[go: up one dir, main page]

WO2018155634A1 - カメラ構造、撮像装置 - Google Patents

カメラ構造、撮像装置 Download PDF

Info

Publication number
WO2018155634A1
WO2018155634A1 PCT/JP2018/006729 JP2018006729W WO2018155634A1 WO 2018155634 A1 WO2018155634 A1 WO 2018155634A1 JP 2018006729 W JP2018006729 W JP 2018006729W WO 2018155634 A1 WO2018155634 A1 WO 2018155634A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared light
infrared
wavelength
camera structure
Prior art date
Application number
PCT/JP2018/006729
Other languages
English (en)
French (fr)
Inventor
達也 小泉
修一 島田
恵一 並木
直哉 小泉
大刀夫 長谷川
津守 昌彦
Original Assignee
株式会社オプトラン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトラン filed Critical 株式会社オプトラン
Priority to CN201880002933.0A priority Critical patent/CN109478005B/zh
Priority to JP2018529082A priority patent/JP6589061B2/ja
Priority to KR1020187037591A priority patent/KR102169130B1/ko
Publication of WO2018155634A1 publication Critical patent/WO2018155634A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to a camera structure provided in an imaging apparatus.
  • an imaging device using a solid-state imaging device that is, a so-called digital camera
  • information communication devices such as personal computers (PCs), tablet PCs, and smartphones have become widespread and are used on a daily basis.
  • PCs personal computers
  • tablet PCs and smartphones have become widespread and are used on a daily basis.
  • These information communication devices often incorporate a small camera module, and at present, the information communication device may include a high-performance device in which the number of pixels of the image sensor exceeds 10 million.
  • Information communication devices, particularly smartphones that are portable communication devices tend to be thin and light, and the camera modules that are parts thereof are also required to be small and space-saving.
  • smartphones are often the only imaging device for users, there is a strong demand for better image quality even when the camera module is downsized.
  • a flare phenomenon flare
  • a ghost phenomenon ghost phenomenon
  • a phenomenon in which a part of an image is excessively exposed is called a flare phenomenon
  • a phenomenon in which a clear unnecessary image is reflected by repeated reflection of light on a lens surface is called a ghost phenomenon.
  • the camera module 1 having a conventional camera structure mainly includes a lens unit 50, a lens carrier 40, a magnet holder 30, an optical filter 60, and an image sensor 70. It is fixed (for example, refer to JP2013-153361A).
  • the optical filter 60 mainly plays a role of cutting light in the near infrared region.
  • the human eye is sensitive to light in the visible region (visible light) with a wavelength of 380 nm to 780 nm.
  • the image sensor generally has sensitivity to visible light and longer wavelength light, that is, light having a wavelength of about 1.1 ⁇ m.
  • the camera module 1 has a configuration in which an optical filter 60 (near infrared light cut filter) that cuts light in the near infrared region is incorporated.
  • an optical filter 60 near infrared light cut filter
  • the near-infrared light cut filter 60 for example, glass containing phosphate or fluorophosphate that absorbs light in the near-infrared region called blue glass is used.
  • the cover glass 10 provided in the conventional camera structure uses tempered glass or sapphire glass as a material.
  • an internal mechanism of an imaging apparatus essential for imaging such as a lens unit including an optical lens group, a lens carrier, an imaging element, and a magnet holder, is defined as a camera module.
  • a camera module including a cover glass that protects the internal mechanism of the imaging apparatus from the outside is defined as a camera structure.
  • FIG. 11B shows an explanatory diagram for explaining an experiment method of an experiment performed with a conventional camera structure.
  • a light emitting diode having a specific center wavelength was used as a light source, and the emitted light was imaged.
  • a light emitting diode having a central wavelength of 460 nm was used as the light source 300.
  • a low reflective material 320 is placed in the background of the light source 300, and a high reflective material 310 is placed around the low reflective material 320.
  • the conventional camera structure includes a cover glass 10, an optical lens group 50, a near-infrared light cut filter 60, and an image sensor 70 in order from the light incident side.
  • the near-infrared light cut filter 60 is disposed between the optical lens group 50 and the image sensor 70.
  • FIG. 11C is a cross-sectional view of the cover glass 10.
  • the cover glass 10 includes an antireflection film 370 on a transparent glass 360.
  • the antireflection film 370 is provided on the optical lens group 50 side of the transparent glass 360.
  • FIG. 11D is a cross-sectional view of the near-infrared light cut filter 60.
  • the near-infrared light cut filter 60 includes a near-infrared light reflection film 390 on the incident side with respect to the blue glass 380 as a base material, and has an anti-reflection film 370 on the imaging element 70 side.
  • the blue glass 380 has a function of absorbing near infrared light.
  • FIG. 11E is an image captured by the image sensor 70 having the conventional camera structure described with reference to FIGS. 11A to 11D.
  • a petal-like ghost G is generated around the light source 300, indicating that the image quality is degraded.
  • Such a ghost phenomenon can occur even when the center wavelength of the light source 300 is changed from 420 nm to 660 nm.
  • the main cause of the ghost phenomenon is that a near-infrared cut filter including a reflection film for near-infrared light is in the vicinity of the image sensor. Therefore, the ghost phenomenon can be greatly suppressed by arranging the near-infrared light reflecting portion on the outside of the camera module as much as possible, for example, on the cover glass.
  • the near-infrared light reflection part to the outside, in order to prevent the shift of the cutoff wavelength of the near-infrared light, which may occur when light with a large incident angle enters the camera module.
  • the spectral characteristics of the infrared light absorbing unit and the spectral characteristics of the near infrared light reflecting unit are adjusted so that the image quality does not depend on the angle of incident light.
  • the present invention is a camera structure for imaging, an optical lens group disposed on a light incident side, an image sensor that receives light incident through the optical lens group, and a near-infrared region
  • a near-infrared light reflecting portion that reflects light in the near-infrared region, and a near-infrared light absorbing portion that absorbs light in the near-infrared region, and the near-infrared light reflecting portion and the near-infrared light absorbing portion are The camera structure is characterized by being a separate body.
  • the near-infrared light reflection part and the near-infrared light absorption part are arranged in order from the light incident side with the near-infrared light reflection part and the near-infrared light absorption part.
  • the camera structure described in (1) above is provided.
  • the near-infrared light absorbing part and the near-infrared light reflecting part are arranged in order from the light incident side, the light on the longer wavelength side than the light of the wavelength absorbed by the near-infrared light absorbing part is It becomes easy to enter into the module, and before reaching the near-infrared light reflection part that can cut light on the long wavelength side, it is reflected on the lens surface or the like and becomes stray light, which causes a drop in image quality.
  • the near-infrared light reflecting portion and the near-infrared light absorbing portion are arranged in order from the light incident side with the near-infrared light reflecting portion and the near-infrared light absorbing portion. This has the effect of suppressing stray light on the long wavelength side.
  • the present invention is characterized in that the near-infrared light reflecting portion includes a lens element constituting the optical lens group in the camera structure, and is disposed closer to the light incident side than the lens element.
  • the camera structure described in (1) or (2) above is provided.
  • the near-infrared light reflecting portion includes the lens element constituting the optical lens group, and is disposed closer to the light incident side than the lens element.
  • the distance from the imaging device to the near-infrared light reflecting portion is larger than the position of the filter.
  • the near-infrared light reflection unit may easily transmit light in the ultraviolet region when the incident angle of light deviates from the vertical in the axial direction. As the distance from the image sensor increases, the angle at which the image sensor is viewed from the near-infrared light reflection unit decreases, so extra light in the ultraviolet region that passes through the near-infrared light reflection unit and reaches the image sensor directly. There is an effect that it can be reduced.
  • the present invention is characterized in that the near-infrared light absorbing portion includes a lens element constituting the optical lens group in the camera structure, and is disposed closer to the image sensor than the lens element.
  • a camera structure according to any one of (1) to (3) above is provided.
  • the near-infrared light absorber often has a transmittance that does not depend on the incident angle of light. Therefore, the near-infrared light absorption unit includes a lens element that constitutes an optical lens group in the camera structure, and is arranged closer to the image sensor than the lens element, so that the near-infrared light absorption unit attempts to enter the image sensor from various directions. There is a remarkable effect that stray light can be effectively suppressed.
  • the present invention is characterized in that an image sensor cover that covers at least a part of the image sensor as viewed from the light incident side is disposed between the optical lens group and the image sensor.
  • a camera structure according to any one of 1) to (4) is provided.
  • the image sensor cover that covers at least a part of the image sensor as viewed from the light incident side is disposed at a position close to the image sensor between the optical lens group and the image sensor. Therefore, there is a remarkable effect that dust that can adhere to the image sensor can be reduced and deterioration in image quality can be prevented.
  • the present invention provides the camera structure as described in (5) above, wherein the image sensor cover is made of glass.
  • the present invention provides the camera structure as described in (5) above, wherein the imaging element cover is a synthetic resin film.
  • a synthetic resin film having a thickness of 100 ⁇ m or less can be easily produced. According to the invention of the above (7), there is an effect that a thin and inexpensive image sensor cover can be manufactured at low cost.
  • the present invention provides the camera structure according to any one of (5) to (7) above, wherein the thickness of the imaging element cover is 0.2 mm or less.
  • the image pickup device cover includes an antireflection layer that prevents reflection of light in at least a visible region. Provide structure.
  • the image sensor cover is arranged at a position close to the image sensor between the optical lens group and the image sensor. Therefore, when the image sensor cover reflects light, it causes a significant deterioration in the image quality of the image acquired by the image sensor.
  • the image pickup device cover includes the antireflection layer that prevents reflection of light in at least the visible region, and thus has a remarkable effect that the image quality is improved.
  • the anti-reflection layer having a fine protrusion structure formed on the surface of the image sensor cover that is, a so-called moth-eye structure, prevents reflection of light over a wide band. Therefore, according to the invention of the above (12), by forming the antireflection layer having the moth-eye structure, the reflected light caused by the image pickup device cover is remarkably reduced over a wide band, and the image quality can be improved. Play.
  • the present invention provides the camera structure as described in (9) or (10) above, wherein the antireflection layer is a coating film formed on a surface of the inner transparent plate.
  • a multilayer film in which two types of thin films having different light refractive indexes are alternately laminated can form an antireflection film for light. It is known that such a multilayer film can also be obtained by applying a synthetic resin. According to the invention of the above (12), there is a remarkable effect that an inner transparent plate provided with an antireflection film having a stable quality in a large amount at a low cost can be produced.
  • the present invention provides the camera structure according to any one of (5) to (12), wherein the imaging element cover includes the near-infrared light absorbing portion.
  • the image pickup device cover since the image pickup device cover includes the near-infrared light absorbing portion, there is a remarkable effect of reducing the number of parts and the number of steps in manufacturing the camera structure.
  • the near-infrared light absorbing portion is a near-infrared light absorbing film that absorbs light in the near-infrared region, and includes an organic dye. ) Is provided.
  • the near infrared light absorbing portion has a near infrared light absorbing film, and the near infrared light absorbing film contains an organic dye that absorbs near infrared light. It is possible to suppress light in the near-infrared light region with little dependence on the incident angle of light without using blue glass, which is generally used as a filter material for absorbing light in the near-infrared region. Has the effect of becoming.
  • the camera structure further includes a cover glass that protects an internal mechanism of the imaging apparatus from the outside, and the cover glass includes the near-infrared light reflection portion.
  • the cover glass includes the near-infrared light reflection portion.
  • the cover glass since the cover glass has a near-infrared light reflecting film that reflects light, an effect of preventing near-infrared light from the outside from entering the internal mechanism of the imaging apparatus can be achieved.
  • the present invention is a camera structure that performs imaging, an optical lens group disposed on a light incident side, an image sensor that receives light incident through the optical lens group, and a near-infrared region.
  • a near-infrared light reflecting portion that reflects the light of the near-infrared region, and a near-infrared light absorbing portion that absorbs light in the near-infrared region, wherein the near-infrared light reflecting portion and the near-infrared light absorbing portion are
  • the camera structure is included in an integrated optical element included in the optical lens group.
  • the optical lens group includes the integrated optical element that includes the near-infrared light reflecting part and the near-infrared light absorbing part at the same time, the near-infrared light is located at a position close to the imaging element. There is no need to insert a member having a reflective film. Therefore, reflection of light incident on the internal mechanism of the imaging apparatus can be suppressed, and as a result, stray light can be suppressed and the cause of ghost and flare can be reduced.
  • the present invention includes a near-infrared light absorbing portion that absorbs light in the near-infrared region and a near-infrared light reflecting portion that reflects light in the near-infrared region, and the near-infrared light absorbing portion.
  • a near-infrared light absorbing portion that absorbs light in the near-infrared region and a near-infrared light reflecting portion that reflects light in the near-infrared region, and the near-infrared light absorbing portion.
  • the near infrared light cutoff wavelength is always Provided is a camera structure that is included in a light absorption wavelength region.
  • the acquired image is affected when the light transmittance at a predetermined wavelength is 1% or more. Therefore, as a spectral characteristic of the near-infrared light absorbing portion, when the light transmittance of the near-infrared light reflecting portion becomes 50% in the light wavelength region where the light transmittance is 2% or more, the image quality of the acquired image is seen with the naked eye. It will be different from the color.
  • the near-infrared light reflection part is formed of, for example, a dielectric multilayer film
  • the light transmittance changes depending on the incident angle of the incident light, so the transmittance depends on the light wavelength at the peripheral part and the central part of the acquired image.
  • the image quality is deteriorated, so-called “red-out”.
  • the infrared reflection portion is arranged on the outside of the camera module, specifically, on the cover glass, light with a large incident angle can enter the camera module, and this image quality deterioration becomes remarkable.
  • the near-infrared light absorbing portion and the near-infrared light reflecting portion As a combined effect of the near-infrared light absorbing portion and the near-infrared light reflecting portion, light longer than the near-infrared light cutoff wavelength in the light wavelength region of 685 nm to 755 nm is obtained. Since the light transmittance is less than 1% in the wavelength region, there is also an excellent effect that the difference between the image quality of the acquired image and that seen with the naked eye is reduced. Further, when the incident angle of the incident light to the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength of the near-infrared light reflecting portion always has a light transmittance of 2.
  • the incident angle dependency of the spectral characteristics for light in the near infrared region is reduced, and the light wavelength dependency of the transmittance does not change between the peripheral part and the central part of the acquired image. There is an excellent effect that the image quality is improved.
  • the present invention includes a near-infrared light absorbing unit that absorbs light in the near-infrared region and a near-infrared light reflecting unit that reflects light in the near-infrared region, and the near-infrared light absorbing unit.
  • a near-infrared light absorbing unit that absorbs light in the near-infrared region
  • a near-infrared light reflecting unit that reflects light in the near-infrared region
  • the near-infrared light absorbing unit Has a light absorption wavelength region in which the light transmittance is less than 2% in the region of 685 nm to 755 nm as the wavelength of light, and the near-infrared light reflecting portion has a reduced light transmittance of 50%.
  • % Is defined as the near-infrared light cutoff wavelength, and has a characteristic of substantially totally reflecting light having a wavelength longer than the near-infrared light cutoff wavelength, and is incident on the near-infrared light reflection portion.
  • the light incident angle is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength is always included in the light absorption wavelength region.
  • a camera structure according to any one of (16) is provided.
  • the near-infrared light reflecting portion When the near-infrared light reflecting portion is provided on the side close to the outside of the camera structure, for example, on the cover glass, even the light having a large incident angle enters the camera structure.
  • the near-infrared light reflecting portion is formed of a dielectric multilayer film, the light transmittance changes depending on the incident angle of incident light, so the light transmittance changes depending on the incident angle of incident light.
  • the central portion are different in the light wavelength dependency of the transmittance, and a so-called “red-out” image quality deterioration phenomenon occurs.
  • the near-red light of the near-infrared light reflecting portion is always changed when the incident angle of the incident light to the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °. Since the external light cutoff wavelength enters the light absorption wavelength region where the light transmittance is less than 2%, the dependence of the spectral characteristic on the incident angle of light in the near infrared region is reduced, and the acquired image has a peripheral portion and a central portion. Since the wavelength of light that can be obtained does not change, the image quality is improved.
  • the light transmittance is 1% in the light wavelength region longer than the near infrared light cutoff wavelength in the light wavelength region of 685 nm to 755 nm 685 nm to 755 nm. Therefore, the excellent effect of reducing the difference between the image quality of the acquired image and what is seen with the naked eye is also achieved.
  • the present invention provides a cover glass that protects the internal mechanism of the imaging device from the outside, an optical lens group disposed on the cover glass side, and imaging that receives light incident through the cover glass and the optical lens group.
  • the near infrared light reflection part is provided on the side closest to the outside of the camera structure, that is, on the cover glass, even the light with a large incident angle enters the camera structure.
  • the near-infrared light reflecting portion is formed of a dielectric multilayer film
  • the light transmittance changes depending on the incident angle of incident light, so the transmittance depends on the light wavelength at the peripheral portion and the central portion of the acquired image.
  • the image quality is deteriorated, so-called “red-out”.
  • the near-red light of the near-infrared light reflecting portion is always changed when the incident angle of the incident light to the near-infrared light reflecting portion is changed in the range of 0 ° to 30 °. Since the external light cutoff wavelength enters the light absorption wavelength region where the light transmittance is less than 2%, the dependence of the spectral characteristic on the incident angle of light in the near infrared region is reduced, and the acquired image has a peripheral portion and a central portion. Since the dependency of the transmittance on the light wavelength does not change, the image quality is improved.
  • the infrared light absorbing portion and the near infrared light reflecting portion As an effect of combining the infrared light absorbing portion and the near infrared light reflecting portion, light in the light wavelength region longer than the near infrared light cutoff wavelength in the light wavelength region of 685 nm to 755 nm in the light wavelength region of 685 nm to 755 nm is obtained. Since the transmittance is less than 1%, there is also an excellent effect that the difference between the image quality of the acquired image and what is seen with the naked eye is reduced.
  • the present invention is a camera structure including a near-infrared light cut filter that blocks light in a near-infrared region, and the near-infrared light cut filter emits light when the wavelength of incident light is increased. If the wavelength at which the transmittance of light is reduced to 10% is defined as the near-infrared light cutoff wavelength, the near-infrared light cutoff wavelength when the incident angle of the incident light is changed in the range of 0 ° to 30 °.
  • an angle-dependent change width is 5 nm or less.
  • the wavelength dependency of the light transmittance in the near-infrared light reflecting portion varies depending on the incident angle of incident light. That is, for example, the near-infrared light blocking wavelength of the near-infrared light reflecting portion is about 700 nm when the incident angle of incident light is 0 °, and becomes about 675 nm when the incident angle of incident light is 30 °. Such incident angle dependency may occur.
  • the light transmittance realized in combination with the near-infrared light reflection part may greatly change depending on the incident angle of incident light.
  • a near-infrared light cut filter having a near-infrared light reflection part and a near-infrared absorption part is capable of blocking near-infrared light when the incident angle of incident light is changed in the range of 0 ° to 30 °.
  • the angle-dependent change width of the wavelength can be about 30 nm.
  • the light transmittance of the near-infrared light cut filter varies greatly depending on the incident angle of incident light at a predetermined light wavelength in the near-infrared light region. For example, if light having a wavelength of 660 to 690 nm is incident, the light transmittance is about 20% when the incident angle is small at the center of the acquired image, and light is transmitted when the incident angle is large at the peripheral portion of the acquired image. As a result, a phenomenon that the rate becomes approximately 0% occurs, and as a result, the light wavelength dependency of the transmittance differs between the peripheral portion and the central portion of the acquired image, and so-called “red-out” image quality deterioration phenomenon occurs.
  • the angle-dependent change width of the near-infrared light cutoff wavelength when the incident angle of incident light is changed in the range of 0 ° to 30 °. Since the thickness is 5 nm or less, a difference in color expression in the acquired image hardly occurs, and an excellent effect of improving the image quality is obtained.
  • the present invention includes a near-infrared light absorbing portion that absorbs light in the near-infrared region and a near-infrared light reflecting portion that reflects light in the near-infrared region, and the near-infrared light absorbing portion.
  • the light transmittance is less than 2% in the range of 700 nm to 750 nm with respect to the wavelength of light, the light transmittance is in the range of 630 nm to 750 nm, and the transmittance of light is in the range of 2% or more.
  • the frequency dependence curve of the light transmittance of the light absorbing portion is based on the frequency dependence curve of the light transmittance of the near infrared light reflecting portion when the incident angle incident on the near infrared light reflecting portion is 0 ° to 30 °.
  • the present invention also provides a camera structure characterized by being on the short wavelength side.
  • the present invention provides an imaging apparatus having the camera structure according to any one of (1) to (21).
  • the present invention there is a degree of freedom in the place where the near-infrared light reflecting part is arranged and the place where the near-infrared light absorbing part is arranged, so that it can be arranged at the optimum positions in the camera structure.
  • the remarkable effect of improving the image quality in the imaging apparatus can be obtained.
  • (A) It is sectional drawing of the camera structure applied to the mobile communication apparatus A which is an imaging device which concerns on 1st embodiment of this invention.
  • (B) It is a structure figure of the cover glass with a near-infrared-light reflection function containing a near-infrared-light reflection part.
  • (C) It is a structure figure of the image pick-up element cover with a near-infrared-light absorption function including a near-infrared-light absorption part.
  • (A) It is structural drawing of the cover glass with an optical filter function.
  • (B) It is a figure which shows the incident angle dependence of the spectral transmittance about a near-infrared-light reflection film.
  • (C) It is explanatory drawing explaining the definition of an incident angle.
  • (B) It is a structure figure of the cover glass with a near-infrared-light reflection function containing a near-infrared-light reflection part.
  • (C) It is a structural diagram of a plate with a near infrared light absorption function.
  • D) It is a structure figure of the image pick-up element cover provided with two or more antireflection layers by using transparent glass as a base material.
  • E) It is a block diagram of the imaging cover which used as a base material the transparent synthetic resin film provided with the moth-eye structure which exhibits an antireflection function on both surfaces.
  • (A) It is sectional drawing of the camera structure applied to the portable communication apparatus A which is an imaging device which concerns on 4th embodiment of this invention.
  • (B) It is sectional drawing of the lens unit containing the optical lens element provided with the near-infrared-light absorption part.
  • (C) It is sectional drawing of the lens unit containing the optical lens element provided with the near-infrared-light absorption part.
  • (A) It is sectional drawing of the camera structure applied to the imaging device which concerns on 5th embodiment of this invention.
  • (B) It is sectional drawing of a lens unit provided with the optical lens element containing a near-infrared-light reflection part and the optical lens element containing a near-infrared-light absorption part.
  • (A) It is sectional drawing of the camera structure applied to the imaging device which concerns on the 6th embodiment of this invention.
  • (B) It is sectional drawing of a lens unit provided with the optical element with a near-infrared-light absorption function containing a near-infrared-light absorption part.
  • (C) It is a structural diagram of the optical element with a near infrared light absorption function.
  • (A) It is sectional drawing of the camera structure applied to the imaging device which concerns on the 7th Embodiment of this invention.
  • (B) It is sectional drawing of a lens unit provided with the optical element with an optical filter function containing a near-infrared-light reflection part and a near-infrared-light absorption part.
  • (C) It is a structural diagram of the optical element 530 with an optical filter function.
  • A It is sectional drawing of the conventional camera structure in a portable communication apparatus.
  • B It is explanatory drawing explaining the experiment method of the experiment conducted with the conventional camera structure.
  • C It is sectional drawing of the conventional cover glass.
  • D It is sectional drawing of the conventional near-infrared light cut filter.
  • E An image captured by a conventional camera structure.
  • A It is a graph which shows the incident light angle dependence of the spectral characteristic of the light transmittance in the near-infrared-light absorption part using the conventional light absorption ink, and the spectral characteristic of the light transmittance in a near-infrared light reflection part. .
  • (B) It is a graph which shows the incident light angle dependence of the spectral characteristic of the light transmittance at the time of combining a near-infrared-light absorption part and a near-infrared-light reflection part.
  • (A) Spectral characteristics of light transmittance in the near-infrared light absorbing portion using light-absorbing ink having a wider light absorption band in the near-infrared light region, and light transmittance spectrum in the near-infrared light reflecting portion. It is a graph which shows the incident light angle dependence of a characteristic.
  • (B) It is a graph which shows the incident light angle dependence of the spectral characteristic of the light transmittance at the time of combining a near-infrared-light absorption part and a near-infrared-light reflection part.
  • (A) It is sectional drawing of the camera structure applied to the portable communication apparatus A which is an imaging device which concerns on 9th embodiment of this invention.
  • (B) It is structural drawing of the cover glass with an optical filter function provided with two or more antireflection films.
  • FIGS. 1 to 10 and FIGS. 12 to 14 are examples of embodiments for carrying out the invention.
  • the same reference numerals denote the same components.
  • FIG. 1A is a cross-sectional view of a camera structure applied to a mobile communication device A that is an imaging apparatus according to the first embodiment of the present invention.
  • the camera structure includes a cover glass 215 with a near-infrared light reflection function that protects the internal mechanism of the imaging apparatus from the outside and the camera module 1.
  • the camera module 1 moves the lens unit 50 in the axial direction in order to realize an optical lens group that is an internal mechanism of the imaging apparatus, that is, a lens unit 50, a lens carrier 40 that holds the lens unit 50, and an autofocus function.
  • the magnet holder 30, the image sensor 70 that receives light incident through the near-infrared light reflection function cover glass 215 and the lens unit 50, and is disposed between the lens unit 50 and the image sensor 70 and transmits light.
  • An imaging element cover 244 with a near-infrared light absorption function using a transparent glass as a base material is provided.
  • the image sensor cover 244 with a near infrared light absorption function covers at least a part of the surface of the image sensor 70 when the image sensor 70 is viewed from the lens unit 50 side in the axial direction.
  • FIG. 1B is a structural diagram of a cover glass 215 with a near infrared light reflection function including a near infrared light reflection portion.
  • the cover glass 215 with a near-infrared light reflection function uses the crystallized glass 130 as a transparent substrate that transmits light, reflects the light in the ultraviolet region, and suppresses the reflection of the light in the visible region. Is formed on the light incident side with reference to the crystallized glass 130.
