[go: up one dir, main page]

WO2018190559A1 - 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법 - Google Patents

리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법 Download PDF

Info

Publication number
WO2018190559A1
WO2018190559A1 PCT/KR2018/003951 KR2018003951W WO2018190559A1 WO 2018190559 A1 WO2018190559 A1 WO 2018190559A1 KR 2018003951 W KR2018003951 W KR 2018003951W WO 2018190559 A1 WO2018190559 A1 WO 2018190559A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium metal
nitrate
electroplating
metal electrode
Prior art date
Application number
PCT/KR2018/003951
Other languages
English (en)
French (fr)
Inventor
박창훈
장민철
성다영
박세호
김도연
강동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180038063A external-priority patent/KR101990618B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18784957.5A priority Critical patent/EP3514859B1/en
Priority to CN201880004373.2A priority patent/CN109964342B/zh
Priority to JP2019537737A priority patent/JP6732319B2/ja
Priority to US16/337,804 priority patent/US10858749B2/en
Publication of WO2018190559A1 publication Critical patent/WO2018190559A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electroplating solution for lithium metal and a method for producing a high capacity lithium metal electrode using the same.
  • Representative high capacity batteries of lithium secondary batteries include lithium sulfur batteries, lithium air batteries, and the like, and they commonly use lithium metal as a high capacity negative electrode material.
  • Lithium metal is an ideal material as a cathode of a high energy density lithium secondary battery with a high theoretical capacity of 3862 mAh / g and a low standard electrode potential (-3.04 vs SHE).
  • a negative electrode material of the lithium battery due to the deterioration of safety due to the internal short circuit of the battery due to lithium dendrite growth, there is a problem when commercializing as a negative electrode material of the lithium battery.
  • irreversible may be generated by forming a solid electrolyte interphase (SEI) layer according to a combination of a solvent and a salt of the electrolyte.
  • SEI solid electrolyte interphase
  • the SEI layer When the SEI layer is unstable, the direct reaction between the electrolyte and the lithium metal continuously occurs, thereby causing additional irreversibility, which may cause a decrease in the charge and discharge efficiency of the lithium metal.
  • the electrolyte may be depleted due to the consumption of the electrolyte used in generating the SEI layer, and the life of the battery may be reduced by the gas generated as a by-product.
  • the inventors of the present invention have conducted various researches to solve the above problems.
  • the lithium metal electrode was manufactured by electroplating, and the lithium metal electrode with controlled surface properties was manufactured by changing the composition of the plating solution used during electroplating. It was confirmed that the lithium metal electrode manufactured by the method described above exhibited flat surface characteristics, thereby improving the life characteristics of the battery.
  • an object of the present invention is to provide an electroplating solution for lithium metal capable of producing a lithium metal electrode.
  • Still another object of the present invention is to provide a method of manufacturing a high capacity lithium metal electrode.
  • the present invention is an electroplating solution for lithium metal
  • the plating solution is an ether solvent; Lithium salts; Lithium nitrate; And it provides an electroplating solution for lithium metal containing an additive represented by the formula (1).
  • M is Cs, Rb, K, Ba, Sr, Ca, Na or Mg, and x is 2 or 3.
  • the plating solution may use at least one selected from the group consisting of lithium salt, lithium ingot and transition metal oxide as a source of lithium metal.
  • the lithium salt may be included in a concentration of 1 M to 7 M.
  • the lithium nitrate may be included in 1 to 5% by weight.
  • Concentration ratio ([Li + ] / [M + ]) of Li + of the lithium nitrate and M + of the additive represented by Formula 1 may be 10 or more.
  • the ether solvent may be at least one selected from the group consisting of tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl ether and dibutyl ether.
  • the lithium salt is LiFSI, LiPF 6 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, may be one or more selected from the group consisting of one or more selected from the group consisting of lithium chloroborane and lithium 4-phenyl borate.
  • the lithium nitrate may be at least one selected from the group consisting of lithium nitrate (LiNO 3 ) and lithium nitrite (LiNO 2 ).
  • the additive is selected from the group consisting of potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), magnesium nitrate (MgNO 3 ), barium nitrate (BaNO 3 ), potassium nitrite (KNO 2 ) and cesium nitrite (CsNO 2 ). It may be one or more.
  • the lithium nitrate and the additive may be lithium nitrate (LiNO 3 ) and cesium nitrate (CsNO 3 ), respectively.
  • the present invention also relates to a method of manufacturing a lithium metal electrode using electroplating, the method of manufacturing a lithium metal electrode electroplating lithium metal on a current collector using the plating solution.
  • the method of manufacturing a lithium metal electrode includes: (a) immersing a source of lithium metal and a current collector to be electroplated with lithium metal in the plating solution; And (b) electroplating lithium metal on the current collector by applying a reduction potential to the plating solution.
  • the source of the lithium metal may be at least one selected from the group consisting of lithium salts, lithium ingots and transition metal oxides.
  • the current collector may be selected from the group consisting of Cu, Al, Ni, Fe, SUS (steel use stainless) and Ti, and may be in the form of a three-dimensional structure.
  • the electroplating solution for lithium metal according to the present invention is used for the electroplating of lithium metal, and using at least one selected from the group consisting of lithium salt, lithium ingot and transition metal oxide as a source of lithium metal among electroplating.
  • the surface characteristics of the lithium metal electrode manufactured according to the composition of the plating solution can be controlled.
  • LiNO 3 lithium nitrate
  • CsNO 3 cesium nitrate
  • a metal electrode can be manufactured.
  • a lithium metal electrode can be manufactured using various current collectors, such as Cu, Al, Ni, Fe, SUS, and Ti, which have been difficult to use by conventional rolling methods.
  • FIG. 1 is a schematic diagram of a lithium half battery capable of electroplating according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a lithium source according to an embodiment of the present invention.
  • the present invention relates to an electroplating solution for lithium metal, ether solvent; Lithium salts; Lithium nitrate; And an additive represented by Formula 1 below.
  • M is Cs, Rb, K, Ba, Sr, Ca, Na or Mg, and x is 2 or 3.
  • the plating solution of the present invention is used for the electroplating of lithium metal, in particular lithium salt (Li Salt), lithium ingot and transition metal oxide as a source of lithium metal during electroplating
  • lithium salt Li Salt
  • lithium ingot lithium ingot
  • transition metal oxide transition metal oxide
  • One or more selected from the group consisting of may be used for the use for the electroplating, if the compound that can provide a lithium ion is not limited thereto (FIG. 2).
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F9SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • the transition metal oxide is LiM'O 2 (M 'is Co, Ni or Mn), Li 1 + x Mn 2 - x O 4 + (0 ⁇ x ⁇ 0.3) and LiNi 1 - x M x O 2 (M May be Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and 0.01 ⁇ x ⁇ 0.3).
  • the ether solvent is a non-aqueous solvent for forming an ether plating solution
  • tetrahydrofuran (THF), 2-methyltetrahydrofuran (MTHF), dimethyl ether (DME) and dibutyl ether ( DBE) may be one or more selected from the group consisting of, in particular, when using dimethyl ether (DME) may be advantageous for electroplating lithium metal on the current collector.
  • the lithium salt is LiFSI, LiPF 6 , LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , 1 selected from the group consisting of at least one selected from the group consisting of LiPF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium and lithium 4-phenyl borate It may be more than one species, and in particular, when using LiFSI may be advantageous for electroplating lithium metal on the current collector.
  • the concentration of the lithium salt may be appropriately adjusted according to the composition of the plating solution, for example, may be 1.0 M to 7.0 M, preferably 1 M to 4 M. If the lithium salt is less than 1.0 M, the conductivity of the plating solution may not be good, and thus the high rate discharge characteristics and lifetime characteristics may be reduced. Can be degraded.
  • the plating solution may form a stable film on the lithium metal electrode by the lithium nitrate and the additive represented by the formula (1) having a NO bond in the molecule, thereby, side reaction of the lithium metal and the plating solution As this is suppressed, the stability of the lithium metal electrode and the plating solution is further improved, and the life of the battery can be greatly improved.
  • the lithium nitrate may be at least one selected from the group consisting of lithium nitrate (LiNO 3 ) and lithium nitrite (LiNO 2 ), and the additive may be potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), It may be at least one selected from the group consisting of magnesium nitrate (MgNO 3 ), barium nitrate (BaNO 3 ), potassium nitrite (KNO 2 ) and cesium nitrite (CsNO 2 ).
