WO2018177055A1 - 一种y型分支的亲水性聚合物羧酸衍生物的制备方法 - Google Patents
一种y型分支的亲水性聚合物羧酸衍生物的制备方法 Download PDFInfo
- Publication number
- WO2018177055A1 WO2018177055A1 PCT/CN2018/077229 CN2018077229W WO2018177055A1 WO 2018177055 A1 WO2018177055 A1 WO 2018177055A1 CN 2018077229 W CN2018077229 W CN 2018077229W WO 2018177055 A1 WO2018177055 A1 WO 2018177055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carboxylic acid
- acid derivative
- hydrophilic polymer
- substituted
- Prior art date
Links
- 0 CN(C(*)C(O)=O)C(C**OC)=O Chemical compound CN(C(*)C(O)=O)C(C**OC)=O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/48—Polymers modified by chemical after-treatment
Definitions
- the invention relates to the technical field of polymers, in particular to a method for preparing a Y-branched hydrophilic polymer carboxylic acid derivative, in particular to a high-purity high molecular weight Y-branched polyethylene glycol carboxylic acid derivative. Preparation.
- PEG Polyethylene glycol
- Y-type polyethylene glycol is a widely used polyethylene glycol, which can significantly reduce the loss of activity of modified drugs, especially in improving the clinical application of protein and peptide drugs. It prevents the antibody from approaching the protein drug, thereby greatly increasing the circulating half-life of the protein drug in the body while greatly reducing its immunogenicity in vivo.
- the terminal group of the Y-type PEG when the terminal group of the Y-type PEG is a carboxyl group, it can react with an amino group, a hydroxyl group or a thiol group on a modified drug or other compound to form a covalent bond to realize a modified linkage, and is a commonly used Y-type PEG derivative.
- the preparation method thereof is as described in the patent CN1243779C.
- the adsorption strength of the above three compounds on the column is ranked as mPEG- Cm, mPEG-gly, Y-cm.
- the above preparation reaction product includes the target product Y-cm and the unreacted reactants mPEG-gly and mPEG-cm.
- mPEG-gly greatly interferes with the separation, so that the purity of the target product is The yield is lowered.
- the yield of the Y-type PEG product is low, only 50%, the product separation is difficult, and the cost is high, which is not favorable for industrial amplification.
- the present invention provides a process for the preparation of a Y-branched hydrophilic polymeric carboxylic acid derivative.
- the method includes the following reaction:
- P a and P b are the same or different hydrophilic polymer residues
- X 1 and X 3 are a linking group independently selected from: -(CH 2 ) i -, a combination of one or more of -(CH 2 ) i O-, -(CH 2 ) i S- and -(CH 2 ) i CO-, i is an integer from 0 to 10,
- X 2 is a linking group, chosen from :-( CH 2) r -, - (CH 2) r O -, - (CH 2) r S- , and a combination of one or more of the following, r is an integer from 0 to 10,
- F is a terminal group selected from: substituted or unsubstituted C 1-6 alkyl, C 1-6 substituted or unsubstituted alkoxy group,
- R 1 and R 2 are independently selected from: -H, C 1-6 substituted or unsubstituted alkyl, C 1-6 substituted or unsubstituted alkoxy, C 3-6 substituted or unsubstituted cycloalkyl And a C 4-10 substituted or unsubstituted alkylene cycloalkyl group,
- R 3 is selected from the group consisting of: -H, a C 1-6 substituted or unsubstituted alkyl group, a C 6-10 substituted or unsubstituted aralkyl group, and a C 4-10 substituted or unsubstituted heterocycloalkyl group,
- the above preparation method is more suitable for preparing a higher molecular weight Y-branched hydrophilic polymer carboxylic acid derivative, and the reaction yield and product purity are higher, and separation is easier.
- the Y-branched hydrophilic polymer carboxylic acid derivative may have a molecular weight of 15 to 50 KDa (specifically 15, 16, 16, 20, 22, 24, 26, 28) , 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 or 50 KDa).
- the anhydride is an organic acid anhydride.
- the organic acid anhydride is selected from the group consisting of: di-tert-butyl dicarbonate (Boc anhydride), acetic anhydride, propionic anhydride, isobutyric anhydride, butyric anhydride, benzoic anhydride, and phthalic anhydride. One or more of them.
- the anhydride is a Boc anhydride.
- the anhydride and reactant The molar ratio of the added amount is 0.01-10:1 (specifically, 0.01:1, 0.1:1, 0.2:1, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1) , 0.9:1, 1.0:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 2.0:1, 3.0:1, 4.0:1, 5.0:1, 6.0:1, 7.0 : 1, 8.0: 1, 9.0: 1 or 10.0: 1).
- the reaction time after addition of the anhydride is from 0.1 to 24 hours (specifically 0.1, 1, 2, 3, 4, 5, 10, 15, 20 or 24 hours).
- the separating and purifying step comprises the step of separating and purifying using ion exchange chromatography.
- the P a and P b are independently selected from the group consisting of polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polytetrahydrofuran, polypropylene oxide, polybutylene oxide, polyoxygen A residue of a copolymer of one or more of a heterocyclic butane and a polypropylene morpholine.
- the P a and/or P b are polyethylene glycol residues.
- the P a is a polyethylene glycol residue having a structure of R a —O—(CH 2 CH 2 O) m —, and R a is selected from the group consisting of: H, C 1- 6 alkyl, C 3-6 cycloalkyl and C 6-10 cycloalkyl, m is an integer from 170 to 565.
- said R a is selected from: H, methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl, cyclohexyl, and benzyl.
- said R a is H or methyl.
- the P a is a methoxypolyethylene glycol residue having the structure CH 3 O-(CH 2 CH 2 O) m -, and m is an integer from 170 to 565.
- the P a may have a molecular weight of 7.5 to 25 KDa (specifically, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) , 20, 21, 22, 23, 24 or 25KDa).
- the P b is a polyethylene glycol residue having a structure of R b —O—(CH 2 CH 2 O) n —, and R b is selected from the group consisting of: H, C 1- 6 alkyl, C 3-6 cycloalkyl and C 6-10 cycloalkyl, n being an integer from 170 to 565.
- the R b is selected from the group consisting of H, methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl, cyclohexyl and benzyl.
- said R b is H or methyl.
- the molecular weight of P b may be 7.5-25 KDa (specifically, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23, 24 or 25KDa).
- the m and n are equal integers.
- the Y-branched hydrophilic polymeric carboxylic acid derivative is a Y-branched polyethylene glycol carboxylic acid derivative.
- the X 1 is selected from the group consisting of: a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - , -CH 2 CH 2 CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH (CH 3) -, - CH 2 CH 2 CH (CH 3) -, - CH 2 CH 2 CH (CH 3) -, - CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH 2 CH(CH 3 )-, -(CH 2 ) i O- And a combination of one or more of -(CH 2 ) i CO-, i is an integer from 0 to 5 (eg, 0, 1, 2, 3, 4 or 5).
- said X 1 is -CH 2 CH 2 -.
- the X 3 is selected from the group consisting of: a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH (CH 3) -, - CH 2 CH 2 CH (CH 3) -, - CH 2 CH 2 CH (CH 3) -, - CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH 2 CH(CH 3 )-, -(CH 2 ) i O- And a combination of one or more of -(CH 2 ) i CO-, i is an integer from 0 to 5 (eg, 0, 1, 2, 3, 4 or 5).
- said X 3 is -CH 2 -.
- the X 2 is
- the R 3 is selected from the group consisting of: -H, -CH 3 , -CH 2 CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 SCH 3 -, -CH 2 OH, -CH 2 SH, -CH(OH)CH 3 , -CH 2 COOH and -CH 2 CH 2 COOH.
- the X 2 is -CH 2 - or -CH(CH 3 )-.
- the F is selected from the group consisting of: methoxy, ethoxy,
- the F is
- reaction of the preparation method is:
- Another aspect of the present invention provides a Y-branched hydrophilic polymer carboxylic acid derivative prepared by the above method, which has the following structure:
- P a , P b , X 1 , X 2 and X 3 have the above definitions of the present invention.
- the carboxylic acid derivative has a molecular weight of 15-50 KDa (specifically 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 or 50KDa).
- the P a and P b are independently selected from the group consisting of polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polytetrahydrofuran, polypropylene oxide, polybutylene oxide, polyoxygen A residue of a copolymer of one or more of a heterocyclic butane and a polypropylene morpholine.
- the P a and/or P b are polyethylene glycol residues.