  • An antifouling coating film 110 for preventing contamination from the outside is provided on the outermost side where light enters.
  • an antireflection film 120 and a near-infrared light reflection film 150 that is a near-infrared reflection part that reflects light in the near-infrared region are formed in order from the farthest side with respect to the crystallized glass 130. To do.
  • the antireflection film 120 closest to the image sensor 70 may be omitted.
  • 1C includes a plurality of antireflection layers 230 that prevent reflection of light in at least the visible region, and further includes a near infrared light absorption film 140 that is a near infrared light absorption unit.
  • 3 is a structural diagram of an image sensor cover 244.
  • the antireflection layer 230 has a material and a structure similar to those of the antireflection film 120, and the manufacturing method is the same.
  • the imaging element cover 244 with a near infrared light absorption function uses a transparent glass 220 as a base material, and a near infrared light absorption film 140 is provided adjacent to the transparent glass 220.
  • the antireflection layer 230 is formed on the light incident side with the transparent glass 220 as a reference, and the antireflection layer 230 and the near-infrared light absorbing film are formed on the light emission side in order from the farthest side with respect to the transparent glass 220. 140 is provided.
  • the camera structure applied to the mobile communication device A that is the imaging device according to the first embodiment of the invention is incident through the optical lens group (optical unit 50) disposed on the light incident side and the lens unit 50.
  • Imaging device 70 that receives the transmitted light, a near-infrared light reflecting film 150 that is a near-infrared light reflecting portion that reflects light in the near-infrared region, and near-infrared light absorption that absorbs light in the near-infrared region.
  • a near-infrared light absorption film 140, and the near-infrared light reflection part and the near-infrared light absorption part are formed separately from each other.
  • a near-infrared light reflecting film 150 that is a near-infrared light reflecting part and a near-infrared light-absorbing film 140 that is a near-infrared light absorbing part are, in order from the light incident side, the near-infrared light reflecting film 150, The infrared light absorbing film 140 is disposed.
  • a near-infrared light reflecting film 150 that is a near-infrared light reflecting portion includes a lens element constituting the lens unit 50 in the camera structure, and is disposed closer to the light incident side than the lens element.
  • a near-infrared light absorbing film 140 that is a near-infrared light absorbing portion includes a lens element that constitutes the lens unit 50 in the camera structure, and is disposed closer to the imaging element 70 than the lens element.
  • An image sensor cover 244 with a near infrared light absorption function that covers at least a part of the image sensor 70 when viewed from the light incident side is disposed between the lens unit 50 and the image sensor 70.
  • the image sensor cover 244 with a near infrared light absorbing function includes the image sensor near infrared light absorbing portion.
  • the near infrared light absorbing portion is a near infrared light absorbing film 140 that absorbs light in the near infrared region, and includes an organic dye.
  • the camera structure further includes a near-infrared light reflecting cover glass 215 that protects the internal mechanism of the imaging apparatus from the outside, and the near-infrared light reflecting film 150, which is a near-infrared light reflecting portion, is provided on the cover glass. Including.
  • a synthetic resin thin plate at least partially containing an organic dye that absorbs light in the near-infrared region is used as a base material. Also good.
  • a so-called blue glass plate that absorbs light in the near-infrared region may be used in the same manner as a conventional near-infrared light cut filter. It can also be realized by attaching a film that cuts near-infrared light on a transparent plate.
  • crystallized glass is difficult to transmit light because of large crystal particles.
  • recent advances in technology have made it possible to control crystal particles to a nanometer size, such as impact-resistant and high-hardness clear glass ceramics manufactured by OHARA, Inc., thereby increasing light transmittance.
  • the cover glass 215 with a near-infrared-light reflection function is implement
  • a near-infrared light reflecting film 150 described later is formed on the tempered glass to form a cover glass 215 with a near-infrared light reflecting function, but the impact resistance is higher than when the crystallized glass 130 is used. Has low drawbacks. Further, it is conceivable to form a near-infrared light reflecting film 150 on the sapphire glass having a high hardness to form a cover glass 215 with a near-infrared light reflecting function, but the cost is remarkably increased and the crystallized glass 130 is used. Workability is low compared to the case.
  • the antifouling coating film 110 prevents fingerprint stains and sebum stains and makes it easy to wipe off the stains.
  • the antifouling coating film 110 is formed of a fluorine-based coating agent or the like, and is formed on the outermost side on the light incident side in the cover glass laminated structure by coating or spraying.
  • the antireflection film 120 reflects light in the ultraviolet region and suppresses reflection of light in the visible region.
  • the antireflection film 120 is a dielectric multilayer film, and is configured by alternately stacking nitride films and oxide films.
  • the dielectric film constituting the antireflection film 120 is formed by alternately stacking a plurality of nitride films and oxide films.
  • the nitride film silicon nitride, silicon oxynitride, aluminum nitride, or the like can be used.
  • the stoichiometric ratio of oxygen to nitrogen (oxygen / nitrogen) is preferably 1 or less.
  • silicon oxide (SiO 2), aluminum oxide (Al 2 O 3), or the like can be used as the oxide film.
  • silicon nitride or silicon oxynitride as the film of the antireflection film 120, the antireflection film 120 can be formed using the same film formation method and film formation apparatus as the near infrared light reflection film 150 described later. Process advantageous.
  • the antireflection film 120 may be an oxide film instead of a nitride film.
  • a material for such an oxide film in addition to silicon oxide, titanium oxide (TiO2), aluminum oxide (Al2O3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), niobium oxide (Nb2O5), or the like may be used. it can.
  • TiO2 titanium oxide
  • Al2O3 aluminum oxide
  • ZrO2 zirconium oxide
  • Ta2O5 tantalum oxide
  • Nb2O5 niobium oxide
  • the antireflection film 120 uses a known film formation method such as a vacuum deposition method, a sputtering method, an ion beam assisted deposition method (IAD method), an ion plating method (IP method), an ion beam sputtering method (IBS method), or the like. be able to. It is desirable to use a sputtering method or an ion beam sputtering method for forming the nitride film.
  • a known film formation method such as a vacuum deposition method, a sputtering method, an ion beam assisted deposition method (IAD method), an ion plating method (IP method), an ion beam sputtering method (IBS method), or the like.
  • IAD method ion beam assisted deposition method
  • IP method ion plating method
  • IBS method ion beam sputtering method
  • the near-infrared light absorbing film 140 has a function of transmitting light in the visible region and absorbing part of light from the red region to the near-infrared region.
  • the near-infrared light absorbing film 140 includes an organic dye and is composed of a resin film having a maximum absorption wavelength in the range of 650 nm to 750 nm (see the broken line in FIG. 4). Since the near-infrared light absorbing film 140 is adjacent to the crystallized glass 130, it is desirable to reduce the difference in refractive index between the two to reduce the reflectance at the interface. By having such a near-infrared light absorbing film 140, it is possible to reduce the dependence of the spectral transmittance characteristics depending on the incident angle and to have excellent near-infrared light cut-off properties.
  • an azo compound, a phthalocyanine compound, a cyanine compound, a diimonium compound, or the like can be used as the organic dye.
  • Polyacryl, polyester, polycarbonate, polystyrene, polyolefin, or the like can be used as a resin material as a binder (pigment binder) constituting the near-infrared light absorbing film 140.
  • the resin material may be a mixture of a plurality of resins, or may be a copolymer using a monomer of the resin.
  • the resin material may be any material that has a high transmittance with respect to light in the visible region, and is selected in consideration of compatibility with an organic dye, a film formation process, cost, and the like.
  • a quencher quenching dye
  • a sulfur compound may be added to the resin material.
  • the following method can be used to form the near infrared light absorbing film 140.
  • the resin binder is dissolved in a known solvent such as methyl ethyl ketone and toluene, and the above organic dye is added to prepare a coating solution.
  • this coating solution is applied to the crystallized glass 130 with a desired film thickness by, for example, spin coating, and dried and cured in a drying furnace.
  • the near-infrared light reflection film 150 is a dielectric multilayer film formed by alternately laminating a plurality of dielectric materials having different refractive indexes, like the antireflection film 120.
  • the dielectric multilayer film constituting the near-infrared light reflection film 150 is formed by laminating a plurality of types of oxide films having different refractive indexes, and the adjacent oxide films are different types of oxide films.
  • the near-infrared light reflecting film 150 is formed by alternately stacking several tens of layers of two kinds of oxide films.
  • titanium oxide TiO2
  • aluminum oxide Al2O3
  • zirconium oxide ZrO2
  • tantalum oxide Ta2O5
  • niobium oxide Nb2O5
  • each oxide film is formed to have a thickness of ⁇ / 4, where ⁇ is the wavelength of light to be reflected.
  • is the wavelength of light to be reflected.
  • the film may be designed so that ⁇ reflects light in the near infrared region.
  • the near-infrared light reflection film 150 is also formed using the same film formation method and film formation apparatus as those of the antireflection film 120 described above.
  • the human eye is sensitive to so-called visible light having a wavelength of 380 nm to 780 nm.
  • the image sensor generally has sensitivity up to light having a longer wavelength, that is, light having a wavelength of about 1.1 ⁇ m, including visible light. Therefore, if the image captured by the image sensor is used as it is as a photograph, it does not look natural and causes a sense of discomfort.
  • the cover glass 100 with an integrated optical filter function having a near-infrared light reflecting portion and a near-infrared light absorbing portion is formed as a laminated structure as shown in FIG. Since the external light reflection film 150 is provided, it is possible to obtain a natural color image by cutting light having a wavelength of 700 nm or more that cannot be absorbed by the near-infrared light absorption film 140. Further, if the near-infrared light reflection film 150 alone is used to cut light in the near-infrared region, the reflectivity greatly changes depending on the incident angle of incident light, as will be described later.
  • the light transmission rate is less dependent on the incident angle of light.
  • An infrared light cut filter can be configured.
  • the cover glass 100 that protects the camera in the smartphone housing 20 from the outside can cut light in the ultraviolet region by the antireflection film 120, an optical lens group formed of a synthetic resin that is a component of the camera. It is possible to prevent the (lens unit 50) from being deteriorated by ultraviolet rays, and it is also possible to prevent the near-infrared light absorbing film 140 containing an organic dye from being deteriorated by ultraviolet rays. Further, the antireflection function for the light in the visible region can capture more incident light and acquire a bright image.
  • the antireflection film 120 is configured by alternately laminating nitride films and oxide films. Generally, a nitride film has a higher hardness than an oxide film, and reaches a hardness of 9H or more in a pencil hardness test. Therefore, the antireflection film 120 including the nitride film has an effect of improving scratch resistance. Further, the nitride film is denser and denser than the oxide film. Since it does not contain oxygen as a component, it is not a source of oxygen.
  • providing the nitride film outside the near infrared light absorbing film 140 prevents the penetration of oxygen and moisture into the near infrared light absorbing film 140, and has an effect of suppressing deterioration of the near infrared light absorbing film 140. .
  • an optical filter has a large number of optical boundary surfaces.
  • the lens has an advanced antireflection film. It is difficult to achieve the same transmittance as a lens with an optical filter that cuts light in the near-infrared region, and reflected light is returned to the lens side. This causes stray light that produces ghosts in the image.
  • the optical filter 60 is placed in the immediate vicinity of the image sensor 70 on the optical path between the lens unit 50 and the image sensor 70, it is difficult to avoid the ghost as described above.
  • the stray light as described above is not generated, so that a remarkable effect of improving the image quality is obtained.
  • the spectral transmittance characteristics of the cover glass 100 with an integrated optical filter function having a near-infrared light reflection part and a near-infrared light absorption part will be described. Even when the functions of the cover glass 100 with an optical filter function are divided into, for example, a cover glass 215 with a near infrared light reflection function and an image sensor cover 244 with a near infrared light absorption function, which are separate bodies, the same effect is obtained. Is obtained.
  • FIG. 2 (B) shows experimental results on how the spectral transmittance characteristics of the near-infrared light reflecting film formed of the dielectric film depend on the incident angle of light.
  • the incident angle A is defined as shown in FIG. Further, “T” on the vertical axis represents spectral transmittance, and the unit is% (percent). “ ⁇ ” on the horizontal axis indicates the wavelength of light, and the unit is nm (nanometer) (the same applies to the following figures).
  • the sample is obtained by alternately stacking 40 layers of titanium dioxide (TiO2) and silicon dioxide (SiO2) with a predetermined film thickness on glass. When the solid line indicates an incident angle of 0 °, the broken line indicates the spectral transmittance when the incident angle of light is 30 °.
  • FIG. 3 shows an experiment on how the spectral transmittance of the cover glass 100 with an optical filter function including both a near-infrared light absorbing film and a near-infrared reflective film depends on the incident angle of light. Results are shown.
  • the near-infrared light absorbing film a resin film containing an organic dye and having a thickness of 5 ⁇ m or less is used, and the near-infrared light reflecting film has the same configuration as in FIG.
  • the solid line indicates the spectral transmittance when the incident angle of light is 0 degree
  • the broken line indicates the incident angle of light of 15 degrees
  • the dashed line indicates the spectral transmittance when the incident angle of light is 30 degrees. It can be confirmed that the incident angle dependency is smaller than in the case of FIG.
  • FIG. 4 shows a cover glass 100 with an optical filter function (solid line) provided with a near-infrared light absorbing film 140 and a near-infrared light reflecting film 150, and a cover glass (dashed line) on which only the near-infrared light absorbing film 140 is formed. It is the figure which compared the experimental result in the spectral transmittance measurement of the cover glass (one-dot chain line) which formed only the near-infrared-light reflection film 150.
  • the configurations of the near-infrared light absorbing film 140 and the near-infrared light reflecting film 150 are the same as those in FIGS. However, all incident angles of light are 0 degree.
  • the human eye mainly has sensitivity to so-called visible light having a wavelength of 380 nm to 780 nm. Therefore, when imaging is performed to an area of 800 nm or more where the imaging element 70 has sensitivity, as described above, the human eye Becomes an unnatural image.
  • the near-infrared light reflection film 150 is designed to cut light having a wavelength of 700 nm or more, and a steep decrease in spectral transmittance is actually measured in the vicinity of 700 nm.
  • the near-infrared light absorbing film 140 and the near-infrared light reflecting film 150 are combined to form a cover glass 100 with an optical filter function. As shown by the solid line in FIG. About 650 nm, it can confirm that the high transmittance
  • the camera structure according to the embodiment of the present invention there is a degree of freedom in the place where the near infrared light reflecting unit is arranged and the place where the near infrared light absorbing unit is arranged. It becomes possible to arrange the image at the position, and there is a remarkable effect of improving the image quality.
  • the near-infrared light absorbing part and the near-infrared light reflecting part are arranged in order from the light incident side, the light on the longer wavelength side than the light of the wavelength absorbed by the near-infrared light absorbing part is It becomes easy to enter into the module, and before reaching the near-infrared light reflection part that can cut light on the long wavelength side, it is reflected on the lens surface or the like and becomes stray light, which causes a drop in image quality.
  • the near-infrared light reflection unit and the near-infrared light absorption unit are arranged with the near-infrared light reflection unit, the near-infrared light absorption unit in order from the light incident side. Therefore, the effect of suppressing stray light on the long wavelength side is achieved.
  • the near-infrared light reflection unit includes a lens element that constitutes an optical lens group, and is disposed closer to the light incident side than the lens element.
  • the distance from the near-infrared light reflection unit to the image sensor is larger than the position of the external light cut filter.
  • the near-infrared light reflection unit may easily transmit light in the ultraviolet region when the incident angle of light deviates from the vertical in the axial direction. As the distance from the image sensor increases, the angle at which the image sensor is viewed from the near-infrared light reflection unit decreases, so extra light in the ultraviolet region that passes through the near-infrared light reflection unit and reaches the image sensor directly. There is an effect that it can be reduced.
  • the near-infrared light absorber often has a transmittance that does not depend on the incident angle of light. Therefore, the near-infrared light absorption unit includes a lens element that constitutes an optical lens group in the camera structure, and is arranged closer to the image sensor than the lens element, so that the near-infrared light absorption unit attempts to enter the image sensor from various directions. There is a remarkable effect that stray light can be effectively suppressed.
  • the image sensor cover that covers at least a part of the image sensor as viewed from the light incident side is located between the optical lens group and the image sensor in a position close to the image sensor. Therefore, it is possible to reduce the dust that can adhere to the image sensor and to prevent the deterioration of the image quality.
  • the camera structure according to the embodiment of the present invention produces an effect that an image sensor cover that is less deformed by temperature changes can be manufactured at low cost.
  • the image sensor cover is arranged at a position close to the image sensor between the optical lens group and the image sensor. Therefore, when the image sensor cover reflects light, it causes a significant deterioration in the image quality of the image acquired by the image sensor.
  • the image pickup device cover includes an antireflection layer that prevents reflection of light in at least the visible region, thereby providing a remarkable effect that the image quality is improved.
  • the camera structure According to the camera structure according to the embodiment of the present invention, more incident light can be captured, and reflected light caused by the image sensor cover, in particular, reflected light from the image sensor itself is further captured by the image sensor cover. It is possible to prevent the light from being reflected back to the image sensor and to improve the image quality.
  • the image pickup device cover since the image pickup device cover includes the near-infrared light absorbing portion, there is a remarkable effect of reducing the number of parts and the number of steps in manufacturing the camera structure.
  • the near-infrared light absorbing portion has a near-infrared light absorbing film, and the near-infrared light absorbing film includes an organic dye that absorbs near-infrared light. Therefore, light in the near-infrared light region is suppressed without using the blue glass generally used as a filter material for absorbing light in the near-infrared region, with little dependency on the incident angle of light. There is an effect that it becomes possible.
  • the cover glass since the cover glass has a near-infrared light reflecting film that reflects light, there is an effect that the near-infrared light from the outside does not enter the internal mechanism of the imaging device. sell.
  • FIG. 5 is a diagram showing the spectral transmittance of the cover glass with an optical filter function included in the camera structure according to the second embodiment of the present invention.
  • a cover glass with a so-called dual-band optical filter function and a camera structure that can acquire images even at night are provided.
  • the basic structure of the camera structure is the same as that of the first embodiment, but a cover with an optical filter function including a near infrared light absorbing film 140 and a near infrared light reflecting film 150 instead of the cover glass 215 with a near infrared light reflecting function.
  • the glass 100 is disposed, and the image sensor cover 244 with a near infrared light absorption function is omitted (not shown).
  • the cover glass 215 with a near-infrared light reflecting function includes a near-infrared light reflecting film D having a high light transmittance for a part of light in the near-infrared region. Since the film structure of the near-infrared light reflection film D is a known technique, the description thereof is omitted.
  • a dual band cover glass that transmits part of the light in the visible region and the light in the near infrared region can be realized.
  • the spectral transmittance of the near-infrared light reflection film D and the dual-band cover glass represents a calculated value at a wavelength of 750 nm or more. According to the camera structure provided with such a dual band cover glass, a remarkable effect that the lane boundary line or the roadway outer line can be easily seen on the road at night can be obtained.
  • FIG. 6A is a cross-sectional view of a camera structure applied to a mobile communication device A that is an imaging apparatus according to a third embodiment of the present invention.
  • This camera structure includes a cover glass 215 with a near-infrared light reflecting function that reflects near-infrared light, a plate 217 with a near-infrared light absorbing function that absorbs near-infrared light, and an imaging using a transparent glass as a base material.
  • An element cover 240 is provided. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 6B is a structural diagram of a cover glass with a near infrared light reflection function including a near infrared light reflection portion.
  • the cover glass 215 with a near-infrared light reflection function uses the crystallized glass 130 as a transparent substrate that transmits light, reflects the light in the ultraviolet region, and suppresses the reflection of the light in the visible region. Is formed on the light incident side with reference to the crystallized glass 130.
  • An antifouling coating film 110 for preventing contamination from the outside is provided on the outermost side where light enters.
  • an antireflection film 120 that prevents reflection of light in at least the visible region, and a near infrared light reflection film that reflects light in the near infrared region 150 is formed.
  • the antireflection film 120 closest to the image sensor 70 may be omitted.
  • FIG. 6C is a structural diagram of the plate 217 with a near infrared light absorption function.
  • the plate 217 with a near infrared light absorption function includes a plurality of antireflection layers 230 that prevent reflection of light in at least the visible region, and further includes a near infrared light absorption film 140.
  • the near-infrared light absorbing function-equipped plate 217 has a transparent glass 220 as a base material, and a near-infrared light absorbing film 140 is provided adjacent to the transparent glass 220.
  • the antireflection layer 230 is formed on the light incident side with reference to the transparent glass 220, and the antireflection layer 230 and the near-infrared light absorbing film are formed on the light emission side in order from the farthest side with respect to the transparent glass 220. 140 is provided.
  • the plate 217 with a near-infrared light absorption function is arranged on the inner structure side, that is, the lens unit 50 side from the cover glass 215 with a near-infrared light reflection function.
  • a thin plate of a synthetic resin containing at least a part of an organic dye that absorbs light in the near infrared region may be used as a base material. good.
  • a so-called blue glass plate that absorbs light in the near-infrared region may be used in the same manner as a conventional near-infrared light cut filter. It can also be realized by attaching a film that cuts near-infrared light on a transparent plate.
  • FIG. 6D is a structural diagram of an image sensor cover 240 using a transparent glass as a base material and including a plurality of antireflection layers 230 using the transparent glass 220 as a base material.
  • the image sensor cover 240 includes antireflection layers 230 on both surfaces of the transparent glass 220.
  • FIG. 6E shows a camera structure applied to the mobile communication device A which is an image pickup apparatus according to the third embodiment.
  • This is a part of a modified example in which the imaging element cover 242 is replaced. That is, it is a structural diagram of the imaging element cover 242 using the transparent synthetic resin film 222 as a base material and the transparent synthetic resin film having a moth-eye structure that exhibits an antireflection function on both surfaces as a base material.
  • the thickness of the image sensor cover 242 using the transparent synthetic resin film as a base material is 0.2 mm or less.
  • the imaging element cover 242 having a transparent synthetic resin film as a base material includes a moth-eye structure 232 that prevents reflection of light in at least the visible region on both sides.
  • the moth-eye structure does not reduce the reflection by using the interference effect like a dielectric multilayer film, but reduces the reflection by eliminating the interface where the refractive index changes rapidly.
  • a fine protrusion structure composed of a large number of fine protrusions having a height of about several hundred nm is formed on the surface, and the repetition period of the protrusions is related to the wavelength range in which the effect of reducing reflection appears. Since the moth-eye structure is a well-known technique, the description is omitted, but in the case of this modified embodiment, for example, a transparent acrylic resin is used as the transparent synthetic resin film 222, and the anti-reflection function is formed by forming the moth-eye structure by transfer or molding. To realize.
  • the so-called moth-eye structure 232 prevents light reflection over a wide band.
  • the moth-eye structure 232 preferably has an antireflection function for light in the visible region, and preferably has an antireflection function for light in the ultraviolet region and light in the near infrared region.
  • a synthetic resin film having a thickness of 100 ⁇ m or less can be easily produced. According to the camera structure of the embodiment of the present invention, there is an effect that a thin and inexpensive image sensor cover can be manufactured at low cost.
  • the anti-reflection layer having a fine protrusion structure formed on the surface of the image sensor cover that is, a so-called moth-eye structure, prevents reflection of light over a wide band. Therefore, according to the camera structure of the embodiment of the present invention, by forming the antireflection layer having the moth-eye structure, the reflected light due to the image sensor cover can be significantly reduced over a wide band, and the image quality can be improved. Has an effect.
  • a multilayer film obtained by applying a synthetic resin as an antireflection layer on the surface of the transparent synthetic resin film 222 as a base material can be considered.
  • a multilayer film obtained by alternately laminating two types of thin films having different light refractive indexes can form a light antireflection film. It is known that such a multilayer film can also be obtained by applying a synthetic resin.
  • the inner transparent plate 240 having an antireflection film of stable quality is formed in a large quantity and at a low cost with stable quality.
  • FIG. 7A is a cross-sectional view of a camera structure applied to a mobile communication device A that is an imaging apparatus according to the fourth embodiment of the present invention.
  • the camera structure includes a cover glass 215 with a near infrared light reflection function and a camera module 1.
  • the camera module 1 includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, an image sensor 70, and an image sensor cover 240. Since the structures of the cover glass 215 with a near infrared light reflection function and the image sensor cover 240 are the same as those described in the third embodiment, a description thereof will be omitted. Moreover, since the manufacturing method of the near-infrared reflective film 150 and the antireflection film 120 is the same as that of the first embodiment, the description is omitted.
  • FIG. 7B is a cross-sectional view of a lens unit including a lens element provided with a near infrared light absorbing portion.
  • the lens unit 50 that is, the optical lens group is composed of a plurality of lens elements.
  • the lens element arranged closest to the image sensor 70 in the optical lens group is a lens element 250 including a near-infrared light absorber.
  • the near-infrared light absorbing portion is an organic dye and is uniformly contained in the synthetic resin that forms the lens element 250 including the near-infrared light absorbing portion.
  • FIG. 7C is a cross-sectional view of a lens unit including a lens element provided with a near infrared light absorbing portion.
  • the lens element provided with the near-infrared light absorbing portion is realized by providing the near-infrared light absorbing film 140 on the surface of the transparent lens element 255 closest to the image sensor 70.
  • the method for producing the near-infrared light absorbing film 140 is the same as that described in the first embodiment, and is therefore omitted.
  • the near-infrared light reflecting portion that reflects light since the near-infrared light reflecting portion that reflects light is provided, an effect of preventing near-infrared light from the outside from entering the internal mechanism of the imaging apparatus can be achieved.
  • a member having a near infrared light reflecting portion since it is not necessary to place a member having a near infrared light reflecting portion in a region close to the imaging element, reflection of light incident on the internal mechanism of the imaging device can be suppressed, and stray light can be suppressed as a result. , Can reduce the cause of ghosts and flares.
  • the near-infrared light absorbing portion includes an organic dye that absorbs near-infrared light
  • blue glass generally used as a filter material for absorbing light in the near-infrared region. Without using the light, it is possible to suppress light in the near-infrared light region in a state with little dependency on the incident angle of light.
  • FIG. 8A is a cross-sectional view of a camera structure applied to an imaging apparatus according to the fifth embodiment of the present invention.
  • the camera module 1 having the camera structure includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, and an imaging device 70, and is fixed to the vehicle body 22. That is, the camera structure is a so-called in-vehicle camera structure.
  • FIG. 8B is a cross-sectional view of a lens unit including an optical lens element 270 including a near-infrared light reflecting portion and an optical lens element 250 including a near-infrared light absorbing portion.