  • the lithium nitrate may be included in an amount of 1 to 5 wt% based on the total weight of the plating solution represented by Formula 1, and when the content of the additive is less than 1 wt%, the amount of product (Li x NO y ) is excessively small.
  • a protective layer there is a problem that the thickness is not sufficient, and when it is more than 5% by weight, there may be a problem such as deterioration of efficiency due to excessive consumption of lithium as an active material when the protective layer is generated.
  • the amount of the lithium nitrate and the additive represented by the formula (1) is a concentration ratio of Li + derived from the lithium nitrate and the M + derived from the additive represented by the formula (1) ([Li + ] / [M + ] Can be defined as
  • the concentration ratio ([Li + ] / [M + ]) may be 10 or more. When the concentration ratio is less than the above range, M + may be reduced without being present in an ionic state, and thus, lithium dendrite inhibitory effect may be insignificant, and surface planarization may be difficult.
  • the concentration ratio (Li + ] / [M + ]) may be 10 to 40.
  • the plating solution may be advantageous to planarize the surface of the lithium metal electrode when lithium nitrate and additives include lithium nitrate (LiNO 3 ) and cesium nitrate (CsNO 3 ), respectively.
  • lithium nitrate LiNO 3
  • CsNO 3 cesium nitrate
  • the concentration in the plating solution may be 0.1 M or less per Li + 1M.
  • the reduction potential of Cs + ions changes according to the concentration.
  • the concentration of Cs + per 1M Li + is more than 0.1M, the Cs + ions become higher than the reduction potential of Li + ions. Reduced before + ions. Since Cs + must be present on the surface in the ionic state, it is possible to inhibit dendrite as a leveler. Therefore, the concentration of Cs + per 1M of Li + ions may be 0.1M or less, preferably, Cs + 0.03 to 0.07 per 1M of Li +. Can be M.
  • the present invention also relates to a method for manufacturing a lithium metal electrode using electroplating, the method of manufacturing a lithium metal electrode characterized in that the surface of the lithium metal electrode produced according to the composition of the plating solution used during the electroplating is controlled. It is about.
  • electroplating may be performed using a lithium half battery.
  • FIG. 1 is a schematic diagram of a half cell that can be electroplated according to an embodiment of the present invention.
  • the upper surface of the upper lithium metal 40 of the Cu current collector 10 is used by using a Cu current collector 10 as a cathode, a source of lithium metal 20 as an anode, and an ether plating solution 30. By plating, a lithium metal electrode may be manufactured.
  • the specific conditions of the electroplating is C-rate 0.01 to 0.5 C, it may be to use a current with a current density of 0.1 to 5 mAh / cm2, if out of the conditions of such electroplating, when electroplating lithium metal
  • the surface characteristics of the formed lithium metal electrode may be degraded. That is, a problem may arise such that the surface of the lithium metal electrode is not electroplated flat or the thickness of the electroplating becomes thick.
  • the ether-based plating solution 30 is the same as the electroplating solution for lithium metal as described above.
  • the source of lithium metal 20 is also as described above.
  • the current collector capable of electroplating lithium metal may be selected from the group consisting of Cu, Al, Ni, Fe, SUS (steel use stainless) and Ti, the current collector may be in the form of a three-dimensional structure have.
  • Such a current collector could not be used in a rolling process used in lithium metal in the prior art, and there is an advantage in that various current collectors can be used by electroplating using an ether plating solution.
  • the lithium metal electrode manufactured by the electroplating method as described above may have a flatter surface due to reduced surface roughness.
  • a lithium metal electrode having a flat surface it is possible to prevent the lithium growth generated during charging and discharging to grow into a needle shape that causes internal short circuits, thereby improving battery driving safety.
  • lithium metal can be electroplated to a thin thickness which cannot be manufactured by the conventional rolling process, and finally, a lithium metal electrode having a thickness of 20 ⁇ m or less can be produced by rolling.
  • lithium dendrites formed on the surface of the lithium metal electrode it is also possible to control the shape of the lithium dendrites formed on the surface of the lithium metal electrode according to the composition of the ether-based plating solution used during the electroplating.
  • lithium dendrites are needle-shaped, lithium dendrites easily fall out of the electrode and lose their electrical conductivity, increasing the probability of dead lithiation, leading to reduced efficiency.
  • needle type it may cause a short-circuit through the separator and cause a fire due to excessive heat.
  • the composition of the ether-based plating solution to control the surface characteristics of the lithium metal electrode, for example, roughness, degree of flattening, thickness
  • the shape of the lithium dendrites can improve the life characteristics of the battery to which the lithium metal electrode is applied.
  • Examples 1 to 4 and Comparative Examples 1 to 4 the lithium metal is plated on the Cu current collector by electroplating, and the composition of the plating solution used during the electroplating is changed as shown in Table 1 below. Prepared.
  • Example 1 DME LiFSI (3M) LiNO 3 (2 wt.%) CsNO 3 (0.15M) 20
  • Example 2 DME LiFSI (1M) LiNO 3 (2 wt.%) CsNO 3 (0.15M) 20
  • Example 3 DME LiFSI (3M) LiNO 3 (2 wt.%) CsNO 3 (0.05M) 60
  • Example 4 DME LiFSI (3M) LiNO 3 (2 wt.%) CsNO 3 (0.3M) 10
  • Concentration ratio ([Li + ] / [M + ]) means the concentration ratio of Li + of lithium nitrate and Cs + of additive.
  • a lithium metal electrode was prepared by plating lithium metal on a Cu current collector by electroplating.
  • the plating solution is dissolved in LiFSI lithium salt in dimethyl ether (DME) ether solvent to be 3M, and then added so that the lithium nitrate LiNO 3 is 2% by weight based on the total weight of the plating solution.
  • the LiNO 3 was used as the plating solution was prepared such that the Li + and derived additive CsNO 3 Cs + concentration ratio ([Li +] / [Cs +]) 20 of the origin (Table 1).
  • C-rate 0.2 C (using a Cu current collector as a negative electrode and using a lithium half battery including a positive electrode containing LiCoO 2 as a lithium source, a polyethylene separator disposed between the positive electrode and the negative electrode and the plating solution) 0.95 mA) and 3 mA / cm ⁇ 2> of electric current, and electroplating was performed.
  • a lithium metal electrode was prepared in the same manner as in Example 1 except that electrolytic plating was performed by dissolving LiFSI, which is a lithium salt, to 1 M.
  • Example 2 The same procedure as in Example 1 was carried out, except that the plating solution was dissolved in LiPF 6, which is a lithium salt, in a carbonate solvent of EC: DEC: DMC (25:50:25 v / v) as shown in Table 1. After this, a lithium metal electrode was manufactured using a plating solution in which VC (vinyl carbonate) was dissolved by 2% by weight based on the total plating solution weight.
  • VC vinyl carbonate
  • EC ethylene carbonate
  • DEC diethlyene carbonate
  • DMC dimethylene carbonate.
  • Example 2 The same procedure as in Example 1 was carried out except that the plating solution was dissolved in LiFSI, which is a lithium salt, in dimethyl ether (DME), an ether solvent, to 1 M, and LiNO 3, which was a lithium nitrate, was By adding 2% by weight, using a plating solution prepared without using an additive, a lithium metal electrode was prepared.
  • LiFSI dimethyl ether
  • DME dimethyl ether
  • LiNO 3 which was a lithium nitrate
  • Example 2 The same procedure as in Example 1 was carried out except that the plating solution was dissolved in LiFSI, which is a lithium salt, in dimethyl ether (DME), an ether solvent, to 2 M, and LiNO 3, which was a lithium nitrate, was By adding 2% by weight, using a plating solution prepared without using an additive, a lithium metal electrode was prepared.
  • LiFSI dimethyl ether
  • DME dimethyl ether
  • LiNO 3 which was a lithium nitrate
  • Example 2 The same procedure as in Example 1 was carried out except that the plating solution was dissolved in LiFSI, which is a lithium salt, in dimethyl ether (DME), an ether solvent, to 3 M, and LiNO 3, which was a lithium nitrate, was A lithium metal electrode was prepared using a plating solution prepared by adding CsNO 3 as an additive to 0.15 M without using it.
  • LiFSI dimethyl ether
  • DME dimethyl ether
  • LiNO 3 which was a lithium nitrate
  • the surface of the lithium metal electrode prepared in Example 1 has a relatively flat surface.
  • Comparative Example 1 using a carbonate solvent had the best surface flatness and lithium dendrite was observed in the acicular form.
  • the lithium dendrites are needle-shaped, the lithium dendrites easily fall out of the electrode and lose their electrical conductivity, which increases the probability of dead lithiation, leading to reduced efficiency.
  • lithium dendrite when lithium dendrite is acicular, it may cause a problem such as causing a short-circuit through a separator and causing a fire due to excessive heat. Therefore, when the dendrite grows flat, the efficiency of lithium metal can be increased by reducing the probability of the dendrite falling out of the electrode and losing its function as an active material, and the safety can be greatly improved by preventing the short circuit occurring when the membrane is destroyed. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법에 관한 것으로, 보다 상세하게는, 전기 도금을 이용하여 리튬 금속전극을 제조하되, 리튬 질산화물과 금속 질산화물을 포함하는 도금용액을 이용하는 전기 도금에 의해 표면 특성이 향상된 리튬 금속전극을 제조할 수 있고, 이와 같은 리튬 금속전극을 전지에 적용하여 전지의 수명 특성을 향상시킬 수 있다.

