WO2018136332A1 - Copolymères séquencés fluorés dérivés de monomères de site de durcissement - Google Patents
Copolymères séquencés fluorés dérivés de monomères de site de durcissement Download PDFInfo
- Publication number
- WO2018136332A1 WO2018136332A1 PCT/US2018/013553 US2018013553W WO2018136332A1 WO 2018136332 A1 WO2018136332 A1 WO 2018136332A1 US 2018013553 W US2018013553 W US 2018013553W WO 2018136332 A1 WO2018136332 A1 WO 2018136332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- block
- fluorinated
- curable composition
- cure
- monomer
- Prior art date
Links
- 239000000178 monomer Substances 0.000 title claims abstract description 84
- 229920001400 block copolymer Polymers 0.000 title claims abstract description 80
- 239000000203 mixture Substances 0.000 claims description 64
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 35
- 150000001336 alkenes Chemical class 0.000 claims description 14
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical compound FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 claims description 12
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 230000009477 glass transition Effects 0.000 claims description 11
- 229910052740 iodine Inorganic materials 0.000 claims description 11
- 239000011630 iodine Substances 0.000 claims description 8
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 7
- 125000002947 alkylene group Chemical group 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 3
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 2
- 125000002560 nitrile group Chemical group 0.000 claims 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 71
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 55
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 51
- -1 e.g. Substances 0.000 description 33
- 229920000642 polymer Polymers 0.000 description 26
- 239000003995 emulsifying agent Substances 0.000 description 23
- 239000004816 latex Substances 0.000 description 23
- 229920000126 latex Polymers 0.000 description 23
- 125000004432 carbon atom Chemical group C* 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000008367 deionised water Substances 0.000 description 21
- 229910021641 deionized water Inorganic materials 0.000 description 21
- 238000000113 differential scanning calorimetry Methods 0.000 description 20
- 229920001971 elastomer Polymers 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000000806 elastomer Substances 0.000 description 15
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 14
- 238000007792 addition Methods 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 13
- 238000004132 cross linking Methods 0.000 description 12
- 150000002978 peroxides Chemical class 0.000 description 12
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 10
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 9
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 9
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- JILAKKYYZPDQBE-UHFFFAOYSA-N 1,1,2,2,3,3,4,4-octafluoro-1,4-diiodobutane Chemical compound FC(F)(I)C(F)(F)C(F)(F)C(F)(F)I JILAKKYYZPDQBE-UHFFFAOYSA-N 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 239000012986 chain transfer agent Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 229910001629 magnesium chloride Inorganic materials 0.000 description 7
- 229910000160 potassium phosphate Inorganic materials 0.000 description 7
- 235000011009 potassium phosphates Nutrition 0.000 description 7
- 239000000376 reactant Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 150000002825 nitriles Chemical class 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 238000000518 rheometry Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 229920006125 amorphous polymer Polymers 0.000 description 5
- 229910052794 bromium Inorganic materials 0.000 description 5
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 5
- 229920000768 polyamine Polymers 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 4
- MHNPWFZIRJMRKC-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound F[C]=C(F)F MHNPWFZIRJMRKC-UHFFFAOYSA-N 0.000 description 4
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000000370 acceptor Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 2