  • a near-infrared light reflection film 150 is provided on the light incident side surface of the lens element 270 provided with the near-infrared light reflection portion.
  • the near infrared light absorbing part is an organic dye and is uniformly contained in the synthetic resin forming the lens element 250 provided with the near infrared light absorbing part.
  • the lens element 250 including the near-infrared light absorbing portion may be a transparent lens element 255 provided with the near-infrared light absorbing film 140 closest to the imaging element 70 (FIG. 7C). reference).
  • a mechanically moving member such as an actuator
  • dust is hardly generated.
  • the surface of the image sensor 70 is substantially perpendicular to the ground, dust hardly adheres to the image sensor 70. Therefore, the image sensor cover 240 is omitted.
  • a cover glass for preventing dirt may be provided on the light incident side of the lens unit 50.
  • the image sensor cover 240 may be provided close to the image sensor 70.
  • Such a structure can be manufactured at low cost because the number of parts is small and the production process can be significantly omitted.
  • the production process can be significantly omitted.
  • it since it has a near-infrared light reflection part and a near-infrared light absorption part, there also exists an effect of an improvement in image quality.
  • the lens element 270 provided with the near-infrared light reflecting portion in the camera structure is left as it is, and the image sensor cover is provided with the near-infrared light absorption function shown in FIG. 1C of the first embodiment.
  • the image sensor cover 244 it is also conceivable that the lens element does not have a light absorption function in the near infrared region.
  • FIG. 9A is a cross-sectional view of a camera structure applied to an imaging apparatus according to the sixth embodiment of the present invention.
  • the camera structure includes a cover glass 215 with a near infrared light reflection function and a camera module 1.
  • the camera module 1 includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, an image sensor 70, and an image sensor cover 240. Since the structures of the cover glass 215 with a near infrared light reflection function and the image sensor cover 240 are the same as those described in the third embodiment, a description thereof will be omitted.
  • FIG. 9B is a cross-sectional view of a lens unit including an optical element 500 with a near infrared light absorption function including a near infrared light absorption unit.
  • the lens unit 50 includes the optical element 500 with a near-infrared light absorption function on the most incident side.
  • the optical element 500 with a near-infrared light absorbing function may be in any position on the axis as long as it is inside the lens unit 50.
  • FIG. 9C is a structural diagram of the optical element 500 with a near infrared light absorption function.
  • the optical element 500 with a near infrared light absorption function includes a plurality of antireflection layers 230 that prevent reflection of light in at least the visible region, and further includes a near infrared light absorption film 140.
  • the near-infrared light absorbing function-equipped plate 217 has a transparent glass 220 as a base material, and a near-infrared light absorbing film 140 is provided adjacent to the transparent glass 220.
  • the antireflection layer 230 is formed on the light incident side with reference to the transparent glass 220, and the antireflection layer 230 and the near-infrared light absorbing film are formed on the light emission side in order from the farthest side with respect to the transparent glass 220. 140 is provided.
  • a synthetic resin thin plate containing at least a part of an organic dye that absorbs light in the near-infrared region is used as a base material. Also good.
  • a so-called blue glass plate that absorbs light in the near-infrared region may be used in the same manner as a conventional near-infrared light cut filter. It can also be realized by attaching a film that cuts near-infrared light on a transparent plate.
  • the manufacturing method of the near-infrared reflective film 150, the antireflection film 120, and the near-infrared light absorption film 140 is the same as that of the first embodiment, the description is omitted.
  • FIG. 10A is a cross-sectional view of a camera structure applied to an imaging apparatus according to the seventh embodiment of the present invention.
  • the camera structure includes a cover glass 550 and a camera module 1.
  • the camera module 1 includes a lens unit 50, a lens carrier 40 that holds the lens unit 50, an image sensor 70, and an image sensor cover 240. Since the structure of the image sensor cover 240 is the same as that described in the third embodiment, a description thereof will be omitted.
  • the cover glass 550 may use conventional tempered glass or sapphire glass as a base material. Of course, crystallized glass may be used.
  • the cover glass 550 has an antireflection film 120 that reflects light in the ultraviolet region and suppresses reflection of light in the visible region (not shown) on the surface of the imaging device 70 side.
  • FIG. 10B is a cross-sectional view of a lens unit including an optical element 530 with an optical filter function including a near infrared light reflecting portion and a near infrared light absorbing portion.
  • the lens unit 50 includes the optical element with an optical filter function 530 on the most incident side.
  • the optical element with an optical filter function 530 may be in any position on the axis as long as it is inside the lens unit 50.
  • FIG. 10C is a structural diagram of the optical element 530 with an optical filter function.
  • the optical element 530 with an optical filter function includes a plurality of antireflection layers 230 that prevent reflection of light in at least the visible region, and further includes a near infrared light absorption film 140.
  • the optical element with optical filter function 530 uses a transparent glass 220 as a base material, and a near infrared light absorbing film 140 is provided adjacent to the transparent glass 220.
  • the antireflection layer 230 is formed on the light incident side with respect to the transparent glass 220, and the antireflection layer 230 and the near-infrared light reflecting film are formed on the light emission side in order from the farthest side with respect to the transparent glass 220.
  • 150 and a near-infrared light absorbing film 140 are provided.
  • a synthetic resin thin plate containing at least part of an organic dye that absorbs light in the near infrared region may be used as a base material.
  • a so-called blue glass plate that absorbs light in the near-infrared region may be used in the same manner as a conventional near-infrared light cut filter. It can also be realized by attaching a film that cuts near-infrared light on a transparent plate.
  • the optical lens group includes an integrated optical element that includes the near-infrared light reflection part and the near-infrared light absorption part at the same time, it is necessary to insert a member having a near-infrared light reflection film in the immediate vicinity of the imaging element. Disappears. Therefore, reflection of light incident on the internal mechanism of the imaging apparatus can be suppressed, and as a result, stray light can be suppressed and the cause of ghost and flare can be reduced.
  • FIG. 12A shows the incident light angle dependence of the spectral characteristics of the light transmittance in the near-infrared light absorbing section using the conventional light-absorbing ink and the spectral characteristics of the light transmittance in the near-infrared light reflecting section. It is a graph to show.
  • the vertical axis represents the light transmittance T (unit:%), and the horizontal axis represents the wavelength of incident light (unit: nm).
  • an image sensor cover 244 with a near infrared light absorption function having a near infrared light absorption film 140 as a near infrared light absorption part (see FIG. 1C) and a near infrared light reflection part as a near infrared light absorption part.
  • an optical system including a cover glass 215 with a near-infrared light reflection function, which has an infrared light reflection film 150 (see FIG. 1B).
  • a solid line A1 indicates the spectral characteristics of the light transmittance of the image sensor cover 244 with a near infrared light absorption function alone.
  • the dotted line R1 indicates the spectral characteristic of the light transmittance of the single cover glass 215 with a near infrared light reflection function when the incident angle of incident light is 0 °, and the broken line R2 indicates when the incident angle of incident light is 30 °.
  • unit with a near-infrared-light reflection function is shown.
  • a curve A1 indicating the spectral characteristics of the conventional near-infrared light absorbing ink and a broken line R2 indicating the spectral characteristics of the conventional near-infrared reflecting portion at an incident angle of 30 ° are as light wavelength regions of 660 to 700 nm.
  • the solid line A1 indicating the spectral characteristics of the conventional near-infrared light-absorbing ink and the dotted line R1 indicating the spectral characteristics of the conventional near-infrared reflecting portion when the incident angle is 0 ° are substantially overlapped. There is no overlap.
  • FIG. 12B is a graph showing the incident light angle dependence of the spectral characteristics of light transmittance when a near infrared light absorbing portion and a near infrared light reflecting portion are combined.
  • the dotted line C1 is the spectral characteristic when the incident angle is 0 °
  • the broken line C2 is the spectral characteristic when the incident angle is 30 °.
  • the spectral characteristic of the optical system combining the solid line A1 and the dotted line R1 in FIG. 12A is the dotted line C1
  • the spectral characteristic of the optical system combining the solid line A1 and the broken line R2 in FIG. is there.
  • a gap G1 is generated between the dotted line C1 and the broken line C2 in the range of 660 nm to 690 nm.
  • the wavelength at which the light transmittance decreases to 10% when the wavelength of incident light is increased is defined as the near-infrared light blocking wavelength.
  • the angle of the near-infrared light cutoff wavelength when the incident angle of incident light is changed in the range of 0 ° to 30 °.
  • the dependence variation width may be about 30 nm.
  • the light transmittance of the near-infrared light cut filter varies greatly depending on the incident angle of incident light at a predetermined light wavelength in the near-infrared light region.
  • the light transmittance is about 20% when the incident angle is small at the center of the acquired image, and the incident angle at the peripheral portion of the acquired image.
  • the value is large, the phenomenon that the light transmittance becomes almost 0% occurs.
  • the light wavelength dependency of the transmittance differs between the peripheral portion and the central portion of the acquired image, and so-called “red-out” image quality is obtained. Deterioration phenomenon occurs.
  • a combination of a near-infrared light absorbing portion using a new light-absorbing ink having spectral characteristics shown in FIG. 13A and a new near-infrared light reflecting portion A camera structure including The configuration of the near-infrared light absorbing unit is the same as that of the imaging element cover 244 with a near-infrared light absorbing function shown in FIG. 1C, and the configuration of the near-infrared light reflecting unit is shown in FIG. This is the same as the cover glass 215 with a near infrared light reflection function.
  • an image sensor cover 244 with a near infrared light absorption function having a near infrared light absorption film 140 as a near infrared light absorption part (see FIG. 1C) and a near infrared light reflection part as a near infrared light absorption part.
  • This is an optical system including a cover glass 215 with a near-infrared light reflection function, which has an infrared light reflection film 150 (see FIG. 1B).
  • FIG. 13A shows the spectral characteristics of the light transmittance in the near-infrared light absorbing section using the new light-absorbing ink and the dependence of the spectral characteristics of the light transmittance in the new near-infrared light reflecting section on the incident light angle. It is a graph which shows sex. The vertical axis represents the light transmittance T (unit:%), and the horizontal axis represents the wavelength of incident light (unit: nm).
  • an image sensor cover 244 with a near infrared light absorption function having a near infrared light absorption film 140 as a near infrared light absorption part (see FIG.
  • a near infrared light reflection part as a near infrared light absorption part.
  • a cover glass 215 with a near-infrared light reflection function which has an infrared light reflection film 150 (see FIG. 1B).
  • a solid line A2 indicates the spectral characteristics of the light transmittance of the image sensor cover 244 with a near infrared light absorption function alone.
  • a dotted line R3 indicates the spectral characteristic of light transmittance in the cover glass 215 with near infrared light reflection function when the incident angle of incident light is 0 °, and a broken line R4 indicates when the incident angle of incident light is 30 °.
  • unit with a near-infrared-light reflection function is shown.
  • the camera structure according to the eighth embodiment of the present invention includes a near-infrared light absorbing unit 140 that absorbs light in the near-infrared region and a near-infrared light that reflects light in the near-infrared region.
  • the near-infrared light absorption unit 140 includes a light absorption wavelength region 700 having a light transmittance of less than 2% in a region of 685 nm to 755 nm as a wavelength of light.
  • a wavelength at which the light transmittance is reduced to 50% as the wavelength of incident light on the light reflecting portion 150 increases is defined as a near infrared light cutoff wavelength
  • the near infrared light reflecting portion 150 is defined.
  • the near-infrared light cutoff wavelength is always included in the light absorption wavelength region 700.
  • the near-infrared light cutoff wavelength CF1 of the near-infrared light reflecting unit 150 when the incident angle of incident light is 0 ° and the near-infrared of the near-infrared light reflecting unit 150 when the incident angle of incident light is 30 °.
  • the light cutoff wavelength CF2 is included in the light absorption wavelength region 700.
  • the spectral characteristics of the near-infrared light reflecting section 150 with respect to light having a wavelength longer than the near-infrared light cutoff wavelength is preferably about 750 nm to 1000 nm and less than 1% light transmittance. In a wavelength range longer than about 1000 nm, there may be some light transmittance of, for example, several percent.
  • FIG. 13B is a graph showing the incident light angle dependency of the spectral characteristics of the light transmittance when the near infrared light absorbing unit 140 and the near infrared light reflecting unit 150 are combined.
  • the dotted line C3 is the spectral characteristic when the incident angle is 0 °
  • the broken line C4 is the spectral characteristic when the incident angle is 30 °.
  • the spectral characteristic of the optical system combining the solid line A2 and the dotted line R3 in FIG. 13A is the dotted line C3, and the spectral characteristic of the optical system combining the solid line A2 and the broken line R4 in FIG. is there.
  • the wavelength at which the light transmittance decreases to 10% when the wavelength of incident light is increased is defined as the near-infrared light blocking wavelength.
  • the near-infrared light cutoff wavelength when the incident angle of incident light is changed in the range of 0 ° to 30 °.
  • the angle-dependent change width G2 is 5 nm or less. That is, it is difficult for the light transmittance of the near infrared light cut filter to depend on the incident angle of incident light.
  • the frequency dependency of the light transmittance in the near-infrared light reflection unit 150 depends on the incident angle of incident light. Change. That is, for example, the near-infrared light blocking wavelength of the near-infrared light reflecting portion 150 is about 700 nm when the incident angle of incident light is 0 °, but becomes about 675 nm when the incident angle of incident light becomes 30 °. Such an incident angle dependency may occur.
  • the light transmittance realized in combination with the near-infrared light reflection unit 150 may greatly change depending on the incident angle of incident light. possible.
  • the near-infrared light cut filter including the near-infrared light reflection unit 150 and the near-infrared absorption unit 140 has a near-infrared when the incident angle of incident light is changed in the range of 0 ° to 30 °.
  • the angle-dependent change width of the light blocking wavelength can be about 30 nm.
  • the light transmittance of the near-infrared light cut filter varies greatly depending on the incident angle of incident light at a predetermined light wavelength in the near-infrared light region. For example, if light having a wavelength of 660 to 690 nm is incident, the light transmittance is about 20% when the incident angle is small at the center of the acquired image, and light is transmitted when the incident angle is large at the peripheral portion of the acquired image. As a result, a phenomenon that the rate becomes approximately 0% occurs, and as a result, the light wavelength dependency of the transmittance differs between the peripheral portion and the central portion of the acquired image, and so-called “red-out” image quality deterioration phenomenon occurs.
  • the angle dependence of the near-infrared light cutoff wavelength when the incident angle of incident light is changed in the range of 0 ° to 30 °. Since the change width is 5 nm or less, a difference in color expression in the acquired image hardly occurs, and an excellent effect of improving the image quality is obtained.
  • an acquired image is affected when the light transmittance at a predetermined wavelength is 1% or more. Therefore, as a spectral characteristic of the near-infrared light absorbing unit 140, when the light transmittance of the near-infrared light reflecting unit 150 is 50% in the light wavelength region where the light transmittance is 2% or more, the image quality of the acquired image is visually invisible. It will be different from the color you saw.
  • the near-infrared light reflecting portion 150 is formed of, for example, a dielectric multilayer film
  • the light transmittance changes depending on the incident angle of incident light, so the transmittance depends on the light wavelength at the peripheral portion and the central portion of the acquired image.
  • the so-called “red-out” image quality deterioration phenomenon occurs.
  • the light transmittance is 1% in the light wavelength region of 685 nm to 755 nm. Therefore, the excellent effect of reducing the difference between the image quality of the acquired image and what is seen with the naked eye is also achieved. Further, when the incident angle of the incident light to the near-infrared light reflecting portion 150 is changed in the range of 0 ° to 30 °, the near-infrared light cutoff wavelength of the near-infrared light reflecting portion 150 is always the light transmittance.
  • FIG. 14A is a cross-sectional view of a camera structure applied to a mobile communication device A that is an imaging device according to a ninth embodiment of the present invention.
  • the solid-state imaging device is an information communication device or a portable communication device A.
  • the camera structure includes a cover glass 400 with an optical filter function and a camera module 501 housed in a housing 520 of a mobile communication device A such as a smartphone from the light incident side.
  • the camera module 501 includes a lens unit 450 that is an optical lens group disposed on the cover glass 400 with an optical filter function, and an image sensor 570 that receives light incident through the cover glass 400 with the optical filter function and the lens unit 450.
  • a near-infrared light cut filter that cuts light in the near-infrared region is not disposed between the optical paths from the lens unit 450 to the image sensor 570.
  • the image sensor 570 and the substrate 580 are mainly configured to be fixed to the smartphone housing 520.
  • the connection between the image sensor 570 and the substrate 580 may be connected by wire bonding or may be flip-chip mounted.
  • a significant difference from the conventional camera structure of FIG. 11A is that the optical filter 60 (see FIG. 11A) that cuts near-infrared light, which has conventionally been necessary for improving image quality, is omitted. .
  • a filter function for cutting light in the near-infrared region has been added to the cover glass 10 that has been mainly responsible for protecting the camera module 1 conventionally.
  • the length of the entire camera structure can be made shorter than before, and the optical filter 60 is not disposed in the vicinity of the image sensor 70.
  • the granular dust (particles) adhering to the surface of the image sensor does not fall on the surface of the image sensor 70 and deteriorate the image.
  • a process for arranging and assembling the near-infrared light cut filter 60 is not necessary, which contributes to further cost reduction, yield improvement, and work efficiency.
  • the mobile communication device A has an effect that it can be manufactured more compactly, thinner, and cheaper.
  • FIG. 14B shows a laminated structure of a cover glass 400 with an optical filter function that is continuously installed in the casing of the mobile communication device A and protects the camera module as an internal mechanism from the outside.
  • the cover glass 400 with an optical filter function uses a crystallized glass 630 as a transparent substrate that transmits light, and an antireflection film 620 that reflects light in the ultraviolet region and suppresses reflection of light in the visible region has a crystal structure. It is formed on the light incident side with respect to the vitrified glass 630. Further, an antifouling coating film 610 for preventing contamination from the outside is provided on the outermost side where light enters.
  • a near-infrared light reflecting film 650 as a near-infrared reflecting portion that reflects light in the near-infrared region in order from the farthest side with respect to the crystallized glass 630 on the light emission side, and light in the near-infrared region
  • a near-infrared light absorbing film 640 as a near-infrared light absorbing portion that absorbs light.
  • An antireflection film 620 may be further formed on the farthest side of the light emission side.
  • crystallized glass is difficult to transmit light because of large crystal particles.
  • recent advances in technology have made it possible to control crystal particles to a nanometer size, such as impact-resistant and high-hardness clear glass ceramics manufactured by OHARA, Inc., thereby increasing light transmittance.
  • the cover glass 400 with an optical filter function is implement
  • a near-infrared light absorbing film 640 or a near-infrared light reflecting film 650 which will be described later, on the tempered glass to form the cover glass 400 with an optical filter function, but compared with the case where the crystallized glass 630 is used. And has the disadvantage of low impact resistance. Further, it is conceivable to form a near-infrared light absorbing film 640 and a near-infrared light reflecting film 650 on sapphire glass having a high hardness to form a cover glass 400 with an optical filter function. Workability is low compared to the case of using the vitrified glass 630.
  • the antifouling coating film 610 prevents fingerprint dirt and sebum dirt and makes it easy to wipe off dirt.
  • the antifouling coating film 610 is formed of a fluorine-based coating agent or the like, and is formed on the outermost side on the light incident side in the cover glass laminated structure by coating or spraying.
  • the antireflection film 620 reflects light in the ultraviolet region and suppresses reflection of light in the visible region.
  • the antireflection film 620 is a dielectric multilayer film, and is configured by alternately stacking nitride films and oxide films.
  • the dielectric film constituting the antireflection film 620 is formed by alternately stacking a plurality of nitride films and oxide films.
  • the nitride film silicon nitride, silicon oxynitride, aluminum nitride, or the like can be used.
  • the stoichiometric ratio of oxygen to nitrogen (oxygen / nitrogen) is preferably 1 or less.
  • silicon oxide (SiO 2), aluminum oxide (Al 2 O 3), or the like can be used as the oxide film.
  • silicon nitride or silicon oxynitride as the film of the antireflection film 620, the antireflection film 620 can be formed using the same film formation method and film formation apparatus as the near infrared light reflection film 150 described later. Process advantageous.
  • the antireflection film 620 can use an oxide film instead of the nitride film.
  • an oxide film in addition to silicon oxide, titanium oxide (TiO2), aluminum oxide (Al2O3), zirconium oxide (ZrO2), tantalum oxide (Ta2O5), niobium oxide (Nb2O5), or the like may be used. it can.
  • TiO2 titanium oxide
  • Al2O3 aluminum oxide
  • Ta2O5 zirconium oxide
  • Nb2O5 niobium oxide
  • an appropriate selection is made from the oxides.
  • a known film formation method such as a vacuum deposition method, a sputtering method, an ion beam assisted deposition method (IAD method), an ion plating method (IP method), an ion beam sputtering method (IBS method), or the like is used. be able to. It is desirable to use a sputtering method or an ion beam sputtering method for forming the nitride film.
  • the near-infrared light absorbing film 640 is formed on the surface of the crystallized glass 630 opposite to the above-described antireflection film 620, that is, on the image sensor 570 side of the cover glass 400 with an optical filter function (see FIG. 14A). Is done.
  • the near-infrared light absorption film 640 has a function of transmitting light in the visible region and absorbing part of light from the red region to the near-infrared region.
  • the near-infrared light absorbing film 640 includes an organic dye and is formed of a resin film having a maximum absorption wavelength in the range of 700 nm to 750 nm (see solid line A2 in FIG. 13A).
  • the near-infrared light absorbing film 640 is adjacent to the crystallized glass 630, it is desirable to reduce the difference in refractive index between the two to reduce the reflectance at the interface. By having such a near-infrared light absorbing film 640, it is possible to reduce the dependency of the spectral transmittance characteristics depending on the incident angle and to have excellent near-infrared light cut-off properties.
  • an azo compound, a phthalocyanine compound, a cyanine compound, a diimonium compound, or the like can be used as the organic dye.
  • Polyacryl, polyester, polycarbonate, polystyrene, polyolefin, or the like can be used as a resin material as a binder (pigment binder) constituting the near-infrared light absorbing film 640.
  • the resin material may be a mixture of a plurality of resins, or may be a copolymer using a monomer of the resin.
  • the resin material may be any material that has a high transmittance with respect to light in the visible region, and is selected in consideration of compatibility with an organic dye, a film formation process, cost, and the like.
  • a quencher quenching dye
  • a sulfur compound may be added to the resin material.
  • the following method can be used to form the near infrared light absorbing film 640.
  • the resin binder is dissolved in a known solvent such as methyl ethyl ketone and toluene, and the above organic dye is added to prepare a coating solution.
  • this coating solution is applied to the crystallized glass 630 with a desired film thickness by, for example, spin coating, and dried and cured in a drying furnace.
  • the near-infrared light reflection film 650 is a dielectric multilayer film formed by alternately laminating a plurality of dielectric materials having different refractive indexes, like the antireflection film 620.
  • the dielectric multilayer film constituting the near-infrared light reflection film 650 is formed by laminating a plurality of types of oxide films having different refractive indexes, and the adjacent oxide films are different types of oxide films.
  • the near-infrared light reflection film 650 is formed by alternately stacking several tens of layers of two kinds of oxide films.
  • titanium oxide TiO2
  • aluminum oxide Al2O3
  • zirconium oxide ZrO2
  • tantalum oxide Ta2O5
  • niobium oxide Nb2O5
  • each oxide film is formed to have a thickness of ⁇ / 4, where ⁇ is the wavelength of light to be reflected.
  • is the wavelength of light to be reflected.
  • the film may be designed so that ⁇ reflects light in the near infrared region. Note that the near-infrared light reflection film 650 is also formed using the same film formation method and apparatus as those of the antireflection film 620 described above.
  • the human eye is sensitive to so-called visible light having a wavelength of 380 nm to 780 nm.
  • the image sensor generally has sensitivity up to light having a longer wavelength, that is, light having a wavelength of about 1.1 ⁇ m, including visible light. Therefore, if the image captured by the image sensor is used as it is as a photograph, it does not look natural and causes a sense of discomfort.
  • the near-infrared light absorbing film 640 cannot absorb the near-infrared light absorbing film 640 because the near-infrared light reflecting film 650 made of a dielectric multilayer film is provided. It is possible to obtain an image having a natural color by cutting light having a wavelength of 700 nm or longer.
  • the light wavelength dependence of the light transmittance of the near-infrared light reflection film 650 is shown in FIG. Specifically, the dotted line R3 indicates the spectral characteristic of the light transmittance of the single near-infrared light reflecting film 650 when the incident angle of incident light is 0 °, and the broken line R4 indicates that the incident angle of incident light is 30 °.
  • the spectral characteristic of the light transmittance in the near-infrared-light reflective film 650 simple substance at the time of is shown.
  • the near-infrared light cutoff wavelength when the wavelength at which the light transmittance decreases to 50% as the wavelength of incident light on the near-infrared light reflecting film 650 increases is defined as the near-infrared light cutoff wavelength.
  • the near-infrared light cutoff wavelength of the near-infrared light reflecting portion 650 always has a light transmittance. Since the light absorption wavelength region 700 is less than 2%, the incident angle dependency of the spectral characteristics with respect to the light in the near infrared region is reduced, and the light wavelength that can be acquired at the peripheral portion and the central portion of the acquired image does not change. There is an excellent effect that the image quality is improved.
  • a near-infrared light cut filter can be configured (see FIG. 13B).
  • the cover glass 400 that protects the camera in the smartphone housing 520 from the outside can cut light in the ultraviolet region by the antireflection film 620, an optical lens group formed of a synthetic resin that is a component of the camera.
  • the (lens unit 450) can be prevented from being deteriorated by ultraviolet rays, and the near-infrared light absorbing film 640 containing an organic dye can also be prevented from being deteriorated by ultraviolet rays.
  • the antireflection function for the light in the visible region can capture more incident light and acquire a bright image.
  • the antireflection film 620 is configured by alternately laminating nitride films and oxide films. Generally, a nitride film has a higher hardness than an oxide film, and reaches a hardness of 9H or more in a pencil hardness test. Therefore, the antireflection film 120 including the nitride film has an effect of improving scratch resistance. Further, the nitride film is denser and denser than the oxide film. Since it does not contain oxygen as a component, it is not a source of oxygen.
  • the nitride film outside the near infrared light absorption film 640 it is possible to prevent oxygen and moisture from entering the near infrared light absorption film 640 and to suppress deterioration of the near infrared light absorption film 640. .
  • an optical filter has a large number of optical boundary surfaces.
  • the lens has an advanced antireflection film. It is difficult to achieve the same transmittance as a lens with an optical filter that cuts light in the near-infrared region, and reflected light is returned to the lens side. This causes stray light that produces ghosts in the image.
  • the optical filter 60 is placed in the immediate vicinity of the image sensor 70 on the optical path between the lens unit 50 and the image sensor 70, it is difficult to avoid the ghost as described above (See FIG. 11A).
  • the stray light as described above is not generated, so that a remarkable effect of improving the image quality is obtained.
  • the camera structure and the imaging apparatus according to the embodiment of the present invention are not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Lens Barrels (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Air Bags (AREA)