- the P a is a polyethylene glycol residue having a structure of R a —O—(CH 2 CH 2 O) m —, and R a is selected from the group consisting of: H, C 1- 6 alkyl, C 3-6 cycloalkyl and C 6-10 cycloalkyl, m is an integer from 170 to 565.
- said R a is selected from: H, methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl, cyclohexyl, and benzyl.
- said R a is H or methyl.
- the P a is a methoxypolyethylene glycol residue having the structure CH 3 O-(CH 2 CH 2 O) m -, and m is an integer from 170 to 565.
- the P a has a molecular weight of 7.5 to 25 KDa (specifically, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25KDa).
- the P b is a polyethylene glycol residue having a structure of R b —O—(CH 2 CH 2 O) n —, and R b is selected from the group consisting of: H, C 1- 6 alkyl, C 3-6 cycloalkyl and C 6-10 cycloalkyl, n being an integer from 170 to 565.
- the R b is selected from the group consisting of H, methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl, cyclohexyl and benzyl.
- said R b is H or methyl.
- the P b is a methoxypolyethylene glycol residue having the structure CH 3 O-(CH 2 CH 2 O) n -, n being an integer from 170 to 565.
- the molecular weight of P b may be 7.5-25 KDa (specifically, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23, 24 or 25KDa).
- the Y-branched hydrophilic polymer carboxylic acid derivative is a Y-branched polyethylene glycol carboxylic acid derivative having the following structure:
- the X 1 is selected from the group consisting of: a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -CH(CH 3 )-, -CH 2 CH(CH 3 )-, -CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH 2 CH(CH 3 )-, -(CH 2 ) i O- and - i CO- combination of one or more of (2 CH), i is an integer (e.g., 3, 4 or 5) 0-5.
- said X 1 is -CH 2 CH 2 -.
- the X 3 is selected from the group consisting of: a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 - , -CH 2 CH 2 CH 2 CH 2 -, -CH(CH 3 )-, -CH 2 CH(CH 3 )-, -CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH(CH 3 )-, -CH 2 CH 2 CH 2 CH 2 CH(CH 3 )-, -(CH 2 ) i O- And a combination of one or more of -(CH 2 ) i CO-, i is an integer from 0 to 5 (eg, 0, 1, 2, 3, 4 or 5).
- said X 3 is -CH 2 -.
- the X 2 is
- the carboxylic acid derivative has the structure:
- the R 3 is selected from the group consisting of: -H, -CH 3 , -CH 2 CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 SCH 3 -, -CH 2 OH, -CH 2 SH, -CH(OH)CH 3 , -CH 2 COOH and -CH 2 CH 2 COOH.
- said R 3 is -H or -CH 3 .
- the m and n are equal integers.
- Another aspect of the present invention also provides a Y-branched hydrophilic polymer derivative derived from the above carboxylic acid, which has the following structure:
- X 4 is a linking group selected from the group consisting of: -(CH 2 ) j -, -(CH 2 ) j O-, -(CH 2 ) j S-, -(CH 2 ) j CO-, -(CH 2 ) a combination of one or more of j NH-, -(CH 2 ) j CONH- and -(CH 2 ) j NHCO-, j is an integer from 0 to 10,
- Q is a terminal group selected from: C 1-6 alkoxy, hydroxy, amino, carboxy, thiol, ester, keto, aldehyde, o-dithiopyridyl, azide, hydrazide, alkynyl , silyl, maleimide and succinimide groups.
- the derivative may have a molecular weight of 15-50 KDa (specifically 15, 16, 16, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48 or 50 KDa).
- the P a and P b are independently selected from the group consisting of polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polytetrahydrofuran, polypropylene oxide, polybutylene oxide, polyoxygen A residue of a copolymer of one or more of a heterocyclic butane and a polypropylene morpholine.
- the P a and/or P b are polyethylene glycol residues.
- the P a is a polyethylene glycol residue having a structure of R a —O—(CH 2 CH 2 O) m —, and R a is selected from the group consisting of: H, C 1- 6 alkyl, C 3-6 cycloalkyl and C 6-10 cycloalkyl, m is an integer from 170 to 565.
- said R a is selected from: H, methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl, cyclohexyl, and benzyl.
- said R a is H or methyl.
- the P a is a methoxypolyethylene glycol residue having the structure CH 3 O-(CH 2 CH 2 O) m -, and m is an integer from 170 to 565.
- the P a has a molecular weight of 7.5 to 25 KDa (specifically, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25KDa).
- the P b is a polyethylene glycol residue having a structure of R b —O—(CH 2 CH 2 O) n —, and R b is selected from the group consisting of: H, C 1- 6 alkyl, C 3-6 cycloalkyl and C 6-10 cycloalkyl, n being an integer from 170 to 565.
- the R b is selected from the group consisting of H, methyl, ethyl, isopropyl, cyclopropyl, cyclobutyl, cyclohexyl and benzyl.
- said R b is H or methyl.
- the molecular weight of P b may be 7.5-25 KDa (specifically, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23, 24 or 25KDa).
- the Y-branched hydrophilic polymer derivative is a Y-branched polyethylene glycol derivative having the following structure:
- the X 4 is selected from: a single bond, -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 CH 2 -, -(CH 2 ) j CO-, -(CH 2 ) j NH-, -(CH 2 ) j CONH- and -(CH 2 ) j NHCO-
- j is an integer from 0 to 5 (eg, 0, 1, 2, 3, 4, or 5).
- the X 4 is selected from the group consisting of: a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 NH-, -CH 2 CH 2 NH -, - CH 2 CH 2 CH 2 NH -, - CH 2 CONH -, - CH 2 CH 2 CONH- , and combinations -CH 2 CH 2 CH 2 CONH- of one or more.
- the Q is selected from the group consisting of: -OH, -SH, -NH 2 , -COOH, -CHO, And -N 3 .
- the Y-branched hydrophilic polymer derivative has the following structure:
- the R 3 is selected from the group consisting of: -H, -CH 3 , -CH 2 CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 SCH 3 -, -CH 2 OH, -CH 2 SH, -CH(OH)CH 3 , -CH 2 COOH and -CH 2 CH 2 COOH.
- said R 3 is -H or -CH 3 .
- the m and n are equal integers.
- Another aspect of the present invention provides a process for producing the above Y-branched hydrophilic polymer derivative, which comprises the steps of the preparation method of the above Y-branched hydrophilic polymer carboxylic acid derivative.
- Another aspect of the present invention provides a use of the above Y-branched hydrophilic polymer carboxylic acid derivative, Y-branched hydrophilic polymer derivative in a modified drug.
- Another aspect of the present invention provides a combination of the above Y-branched hydrophilic polymer carboxylic acid derivative, Y-branched hydrophilic polymer derivative and a drug of the present invention.
- the drug is selected from the group consisting of amino acids, polypeptides, proteins, sugars, organic acids, alkaloids, flavonoids, terpenoids, terpenoids, phenylpropanoid phenols, steroids, and steroids. drug.
- Another aspect of the present invention provides a method for producing the above-mentioned Y-branched hydrophilic polymer carboxylic acid derivative of the present invention, in the pharmaceutical composition for preparing the above-mentioned Y-branched hydrophilic polymer carboxylic acid derivative application.
- Another aspect of the present invention provides a method for preparing the above-mentioned Y-branched hydrophilic polymer carboxylic acid derivative of the present invention, in the preparation of the above Y-branched hydrophilic polymer derivative, and a pharmaceutical combination thereof .
- Another aspect of the invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising the above combination of the invention and, optionally, a pharmaceutically acceptable carrier or excipient.
- Another aspect of the present invention provides a Y-branched hydrophilic polymer carboxylic acid derivative, a Y-branched polyethylene glycol derivative, and a pharmaceutical conjugate thereof and a pharmaceutical composition thereof, in the preparation of a therapeutic disease The application of the drug.
- the preparation method of the Y-branched hydrophilic polymer carboxylic acid derivative (especially the high-purity high molecular weight Y-branched polyethylene glycol carboxylic acid derivative) provided by the invention has simple preparation steps but the product after the reaction The separation is easy, the separation cost is low, the product purity and the yield are high, and the preparation of other derivatives based on the preparation of the carboxylic acid derivative and the drug combination thereof is facilitated, which is advantageous for industrial amplification and commercial application.
- the prepared Y-branched hydrophilic polymer carboxylic acid derivative (especially the high molecular weight Y-branched polyethylene glycol carboxylic acid derivative) has high purity and high commercial value, especially in the preparation of prevention and/or Or the application of drugs for the treatment of diseases.