- OMNCMLIVRODHHP-UHFFFAOYSA-N 1,2,3,3,4,4,5,5-octafluoro-1-[1,2,3,3,4,4,5,5-octafluoro-5-(trifluoromethoxy)pent-1-enoxy]-5-(trifluoromethoxy)pent-1-ene Chemical compound FC(OC(F)=C(F)C(F)(F)C(F)(F)C(F)(F)OC(F)(F)F)=C(F)C(F)(F)C(F)(F)C(F)(F)OC(F)(F)F OMNCMLIVRODHHP-UHFFFAOYSA-N 0.000 description 2
- FIYMNUNPPYABMU-UHFFFAOYSA-N 2-benzyl-5-chloro-1h-indole Chemical compound C=1C2=CC(Cl)=CC=C2NC=1CC1=CC=CC=C1 FIYMNUNPPYABMU-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- FGEGZNORXGGFML-UHFFFAOYSA-N C(C)C=COF Chemical compound C(C)C=COF FGEGZNORXGGFML-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- SXWUSKUNDTYYNV-UHFFFAOYSA-N FC(=C(C(C(C(F)(F)F)(OC(C(C(F)(F)F)(F)F)(F)F)F)(F)F)F)OC(=C(F)C(C(C(F)(F)F)(F)OC(C(C(F)(F)F)(F)F)(F)F)(F)F)F Chemical compound FC(=C(C(C(C(F)(F)F)(OC(C(C(F)(F)F)(F)F)(F)F)F)(F)F)F)OC(=C(F)C(C(C(F)(F)F)(F)OC(C(C(F)(F)F)(F)F)(F)F)(F)F)F SXWUSKUNDTYYNV-UHFFFAOYSA-N 0.000 description 2
- GHSBRBCKXUSPAS-UHFFFAOYSA-N FC(=C(C(C(OC(F)(F)F)(F)F)(F)F)F)OC(=C(F)C(C(F)(F)OC(F)(F)F)(F)F)F Chemical compound FC(=C(C(C(OC(F)(F)F)(F)F)(F)F)F)OC(=C(F)C(C(F)(F)OC(F)(F)F)(F)F)F GHSBRBCKXUSPAS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical class OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229920006169 Perfluoroelastomer Polymers 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012661 block copolymerization Methods 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- FOKCKXCUQFKNLD-UHFFFAOYSA-N pent-1-enyl hypofluorite Chemical compound C(CC)C=COF FOKCKXCUQFKNLD-UHFFFAOYSA-N 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- DEQUKPCANKRTPZ-UHFFFAOYSA-N (2,3-dihydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1O DEQUKPCANKRTPZ-UHFFFAOYSA-N 0.000 description 1
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 1
- AGKBXKFWMQLFGZ-UHFFFAOYSA-N (4-methylbenzoyl) 4-methylbenzenecarboperoxoate Chemical compound C1=CC(C)=CC=C1C(=O)OOC(=O)C1=CC=C(C)C=C1 AGKBXKFWMQLFGZ-UHFFFAOYSA-N 0.000 description 1
- GEGZKCLDAZQIQZ-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12-tetracosafluoro-1,12-diiodododecane Chemical compound FC(F)(I)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)I GEGZKCLDAZQIQZ-UHFFFAOYSA-N 0.000 description 1
- QBEWJJSQJWLVAI-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-icosafluoro-1,10-diiododecane Chemical compound FC(F)(I)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)I QBEWJJSQJWLVAI-UHFFFAOYSA-N 0.000 description 1
- SRDQTCUHAMDAMG-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluoro-1,8-diiodooctane Chemical compound FC(F)(I)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)I SRDQTCUHAMDAMG-UHFFFAOYSA-N 0.000 description 1
- JOQDDLBOAIKFQX-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluoro-1,6-diiodohexane Chemical compound FC(F)(I)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)I JOQDDLBOAIKFQX-UHFFFAOYSA-N 0.000 description 1
- WIEYKFZUVTYEIY-UHFFFAOYSA-N 1,1,2,2,3,3-hexafluoro-1,3-diiodopropane Chemical compound FC(F)(I)C(F)(F)C(F)(F)I WIEYKFZUVTYEIY-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- WZRRRFSJFQTGGB-UHFFFAOYSA-N 1,3,5-triazinane-2,4,6-trithione Chemical class S=C1NC(=S)NC(=S)N1 WZRRRFSJFQTGGB-UHFFFAOYSA-N 0.000 description 1
- UCBVELLBUAKUNE-UHFFFAOYSA-N 1,3-bis(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)NC(=O)N(CC=C)C1=O UCBVELLBUAKUNE-UHFFFAOYSA-N 0.000 description 1
- UICXTANXZJJIBC-UHFFFAOYSA-N 1-(1-hydroperoxycyclohexyl)peroxycyclohexan-1-ol Chemical compound C1CCCCC1(O)OOC1(OO)CCCCC1 UICXTANXZJJIBC-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- LYIPDZSLYLDLCU-UHFFFAOYSA-N 2,2,3,3-tetrafluoro-3-[1,1,1,2,3,3-hexafluoro-3-(1,2,2-trifluoroethenoxy)propan-2-yl]oxypropanenitrile Chemical compound FC(F)=C(F)OC(F)(F)C(F)(C(F)(F)F)OC(F)(F)C(F)(F)C#N LYIPDZSLYLDLCU-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- HTCRKQHJUYBQTK-UHFFFAOYSA-N 2-ethylhexyl 2-methylbutan-2-yloxy carbonate Chemical compound CCCCC(CC)COC(=O)OOC(C)(C)CC HTCRKQHJUYBQTK-UHFFFAOYSA-N 0.000 description 1
- GOYXMRDQMFXZRP-UHFFFAOYSA-N 2-methylpentan-2-ylperoxy propan-2-yl carbonate Chemical compound CCCC(C)(C)OOOC(=O)OC(C)C GOYXMRDQMFXZRP-UHFFFAOYSA-N 0.000 description 1
- ROHTVIURAJBDES-UHFFFAOYSA-N 2-n,2-n-bis(prop-2-enyl)-1,3,5-triazine-2,4,6-triamine Chemical compound NC1=NC(N)=NC(N(CC=C)CC=C)=N1 ROHTVIURAJBDES-UHFFFAOYSA-N 0.000 description 1