Description

리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법
본 출원은 2017년 4월 14일자 한국 특허 출원 제10-2017-0048299호 및 2018년 4월 2일자 한국 특허 출원 제10-2018-0038063호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 리튬 금속용 전기 도금용액 및 이를 이용한 고 용량의 리튬 금속전극의 제조방법에 관한 것이다.
최근 전자 산업의 발달로 전자장비의 소형화 및 경량화가 가능하게 됨에 따라 휴대용 전자기기의 사용이 증대되고 있다. 이와 같은 휴대용 전자기기의 전원으로 높은 에너지 밀도를 갖는 이차전지의 필요성이 증대되어 리튬 이차전지의 연구가 활발하게 진행되고 있다.
리튬 이차전지 중 대표적인 고 용량 전지는 리튬 설퍼전지, 리튬 공기전지 등이 있으며, 이들은 공통적으로 고 용량의 음극재로서 리튬 금속을 사용하고 있다.
리튬 금속은 이론용량이 3,862 mAh/g으로 높고, 표준 전극 전위가 낮아 (-3.04 vs SHE) 고 에너지밀도 리튬 이차전지의 음극으로 이상적인 재료이다. 그러나 리튬 덴드라이트 성장에 의한 전지의 내부 단락 등에 따른 안전성의 저하로 리튬 전지의 음극 소재로 상용화 시 문제가 되고 있다.
또한, 리튬 이온이 리튬 금속의 표면에서 환원 시 전해액의 용매와 염의 조합에 따라 SEI(Solid Electrolyte Interphase)층을 형성하여 비가역이 발생될 수 있다.
SEI 층이 불안정할 경우, 전해액과 리튬 금속의 직접적인 반응이 지속적으로 발생하여 추가적인 비가역이 발생하고, 이로 인하여 리튬 금속의 충방전 효율 저하를 초래할 수 있다. 또한, SEI 층 생성 시에 이용된 전해액 소모로 인하여 전해액이 고갈되고, 부산물로서 발생하는 가스에 의해 전지 수명이 저하되는 문제가 발생할 수 있다.
이에, 리튬 금속을 이용한 전극 제조 시, 리튬 금속의 표면 형상을 제어하여 안전성을 확보할 수 있도록 하는 리튬 금속 제조방법에 대한 기술 개발이 필요하다.
[선행기술문헌]
[특허문헌]
한국 등록특허 제0447792호, "다공성의 3차원 집전체를 이용한 리튬 전극, 그 제조방법 및 리튬 전지"
본 발명자들은 상기 문제점을 해결하기 위해 다각적으로 연구를 수행한 결과, 전기 도금에 의해 리튬 금속전극을 제조하되, 전기 도금 시 사용된 도금용액의 조성을 변화시켜 표면 특성이 제어된 리튬 금속전극을 제조 하였으며, 이와 같은 방법으로 제조된 리튬 금속전극은 평탄한 표면 특성을 나타내어 전지의 수명 특성을 향상시킬 수 있다는 것을 확인하였다.
따라서, 본 발명의 목적은 리튬 금속전극 제조가 가능한 리튬금속용 전기 도금용액을 제공하는 것이다.
본 발명의 또 다른 목적은 고용량의 리튬 금속전극의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은 리튬 금속용 전기 도금용액으로서, 상기 도금용액은 에테르계 용매; 리튬염; 리튬 질산화물; 및 하기 화학식 1로 표시되는 첨가제를 포함하는 리튬 금속용 전기 도금용액을 제공한다.
<화학식 1>
MNOX
상기 화학식 1에서 M은 Cs, Rb, K, Ba, Sr, Ca, Na 또는 Mg 이고, x는 2 또는 3이다.
상기 도금용액은 리튬 금속의 소스로서 리튬염, 리튬잉곳 및 전이금속 산화물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.
상기 리튬염은 1 M 내지 7 M 의 농도로 포함될 수 있다.
상기 리튬 질산화물은 1 내지 5 중량%로 포함될 수 있다.
상기 리튬 질산화물의 Li+ 및 상기 화학식 1로 표시되는 첨가제의 M+ 의 농도비 ([Li+]/[M+])는 10 이상일 수 있다.
상기 에테르계 용매는 테트라 하이드로퓨란, 2-메틸테트라하이드로퓨란, 디메틸 에테르 및 디부틸 에테르로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 리튬염은 LiFSI, LiPF6, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬 및 4-페닐 붕산 리튬으로 이루어진 군에서 선택된 하나 이상으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 리튬 질산화물은 질산리튬(LiNO3) 및 아질산리튬(LiNO2)으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 첨가제는 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산칼륨(KNO2) 및 아질산세슘(CsNO2)으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 리튬 질산화물은 및 첨가제는 각각 질산리튬(LiNO3) 및 질산세슘(CsNO3)일 수 있다.
본 발명은 또한, 전기 도금을 이용한 리튬 금속전극의 제조방법으로서, 상기 도금용액을 이용하여 집전체 상에 리튬 금속을 전기 도금하는 리튬 금속전극의 제조방법에 관한 것이다.
상기 리튬 금속전극의 제조방법은, (a) 리튬 금속의 소스와 리튬 금속을 전기 도금하고자 하는 집전체를 상기 도금용액에 침지하는 단계; 및 (b) 상기 도금용액에 환원전위를 인가하여 상기 집전체 상에 리튬 금속을 전기 도금하는 단계;를 포함한다.
상기 리튬 금속의 소스는 리튬염, 리튬잉곳 및 전이금속 산화물로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 집전체는 Cu, Al, Ni, Fe, SUS(steel use stainless) 및 Ti로 이루어진 군에서 선택될 수 있으며, 3차원 구조체 형태일 수 있다.