- Figure 1 is a GFC chromatogram of the crude product before column separation provided in Example 1 of the present invention.
- Example 2 is a chromatogram of a collection starting point GFC provided in Example 1 of the present invention.
- Fig. 3 is a view showing a peak point GFC chromatogram provided in Example 1 of the present invention.
- Example 4 is a GFC chromatogram of the post-column product provided in Example 1 of the present invention.
- Fig. 5 is a GFC chromatogram of the crude product before column separation according to Example 2 of the present invention.
- Figure 6 is a chromatogram of the collection starting point GFC provided in Example 2 of the present invention.
- Fig. 7 is a view showing a peak point GFC chromatogram provided in Example 2 of the present invention.
- Figure 8 is a GFC chromatogram of the post-column product provided in Example 2 of the present invention.
- Figure 9 is a GFC chromatogram of the pre-column crude product provided in Example 3 of the present invention.
- Figure 10 is a chromatogram of the collection starting point GFC provided in Example 3 of the present invention.
- Figure 11 is a view showing a peak point GFC chromatogram provided in Example 3 of the present invention.
- Figure 12 is a GFC chromatogram of the post-column product provided in Example 3 of the present invention.
- Figure 13 is a GFC chromatogram of the crude product before column separation according to Example 4 of the present invention.
- Figure 14 is a chromatogram of the collection starting point GFC provided in Example 4 of the present invention.
- Figure 15 is a view showing a peak point GFC chromatogram provided in Example 4 of the present invention.
- Figure 16 is a GFC chromatogram of the post-column product provided in Example 4 of the present invention.
- Figure 17 is a GFC chromatogram of the pre-column crude product provided in Example 5 of the present invention.
- Figure 18 is a chromatogram of the collection starting point GFC provided in Example 5 of the present invention.
- Fig. 19 is a view showing a peak point GFC chromatogram provided in Example 5 of the present invention.
- Figure 20 is a GFC chromatogram of the post-column product provided in Example 5 of the present invention.
- Alkyl refers to a hydrocarbon chain radical that is linear or branched and free of unsaturated bonds, and which is attached to the rest of the molecule by a single bond.
- the C1-C6 alkyl group means an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, iso Amyl, neopentyl, tert-amyl, n-hexyl, isohexyl and the like.
- alkyl group is substituted by a cycloalkyl group, it is correspondingly a "cycloalkylalkyl” radical such as cyclopropylmethyl, cyclopropylethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, etc. .
- cycloalkylalkyl such as cyclopropylmethyl, cyclopropylethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, etc.
- an aryl group it is correspondingly an "aralkyl” radical such as benzyl, benzhydryl or phenethyl.
- heterocyclic group it is correspondingly a "heterocyclylalkyl” radical.
- alkoxy means a substituent formed by substituting a hydrogen in a hydroxy group with an alkyl group
- alkoxy group of C1-C6 means an alkoxy group having 1 to 6 carbon atoms, such as a methoxy group or an ethoxy group. , propoxy, butoxy, and the like.
- Cycloalkyl means an alicyclic hydrocarbon such as containing from 1 to 4 monocyclic and/or fused rings containing from 3 to 18 carbon atoms, preferably from 3 to 10 carbon atoms, such as cyclopropyl, cyclohexyl or Adamantyl and the like
- the C3-C6 cycloalkyl group in the present invention means a cycloalkyl group having 3 to 6 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and a cyclohexyl group.
- a “substituted” group as used in the present invention refers to a group substituted at one or more of the available sites by one or more suitable groups, specifically, for example, a substituted alkyl group, which refers to an alkyl group.
- One or more hydrogens are substituted by one or more suitable groups such as an alkyl group (e.g., a C1-6 alkyl group, particularly a C1-3 alkyl group such as a methyl group, an ethyl group).
- alkoxy such as C1-6 alkoxy, especially C1-3 alkoxy, such as methoxy, ethoxy or propoxy
- alkenyl such as An alkenyl group of C1-6, especially an alkenyl group of C1-3, such as a vinyl group, an alkynyl group (such as an alkynyl group of C1-6, especially an alkynyl group of C1-3, such as a propynyl group), a cycloalkyl group (such as a cycloalkyl group of C3-6, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl), an aryl group (such as an aryl group of C6-12, especially a phenyl group), an aryloxy group (such as benzene) An oxy), an alkylaryl group (such as a benzyl group), a heterocyclic group (such as a heterocycl
- some specific groups and chemical structures involved in the present invention correspond to the following: hydroxyl group, -OH; amino group, -NH 2 ; carboxyl group, Sulfhydryl, -SH; ester group, (wherein Q 1 may be an alkyl group, an aryl group or a heterocyclic group such as methyl, ethyl, n-propyl, t-butyl, maleimide, succinimidyl, Ketone, (wherein Q 2 may be substituted or unsubstituted alkyl, aryl, heterocyclic, such as substituted or unsubstituted methyl, ethyl, n-propyl, Ethyl, -CHO; o-dithiopyridyl, Azido group, Acyl hydrazino, Alkynyl, Silyl group, (wherein Q 3 may be the same or different alkyl or alkoxy group, such as methyl, ethyl, propyl
- the definition of the linking group refers to the group two linking groups listed in the above chemical bond formed by the engagement of the connection, for example - (CH 2) j - and -
- the combination of (CH 2 ) j NHCO- may be -(CH 2 ) j NHCO(CH 2 ) j -; specifically, the combination of -CH 2 - and -CH 2 CH 2 NHCO- may be -CH 2 CH 2 NHCOCH 2 -, -CH 2 CH 2 CH 2 NHCO-.
- the "combination” is used to define the chemical structure of the linking group, and does not involve the preparation steps, combination order, and the like of the linking group.
- the Y-branched polyethylene glycol-acetic acid having a molecular weight of 20,000 was prepared by the synthesis method of Example 5 of Patent CN1243779C: 10 g of polyethylene glycol monomethyl ether-aminoacetic acid (mPEG-Gly) having a molecular weight of 10,000 and a molecular weight of 10 g 10000 of polyethylene glycol monomethyl ether-carboxyacetate succinimide ester (mPEG-OCH 2 CO-NHS) was dissolved in 200 ml of dichloromethane, 0.11 ml of triethylamine was added to the solution, and the reaction was carried out overnight at room temperature.
- mPEG-Gly polyethylene glycol monomethyl ether-aminoacetic acid
- mPEG-OCH 2 CO-NHS polyethylene glycol monomethyl ether-carboxyacetate succinimide ester
- the solvent was concentrated, the residue was added diethyl ether, and the precipitate was collected by filtration, dried in vacuo, purified by ion-exchange chromatography column, and monitored by GFC, and collected at a peak height of the target product exceeding 5 mv, and collected at less than 5 mv.
- Step of reacting mPEG-Gly with mPEG-OCH 2 CO-NHS Referring to Example 2, after reacting at room temperature overnight, BOC anhydride was added, the reaction was carried out for 3 h, the solvent was concentrated by rotary evaporation, the residue was added diethyl ether, and the precipitate was collected by filtration, dried under vacuum, and ion exchange Column purification, GFC monitoring, starting with the peak height of the target product exceeding 5 mv, and collecting at less than 5 mv.
- the Y-branched polyethylene glycol-acetic acid having a molecular weight of 44,000 was prepared by the synthesis method of Example 5 of Patent CN1243779C: 10g of polyethylene glycol monomethyl ether-aminoacetic acid (mPEG-Gly) having a molecular weight of 22000 and a molecular weight of 10g 22000 of polyethylene glycol monomethyl ether-carboxyacetate succinimide ester (mPEG-OCH 2 CO-NHS) was dissolved in 200 ml of dichloromethane, 0.23 ml of triethylamine was added to the solution, and the reaction was carried out overnight at room temperature.
- mPEG-Gly polyethylene glycol monomethyl ether-aminoacetic acid
- mPEG-OCH 2 CO-NHS polyethylene glycol monomethyl ether-carboxyacetate succinimide ester
- the solvent was concentrated, the residue was added diethyl ether, and the precipitate was collected by filtration, dried in vacuo, purified by ion-exchange chromatography column, and monitored by GFC, and collected at a peak height of the target product exceeding 5 mv, and collected at less than 5 mv.
