– 4.58 (m, 1H), 4.31 (t, J = 4.7 Hz, 1H), 3.97 (q, J = 4.4 Hz, 1H), 3.72 (s, 6H), 3.31 (dd, J = 10.7, 3.9 Hz, 1H), 3.16 (dd, J = 10.6, 5.1 Hz, 1H), 0.82 (s, 9H), 0.07 (s, 3H), 0.02 (s, 3H).
MS: m/z = 724.33 (M+H)+ Step-2: Synthesis of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)- 2-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
This compound has been synthesized from step 1 product of example 23, by following procedure analogous to step 4 of example 4.
MS (m/z) = 485.92 (M+H)+ Step 3: Synthesis of (2R,3R,4R,5R)-5-((((((2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy) phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-2-(9-oxo-5,9- dihydro-3H-imidazo [1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-5-(hydroxymethyl)-2-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (step 2 product, 0.4 g, 0.824 mmol) and 5-[3,5-di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetraazole (0.465 g, 1.648 mmol) in acetonitrile (500 mL) in the presence of molecular sieves (3Ao) was added, a solution of (2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-2-((bis(4-methoxyphenyl) (phenyl) methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)tetrahydrofuran-3-yl-(2-cyanoethyl) diisopropylphosphoramidite (Prepared according to the procedure reported in the literature, Journal of Organic Chemistry, 1991 , vol.56, # 15 p.4608– 4615, 1.384 g, 1.401 mmol) in acetonitrile (50 mL) in one portion. The reaction mixture was stirred at room temperature for 16 hrs. Progress of reaction was monitored by TLC. After 16 hrs, tert-butyl
hydroperoxide (0.300 mL, 1.648 mmol) 5.5M was added to the reaction mixture and stirred for another 3 hrs. Progress of reaction was monitored by TLC. After completion, the solution was filtered through celite pad, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co- evaporated three times with acetonitrile. The residue was treated with 10% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.148 mL, 8.24 mmol) for 15 minutes at room temperature. The red coloured reaction mixture was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed under reduced pressure to get the crude residue. The crude compound was purified by silica-gel column chromatography, using 15 - 60% methanol in dichloromethane as eluent to obtain the title compound.
MS: m/z = 1086.32 (M+H)+ Step-4: Cyclization and oxidation
(2R,3R,4R,5R)-5-((((((2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethyl silyl)oxy)-2-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphoryl)oxy) methyl)-4-((tert-butyldimethylsilyl)oxy)-2-(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl) tetrahydrofuran-3-yl hydrogen phosphonate (0.42 g, 0.387 mmol) was co-evaporated with dry pyridine (2 x 20 mL) and dissolved in 20 mL dry pyridine. To this solution was added 2-chloro-5,5-dimethyl-1,3,2-dioxaphophorinane-2- oxide (0.357 g, 1.933 mmol) at 0-5°C and reaction mixture was stirred at room temperature for 2 hrs. Progress of the reaction was monitored by TLC, upon consumption of starting material, water (0.209 g, 11.6 mmol) and iodine (0.123 g, 0.483 mmol) were added and the reaction mixture was stirred for 2 hrs. Progress of reaction was monitored by TLC. After 2
hrs, aqueous sodium bisulphite solution (0.15%, 100 mL) was added until complete discoloration was observed, then aqueous saturated sodium bicarbonate (200 mL) was added. The aqueous layer was extracted with (3 x 200 mL) of ethyl acetate. Combined organic layer was dried on sodium sulphate and concentrated under reduced pressure to get oily crude compound.
MS: m/z = 1084.27 (M+H)+ Compound 36 was prepared from Step 4 product of example 8 by following procedures (Step 7 to Step 9) analogous to those outlined in Example 4. (2’, 3’) cyclic-IPAMP (Compound 36)
Compound 36: 1H NMR (400 MHz, DMSO-d6) δ 8.44 (d, J = 1.9 Hz, 1H), 8.16 (d, J = 2.0 Hz, 1H), 8.00– 7.91 (m, 1H), 7.49– 7.39 (m, 1H), 7.10 (d, J = 18.3 Hz, 1H), 5.95– 5.81 (m, 2H), 4.93 (d, J = 7.4 Hz, 1H), 4.85 (d, J = 7.9 Hz, 1H), 4.68 (d, J = 11.5 Hz, 2H), 4.59 – 4.50 (m, 1H), 4.26– 4.13 (m, 2H), 4.07– 3.94 (m, 2H), 3.83 (d, J = 11.5 Hz, 1H).31P NMR (162 MHz, DMSO-d6) δ 1.54, 0.26.
MS: m/z = 699.10 [M+H]+ Example 24: Synthesis of (2’, 3’) cyclic-IPIPMP (Compound 37)
e compoun was prepare rom corresponding monomers (Step 2 product of Example 16 and Step 2 product of Example 23) according to the procedures (Step 5 to Step 9) analogous to those outlined in Example 4.
Compound 37: 1H NMR (400 MHz, DMSO-d6) δ 8.00 (dt, J = 11.6, 5.6 Hz, 2H), 7.47 (dt, J = 7.4, 2.2 Hz, 2H), 7.19– 7.11 (m, 2H), 5.85 (d, J= 7.0 Hz, 2H), 4.82 (dd, J = 8.5, 5.5 Hz, 2H), 4.69 (s, 2H), 4.18 (s, 2H), 3.97 (s, 4H), 31P NMR (162 MHz, DMSO-d6) δ 0.14. MS: m/z = 739.06 [M+H]+ Example 25: Synthesis of (2’, 3’) cyclic-A2’- βFIPM(PS)2 (Compounds 38, 39, 40, and 41)
Step-1: (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl 4-oxopentanoate
To a suspension of N-(9-((2R,3R,4S,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-3- hydroxytetrahydrofuran-2-yl)-9H-purin-6-yl)benzamide (15 g, 19.04 mmol) (Prepared by following procedure as reported in Canadian Journal of Chemistry 1982, vol.60, page 111- 120) in tetrahydrofuran (150 ml) was added pyridine (3.08 ml, 38.1 mmol) at 0 °C followed by 4-oxopentanoic anhydride (5.71 g, 26.7 mmol) over 15 minutes and then N,N dimethyl amino pyridine (0.233 g, 1.904 mmol) at same temperature. The reaction mixture was stirred at 25 °C for 2 hour. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was diluted with ethyl acetate and then poured on water. The two layers were separated and the aqueous layer was extracted with ethyl acetate and the combined organic layer was dried over anhydrous sodium sulphate and then concentrated under reduced pressure to obtain desired product in crude form which was directly used for further transformation without purification.
1H NMR (400 MHz, DMSO-d6) δ 12.10 (s, 1H), 8.73 (s, 1H), 8.68 (s, 1H), 8.09– 8.01 (m, 2H), 7.70– 7.60 (m, 1H), 7.60– 7.52 (m, 2H), 7.34– 7.30 (m, 2H), 7.26– 7.16 (m, 7H), 6.87– 6.78 (m, 4H), 6.27 (d, J = 3.5 Hz, 1H), 6.02 (dd, J = 5.2, 3.6 Hz, 1H), 5.05 (t, J = 5.7 Hz, 1H), 4.13– 4.07 (m, 1H), 3.72 (s, 6H), 3.43 (dd, J = 10.8, 4.8 Hz, 1H), 3.12 (dd, J = 10.8, 4.7 Hz, 1H), 2.49– 2.45 (m, 2H), 2.41– 2.37 (m, 2H), 2.08 (s, 3H), 0.81 (s, 9H), 0.06 (s, 3H), 0.00 (s, 3H).
MS: m/z = 886.06 (M+H)+
Step-2: (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert-butyldimethylsilyl)oxy)- 5-(hydroxymethyl)tetrahydrofuran-3-yl 4-oxopentanoate
To a stirred solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl 4-oxopentanoate (Step-1 product, 27 g, 30.5 mmol) in dichloromethane (300 ml) was added triethylsilane (29.2 ml, 183 mmol) followed by solution of dichloroacetic acid (9.52 ml, 122 mmol) in dichloromethane (30 mL) over 5-10 minutes at 25 °C . The reaction mixture was stirred at 25 °C for 30 minutes. The progress of the reaction was checked by TLC. Upon completion, the reaction mixture was diluted with dichloromethane and washed with water, organic layer was concentrated after drying over anhydrous sodium sulphate to obtain crude mass. The crude mass was purified by column chromatography employing ethyl acetate in hexane as eluent. The desired product eluted in 60-80% ethyl acetate in hexane. The fractions were collected and the solvent was removed under reduced pressure to obtain desired product. [Yield: 8.5 g, (76.50 %) over two steps].
1H NMR (400 MHz, DMSO-d6) δ 11.25 (s, 1H), 8.77 (s, 1H), 8.73 (s, 1H), 8.09– 8.03 (m, 2H), 7.68– 7.63 (m, 1H), 7.56 (dd, J = 8.3, 6.9 Hz, 2H), 6.27 (d, J = 5.9 Hz, 1H), 5.83 (t, J = 5.4 Hz, 1H), 5.28 (t, J = 5.5 Hz, 1H), 4.72 (dd, J = 5.0, 3.4 Hz, 1H), 4.07– 4.01 (m, 1H), 3.77 (dt, J = 12.0, 4.5 Hz, 1H), 3.60 (ddd, J = 12.0, 5.8, 3.8 Hz, 1H), 2.70– 2.64 (m, 2H), 2.53– 2.50 (m, 2H), 2.04 (s, 3H), 0.93 (s, 9H), 0.14 (s, 3H), 0.10 (s, 3H).
MS: m/z = 584.6 (M+H)+ Step-3: Synthesis of 2-amino-9-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert- butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran-2-yl)-1,9-dihydro-6H-purin-6- one
To a solution of 2-amino-9-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5- (hydroxymethyl)tetrahydrofuran-2-yl)-1,9-dihydro-6H-purin-6-one (Prepared by following reported literature procedure from Tetrahedron Letters 2016, vol 57, # 3, 268- 271, 25.0 g, 88 mmol) in pyridine (200 mL) was added imidazole (23.87 g, 351 mmol) and tert-butyldimethylchlorosilane (52.8 g, 351 mmol). The resulting mixture was stirred at room temperature for 16 hour. Upon completion the reaction mixture was diluted with dichloromethane, quenched with saturated sodium bicarbonate solution. The layers were separated and the aqueous layer was extracted thrice with dichloromethane. The combined organic layer was dried over anhydrous sodium sulphate and filtered. The filtrate was evaporated under reduced pressure and then triturated with diethyl ether to yield the title compound. [Yield: 27.5 g, (61.11%)].
1H NMR (400 MHz, DMSO-d6) δ 10.73 (s, 1H), 7.73 (d, J = 2.2 Hz, 1H), 6.60 (s, 2H), 6.15 (dd, J = 13.1, 4.9 Hz, 1H), 5.29 (dt, J = 52.7, 4.6 Hz, 1H), 4.57 (dt, J = 18.6, 4.8 Hz, 1H), 3.91– 3.75 (m, 3H), 0.90 (d, J = 1.3 Hz, 18H), 0.13 (d, J = 1.3 Hz, 6H), 0.07 (d, J = 2.8 Hz, 6H).
MS: m/z = 514.08 (M+H)+ Step-4: N'-(9-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert- butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran-2-yl)-6-oxo-6,9-dihydro-1H- purin-2-yl)-N,N-dimethylformimidamide
To a solution of 2-amino-9-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert- butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran-2-yl)-1,9-dihydro-6H-purin-6- one (Step-3 product, 27.0 g, 52.6 mmol) in methanol (250 mL) was added 1,1-dimethoxy- N,N-dimethylmethanamine (34.9 ml, 263 mmol). The resulting mixture was stirred at 25- 30 °C for 16 hour. Progress of the reaction was monitored by TLC. Methanol was evaporated under reduced pressure to yield the title compound. [Yield: 30 g, (100 %)]. 1H NMR (400 MHz, DMSO-d6) δ 11.38 (s, 1H), 8.57 (s, 1H), 7.82 (d, J = 2.3 Hz, 1H), 6.34 (dd, J = 12.8, 5.1 Hz, 1H), 5.31 (dt, J = 52.9, 4.8 Hz, 1H), 4.62 (dt, J = 19.3, 4.9 Hz, 1H), 3.95– 3.75 (m, 3H), 3.15 (s, 3H), 3.04 (s, 3H), 0.90 (d, J = 2.6 Hz, 18H), 0.14 (s, 6H), 0.07 (d, J = 4.2 Hz, 6H).