본 발명에 따른 리튬 금속용 전기 도금용액은 리튬 금속의 전기 도금용으로 사용되며, 전기 도금 중에서도 리튬 금속의 소스로서 리튬염, 리튬잉곳 및 전이금속 산화물로 이루어진 군에서 선택되는 1종 이상을 사용하는 전기 도금 공정용으로 사용됨으로써, 상기 도금용액의 조성에 따라 제조되는 리튬 금속전극의 표면 특성이 제어될 수 있다.
또한, 전기 도금 시 질산리튬(LiNO3) 및 질산세슘(CsNO3)를 일정 농도로 포함하는 도금용액 및 상기 리튬 금속의 소스를 사용하여 전기 도금 공정 진행시, 평활한 표면 특성을 가지고 박막형의 리튬 금속전극을 제조할 수 있다.
또한, 종래 압연 방법에 의해서는 구현할 수 없는 20㎛ 이하 수준의 두께를 가지는 리튬 금속전극을 제조할 수 있다.
또한, 종래 압연 방법에 의해서는 사용하기 어려웠던 집전체, 예컨대, Cu, Al, Ni, Fe, SUS 및 Ti와 같은 다양한 집전체를 이용하여 리튬 금속전극을 제조할 수 있다.
도 1은 본 발명의 일 구현예에 따라 전기 도금을 실시할 수 있는 리튬 반쪽 전지의 모식도이다.
도 2는 본 발명의 일 구현예에 따른 리튬 소스를 나타낸 모식도이다.
도 3은 실시예 1 내지 4 및 비교예 1 내지 4에서 각각 제조된 리튬 금속전극 표면의 SEM(Scanning Electron Microscope) 사진이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
리튬 금속용 전기 도금용액
본 발명은 리튬 금속용 전기 도금용액에 관한 것으로, 에테르계 용매; 리튬염; 리튬 질산화물; 및 하기 화학식 1로 표시되는 첨가제;를 포함한다.
<화학식 1>
MNOX
상기 화학식 1에서 M은 Cs, Rb, K, Ba, Sr, Ca, Na 또는 Mg 이고, x는 2 또는 3이다.
본 발명의 도금용액은 리튬 금속의 전기 도금을 위한 용도로 사용되며, 특히 전기 도금 중에서도 리튬 금속의 소스로서 리튬염(Li Salt), 리튬 잉곳(Li ingot) 및 전이 금속산화물(Transition metal oxide)로 이루어진 군에서 선택되는 1종 이상을 사용하는 전기 도금을 위한 용도로 사용될 수 있으나, 리튬 이온을 제공할 수 있는 화합물이라면 이에 제한되는 것은 아니다 (도 2).
본 발명에 있어서, 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiN(CaF2a+1SO2)(CbF2b+1SO2)(단, a 및 b는 자연수, 바람직하게는 1≤a≤20이고, 1≤b≤20임), LiCl, LiI 및 LiB(C2O4)2으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 전이 금속산화물은 LiM'O2 (M'은 Co, Ni 또는 Mn임), Li1 + xMn2 - xO4 +(0≤x≤0.3) 및 LiNi1 - xMxO2 (M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, 0.01≤x≤0.3임) 으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 예를 들어, 상기 리튬 금속산화물은 LiCoO2, LiNiO2, LiMn2O4, Li(NiaMnbCoc)O2 (a+b+c=1), LiNi0 . 5Mn1 . 5O4 또는 LiNi0.5Mn0.5O2 일 수 있다.
본 발명에 있어서, 상기 에테르계 용매는 에테르계 도금용액을 형성하기 위한 비수계 용매로서, 테트라하이드로퓨란(THF), 2-메틸테트라하이드로퓨란(MTHF), 디메틸에테르(DME) 및 디부틸에테르(DBE)로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 특히, 디메틸에테르(DME)를 사용할 경우 집전체 상에 리튬 금속을 전기 도금시키는데 유리할 수 있다.
본 발명에 있어서, 상기 리튬염은 LiFSI, LiPF6, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬 및 4-페닐 붕산 리튬으로 이루어진 군에서 선택된 하나 이상으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 특히, LiFSI를 사용할 경우 집전체 상에 리튬 금속을 전기 도금시키는데 유리할 수 있다.
또한, 상기 리튬염의 농도는 도금용액의 조성에 따라 적절하게 조절될 수 있으며, 예를 들어 1.0 M 내지 7.0 M, 바람직하게는 1 M 내지 4 M이 될 수 있다. 상기 리튬염이 1.0 M 미만이면 도금용액의 전도도가 좋지 않아 전 고율방전 특성 및 수명 특성이 저하될 수 있고, 7.0 M 초과이면 저온방전특성 및 고율방전특성이 좋지 않아 실제 도금용액으로써의 사용특성이 저하될 수 있다.
본 발명에 있어서, 상기 도금용액은 상기 리튬 질산화물 및 화학식 1로 표시되는 첨가제는 분자 내 N-O 결합을 가짐으로써 리튬 금속 전극 상에 안정적인 피막을 형성할 수 있으며, 이에 따라, 리튬 금속과 도금용액의 부반응이 억제됨에 따라 리튬 금속 전극 및 도금용액의 안정성이 보다 개선되며, 전지의 수명을 크게 향상시킬 수 있다.
예를 들어, 상기 리튬 질산화물은 질산리튬(LiNO3) 및 아질산리튬(LiNO2)으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 상기 첨가제는 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산칼륨(KNO2) 및 아질산세슘(CsNO2)으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 리튬 질산화물의 함량은 상기 화학식 1로 표시되는 도금용액 전체 중량을 기준으로 1 내지 5 중량% 포함될 수 있으며, 상기 첨가제의 함량이 1 중량% 미만이면 생성물(LixNOy) 양이 과도하게 작아 보호층으로서 두께가 충분치 않은 문제가 있고, 5 중량% 초과이면 보호층 생성시 활물질인 리튬을 과량 소모하여 효율 저하등의 문제가 있을 수 있다.