Abstract

撮像をおこなうカメラ構造であって、光の入射側に配置される光学レンズ群と、前記光学レンズ群を介して入射した光を受光する撮像素子と、近赤外領域の光を反射する近赤外光反射部と、近赤外領域の光を吸収する近赤外光吸収部とを備え、前記近赤外光反射部と、前記近赤外光吸収部は、別体であることを特徴とするカメラ構造。これによりゴースト現象、フレア現象を低減させうるカメラ構造を提供する。

Description

カメラ構造、撮像装置
 本発明は撮像装置に設けられるカメラ構造に関する。
 今世紀に入り、撮像装置、すなわちカメラは、固体撮像素子(撮像素子)を用いた撮像装置、いわゆるデジタルカメラが主流になった。またパーソナルコンピューター(PC)、タブレットPCやスマートフォン等の情報通信機器が普及し、日常的に使用されるようになっている。これら情報通信機器は、小型のカメラモジュールを内蔵することが多く、現在は、撮像素子の画素数が1000万を超える高性能なものを備えることもある。情報通信機器、特に携帯通信機器であるスマートフォンは薄く軽くなる傾向が強く、その部品であるカメラモジュールも小型化、省スペース化が必要になっている。また使用者にとってスマートフォンが唯一の撮像装置であることも多くなったため、カメラモジュールが小型になってもより良い画質を求める要求は強い。
 近年、自動車の自動運転に対するニーズも高まっており、一部の車種においては車載カメラを利用しての自動車庫入れや、自動ブレーキ、夜間運転の補助がすでに実用化されている。車載カメラに利用されるカメラモジュールも小型化、高性能化が進んでおり、また画像認識をするため、画像からゴーストなどのノイズを除去することが強く求められている。
 なお光強度の大きな光源方向に撮像装置が有するレンズを向けると、レンズ面等に光が反射を繰り返して、不要な画像が写り込む現象をフレア現象(フレア)、ゴースト現象(ゴースト)と呼ぶ。画像の一部が過度に露光される現象をフレア現象と呼び、レンズ面で光が反射を繰り返してはっきりとした不要画像が映り込む現象をゴースト現象と呼ぶ。
 図11(A)で示すように、従来のカメラ構造のカメラモジュール1は、レンズユニット50、レンズキャリア40、マグネットホルダ30、光学フィルタ60、撮像素子70から主に構成され、スマートフォン筐体20に固定されている(例えば、特開2013-153361号公報参照)。このうち光学フィルタ60は、主として近赤外領域の光をカットする役割を果たしている。人間の目は波長380nm~780nmの可視領域の光(可視光)に対して感度を持つ。一方、撮像素子は一般に可視光を含め、より長波長の光、すなわち波長約1.1μmの光まで感度を持つ。したがって撮像素子に捉えられた画像をそのまま写真にすると、人間の目には自然な色合いには見えず、違和感を生じさせる原因になる。そこでカメラモジュール1は、近赤外領域の光をカットする光学フィルタ60(近赤外光カットフィルタ)を内蔵する構成としてきた。
 近赤外光カットフィルタ60としては、例えばブルーガラスと呼ばれる近赤外領域の光を吸収するリン酸塩あるいは弗リン酸塩を含むガラスが用いられている。
 なお従来のカメラ構造が備えるカバーガラス10は、材質として強化ガラスやサファイアガラスを用いる。
 本明細書では光学レンズ群を含むレンズユニット、レンズキャリア、撮像素子、マグネットホルダなど、撮像に必須な撮像装置の内部機構をカメラモジュールと定義する。またカメラモジュールに、撮像装置の内部機構を外界から保護するカバーガラスを含めたものを、カメラ構造と定義する。
 図11(B)には、従来のカメラ構造でおこなった実験の実験方法を説明する説明図を示す。実験は特定の中心波長を有する発光ダイオードを光源として、その発光を撮像した。実験では、光源300として中心波長460nmの発光ダイオードを使用した。発生するフレア現象やゴースト現象を見やすくするために、光源300の背景には低反射材320を配置し、低反射材320の周囲に高反射材310を置いた。
 従来のカメラ構造は、光の入射側から順に、カバーガラス10と、光学レンズ群50と、近赤外光カットフィルタ60と、撮像素子70を備える。近赤外光カットフィルタ60は光学レンズ群50と撮像素子70の間に配置される。
 図11(C)は、カバーガラス10の断面図である。カバーガラス10は、透明ガラス360に反射防止膜370を備える。反射防止膜370は透明ガラス360の光学レンズ群50側に設けられる。
 図11(D)は、近赤外光カットフィルタ60の断面図である。近赤外光カットフィルタ60は、基材であるブルーガラス380を基準として、入射側に近赤外光反射膜390を備え、撮像素子70側に、反射防止膜370を有する。ここでブルーガラス380は近赤外光を吸収する機能を有する。
 図11(E)は、図11(A)~図11(D)で説明した従来のカメラ構造の撮像素子70によって撮像した画像である。光源300を中心として花びら様のゴーストGが生じており、画質が劣化していることがわかる。このようなゴースト現象は、光源300の中心波長を420nm~660nmと変えても生じうる。
特開2013-153361号公報
 ゴースト現象、フレア現象を低減するためには、一般にはカメラが備える光学レンズ群をより高度で複雑な構造にすること、レンズ素子自体の光反射防止コーティングをより良くすることが必要である。しかし、小型軽量でしかも安価であることが求められる情報通信機器のカメラモジュールや、車載カメラのカメラモジュールにおいては、これは困難な課題であった。
 ゴースト現象の主要な原因として、近赤外光の反射膜を含む近赤外線カットフィルタが撮像素子の近傍にあることが挙げられる。したがって近赤外光反射部をカメラモジュールのなるべく外界側、例えばカバーガラスに配置することで、ゴースト現象を大幅に抑制することができる。また近赤外光反射部を外界側に持ってくることで、入射角度が大きな光がカメラモジュール内に入り込むことにより生じ得る、近赤外光のカットオフ波長のシフトを防止するために、近赤外光吸収部の分光特性と近赤外光反射部の分光特性を調整して、画質が入射光の角度に依存しないようにする。
 (1)本発明は、撮像をおこなうカメラ構造であって、光の入射側に配置される光学レンズ群と、前記光学レンズ群を介して入射した光を受光する撮像素子と、近赤外領域の光を反射する近赤外光反射部と、近赤外領域の光を吸収する近赤外光吸収部と、を備え、前記近赤外光反射部と、前記近赤外光吸収部は、別体であることを特徴とするカメラ構造を提供する。
 上記(1)の発明によれば、近赤外光反射部を配置する場所と、近赤外光吸収部を配置する場所に自由度が生じるので、カメラ構造の中でそれぞれ最適な位置に配置できるようになり、画質の向上という顕著な効果を奏する。
 (2)本発明は、前記近赤外光反射部と前記近赤外光吸収部が、光の入射側から順に、前記近赤外光反射部、前記近赤外光吸収部と配置されることを特徴とする上記(1)に記載のカメラ構造を提供する。
 近赤外光吸収部が吸収する波長の光よりも長波長側の光は透過してしまう場合がある。そのため、光の入射側から順に、近赤外光吸収部、近赤外光反射部、と配置されると、近赤外光吸収部が吸収する波長の光よりも長波長側の光がカメラモジュール内に入射しやすくなり、長波長側の光をカットできる近赤外光反射部に到達する前に、レンズ面などに反射して迷光となることで画質を落とす原因になる。
 上記(2)の発明によれば、近赤外光反射部と近赤外光吸収部が、光の入射側から順に、近赤外光反射部、近赤外光吸収部と配置されるので、長波長側の迷光を抑止しうるという効果を奏する。
 (3)本発明は、前記近赤外光反射部が、前記カメラ構造において、前記光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されることを特徴とする上記(1)または(2)に記載のカメラ構造を提供する。
 上記(3)の発明によれば、近赤外光反射部が光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されるので、従来の近赤外光カットフィルタの位置よりも、近赤外光反射部から撮像素子からの距離が大きくなる。近赤外光反射部は、光の入射角が軸方向垂直からずれると、紫外領域の光を通しやすくなる場合がある。撮像素子からの距離が大きくなれば、近赤外光反射部から撮像素子を見込む角度が小さくなるので、近赤外光反射部を透過して撮像素子に直接到達する余分な紫外領域の光を低減しうるという効果を奏する。
 (4)本発明は、前記近赤外光吸収部が、前記カメラ構造において、前記光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることを特徴とする上記(1)乃至(3)のうちのいずれかに記載のカメラ構造を提供する。
 上記(4)の発明によれば、近赤外光吸収部は、透過率が光の入射角によらないことが多い。したがって近赤外光吸収部が、カメラ構造において、光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることで、さまざまな方向から撮像素子に入射しようとする迷光を効果的に抑制しうるという顕著な効果を奏する。
 (5)本発明は、光が入射する側から見て前記撮像素子の少なくとも一部を覆う撮像素子カバーが、前記光学レンズ群と前記撮像素子の間に配置されることを特徴とする上記(1)乃至(4)のうちのいずれかに記載のカメラ構造を提供する。
 撮像素子上に光を透過しにくいゴミが付着すると、画質が劣化する。上記(5)の発明によれば、光が入射する側から見て撮像素子の少なくとも一部を覆う撮像素子カバーが、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置されるので、撮像素子に付着しうるゴミを低減して、画質の劣化を防ぎうるという顕著な効果を奏する。
 (6)本発明は、前記撮像素子カバーが、ガラスであることを特徴とする上記(5)に記載のカメラ構造を提供する。
 上記(6)の発明によれば、温度変化による変形が少ない撮像素子カバーを安価に作製できるという効果を奏する。
 (7)本発明は、前記撮像素子カバーが、合成樹脂フィルムであることを特徴とする上記(5)に記載のカメラ構造を提供する。
 合成樹脂フィルムは、厚さ100μm以下のものが容易に作製できる。上記(7)の発明によれば、薄く安価な撮像素子カバーを安価に作製できるという効果を奏する。
 (8)本発明は、前記撮像素子カバーの厚みが、0.2mm以下であることを特徴とする上記(5)乃至(7)のうちのいずれかに記載のカメラ構造を提供する。
 上記(8)の発明によれば、従来よりも厚みの薄いカメラモジュールを提供しうるという顕著な効果を奏する。
 (9)本発明は、前記撮像素子カバーが、少なくとも可視領域の光の反射を防止する反射防止層を備えることを特徴とする上記(5)乃至(8)のうちのいずれかに記載のカメラ構造を提供する。
 撮像素子カバーは、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置される。したがって撮像素子カバーが光を反射すると、撮像素子が取得する画像の画質を著しく劣化させる原因となる。
 上記(9)の発明によれば、撮像素子カバーが、少なくとも可視領域の光の反射を防止する反射防止層を備えることで、画質が向上するという顕著な効果を奏する。
 (10)本発明は、前記撮像素子カバーの両面に、少なくとも可視領域の光の反射を防止する反射防止層を備えることを特徴とする上記(5)乃至(8)のうちのいずれかに記載のカメラ構造を提供する。
 上記(10)の発明によれば、入射光をより多く取り込むことが可能になり、且つ、撮像素子カバーに起因する反射光、特に撮像素子自身からの反射光が、さらに撮像素子カバーに反射されて撮像素子に戻ることを防止し、画質が向上するという顕著な効果を奏する。
 (11)本発明は、前記反射防止層が、前記撮像素子カバーの表面に形成される微細な突起からなる微細突起構造であることを特徴とする上記(9)または(10)に記載のカメラ構造を提供する。
 撮像素子カバーの表面に形成される微細な突起からなる微細突起構造、いわゆるモスアイ構造の反射防止層は、広帯域に渡って光の反射を防止する。したがって上記(12)の発明によれば、モスアイ構造の反射防止層を形成することで、撮像素子カバーに起因する反射光が広帯域に渡って著しく低減され、画質が向上されうるという顕著な効果を奏する。
 (12)本発明は、前記反射防止層は、前記内側透明プレートの表面に形成される塗膜であることを特徴とする上記(9)または(10)に記載のカメラ構造を提供する。
 互いに異なる光の屈折率を持つ2種類の薄膜を交互に積層した多層膜は、光の反射防止膜を形成しうる。そしてこのような多層膜は、合成樹脂を塗布することでも得られることが知られている。上記(12)の発明によれば、安価で大量に安定した品質の反射防止膜を備えた内側透明プレートを製造できるという著しい効果を奏する。
 (13)本発明は、前記撮像素子カバーが前記近赤外光吸収部を含むことを特徴とする上記(5)乃至(12)のうちのいずれかに記載のカメラ構造を提供する。
 上記(13)の発明によれば、撮像素子カバーが近赤外光吸収部を含むので部品点数の低減、及び、カメラ構造作製における工程数の削減という顕著な効果を奏する。
 (14)本発明は、前記近赤外光吸収部が、近赤外領域の光を吸収する近赤外光吸収膜であり、有機色素を含むことを特徴とする上記(1)乃至(13)のうちいずれかに記載のカメラ構造を提供する。
 上記(14)の発明によれば、近赤外光吸収部が近赤外光吸収膜を有し、近赤外光吸収膜には、近赤外光を吸収する有機色素が含まれるので、近赤外領域の光を吸収するためのフィルタの材料として一般に使用されるブルーガラスを用いることなく、光の入射角度依存性が少ない状態で、近赤外光領域の光を抑止することが可能になるという効果を奏する。
 (15)本発明は、前記カメラ構造が、撮像装置の内部機構を外界から保護するカバーガラスをさらに有し、該カバーガラスが前記近赤外光反射部を含むことを特徴とする上記(1)乃至(14)のうちのいずれかに記載のカメラ構造を提供する。
 上記(15)の発明によれば、カバーガラスが、光を反射する近赤外光反射膜を有するので、外界からの近赤外光を撮像装置の内部機構に入射させない効果を奏しうる。また、撮像素子に近接した領域に、近赤外光反射膜を備えた部材を入れる必要が無くなるので、撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。
 (16)本発明は、撮像をおこなうカメラ構造であって、光の入射側に配置される光学レンズ群と、前記光学レンズ群を介して入射した光を受光する撮像素子と、近赤外領域の光を反射する近赤外光反射部と、近赤外領域の光を吸収する近赤外光吸収部とを備え、前記近赤外光反射部、及び、前記近赤外光吸収部が、前記光学レンズ群に含まれる一体の光学素子に含まれることを特徴とするカメラ構造を提供する。
 上記(16)の発明によれば、近赤外光反射部と近赤外光吸収部を同時に含む一体の光学素子が光学レンズ群に含まれるので、撮像素子に近接した位置に近赤外光反射膜を備えた部材を入れる必要が無くなる。したがって撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。
 (17)本発明は、近赤外領域の光を吸収する近赤外光吸収部と、近赤外領域の光を反射する近赤外光反射部とを備え、前記近赤外光吸収部は、光の波長として685nm~755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、前記近赤外光反射部への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光反射部は、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、前記近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とするカメラ構造を提供する。
 近赤外光吸収部と近赤外光反射部を合わせた効果として、所定の波長における光の透過率が1%以上となると取得画像に影響を与える。したがって近赤外光吸収部の分光特性として、光透過率が2%以上の光波長領域において、近赤外光反射部の光透過率が50%になると、取得画像の画質が肉眼で見た色味とは異なることになる。また近赤外光反射部を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。特に赤外線反射部を、カメラモジュールの外界側、具体的にはカバーガラスに配置した場合には、入射角の大きな光がカメラモジュール内に入射可能になるため、この画質悪化が顕著になる。
 上記(17)に記載の発明によれば、近赤外光吸収部と近赤外光反射部を合わせた効果として、685nm~755nmの光波長領域のうち近赤外光カットオフ波長より長い光波長領域において光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。また近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたとき、常に、近赤外光反射部の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で透過率の光波長依存性が変わらなくなるため画質が向上するという優れた効果を奏する。
 (18)本発明は、近赤外領域の光を吸収する近赤外光吸収部と、近赤外領域の光を反射する近赤外光反射部とを備え、前記近赤外光吸収部は、光の波長として685nm~755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、前記近赤外光反射部は、光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、前記近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とする上記(1)乃至上記(16)のうちのいずれかに記載のカメラ構造を提供する。
 近赤外光反射部が、カメラ構造の外界に近い側、例えばカバーガラスに設けられる場合には、入射角の大きな光までカメラ構造内に入り込む。近赤外光反射部を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
上記(18)に記載の発明によれば、近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたとき、常に、近赤外光反射部の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で取得され得る光波長が変わらないため画質が向上するという優れた効果を奏する。
 また赤外光吸収部と近赤外光反射部を合わせた効果として、685nm~755nm685nm~755nmの光波長領域のうち近赤外光カットオフ波長より長い光波長領域において光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。
 (19)本発明は、撮像装置の内部機構を外界から保護するカバーガラスと前記カバーガラス側に配置される光学レンズ群と前記カバーガラス及び前記光学レンズ群を介して入射した光を受光する撮像素子とを備え、前記カバーガラスは光を透過する透明基板と、前記近赤外光吸収部と、前記近赤外光反射部と、を有し、前記光学レンズ群から前記撮像素子までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないことを特徴とする上記(17)に記載のカメラ構造を提供する。
 近赤外光反射部が、カメラ構造の外界に最も近い側、すなわちカバーガラスに設けられので入射角の大きな光までカメラ構造内に入り込む。近赤外光反射部を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
 上記(19)に記載の発明によれば、近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたとき、常に、近赤外光反射部の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で透過率の光波長依存性が変わらなくなるため画質が向上するという優れた効果を奏する。
 また赤外光吸収部と近赤外光反射部を合わせた効果として、685nm~755nmの光波長領域685nm~755nmの光波長領域のうち近赤外光カットオフ波長より長い光波長領域において光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。
 さらに光学レンズ群から前記撮像素子までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないので、カメラ構造全体としての低背化に資する。
 (20)本発明は、近赤外領域の光を遮断する近赤外光カットフィルタを備えるカメラ構造であって、前記近赤外光カットフィルタは、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義すると、前記入射光の入射角度を0°~30°の範囲で変えた時の前記近赤外光遮断波長の角度依存変化幅が5nm以下であることを特徴とするカメラ構造を提供する。
 近赤外光カットフィルタが、例えば誘電体多層膜を備える近赤外光反射部を有する場合、近赤外光反射部における光の透過率の波長依存性は、入射光の入射角度により変化する。すなわち例えば近赤外光反射部の近赤外光遮断波長が、入射光の入射角度が0°であるとき約700nm程度だったものが、入射光の入射角度が30°になると約675nmになるような入射角度依存性が生じることがある。すると近赤外光カットフィルタが近赤外光吸収部を有するとして、近赤外光反射部と組み合わせられて実現する光透過率が、入射光の入射角度によって大きく変化してしまうことがあり得る。具体的には、近赤外光反射部と近赤外吸収部を有する近赤外光カットフィルタは、入射光の入射角度を0°~30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が30nm程度になってしまうことがあり得る。逆に言えば近赤外光領域の所定の光波長において、近赤外光カットフィルタの光透過率が、入射光の入射角度により大きく変動してしまうということである。例えば光の波長が660~690nmの光が入射したとすると、取得画像の中心部で入射角度が小さなときは光透過率が20%程度で、取得画像の周縁部で入射角度が大きな時には光透過率がほぼ0%になるといった現象が生じ、結果的に取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
 上記(20)に記載の発明によれば、近赤外光カットフィルタにおいて、入射光の入射角度を0°~30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が5nm以下なので、取得画像内での色の表現に差が生じ難くなり、画質が向上するという優れた効果を奏する。