- QMIWYOZFFSLIAK-UHFFFAOYSA-N 3,3,3-trifluoro-2-(trifluoromethyl)prop-1-ene Chemical compound FC(F)(F)C(=C)C(F)(F)F QMIWYOZFFSLIAK-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- VWGKEVWFBOUAND-UHFFFAOYSA-N 4,4'-thiodiphenol Chemical class C1=CC(O)=CC=C1SC1=CC=C(O)C=C1 VWGKEVWFBOUAND-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- NFWPZNNZUCPLAX-UHFFFAOYSA-N 4-methoxy-3-methylaniline Chemical compound COC1=CC=C(N)C=C1C NFWPZNNZUCPLAX-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 102000011045 Chloride Channels Human genes 0.000 description 1
- 108010062745 Chloride Channels Proteins 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 1
- 101000618467 Hypocrea jecorina (strain ATCC 56765 / BCRC 32924 / NRRL 11460 / Rut C-30) Endo-1,4-beta-xylanase 2 Proteins 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000034 Plastomer Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 1
- 244000125380 Terminalia tomentosa Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- HFEHLDPGIKPNKL-UHFFFAOYSA-N allyl iodide Chemical compound ICC=C HFEHLDPGIKPNKL-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012874 anionic emulsifier Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- FPODCVUTIPDRTE-UHFFFAOYSA-N bis(prop-2-enyl) hexanedioate Chemical compound C=CCOC(=O)CCCCC(=O)OCC=C FPODCVUTIPDRTE-UHFFFAOYSA-N 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical class C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 229920005605 branched copolymer Polymers 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- MMCOUVMKNAHQOY-UHFFFAOYSA-N carbonoperoxoic acid Chemical compound OOC(O)=O MMCOUVMKNAHQOY-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical compound C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000007975 iminium salts Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- VSHDHKDWBUMJIJ-UHFFFAOYSA-N iodo hypoiodite Chemical class IOI VSHDHKDWBUMJIJ-UHFFFAOYSA-N 0.000 description 1
- GHXZPUGJZVBLGC-UHFFFAOYSA-N iodoethene Chemical compound IC=C GHXZPUGJZVBLGC-UHFFFAOYSA-N 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- UMKARVFXJJITLN-UHFFFAOYSA-N lead;phosphorous acid Chemical compound [Pb].OP(O)O UMKARVFXJJITLN-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- UHNWOJJPXCYKCG-UHFFFAOYSA-L magnesium oxalate Chemical compound [Mg+2].[O-]C(=O)C([O-])=O UHNWOJJPXCYKCG-UHFFFAOYSA-L 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 150000004978 peroxycarbonates Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
Definitions
- Fluorinated block copolymers that can be processed as an elastomer are described.
- Partially fluorinated elastomers are typically less expensive than perfluorinated elastomers and because they comprise some fluorine, they can perform adequately in some of the same extreme conditions as the perfluorinated elastomers, e.g., chemical resistance, etc.
- partially fluorinated elastomers traditionally have poor tensile properties at elevated temperatures, as a result a partially fluorinated elastomer that have high tensile strength at elevated temperatures is desired.
- a curable composition comprising a fluorinated block copolymer having
- At least one A block wherein the A block is a semi-crystalline segment comprising repeating divalent monomelic units derived from at least a fluorinated monomer, and a cure-site monomer;
- B block at least one B block, wherein the B block is a segment comprising repeating dilvalent monomelic units derived from at least a fluorinated monomer.
- a and/or B includes, (A and B) and (A or B);
- backbone refers to the main continuous chain of the polymer
- copolymer refers to a polymeric material comprising at least two different interpolymerized monomers (i.e., the monomers do not have the same chemical structure) and include terpolymers (three different monomers), tetrapolymers (four different monomers), etc.;
- crosslinking refers to connecting two pre-formed polymer chains using chemical bonds or chemical groups
- cure-site refers to functional groups, which may participate in crosslinking
- glass transition temperature or “T g” refers to the temperature at which a polymeric material transitions from a glassy state to a rubbery state.