상기 도금용액에 있어서, 상기 리튬 질산화물 및 화학식 1로 표시되는 첨가제의 사용량은 상기 리튬 질산화물 유래의 Li+ 및 상기 화학식 1로 표시되는 첨가제 유래의 M+의 농도비([Li+]/[M+])로 규정될 수 있다.
상기 농도비([Li+]/[M+])는 10 이상일 수 있으며, 상기 범위 미만이면 M+ 가 이온상태로 존재하지 않고 환원이 되어 버려 리튬 덴드라이트 억제 효과가 미미하여 표면 평탄화가 어려울 수 있다. 바람직하게는 상기 농도비([Li+]/[M+]) 는 10 내지 40일 수 있다.
특히, 상기 도금용액은 리튬 질산화물 및 첨가제로서 각각 질산리튬(LiNO3) 및 질산세슘(CsNO3)을 포함할 경우 리튬 금속전극의 표면이 평탄화되도록 하는데 유리할 수 있다.
상기 첨가제로서 질산세슘(CsNO3)이 포함될 경우 도금용액 내에서 농도는, Li+ 1M 당 0.1M 이하일 수 있다. 예컨대, Cs+ 이온의 환원 포텐셜은 농도에 따라 변화하게 되어있는데, Nernst equation으로 계산 시 Li+ 1M 당 Cs+ 의 농도가 0.1M 초과일 경우 Cs+ 이온이 Li+ 이온의 환원 포텐셜 보다 높게 되어 Li+ 이온보다 먼저 환원된다. Cs+이 이온상태로 표면에 존재해야 leveler로써의 덴드라이트 억제 역할이 가능하므로, Li+ 이온 1M당 Cs+의 농도는 0.1M 이하일 수 있으며, 바람직하게는, Li+ 1M당 Cs+ 0.03 내지 0.07M 일 수 있다.
리튬 금속전극의 제조방법
본 발명은 또한, 전기 도금을 이용한 리튬 금속전극의 제조방법에 관한 것으로, 전기 도금 시 사용하는 도금용액의 조성에 따라 제조되는 리튬 금속전극의 표면이 제어되는 것을 특징으로 하는 리튬 금속전극의 제조방법에 관한 것이다.
본 발명의 일 구현예에 따르면 리튬 반쪽 전지를 이용하여 전기 도금을 실시할 수 있다.
도 1은 본 발명의 일 구현예에 따라 전기 도금을 실시할 수 있는 반쪽 전지의 모식도이다.
도 1을 참고하면, 음극으로서 Cu 집전체(10), 양극으로서 리튬 금속의 소스(20) 및 에테르계 도금용액(30)을 사용하여, Cu 집전체(10) 상체 리튬 금속(40)을 전기 도금하여 리튬 금속전극을 제조할 수 있다.
이때, 전기 도금의 구체적인 조건은 C-rate 0.01 내지 0.5 C 이고, 0.1 내지 5 mAh/㎠ 의 전류밀도로 전류를 이용하는 것일 수 있으며, 이와 같은 전기 도금의 조건을 벗어날 경우, 리튬 금속의 전기 도금시 형성되는 리튬 금속전극의 표면특성이 저하될 수 있다. 즉, 리튬 금속전극의 표면이 평탄하게 전기 도금되지 않거나, 전기 도금되는 두께가 두꺼워지는 것과 같은 문제가 생기 수 있다.
에테르계 도금용액(30)은 앞서 설명한 바와 같은 리튬 금속용 전기 도금용액과 동일하다.
리튬 금속의 소스(20) 역시 앞서 설명한 바와 같다.
본 발명에 있어서 리튬 금속을 전기 도금시킬 수 있는 집전체는 Cu, Al, Ni, Fe, SUS(steel use stainless) 및 Ti로 이루어진 군에서 선택될 수 있으며, 상기 집전체는 3차원 구조체 형태일 수 있다.
이와 같은 집전체는 종래 리튬 금속시 사용하던 압연 공정에서는 사용할 수 없었던 것으로, 에테르계 도금용액을 이용한 전기 도금에 의해 보다 다양한 집전체를 사용할 수 있는 장점이 있다.
전술한 바와 같은 전기 도금 방법에 의해 제조된 리튬 금속전극은 표면 거칠기가 감소되어 보다 평탄한 표면을 가질 수 있다. 평탄한 표면의 리튬 금속전극을 이용할 때, 충방전시 발생하는 리튬 성장이 내부단락의 원인인 침상형으로 자라는 것을 방지하여 전지 구동 안전성을 향상 시킬 수 있다.
또한, 집전체 상에 직접적으로 리튬 금속을 전기 도금함으로 인하여 도금되는 리튬 금속의 두께 조절이 용이하다. 따라서, 종래 압연 공정에 의해서는 제조할 수 없었던 얇은 두께로 리튬 금속을 전기 도금할 수 있으며, 결국 압연으로 생산하는 가장 얇은 두께 20 ㎛ 이하의 리튬 금속전극을 제조할 수 있다.
또한, 전기 도금 시 사용된 에테르계 도금용액의 조성에 따라 리튬 금속전극의 표면에서 형성되는 리튬 덴드라이트의 형상 역시 제어할 수 있다. 리튬 덴드라이트가 침상형인 경우 리튬 덴드라이트가 전극으로부터 쉽게 떨어져 나가 전기 전도도를 잃게 되어 dead 리튬화가 될 확률이 높아져 효율감소를 불러일으킨다. 또한 침상형인 경우 분리막을 뚫고 단락(short-circuit)을 일으켜 과도한 열로 화재를 일으키는 등의 문제를 야기할 수 있다.
이와 같이, 에테르계 도금용액의 조성을 변화시켜 리튬 금속전극의 표면 특성, 예컨대, 거칠기, 평탄화 정도, 두께, 리튬 덴드라이트의 형상을 제어함으로써 상기 리튬 금속전극이 적용된 전지의 수명 특성을 향상시킬 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
하기 실시예 1 내지 4 및 비교예 1 내지 4에서는 전기 도금에 의해 Cu 집전체 상에 리튬 금속을 도금시키되, 상기 전기 도금 시 사용한 도금용액의 조성을 아래 표 1에 기재된 바와 같이 변화시켜 리튬 금속전극을 제조하였다.
도금용액
용매 리튬염 리튬 질산화물 첨가제 농도비주1)([Li+]/[M+])
실시예 1 DME LiFSI(3M) LiNO3(2 중량%) CsNO3(0.15M) 20
실시예 2 DME LiFSI(1M) LiNO3(2 중량%) CsNO3(0.15M) 20
실시예 3 DME LiFSI(3M) LiNO3(2 중량%) CsNO3(0.05M) 60
실시예 4 DME LiFSI(3M) LiNO3(2 중량%) CsNO3(0.3M) 10
비교예 1 EC:DEC:DMC LiPF6(1M) - VC (2 중량%) -