 (21)本発明は、近赤外領域の光を吸収する近赤外光吸収部と、近赤外領域の光を反射する近赤外光反射部とを備え、前記近赤外光吸収部の光透過率は、光の波長について700nm~750nmの範囲で2%未満であり、光の波長について630nm~750nmの範囲、且つ、光の透過率が2%以上の範囲で、前記近赤外光吸収部の光透過率の周波数依存曲線が、前記近赤外光反射部に入射する入射角度が0°~30°の時の前記近赤外光反射部の光透過率の周波数依存曲線よりも、短波長側にあることを特徴とするカメラ構造を提供する。
 上記(21)に記載の発明によれば、近赤外光反射部における光透過率の波長依存性が入射光の入射角度によって変化する現象が生じても、近赤外光反射部と近赤外光吸収部を合わせて考えたときの近赤外光領域における光透過率の分光特性が、近赤外光吸収部の光透過率の分光特性に支配されるので、取得画像内での色の表現に差が生じ難くなり、画質が向上するという優れた効果を奏する。
 (22)本発明は、上記(1)乃至上記(21)のいずれかに記載のカメラ構造を有することを特徴とする撮像装置を提供する。
 上記(22)の発明によれば、従来よりも画質が向上したカメラ構造を搭載する撮像装置を安価に実現できるという著しい効果を奏する。
 本発明によれば、近赤外光反射部を配置する場所と、近赤外光吸収部を配置する場所に自由度が生じるので、カメラ構造の中でそれぞれ最適な位置に配置できるようになり、撮像装置における画質の向上という顕著な効果を奏しうる。
(A)本発明の第一実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)近赤外光反射部を含む近赤外光反射機能付きカバーガラスの構造図である。(C)近赤外光吸収部を含む近赤外光吸収機能付き撮像素子カバーの構造図である。 (A)光学フィルタ機能付きカバーガラスの構造図である。(B)近赤外光反射膜についての分光透過率の入射角度依存性を示す図である。(C)入射角度の定義を説明する説明図である。 近赤外光吸収膜と近赤外光反射膜を備えた光学フィルタ機能付きカバーガラスにおける分光透過率の入射角度依存性を示す図である。 光学フィルタ機能付きカバーガラス、近赤外光吸収膜を備えたガラス、近赤外光反射膜を備えたガラスについて分光透過率を比較した図である。 デュアルバンドのカバーガラスについての分光透過率を説明する説明図である。 (A)本発明の第三の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)近赤外光反射部を含む近赤外光反射機能付きカバーガラスの構造図である。(C)近赤外光吸収機能付きプレートの構造図である。(D)透明ガラスを基材として反射防止層を複数備えた撮像素子カバーの構造図である。(E)両面に反射防止機能を発揮するモスアイ構造を備えた透明合成樹脂フィルムを基材とした撮像カバーの構造図である。 (A)本発明の第四の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)近赤外光吸収部を備えた光学レンズ素子をふくむレンズユニットの断面図である。(C)近赤外光吸収部を備えた光学レンズ素子をふくむレンズユニットの断面図である。 (A)本発明の第五の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。(B)近赤外光反射部を含む光学レンズ素子と近赤外光吸収部を含む光学レンズ素子を備えるレンズユニットの断面図である。 (A)本発明の第六の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。(B)近赤外光吸収部を含む近赤外光吸収機能付き光学素子を備えるレンズユニットの断面図である。(C)近赤外光吸収機能付き光学素子の構造図である。 (A)本発明の第7の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。(B)近赤外光反射部、及び、近赤外光吸収部を含む光学フィルタ機能付き光学素子を備えるレンズユニットの断面図である。(C)光学フィルタ機能付き光学素子530の構造図である。 (A)携帯通信機器における従来のカメラ構造の断面図である。(B)従来のカメラ構造でおこなった実験の実験方法を説明する説明図である。(C)従来のカバーガラスの断面図である。(D)従来の近赤外光カットフィルタの断面図である。(E)従来のカメラ構造によって撮像した画像である。 (A)従来の光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。(B)近赤外光吸収部と近赤外光反射部を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。 (A)近赤外光領域において光吸収帯が従来よりも広い光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。(B)近赤外光吸収部と近赤外光反射部を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。 (A)本発明の第九実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。(B)反射防止膜を複数備えた光学フィルタ機能付きカバーガラスの構造図である。
 以下、本発明の実施の形態を添付図面を参照して説明する。
 図1~図10及び図12~図14は、発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。
 図1(A)は、本発明の第一実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。
 当該カメラ構造は、撮像装置の内部機構を外界から保護する近赤外光反射機能付きカバーガラス215と、カメラモジュール1を備える。カメラモジュール1は、撮像装置の内部機構である光学レンズ群、すなわちレンズユニット50と、レンズユニット50を保持するレンズキャリア40と、自動焦点機能を実現するためにレンズユニット50を軸方向に移動させるマグネットホルダ30と、近赤外光反射機能付きカバーガラス215及びレンズユニット50を介して入射した光を受光する撮像素子70と、レンズユニット50と撮像素子70の間に配置され、光を透過する透明ガラスを基材とした、近赤外光吸収機能付き撮像素子カバー244を備える。近赤外光吸収機能付き撮像素子カバー244は、軸方向、レンズユニット50側から撮像素子70を見たときに、撮像素子70表面の少なくとも一部分を覆っている。
 図1(B)は、近赤外光反射部を含む近赤外光反射機能付きカバーガラス215の構造図である。近赤外光反射機能付きカバーガラス215は、光を透過する透明基板として結晶化ガラス130を使用し、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜120が、結晶化ガラス130を基準として光の入射側に形成される。そして光が入射する側の最も外側に、外界からの汚れを防止するための防汚コート膜110を備える。光の出射側に、結晶化ガラス130を基準として最も遠い側から順に、反射防止膜120と、近赤外領域の光を反射する近赤外反射部である近赤外光反射膜150を形成する。
 なお、近赤外光反射機能付きカバーガラス215において、最も撮像素子70側の反射防止膜120は無くても良い。
 図1(C)は、少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収部である近赤外光吸収膜140をさらに備える近赤外光吸収機能付き撮像素子カバー244の構造図である。すなわち近赤外光吸収機能付き撮像素子カバー244は両面に、少なくとも可視領域の光の反射を防止する反射防止層230を備える。反射防止層230は、反射防止膜120と類似した材質、構造を持ち、作製方法も同様である。
 近赤外光吸収機能付き撮像素子カバー244は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230は、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光吸収膜140が備えられる。
 すなわち発明の第一実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造は、光の入射側に配置される光学レンズ群(光学ユニット50)と、レンズユニット50を介して入射した光を受光する撮像素子70と、近赤外領域の光を反射する近赤外光反射部である近赤外光反射膜150と、近赤外領域の光を吸収する近赤外光吸収部である近赤外光吸収膜140とを備え、近赤外光反射部と、近赤外光吸収部は、別体に形成されることを特徴とするカメラ構造である。近赤外光反射部である近赤外光反射膜150と、近赤外光吸収部である近赤外光吸収膜140が、光の入射側から順に、近赤外光反射膜150、近赤外光吸収膜140と配置される。近赤外光反射部である近赤外光反射膜150が、当該カメラ構造において、レンズユニット50を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置される。近赤外光吸収部である近赤外光吸収膜140が、当該カメラ構造において、レンズユニット50を構成するレンズ素子を含み、該レンズ素子よりも撮像素子70側に配置される。光が入射する側から見て撮像素子70の少なくとも一部を覆う近赤外光吸収機能付き撮像素子カバー244が、レンズユニット50と撮像素子70の間に配置される。近赤外光吸収機能付き撮像素子カバー244は前記撮像素子近赤外光吸収部を含む。近赤外光吸収部は、近赤外領域の光を吸収する近赤外光吸収膜140であり、有機色素を含む。当該カメラ構造は、撮像装置の内部機構を外界から保護する近赤外光反射機能付きカバーガラス215をさらに有し、該カバーガラスが近赤外光反射部である近赤外光反射膜150を含む。
 なお近赤外光吸収機能付き撮像素子カバー244を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。
 一般に結晶化ガラスは、結晶粒子が大きいため光を通しにくかった。しかし最近の技術の進歩により、例えば株式会社オハラ社製の耐衝撃・高硬度クリアガラスセラミックスのように、結晶粒子をナノメートルサイズに制御することが可能になり光の透過率が高まった。このような結晶化ガラスを使えば、耐衝撃性とクラックが入りにくい破壊靱性を兼ね備えたカバーガラスを製造することができる。そしてこのようなカバーガラスに上記の積層構造を形成することで近赤外光反射機能付きカバーガラス215が実現される。なお近赤外光反射機能付きカバーガラス215としてブルーガラスを使用することも理論上は考えられるが、耐衝撃性が低く、またクラックが入りにくい破壊靱性に欠けるため適切でない。強化ガラスに、後述する近赤外光反射膜150を成膜して近赤外光反射機能付きカバーガラス215とすることも考えられるが、結晶化ガラス130を使う場合に比べて耐衝撃性が低い欠点を持つ。また硬度が高いサファイアガラスに、近赤外光反射膜150を成膜して近赤外光反射機能付きカバーガラス215とすることも考えられるが、コストが著しく上がり、また結晶化ガラス130を使う場合に比べて加工性が低い。
 防汚コート膜110は、指紋汚れ、皮脂汚れを防ぐとともに、汚れを拭き取りやすくする。防汚コート膜110はフッ素系のコーティング剤等で形成され、塗布やスプレーにより、カバーガラスの積層構造において光の入射側の最も外側に成膜される。
 反射防止膜120は、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する。反射防止膜120は誘電体多層膜であり、且つ、窒化膜と酸化膜を交互に積層して構成される。反射防止膜120を構成する誘電体膜は、窒化膜と酸化膜を交互に複数積層して構成される。窒化膜としては、窒化ケイ素、酸窒化ケイ素または窒化アルミニウムなどを用いることができる。酸窒化ケイ素を用いる場合には、酸素と窒素との化学量論比(酸素/窒素)が1以下であることが望ましい。酸化膜としては、酸化ケイ素(SiO2)、酸化アルミニウム(Al2O3)などを用いることができる。反射防止膜120の膜として窒化ケイ素または酸窒化ケイ素を用いることにより、後述する近赤外光反射膜150と同じ成膜方法及び成膜装置を用いて反射防止膜120を形成することができるのでプロセス的に有利である。
 反射防止膜120は、窒化膜の代わりに酸化膜を用いることもできる。このような酸化膜の材質としては、酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いることができる。なお反射防止膜120を屈折率の異なる複数種類の酸化膜で構成する場合には、前記酸化物から適宜選択する。
 反射防止膜120は、公知の成膜方法、たとえば真空蒸着法、スパッタ法、イオンビームアシスト蒸着法(IAD法)、イオンプレーティング法(IP法)、イオンビームスパッタ法(IBS法)などを用いることができる。窒化膜の成膜には、スパッタ法、イオンビームスパッタ法を用いることが望ましい。
 近赤外光吸収膜140は、可視領域の光を透過するとともに、赤色領域から近赤外領域の光の一部を吸収する機能を有する。近赤外光吸収膜140には、有機色素が含まれ、650nmから750nmの範囲に最大吸収波長を有する樹脂膜から構成される(図4破線参照)。近赤外光吸収膜140は、結晶化ガラス130に隣接するため、両者の屈折率差を小さくして界面での反射率を低下させることが望ましい。このような近赤外光吸収膜140を有することにより、入射角度による分光透過率特性の依存性を低減して優れた近赤外光カット性を有することができる。
 有機色素としては、アゾ系化合物、フタロシアニン系化合物、シアニン系化合物、ジイ
モニウム系化合物などを用いることができる。近赤外光吸収膜140を構成するバインダー(色素の結着剤)としての樹脂材料としては、ポリアクリル、ポリエステル、ポリカーボネイト、ポリスチレン、ポリオレフィンなどを用いることができる。樹脂材料は、複数の樹脂を混合してもよく、また上記樹脂のモノマーを用いた共重合体であってもよい。また、樹脂材料は、可視領域の光に対して透過率の高いものであればよく、有機色素との相性、成膜プロセス、コスト等を考慮して選択される。また、近赤外光吸収膜140の耐紫外線性を向上させるために、樹脂材料に硫黄化合物などのクエンチャー(消光色素)を添加してもよい。
 近赤外光吸収膜140の形成には、たとえば以下の方法を用いることができる。まず、樹脂バインダーをメチルエチルケトン、トルエン等の公知の溶剤によって溶解し、さらに上述の有機色素を添加して塗布液を調製する。次いで、この塗布液をたとえばスピンコート法により結晶化ガラス130に所望の膜厚で塗布し、乾燥炉にて乾燥、硬化させる。
 近赤外光反射膜150は、反射防止膜120と同様に屈折率の異なる誘電体を交互に複数積層して形成される誘電体多層膜である。ただし近赤外光反射膜150を構成する誘電体多層膜は、屈折率が互いに異なる複数種類の酸化膜を複数積層させることで形成され、隣接する前記酸化膜は互いに異なる種類の酸化膜である。本第一実施形態で近赤外光反射膜150は、2種類の酸化膜を交互に数十層積層して形成される。酸化膜としては酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いる。
 近赤外光反射膜150において、それぞれの酸化膜の膜厚は、反射をしたい光の波長をλとして、λ/4の厚みで形成する。こうすることで交互層のすべての界面から反射された光は、入射面に達すると同じ位相になり、光は強め合う結果になる、つまり波長λ付近で反射率が大きくなって光反射膜として機能する。本実施形態においては、λとして近赤外領域の光を反射するように膜の設計を行えば良い。なお近赤外光反射膜150についても、上述の反射防止膜120と同様の成膜方法及び成膜装置を用いて成膜する。
 人間の目は、波長380nm~780nmのいわゆる可視光に対して感度を持つ。一方、撮像素子は、一般に可視光を含め、より長波長の光、すなわち波長約1.1μmの光まで感度を持つ。したがって撮像素子で捉える画像をそのまま写真にすると、自然な色合いには見えず、違和感を生じる原因になる。
 近赤外光反射部、及び、近赤外光吸収部を有する一体の光学フィルタ機能付きカバーガラス100を、例えば図2(A)のような積層構造として形成すると、誘電体多層膜による近赤外光反射膜150を備えるため、近赤外光吸収膜140では吸収しきれない700nm以上の長さの波長の光をカットして、自然な色合いの画像を取得することが可能になる。また近赤外光反射膜150だけで近赤外領域の光をカットしようとすると、後述するように入射光の入射角度により反射率が大きく変化してしまう。近赤外光反射膜150と、光吸収率について入射角度依存性のない近赤外光吸収膜140とを組み合わせることで、光の透過率が、光の入射角度に対して依存性の少ない近赤外光カットフィルタを構成することが可能になる。
 また、スマートフォン筐体20内のカメラを外界から保護するカバーガラス100が反射防止膜120により紫外領域の光をカットすることができるので、カメラの構成部品である合成樹脂で形成された光学レンズ群(レンズユニット50)が紫外線によって劣化することを防ぐことができ、且つ、有機色素を含む近赤外光吸収膜140が紫外線により劣化することも防ぐことができる。また、可視領域の光に対する反射防止機能により、入射光をより多く取り込み、明るい画像を取得できる。
 なお反射防止膜120は、窒化膜と酸化膜を交互に積層して構成されるが、一般に窒化膜は、酸化膜と比べて高硬度であり、鉛筆硬度試験において、9H以上の硬度に達する。したがって反射防止膜120を窒化膜も含めて構成することで、耐傷性を高める効果を奏する。また窒化膜は、酸化膜と比べて充填密度が高く緻密である。成分として酸素を含まないため、酸素の供給源にもならない。したがって窒化膜を近赤外光吸収膜140より外側に設けることで、近赤外光吸収膜140への酸素および水分の侵入を防ぎ、近赤外光吸収膜140の劣化を抑制する効果を奏する。
 一般に光学フィルタは、多数の光学境界面を持っている。一方レンズには高度な反射防止膜を施している。近赤外領域の光をカットする光学フィルタでレンズ並みの透過率を実現することは難しく、レンズ側に反射光を戻すことが生じる。これが画像にゴーストを生む迷光の原因になる。従来のカメラ構造においては、光学フィルタ60がレンズユニット50と撮像素子70の間の光路上で、撮像素子70直近に置かれているため、上記のようなゴーストを生じることは避けがたかった。しかし本実施形態に係るカメラ構造によれば、上述のような迷光を生じることはないため画質を向上させる著しい効果を奏する。
 次に参考のために、近赤外光反射部、及び、近赤外光吸収部を有する一体の光学フィルタ機能付きカバーガラス100の分光透過率特性について説明する。光学フィルタ機能付きカバーガラス100の機能を、例えば、別体である、近赤外光反射機能付きカバーガラス215と、近赤外光吸収機能付き撮像素子カバー244に分けた場合でも、同様の効果が得られる。
 図2(B)は、誘電体膜によって構成された近赤外光反射膜の分光透過率特性が、光の入射角度に対してどのように依存するかについての実験結果を示す。入射角度Aは図2(C)のように定義する。また、縦軸の「T」は、分光透過率を示し、単位は%(パーセント)である。また横軸の「λ」は光の波長を示し、単位はnm(ナノメートル)である(以下の図でも同様)。サンプルはガラスに二酸化チタン(TiO2)と二酸化ケイ素(SiO2)とを所定の膜厚で交互に40層積層したものである。実線が光の入射角度0度の場合、破線が光の入射角度が30度の場合の分光透過率を示す。図2(B)から赤色領域である波長700nm付近の光に対して、光の入射角度0度と30度で著しい分光透過率の差が生じてしまうことが確認された。このような差があると、画像の色合いが画像中心と周辺部で大きく変わってしまうことにつながり、最終的な画質低下の原因となる。
 図3は、近赤外光吸収膜と近赤外反射膜の両者を備えた光学フィルタ機能付きカバーガラス100の分光透過率が、光の入射角度に対してどのように依存するかについての実験結果を示す。近赤外光吸収膜としては、有機色素を含む厚さ5μm以下の樹脂膜を用いており、近赤外光反射膜としては図2の場合と同様の構成である。実線が光の入射角度0度の場合、破線が光の入射角度が15度の場合、一点鎖線が光の入射角度が30度の場合の分光透過率を示す。図2の場合と比べて入射角度依存性が小さくなっているのが確認できる。
 図4は、近赤外光吸収膜140及び近赤外光反射膜150を備えた光学フィルタ機能付きカバーガラス100(実線)と、近赤外光吸収膜140のみを形成したカバーガラス(破線)と、近赤外光反射膜150のみを形成したカバーガラス(一点鎖線)の分光透過率測定における実験結果を比較した図である。近赤外光吸収膜140と近赤外光反射膜150の構成は図2、図3の場合と同様なので説明を省略する。ただしすべて光の入射角度は0度である。近赤外光吸収膜140のみの場合だと、650~750nmの光については、強い光吸収をするが、800nm以上の光は、ほとんど透過してしまう。前述のように人間の目は、波長380nm~780nmのいわゆる可視光に対して主に感度を持つため、撮像素子70が感度を持つ800nm以上の領域まで画像化すると上述のように人間の目には不自然な画像となる。近赤外光反射膜150は、波長700nm以上の光についてはカットするように設計されており、実際に700nm付近で急峻な分光透過率の減少が測定されている。近赤外光吸収膜140と近赤外光反射膜150を組み合わせて、構成したのが光学フィルタ機能付きカバーガラス100であり、図4の実線で示すように、可視領域の光のうち400~650nmについては、高い透過率を実現し、且つ、波長700nm以上の光をカットしていることが確認できる。
 本発明の実施形態に係るカメラ構造によれば、近赤外光反射部を配置する場所と、近赤外光吸収部を配置する場所に自由度が生じるので、カメラ構造の中でそれぞれ最適な位置に配置できるようになり、画質の向上という顕著な効果を奏する。
 近赤外光吸収部が吸収する波長の光よりも長波長側の光は透過してしまう場合がある。そのため、光の入射側から順に、近赤外光吸収部、近赤外光反射部、と配置されると、近赤外光吸収部が吸収する波長の光よりも長波長側の光がカメラモジュール内に入射しやすくなり、長波長側の光をカットできる近赤外光反射部に到達する前に、レンズ面などに反射して迷光となることで画質を落とす原因になる。