MS: m/z = 569.4 (M+H)+ Step-5: Synthesis of N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((2R,3S,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran- 2-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide
To a solution of N'-(9-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-5-(((tert- butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran-2-yl)-6-oxo-6,9-dihydro-1H- purin-2-yl)-N,N-dimethylformimidamide (Ste-4, 30.0 g, 52.7 mmol) and K2CO3 (36.4 g, 264 mmol) (previously dried in an oven for 2 hour at 120 °C ) in DMF (250 mL) was added 2-(iodomethyl)-1,3-dioxolane (12.54 ml, 105 mmol). The resulting mixture was stirred at 70-75 °C for 16 hour. Progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature and water was added. The obtained solid was filtered, washed with water and dried under vaccuum to obtain the crude title compound as white solid. The crude mass was purified by column chromatography employing methanol in dichloromethane as eluent. The title compound
eluted in 5 % methanol in dichloromethane. Solvent was evaporated under reduced pressure to obtain desired compound as white solid. [Yield: 27.5 g, (79.7 %)].
1H NMR (400 MHz, DMSO-d6) δ 8.61 (s, 1H), 7.86 (s, 1H), 6.35 (dd, J = 12.6, 5.1 Hz, 1H), 5.44– 5.20 (m, 2H), 4.62 (d, J = 19.5 Hz, 1H), 4.31 (d, J = 5.2 Hz, 2H), 4.00– 3.74 (m, 7H), 3.19 (s, 3H), 3.08 (s, 3H), 0.90 (s, 18H), 0.14 (s, 6H), 0.11– -0.02 (m, 6H). MS: m/z = 655.3 (M+H)+ Step-6: Synthesis of 3-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-3-fluoro-5- (hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
To a solution of N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((2R,3S,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-5-(((tert-butyldimethylsilyl)oxy)methyl)-3-fluorotetrahydrofuran- 2-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (Step 5, 22.0 g, 33.6 mmol) in dichloromethane (200 ml) was added trifluoroacetic acid (20.70 ml, 269 mmol). The resulting mixture was stirred at 45 °C for 1 hour. Progress of the reaction was monitored by TLC. After 1 hour the reaction was cooled to room temperature and trifluoroacetic acid (20.70 ml, 269 mmol) was added again. The reaction mixture was stirred at 45 °C for another 1 hour. Upon completion, the reaction was cooled to room temperature, the solvent was evaporated under vacuum. Trifluoroacetic acid was azeotropically evaporated with toluene. The obtained residue was taken in water, basified with saturated aqueous sodium bicarbonate solution, filtered and the solid was washed with water. The obtained solid was triturated with methyltert-butylether to yield title compound [Yield 10.0 g, (70.27 % yield)].
1H NMR (400 MHz, DMSO-d6) δ 12.57 (d, J = 2.8 Hz, 1H), 8.13– 8.03 (m, 1H), 7.65 (t, J = 2.2 Hz, 1H), 7.47 (q, J = 2.6, 2.0 Hz, 1H), 6.37– 6.28 (m, 1H), 5.41– 5.10 (m, 2H), 4.69 – 4.58 (m, 1H), 3.86 (q, J = 4.8 Hz, 1H), 3.74– 3.58 (m, 2H), 0.90 (s, 9H), 0.15 (dd, J = 6.5, 3.7 Hz, 6H).
MS: m/z = 424.3 (M+H)+ Step-7: Synthesis of 3-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5- (hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one
To a solution of 3-((2R,3S,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-3-fluoro-5- (hydroxymethyl)tetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (Step- 6, 10.00 g, 23.61 mmol) in triethylamine (100 mL) and pyridine (100 mL) was added triethylamine trihydrogenfluoride (TEA.3HF) (100 mL). The resulting mixture was stirred at 50 °C for 1 hour. Upon completion, the reaction mixture was cooled to room temperature and quenched with methaolic ammonia until the solution becomes basic. The white precipitate obtained was filtered and dissolved in 30% methanol in dichloromethane. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography employing methanol in dichloromethane as eluent. The title compound eluted in 15% methanol in dichloromethane. [Yield: 4.25 g, (58.2 %)].
1H NMR (400 MHz, DMSO-d6) δ 8.02 (d, J = 2.2 Hz, 1H), 7.64 (d, J = 2.6 Hz, 1H), 7.46 (d, J = 2.6 Hz, 1H), 6.31 (dd, J = 15.3, 4.4 Hz, 1H), 5.98 (s, 1H), 5.26 (t, J = 4.0 Hz, 1H), 5.12 (t, J = 4.0 Hz, 1H), 4.41 (dt, J = 18.4, 4.3 Hz, 1H), 3.85 (q, J = 4.9 Hz, 1H), 3.70– 3.61 (m, 2H).
MS: m/z = 310.2 (M+H)+ Step-8: Synthesis of 3-((2R,3S,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-3-fluoro-4-hydroxytetrahydrofuran-2-yl)-3,5- dihydro-9H-imidazo[1,2-a]purin-9-one
To a solution of 3-((2R,3S,4R,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran- 2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (Step-7, 4.1 g, 13.26 mmol) in pyridine (60.0 mL) was added 4,4'-(chloro(phenyl)methylene)bis(methoxybenzene) (6.29 g, 18.56 mmol). The resulting mixture was stirred at room temperature for 16 hour. Progress of the reaction was monitored by TLC. Upon completion, the reaction was diluted with dichloromethane, quenched with methanol and basified with saturated aqueous sodium bicarbonate solution. The layers were separated and the aqueous layer was extracted three times with dichloromethane. Combined organic layer was dried over anhydrous sodium sulphate and filtered and evaporated under reduced pressure to obtain crude mass. The crude mass was purified by column chromatography employing 5% methanol in dichloromethane as eluent to obtain the title compound as a white solid. [Yield: 3.25 g, (40.07 %)].
1H NMR (400 MHz, DMSO-d6) δ 12.54 (s, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.67 (d, J = 2.6 Hz, 1H), 7.48 (d, J = 2.7 Hz, 1H), 7.43– 7.39 (m, 2H), 7.32– 7.26 (m, 6H), 7.24– 7.19 (m, 1H), 6.91– 6.82 (m, 4H), 6.37 (dd, J = 16.0, 4.4 Hz, 1H), 6.04 (d, J = 5.0 Hz, 1H), 5.22 (dt, J = 52.4, 3.8 Hz, 1H), 4.44 (dtd, J = 18.8, 5.1, 3.5 Hz, 1H), 4.08– 4.02 (m, 1H), 3.73 (s, 6H), 3.4 - 3.325 (m, 1H), 3.25 (dd, J = 10.4, 3.4 Hz, 1H).
MS: m/z = 612.3 M+H +
Step-9: Synthesis of (2R,3R,4S,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 4-fluoro-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
p p (5.01 ml, 57.2 mmol) and N-methylmorpholine (44.9 ml, 409 mmol) in anhydrous dichloromethane (150 mL), 1,2,4-triazole (20.89 g, 302 mmol) was added portion wise under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C and 3-((2R,3S,4R,5R)-5- ((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-3-fluoro-4-hydroxytetrahydrofuran-2- yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (Step-8, 5.0 g, 8.17 mmol) dissolved in dichloromethane (150 mL) was added dropwise. The solution was stirred for 30 minutes at same temperature and then neutralised by addtion of 1M triethylammoniumformate buffer solution (PH 6). The aqueous layer was extracted with dichloromethane (300 mL x 3), the combined organic layer was washed with 1M triethylammoniumformate buffer solution, dried over anhydrous sodium sulphate and concentrated under reduced pressure to get crude compound. The crude compound was purified by silica gel column chromatography using 15-20% methanol in dichloromethane as eluent to afford the title compound as a white solid. [Yield: 3.7 g, (67 %)].
1H NMR (400 MHz, DMSO-d6) δ 11.58 (s, 1H), 7.76 (d, J = 2.5 Hz, 1H), 7.65 (d, J = 2.6 Hz, 1H), 7.47 (d, J = 2.6 Hz, 1H), 7.43 (d, J = 7.5 Hz, 2H), 7.34– 7.21 (m, 7H), 6.89 (d, J = 8.4 Hz, 4H), 6.32 (dd, J = 21.2, 3.1 Hz, 1H), 5.96 (s, 1H), 5.34 (d, J = 51.8 Hz, 1H), 4.80 – 4.69 (m, 1H), 4.21 (s, 1H), 3.82– 3.67 (m, 6H), 3.56 (t, J = 4.6 Hz, 1H), 3.36– 3.22 (m, 2H).
MS: m/z = 676.1 (M+H)+ Step-10: Synthesis of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5- ((((((2R,3R,4S,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-fluoro-5-(9-
oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3- yl)oxy)(mercapto)phosphoryl)oxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl 4-oxopentanoate
To a solution of (2R,3R,4S)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-fluoro- 5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step-9, 3.7 g, 5.48 mmol) (co-evaporated twice with acetonitrile (2 x 50 mL)) in dry dichloromethane (30 mL) was added (two times coevaporated in acetonitrile) solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl 4-oxopentanoate (Step-2, 2.91 g, 4.98 mmol) in 15 mL dichloromethane.2,6-Lutidine (13.92 ml, 119 mmol) was added to the reaction mixture at room temperature followed by dropwise addition of pivaloyl chloride (2.509 ml, 19.91 mmol) in 15 minutes at room temperature. The reaction mixture was stirred at room temperature for 30 minutes. To the resulting reaction mixture sulfur (0.798 g, 24.89 mmol) was added at room temperature and the reaction mass was stirred at same temperature for 45 minutes. The resulting solution was diluted with 50 mL dichloromethane and washed with water (50 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (2 x 100 mL). The combined organic layer were dried over anhydrous sodium sulphate, filtered and concentrated under reduced preesure to get sticky solid which was dissolved in 150 mL acetonitrile. Insoluble sulfur was removed by celite filtration. Filtrate was concentrated to get solid compound which
was washed with methyltertbutylether (3 x 100 mL) to get title compound as off white solid compound.
MS: m/z = 1272.95 (M+H)+ Step-11: Synthesis of O-(((2R,3S,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-3-((tert- butyldimethylsilyl)oxy)-4-hydroxytetrahydrofuran-2-yl)methyl) O-((2R,3R,4S,5R)-2- ((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-fluoro-5-(9-oxo-5,9-dihydro-3H- imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl) S-hydrogen phosphorothioate
To the stirred solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5- ((((((2R,3R,4S,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-fluoro-5-(9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3- yl)oxy)(mercapto)phosphoryl)oxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl 4-oxopentanoate (Step-10, 7.0 g, 5.50 mmol) in acetonitrile (50.0 mL), 0.5 molar hydrazine hydrate (55.0 ml, 27.5 mmol) in pyridine : acetic acid (33 mL : 22 mL) was added dropwise and the resulting mixture was stirred for 10 minutes. It was further cooled to 0 °C and pentane-2,4-dione (2.75 g, 27.5 mmol) was added to quench excess hydrazine hydrate. The reaction mixture was then added to aquoeus citric acid solution (obtained by dissolving 50.0 g citric acid in 150 mL water). The obtained
precipitate was filtered, washed with water and dried under vacuum. Further, the solid was triturated with methyltertbutylether to yield the title compound as crude solid.
MS: m/z = 1175.59 (M+H)+ Step-12: Synthesis of O-(((2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-3-((tert- butyldimethylsilyl)oxy)-4-((hydroxyhydrophosphoryl)oxy)tetrahydrofuran-2-yl)methyl) O-((2R,3R,4S,5R)-4-fluoro-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl) S-hydrogen phosphorothioate
To a solution of phosphorous trichloride (2.419 ml, 27.7 mmol) and 4-methylmorpholine (30.4 mL, 277 mmol) in anhydrous dichloromethane (150 mL), 1H-1,2,4-triazole (14.13 g, 205 mmol) was added portion wise under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C and O-(((2R,3S,4R,5R)-5- (6-benzamido-9H-purin-9-yl)-3-((tert-butyldimethylsilyl)oxy)-4-hydroxytetrahydrofuran- 2-yl)methyl) O-((2R,3R,4S,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4- fluoro-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl) S- hydrogen phosphorothioate (Step-11, 6.5 g, 5.53 mmol) in 100 mL dichloromethane was added dropwise to the above mixture under nitrogen atmosphere. The solution was stirred for 30 minutes at same temperature and then, upon completion, was neutralized by addtion
of 1M triethylammoniumformate buffer solution (PH 6). The aqueous layer was extracted with dichloromethane, the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield intermediate as semisolid compound. The semisolid crude compound was treated with 20% solution of dichloroacetic acid in dichloromethane (100 mL) and water (10.0 mL) for 15 min. Progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with solution of methanol (50 mL) and pyridine (50 mL). The solvents were removed in vacuo and the residue was triturated with methyltertbutylether, followed by acetonitrile to yield the title compound as crude solid.