비교예 2 DME LiFSI(1M) LiNO3(2 중량%) - -
비교예 3 DME LiFSI(3M) LiNO3(2 중량%) - -
비교예 4 DME LiFSI(3M) - CsNO3(0.15M) -
주1) 농도비 ([Li+]/[M+])는 리튬 질산화물의 Li+와 첨가제의 Cs+의 농도비를 의미함
실시예 1
전기 도금에 의해 Cu 집전체 상에 리튬 금속을 도금시켜 리튬 금속전극을 제조하였다.
이때, 도금용액은, 에테르계 용매인 디메틸에테르(DME)에 리튬염인 LiFSI를 용해시켜 3 M이 되게 한 다음, 리튬 질산화물인 LiNO3가 전체 도금용액 중량을 기준으로 2 중량%가 되도록 첨가하고, 상기 LiNO3 유래의 Li+ 및 첨가제인 CsNO3 유래 Cs+의 농도비 ([Li+]/[Cs+])가 20이 되도록 제조한 도금용액을 사용하였다 (표 1).
또한, Cu 집전체를 음극으로 하고, 리튬 소스로서 LiCoO2를 포함하는 양극, 상기 양극과 음극 사이에 게재된 폴리에틸렌 분리막 및 상기 도금용액을 포함하는 리튬 반쪽전지를 이용하여, C-rate 0.2 C (0.95 mA) 및 3 mA/㎠의 전류밀도로 전류를 흘려주어 전기 도금을 실시하였다.
실시예 2
실시예 1과 동일하게 실시하되, 리튬염인 LiFSI를 용해시켜 1 M이 되게 하여 전기 도금을 실시한 후 리튬 금속전극을 제조하였다.
실시예 3
실시예 1과 동일하게 실시하되, 상기 LiNO3 유래의 Li+ 및 첨가제인 CsNO3 유래 Cs+의 농도비 ([Li+]/[Cs+])가 60이 되도록 제조한 도금용액을 사용하여 리튬 전극을 제조하였다.
실시예 4
실시예 1과 동일하게 실시하되, 상기 LiNO3 유래의 Li+ 및 첨가제인 CsNO3 유래 Cs+의 농도비 ([Li+]/[Cs+])가 10이 되도록 제조한 도금용액을 사용하여 리튬 전극을 제조하였다.
비교예 1
실시예 1과 동일한 방법으로 실시하되, 다만 도금용액을 표 1에 기재된 바와 같이, 카보네이트계 용매인 EC:DEC:DMC(25:50:25 v/v)에 리튬염인 LiPF6를 용해시켜 1 M이 되게 한 다음, VC(Vinylene Carbonate)를 전체 도금용액 중량을 기준으로 2 중량% 만큼 용해시킨 도금용액을 사용하여 리튬 금속전극을 제조하였다. 이때, EC는 에틸렌 카보네이트(ethylene carbonate), DEC는 디에틸렌 카보네이트(Diethlyene carbonate), DMC는 디메틸렌 카보네이트(Dimethlyene carbonate)이다.
비교예 2
실시예 1과 동일한 방법으로 실시하되, 다만 도금용액을 표 1에 기재된 바와 같이, 에테르계 용매인 디메틸에테르(DME)에 리튬염인 LiFSI를 용해시켜 1 M이 되도록 하고, 리튬 질산화물인 LiNO3는 2 중량%만큼 첨가하며, 첨가제를 사용하지 않고 제조된 도금용액을 사용하여, 리튬 금속전극을 제조하였다.
비교예 3
실시예 1과 동일한 방법으로 실시하되, 다만 도금용액을 표 1에 기재된 바와 같이, 에테르계 용매인 디메틸에테르(DME)에 리튬염인 LiFSI를 용해시켜 2 M이 되도록 하고, 리튬 질산화물인 LiNO3는 2 중량%만큼 첨가하며, 첨가제를 사용하지 않고 제조된 도금용액을 사용하여, 리튬 금속전극을 제조하였다.
비교예 4
실시예 1과 동일한 방법으로 실시하되, 다만 도금용액을 표 1에 기재된 바와 같이, 에테르계 용매인 디메틸에테르(DME)에 리튬염인 LiFSI를 용해시켜 3 M이 되도록 하고, 리튬 질산화물인 LiNO3는 사용하지 않고, 첨가제인 CsNO3 를 0.15 M이 되도록 첨가하여 제조한 도금용액을 사용하여, 리튬 금속전극을 제조하였다.
실험예 1: 리튬 금속전극의 표면 특성 비교
상기 실시예 1 내지 4 및 비교예 1 내지 4에서 각각 제조된 리튬 금속전극의 표면 특성을 관찰하였다.
도 3은 실시예 1 내지 4 및 비교예 1 내지 4에서 각각 제조된 리튬 금속전극 표면의 SEM(Scanning Electron Microscope) 사진이다.
도 3을 참고하면, 실시예 1에서 제조된 리튬 금속전극 표면이 비교예 1 내지 4에서 제조된 리튬 금속전극의 표면이 상대적으로 평탄하게 형성된 것을 알 수 있다.
이로부터, LiNO3 및 CsNO3을 함께 포함하는 도금용액을 이용하여 전기 도금된 리튬 금속전극의 표면 특성이 우수한 것을 알 수 있다.
또한, 실시예 1 내지 4를 참조하면, LiNO3 및 CsNO3를 함께 포함하는 도금용액을 이용하더라도, 상기 LiNO3 유래의 Li+ 및 첨가제인 CsNO3 유래 Cs+의 농도비 ([Li+]/[Cs+])에 따라서 리튬 금속전극의 표면 특성이 달라지는 것을 알 수 있다.
예컨대, 실시예 3과 같이 상기 농도비 ([Li+]/[Cs+])가 상대적으로 높은 경우 리튬 금속전극의 표면 특성이 다소 저하되는 것을 알 수 있다.
또한, 비교예 1 내지 4 중에서도 카보네이트계 용매를 사용한 비교예 1은 표면 평탄정도가 가장 좋지 않으며 리튬 덴드라이트가 침상형으로 관찰되었다.
리튬 덴드라이트가 침상형인 경우 리튬 덴드라이트가 전극으로부터 쉽게 떨어져 나가 전기 전도도를 잃게 되어 dead 리튬화가 될 확률이 높아져 효율 감소를 불러일으킨다. 또한, 리튬 덴드라이트가 침상형인 경우 분리막을 뚫고 단락(short-circuit)을 일으켜 과도한 열로 화재를 일으키는 등의 문제를 야기할 수 있다. 따라서 평탄하게 덴드라이트가 성장 할 경우 덴드라이트가 전극에서 떨어져 나가 활물질로써의 기능을 잃을 확률을 줄여 줌으로써 리튬금속 효율을 증가 시킬 수 있고, 분리막 파괴시 생기는 단락을 방지 함으로써 안전성을 크게 향상 시킬 수있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
1: 리튬 반쪽전지
10: 집전체
20: 리튬 소스
30: 에테르계 도금용액
40: 리튬 금속