 本発明の実施形態に係るカメラ構造によれば、近赤外光反射部と近赤外光吸収部が、光の入射側から順に、近赤外光反射部、近赤外光吸収部と配置されるので、長波長側の迷光を抑止しうるという効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、近赤外光反射部が光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されるので、従来の近赤外光カットフィルタの位置よりも、近赤外光反射部から撮像素子からの距離が大きくなる。近赤外光反射部は、光の入射角が軸方向垂直からずれると、紫外領域の光を通しやすくなる場合がある。撮像素子からの距離が大きくなれば、近赤外光反射部から撮像素子を見込む角度が小さくなるので、近赤外光反射部を透過して撮像素子に直接到達する余分な紫外領域の光を低減しうるという効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、近赤外光吸収部は、透過率が光の入射角によらないことが多い。したがって近赤外光吸収部が、カメラ構造において、光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることで、さまざまな方向から撮像素子に入射しようとする迷光を効果的に抑制しうるという顕著な効果を奏する。
 撮像素子上に光を透過しにくいゴミが付着すると、画質が劣化する。本発明の実施形態に係るカメラ構造によれば、光が入射する側から見て撮像素子の少なくとも一部を覆う撮像素子カバーが、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置されるので、撮像素子に付着しうるゴミを低減して、画質の劣化を防ぎうるという顕著な効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、温度変化による変形が少ない撮像素子カバーを安価に作製できるという効果を奏する。
 撮像素子カバーは、光学レンズ群と撮像素子の間という撮像素子に近接した位置に配置される。したがって撮像素子カバーが光を反射すると、撮像素子が取得する画像の画質を著しく劣化させる原因となる。本発明の実施形態に係るカメラ構造によれば、撮像素子カバーが、少なくとも可視領域の光の反射を防止する反射防止層を備えることで、画質が向上するという顕著な効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、入射光をより多く取り込むことが可能になり、且つ、撮像素子カバーに起因する反射光、特に撮像素子自身からの反射光が、さらに撮像素子カバーに反射されて撮像素子に戻ることを防止し、画質が向上するという顕著な効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、撮像素子カバーが近赤外光吸収部を含むので部品点数の低減、及び、カメラ構造作製における工程数の削減という顕著な効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、近赤外光吸収部が近赤外光吸収膜を有し、近赤外光吸収膜には、近赤外光を吸収する有機色素が含まれるので、近赤外領域の光を吸収するためのフィルタの材料として一般に使用されるブルーガラスを用いることなく、光の入射角度依存性が少ない状態で、近赤外光領域の光を抑止することが可能になるという効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、カバーガラスが、光を反射する近赤外光反射膜を有するので、外界からの近赤外光を撮像装置の内部機構に入射させない効果を奏しうる。また、撮像素子に近接した領域に、近赤外光反射膜を備えた部材を入れる必要が無くなるので、撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。
 図5は、本発明の第二実施形態に係るカメラ構造が有する光学フィルタ機能付きカバーガラスの分光透過率を示す図である。本実施形態では、夜間でも画像を取得できる、いわゆるデュアルバンドの光学フィルタ機能付きカバーガラスとカメラ構造を提供する。カメラ構造の基本構成は第一実施形態と同様だが、近赤外光反射機能付きカバーガラス215の代わりに、近赤外光吸収膜140及び近赤外光反射膜150を備える光学フィルタ機能付きカバーガラス100を配置し、近赤外光吸収機能付き撮像素子カバー244を省略している(図示省略)。
 また近赤外光反射機能付きカバーガラス215は、近赤外領域の光の一部について光透過率を高くした近赤外光反射膜Dを備える。近赤外光反射膜Dの膜構造は公知技術なので説明を省略する。
 図5の破線で示す近赤外光吸収膜140と、図5の一点鎖線で示す近赤外領域の光の一部について光透過率を高くした近赤外反射膜Dを組み合わせると、図5の実線のように可視領域の光と近赤外領域の光の一部を透過するデュアルバンドカバーガラスを実現できる。ただし図5において、近赤外光反射膜D及びデュアルバンドカバーガラスの分光透過率については、750nm以上の波長においては、計算値を表している。このようなデュアルバンドカバーガラスを備えたカメラ構造によれば、夜間の道路において車線境界線や車道外側線が見えやすくなるという著しい効果が得られるため、車載カメラに好適である。
 図6(A)は、本発明の第三の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。本カメラ構造は、近赤外光を反射する近赤外光反射機能付きカバーガラス215と、近赤外光を吸収する近赤外光吸収機能付きプレート217と、透明ガラスを基材とした撮像素子カバー240を備える。他の構成は前述の第一実施形態と同様であるから記載を省略する。
 図6(B)は、近赤外光反射部を含む近赤外光反射機能付きカバーガラスの構造図である。近赤外光反射機能付きカバーガラス215は、光を透過する透明基板として結晶化ガラス130を使用し、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜120が、結晶化ガラス130を基準として光の入射側に形成される。そして光が入射する側の最も外側に、外界からの汚れを防止するための防汚コート膜110を備える。光の出射側に、結晶化ガラス130を基準として最も遠い側から順に、少なくとも可視領域の光の反射を防止する反射防止膜120と、近赤外領域の光を反射する近赤外光反射膜150を形成する。
 なお、近赤外光反射機能付きカバーガラス215において、最も撮像素子70側の反射防止膜120は無くても良い。
 図6(C)は、近赤外光吸収機能付きプレート217の構造図である。近赤外光吸収機能付きプレート217は少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収膜140をさらに備える。近赤外光吸収機能付きプレート217は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230が、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光吸収膜140が備えられる。
 近赤外光吸収機能付きプレート217は、近赤外光反射機能付きカバーガラス215より、内部構造側、すなわちレンズユニット50側に配置される。
 なお、近赤外光吸収機能付きプレート217を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。
 図6(D)は、透明ガラス220を基材として反射防止層230を複数備えた、透明ガラスを基材とした撮像素子カバー240の構造図である。撮像素子カバー240は、透明ガラス220の両面に反射防止層230を備える。
 図6(E)は、第三実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造において、透明ガラスを基材とした撮像素子カバー240を、透明合成樹脂フィルム222を基材とした撮像素子カバー242に置き換えた変形実施例の一部である。すなわち、透明合成樹脂フィルム222を基材として、両面に反射防止機能を発揮するモスアイ構造を備えた透明合成樹脂フィルムを基材とした撮像素子カバー242の構造図である。透明合成樹脂フィルムを基材とした撮像素子カバー242の厚みは、0.2mm以下である。透明合成樹脂フィルムを基材とした撮像素子カバー242は、少なくとも可視領域の光の反射を防止するモスアイ構造232を両面に備える。
 モスアイ構造とは、誘電体多層膜のように干渉効果を利用して反射を低減するのでは無く、屈折率が急激に変化する境界面を排除することで反射を低減する。具体的には、表面に数百nm程度の高さを持つ多数の微細な突起からなる微細突起構造が形成され、その突起の繰り返し周期が反射低減の効果の現れる波長範囲と関連する。モスアイ構造については周知技術なので記載を省くが、本変形実施例の場合、例えば、透明合成樹脂フィルム222として透明なアクリル樹脂を使用し、転写や成型加工によってモスアイ構造を形成することで反射防止機能を実現する。
 すなわち透明合成樹脂フィルムを基材とした撮像素子カバー242の表面に形成される微細な突起からなる微細突起構造、いわゆるモスアイ構造232は、広帯域に渡って光の反射を防止する。モスアイ構造232は、少なくとも可視領域の光の反射防止機能を有し、紫外領域の光と、近赤外領域の光についても反射防止機能を有することが望ましい。
 合成樹脂フィルムは、厚さ100μm以下のものが容易に作製できる。本発明の実施形態に係るカメラ構造によれば、薄く安価な撮像素子カバーを安価に作製できるという効果を奏する。
 本発明の実施形態に係るカメラ構造によれば、従来よりも厚みの薄いカメラモジュールを提供しうるという顕著な効果を奏する。
 撮像素子カバーの表面に形成される微細な突起からなる微細突起構造、いわゆるモスアイ構造の反射防止層は、広帯域に渡って光の反射を防止する。したがって本発明の実施形態に係るカメラ構造によれば、モスアイ構造の反射防止層を形成することで、撮像素子カバーに起因する反射光が広帯域に渡って著しく低減され、画質が向上されうるという顕著な効果を奏する。
 さらに内側透明プレート240についての他の変形実施例としては、基材である透明合成樹脂フィルム222の表面に反射防止層として、合成樹脂を塗布することで得られる多層膜を形成したものも考えられる。一般に互いに異なる光の屈折率を持つ2種類の薄膜を交互に積層して得られる多層膜は、光の反射防止膜を形成しうる。そしてこのような多層膜は、合成樹脂を塗布することでも得られることが知られている。
 例えば、光の屈折率が互いに異なる2種類の合成樹脂であって、それらの屈折率が、いずれも空気の屈折率より大きく、且つ、透明合成樹脂フィルム222の屈折率より小さいものを用意する。これらを交互に透明合成樹脂フィルム222に塗布することで、安価に安定した品質の反射防止膜を備えた内側透明プレート240を製造しうる。透明合成樹脂フィルム222への合成樹脂の塗布の方法としては、例えばローラーコート法などが考えられる。本変形実施例によれば、反射防止膜を備えた内側透明プレートを、安定した品質のもと、大量に、しかも安価に製造できるという著しい効果を奏する。
 図7(A)は、本発明の第四の実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。当該カメラ構造は、近赤外光反射機能付きカバーガラス215と、カメラモジュール1を備える。カメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70と、撮像素子カバー240を備える。近赤外光反射機能付きカバーガラス215と、撮像素子カバー240の構造は、第三の実施形態における記載と同様なので省略する。また近赤外反射膜150、反射防止膜120の作製方法は第一実施形態と同様なので記載を省略する。
 図7(B)は、近赤外光吸収部を備えたレンズ素子をふくむレンズユニットの断面図である。レンズユニット50、すなわち光学レンズ群は複数のレンズ素子から構成される。光学レンズ群のうち最も撮像素子70側に配置されたレンズ素子が、近赤外光吸収部を備えるレンズ素子250である。近赤外光吸収部は有機色素であり、近赤外光吸収部を備えるレンズ素子250を形成する合成樹脂中均一に含有される。
 図7(C)は、近赤外光吸収部を備えたレンズ素子をふくむレンズユニットの断面図である。本変形実施例では、近赤外光吸収部を備えたレンズ素子は、透明なレンズ素子255の最も撮像素子70側表面に、近赤外光吸収膜140を設けることで実現される。近赤外光吸収膜140の作製方法は、第一の実施形態に記載したものと同様なので省略する。
 なお近赤外光吸収膜140のさらに撮像素子70側に、反射防止層230を設けても良い。
 本発明の実施形態によれば、光を反射する近赤外光反射部を有するので、外界からの近赤外光を撮像装置の内部機構に入射させない効果を奏しうる。また、撮像素子に近接した領域に、近赤外光反射部を備えた部材を入れる必要が無くなるので、撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。
 本発明の実施形態によれば、近赤外光吸収部が近赤外光を吸収する有機色素が含むので、近赤外領域の光を吸収するためのフィルタの材料として一般に使用されるブルーガラスを用いることなく、光の入射角度依存性が少ない状態で、近赤外光領域の光を抑止することが可能になるという効果を奏する。
 図8(A)は、本発明の第五の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。当該カメラ構造のカメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70を有し、車体22に固定される。すなわち、当該カメラ構造は、いわゆる車載カメラの構造である。
 図8(B)は、近赤外光反射部を含む光学レンズ素子270と、近赤外光吸収部を含む光学レンズ素子250を備えるレンズユニットの断面図である。近赤外光反射部を備えるレンズ素子270の光入射側表面には、近赤外光反射膜150が設けられる。近赤外光吸収部を備えるレンズ素子250において、近赤外光吸収部は有機色素であり、近赤外光吸収部を備えるレンズ素子250を形成する合成樹脂中均一に含有される。変形実施例として、近赤外光吸収部を備えるレンズ素子250は、近赤外光吸収膜140を最も撮像素子70側に設けた透明なレンズ素子255であっても良い(図7(C)参照)。本実施形態では、アクチュエータなど機械的に動く部材が含まれないため、ダストが発生しにくい。また撮像素子70の表面が地面と略垂直なので、撮像素子70にダストが付着しにくい。そのため撮像素子カバー240を省いている。レンズユニット50の光入射側に、汚れよけのためのカバーガラスを備えても良い。もちろん撮像素子70に近接して、撮像素子カバー240を設けても良い。
 このような構造であれば、部品点数も少なくて済み、生産工程も著しく省略できるため安価に製造することが可能である。もちろん近赤外光反射部と、近赤外光吸収部を有するので画質の向上という効果も奏する。
 また変形実施例として、カメラ構造において近赤外光反射部を備えるレンズ素子270はそのままに、撮像素子カバーについては第一実施形態の図1(C)に示した、近赤外光吸収機能付き撮像素子カバー244を用いることで、レンズ素子に近赤外領域の光吸収機能を持たせないことも考えられる。
 図9(A)は、本発明の第六の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。当該カメラ構造は、近赤外光反射機能付きカバーガラス215と、カメラモジュール1を備える。カメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70と、撮像素子カバー240を備える。近赤外光反射機能付きカバーガラス215と、撮像素子カバー240の構造は、第三の実施形態における記載と同様なので省略する。
 図9(B)は、近赤外光吸収部を含む近赤外光吸収機能付き光学素子500を備えるレンズユニットの断面図である。レンズユニット50は、近赤外光吸収機能付き光学素子500を最も光の入射側に備えている。ただし近赤外光吸収機能付き光学素子500は、レンズユニット50の内部であれば、軸上のどの位置にあっても良い。
 図9(C)は、近赤外光吸収機能付き光学素子500の構造図である。近赤外光吸収機能付き光学素子500は、少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収膜140をさらに備える。近赤外光吸収機能付きプレート217は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230が、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光吸収膜140が備えられる。
 なお、近赤外光吸収機能付き光学素子500を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。
 なお、近赤外反射膜150、反射防止膜120、近赤外光吸収膜140の作製方法は第一実施形態と同様なので記載を省略する。
 図10(A)は、本発明の第7の実施形態に係る撮像装置に適用されるカメラ構造の断面図である。当該カメラ構造は、カバーガラス550と、カメラモジュール1を備える。カメラモジュール1は、レンズユニット50とレンズユニット50を保持するレンズキャリア40と、撮像素子70と、撮像素子カバー240を備える。撮像素子カバー240の構造は、第三の実施形態における記載と同様なので省略する。
 カバーガラス550は、基材として従来の強化ガラスやサファイアガラス等を用いてもよい。またもちろん結晶化ガラスを用いても良い。カバーガラス550は、その撮像素子70側表面に、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜120を有する(図示省略)。
 図10(B)は、近赤外光反射部、及び、近赤外光吸収部を含む光学フィルタ機能付き光学素子530を備えるレンズユニットの断面図である。レンズユニット50は、光学フィルタ機能付き光学素子530を最も光の入射側に備えている。ただし光学フィルタ機能付き光学素子530は、レンズユニット50の内部であれば、軸上のどの位置にあっても良い。
 図10(C)は、光学フィルタ機能付き光学素子530の構造図である。光学フィルタ機能付き光学素子530は、少なくとも可視領域の光の反射を防止する反射防止層230を複数備え、近赤外光吸収膜140をさらに備える。光学フィルタ機能付き光学素子530は、透明ガラス220を基材とし、透明ガラス220に隣接して近赤外光吸収膜140が設けられる。反射防止層230が、透明ガラス220を基準として光の入射側に形成され、光の出射側に、透明ガラス220を基準として最も遠い側から順に、反射防止層230と、近赤外光反射膜150と、近赤外光吸収膜140が備えられる。
 なお、光学フィルタ機能付き光学素子530を実現する手段としては、例えば基材として、近赤外領域の光を吸収する有機色素を少なくとも一部に含有する合成樹脂の薄板を使用しても良い。また従来の近赤外光カットフィルタと同様に、近赤外領域の光を吸収するいわゆるブルーガラスのプレートを使用しても良い。透明なプレートに近赤外光をカットするフィルムを貼り付けて実現することも考えられる。
なお近赤外光吸収膜140、近赤外反射膜150、反射防止膜120の作製方法は第一実施形態と同様なので記載を省略する。
 当該カメラ構造によれば、レンズユニット50に光学フィルタ機能付き光学素子530を追加するだけでよく、他の構成は従来の部材を流用できる。また、近赤外光反射部と近赤外光吸収部を同時に含む一体の光学素子が光学レンズ群に含まれるので、撮像素子の直近に、近赤外光反射膜を備えた部材を入れる必要が無くなる。したがって撮像装置の内部機構に入射した光の反射を抑制することができ、結果として迷光を抑え、ゴーストやフレアの原因を減少させる効果を奏しうる。
 さて、発明者がさらに鋭意研究を行った結果、従来のカメラ構造については、取得画像の中心部と周縁部の間で色味の違いが生じるという別の課題が生じていることがわかった。この課題は、特に近赤外反射部をカバーガラスに備える態様において入射光の入射角度が大きくなり得る場合に顕著に生じる。
 図12(A)は、従来の光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。縦軸に光の透過率T(単位は%)を示し、横軸に入射光の波長(単位はnm)を示す。具体的には、近赤外光吸収部として近赤外光吸収膜140を有する近赤外光吸収機能付き撮像素子カバー244(図1(C)参照)と、近赤外光反射部として近赤外光反射膜150(図1(B)参照)を有する近赤外光反射機能付きカバーガラス215を備える光学系を考える。
 図12(A)において、実線A1は、近赤外光吸収機能付き撮像素子カバー244単体についての光透過率の分光特性を示す。点線R1は、入射光の入射角度が0°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示し、破線R2は、入射光の入射角度が30°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示す。従来の近赤外光吸収インクの分光特性を示す曲線A1と、入射角30°のときの従来の近赤外反射部の分光特性を示す破線R2が、光の波長領域として660~700nmにおいて、ほぼ重なり合っていて、従来の近赤外光吸収インクの分光特性を示す実線A1と、入射角0°のときの従来の近赤外反射部の分光特性を示す点線R1は、720nm付近の交点まで重なりがない。
 図12(B)は、近赤外光吸収部と近赤外光反射部を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。具体的には点線C1が入射角0°のときの分光特性であり、破線C2が入射角30°のときの分光特性である。言い換えると図12(A)における実線A1と点線R1を組み合わせた光学系の分光特性が点線C1であり、図12(A)における実線A1と破線R2を組み合わせた光学系の分光特性が破線C2である。660nm~690nmの範囲で点線C1と破線C2の間にギャップG1が生じている。
 ここで、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義する。近赤外光反射部と近赤外吸収部を有する近赤外光カットフィルタを考えると、入射光の入射角度を0°~30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が30nm程度になってしまうことがありうる。逆に言えば近赤外光領域の所定の光波長において、近赤外光カットフィルタの光透過率が、入射光の入射角度により大きく変動している。具体的には、例えば光の波長が660~690nmの光が入射したとすると、取得画像の中心部で入射角度が小さなときは光透過率が20%程度で、取得画像の周縁部で入射角度が大きな時には光透過率がほぼ0%になるといった現象が生じ、結果的に取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