MS: m/z = 936.95 (M+H)+ Step-13: Cyclization and sulfurization of step 12 product
O-(((2R,3R,4R,5R)-5-(6-benzamido-9H-purin-9-yl)-3-((tert-butyldimethylsilyl)oxy)-4- ((hydroxyhydrophosphoryl)oxy)tetrahydrofuran-2-yl)methyl) O-((2R,3R,4S,5R)-4-fluoro- 2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3- yl) S-hydrogen phosphorothioate (Step-12, 2.7 g, 2.88 mmol) was co-evaporated with dry pyridine (3 x 10 mL) and dissolved in pyridine (40 mL). To the solution was added pivaloyl chloride (1.097 mL, 8.65 mmol) and the reaction mixture was stirred at room temperature
for 30 minutes. To this reaction mixture was added sulfur (0.462 g, 14.41 mmol) and the reaction mixture was stirred for 1 hour. After 1 hour, reaction mixture was poured into 30 ml of water. The aqueous layer was extracted with 3 x 100 mL of dichloromethane. Combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to get crude oily residue which was dissolved in acetonitrile, filtered through celite pad and washed with acetonitrile. The obtained filtrate was rotary evaporated and further triturated with methyltertbutylether to yield the title compound as crude solid. MS: m/z = 951.25 (M+H)+ Step-14: Benzoyl deprotection of step 13 product
A sealed tube containing a solution of step 13 product (2.2 g, 2.314 mmol) in 33% methyl amine in ethanol (30 ml) was stirred at 25 °C for 3 hour. Progress of the reaction was monitored by LCMS. Upon completion, the volatiles were removed under reduced pressure. The obtained residue was triturated with acetonitrile to yield desired product as crude solid.
The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 µm). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain four diastereomers
Isolated Peak 1(Diastereomer 1- UPLC TR: 1.34 min) = 50 mg
MS: m/z = 846.8 [M+H]+
Isolated Peak 2 (Diastereomer 2- UPLC TR: 1.39 min) = 55 mg
MS: m/z = 846.93 [M+H]+ Isolated Peak 3 (Diastereomer 3- UPLC TR: 1.45 min) = 170 mg
MS: m/z = 846.80 [M+H]+ Isolated Peak 4 (Diastereomer 4- UPLC TR: 1.56 min) = 50 mg
MS: m/z = 846.8 [M+H]+ Step 15A: TBS deprotection of isolated diastereomer 1 of step 14
Diastereomer 1 of step-14 (50 mg, 0.059 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (3 mL) and triethylamine (3 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (3 mL). The reaction mixture was stirred at 60 °C for 2 hour. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get desired compound as bis triethylammonium salt.
MS: m/z = 732.90 (M+H)+ TBS deprotection of other diastereomers (2, 3, and 4) of step 14 were done analogously.
Step 15B: TBS deprotection of isolated diastereomer 2 of step 14
MS: m/z = 732.78 (M+H)+
Step 15C: TBS deprotection of isolated diastereomer 3 of step 14
MS: m/z = 732.78 (M+H)+
Step 15D: TBS deprotection of isolated diastereomer 4 of step 14
MS: m/z = 732.78 (M+H)+ Step 16A: Synthesis of (2’, 3’) cyclic-A2’- βFIPM(PS)2 (Compound 38-Diastereomer 1)
5 W y g (5 00 mesh), (2 gm) was slurry packed into syringe column, washed with de-ionized water (40 mL).1M NaOH (15 mL) was passed through syringe column followed by de-ionized water (500 mL). After draining the excess of de- ionized water by gravity, diastereomer 1 (Step 15A, 100 mg) in de-ionized water (10 mL) was loaded in to the column. Column was eluted with de-ionized water (50 mL); each (5 mL) fractions were collected. Those fractions which show UV activity on TLC were mixed
and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 12 mg] Compound 38: 1H NMR (400 MHz, DMSO-d6) δ 8.82 (s, 1H), 8.15 (s, 1H), 7.90 (s, 1H), 7.61 (d, J = 2.5 Hz, 1H), 7.37 (d, J = 2.5 Hz, 1H), 6.29 (d, J = 24.0 Hz, 1H), 6.09 (d, J = 8.5 Hz, 1H), 5.55– 5.32 (m, 2H), 5.31– 5.16 (m, 1H), 4.44– 4.20 (m, 4H), 4.20-4.10 (m, 1H), 4.05-3.95 (m, 1H), 3.8-3.6 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 57.95, 53.53 MS: m/z = 732.78 (M+H)+ Compounds 39, 40 and 41 were prepared following analogous procedure as step 16A Step 16B: Synthesis of (2’, 3’) cyclic-A2’- βFIPM(PS)2 (Compound 39-Diastereomer 2)
Compound 39: 1H NMR (400 MHz, D2O) δ 8.49 (s, 1H), 8.11-8.09 (m, 2H), 7.49 (s, 1H), 7.24 (s,1H), 6.39 (d, J = 22.0 Hz, 1H), 6.14– 5.96 (m, 1H), 5.55 (d, J = 50.0 Hz, 1H), 5.11- 5.07 (m, 2H), 4.40-4.25 (m, 3H), 4.20-4.05 (m, 3H), 4.08-3.97 (m, 1H).31P NMR (162 MHz, Deuterium Oxide) δ 55.73, 55.29
MS: m/z = 732.78 (M+H)+
Step 16C: Synthesis of (2’, 3’) cyclic-A2’- βFIPM(PS)2 (Compound 40-Diastereomer 3)
Compound 40: 1H NMR (400 MHz, DMSO-d6) δ 8.85 (s, 1H), 8.15 (s, 1H), 7.95 (d, J = 2.5 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.43 (d, J = 2.5 Hz, 1H), 6.32 (dd, J = 25.0, 2.3 Hz, 1H), 6.10 (d, J = 8.3 Hz, 1H), 5.43– 5.03 (m, 3H), 4.55 - 4.50 (m, 1H), 4.40-4.36 (m, 1H), 4.21-4.17 (m, 1H), 4.07-3.98 (m, 1H), 3.80-3.74 (m, 2H), 3.57-3.50 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 53.43, 48.64.
MS: m/z = 732.78 (M+H)+ Step 16D: Synthesis of (2’, 3’) cyclic-A2’- βFIPM(PS)2 (Compound 41-Diastereomer 4)
Compound 41: 1H NMR (400 MHz, DMSO-d6) δ 8.63 (s, 1H), 8.16 (s, 1H), 7.92 (d, J = 2.5 Hz, 1H), 7.63 (d, J = 2.5 Hz, 1H), 7.42 (d, J = 2.5 Hz, 1H), 6.31 (dd, J = 23.7, 2.5 Hz, 1H), 6.09 (d, J = 8.5 Hz, 1H), 5.38– 5.01 (m, 3H), 4.47-4.43 (m, 1H), 4.33-4.26 (m, 1H), 4.22– 4.10 (m, 2H), 4.1.0-3.90 (m, 1H), 3.40-3.75 (m, 1H), 3.72-3.3.67 (m, 1H).31P NMR (162 MHz, DMSO-d6) δ 54.16, 50.52
MS: m/z = 732.78 (M+H)+
Example 26: Synthesis of (2’, 3’) cyclic-A2’- αMIPM(PS)2 (Compounds 42, 43, 44 and 45)
Step-1: Synthesis of (E)-N'-(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-methoxytetrahydro- 4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)-N,N- dimethylformimidamide.
9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-methoxytetrahydro-4H-furo[3,2- d][1,3,2]dioxasilin-6-yl)-2-(((E)-(dimethylamino)methylene)amino)-6,9-dihydro-1H- purin-6-yl 2,4,6-triisopropylbenzenesulfonate (90 g, 119 mmol, prepared as per procedure
reported in Bioorg. Med. Chem. Lett. 20 (2010) 129–131) was co-evaporated with acetonitrile (2 x 500 mL) and dissolved in acetonitrile (900 mL). To this reaction mixture was added 2-nitrobenzaldoxime (59.1 g, 356 mmol) and N,N,N',N'-tetramethylguanidine (44.7 ml, 356 mmol) at room temperature. Reaction mixture was stirred at room temperature for 2 hour. The reaction mixture was diluted with ethyl acetate (1000 mL) and washed with saturated ammonium chloride solution (1000 mL). The organic layer was dried over sodium sulfate and evaporated under reduced pressure to obtain crude compound. Crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted in 2-3% methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product [Yield - 50.0 gm (85 %)]
1H NMR (400 MHz, DMSO-d6) δ 11.43 (s, 1H), 8.51 (s, 1H), 8.02 (s, 1H), 5.92 (d, J = 0.9 Hz, 1H), 4.55– 4.46 (m, 1H), 4.42– 4.28 (m, 2H), 4.04– 3.88 (m, 2H), 3.55 (s, 3H), 3.15 (s, 3H), 3.04 (s, 3H), 1.04 (s, 18H).
MS: m/z = 493.36 (M+H)+ Step-2: Synthesis of (E)-N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((4aR,6R,7R,7aR)-2,2-di- tert-butyl-7-methoxytetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9-dihydro- 1H-purin-2-yl)-N,N-dimethylformimidamide.
o e s rre sou on o o - -(9-((4aR,6R,7R,7aR)-2,2-di-tert-butyl-7-((tert- butyldimethylsilyl)oxy)tetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (Step-1, 50.0 g, 84 mmol) in dimethyl formamide (250 mL) was added potassium carbonate (58.3 g, 422 mmol) at room temperature. The reaction mixture was stirred for 10 min, then added 2-(iodomethyl)-1, 3- dioxolane (20.05 mL, 169 mmol). The reaction mixture was heated at 75 °C for 12 hour.
Progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with ice-cold water (1000 mL). Free solid precipitates out, which was filtered and the bed was washed with water (500 mL). The solid compound was dissolved in dichloromethane, dried over sodium sulphate and evaporated to get crude product. The crude product was purified by flash chromatography using methanol in dichloromethane. The product was eluted at 5% of methanol in dichloromethane. Fractions were concentrated under reduced pressure to afford the desired product. [Yield: 28.0 gm (57.4%)] 1H NMR (400 MHz, CDCl3) δ 8.54 (s, 1H), 8.06 (s, 1H), 5.94 (d,J = 0.9 Hz, 1H), 5.33 (t, J = 5.3 Hz, 1H), 4.48 (dd, J = 9.0, 5.0 Hz,1H), 4.40– 4.27 (m, 4H), 4.03– 3.92 (m, 4H), 3.84 – 3.76 (m, 2H),3.55 (s, 3H), 3.20 (s, 3H), 3.08 (s, 3H), 1.06 (s, 9H), 1.02 (s, 9H). MS: m/z = 579.18 (M+H)+ Step-3: Synthesis of 3-((4aR,6R,7R,7aS)-2,2-di-tert-butyl-7-methoxytetrahydro-4H- ,2-a]purin-9-one.
To the stirred solution of (E)-N'-(1-((1,3-dioxolan-2-yl)methyl)-9-((4aR,6R,7R,7aR)-2,2- di-tert-butyl-7-methoxytetrahydro-4H-furo[3,2-d][1,3,2]dioxasilin-6-yl)-6-oxo-6,9- dihydro-1H-purin-2-yl)-N,N-dimethylformimidamide (Step-2, 28.0 g, 48.4 mmol) in dichloromethane (400 mL) was added trifluoroacetic acid (59.6 mL, 774 mmol) at room temperature and reaction mixture was stirred at 45 °C for 1.5 hrs. Progress of reaction was monitored by TLC. Reaction mass was cooled to room temperature and evaporated to complete dryness. The residue was diluted with dichloromethane (500 mL) and washed with saturated aqueous sodium bicarbonate solution (2 x 300 mL). Organic layer was separated, dried over sodium sulphate and evaporated to get crude product. Crude product
was dissolved in minimum quantity of methyl tert-butyl ether and stirred overnight. White precipitate obtained was filtered and dried to obtain the title compound. [Yield - 20 gm (90 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.53 (t, J = 2.4 Hz, 1H), 8.13 (s, 1H), 7.65 (t, J = 2.3 Hz, 1H), 7.47 (t, J = 2.6 Hz, 1H), 5.93 (s, 1H), 4.48 (dd, J = 9.3, 4.8 Hz, 1H), 4.36 (dd, J = 8.7, 4.5 Hz, 1H), 4.26 (d, J = 4.8 Hz, 1H), 4.14– 3.91 (m, 2H), 3.56 (s, 3H), 1.08 (s, 9H), 1.02 (s, 9H).