- Step of reacting mPEG-Gly with mPEG-OCH 2 CO-NHS Referring to Example 4, after reacting at room temperature overnight, adding BOC anhydride, reacting for 3 hours, concentrating the solvent by rotary evaporation, adding the residue to diethyl ether, collecting the precipitate by filtration, vacuum drying, ion exchange Column purification, GFC monitoring, starting with the peak height of the target product exceeding 5 mv, and collecting at less than 5 mv.
- the effect of the prior art on product purification will gradually increase with increasing molecular weight, and the method of the present invention can significantly improve purification yield and product purity for high molecular weight products.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Preparation (AREA)
- Polyethers (AREA)
Abstract
本发明公开了一种Y型分支的亲水性聚合物羧酸衍生物的制备方法,特别是高纯度的高分子量Y型分支聚乙二醇羧酸衍生物的制备方法,其制备步骤简单,但反应后产物分离容易,分离成本低,产品纯度和收率高,利于后续基于该羧酸衍生物制备的其他衍生物及其药物结合物的制备,利于工业放大和商业应用。制备得到的Y型分支的亲水性聚合物羧酸衍生物(特别是高分子量的Y型分支聚乙二醇羧酸衍生物)产品纯度高,商业应用价值高,特别是在制备预防和/或治疗疾病的药物中的应用。
Description
本发明涉及聚合物技术领域,具体涉及一种Y型分支的亲水性聚合物羧酸衍生物的制备方法,特别是一种高纯度的高分子量Y型分支聚乙二醇羧酸衍生物的制备方法。
聚乙二醇(PEG)被认为是已知聚合物中蛋白和细胞吸收水平非常低的聚合物,而且,其具有良好的水溶性和生物相容性、无毒、无免疫性、无致畸性且无抗原性的优势,被广泛应用于药物修饰、制剂制备与医疗器械材料等领域。从1991年开始,第一种用PEG修饰的药物PEG-ADA被FDA批准上市后,各大制药公司对PEG在药物领域的研发投入了极大的精力和金钱。近几年来,上市的产品有PEG-生长抑素、PEG-干扰素、PEG-粒细胞集落因子等。目前,尚有几十种PEG修饰药物处于研究或临床试验阶段。
在药物修饰领域,Y型聚乙二醇是一类被广泛使用的聚乙二醇,其可明显降低修饰后药物的活性损失,特别是在改善蛋白质及多肽药物的临床应用方面,能更有效地阻止抗体接近蛋白质药物,从而大大增加蛋白质药物在体内的循环半衰期,同时大大降低其在体内的免疫源性。其中,Y型PEG的端基为羧基时,可与修饰药物或其他化合物上的氨基、羟基、硫羟基等反应形成共价键实现修饰连接,是一种常用的Y型PEG衍生物。其制备方法如专利CN1243779C中所述,
可通过
与
反应得到,反应结束后经离子交换色谱纯化。在阴离子交换柱上,化合物中所含-COOH基团数越多,在柱上的吸附力越强。因此,当PEG结构中-COOH个数相同时,分子量越低,在柱上的吸附力越强。并且,这种分子量带来的吸附力的差距,会随着分子量的递增而减弱。但是,由于mPEG-gly中-NH-的存在会抵消部分-COOH的酸性,从而降低了该杂质在离子交换柱上的吸附力,以上三个化合物在柱上的吸附力强弱排序为mPEG-cm、mPEG-gly、Y-cm。上述制备反应产物中包括目标产物Y-cm和未反应的反应物mPEG-gly和mPEG-cm,在高分子量的范围内,mPEG-gly会对分离产生很大的干扰,使目标产物的纯度和收率降低。如CN1243779C的制备实施例中Y型PEG产物的产率较低,仅为50%,产品分离困难,成本较高,不利于工业放大。
发明内容
为克服现有技术的不足,本发明提供了一种Y型分支的亲水性聚合物羧酸衍生物的制备方法。
所述方法包括如下反应:
其中,P
a和P
b为相同或不同的亲水性聚合物残基,
R
1和R
2独立地选自:-H、C
1-6取代或未取代的烷基、C
1-6取代或未取代的烷氧基、C
3-6取代或未取代的环烷基和C
4-10取代或未取代的亚烷基环烷基,
R
3选自:-H、C
1-6取代或未取代的烷基、C
6-10取代或未取代的芳烷基和C
4-10取代或未取代的杂环烷基,
反应结束后,加入酸酐,继续反应,分离纯化。
上述制备方法更适于制备较高分子量的Y型分支的亲水性聚合物羧酸衍生物,反应收率和产品纯度更高,分离更容易。在本发明的一个实施例中,所述Y型分支的亲水性聚合物羧酸衍生物的分子量可为15-50KDa(具体可为15、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48或50KDa)。
在本发明的一个实施例中,所述酸酐为有机酸酸酐。
在本发明的一个实施例中,所述有机酸酸酐选自:二碳酸二叔丁酯(Boc酸酐)、乙酸酐、丙酸酐、异丁酸酐、丁酸酐、苯甲酸酐和邻苯二甲酸酐中的一种或多种。
在本发明的一个优选实施例中,所述酸酐为Boc酸酐。
在本发明的一个实施例中,所述酸酐与反应物
加入量的摩尔比为0.01-10:1(具体可为0.01:1、0.1:1、0.2:1、0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1.0:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、2.0:1、3.0:1、4.0:1、5.0:1、6.0:1、7.0:1、8.0:1、9.0:1或10.0:1)。
在本发明的一个实施例中,加入酸酐后反应时间为0.1-24小时(具体可为0.1、1、2、3、4、5、10、15、20或24小时)。
在本发明的一个实施例中,所述分离纯化步骤包括采用离子交换色谱分离纯化的步骤。
在本发明的一个实施例中,所述的P
a和P
b独立地选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基。
在本发明的一个优选实施例中,所述的P
a和/或P
b为聚乙二醇残基。
在本发明的一个实施例中,所述的P
a为聚乙二醇残基,其结构为R
a-O-(CH
2CH
2O)
m-,R
a选自:H、C
1-6烷基、C
3-6环烷基和C
6-10环烷基,m为170-565的整数。
在本发明的一个实施例中,所述R
a选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基。
在本发明的一个优选实施例中,所述R
a为H或甲基。
在本发明的一个实施例中,所述的P
a为甲氧基聚乙二醇残基,其结构为CH
3O-(CH
2CH
2O)
m-,m为170-565的整数。
在本发明的一个实施例中,所述的P
a的分子量可为7.5-25KDa(具体可为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25KDa)。
在本发明的一个实施例中,所述的P
b为聚乙二醇残基,其结构为R
b-O-(CH
2CH
2O)
n-,R
b选自:H、C
1-6烷基、C
3-6环烷基和C
6-10环烷基,n为170-565的整数。
在本发明的一个实施例中,所述R
b选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基。
在本发明的一个优选实施例中,所述R
b为H或甲基。
在本发明的一个实施例中,所述的P
b为甲氧基聚乙二醇残基,其结构为CH
3O-(CH
2CH
2O)
n-,n为170-565的整数。
在本发明的一个实施例中,所述的P
b的分子量可为7.5-25KDa(具体可为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25KDa)。
在本发明的一个实施例中,所述m与n为相等的整数。
在本发明的一个优选实施例中,所述Y型分支的亲水性聚合物羧酸衍生物为Y型分支的聚乙二醇羧酸衍生物所述反应如下:
在本发明的一个实施例中,所述X
1选自:单键、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2CH
2-、-CH(CH
3)-、-CH
2CH(CH
3)-、-CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH
2CH(CH
3)-、-(CH
2)
iO-和-(CH
2)
iCO-中的一种或多种的组合,i为0-5的整数(如0、1、2、3、4或5)。
在本发明的一个优选实施例中,所述X
1为-CH
2CH
2-。
在本发明的一个实施例中,所述X
3选自:单键、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2CH
2-、-CH(CH
3)-、-CH
2CH(CH