Claims (15)

  1. 리튬 금속용 전기 도금용액으로서,
    상기 도금용액은 에테르계 용매; 리튬염; 리튬 질산화물; 및 하기 화학식 1로 표시되는 첨가제;를 포함하는 리튬 금속용 전기 도금용액:
    <화학식 1>
    MNOX
    상기 화학식 1에서 M은 Cs, Rb, K, Ba, Sr, Ca, Na 또는 Mg 이고, x는 2 또는 3이다.
  2. 제1항에 있어서,
    상기 도금용액은 리튬 금속의 소스로서 리튬염, 리튬잉곳 및 전이금속 산화물로 이루어진 군에서 선택되는 1종 이상을 사용하는 리튬 금속용 전기 도금용액.
  3. 제1항에 있어서,
    상기 리튬염은 1 M 내지 7 M 의 농도로 포함되는 리튬 금속용 전기 도금용액.
  4. 제1항에 있어서,
    상기 리튬 질산화물은 1 내지 5 중량%로 포함되는 리튬 금속용 전기 도금용액.
  5. 제1항에 있어서,
    상기 리튬 질산화물의 Li+ 및 상기 화학식 1로 표시되는 첨가제의 M+ 의 농도비 ([Li+]/[M+])는 10 이상인 리튬 금속용 전기 도금용액.
  6. 제1항에 있어서,
    상기 에테르계 용매는 테트라 하이드로퓨란, 2-메틸테트라하이드로퓨란, 디메틸 에테르 및 디부틸 에테르로 이루어진 군에서 선택되는 1종 이상인 리튬 금속용 전기 도금용액.
  7. 제1항에 있어서,
    상기 리튬염은 LiFSI, LiPF6, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬 및 4-페닐 붕산 리튬으로 이루어진 군에서 선택되는 1종 이상인 리튬 금속용 전기 도금용액.
  8. 제1항에 있어서,
    상기 리튬 질산화물은 질산리튬(LiNO3) 및 아질산리튬(LiNO2)으로 이루어진 군에서 선택되는 1종 이상인 리튬 금속용 전기 도금용액.
  9. 제1항에 있어서,
    상기 첨가제는 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산칼륨(KNO2) 및 아질산세슘(CsNO2)으로 이루어진 군에서 선택되는 1종 이상인 리튬 금속용 전기 도금용액.
  10. 제1항에 있어서,
    상기 리튬 질산화물 및 첨가제는 각각 질산리튬(LiNO3) 및 질산세슘(CsNO3)인 리튬 금속용 전기 도금용액.
  11. 전기 도금을 이용한 리튬 금속전극의 제조방법으로서,
    제1항 내지 제10항 중 어느 한 항의 도금용액을 이용하여 집전체 상에 리튬 금속을 전기 도금하는, 리튬 금속전극의 제조방법.
  12. 제11항에 있어서,
    (a) 리튬 금속의 소스와 리튬 금속이 전기 도금될 집전체를 상기 도금용액에 침지하는 단계; 및
    (b) 상기 집전체 상에 리튬 금속을 전기 도금하는 단계;
    를 포함하는 리튬 금속전극의 제조방법.
  13. 제11항에 있어서,
    상기 리튬 금속의 소스는 리튬염, 리튬잉곳 및 전이금속 산화물로 이루어진 군에서 선택되는 1종 이상인 리튬 금속전극의 제조방법.
  14. 제11항에 있어서,
    상기 집전체는 Cu, Al, Ni, Fe, SUS(steel use stainless) 및 Ti로 이루어진 군에서 선택되는 1종 이상인 리튬 금속전극의 제조방법.
  15. 제11항에 있어서,
    상기 집전체는 3차원 구조체 형태인 리튬 금속전극의 제조방법.
PCT/KR2018/003951 2017-04-14 2018-04-04 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법 WO2018190559A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18784957.5A EP3514859B1 (en) 2017-04-14 2018-04-04 Electroplating solution for lithium metal, and method for manufacturing lithium metal electrode by using same
CN201880004373.2A CN109964342B (zh) 2017-04-14 2018-04-04 锂金属用电镀溶液和通过使用该锂金属用电镀溶液制造锂金属电极的方法
JP2019537737A JP6732319B2 (ja) 2017-04-14 2018-04-04 リチウム金属用電気めっき溶液及びこれを利用したリチウム金属電極の製造方法
US16/337,804 US10858749B2 (en) 2017-04-14 2018-04-04 Electroplating solution for lithium metal, and method for manufacturing lithium metal electrode by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0048299 2017-04-14
KR20170048299 2017-04-14
KR10-2018-0038063 2018-04-02
KR1020180038063A KR101990618B1 (ko) 2017-04-14 2018-04-02 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법