MS: m/z = 462.2 (M+H)+
Step-4: Synthesis of 3-((2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3- methoxytetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one.
To the solution of 3-((4aR,6R,7R,7aS)-2,2-di-tert-butyl-7-methoxytetrahydro-4H- furo[3,2-d][1,3,2]dioxasilin-6-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (Step-3, 15 g, 35.5 mmol) in tetrahydrofuran (150 mL) was added HF-Pyridine (11.50 mL, 81.00 mmol) in pyridine (6.57 mL) at 0 °C . Then reaction mixture was stirred at 0 °C for 45 minutes. Upon completion, the reaction mixture was neutralized carefully with saturated sodium bicarbonate solution. Reaction mixture was concentrated under reduced pressure to remove organic solvent and the precipitated solid was filtered. The solid was dissolved in methanol in dichloromethane (1:1), dried over anhydrous sodium sulphate and evaporated in vacuum to obtain the title compound. [Yield - 10 gm (96 %)]
1H NMR (400 MHz, DMSO-d6) δ 12.50 (s, 1H), 8.20 (s, 1H), 7.63 (d, J = 2.6 Hz, 1H), 7.45 (d, J = 2.6 Hz, 1H), 5.95 (d, J = 5.9 Hz, 1H), 5.27 (d, J = 5.4 Hz, 1H), 5.14 (t, J = 5.5 Hz, 1H), 4.32 (td, J = 5.1, 3.3 Hz, 1H), 4.26 (dd, J = 6.0, 4.8 Hz, 1H), 3.95 (q, J = 3.8 Hz, 1H), 3.66 (ddd, J = 12.0, 5.3, 4.0 Hz, 1H), 3.58 (ddd, J = 12.0, 5.7, 4.0 Hz, 1H), 3.35 (s, 3H). MS: m/z = 322.2 (M+H)+
Step-5: Synthesis of 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-hydroxy-3-methoxytetrahydrofuran-2-yl)- 3,5-dihydro-9H-imidazo[1,2-a]purin-9-one.
To a solution of 3-((2R,3R,4R,5R)-4-hydroxy-5-(hydroxymethyl)-3- methoxytetrahydrofuran-2-yl)-3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (Step-4,10 g, 31.1 mmol) in pyridine(100 mL) was added 1-[chloro-(4-methoxyphenyl)-phenylmethyl]- 4-methoxybenzene (15.82 g, 46.7 mmol) at room temperature. The reaction mixture was stirred overnight at room temperature. Upon completion, the reaction mixture was quenched carefully with methanol (10 mL) and evaporated to obtain crude mass. The crude mass was diluted with dichloromethane (500 mL). Organic layer was washed with saturated sodium bicarbonate solution and dried over anhydrous sodium sulfate and evaporated to obtain crude oily mass. The crude mass was purified by column chromatography using 2- 3% methanol in dichlormethane. Fractions were concentrated to yield solid product (8 g, 12.83 mmol, 41.2 % yield).
1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 8.06 (s, 1H), 7.65 (d, J = 2.6 Hz, 1H), 7.47 (d, J = 2.6 Hz, 1H), 7.39– 7.29 (m, 2H), 7.29– 7.14 (m, 7H), 6.88– 6.77 (m, 4H), 6.00 (d, J = 4.6 Hz, 1H), 5.28 (d, J = 6.3 Hz, 1H), 4.41– 4.35 (m, 1H), 4.32 (t, J = 4.9 Hz, 1H), 4.05 (td, J = 5.5, 3.2 Hz, 1H), 3.72 (d, J = 1.8 Hz, 6H), 3.41 (s, 3H), 3.28 (dd, J = 10.4, 5.9 Hz, 1H), 3.18 (dd, J = 10.4, 3.1 Hz, 1H).
MS: m/z = 623.96 (M+H)+ Step-6: Synthesis of (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)- 4-methoxy-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate.
To a solution of phosphorus trichloride (2.45 mL, 28.1 mmol) and 4-methylmorpholine (30.9 mL, 281 mmol) in anhydrous dichloromethane (100.0 mL), 1,2,4-triazole (14.34 g, 208 mmol) was added under nitrogen atmosphere. After stirring for 30 minutes at room temperature, the reaction mixture was cooled to 0 °C and 3-((2R,3R,4R,5R)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-hydroxy-3-methoxytetrahydrofuran-2-yl)- 3,5-dihydro-9H-imidazo[1,2-a]purin-9-one (Step-5, 3.5 g, 5.61 mmol) dissolved in dichloromethane (40.0 mL) was added dropwise. The solution was stirred for 30 minutes at same temperature and then hydrolyzed by addition of 1M triethylammoniumformate buffer solution (PH 6). The aqueous layer was extracted with dichloromethane (2 x 200 mL), the combined organic layer was dried over sodium sulphate and concentrated under reduced pressure to yield a semisolid residue, and the residue was purified by silica-gel column chromatography using methanol in dichloromethane as eluent. The title compound eluted in 15% methanol in dichloromethane. Fractions were concentrated under reduced pressure to obtain desired compound as white solid as triethylammonium salt.
[Yield (3.00 g, 78 %)]
1H NMR (400 MHz, DMSO-d6) δ 11.76 (s, 1H), 8.02 (s, 1H), 7.63 (d, J = 2.6 Hz, 1H), 7.44 (d, J = 2.7 Hz, 1H), 7.36 (dt, J = 6.4, 1.4 Hz, 2H), 7.29– 7.14 (m, 7H), 6.83 (dd, J = 9.8, 7.7 Hz, 4H), 6.02– 5.93 (m, 2H), 4.71 (dt, J = 9.1, 4.2 Hz, 1H), 4.49 (t, J = 5.5 Hz, 1H), 4.26 (dt, J = 6.3, 3.2 Hz, 1H), 3.73 (s, 6H), 3.38 (s, 3H), 3.34 (dd, J = 10.3, 6.2 Hz, 1H), 3.16 (dd, J = 10.3, 2.8 Hz, 1H), 2.95 (q, J = 7.3 Hz, 6H), 1.13 (t, J = 7.3 Hz, 9 H).
MS: m/z = 688.15 (M+H)+
Synthesis of compound 42, 43, 44 and 45:
Compounds 42, 43, 44, and 45 were synthesized using appropriate monomers (Step 6 product of Example 26 and Step-2 product of Example 25) and by following similar procedures (Step 10 to Step 16 as mentioned in example 25) above.
(Compound 42, Diastereomer 1)
1H NMR (400 MHz, D2O) δ 8.97 (s, 1H), 8.11 (s, 1H), 7.99 (s, 1H), 7.51 (d, J = 2.8 Hz, 1H), 7.23 (d, J = 2.8 Hz, 1H), 6.17 (d, J = 8.4 Hz, 1H), 6.00 (d, J = 5.7 Hz, 1H), 5.49– 5.30 (m, 1H), 5.23– 5.08 (m, 1H), 4.95 (s, 1H), 4.63– 4.52 (m, 2H), 4.44 (d, J = 9.9 Hz, 2H), 4.18 (d, J = 4.7 Hz, 2H), 4.05– 3.82 (m, 1H), 3.53 (s, 3H).31P NMR (162 MHz, D2O) δ 59.59, 56.36.
MS: m/z = 744.97 (M+H)+
(Compound 43, Diastereomer 2)
1H NMR (400 MHz, D2O) δ 8.64 (s, 1H), 8.12 (s, 1H), 8.02 (s, 1H), 7.53 (d, J = 2.7 Hz, 1H), 7.25 (d, J = 2.8 Hz, 1H), 6.21 (d, J = 8.3 Hz, 1H), 6.04 (d, J = 5.7 Hz, 1H), 5.50– 5.38 (m, 1H), 5.18 (m, 1H), 4.89 (m, 1H), 4.60– 4.53 (m, 2H), 4.33 (m, 2H), 4.11 (m, 2H), 3.92 (d, J = 10.1 Hz, 1H), 3.48 (s, 3H).31P NMR (162 MHz, D2O) δ 59.85, 54.21.
MS: m/z = 745.01 (M+H)+
(Compound 44, Diastereomer 3)
1H NMR (400 MHz, D2O) δ 8.64 (s, 1H), 8.07 (s, 1H), 7.74 (s, 1H), 7.35 (s, 1H), 7.09 (s, 1H), 6.10 (d, J = 8.3 Hz, 1H), 5.95 (s, 1H), 5.20 (s, 1H), 4.92 (s, 1H), 4.79 (d, J = 3.9 Hz, 1H), 4.69-4.65 (m, 1H), 4.36 (dd, J = 24.5, 14.8 Hz, 3H), 4.11 (s, 3H), 3.66 (s, 3H).
31P NMR (162 MHz, D2O) δ 54.82, 52.55.
= 745.04 (M+H)+
(Compound 45, Diastereomer 4)
1H NMR (400 MHz, DMSO-d6 +D2O) δ 9.01 (s, 1H), 8.17 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 2.7 Hz, 1H), 7.42 (d, J = 2.7 Hz, 1H), 6.09 (d, J = 8.6 Hz, 1H), 5.95 (d, J = 7.6 Hz, 1H), 5.23 (dd, J = 10.0, 4.4 Hz, 2H), 4.76– 4.55 (m, 2H), 4.29 (dd, J = 10.2, 4.5 Hz, 1H), 4.19 (s, 2H), 4.04 (q, J = 10.2 Hz, 1H), 3.84 (s, 2H), 3.45 (s, 3H).
31P NMR (162 MHz, DMSO-d6 +D2O) δ 53.71, 48.90.
MS: m/z = 745.01 (M+H)+
Example 27: Synthesis of (3’, 3’) cyclic-IIPM(PS)2 (Compounds 48)
Step 1: (2R,3R,4R,5R)-2-((bis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)-5-(6-oxo-1,6-dihydro-9H-purin-9-yl)tetrahydrofuran-3-yl (2- cyanoethyl) diisopropylphosphoramidite
Prepared by following reported literature procedure from Synthetic Communications; (2000), 30(21), 3963– 3969
Compound 48 was synthesized using appropriate monomers (Step 1 product of Example 27 and Step-4 product of Example 4) by following analogous procedures (Step-1 to Step- 5) those outlined in example 5.
(3’, 3’) cyclic-IIPM(PS)2 (Compounds 48)
Compound 48: 1H NMR (400 MHz, DMSO-d6 ) δ 8.39 (s, 1H), 8.18 (s, 1H), 8.08 (s, 1H), 7.60 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 5.86 (t, J = 7.7 Hz, 2H), 4.97– 4.71 (m, 4H), 4.16 (dd, J = 12.7, 7.4 Hz, 4H), 4.10– 3.92 (m, 2H).31P NMR (162 MHz, DMSO-d6) δ 58.51, 58.48.
MS: m/z = 731.78 (M+H)+ Example 28: Synthesis of (3’, 3’) cyclic-GIPM(PS)2 (Compounds 46, and 47)
S Ote Op
S O O Na P 1 O: N Oa NH O ( O2R N,3 N ORH N,4 N NRH, O25R) N-2-( N(bHis(4-methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)-5-(2-isobutyramido-6-oxo-1,6-dihydro-9H-purin-9- yl)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite
Prepared by following procedure as reported in Journal of the American Chemical Society; vol.126; nb.51; (2004); p.16700 - 16701.
Compounds 46 and 47 were synthesized using appropriate monomers (Step 1 product of Example 28 and Step-4 product of Example 4) by following analogous procedures (Step-1 to Step-5) those outlined in example 5.
(3’, 3’) cyclic-GIPM(PS)2 (Compounds 46-Diastereomer 1)
Compound 46: 1H NMR (400 MHz, D2O) δ 8.09 (s, 1H), 8.05 (s, 1H), 7.49 (s, 1H), 7.22 (d, J = 2.8 Hz, 1H), 5.99 (s, 1H), 5.87 (s, 1H), 5.06– 4.89 (m, 2H), 4.76– 4.60 (m, 2H),4.44 – 4.31 (m, 2H), 4.30– 4.21 (m, 2H), 4.01– 3.89 (m, 2H).31P NMR (162 MHz, D2O) δ 55.79, 54.74.