- the glassy state is typically associated with a material that is, for example, brittle, stiff, rigid, or combinations thereof.
- the rubbery state is typically associated with a material that is, for example, flexible and elastomeric.
- interpolymerized refers to monomers that are polymerized together to form a polymer backbone
- millable is the ability of a material to be processed on rubber mills and internal mixers
- “monomer” is a molecule which can undergo polymerization which then form part of the essential structure of a polymer
- perfluorinated means a group or a compound derived from a hydrocarbon wherein all hydrogen atoms have been replaced by fluorine atoms.
- a perfluorinated compound may however still contain other atoms than fluorine and carbon atoms, like chlorine atoms, bromine atoms and iodine atoms; and
- polymer refers to a macrostructure comprising interpolymerized units of monomers.
- At least one includes all numbers of one and greater (e.g., at least 2, at least 4, at least 6, at least 8, at least 10, at least 25, at least 50, at least 100, etc.).
- Thermoplastic elastomers are a class of materials, either being copolymers or a blend of polymers that have both thermoplastic and elastomeric properties Typically, the plastic component give additional tensile strength, while the elastomeric component provides elasticity and compression set resistance to the material.
- Thermoplastic elastomers having a high plastic component are traditionally processed similar to plastics using for example extruders, injection molding equipment, etc. Elastomeric materials on the other hand are typically processed with a two-roll mill or an internal mixer. Mill blending is a process that rubber manufacturers use to combine the polymer gum with the requisite curing agents and/or additives.
- the curable composition In order to be mill blended, the curable composition must have a sufficient modulus. In other words, not too soft that it sticks to the mill, and not too stiff that it cannot be banded onto mill.
- the present disclosure relates to a polymer that has a high modulus, which can be advantageous in some applications, such as gaskets and packers.
- the block copolymer of the present disclosure may be processed similarly to an elastomer.
- the present disclosure is directed toward a fluorinated block copolymer.
- “Block copolymers” are polymers in which chemically different blocks or sequences are covalently bonded to each other.
- the fluorinated block copolymers of the present disclosure include at least two different polymeric blocks; referred to as the A block and the B block.
- the A block and the B block have different chemical compositions and/or different glass transition temperatures.
- the A block of the present disclosure is a semi-crystalline segment. If studied under a differential scanning calorimetry (DSC), the block would have at least one melting point temperature (T m ) of greater than 70, 80, 90, 100, 120, or even 150°C; and at most 200, 250, 275, 300, or even 325°C and a measurable enthalpy, for example, greater than 0 J/g (Joules/gram), or even greater than 0.01 J/g.
- T m melting point temperature
- enthalpy is determined by the area under the curve of the melt transition as measured by DSC using the test disclosed herein and expressed as Joules/gram (J/g).
- the A block comprises repeating divalent monomelic units derived from a fluorinated monomer and a cure-site monomer, wherein a monomer is defined as a compound which can undergo polymerization.
- the cure-site monomers may be selected from those known in the art.
- non- fluorinated bromo-or iodo-olefins e.g., vinyl iodide and allyl iodide, can be used.
- CF 2 CFOCF 2 CF 2 CH 2 I
- CF 2 CFCF 2 OCH 2 CH 2 I
- CF 2 CFO(CF 2 ) 3 -OCF 2 CF 2 I
- CF 2 CFCF 2 Br
- the cure-site monomers may be nitrile-containing monomers such as perfluoro(8-cyano-5-methyl-3,6-dioxa-l-octene);
- CF 2 CFO(CF 2 )LCN wherein L is an integer from 2 to 12;
- CF 2 CFO(CF 2 ) u OCF(CF3)CN wherein u is an integer from 2 to 6;
- typically the amount of cure-site monomer used will range from at least 0.01, 0.05, 0.1, 0.5, or even 0.75 wt % and at most 1, 2, 3, 5, or even 10 wt% as compared to the weight of the resulting fluorinated block copolymer.
- the A block is derived from tetrafluoroethylene (TFE); derived from only TFE or TFE and small amounts (e.g., at least 0.1, 0.3, or even 0.5 wt % and at most 0.8, 1, 2, or even 3 wt%) of other comonomers such as hexafluoropropylene (HFP), vinylidene fluoride (VDF), chlorotrifluoroethylene (CTFE), hexafluoroisobutene, or perfluoroalkylethylenes.
- TFE tetrafluoroethylene
- small amounts e.g., at least 0.1, 0.3, or even 0.5 wt % and at most 0.8, 1, 2, or even 3 wt
- HFP hexafluoropropylene
- VDF vinylidene fluoride
- CTFE chlorotrifluoroethylene
- hexafluoroisobutene or perfluoroalkylethylenes.