3)-、-CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH
2CH(CH
3)-、-(CH
2)
iO-和-(CH
2)
iCO-中的一种或多种的组合,i为0-5的整数(如0、1、2、3、4或5)。
在本发明的一个优选实施例中,所述X
3为-CH
2-。
在本发明的一个实施例中,所述R
3选自:-H、-CH
3、-CH
2CH(CH
3)
2、-CH(CH
3)CH
2CH
3、-CH(CH
3)
2、
-CH
2CH
2SCH
3-、-CH
2OH、-CH
2SH、-CH(OH)CH
3、
-CH
2COOH和-CH
2CH
2COOH。
在本发明的一个优选实施例中,所述X
2为-CH
2-或-CH(CH
3)-。
在本发明的一个具体实施方式中,所述制备方法的反应为:
本发明另一方面还提供一种上述方法制备的Y型分支的亲水性聚合物羧酸衍生物,其具有如下结构:
其中,P
a、P
b、X
1、X
2、X
3具有本发明上述定义。
所述羧酸衍生物的分子量为15-50KDa(具体可为15、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48或50KDa)。
在本发明的一个实施例中,所述的P
a和P
b独立地选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基。
在本发明的一个优选实施例中,所述的P
a和/或P
b为聚乙二醇残基。
在本发明的一个实施例中,所述的P
a为聚乙二醇残基,其结构为R
a-O-(CH
2CH
2O)
m-,R
a选自:H、C
1-6烷基、C
3-6环烷基和C
6-10环烷基,m为170-565的整数。
在本发明的一个实施例中,所述R
a选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基。
在本发明的一个优选实施例中,所述R
a为H或甲基。
在本发明的一个实施例中,所述的P
a为甲氧基聚乙二醇残基,其结构为CH
3O-(CH
2CH
2O)
m-,m为170-565的整数。
在本发明的一个实施例中,所述的P
a的分子量为7.5-25KDa(具体可为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25KDa)。
在本发明的一个实施例中,所述的P
b为聚乙二醇残基,其结构为R
b-O-(CH
2CH
2O)
n-,R
b选自:H、C
1-6烷基、C
3-6环烷基和C
6-10环烷基,n为170-565的整数。
在本发明的一个实施例中,所述R
b选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基。
在本发明的一个优选实施例中,所述R
b为H或甲基。
在本发明的一个实施例中,所述的P
b为甲氧基聚乙二醇残基,其结构为CH
3O-(CH
2CH
2O)
n-,n为170-565 的整数。
在本发明的一个实施例中,所述的P
b的分子量可为7.5-25KDa(具体可为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25KDa)。
在本发明的一个实施例中,所述Y型分支的亲水性聚合物羧酸衍生物为Y型分支的聚乙二醇羧酸衍生物,其具有如下结构:
在本发明的一个实施例中,所述X
1选自:单键、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2CH
2-、-CH(CH
3)-、-CH
2CH(CH
3)-、-CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH
2CH(CH
3)-、-(CH
2)
iO-和-(CH
2)
iCO-中的一种或多种的组合,i为0-5的整数(如0、1、2、3、4或5)。
在本发明的一个优选实施例中,所述X
1为-CH
2CH
2-。
在本发明的一个实施例中,所述X
3选自:单键、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2CH
2-、-CH(CH
3)-、-CH
2CH(CH
3)-、-CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH(CH
3)-、-CH
2CH
2CH
2CH
2CH
2CH(CH
3)-、-(CH
2)
iO-和-(CH
2)
iCO-中的一种或多种的组合,i为0-5的整数(如0、1、2、3、4或5)。
在本发明的一个优选实施例中,所述X
3为-CH
2-。
在本发明的一个实施例中,所述羧酸衍生物具有如下结构:
在本发明的一个实施例中,所述R
3选自:-H、-CH
3、-CH
2CH(CH
3)
2、-CH(CH
3)CH
2CH
3、-CH(CH
3)
2、
-CH
2CH
2SCH
3-、-CH
2OH、-CH
2SH、-CH(OH)CH
3、
-CH
2COOH和-CH
2CH
2COOH。
在本发明的一个优选实施例中,所述R
3为-H或-CH
3。
在本发明的一个实施例中,所述m与n为相等的整数。
本发明另一方面还提供一种基于上述羧酸衍生的Y型分支的亲水性聚合物衍生物,其具有如下结构:
其中,P
a、P
b、X
1、X
2、X
3具有本发明上述定义,
X
4为连接基团,选自:-(CH
2)
j-、-(CH
2)
jO-、-(CH
2)
jS-、-(CH
2)
jCO-、-(CH
2)
jNH-、-(CH
2)
jCONH-和-(CH
2)
jNHCO-中一种或多种的组合,j为0-10的整数,
Q为端基,选自:C
1-6的烷氧基、羟基、氨基、羧基、巯基、酯基、酮基、醛基、邻二硫吡啶基、叠氮基、酰肼基、炔基、硅烷基、马来酰亚胺基和琥珀酰亚胺基。
在本发明的一个实施例中,所述衍生物的分子量可为15-50KDa(具体可为15、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48或50KDa)。
在本发明的一个实施例中,所述的P
a和P
b独立地选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基。
在本发明的一个优选实施例中,所述的P
a和/或P
b为聚乙二醇残基。
在本发明的一个实施例中,所述的P
a为聚乙二醇残基,其结构为R
a-O-(CH
2CH
2O)
m-,R
a选自:H、C
1-6烷基、C
3-6环烷基和C
6-10环烷基,m为170-565的整数。
在本发明的一个实施例中,所述R
a选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基。
在本发明的一个优选实施例中,所述R
a为H或甲基。
在本发明的一个实施例中,所述的P
a为甲氧基聚乙二醇残基,其结构为CH
3O-(CH
2CH
2O)
m-,m为170-565的整数。
在本发明的一个实施例中,所述的P
a的分子量为7.5-25KDa(具体可为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25KDa)。
在本发明的一个实施例中,所述的P
b为聚乙二醇残基,其结构为R
b-O-(CH
2CH
2O)
n-,R
b选自:H、C
1-6烷基、C
3-6环烷基和C
6-10环烷基,n为170-565的整数。
在本发明的一个实施例中,所述R
b选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基。
在本发明的一个优选实施例中,所述R
b为H或甲基。
在本发明的一个实施例中,所述的P
b为甲氧基聚乙二醇残基,其结构为CH
3O-(CH
2CH
2O)
n-,n为170-565的整数。
在本发明的一个实施例中,所述的P
b的分子量可为7.5-25KDa(具体可为7.5、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25KDa)。
在本发明的一个实施例中,所述Y型分支的亲水性聚合物衍生物为Y型分支的聚乙二醇衍生物,其具有如下结构:
在本发明的一个实施例中,所述X
4选自:单键、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2-、-CH
2CH
2CH
2CH
2CH
2-、-(CH
2)
jCO-、-(CH
2)
jNH-、-(CH
2)
jCONH-和-(CH
2)
jNHCO-中一种或多种的组合,j为0-5的整数(如0、1、2、3、4或5)。
在本发明的一个优选实施例中,所述X
4选自:单键、-CH
2-、-CH
2CH
2-、-CH
2CH
2CH
2-、-CH
2NH-、-CH
2CH
2NH-、-CH
2CH
2CH
2NH-、-CH
2CONH-、-CH
2CH
2CONH-和-CH
2CH
2CH
2CONH-中一种或多种的组合。
在本发明的一个优选实施例中,所述Y型分支的亲水性聚合物衍生物具有如下结构:
在本发明的一个实施例中,所述R
3选自:-H、-CH
3、-CH
2CH(CH
3)
2、-CH(CH
3)CH
2CH
3、-CH(CH
3)
2、
-CH
2CH
2SCH
3-、-CH
2OH、-CH
2SH、-CH(OH)CH
3、
-CH
2COOH和-CH
2CH
2COOH。
在本发明的一个优选实施例中,所述R
3为-H或-CH
3。
在本发明的一个实施例中,所述m与n为相等的整数。
本发明另一方面还提供一种上述Y型分支的亲水聚合物衍生物的制备方法,其包括上述Y型分支的亲水聚合物羧酸衍生物的制备方法步骤。