MS: m/z = 746.78 (M+H)+ (3’, 3’) cyclic-GIPM(PS)2 (Compounds 47-Diastereomer 2)
Compound 47: 1H NMR (400 MHz, DMSO-d6) δ 8.18 (s, 1H), 8.01 (s, 1H), 7.61 (d, J = 2.8 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 5.86 (d, J = 7.6 Hz, 1H), 5.76 (d, J = 8.0 Hz, 1H),
4.90– 4.78 (m, 3H), 4.77– 4.68 (m, 1H), 4.39– 4.19 (m, 2H), 4.19– 3.86 (m, 4H).31P NMR (162 MHz, DMSO-d6) δ 59.39, 59.27.
MS: m/z = 746.78 (M+H)+
Example 29: Synthesis of (2’, 3’) cyclic-AIP3’-MP2’-M(PS) (Compound 49 and 50)
Step-1: Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethyl) phosphorothioyl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
To a solution of (2R,3R,4R,5R)-4-((tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step-4 of Example 4, 1.0 g, 2.060 mmol) and 5-[3,5-di(trifluoromethyl)phenyl]-2H- 1,2,3,4-tetraazole (1.162 g, 4.12 mmol) in acetonitrile (100 mL) in the presence of
molecular sieves (3 A°, 3 g ) was added, in one portion, (two time co-evaporated with acetonitrile) solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl) (phenyl) methoxy) methyl)-4-((tert-butyldimethylsilyl) oxy) tetrahydrofuran -3-yl(2-cyanoethyl) diisopropyl phosphoramidite (Step-6 of Example 1, 2.85 g, 2.88 mmol) in acetonitrile (75 mL) and the reaction mixture was stirred at room temperature for 16 hour. To the reaction mixture, a solution of 2-phenylacetic dithioperoxyanhydride (1.557 g, 5.15 mmol) in pyridine (6.66 mL, 82 mmol) was added and the reaction mixture was stirred for another 3 hour at room temperature. Progress of the reaction was monitored by TLC. After completion, the reaction mixture was filtered and the molecular sieves were washed with dichloromethane (2 x 50 mL). The filtrate was concentrated under reduced pressure and coevaporated three times with acetonitrile. The residue was treated with 10 % dichloroacetic acid in dichloromethane (60 mL) in the presence of water (0.316 mL) for 15 minutes at room temperature. The red coloured reaction mixture was quenched with methanol (20 mL) and pyridine (20 mL). The solvents were removed in vacuo to get the residue. The crude product was purified using silica gel column chromatography, using 0-100% ethyl acetate in hexane and then 20-60% methanol in dichloromethane as eluent to obtain the desired compound.
MS (m/z) = 1102.33 (M+H)+
Step-2: Cyclization and oxidation of step 1 product
(2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert-butyl dimethyl silyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy)phosphorothioyl) oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo- 5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 1 product, 1.2 g, 1.089 mmol) was coevaporated with dry pyridine (2 x10 mL) and dissolved in 15 mL dry pyridine. To the reaction mixture was added 2-chloro-5,5-dimethyl- 1,3,2-dioxaphophorinane-2-oxide (0.804 g, 4.35 mmol) at 0-5 °C and the reaction mixture was stirred at room temperature for 3 hour and added another eqivalent of 2-chloro-5,5- dimethyl-1,3,2-dioxaphophorinane-2-oxide (0.804 g, 4.35 mmol) and continue stirring for another 30 minute at room temperature. Progress of the reaction was monitored by LCMS. To this reaction mixture was added water (0.588 g, 32.7 mmol) followed by iodine (0.345 g, 1.361 mmol) and the reaction mixture was stirred for 1.5 hour. Progress of reaction was monitored by LCMS. After 1.5 hour, the reaction mixture was poured into sodium bisulphite solution (10 mL) and aqueous bicarbonate solution (10 mL). The aqueous layer was extracted with (2 x 30 mL) of ethyl acetate. The combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to get oily crude compound.
MS: m/z = 1100.29 (M+H)+ Step-3: Benzoyl and cyanoethyl deprotection of step 2 product
Cyclized product (step 2 product, 2.0 g, 1.818 mmol) was treated with 33% methylamine in ethanol (45 mL), and the resulting mixture was stirred at 60 °C in sealed tube for 3 hour.
Progress of the reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 µm). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain two diastereomers
Isolated diastereomer 1- UPLC TR: 1.62 min = 120 mg
MS: m/z = 943.25 (M+H)+
Isolated diastereomer 2- UPLC TR: 1.84 min = 200 mg
MS: m/z = 943.28 (M+H)+ Step-4A: TBS deprotection of isolated diastereomer 1 of step 3
Diastereomer 1 of step-3 (120 mg, 0.127 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (2 mL) and triethylamine (2 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (1.243 mL, 7.64 mmol). Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
MS: m/z = 715.11 (M+H)+
TBS deprotection of other diastereomer 2 of step 3 was done analogously
Step-4B: TBS deprotection of isolated diastereomer 2 of step 3
Step 5A: (Compound 49-Diastereomer 1)
owe 50W yd oge o (50 00 mesh), (1.5 gm) was slurry packed into syringe column, washed with de-ionized water (50 mL).1M NaOH (10 mL) was passed through syringe column followed by de-ionized water (300 mL). After draining the excess of de- ionized water by gravity, diastereomer 1 (step 6A, 45 mg) in de-ionized water (25 mL) was loaded in to the column. Column was eluted with de-ionized water (20 mL); each (5 mL) fractions were collected. Those fractions which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 13 mg, 14.34 % yield]
Compound 49: 1H NMR (400 MHz, DMSO-d6) δ 8.50 (s, 1H), 8.17 (s, 1H), 7.52 (d, J = 2.3 Hz, 1H), 7.24 (d, J = 2.2 Hz, 1H), 6.09 (d, J = 8.5, 1H), 5.89 (d, J = 8.6, 1H), 5.29 (m, 1H), 5.23 (m, 1H), 4.68 (m, 1H), 4.36- 4.21 (m, 4H), 3.96 (m, 4H), 3.78-3.70 (m, 1H), 31P NMR (162 MHz, DMSO-d6) δ 57.05, 1.99
MS: m/z = 714.96 (M+H)+
Compound 50, diastereomer 2 was prepared following analogous procedure as step 5A Step 5B: (Compound 50-Diastereomer 2) Compound 50: 1H NMR (400 MHz, DMSO-d6) δ 8.56-8.45 (m, 1H), 8.17 (s, 1H), 8.00 (s, 1H),7.55-7.44 (m, 1H), 7.17 (m, 1H), 6.09 (d, J = 8.5, 1H), 5.88 (d, J = 8.0, 1H), 5.26 (m, 1H), 5.00 (m, 1H), 4.89 (m, 1H), 4.43 (m, 1H), 4.26-3.98 (m, 4H), 3.78 (m, 2H), 31P NMR (162 MHz, DMSO-d6) δ 51.76, 1.70
MS: m/z = 714.95 (M+H)+ Example 30: Synthesis of (2’, 3’) cyclic-AIP2’-MP3’-M(PS) (Compound 51 and 52)
Step-1: Synthesis of (2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9- yl)-4-((tert-butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2- cyanoethoxy) phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9- dihydro-3H-imidazo [1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate
o a wo me co-evaporaed with acetonitrile) solution of (2R,3R,4R,5R)-4-((tert- butyldimethylsilyl)oxy)-2-(hydroxymethyl)-5-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 4 product of Example 4, 1.2 g, 2.472 mmol) and 5-[3,5-Di(trifluoromethyl)phenyl]-2H-1,2,3,4-tetraazole (1.395 g, 4.94 mmol) in acetonitrile (100 mL) in the presence of molecular sieves (3A°) was added, a solution of (2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-5-((bis(4- methoxyphenyl)(phenyl)methoxy)methyl)-4-((tert- butyldimethylsilyl)oxy)tetrahydrofuran-3-yl (2-cyanoethyl) diisopropylphosphoramidite (Step 6 product of Example 1, 3.42 g, 3.46 mmol, step 2) in acetonitrile (50 mL) in one portion. The reaction mixture was stirred at room temperature for 16 hour. Progress of the reaction was monitored by TLC. After 16 hour, tert-butyl hydroperoxide (0.899 mL, 4.94 mmol) 5.5M was added to the reaction mixture and stirred for another 3 hour. Progress of the reaction was monitored by TLC. After completion, the solution was filtered through celite pad, and the molecular sieves were washed with dichloromethane (2 x 30 mL). The filtrate was concentrated under reduced pressure and co-evaporated three times with acetonitrile. The residue was treated with 10% dichloroacetic acid in dichloromethane (60 mL), in the presence of water (0.445 mL, 24.72 mmol) for 15 minutes at room temperature. The red colored reaction mixture was quenched with methanol (10 mL) and pyridine (10 mL). The solvents were removed under reduced pressure to get the crude residue. The crude compound was purified by silica-gel column chromatography, using 25-50 % methanol in dichloromethane as eluent to obtain the title compound.
MS: m/z = 1086.35 (M+H)+
Step-2: Cyclization and oxidation of step 1 product
(2R,3R,4R,5R)-2-((((((2R,3R,4R,5R)-2-(6-benzamido-9H-purin-9-yl)-4-((tert- butyldimethylsilyl)oxy)-5-(hydroxymethyl)tetrahydrofuran-3-yl)oxy)(2-cyanoethoxy) phosphoryl)oxy)methyl)-4-((tert-butyldimethylsilyl)oxy)-5-(9-oxo-5,9-dihydro-3H- imidazo [1,2-a]purin-3-yl)tetrahydrofuran-3-yl hydrogen phosphonate (Step 1 product, 1.4 g, 1.289 mmol) was co-evaporated with dry pyridine (2 x 20 mL) and dissolved in dry pyridine (15 mL). To the reaction mixture was added 2-chloro-5,5-dimethyl-1,3,2- dioxaphophorinane-2-oxide (0.952 g, 5.16 mmol) (DMOCP) at 0-5 oC and the reaction mixture was stirred at room temperature for 2 hrs. To this reaction mixture was added water (0.697 g, 38.7 mmol) followed by 3H-1,2-benzodithiol-3-one (0.651 g, 3.87 mmol) and the reaction mixture was stirred for another 1 hr. After 1 hr, the reaction mixture was poured into 50 mL saturated aqueous sodium bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3 x 100 mL). Combined organic layer was dried over anhydrous sodium sulphate and concentrated under reduced pressure to get oily crude residue. The crude residue was purified by column chromatography using methanol in dichloromethane as eluent. The title compound eluted in 10-35% methanol in dichloromethane. Fractions were concentrated under reduced pressure to obtain title compound as diastereomeric mixture.
MS: m/z = 1100.30 (M+H)+
Step-3: Benzoyl and cyanoethyl deprotection of step 2 product
Cyclized product (step 2 product, 1.3 g, 1.182 mmol) was treated with 33% methylamine in ethanol (45 mL), and the resulting mixture was stirred at 60 °C in sealed tube for 3 hrs. Progress of reaction was monitored by LCMS. Reaction mixture was cooled to room temperature. The mixture was concentrated, and the resulting residue was dried under reduced pressure to get sticky solid. The solid residue obtained was purified by reverse phase preparative-HPLC (YMC triart C18– 250 x 50 mm x 10 µm). Eluted with 0-50% acetonitrile in triethylammonium acetate buffer over 25 minutes to obtain two diastereomers
Isolated diastereomer 1 - UPLC TR: 1.64 min = 90 mg
MS: m/z = 943.29 (M+H)+
Isolated diastereomer 2 - UPLC TR: 1.89 min = 200 mg
MS: m/z = 943.16 (M+H)+ Step-4A: TBS deprotection of isolated diastereomer 1 of step 3
Diastereomer 1 of step-3 (90 mg, 0.095 mmol) was co-evaporated three times with dry acetonitrile (10 mL). To this was added dry pyridine (2 mL) and triethylamine (2 mL) and the solution was heated to 60 °C. To the stirring reaction mixture was added triethylamine trihydrofluoride (0.932 mL, 5.73 mmol). Reaction mixture was stirred at 60 °C for 3 hrs. Progress of reaction was monitored by LCMS and HPLC. Reaction mixture was poured into chilled solution of 1M solution of triethylammonium bicarbonate (50 mL) and submitted for preparative HPLC for filtration through C-18 column using triethylammonium acetate buffer. Isolated fraction was concentrated under reduced pressure to get oily compound as Bis triethylammonium salt.