Publications (1)

Publication Number Publication Date
WO2018190559A1 true WO2018190559A1 (ko) 2018-10-18

Family

ID=63792564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003951 WO2018190559A1 (ko) 2017-04-14 2018-04-04 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법

Country Status (1)

Country Link
WO (1) WO2018190559A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200118981A (ko) * 2019-04-09 2020-10-19 한국생산기술연구원 이종의 전해액 및 양이온교환막을 포함하는 도금조 및 이를 이용한 리튬금속 도금방법
WO2023163593A1 (en) 2022-02-24 2023-08-31 Lionvolt B.V. Pre-loaded protected anode, battery and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125853A (ko) * 2004-01-06 2006-12-06 싸이언 파워 코포레이션 리튬 황 전지를 위한 전해질
KR20140051251A (ko) * 2011-06-17 2014-04-30 시온 파워 코퍼레이션 전극 도금 기술
KR20160038735A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 리튬 이차전지의 제조방법
KR20160050222A (ko) * 2014-10-29 2016-05-11 주식회사 엘지화학 리튬 금속 전지용 전해질 용액 및 이를 포함하는 리튬 금속 전지
KR20160107506A (ko) * 2015-03-04 2016-09-19 한국화학연구원 금속 공기 전지용 양극재 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125853A (ko) * 2004-01-06 2006-12-06 싸이언 파워 코포레이션 리튬 황 전지를 위한 전해질
KR20140051251A (ko) * 2011-06-17 2014-04-30 시온 파워 코퍼레이션 전극 도금 기술
KR20160038735A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 리튬 이차전지의 제조방법
KR20160050222A (ko) * 2014-10-29 2016-05-11 주식회사 엘지화학 리튬 금속 전지용 전해질 용액 및 이를 포함하는 리튬 금속 전지
KR20160107506A (ko) * 2015-03-04 2016-09-19 한국화학연구원 금속 공기 전지용 양극재 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200118981A (ko) * 2019-04-09 2020-10-19 한국생산기술연구원 이종의 전해액 및 양이온교환막을 포함하는 도금조 및 이를 이용한 리튬금속 도금방법
KR102201710B1 (ko) * 2019-04-09 2021-01-12 한국생산기술연구원 이종의 전해액 및 양이온교환막을 포함하는 도금조 및 이를 이용한 리튬금속 도금방법
WO2023163593A1 (en) 2022-02-24 2023-08-31 Lionvolt B.V. Pre-loaded protected anode, battery and manufacturing method
NL2031071B1 (en) 2022-02-24 2023-09-06 Lionvolt B V Pre-loaded protected anode, battery and manufacturing method

Similar Documents

Publication Publication Date Title
KR101990618B1 (ko) 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2020153822A1 (ko) 리튬 이차 전지
WO2020180125A1 (ko) 리튬 이차전지
WO2016052996A1 (ko) 비수 전해액 리튬 이차전지
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2018190559A1 (ko) 리튬 금속용 전기 도금용액 및 이를 이용한 리튬 금속전극의 제조방법
WO2015037852A1 (ko) 비수계 전해액 및 이를 포함하는 리튬 이차전지
WO2018084525A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2016048104A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차 전지
WO2023191541A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2025013984A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액, 및 이를 포함하는 리튬 이차전지
WO2022255593A1 (ko) 리튬 금속 박막 복합체 및 이의 제조 방법
WO2024063189A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액, 및 이를 포함하는 리튬 이차전지
WO2023090802A1 (ko) 전극, 이 전극의 제조방법, 및 이 전극을 포함하는 리튬금속전지
WO2024038942A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액, 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537737

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018784957

Country of ref document: EP

Effective date: 20190416

NENP Non-entry into the national phase

Ref country code: DE