 本発明の第八の実施形態に係るカメラ構造として、図13(A)に分光特性を示す新たな光吸収インクを用いた近赤外光吸収部と、新たな近赤外光反射部の組み合わせを備えるカメラ構造を挙げる。近赤外光吸収部の構成は、図1(C)に示す近赤外光吸収機能付き撮像素子カバー244と同様であり、近赤外光反射部の構成は、図1(B)に示す近赤外光反射機能付きカバーガラス215と同様である。具体的には、近赤外光吸収部として近赤外光吸収膜140を有する近赤外光吸収機能付き撮像素子カバー244(図1(C)参照)と、近赤外光反射部として近赤外光反射膜150(図1(B)参照)を有する近赤外光反射機能付きカバーガラス215を備える光学系である。
 図13(A)は、新たな光吸収インクを用いた近赤外光吸収部における光透過率の分光特性と、新たな近赤外光反射部における光透過率の分光特性の入射光角度依存性を示すグラフである。縦軸に光の透過率T(単位は%)を示し、横軸に入射光の波長(単位はnm)を示す。具体的には、近赤外光吸収部として近赤外光吸収膜140を有する近赤外光吸収機能付き撮像素子カバー244(図1(C)参照)と、近赤外光反射部として近赤外光反射膜150(図1(B)参照)を有する近赤外光反射機能付きカバーガラス215を備える光学系を考える。
 図13(A)において、実線A2は、近赤外光吸収機能付き撮像素子カバー244単体についての光透過率の分光特性を示す。点線R3は、入射光の入射角度が0°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示し、破線R4は、入射光の入射角度が30°の時の近赤外光反射機能付きカバーガラス215単体における光透過率の分光特性を示す。
 具体的には、本発明の第八の実施形態に係るカメラ構造は、近赤外領域の光を吸収する近赤外光吸収部140と、近赤外領域の光を反射する近赤外光反射部150とを備え、近赤外光吸収部140は、光の波長として685nm~755nmの領域の中に、光透過率が2%未満である光吸収波長領域700を有し、近赤外光反射部150への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、近赤外光反射部150は、近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、近赤外光反射部150への入射光の入射角度を0°~30°の範囲で変化させたときに、近赤外光カットオフ波長は常に光吸収波長領域700の中に含まれることを特徴とする。
 言い換えれば、入射光の入射角度が0°における近赤外光反射部150の近赤外光カットオフ波長CF1と、入射光の入射角度が30°における近赤外光反射部150の近赤外光カットオフ波長CF2が、光吸収波長領域700に含まれる。
 なお近赤外光反射部150における、近赤外光カットオフ波長より長い波長の光に対する分光特性としては、750nm~1000nm程度で1%未満の光透過率が望ましく、
1000nm程度より長い波長域では、若干の、例えば数%の光透過性があってもよい。
 図13(B)は、近赤外光吸収部140と近赤外光反射部150を組み合わせた際の、光透過率の分光特性の入射光角度依存性を示すグラフである。具体的には点線C3が入射角0°のときの分光特性であり、破線C4が入射角30°のときの分光特性である。言い換えると図13(A)における実線A2と点線R3を組み合わせた光学系の分光特性が点線C3であり、図13(A)における実線A2と破線R4を組み合わせた光学系の分光特性が破線C4である。
 ここで、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義する。
 近赤外光反射部150と近赤外吸収部140を有する近赤外光カットフィルタを考えると、入射光の入射角度を0°~30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅G2が5nm以下になっている。すなわち近赤外光カットフィルタの光透過率が、入射光の入射角度依存をし難い。
 近赤外光カットフィルタが、例えば誘電体多層膜を備える近赤外光反射部150を有する場合、近赤外光反射部150における光の透過率の周波数依存性は、入射光の入射角度により変化する。すなわち例えば近赤外光反射部150の近赤外光遮断波長が、入射光の入射角度が0°であるとき約700nm程度だったものが、入射光の入射角度が30°になると約675nmになるような入射角度依存性が生じることがある。すると近赤外光カットフィルタが近赤外光吸収部140を有するとして、近赤外光反射部150と組み合わせられて実現する光透過率が、入射光の入射角度によって大きく変化してしまうことがあり得る。具体的には、近赤外光反射部150と近赤外吸収部140を有する近赤外光カットフィルタは、入射光の入射角度を0°~30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が30nm程度になってしまうことがあり得る。逆に言えば近赤外光領域の所定の光波長において、近赤外光カットフィルタの光透過率が、入射光の入射角度により大きく変動してしまうということである。例えば光の波長が660~690nmの光が入射したとすると、取得画像の中心部で入射角度が小さなときは光透過率が20%程度で、取得画像の周縁部で入射角度が大きな時には光透過率がほぼ0%になるといった現象が生じ、結果的に取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
 本発明の第八実施形態に係るカメラ構造によれば、近赤外光カットフィルタにおいて、入射光の入射角度を0°~30°の範囲で変えた時の近赤外光遮断波長の角度依存変化幅が5nm以下なので、取得画像内での色の表現に差が生じ難くなり、画質が向上するという優れた効果を奏する。
 近赤外光吸収部140と近赤外光反射部150を合わせた効果として、所定の波長における光の透過率が1%以上となると取得画像に影響を与える。したがって近赤外光吸収部140の分光特性として、光透過率が2%以上の光波長領域において、近赤外光反射部150の光透過率が50%になると、取得画像の画質が肉眼で見た色味とは異なることになる。また近赤外光反射部150を、例えば誘電体多層膜で形成するときには、入射光の入射角度により光透過率が変化するので、取得画像の周辺部と中央部で、透過率の光波長依存性が異なってしまい、いわゆる「赤抜け」という画質の悪化現象が生じる。
 本発明の第八実施形態に係るカメラ構造によれば、近赤外光吸収部140と近赤外光反射部150を合わせた効果として685nm~755nmの光波長領域で光の透過率が1%未満となるので、取得画像の画質と肉眼でみたものとの差が小さくなるという優れた効果も奏する。また近赤外光反射部150への入射光の入射角度を0°~30°の範囲で変化させたとき、常に、近赤外光反射部150の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域700に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で取得され得る光波長が変わらないため画質が向上するという優れた効果を奏する。
 図14(A)は、本発明の第九実施形態に係る撮像装置である携帯通信機器Aに適用されるカメラ構造の断面図である。本実施形態の場合、固体撮像装置は情報通信機器、携帯通信機器Aである。カメラ構造は、光の入射する側から、光学フィルタ機能付きカバーガラス400と、スマートフォン等の携帯通信機器Aの筐体520内に収容されるカメラモジュール501を有する。カメラモジュール501は、光学フィルタ機能付きカバーガラス400側に配置される光学レンズ群であるレンズユニット450と、光学フィルタ機能付きカバーガラス400及びレンズユニット450を介して入射した光を受光する撮像素子570とを備え、レンズユニット450から撮像素子570までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないことを特徴としている。詳細には図14(A)のように、光学フィルタ機能付きカバーガラス400、レンズユニット450、レンズキャリア540、マグネットホルダ430。撮像素子570、そして基板580から主に構成され、スマートフォン筐体520に固定される。撮像素子570と基板580の接続についてはワイヤボンディングでつないでも、フリップチップ実装をおこなっても良い。
 図11(A)の従来のカメラ構造と大きく違うのは、従来、画質向上のために必要だった近赤外光をカットする光学フィルタ60(図11(A)参照)を省略した点である。その代わりに従来は、カメラモジュール1を保護する役割を主に担っていたカバーガラス10に近赤外領域の光をカットするフィルタ機能を付加した。このような構造にすることで、カメラ構造全体の長さを従来よりも短くすることができるとともに、撮像素子70の近傍に光学フィルタ60を配置しないため、光学フィルタ60の製造過程で、該フィルタの表面に付着する粒状のゴミ(パーティクル)が、撮像素子70の表面に落下して画像を悪化させることもなくなる著しい効果を奏する。また、カメラモジュール1の組立工程において、近赤外光カットフィルタ60を配置、組み付けるための工程も必要なくなり、一層のコスト低減、歩留まりの向上、作業の効率化に資する。
 また図14(A)のカメラ構造を備えることで、携帯通信機器Aは、より小型に、より薄く、より安価に製造できる効果を奏する。
 図14(B)に、携帯通信機器Aの筐体に連続して設置され、内部機構であるカメラモジュールを外界から保護する光学フィルタ機能付きカバーガラス400の積層構造を示す。光学フィルタ機能付きカバーガラス400は、光を透過する透明基板として結晶化ガラス630を使用し、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する反射防止膜620が、結晶化ガラス630を基準として光の入射側に形成される。そして光が入射する側の最も外側に、外界からの汚れを防止するための防汚コート膜610を備える。光の出射側に、結晶化ガラス630を基準として最も遠い側から順に、近赤外領域の光を反射する近赤外反射部としての近赤外光反射膜650と、近赤外領域の光を吸収する近赤外光吸収部としての近赤外光吸収膜640とが形成される。光の出射側の最遠い側に、さらに反射防止膜620を形成しても良い。
 一般に結晶化ガラスは、結晶粒子が大きいため光を通しにくかった。しかし最近の技術の進歩により、例えば株式会社オハラ社製の耐衝撃・高硬度クリアガラスセラミックスのように、結晶粒子をナノメートルサイズに制御することが可能になり光の透過率が高まった。このような結晶化ガラスを使えば、耐衝撃性とクラックが入りにくい破壊靱性を兼ね備えたカバーガラスを製造することができる。そしてこのようなカバーガラスに上記の積層構造を形成することで光学フィルタ機能付きカバーガラス400が実現される。なお光学フィルタ機能付きカバーガラス400としてブルーガラスを使用することも理論上は考えられるが、耐衝撃性が低く、またクラックが入りにくい破壊靱性に欠けるため適切でない。強化ガラスに、後述する近赤外光吸収膜640や近赤外光反射膜650を成膜して光学フィルタ機能付きカバーガラス400とすることも考えられるが、結晶化ガラス630を使う場合に比べて耐衝撃性が低い欠点を持つ。また硬度が高いサファイアガラスに、近赤外光吸収膜640や近赤外光反射膜650を成膜して光学フィルタ機能付きカバーガラス400とすることも考えられるが、コストが著しく上がり、また結晶化ガラス630を使う場合に比べて加工性が低い。
 防汚コート膜610は、指紋汚れ、皮脂汚れを防ぐとともに、汚れを拭き取りやすくする。防汚コート膜610はフッ素系のコーティング剤等で形成され、塗布やスプレーにより、カバーガラスの積層構造において光の入射側の最も外側に成膜される。
 反射防止膜620は、紫外領域の光を反射し、且つ、可視領域の光の反射を抑止する。反射防止膜620は誘電体多層膜であり、且つ、窒化膜と酸化膜を交互に積層して構成される。反射防止膜620を構成する誘電体膜は、窒化膜と酸化膜を交互に複数積層して構成される。窒化膜としては、窒化ケイ素、酸窒化ケイ素または窒化アルミニウムなどを用いることができる。酸窒化ケイ素を用いる場合には、酸素と窒素との化学量論比(酸素/窒素)が1以下であることが望ましい。酸化膜としては、酸化ケイ素(SiO2)、酸化アルミニウム(Al2O3)などを用いることができる。反射防止膜620の膜として窒化ケイ素または酸窒化ケイ素を用いることにより、後述する近赤外光反射膜150と同じ成膜方法及び成膜装置を用いて反射防止膜620を形成することができるのでプロセス的に有利である。
 反射防止膜620は、窒化膜の代わりに酸化膜を用いることもできる。このような酸化膜の材質としては、酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いることができる。なお反射防止膜120を屈折率の異なる複数種類の酸化膜で構成する場合には、前記酸化物から適宜選択する。
 反射防止膜620は、公知の成膜方法、たとえば真空蒸着法、スパッタ法、イオンビームアシスト蒸着法(IAD法)、イオンプレーティング法(IP法)、イオンビームスパッタ法(IBS法)などを用いることができる。窒化膜の成膜には、スパッタ法、イオンビームスパッタ法を用いることが望ましい。
 近赤外光吸収膜640は、結晶化ガラス630において上述の反射防止膜620とは反対側の面、すなわち光学フィルタ機能付きカバーガラス400の撮像素子570側(図14(A)参照)に形成される。近赤外光吸収膜640は、可視領域の光を透過するとともに、赤色領域から近赤外領域の光の一部を吸収する機能を有する。近赤外光吸収膜640には、有機色素が含まれ、700nmから750nmの範囲に最大吸収波長を有する樹脂膜から構成される(図13(A)実線A2参照)。近赤外光吸収膜640は、結晶化ガラス630に隣接するため、両者の屈折率差を小さくして界面での反射率を低下させることが望ましい。このような近赤外光吸収膜640を有することにより、入射角度による分光透過率特性の依存性を低減して優れた近赤外光カット性を有することができる。
 有機色素としては、アゾ系化合物、フタロシアニン系化合物、シアニン系化合物、ジイモニウム系化合物などを用いることができる。近赤外光吸収膜640を構成するバインダー(色素の結着剤)としての樹脂材料としては、ポリアクリル、ポリエステル、ポリカーボネイト、ポリスチレン、ポリオレフィンなどを用いることができる。樹脂材料は、複数の樹脂を混合してもよく、また上記樹脂のモノマーを用いた共重合体であってもよい。また、樹脂材料は、可視領域の光に対して透過率の高いものであればよく、有機色素との相性、成膜プロセス、コスト等を考慮して選択される。また、近赤外光吸収膜640の耐紫外線性を向上させるために、樹脂材料に硫黄化合物などのクエンチャー(消光色素)を添加してもよい。
 近赤外光吸収膜640の形成には、たとえば以下の方法を用いることができる。まず、樹脂バインダーをメチルエチルケトン、トルエン等の公知の溶剤によって溶解し、さらに上述の有機色素を添加して塗布液を調製する。次いで、この塗布液をたとえばスピンコート法により結晶化ガラス630に所望の膜厚で塗布し、乾燥炉にて乾燥、硬化させる。
 近赤外光反射膜650は、反射防止膜620と同様に屈折率の異なる誘電体を交互に複数積層して形成される誘電体多層膜である。ただし近赤外光反射膜650を構成する誘電体多層膜は、屈折率が互いに異なる複数種類の酸化膜を複数積層させることで形成され、隣接する前記酸化膜は互いに異なる種類の酸化膜である。本第一実施形態で近赤外光反射膜650は、2種類の酸化膜を交互に数十層積層して形成される。酸化膜としては酸化ケイ素の他に、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta2O5)、酸化ニオブ(Nb2O5)などを用いる。
 近赤外光反射膜650において、それぞれの酸化膜の膜厚は、反射をしたい光の波長をλとして、λ/4の厚みで形成する。こうすることで交互層のすべての界面から反射された光は、入射面に達すると同じ位相になり、光は強め合う結果になる、つまり波長λ付近で反射率が大きくなって光反射膜として機能する。本実施形態においては、λとして近赤外領域の光を反射するように膜の設計を行えば良い。なお近赤外光反射膜650についても、上述の反射防止膜620と同様の成膜方法及び成膜装置を用いて成膜する。
 人間の目は、波長380nm~780nmのいわゆる可視光に対して感度を持つ。一方、撮像素子は、一般に可視光を含め、より長波長の光、すなわち波長約1.1μmの光まで感度を持つ。したがって撮像素子で捉える画像をそのまま写真にすると、自然な色合いには見えず、違和感を生じる原因になる。
 光学フィルタ機能付きカバーガラス400を上記図14(B)のような積層構造にすると、誘電体多層膜による近赤外光反射膜650を備えるため、近赤外光吸収膜640では吸収しきれない700nm以上の長さの波長の光をカットして、自然な色合いの画像を取得することが可能になる。
 近赤外光反射膜650の光透過率の光波長依存性については、図13(A)に示す。具体的には、点線R3は、入射光の入射角度が0°の時の近赤外光反射膜650単体における光透過率の分光特性を示し、破線R4は、入射光の入射角度が30°の時の近赤外光反射膜650単体における光透過率の分光特性を示す。
 本実施形態において、近赤外光反射膜650への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、
近赤外光反射部650への入射光の入射角度を0°~30°の範囲で変化させても、常に、近赤外光反射部650の近赤外光カットオフ波長は光透過率が2%未満である光吸収波長領域700に入るので、近赤外領域の光に対する分光特性の入射角度依存性が小さくなり、取得画像の周辺部と中央部で取得され得る光波長が変わらないため画質が向上するという優れた効果を奏する。
 すなわち近赤外光反射膜650と、光吸収率について入射角度依存性のない近赤外光吸収膜640とを組み合わせることで、光の透過率が、光の入射角度に対して依存性の少ない近赤外光カットフィルタを構成することが可能になる(図13(B)参照)。
 また、スマートフォン筐体520内のカメラを外界から保護するカバーガラス400が反射防止膜620により紫外領域の光をカットすることができるので、カメラの構成部品である合成樹脂で形成された光学レンズ群(レンズユニット450)が紫外線によって劣化することを防ぐことができ、且つ、有機色素を含む近赤外光吸収膜640が紫外線により劣化することも防ぐことができる。また、可視領域の光に対する反射防止機能により、入射光をより多く取り込み、明るい画像を取得できる。
 なお反射防止膜620は、窒化膜と酸化膜を交互に積層して構成されるが、一般に窒化膜は、酸化膜と比べて高硬度であり、鉛筆硬度試験において、9H以上の硬度に達する。したがって反射防止膜120を窒化膜も含めて構成することで、耐傷性を高める効果を奏する。また窒化膜は、酸化膜と比べて充填密度が高く緻密である。成分として酸素を含まないため、酸素の供給源にもならない。したがって窒化膜を近赤外光吸収膜640より外側に設けることで、近赤外光吸収膜640への酸素および水分の侵入を防ぎ、近赤外光吸収膜640の劣化を抑制する効果を奏する。
 一般に光学フィルタは、多数の光学境界面を持っている。一方レンズには高度な反射防止膜を施している。近赤外領域の光をカットする光学フィルタでレンズ並みの透過率を実現することは難しく、レンズ側に反射光を戻すことが生じる。これが画像にゴーストを生む迷光の原因になる。従来のカメラ構造においては、光学フィルタ60がレンズユニット50と撮像素子70の間の光路上で、撮像素子70直近に置かれているため、上記のようなゴーストを生じることは避けがたかった(図11(A)参照)。しかし本実施形態に係るカメラ構造によれば、上述のような迷光を生じることはないため画質を向上させる著しい効果を奏する。
 本発明の第九実施形態によれば、従来よりも画質が向上したカメラ構造を搭載する撮像装置を安価に実現できるという著しい効果を奏する。
 尚、本発明の実施形態に係るカメラ構造及び撮像装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
  1  カメラモジュール  
 10  カバーガラス
 20  スマートフォン筐体
 22  車体
 30  マグネットホルダ
 40  レンズキャリア
 50  レンズユニット
 60  光学フィルタ
 70  撮像素子
 80  基板
 100  光学フィルタ機能付きカバーガラス
 110  防汚コート膜
 120  反射防止膜
 130  結晶化ガラス
 140  近赤外光吸収膜
 150  近赤外光反射膜
 160  入射面
 170  出射面
 180  測定対象
 190  入射光
 200  垂直軸
 210  光学フィルタ機能付きカバーガラス
 215  近赤外光反射機能付きカバーガラス
 217  近赤外光吸収機能付きプレート
 220  透明ガラス
 222  透明合成樹脂フィルム
 230  反射防止層
 232  モスアイ構造
 240  撮像素子カバー
 242  透明合成樹脂フィルムを基材とした撮像素子カバー
 244  近赤外光吸収機能付き撮像素子カバー
 250  近赤外光吸収部を備えるレンズ素子
 255  透明なレンズ素子
 270  近赤外光反射部を備えるレンズ素子
 300  光源
 310  高反射材
 320  低反射材
 360  透明ガラス
 370  反射防止膜
 380  ブルーガラス
 390  近赤外光反射膜
 400  光学フィルタ機能付きカバーガラス
 430  マグネットホルダ
 450  レンズユニット
 500  近赤外光吸収機能付き光学素子
 501  カメラモジュール
 520  スマートフォン筐体
 530  光学フィルタ機能付き光学素子
 540  レンズキャリア
 550  カバーガラス
 570  撮像素子
 580  基板
 610  防汚コート膜
 620  反射防止膜
 630  結晶化ガラス
 640  近赤外光吸収膜(近赤外光吸収部)
 650  近赤外光反射膜(近赤外光反射部)
 700  光吸収波長領域
 A    携帯通信機器
 A1   従来の近赤外光吸収インクの分光特性
 A2   新たな近赤外光吸収インクの分光特性
 C1   入射角0°のときの分光特性
 C2   入射角30°のときの分光特性
 C3   入射角0°のときの分光特性
 C4   入射角30°のときの分光特性
 G    ゴースト
 R1   入射角0°のときの従来の近赤外反射部の分光特性
 R2   入射角30°のときの従来の近赤外反射部の分光特性
 R3   入射角0°のときの新たな近赤外反射部の分光特性
 R4   入射角30°のときの新たな近赤外反射部の分光特性