MS: m/z = 715.00 (M+H)+
TBS deprotection of other diastereomer 2 of step 3 was done analogously
Step-4B: TBS deprotection of isolated diastereomer 2 of step 3
: mz = . +
Step 5A: (Compound 51-Diastereomer 1)
Dowex 50WX2-Hydrogen form (50-100 mesh), (1.5 gm) was slurry packed into syringe column, washed with de-ionized water (50 mL).1M NaOH (10 mL) was passed through syringe column followed by de-ionized water (300 mL). After draining the excess of de- ionized water by gravity, diastereomer 1 (Step 4A, 40 mg) in de-ionized water (25 mL) was loaded in to the column. Column was eluted with de-ionized water (20 mL); each (5 mL) fractions were collected. Those fractions which show UV activity on TLC were mixed and concentrated under reduced pressure to get the title compound as disodium salt. [Yield- 19 mg] Compound 51: 1H NMR (400 MHz, DMSO-d6) δ 8.81 (s, 1H), 8.17 (s, 1H), 8.11– 8.05 (m, 1H), 7.60– 7.56 (m, 1H), 7.38– 7.33 (m, 1H), 6.08 (d, J = 8.4 Hz, 1H), 5.88 (d, J = 6.1 Hz, 1H), 5.20– 5.13 (m, 1H), 5.03– 4.98 (m, 1H), 4.92– 4.86 (m, 1H), 4.50– 4.46 (m, 1H), 4.34– 4.29 (m, 1H), 4.20– 4.17 (m, 1H), 4.09 (t, J = 10.7 Hz, 1H), 4.00– 3.90 (m, 2H), 3.77 (d, J = 12.1 Hz, 1H).31P NMR (162 MHz, DMSO-d6) δ 53.76, -1.07
MS: m/z = 714.98 (M+H)+
Compound 52 was prepared following analogous procedure as step 5A
Step 5B: (Compound 52-Diastereomer 2) Compound 52: 1H NMR (400 MHz, DMSO-d6) δ 8.51 (t, J = 5.4 Hz, 1H), 8.21 (s, 1H), 8.09– 8.02 (m, 1H), 7.57– 7.50 (m, 1H), 7.28 (dd, J = 6.3, 3.4 Hz, 1H), 6.08 (d, J = 8.4 Hz, 1H), 5.87 (d, J = 7.4 Hz, 1H), 5.26 (t, J = 6.2 Hz, 1H), 5.10 (dt, J = 8.4, 4.9 Hz, 1H),
5.01 (dd, J = 7.6, 4.4 Hz, 1H), 4.34 (d, J = 4.2 Hz, 1H), 4.22– 4.03 (m, 4H), 3.76 (ddd, J = 16.6, 6.1, 3.2 Hz, 2H).31P NMR (162 MHz, DMSO-d6) δ 58.87, -0.23
MS: m/z = 714.95 (M+H)+
Example 31:
Compounds were tested for their STING activation potential using THP1-BlueTM ISG (Invivogen, USA) or B16-Blue™ IFN-α/β (Invivogen, USA) SEAP-based reporter cell lines or HEK-293 cells overexpressing human or mouse STING coupled to Luciferase reporter. In brief, THP1-BlueTM ISG cells or B16-Blue™ IFN-α/β cells in 96 well plate were treated with varying concentrations of test and reference compounds and incubated at 37 ^C with 5% CO2 for 18-20 hours. The control untreated cells were also set-up. After treatment, the cell supernatant was tested for SEAP (Secreted Embryonic Alkaline Phosphatase) activity using the QuantiBlue substrate reagent (Invivogen, USA). The formation of blue coloured product was quantified by measuring absorbance at wavelength of 620 nm using PheraStar reader. Luciferase reporter activity was monitored using Bright- Glo (Promega, USA) or other suitable luciferase detection reagent and luminescence was estimated on Pherastar plate reader. The average of duplicate readouts for each data point was plotted in GraphPad Prism 6 against the concentration of test or reference compound to calculate EC50 value. The fold of SEAP induction or increase in luminescence at different data points was estimated against the un-stimulated cell control set.
Formula for calculation of fold activation:
Average RLU or OD of unknown
Fold induction = ______________________________
Average RLU or OD Vehicle control
RLU: Relative luminescence units
OD: Optical Density
Calculation of EC50:
EC50 (effective concentration) was calculated using 4 parametric nonlinear regression (curve fit) and sigmoidal dose-response (variable slope) using Graph pad prism software.
Human IFN β production was analysed in THP1-BlueTM ISG cells. Cells were treated for 5 h with various concentrations of the test compounds and fold induction of hIFNβ in the supernatant was determined by ELISA (R&D systems).
STING activity for compounds of the invention is listed in table 1 and 2 below:
Table 1
Compounds with 1.1 to 5 fold activation @ 30 µM (THP1 Blue cells) are grouped under group A, compounds with 5.1 to 10 fold activation @ 30 µM (THP1 Blue cells) are grouped under group B, and compounds with 10.1 to 25 fold activation @ 30 µM (THP1 Blue cells) are grouped under group C.
Table 2
Compounds with EC50 between 0.1 µM and 1 µM are grouped under group A, compounds with EC50 between 1.1 µM and 10 µM are grouped under group B, compounds with EC50 between 10.1 µM and 25 µM are grouped under group C.
In addition to wild-type hSTING, compounds of the present invention also activated the various hSTING variants viz. HAQ, H232, AQ and Q.
Compounds 8, 22 and 35 showed a significant induction of hIFNβ production in THP1- BlueTM ISG cells.
In vivo efficacy studies:
Healthy, female BALB/c mice were inoculated with 4T1 murine breast cancer cells on right flank. Tumor size was measured with digimatic Vernier caliper (Mitutoyo, Japan) when the tumor became palpable. Tumor volume was calculated by using the following formula:
Tumor volume (mm3) = (L ×W2)/2
where, L- Length of tumor, W- Width of tumor
Mice were randomized into treatment groups based on the tumor volume. Mice were administered with vehicle or the test article by intratumoral route (i.tu.) on defined days, e.g., Day-1, Day-3 and Day-5, and defined dose levels, e.g., 3, 10, 30, 50, 100 or 250 µg/mouse. Tumor sizes were measured with Vernier caliper twice weekly and body weights of mice were recorded daily.
Percent tumor growth inhibition (% TGI) was calculated using the formula:
% TGI = [1- (Tf - Ti)/(Cf - Ci)] ×100
Where, Tf and Ti, are the final and initial test tumor volumes, and Cf and Ci are the final and initial control mean tumor volumes, respectively.
Percent Tumor Regression (% TR) was calculated using the formula:
% TR = [(Initial T.V. - Final T.V.)/(Initial T.V.)] × 100
Where, T.V. - Tumor Volume
Compounds 8, 22 and 35 showed greater than 95% tumor regression with 50 microgram per mouse dose in 4T1 murine breast cancer allograft model.
Claims
1. A compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
wherein,
B1 and B2 are independently selected from formula (i)-(xviii) provided that at least one of B1 or B2 is selected from formula (i)-(vi)
Xa is selected from the group consisting of–CR7- or–N-;
Xb is -NR8c-;
Xc is selected from the group consisting of -O- or -S-;
X1 and X2 are independently selected from the -O-, -C-, or -S-;
X3 is selected from the group consisting of -O- , -S- , -OR9, and -SR9;
X4 and X5 are selected from the group consisting of O or S;
Y is selected from the group consisting of -O-, -S-, -C(R10)2-, and -CF2-;
ring A is selected from substituted- or unsubstituted five to eight membered heterocycle or heteroaryl;
ring B is selected from substituted- or unsubstituted- aryl, substituted- or unsubstituted- five to six membered heteroaryl, substituted- or unsubstituted five to eight membered carbocycle, and substituted- or unsubstituted five to eight membered heterocycle;
R1 and R1a are independently selected from hydrogen, perhaloalkyl, and substituted- or unsubstituted- alkyl;
R2, R2a and R3 are independently selected from hydrogen, halogen, -OTBS, -OR8b, -OC(=O)R8a, perhaloalkyl, and substituted- or unsubstituted- alkyl;
R4, R4a and R5 are independently selected from hydrogen, halogen, -OTBS, -OR8b, -OC(=O)R8a, perhaloalkyl, and substituted- or unsubstituted- alkyl;
R6 and R6a are independently selected from hydrogen, halogen, -OR8b, perhaloalkyl, and substituted- or unsubstituted- alkyl;
when R7 is substitution on carbocycle and heterocycle it is selected from hydrogen, halogen, oxo (=O), perhaloalkyl, substituted- or unsubstituted- alkyl, -OR8b, -SR8b, -C(=O)OR8b, -C(=O)N(R8b)2, -NR8bC(=O)R8a, and -N(R8b)2;
when R7 is substitution on aryl and heteroaryl it is selected from hydrogen, halogen, perhaloalkyl, substituted- or unsubstituted- alkyl, -OR8b, -SR8b, -C(=O)OR8b, - C(=O)N(R8b)2, -NR8bC(=O)R8a, and -N(R8b)2;
R8a is selected from substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, and substituted- or unsubstituted- heterocycle;
R8b is selected from hydrogen, substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, substituted- or unsubstituted- heterocycle, or when two R8b groups are attached to the nitrogen atom they can form a substituted- or unsubstituted- heterocycle;
R8c is selected from hydrogen, substituted- or unsubstituted- alkyl, substituted- or unsubstituted- cycloalkyl, and substituted- or unsubstituted- heterocycle;
R9 is selected from hydrogen, and substituted- or unsubstituted- alkyl;
R10 is selected from hydrogen, substituted- or unsubstituted- alkyl, or two R10 groups together with the carbon atom to which they are attached form a substituted- or unsubstituted- carbocycle;
n is an integer selected from 1, 2, or 3;
when‘alkyl’ is substituted, it is substituted with 1 to 4 substituents independently selected from oxo (=O), halogen, perhaloalkyl, cycloalkyl, substituted- or unsubstituted- aryl, -OR11b, -SO2R11a, -C(=O)OR11b, -OC(=O)R11a, -OC(=O)OR11a ,-C(=O)N(H)R11, -C(=O)N(alkyl)R11, -N(H)C(=O)R11a, -N(H)R11, and - N(alkyl)R11;
when‘carbocycle’ or‘cycloalkyl’ is substituted, it is substituted with 1 to 4 substituents independently selected from oxo (=O), halogen, alkyl, perhaloalkyl, - OR11b, -C(=O)OR11b, -OC(=O)R11a, -C(=O)N(H)R11, -C(=O)N(alkyl)R11, - N(H)C(=O)R11a, -N(H)R11, and -N(alkyl)R11;
when‘heterocycle’ is substituted, it is substituted with 1 to 4 substituents independently selected from oxo (=O), halogen, alkyl, perhaloalkyl, -OR11b, - C(=O)OR11b, -OC(=O)R11a, -C(=O)N(H)R11, -C(=O)N(alkyl)R11, -N(H)C(=O)R11a, -N(H)R11, and -N(alkyl)R11, -,
when the‘aryl’ group is substituted, it is substituted with 1 to 4 substituents selected from halogen, alkyl, perhaloalkyl, cycloalkyl, -O-alkyl, -O-perhaloalkyl, -O- C(=O)-aryl, -N(alkyl)alkyl, -N(H)alkyl, -NH2, - -N(alkyl)C(=O)alkyl, - N(H)C(=O)alkyl, -C(=O)N(alkyl)alkyl, -C(=O)N(H)alkyl, -C(=O)NH2, - SO2N(alkyl)alkyl, -SO2N(H)alkyl, -SO2NH2, -C(=O)OH, -C(=O)-alkyl, and - C(=O)O-alkyl;
when the‘heteroaryl’ group is substituted, it is substituted with 1 to 4 substituents selected from halogen, alkyl, perhaloalkyl, cycloalkyl, -O-alkyl, O-perhaloalkyl, - N(alkyl)alkyl, -N(H)alkyl, -NH2, -N(alkyl)C(=O)alkyl, -N(H)C(=O)alkyl, - C(=O)N(alkyl)alkyl, -C(=O)N(H)alkyl, -C(=O)NH2, -SO2N(alkyl)alkyl, - SO2N(H)alkyl, -SO2NH2, -C(=O)OH, -C(=O)-alkyl, and -C(=O)O-alkyl;
each R11 is independently selected from hydrogen, alkyl, and cycloalkyl;
each R11a is independently selected from alkyl, perhaloalkyl and cycloalkyl; R11b is selected from hydrogen, alkyl, perhaloalkyl, and cycloalkyl.
2. A compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
wherein,
B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2is formula (i)
X5 is O;
Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined in claim 1.
3. A compound of Formula (I), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2is formula (i)
Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined in claim 1.