本发明另一方面还提供一种上述Y型分支的亲水性聚合物羧酸衍生物、Y型分支的亲水聚合物衍生物在修饰药物中的应用。
本发明另一方面还提供一种本发明上述Y型分支的亲水性聚合物羧酸衍生物、Y型分支的亲水聚合物衍生物与药物的结合物。
在本发明的一个实施例中,所述药物选自:氨基酸、多肽、蛋白质、糖类、有机酸、生物碱、黄酮类、醌类、萜类、苯丙素酚类、甾体和甙类药物。
本发明另一方面还提供一种本发明上述Y型分支的亲水性聚合物羧酸衍生物的制备方法在制备上述Y型分支的亲水性聚合物羧酸衍生物的药物组合物中的应用。
本发明另一方面还提供一种本发明上述Y型分支的亲水性聚合物羧酸衍生物的制备方法在制备上述Y型分支的亲水聚合物衍生物、及其药物结合物中的应用。
本发明另一方面还提供一种包括本发明上述结合物及任选的药学上可接受的载体或赋形剂的药物组合物。
本发明另一方面还提供一种本发明上述Y型分支的亲水性聚合物羧酸衍生物、Y型分支的聚乙二醇衍生物、及其药物结合物和药物组合物在制备治疗疾病的药物中的应用。
本发明提供的Y型分支的亲水性聚合物羧酸衍生物(特别是高纯度的高分子量的Y型分支聚乙二醇羧酸衍生物)的制备方法,制备步骤简单,但反应后产物分离容易,分离成本低,产品纯度和收率高,利于后续基于该羧酸衍生物制备的其他衍生物及其药物结合物的制备,利于工业放大和商业应用。制备得到的Y型分支的亲水性聚合物羧酸衍生物(特别是高分子量的Y型分支聚乙二醇羧酸衍生物)产品纯度高,商业应用价值高,特别是在制备预防和/或治疗疾病的药物中的应用。
图1所示为本发明实施例1提供的柱分前粗品的GFC色谱图。
图2所示为本发明实施例1提供的收集起点GFC色谱图。
图3所示为本发明实施例1提供的峰值点GFC色谱图。
图4所示为本发明实施例1提供的柱分后产品的GFC色谱图。
图5所示为本发明实施例2提供的柱分前粗品的GFC色谱图。
图6所示为本发明实施例2提供的收集起点GFC色谱图。
图7所示为本发明实施例2提供的峰值点GFC色谱图。
图8所示为本发明实施例2提供的柱分后产品的GFC色谱图。
图9所示为本发明实施例3提供的柱分前粗品的GFC色谱图。
图10所示为本发明实施例3提供的收集起点GFC色谱图。
图11所示为本发明实施例3提供的峰值点GFC色谱图。
图12所示为本发明实施例3提供的柱分后产品的GFC色谱图。
图13所示为本发明实施例4提供的柱分前粗品的GFC色谱图。
图14所示为本发明实施例4提供的收集起点GFC色谱图。
图15所示为本发明实施例4提供的峰值点GFC色谱图。
图16所示为本发明实施例4提供的柱分后产品的GFC色谱图。
图17所示为本发明实施例5提供的柱分前粗品的GFC色谱图。
图18所示为本发明实施例5提供的收集起点GFC色谱图。
图19所示为本发明实施例5提供的峰值点GFC色谱图。
图20所示为本发明实施例5提供的柱分后产品的GFC色谱图。
除非另有定义,本发明中所使用的所有的技术和科学术语具有与本发明涉及领域的技术人员通常理解的相同的含义,如,
“烷基”指的是直链或支链的且不含不饱和键的烃链自由基,且其以单键与分子其他部分连接。C1-C6的烷基指含有1-6个碳原子的烷基,如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、正己基、异己基等。如果烷基被环烷基取代,其相应为“环烷基烷基”自由基,如环丙基甲基、环丙基乙基、环丁基甲基、环戊基甲基、环己基甲基等。如果烷基被芳基取代,那么其相应为“芳烷基”自由基,如苄基、二苯甲基或苯乙基。如果烷基被杂环基取代,那么其相应为“杂环基烷基”自由基。
“烷氧基”指的是羟基中的氢被烷基取代后形成的取代基,C1-C6的烷氧基指含有1-6个碳原子的烷氧基,如甲氧基、乙氧基、丙氧基、丁氧基等。
“环烷基”指的是脂环烃,如含1至4个单环和/或稠环、含3-18个碳原子,优选3-10个碳原子,如环丙基、环己基或金刚烷基等,本发明中所述C3-C6的环烷基指含有3-6个碳原子的环烷基,如环丙基、环丁基、环戊基和环己基。
本发明中所述的“取代的”基团是指在基团的一个或多个可用位点被一个或多个合适的基团取代,具体地如,取代的烷基,是指烷基中的一个或多个氢被一个或多个合适的基团取代,所述合适的基团如烷基(如C1-6的烷基,特别是C1-3的烷基,如甲基、乙基、丙基或异丙基)、烷氧基(如C1-6的烷氧基,特别是C1-3的烷氧基,如甲氧基、乙氧基或丙氧基)、烯基(如C1-6的烯基,特别是C1-3的烯基,如乙烯基)、炔基(如C1-6的炔基,特别是C1-3的炔基,如丙炔基)、环烷基(如C3-6的环烷基,如环丙基、环丁基、环戊基或环己基)、芳基(如C6-12的芳基,特别是苯基)、芳氧基(如苯氧基)、烷基芳基(如苄基)、杂环基(如C3-12的杂环基,其含1、2或3中杂原子,所述杂原子选自N、O和S原子中一种或多种)、卤素(F、Cl、Br或I)、氰基(-CN)、羟基(-OH)、硝基(-NO
2)、叠氮基(-N
3)、酰基(如烷酰基,特别是C1-6的烷酰基,如甲酰基、乙酰基等;或,酰胺基)、胺基(如伯胺基、仲胺基)、羧基(-COOH)、酯基等。
另外,本发明中涉及的一些具体基团及其化学结构对应如下:羟基,-OH;氨基,-NH
2;羧基,
巯基,-SH;酯基,
(其中Q
1可为烷基、芳基或杂环基,如甲基、乙基、正丙基、叔丁基、马来酰亚胺基、琥珀酰亚胺基、
等);酮基,
(其中Q
2可为取代或未取代的烷基、芳基、杂环基,如取代或未取代的甲基、乙基、正丙基、
等);醛基,-CHO;邻二硫吡啶基,
叠氮基,
酰肼基,
炔基,
硅烷基,
(其中Q
3可为相同或不同的烷基或烷氧基,如甲基、乙基、丙基、丁基、戊基、甲氧基、乙氧基、丙氧基、丁氧基等,优选地,Q
3均为甲基、乙基、正丙基、甲氧基、乙氧基、正丙氧基等);马来酰亚胺基,
琥珀酰亚胺基,
本发明中关于连接基团的定义中,所述“组合”是指所列举的连接基团中的两个以上通过化学键键合连接后形成的基团,例如-(CH
2)
j-与-(CH
2)
jNHCO-的组合可为-(CH
2)
jNHCO(CH
2)
j-;具体地,如-CH
2-与-CH
2CH
2NHCO-的组合可为-CH
2CH
2NHCOCH
2-、-CH
2CH
2CH
2NHCO-。所述“组合”用于限定连接基团的化学结构,不涉及连接基团的制备步骤、组合顺序等。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1Y型分支的聚乙二醇-乙酸(分子量4000)的合成(现有技术)
参照专利CN1243779C实施例5的合成方法制备分子量为4000的Y型分支的聚乙二醇-乙酸:将10g分子量为2000的聚乙二醇单甲醚-氨基乙酸(mPEG-Gly)和10g分子量为2000的聚乙二醇单甲醚-羧乙酸丁二酰亚胺酯(mPEG-OCH
2CO-NHS)溶于200ml二氯甲烷,向溶液中加入2.5ml三乙胺,室温反应过夜,旋蒸浓缩溶剂,残余物加入乙醚,过滤收集沉淀,真空干燥,离子交换色谱柱纯化,凝胶过滤色谱(GFC)监测,以目标产物峰高超过5mv开始收集,低于5mv结束收集。
柱分前粗品的GFC色谱图如图1所示,其中结果分析如表1所示:
表1 分析结果表
收集起点GFC色谱图如图2所示,其中结果分析如表2所示:
表2 分析结果表
峰值点GFC色谱图如图3所示,其中结果分析如表3所示:
表3 分析结果表
柱分后产品的GFC色谱图如图4所示,其中结果分析如表4所示:
表4 分析结果表
由上述图谱和分析结果可以看出,在低分子量情况下,应用现有技术即可得到纯度较高的粗品,相应地,纯化过程也很顺利,收集起点处的目标产物纯度已达100%,因此没有必要进行工艺改进。
实施例2Y型分支的聚乙二醇-乙酸(分子量20000)的合成(现有技术)
参照专利CN1243779C实施例5的合成方法制备分子量为20000的Y型分支的聚乙二醇-乙酸:将10g分子量为10000的聚乙二醇单甲醚-氨基乙酸(mPEG-Gly)和10g分子量为10000的聚乙二醇单甲醚-羧乙酸丁二酰亚胺酯(mPEG-OCH
2CO-NHS)溶于200ml二氯甲烷,向溶液中加入0.11ml三乙胺,室温反应过夜,旋蒸浓缩溶剂,残余物加入乙醚,过滤收集沉淀,真空干燥,离子交换色谱柱纯化,GFC监测,以目标产物峰高超过5mv开始收集,低于5mv结束收集。
柱分前粗品GFC的色谱图如图5所示,其中结果分析如表5所示:
表5 分析结果表
收集起点的GFC色谱图如图6所示,其中结果分析如表6所示:
表6 分析结果表
峰值点GFC色谱图如图7所示,其中结果分析如表7所示:
表7 分析结果表
柱分后产品的GFC色谱图如图8所示,其中结果分析如表8所示:
表8 分析结果表
实施例3Y型分支的聚乙二醇-乙酸(分子量20000)的合成(本发明方法)
mPEG-Gly与mPEG-OCH
2CO-NHS反应的步骤参考实施例2,室温反应过夜后,加入BOC酸酐,反应3h,旋蒸浓缩溶剂,残余物加入乙醚,过滤收集沉淀,真空干燥,离子交换色谱柱纯化,GFC监测,以目标产物峰高超过5mv开始收集,低于5mv结束收集。
柱分前粗品的GFC色谱图如图9所示,其中结果分析如表9所示:
表9 分析结果表
收集起点的GFC色谱图如图10所示,其中结果分析如表10所示:
表10 分析结果表
峰值点GFC色谱图如图11所示,其中结果分析如表11所示:
表11 分析结果表
柱分后产品的GFC色谱图如图12所示,其中结果分析如表12所示:
表12 分析结果表