Claims (22)

  1.  撮像をおこなうカメラ構造であって、
     光の入射側に配置される光学レンズ群と、
     前記光学レンズ群を介して入射した光を受光する撮像素子と、
     近赤外領域の光を反射する近赤外光反射部と、
     近赤外領域の光を吸収する近赤外光吸収部と、
    を備え、
     前記近赤外光反射部と、前記近赤外光吸収部は、別体であることを特徴とするカメラ構造。
  2.  前記近赤外光反射部と前記近赤外光吸収部は、光の入射側から順に、前記近赤外光反射部、前記近赤外光吸収部と配置されることを特徴とする請求の範囲1に記載のカメラ構造。
  3.  前記近赤外光反射部は、前記カメラ構造において、前記光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも光の入射側に配置されることを特徴とする請求の範囲1または請求の範囲2に記載のカメラ構造。
  4.  前記近赤外光吸収部は、前記カメラ構造において、前記光学レンズ群を構成するレンズ素子を含み、該レンズ素子よりも撮像素子側に配置されることを特徴とする請求の範囲1から請求の範囲3のうちのいずれか一項に記載のカメラ構造。
  5.  光が入射する側から見て前記撮像素子の少なくとも一部を覆う撮像素子カバーが、前記光学レンズ群と前記撮像素子の間に配置されることを特徴とする請求の範囲1から請求の範囲4のうちのいずれか一項に記載のカメラ構造。
  6.  前記撮像素子カバーは、ガラスであることを特徴とする請求の範囲5に記載のカメラ構造。
  7.  前記撮像素子カバーは、合成樹脂フィルムであることを特徴とする請求の範囲5に記載のカメラ構造。
  8.  前記撮像素子カバーの厚みは、0.2mm以下であることを特徴とする請求の範囲5から請求の範囲7のうちのいずれか一項に記載のカメラ構造。
  9.  前記撮像素子カバーは、少なくとも可視領域の光の反射を防止する反射防止層を備えることを特徴とする請求の範囲5から請求の範囲8のうちのいずれか一項に記載のカメラ構造。
  10.  前記撮像素子カバーの両面に、少なくとも可視領域の光の反射を防止する反射防止層を備えることを特徴とする請求の範囲5から請求の範囲8のうちのいずれか一項に記載のカメラ構造。
  11.  前記反射防止層は、前記撮像素子カバーの表面に形成される微細な突起からなる微細突起構造であることを特徴とする請求の範囲9または請求の範囲10に記載のカメラ構造。
  12.  前記反射防止層は、前記内側透明プレートの表面に形成される塗膜であることを特徴とする請求の範囲9または請求の範囲10に記載のカメラ構造。
  13.  前記撮像素子カバーが前記近赤外光吸収部を含むことを特徴とする請求の範囲5から請求の範囲12のうちのいずれか一項に記載のカメラ構造。
  14.  前記近赤外光吸収部は、近赤外領域の光を吸収する近赤外光吸収膜であり、有機色素を含むことを特徴とする請求の範囲1から請求の範囲13のうちいずれか一項に記載のカメラ構造。
  15.  前記カメラ構造は、撮像装置の内部機構を外界から保護するカバーガラスをさらに有し、該カバーガラスが前記近赤外光反射部を含むことを特徴とする請求の範囲1から請求の範囲14のうちのいずれか一項に記載のカメラ構造。
  16.  撮像をおこなうカメラ構造であって、
     光の入射側に配置される光学レンズ群と、
     前記光学レンズ群を介して入射した光を受光する撮像素子と、
     近赤外領域の光を反射する近赤外光反射部と、
     近赤外領域の光を吸収する近赤外光吸収部と、
    を備え、
     前記近赤外光反射部、及び、前記近赤外光吸収部が、前記光学レンズ群に含まれる一体の光学素子に含まれることを特徴とするカメラ構造。
  17.  近赤外領域の光を吸収する近赤外光吸収部と、
     近赤外領域の光を反射する近赤外光反射部と、
    を備え、
     前記近赤外光吸収部は、光の波長として685nm~755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、
     前記近赤外光反射部への入射光の波長が増大するのに伴って光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光反射部は、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、
     前記近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とするカメラ構造。
  18.  近赤外領域の光を吸収する近赤外光吸収部と、
     近赤外領域の光を反射する近赤外光反射部と、
    を備え、
     前記近赤外光吸収部は、光の波長として685nm~755nmの領域の中に、光透過率が2%未満である光吸収波長領域を有し、
     前記近赤外光反射部は、光の透過率が減少して50%となる波長を近赤外光カットオフ波長と定義するとき、前記近赤外光カットオフ波長より長い波長の光を略全反射する特性を有し、
     前記近赤外光反射部への入射光の入射角度を0°~30°の範囲で変化させたときに、前記近赤外光カットオフ波長は常に前記光吸収波長領域の中に含まれることを特徴とする請求の範囲1から請求の範囲16のうちのいずれか一項に記載のカメラ構造。
  19.  撮像装置の内部機構を外界から保護するカバーガラスと
     前記カバーガラス側に配置される光学レンズ群と
     前記カバーガラス及び前記光学レンズ群を介して入射した光を受光する撮像素子と、
    を備え、
    前記カバーガラスは
     光を透過する透明基板と、
     前記近赤外光吸収部と、
     前記近赤外光反射部と、
    を有し、
     前記光学レンズ群から前記撮像素子までの光路間に近赤外領域の光をカットする近赤外光カットフィルタを配置しないことを特徴とする請求の範囲17に記載のカメラ構造。
  20.  近赤外領域の光を遮断する近赤外光カットフィルタを備えるカメラ構造であって、
     前記近赤外光カットフィルタは、入射光の波長を増大させた際に光の透過率が減少して10%になる波長を近赤外光遮断波長と定義すると、前記入射光の入射角度を0°~30°の範囲で変えた時の前記近赤外光遮断波長の角度依存変化幅が5nm以下であることを特徴とするカメラ構造。
  21.  近赤外領域の光を吸収する近赤外光吸収部と、
     近赤外領域の光を反射する近赤外光反射部と、
    を備え、
     前記近赤外光吸収部の光透過率は、光の波長について700nm~750nmの範囲で2%未満であり、
     光の波長について630nm~750nmの範囲、且つ、光の透過率が2%以上の範囲で、前記近赤外光吸収部の光透過率の周波数依存曲線が、前記近赤外光反射部に入射する入射角度が0°~30°の時の前記近赤外光反射部の光透過率の周波数依存曲線よりも、短波長側にあることを特徴とするカメラ構造。
  22.  請求の範囲1から請求の範囲21のいずれか一項に記載のカメラ構造を有することを特徴とする撮像装置。
PCT/JP2018/006729 2017-02-24 2018-02-23 カメラ構造、撮像装置 WO2018155634A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880002933.0A CN109478005B (zh) 2017-02-24 2018-02-23 摄像机构造、摄像装置
JP2018529082A JP6589061B2 (ja) 2017-02-24 2018-02-23 カメラ構造、撮像装置
KR1020187037591A KR102169130B1 (ko) 2017-02-24 2018-02-23 카메라 구조, 촬상 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033173 2017-02-24
JP2017033173 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155634A1 true WO2018155634A1 (ja) 2018-08-30

Family

ID=63252829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006729 WO2018155634A1 (ja) 2017-02-24 2018-02-23 カメラ構造、撮像装置

Country Status (5)

Country Link
JP (2) JP6589061B2 (ja)
KR (1) KR102169130B1 (ja)
CN (1) CN109478005B (ja)
TW (3) TWI743874B (ja)
WO (1) WO2018155634A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019028433A (ja) * 2018-01-24 2019-02-21 日本板硝子株式会社 光学フィルタ
WO2020054695A1 (ja) * 2018-09-12 2020-03-19 Jsr株式会社 光学フィルターおよびその用途
CN112180487A (zh) * 2019-07-03 2021-01-05 Jsr株式会社 照相机模块及电子设备
CN113302741A (zh) * 2018-12-21 2021-08-24 Ams传感器比利时有限公司 半导体图像传感器的像素及制造像素的方法
WO2022138252A1 (ja) * 2020-12-25 2022-06-30 Agc株式会社 光学フィルタ
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
WO2023210474A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ
WO2023210475A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ
WO2024237167A1 (ja) * 2023-05-17 2024-11-21 Agc株式会社 光学フィルタ
JP7656406B2 (ja) 2020-07-21 2025-04-03 東京晨美光学電子株式会社 しみ撮像装置およびしみ撮像機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023008291A1 (ja) * 2021-07-30 2023-02-02
TWI866863B (zh) * 2021-09-01 2024-12-11 大立光電股份有限公司 成像光學鏡頭、取像裝置及電子裝置
JP2025041995A (ja) * 2022-02-21 2025-03-27 パナソニックIpマネジメント株式会社 光学フィルターおよび撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025687A (ja) * 1988-06-22 1990-01-10 Toshiba Glass Co Ltd イメージセンサ用前面ガラス
WO2012169447A1 (ja) * 2011-06-06 2012-12-13 旭硝子株式会社 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置
WO2014088063A1 (ja) * 2012-12-06 2014-06-12 旭硝子株式会社 近赤外線カットフィルタ
WO2014192715A1 (ja) * 2013-05-29 2014-12-04 Jsr株式会社 光学フィルターおよび前記フィルターを用いた装置
WO2016171219A1 (ja) * 2015-04-23 2016-10-27 旭硝子株式会社 光学フィルタおよび撮像装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100474003C (zh) * 2006-04-04 2009-04-01 精工爱普生株式会社 光学多层膜滤波器和电子设备装置
JP2009141571A (ja) * 2007-12-05 2009-06-25 Nikon Corp 撮像装置
JP2012137649A (ja) * 2010-12-27 2012-07-19 Canon Electronics Inc 光学フィルタ
JP2013041141A (ja) * 2011-08-17 2013-02-28 Asahi Glass Co Ltd 撮像装置、固体撮像素子、撮像装置用レンズ、及び近赤外光カットフィルタ
JP6197647B2 (ja) * 2011-10-24 2017-09-20 旭硝子株式会社 光学フィルタとその製造方法、並びに撮像装置
CN103135155A (zh) * 2011-12-02 2013-06-05 鸿富锦精密工业(深圳)有限公司 镜头模组
JP2013153361A (ja) 2012-01-26 2013-08-08 Konica Minolta Inc カメラモジュール
CN108761612B (zh) * 2012-08-23 2021-04-06 Agc株式会社 近红外线截止滤波器和固体摄像装置
JP6183041B2 (ja) * 2012-08-23 2017-08-23 旭硝子株式会社 近赤外線カットフィルタ
WO2014104370A1 (ja) * 2012-12-28 2014-07-03 旭硝子株式会社 近赤外線カットフィルタ
JP2014191346A (ja) * 2013-03-28 2014-10-06 Konica Minolta Inc Irカットフィルターおよびそれを備えた撮像装置
WO2014168190A1 (ja) * 2013-04-10 2014-10-16 旭硝子株式会社 赤外線遮蔽フィルタ、固体撮像素子、および撮像・表示装置
JP2014224892A (ja) * 2013-05-16 2014-12-04 旭硝子株式会社 裏面筐体
KR101527822B1 (ko) * 2013-09-06 2015-06-10 주식회사 엘엠에스 광학 필터 및 이를 포함하는 촬상 장치
JP6465380B2 (ja) * 2013-09-25 2019-02-06 大日本印刷株式会社 監視システム、移動手段及び店舗
WO2015099060A1 (ja) * 2013-12-26 2015-07-02 旭硝子株式会社 光学フィルタ
JP2016018068A (ja) * 2014-07-08 2016-02-01 旭硝子株式会社 防眩膜付き基材および物品
CN106062591B (zh) * 2015-01-14 2018-10-09 Agc株式会社 近红外线截止滤波器和固体摄像装置
JP6065169B1 (ja) * 2015-02-18 2017-01-25 旭硝子株式会社 光学フィルタおよび撮像装置
JP6202230B1 (ja) * 2015-12-01 2017-09-27 旭硝子株式会社 光学フィルタおよび撮像装置
KR102104081B1 (ko) * 2016-02-24 2020-04-23 가부시키가이샤 오프토런 카메라 구조, 정보 통신 기기
TWM525451U (zh) * 2016-05-04 2016-07-11 白金科技股份有限公司 吸收式近紅外線濾光片及影像感測器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025687A (ja) * 1988-06-22 1990-01-10 Toshiba Glass Co Ltd イメージセンサ用前面ガラス
WO2012169447A1 (ja) * 2011-06-06 2012-12-13 旭硝子株式会社 光学フィルタ、固体撮像素子、撮像装置用レンズおよび撮像装置
WO2014088063A1 (ja) * 2012-12-06 2014-06-12 旭硝子株式会社 近赤外線カットフィルタ
WO2014192715A1 (ja) * 2013-05-29 2014-12-04 Jsr株式会社 光学フィルターおよび前記フィルターを用いた装置
WO2016171219A1 (ja) * 2015-04-23 2016-10-27 旭硝子株式会社 光学フィルタおよび撮像装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
US12072517B2 (en) 2017-07-27 2024-08-27 Nippon Sheet Glass Company, Limited Light-absorbing composition and method of manufacturing
US11885993B2 (en) 2017-07-27 2024-01-30 Nippon Sheet Glass Company, Limited Optical filter and method of manufacturing
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
JP2019028433A (ja) * 2018-01-24 2019-02-21 日本板硝子株式会社 光学フィルタ
WO2020054695A1 (ja) * 2018-09-12 2020-03-19 Jsr株式会社 光学フィルターおよびその用途
JPWO2020054695A1 (ja) * 2018-09-12 2021-08-30 Jsr株式会社 光学フィルターおよびその用途
TWI753299B (zh) * 2018-09-12 2022-01-21 日商Jsr股份有限公司 光學濾波器及其用途
JP7255600B2 (ja) 2018-09-12 2023-04-11 Jsr株式会社 光学フィルターおよびその用途
CN113302741A (zh) * 2018-12-21 2021-08-24 Ams传感器比利时有限公司 半导体图像传感器的像素及制造像素的方法
US12009380B2 (en) 2018-12-21 2024-06-11 Ams Sensors Belgium Bvba Pixel of a semiconductor image sensor and method of manufacturing a pixel
JP2021009271A (ja) * 2019-07-03 2021-01-28 Jsr株式会社 カメラモジュールおよび電子機器
CN112180487A (zh) * 2019-07-03 2021-01-05 Jsr株式会社 照相机模块及电子设备
JP7656406B2 (ja) 2020-07-21 2025-04-03 東京晨美光学電子株式会社 しみ撮像装置およびしみ撮像機器
WO2022138252A1 (ja) * 2020-12-25 2022-06-30 Agc株式会社 光学フィルタ
WO2023210474A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ
WO2023210475A1 (ja) * 2022-04-27 2023-11-02 Agc株式会社 光学フィルタ
WO2024237167A1 (ja) * 2023-05-17 2024-11-21 Agc株式会社 光学フィルタ

Also Published As

Publication number Publication date
JP6589061B2 (ja) 2019-10-09
JPWO2018155634A1 (ja) 2019-02-28
KR20190014531A (ko) 2019-02-12
TW202040255A (zh) 2020-11-01
JP2020074366A (ja) 2020-05-14
TW202205001A (zh) 2022-02-01
TWI743874B (zh) 2021-10-21
TW201833652A (zh) 2018-09-16
CN109478005B (zh) 2021-11-09
KR102169130B1 (ko) 2020-10-22
JP7148981B2 (ja) 2022-10-06
CN109478005A (zh) 2019-03-15
TWI789043B (zh) 2023-01-01
TWI701496B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6589061B2 (ja) カメラ構造、撮像装置
JP6625725B2 (ja) カメラ構造、情報通信機器
JP5741283B2 (ja) 赤外光透過フィルタ及びこれを用いた撮像装置
KR101878013B1 (ko) 광학 필터, 고체 촬상 소자, 촬상 장치용 렌즈 및 촬상 장치
US9201181B2 (en) Infrared cut filter and imaging apparatus
KR102061477B1 (ko) 근적외선 커트 필터
JP5849719B2 (ja) 光吸収体及びこれを用いた撮像装置
KR101374755B1 (ko) 적외선 차단 필터
CN104823086B (zh) 近红外线截止滤波器
WO2014103921A1 (ja) Irカットフィルターおよびそれを備えた撮像装置
CN103261927B (zh) 光学滤波器模块及光学滤波器系统
JP6535979B2 (ja) 撮像素子及び撮像装置
JP2017167557A (ja) 光吸収体及びこれを用いた撮像装置
JP2006251380A (ja) カメラモジュール
JP6156468B2 (ja) 光吸収体及びこれを用いた撮像装置
JP2017227774A (ja) 光学フィルタ及び光量調整装置並びに光学装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529082

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037591

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756675

Country of ref document: EP

Kind code of ref document: A1