4. A compound of Formula (II), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug
wherein, B1 and B2 are independently selected from formula (i), (vii), and (viii) provided that at least one of B1 or B2 is formula (i)
X s ;
Xa, Xb , X1, X2 ,X3 ,X4, Y, ring A, R1, R1a , R2, R2a, R3, R4, R4a, R5, R6, R6a and R7 are as defined in claim 1.
5. The compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its
prodrug, as claimed in claim 1 or 2, wherein at least one of B1 or B2 are independently selected from
6. The compound of Formula (I), Formula (II) or Formula (III), or its pharmaceutically acceptable salt, as claimed in claim 1 to 4, wherein R2a is independently selected from hydrogen or halogen.
7. The compound of Formula (I), Formula (II) or Formula (III), or its pharmaceutically acceptable salt, as claimed in claim 1 to 4, wherein R3 is independently selected from hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl.
8. A compound of Formula (I), Formula (II) or Formula (III), or its pharmaceutically acceptable salt, as claimed in claim 1 to 4, wherein R4, R4a or R5 are each independently selected from hydrogen, halogen, -OTBS, -OR8b, or substituted or unsubstituted alkyl.
9. The compound of Formula (I), Formula (II) or Formula (III), or its pharmaceutically acceptable salt, as claimed in claim 1 to 4, wherein R1, R1a, R6or R6ais hydrogen.
10. The compound of claim 1 to 3, wherein R2a is hydrogen or halogen; R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl; R4, R4a or R5 are hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl; R1, R1a,
R6 or R6a are hydrogen and B1 and B2 are independently selected from formula (i), (vii), (viii) and (xi) provided that at least one of B1 or B2 is formula (i)
wherein X5 is O; Xa is–CR7- or–N- and Xb is -NR8c- wherein R8c is hydrogen. 11. The compound of claim 1, 2 or 4, wherein R2a is hydrogen or halogen; R3 is hydrogen, halogen, -OTBS, -OR8b, or substituted- or unsubstituted- alkyl; R4 or R4a are hydrogen, halogen, -OR8b, or substituted- or unsubstituted- alkyl; R1, R1a, R6 or R6a are hydrogen and B1 and B2 are independently selected from formula (i), (vii), and (viii) provided that at least one of B1 or B2 is formula (i)
w eren s ; a s– - or– - an s - c-, w erein R8c is hydrogen. 12. The compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug, as claimed in any one of the claim 1 to 11, wherein the compound is selected from:
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(6-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-14-(5,6- dimethyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10,15,16- tetrahydroxyoctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(5-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-15,16-dihydroxy- 14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10-bis(sulfanyl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(5-oxo-1,5-dihydro-8H-[1,2,4]triazolo[4,3-a]purin-8- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(3H-imidazo[2,1-i]purin-3-yl)octahydro-2H,10H,12H-5,8- methano-2λ5,10λ5-furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine- 2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(3-methyl-5-oxo-1,5-dihydro-8H-[1,2,4]triazolo[4,3-a]purin-8- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8S,12aR,14R,15R,15aS,16S)-7-(6-amino-9H-purin-9-yl)-16-fluoro- 2,10,15-trihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
3-[(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-2,10-dioxooctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecin-14-yl]-3H-imidazo[1,2- a]purine-6,9(5H,7H)-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-14-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-7-(3H-imidazo[2,1-i]purin-3-yl)octahydro-2H,10H,12H-5,8-
methano-2λ5,10λ5-furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine- 2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(9-oxo-5,9-dihydro-3H-[1,2,4]triazolo[1,5-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(7H-[1,2,4]triazolo[3,4-i]purin-7-yl)octahydro-2H,10H,12H-5,8- methano-2λ5,10λ5-furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine- 2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(7-methyl-3H-imidazo[2,1-i]purin-3-yl)octahydro-2H,10H,12H- 5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(2-amino-6-oxo-1,6-dihydro-9H-purin-9- yl)-15,16-dihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-15,16-dihydroxy-14-(9-oxo-5,9-dihydro-3H- imidazo[1,2-a]purin-3-yl)-7-(6-oxo-1,6-dihydro-9H-purin-9-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5S,7R,8R,12aR,14R,15R,15aS)-7-(6-amino-9H-purin-9-yl)-15-hydroxy-14-(9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10-bis(sulfanyl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8S,12aR,14R,15R,15aS,16S)-7-(6-amino-9H-purin-9-yl)-16-fluoro-15- hydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8S,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-16-fluoro-15- hydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(7-amino-3H-[1,2,3]triazolo[4,5- d]pyrimidin-3-yl)-15,16-dihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)-2,10-bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5- furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione (2R,3R,3aS,7aR,9R,10R,10aS,14aR)-2-(6-amino-9H-purin-9-yl)-3,10-dihydroxy- 9-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-5,12-bis(sulfanyl)octahydro- 2H,5H,7H,12H-5λ5,12λ5-difuro[3,2-d:3',2'- j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-5,12-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-14-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-7-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-2,10,15,16-tetrahydroxy-7,14-bis(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl)octahydro-2H,10H,12H-5,8-methano- 2λ5,10λ5-furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10- dione
(5R,7R,8R,12aR,14R,15S,15aR,16R)-7-(6-amino-9H-purin-9-yl)-15-fluoro-16- hydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aR,16R)-7-(6-amino-9H-purin-9-yl)-16-hydroxy-15- methoxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,
11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(2R,3R,3aS,7aR,9R,10R,10aS,14aR)-2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9- yl)-3,10-dihydroxy-9-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-5,12- bis(sulfanyl)octahydro-2H,5H,7H,12H-5λ5,12λ5-difuro[3,2-d:3',2'- j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-5,12-dione
(2R,3R,3aS,7aR,9R,10R,10aS,14aR)-3,10-dihydroxy-2-(9-oxo-5,9-dihydro-3H- imidazo[1,2-a]purin-3-yl)-9-(6-oxo-1,6-dihydro-9H-purin-9-yl)-5,12- bis(sulfanyl)octahydro-2H,5H,7H,12H-5λ5,12λ5-difuro[3,2-d:3',2'- j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-5,
12-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,15,16- trihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-10-
sulfanyloctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-10,15,16- trihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2- sulfanyloctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(9-oxo-5,6,7,9-tetrahydro-3H-pyrrolo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione.
13. A compound of Formula (I), Formula (II) or Formula (III), its tautomeric form, its stereoisomer, its pharmaceutically acceptable salt, hydrate, solvate, or its prodrug, as claimed in any one of the claim 1 to 11, wherein the compound is selected from: (5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(6-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-14-(5,6- dimethyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10,15,16- tetrahydroxyoctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(5-methyl-9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-15,16-dihydroxy- 14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10-bis(sulfanyl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(5-oxo-1,5-dihydro-8H-[1,2,4]triazolo[4,3-a]purin-8- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(3-methyl-5-oxo-1,5-dihydro-8H-[1,2,4]triazolo[4,3-a]purin-8- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8S,12aR,14R,15R,15aS,16S)-7-(6-amino-9H-purin-9-yl)-16-fluoro- 2,10,15-trihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
3-[(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-2,10-dioxooctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecin-14-yl]-3H-imidazo[1,2- a]purine-6,9(5H,7H)-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(9-oxo-5,9-dihydro-3H-[1,2,4]triazolo[1,5-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(2-amino-6-oxo-1,6-dihydro-9H-purin-9- yl)-15,16-dihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-15,16-dihydroxy-14-(9-oxo-5,9-dihydro-3H- imidazo[1,2-a]purin-3-yl)-7-(6-oxo-1,6-dihydro-9H-purin-9-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5S,7R,8R,12aR,14R,15R,15aS)-7-(6-amino-9H-purin-9-yl)-15-hydroxy-14-(9- oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10-bis(sulfanyl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8S,12aR,14R,15R,15aS,16S)-7-(6-amino-9H-purin-9-yl)-16-fluoro-15- hydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8S,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-16-fluoro-15- hydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(7-amino-3H-[1,2,3]triazolo[4,5- d]pyrimidin-3-yl)-15,16-dihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2- a]purin-3-yl)-2,10-bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5- furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione (2R,3R,3aS,7aR,9R,10R,10aS,14aR)-2-(6-amino-9H-purin-9-yl)-3,10-dihydroxy- 9-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-5,12-bis(sulfanyl)octahydro- 2H,5H,7H,12H-5λ5,12λ5-difuro[3,2-d:3',2'- j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-5,12-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-14-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-7-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)octahydro- 2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-2,10,15,16-tetrahydroxy-7,14-bis(9-oxo-5,9- dihydro-3H-imidazo[1,2-a]purin-3-yl)octahydro-2H,10H,12H-5,8-methano- 2λ5,10λ5-furo[3,2-l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10- dione
(5R,7R,8R,12aR,14R,15S,15aR,16R)-7-(6-amino-9H-purin-9-yl)-15-fluoro-16- hydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aR,16R)-7-(6-amino-9H-purin-9-yl)-16-hydroxy-15- methoxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2,10- bis(sulfanyl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(2R,3R,3aS,7aR,9R,10R,10aS,14aR)-2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9- yl)-3,10-dihydroxy-9-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-5,12- bis(sulfanyl)octahydro-2H,5H,7H,12H-5λ5,12λ5-difuro[3,2-d:3',2'- j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-5,12-dione
(2R,3R,3aS,7aR,9R,10R,10aS,14aR)-3,10-dihydroxy-2-(9-oxo-5,9-dihydro-3H- imidazo[1,2-a]purin-3-yl)-9-(6-oxo-1,6-dihydro-9H-purin-9-yl)-5,12- bis(sulfanyl)octahydro-2H,5H,7H,12H-5λ5,12λ5-difuro[3,2-d:3',2'- j][1,3,7,9,2,8]tetraoxadiphosphacyclododecine-5,12-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,15,16- trihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-10- sulfanyloctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-10,15,16- trihydroxy-14-(9-oxo-5,9-dihydro-3H-imidazo[1,2-a]purin-3-yl)-2- sulfanyloctahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione
(5R,7R,8R,12aR,14R,15R,15aS,16R)-7-(6-amino-9H-purin-9-yl)-2,10,15,16- tetrahydroxy-14-(9-oxo-5,6,7,9-tetrahydro-3H-pyrrolo[1,2-a]purin-3- yl)octahydro-2H,10H,12H-5,8-methano-2λ5,10λ5-furo[3,2- l][1,3,6,9,11,2,10]pentaoxadiphosphacyclotetradecine-2,10-dione.
14. A pharmaceutical composition comprising the compound of Formula (I), Formula (II), Formula (III), or pharmaceutically acceptable salt thereof according to claim 1-13 and at least one pharmaceutically acceptable excipient.
15. Use of the compound of Formula (I), Formula (II), Formula (III), or its
pharmaceutically acceptable salt, according to claim 1-13 for the manufacture of a medicament for the treatment of a disease or condition in which activation of STING is beneficial.
16. A method of treating a disease or condition in which activation of STING is beneficial in a subject comprising administering a therapeutically effective amount of the compound of Formula (I), Formula (II), Formula (III) or its pharmaceutically acceptable salt thereof according to claim 1-13.
17. The method according to claim 16, wherein the disease or disorder is cancer or infectious diseases.
18. The method according to claim 17, wherein the disease or disorder is cancer such as solid tumor, leukemia and lymphoma.
19. The method according to claim 17, wherein the disease or disorder is infectious diseases such as viral infection or bacterial infection.
20. The method according to claim 18, wherein the disease or disorder is selected from brain cancer, renal cancer, testicular cancer, cancer of urethra, rectal cancer, cancer
of fallopian tubes, penile cancer, vaginal cancer, stomach cancer, skin cancer, liver cancer, gastrointestinal stromal tumors, urothelial cancer, thyroid cancer, parathyroid gland cancer, adrenal cancer, bone cancer, oral cancer, ovarian cancer, uterine cancer, head and neck sqamous cell carcinoma, endometrial cancer, gall bladder cancer, renal cancer, bladder cancer, orophyrangeal cancer, lymph node cancer, gliobalstoma, astrocytoma, glioblastoma multiforme or sarcomas of soft tissue, fibrosarcoma, chondrosarcoma, hemangioma, teratoma, lipoma, myxoma, fibroma, rhabdomyoma, teratoma, cholangiocarcinoma, myeloma, Ewing’s sarcoma, myeloma, Hodgkin’s disease, non-Hodgkin’s lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt’s lymphoma, lymphoblastic T-cell lymphoma, marginal zone lymphoma, cutaneous T cell lymphoma, CNS lymphoma, small lymphocytic lymphoma, lymphoplasmacytic lymphoma, diffuse large cell lymphoma (DLBCL), peripheral T-cell lymphoma, anaplastic large cell lymphoma, primary mediastinal lymphoma, mycosis fungoides, small non- cleaved cell lymphoma, lymphoblastic lymphoma, immunoblastic lymphoma, primary effusion lymphoma, HIV associated (or AIDS related) lymphomas, lymphoblastic T cell leukemia, chronic myelogenous leukemia, acute lymphoblastic T cell leukemia, lymphoblastic T cell leukemia, acute myelobastic leukemia, hairy-cell leukemia, chronic neutrophilic leukemia, mantle cell leukemia, acute megakaryocytic leukemia, multiple myeloma, megakaryoblastic leukemia, erythroleukemia, plasmacytoma, promyelocytic leukemia, chronic myelomonocytic leukemia, myelodysplastic syndrome, myelofibrosis, chronic myelogenous leukemia, polycythemia vera, thrombocythemia, chronic lymphocytic leukemia, prolymphocytic leukemia, hairy cell leukemia, Waldenstrom's macroglobulinemia, Castleman's disease, chronic neutrophilic leukemia, immunoblastic large cell leukemia and plasmacytoma.