由实施例2、3对比可以看出,在制备分子量20000的Y型分支的聚乙二醇-乙酸产品过程中,应用现有技术会对后期纯化过程产生一定不利的影响,在目标产物的浓度达到收集标准时纯度为89.2%,最终所得的产品纯度只能达到96.2%。不过,该分子量条件下,目标产物浓度达到峰值时仍能达到纯度100%,因此,若想通过现有技术得到纯度100%的产品,则需要在柱分过程中舍弃部分目标产物,继而影响收率。相比较,应用本发明方法后,则可以在柱分收集的起点处就得到纯度100%的目标产物,从而提高纯化效率。
实施例4Y型分支的聚乙二醇-乙酸(分子量44000)的合成(现有技术)
参照专利CN1243779C实施例5的合成方法制备分子量为44000的Y型分支的聚乙二醇-乙酸:将10g分子量为22000的聚乙二醇单甲醚-氨基乙酸(mPEG-Gly)和10g分子量为22000的聚乙二醇单甲醚-羧乙酸丁二酰亚胺酯(mPEG-OCH
2CO-NHS)溶于200ml二氯甲烷,向溶液中加入0.23ml三乙胺,室温反应过夜,旋蒸浓缩溶剂,残余物加入乙醚,过滤收集沉淀,真空干燥,离子交换色谱柱纯化,GFC监测,以目标产物峰高超过5mv开始收集,低于5mv结束收集。
柱分前粗品的GFC色谱图如图13所示,其中结果分析如表13所示:
表13 分析结果表
收集起点的GFC色谱图如图14所示,其中结果分析如表14所示:
表14 分析结果表
峰值点GFC色谱图如图15所示,其中结果分析如表15所示:
表15 分析结果表
柱分后产品的GFC色谱图如图16所示,其中结果分析如表16所示:
表16 分析结果表
实施例5Y型分支的聚乙二醇-乙酸(分子量44000)的合成(本发明方法)
mPEG-Gly与mPEG-OCH
2CO-NHS反应的步骤参考实施例4,室温反应过夜后,加入BOC酸酐,反应3h,旋蒸浓缩溶剂,残余物加入乙醚,过滤收集沉淀,真空干燥,离子交换色谱柱纯化,GFC监测,以目标产物峰高超过5mv开始收集,低于5mv结束收集。
柱分前粗品的GFC色谱图如图17所示,其中结果分析如表17所示:
表17 分析结果表
收集起点的GFC色谱图如图18所示,其中结果分析如表18所示:
表18 分析结果表
峰值点GFC色谱图如图19所示,其中结果分析如表19所示:
表19 分析结果表
柱分后产品的GFC色谱图如图20所示,其中结果分析如表20所示:
表20 分析结果表
由实施例4、5对比可以看出,在制备分子量44000的Y型分支的聚乙二醇-乙酸产品过程中,应用现有技术会对后期纯化过程产生严重影响,在目标产物的浓度达到收集标准时纯度为84.7%,峰值时纯度也只有97.2%,最终所得的产品纯度只能达到94.5%,使用该方法无法得到高纯产品。相比较,应用本发明方法后,则可以在柱分收集的起点处就得到纯度100%的目标产物,显著地提高了纯化的效果。
由以上实施例可以看出,现有技术对于产品纯化的影响会随着分子量的提高而逐渐增加,本发明的方法可以针对高分子量产品显著地提高纯化收率以及产品纯度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。
Claims (23)
- 一种Y型分支的亲水性聚合物羧酸衍生物的制备方法,所述方法包括如下反应:其中,P a和P b为相同或不同的亲水性聚合物残基,R 1和R 2独立地选自:-H、C 1-6取代或未取代的烷基、C 1-6取代或未取代的烷氧基、C 3-6取代或未取代的环烷基和C 4-10取代或未取代的亚烷基环烷基,R 3选自:-H、C 1-6取代或未取代的烷基、C 6-10取代或未取代的芳烷基和C 4-10取代或未取代的杂环烷基,反应结束后,加入酸酐,继续反应,分离纯化。
- 如权利要求1或2所述的制备方法,其特征在于,所述Y型分支的亲水性聚合物羧酸衍生物的分子量为15-50KDa;和/或,所述的P a选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基;和/或,所述的P a的分子量为7.5-25KDa;和/或,所述的P b选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基;和/或,所述的P b的分子量为7.5-25KDa。
- 如权利要求3所述的制备方法,其特征在于,所述的P a为聚乙二醇残基,其结构为R a-O-(CH 2CH 2O) m-,所述R a选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基,m为170-565的整数;和/或,所述的P b为聚乙二醇残基,其结构为R b-O-(CH 2CH 2O) n-,R b选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基,n为170-565的整数。
- 如权利要求3所述的制备方法,其特征在于,所述R a为H或甲基;和/或,所述R b为H或甲基;和/或,所述m与n为相等的整数。
- 如权利要求1或2所述的制备方法,其特征在于,所述X 1和X 3独立地选自:单键、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2CH 2-、-CH(CH 3)-、-CH 2CH(CH 3)-、-CH 2CH 2CH(CH 3)-、-CH 2CH 2CH 2CH(CH 3)-、-CH 2CH 2CH 2CH 2CH(CH 3)-、-CH 2CH 2CH 2CH 2CH 2CH(CH 3)-、-(CH 2) iO-和-(CH 2) iCO-中的一种或多种的组合,i为0-5的整数;和/或,所述R 3选自:-H、-CH 3、-CH 2CH(CH 3) 2、-CH(CH 3)CH 2CH 3、-CH(CH 3) 2、 -CH 2CH 2SCH 3-、-CH 2OH、-CH 2SH、-CH(OH)CH 3、 -CH 2COOH和-CH 2CH 2COOH;和/或,
- 一种Y型分支的亲水性聚合物羧酸衍生物,其具有如下结构:其中,P a和P b为相同或不同的亲水性聚合物残基,R 1和R 2独立地选自:-H、C 1-6取代或未取代的烷基、C 1-6取代或未取代的烷氧基、C 3-6取代或未取代的环烷基和C 4-10取代或未取代的亚烷基环烷基,R 3选自:-H、C 1-6取代或未取代的烷基、C 6-10取代或未取代的芳烷基和C 4-10取代或未取代的杂环烷基。
- 如权利要求9所述的羧酸衍生物,其特征在于,所述羧酸衍生物的分子量为15-50KDa;和/或,所述的P a选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基;和/或,所述的P a的分子量为7.5-25KDa;和/或,所述的P b选自:聚乙二醇、聚丙二醇、聚乙烯醇、聚四氢呋喃、聚环氧丙烷、聚环氧丁烷、聚氧杂环丁烷和聚丙烯吗啉中的一种或多种的共聚物的残基;和/或,所述的P b的分子量为7.5-25KDa。
- 如权利要求10所述的羧酸衍生物,其特征在于,所述的P a为聚乙二醇残基,其结构为R a-O-(CH 2CH 2O) m-,所述R a选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基,m为170-565的整数;和/或,所述的P b为聚乙二醇残基,其结构为R b-O-(CH 2CH 2O) n-,R b选自:H、甲基、乙基、异丙基、环丙基、环丁基、环己基和苄基,n为170-565的整数。
- 如权利要求10所述的羧酸衍生物,其特征在于,所述R a为H或甲基;和/或,所述R b为H或甲基;和/或,所述m与n为相等的整数。
- 如权利要求9-13任一项所述的羧酸衍生物,其特征在于,所述X 1和X 3独立地选自:单键、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2-、-CH 2CH 2CH 2CH 2CH 2-、-CH(CH 3)-、-CH 2CH(CH 3)-、-CH 2CH 2CH(CH 3)-、-CH 2CH 2CH 2CH(CH 3)-、-CH 2CH 2CH 2CH 2CH(CH 3)-、-CH 2CH 2CH 2CH 2CH 2CH(CH 3)-、-(CH 2) iO-和-(CH 2) iCO-中的一种或多种的组合,i为0-5的整数;和/或,
- 如权利要求14所述的羧酸衍生物,其特征在于,所述X 1为-CH 2CH 2-;和/或,所述X 3为-CH 2-。
- 一种如权利要求17-19任一项所述的Y型分支的亲水聚合物衍生物的制备方法,其包括如权利要求1-8任一项所述的制备方法步骤。
- 一种如权利要求9-16任一项所述的Y型分支的亲水性聚合物羧酸衍生物、权利要求17-19任一项所述的Y型分支的亲水聚合物衍生物与药物的结合物。
- 一种包括权利要求21所述的结合物及任选的药学上可接受的载体或赋形剂的药物组合物。
- 一种如权利要求9-16任一项所述的Y型分支的亲水性聚合物羧酸衍生物、权利要求17-19任一项所述的Y型分支的亲水聚合物衍生物、权利要求21所述的结合物或权利要求22所述的药物组合物在制备治疗疾病的药物中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18775559.0A EP3604388B1 (en) | 2017-03-30 | 2018-02-26 | Method for preparing y-branched hydrophilic polymer carboxylic acid derivative |
US16/588,620 US11359089B2 (en) | 2017-03-30 | 2019-09-30 | Method for preparing Y-branched hydrophilic polymer carboxylic acid derivative |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710202947.4 | 2017-03-30 | ||