21. The method according to claim 19, wherein the disease or disorder is selected from HIV, HPV, HCV, HBV, alphavirus, rotavirus or influenza infection.
22. A composition comprising a compound of Formula (I), Formula (II), Formula (III) or its pharmaceutically acceptable salt thereof according to claim 1-13, and one or more additional therapies.
23. A composition comprising a compound of Formula (I), Formula (II), Formula (III) or its pharmaceutically acceptable salt thereof according to claim 1-13, and one or more therapies such as chemotherapy, immunotherapy or radiotherapy.
24. The compound of Formula (I), Formula (II), Formula (III) or its pharmaceutically acceptable salt thereof according to claim 1-13, for use as a vaccine adjuvant.
25. A composition comprising compound of Formula (I), Formula (II) and Formula (III) or its pharmaceutically acceptable salt thereof, and an antigen or antigen composition.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201721015016 | 2017-04-27 | ||
IN201721015016 | 2017-04-27 | ||
IN201721026067 | 2017-07-21 | ||
IN201721026067 | 2017-07-21 | ||
IN201821003447 | 2018-01-30 | ||
IN201821003447 | 2018-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198084A1 true WO2018198084A1 (en) | 2018-11-01 |
Family
ID=62563201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/052936 WO2018198084A1 (en) | 2017-04-27 | 2018-04-27 | Cyclic di-nucleotide compounds with tricyclic nucleobases |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018198084A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10246480B2 (en) | 2017-02-17 | 2019-04-02 | Eisai R&D Management Co., Ltd. | Compounds for the treatment of cancer |
WO2019074887A1 (en) * | 2017-10-10 | 2019-04-18 | Bristol-Myers Squibb Company | Cyclic dinucleotides as anticancer agents |
WO2019232392A1 (en) | 2018-06-01 | 2019-12-05 | Eisai R&D Management Co., Ltd. | Methods for the treatment of bladder cancer |
US10980825B2 (en) | 2016-12-01 | 2021-04-20 | Takeda Pharmaceutical Company Limited | Cyclic dinucleotide |
US11110106B2 (en) | 2018-10-29 | 2021-09-07 | Venenum Biodesign, LLC | Sting agonists for treating bladder cancer and solid tumors |
US11161864B2 (en) | 2018-10-29 | 2021-11-02 | Venenum Biodesign, LLC | Sting agonists |
CN114213491A (en) * | 2021-12-31 | 2022-03-22 | 中南民族大学 | Endogenous nucleoside M1Synthesis method and application of dG and derivatives thereof |
CN114213490A (en) * | 2021-12-31 | 2022-03-22 | 中南民族大学 | Tricyclic nucleotide analogues and synthesis method and application thereof |
EP3727401A4 (en) * | 2017-12-20 | 2022-04-06 | Merck Sharp & Dohme Corp. | Cyclic di-nucleotide compounds as sting agonists |
US11299512B2 (en) | 2016-03-18 | 2022-04-12 | Immunesensor Therapeutics, Inc. | Cyclic di-nucleotide compounds and methods of use |
US11400108B2 (en) | 2017-02-21 | 2022-08-02 | Board Of Regents, The University Of Texas System | Cyclic dinucleotides as agonists of stimulator of interferon gene dependent signalling |
US11542293B2 (en) | 2017-11-10 | 2023-01-03 | Takeda Pharmaceutical Company Limited | Sting modulator compounds, and methods of making and using |
US11691990B2 (en) | 2018-08-16 | 2023-07-04 | Eisai R&D Management Co., Ltd | Salts of compounds and crystals thereof |
US11725024B2 (en) | 2020-11-09 | 2023-08-15 | Takeda Pharmaceutical Company Limited | Antibody drug conjugates |
US11787833B2 (en) | 2019-05-09 | 2023-10-17 | Aligos Therapeutics, Inc. | Modified cyclic dinucleoside compounds as sting modulators |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015185565A1 (en) * | 2014-06-04 | 2015-12-10 | Glaxosmithkline Intellectual Property Development Limited | Cyclic di-nucleotides as modulators of sting |
WO2016096174A1 (en) * | 2014-12-16 | 2016-06-23 | Invivogen | Fluorinated cyclic dinucleotides for cytokine induction |
WO2017027645A1 (en) * | 2015-08-13 | 2017-02-16 | Merck Sharp & Dohme Corp. | Cyclic di-nucleotide compounds as sting agonists |
WO2017161349A1 (en) * | 2016-03-18 | 2017-09-21 | Immune Sensor, Llc | Cyclic di-nucleotide compounds and methods of use |
-
2018
- 2018-04-27 WO PCT/IB2018/052936 patent/WO2018198084A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015185565A1 (en) * | 2014-06-04 | 2015-12-10 | Glaxosmithkline Intellectual Property Development Limited | Cyclic di-nucleotides as modulators of sting |
WO2016096174A1 (en) * | 2014-12-16 | 2016-06-23 | Invivogen | Fluorinated cyclic dinucleotides for cytokine induction |
WO2017027645A1 (en) * | 2015-08-13 | 2017-02-16 | Merck Sharp & Dohme Corp. | Cyclic di-nucleotide compounds as sting agonists |
WO2017161349A1 (en) * | 2016-03-18 | 2017-09-21 | Immune Sensor, Llc | Cyclic di-nucleotide compounds and methods of use |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11299512B2 (en) | 2016-03-18 | 2022-04-12 | Immunesensor Therapeutics, Inc. | Cyclic di-nucleotide compounds and methods of use |
US11666594B2 (en) | 2016-12-01 | 2023-06-06 | Takeda Pharmaceutical Company Limited | Antibody-drug conjugates comprising a cyclic dinucleotide |
US12171777B2 (en) | 2016-12-01 | 2024-12-24 | Takeda Pharmaceutical Company Limited | Methods of making a cyclic dinucleotide |
US10980825B2 (en) | 2016-12-01 | 2021-04-20 | Takeda Pharmaceutical Company Limited | Cyclic dinucleotide |
US10246480B2 (en) | 2017-02-17 | 2019-04-02 | Eisai R&D Management Co., Ltd. | Compounds for the treatment of cancer |
US10618930B2 (en) | 2017-02-17 | 2020-04-14 | Eisai R&D Management Co., Ltd. | Compounds for the treatment of cancer |
US11339188B2 (en) | 2017-02-17 | 2022-05-24 | Eisai R&D Management Co., Ltd. | Compounds for the treatment of cancer |
US11400108B2 (en) | 2017-02-21 | 2022-08-02 | Board Of Regents, The University Of Texas System | Cyclic dinucleotides as agonists of stimulator of interferon gene dependent signalling |
US12036231B2 (en) | 2017-02-21 | 2024-07-16 | Board Of Regents, The University Of Texas System | Cyclic dinucleotides as agonists of stimulator of interferon gene dependent signalling |
US11660311B2 (en) | 2017-10-10 | 2023-05-30 | Bristol-Myers Squibb Company | Cyclic dinucleotides as anticancer agents |
WO2019074887A1 (en) * | 2017-10-10 | 2019-04-18 | Bristol-Myers Squibb Company | Cyclic dinucleotides as anticancer agents |
US12054512B2 (en) | 2017-11-10 | 2024-08-06 | Takeda Pharmaceutical Company Limited | Sting modulator compounds, and methods of making and using |
US11542293B2 (en) | 2017-11-10 | 2023-01-03 | Takeda Pharmaceutical Company Limited | Sting modulator compounds, and methods of making and using |
EP3727401A4 (en) * | 2017-12-20 | 2022-04-06 | Merck Sharp & Dohme Corp. | Cyclic di-nucleotide compounds as sting agonists |
US11685761B2 (en) | 2017-12-20 | 2023-06-27 | Merck Sharp & Dohme Llc | Cyclic di-nucleotide compounds as sting agonists |
US12251394B2 (en) | 2018-06-01 | 2025-03-18 | Eisai R&D Management Co., Ltd. | Methods for the treatment of bladder cancer |
WO2019232392A1 (en) | 2018-06-01 | 2019-12-05 | Eisai R&D Management Co., Ltd. | Methods for the treatment of bladder cancer |
US11691990B2 (en) | 2018-08-16 | 2023-07-04 | Eisai R&D Management Co., Ltd | Salts of compounds and crystals thereof |
US11161864B2 (en) | 2018-10-29 | 2021-11-02 | Venenum Biodesign, LLC | Sting agonists |
US11883420B2 (en) | 2018-10-29 | 2024-01-30 | Venenum Biodesign, LLC | Sting agonists for treating bladder cancer and solid tumors |
US11110106B2 (en) | 2018-10-29 | 2021-09-07 | Venenum Biodesign, LLC | Sting agonists for treating bladder cancer and solid tumors |
US11787833B2 (en) | 2019-05-09 | 2023-10-17 | Aligos Therapeutics, Inc. | Modified cyclic dinucleoside compounds as sting modulators |
US12221460B2 (en) | 2020-11-09 | 2025-02-11 | Takeda Pharmaceutical Company Limited | Antibody drug conjugates |
US11725024B2 (en) | 2020-11-09 | 2023-08-15 | Takeda Pharmaceutical Company Limited | Antibody drug conjugates |
CN114213491A (en) * | 2021-12-31 | 2022-03-22 | 中南民族大学 | Endogenous nucleoside M1Synthesis method and application of dG and derivatives thereof |
CN114213491B (en) * | 2021-12-31 | 2024-04-02 | 中南民族大学 | Endogenous nucleosides M 1 dG and its derivative synthesizing process and application |
CN114213490B (en) * | 2021-12-31 | 2024-04-02 | 中南民族大学 | Tricyclic nucleotide analogues and synthetic method and application thereof |
CN114213490A (en) * | 2021-12-31 | 2022-03-22 | 中南民族大学 | Tricyclic nucleotide analogues and synthesis method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018198084A1 (en) | Cyclic di-nucleotide compounds with tricyclic nucleobases | |
US10766919B2 (en) | Cyclic di-nucleotide compounds as sting agonists | |
US11685761B2 (en) | Cyclic di-nucleotide compounds as sting agonists | |
US10968242B2 (en) | Cyclopentane-based modulators of STING (stimulator of interferon genes) | |
ES2909616T3 (en) | Cyclic dinucleotides as anticancer agents | |
CA2794671A1 (en) | Stereoselective synthesis of phosphorus containing actives | |
AU2004269026A1 (en) | Novel tricyclic nucleosides or nucleotides as therapeutic agents | |
EP3781687A1 (en) | Novel substituted rig-i agonists: compositions and methods thereof | |
EP3873484B1 (en) | Novel sting agonists | |
EP3505527A1 (en) | Cyclic dinucleotides for cytokine induction | |
JP2022512397A (en) | Cyclopentyl nucleoside analog as an antiviral drug | |
JP2022545745A (en) | LIGAND-2'-MODIFIED NUCLEIC ACID, ITS SYNTHESIS AND INTERMEDIATE COMPOUNDS THEREOF | |
US11453697B1 (en) | Cyclic di-nucleotide compounds as sting agonists | |
EA046381B1 (en) | ECTONUCLEOTIDASE INHIBITORS AND METHODS OF THEIR APPLICATION | |
OA19842A (en) | Cyclopentane-based modulators of sting (stimulator of interferon genes). | |
KR20180097751A (en) | RTI ID = 0.0 &gt; STING &lt; / RTI &gt; activity, |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18730102 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18730102 Country of ref document: EP Kind code of ref document: A1 |