CN201710202947 | 2017-03-30 | ||
CN201710915311.4 | 2017-09-29 | ||
CN201710915311.4A CN108659227B (zh) | 2017-03-30 | 2017-09-29 | 一种y型分支的亲水性聚合物羧酸衍生物的制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/588,620 Continuation US11359089B2 (en) | 2017-03-30 | 2019-09-30 | Method for preparing Y-branched hydrophilic polymer carboxylic acid derivative |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018177055A1 true WO2018177055A1 (zh) | 2018-10-04 |
Family
ID=63674149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/077229 WO2018177055A1 (zh) | 2017-03-30 | 2018-02-26 | 一种y型分支的亲水性聚合物羧酸衍生物的制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018177055A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2304976A1 (en) * | 1997-11-05 | 1999-05-14 | J. Milton Harris | Delivery of poly(ethylene glycol)-conjugated molecules from degradable hydrogels |
CN1556828A (zh) * | 2002-03-13 | 2004-12-22 | ƽ | 具有y形分支的亲水性聚合物衍生物、其制备方法、与药物分子的结合物以及包含该结合物的药物组合物 |
CN1706865A (zh) * | 2004-06-11 | 2005-12-14 | 北京键凯科技有限公司 | 多叉分支的聚乙二醇-氨基酸寡肽及其活性衍生物和药物结合物 |
CN101029131A (zh) * | 2007-03-16 | 2007-09-05 | 中国人民解放军国防科学技术大学 | 一种分枝型聚乙二醇及其制备方法 |
CN101259284A (zh) * | 2008-04-15 | 2008-09-10 | 华东师范大学 | 一种基于树形聚合物肝靶向抗癌纳米前药系统、制备及用途 |
CN104530415A (zh) * | 2014-10-01 | 2015-04-22 | 厦门赛诺邦格生物科技有限公司 | 一种异官能化y型聚乙二醇衍生物、制备方法及其生物相关物质 |
-
2018
- 2018-02-26 WO PCT/CN2018/077229 patent/WO2018177055A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2304976A1 (en) * | 1997-11-05 | 1999-05-14 | J. Milton Harris | Delivery of poly(ethylene glycol)-conjugated molecules from degradable hydrogels |
CN1556828A (zh) * | 2002-03-13 | 2004-12-22 | ƽ | 具有y形分支的亲水性聚合物衍生物、其制备方法、与药物分子的结合物以及包含该结合物的药物组合物 |
CN1243779C (zh) | 2002-03-13 | 2006-03-01 | 北京键凯科技有限公司 | 具有y形分支的亲水性聚合物衍生物、其制备方法、与药物分子的结合物以及包含该结合物的药物组合物 |
CN1706865A (zh) * | 2004-06-11 | 2005-12-14 | 北京键凯科技有限公司 | 多叉分支的聚乙二醇-氨基酸寡肽及其活性衍生物和药物结合物 |
CN101029131A (zh) * | 2007-03-16 | 2007-09-05 | 中国人民解放军国防科学技术大学 | 一种分枝型聚乙二醇及其制备方法 |
CN101259284A (zh) * | 2008-04-15 | 2008-09-10 | 华东师范大学 | 一种基于树形聚合物肝靶向抗癌纳米前药系统、制备及用途 |
CN104530415A (zh) * | 2014-10-01 | 2015-04-22 | 厦门赛诺邦格生物科技有限公司 | 一种异官能化y型聚乙二醇衍生物、制备方法及其生物相关物质 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604388A4 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10385165B2 (en) | N-maleimidyl polymer derivatives | |
JP6505659B2 (ja) | リファキシミン複合体 | |
CN1069099C (zh) | 阿霉素的二聚物和三聚物 | |
CN104559213B (zh) | 一种聚三亚甲基碳酸酯与聚乙二醇改进聚肽膜亲水性与柔顺性的方法 | |
CN104479158B (zh) | 一种聚对二氧环己酮与聚乙二醇改进聚肽膜亲水性与柔顺性的方法 | |
WO2003076490A1 (fr) | Derive polymere hydrophile a ramification de type y et procede de preparation d'un composite medical contenant le compose precite | |
US20040225097A1 (en) | Novel preparation method of peg-maleimide derivatives | |
US20080274965A1 (en) | Encapsulated amyloid-beta peptides | |
WO1997006202A1 (fr) | Polymere sequence pourvu de groupes fonctionnels aux deux extremites | |
US10836869B1 (en) | Polymer excipients for drug delivery applications | |
JPWO2006088248A1 (ja) | ポリオキシアルキレン誘導体 | |
US11286344B2 (en) | Polymer excipients for drug delivery applications | |
CN101108895B (zh) | 聚乙二醇乙醛衍生物及其与药物的结合物 | |
US11359089B2 (en) | Method for preparing Y-branched hydrophilic polymer carboxylic acid derivative | |
JP2019510126A (ja) | マルチアームポリエチレングリコール及びその活性誘導体 | |
CN105566663B (zh) | 一种用聚对二氧环己酮与p(cpp-sa)-聚乙二醇改进聚乙烯醇膜耐水性及柔顺性的方法 | |
JP5371067B2 (ja) | 高純度のポリエチレングリコールアルデヒド誘導体の製造方法 | |
WO2008052428A1 (fr) | Procédé de preparation et conjugué avec molécule médicinale correspondante | |
WO2018177055A1 (zh) | 一种y型分支的亲水性聚合物羧酸衍生物的制备方法 | |
CN105542480B (zh) | 一种用聚己内酯与p(cpp‑sa)‑聚乙二醇改进聚乙烯醇膜耐水性及柔顺性的方法 | |
CN117069685B (zh) | 肉桂酰基烷聚酮化合物及其制备方法和应用 | |
CN103483583B (zh) | 一种ε-聚赖氨酸的制备方法 | |
CN111346234B (zh) | 去铁胺-八臂星型聚乙二醇结合物及其应用 | |
US7550628B2 (en) | Process for preparing phenolic acid salts of gabapentin | |
CN101220084A (zh) | 聚乙二醇修饰的三价铁亚血红素短肽化合物及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18775559 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018775559 Country of ref document: EP Effective date: 20191030 |