- the A block is derived from TFE and fluorinated vinyl ethers such as perfluorovinyl ethers and perfluoroallyl ethers.
- fluorinated vinyl ethers such as perfluorovinyl ethers and perfluoroallyl ethers.
- these fluorinated ethers are used in amounts of at least 0.5, 1, or even 2 wt % and at most 3, 5, 8, or even 10 wt%.
- Rf represents a perfluorinated aliphatic group that may contain no, one or more oxygen atoms and up to 4, 6, 8, or even 10 carbon atoms.
- the A block is derived from TFE and a perfluoroolefin.
- exemplary perfluoroolefins comprising 2-8 carbon atoms (such as hexafluoropropylene (HFP)).
- HFP hexafluoropropylene
- these perfluoroolefins are used in amounts of at least 2, 3, or even 4 wt % and at most 5, 10, 15, or even 20 wt%.
- Other comonomers may be added in small amounts (e.g., less than 0.5, 1, 2, 3, or even 5 wt%).
- Such comonomers can include for example, perfluorinated vinyl ethers as described above.
- the A block is derived from TFE or CTFE (e.g., at least 40, or even 45 wt%; and at most 50, 55, or even 60 wt%) and a non-fluorinated olefin (e.g., at least 40, or even 45 wt%; and at most 50, 55, or even 60 wt%).
- a non-fluorinated olefin e.g., at least 40, or even 45 wt%; and at most 50, 55, or even 60 wt%).
- non-fluorinated olefin comprise 2-8 carbon atoms and include for example, ethylene, propylene, and isobutylene.
- Other comonomers may be added in small amounts (e.g., at least 0.1, 0.5, or even 1 wt % and at most 3, 5, 7, or even 10 wt%).
- Such comonomers can include for example, (per)fluoroolefins such as
- the A block is derived from VDF; derived from only VDF or VDF and small amounts (e.g., at least 0.1, 0.3, or even 0.5 wt % and at most 1, 2, 5, or even 10 wt%) of other fluorinated comonomers such as (per)fluorinated olefins such as HFP, TFE, and trifluoroethylene.
- the A block is derived from TFE, HFP, and VDF.
- the A block comprises (a) 30-85 wt % TFE, 5-40 wt % HFP, and 5-55 wt % VDF; (b) 30-75 wt % TFE, 5-35 wt % HFP, and 5-50 wt % VDF; (c) 40-70 wt % TFE, 10-30 wt % HFP, and 10-45 wt % VDF; or even (d) 45-70 wt % TFE, 10-30 wt % HFP, and 10-45 wt % VDF.
- comonomers may be added in small amounts (e.g., at least 0.1, or even 0.5 wt % and at most 1, 3, 5, 7, or even 10 wt%.
- Such comonomers include perfluorovinyl ether and perfluoroallyl ether monomers as described above.
- the A block is derived from TFE, HFP, VDF, and a bisolefin monomer (exemplary bisolefin monomers are described below).
- the A block comprises comprises (a) 30-85 wt % TFE, 5-40 wt % HFP, 5-55 wt % VDF, and 0.01-1 wt % of a bisolefin monomer; (b) 30-75 wt % TFE, 5-35 wt % HFP, 5-50 wt % VDF, and 0.01-1 wt % of a bisolefin monomer; or even (c) 40-70 wt % TFE, 10-30 wt % HFP, 10-45 wt % VDF, and 0.02-0.5 wt % of a bisolefin monomer.
- comonomers may be added in small amounts (e.g., at least 0.1, or even 0.5 wt % and at most 1, 3, 5, 7, or even 10 wt%.
- Such comonomers include perfluorovinyl ether and
- the bisolefin monomer is of the formula
- R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently H, a C1-C5 alkyl group, or a C1-C5 fluorinated alkyl group; and Z is an alkylene or cycloalkylene radical, which is linear or branched, optionally containing oxygen atoms and optionally fluorinated.
- Ri, R2, R3, and Rt are, independently from each other, F, CF3, C2F5, C3F7, C4F9, H, CH3, C2H5, C3H7, or C4H9.
- Z comprises at least 1 , 2, 3, 4, or even 5 carbon atoms and at most 8, 10, 12, 16, or even 18 carbon atoms.
- Z is -O-Rfi-0-; -CF2-0-Rfi-0-CF2-; or CF2-0-Rfi-0-, wherein Rfi represents a residue selected from linear or branched perfluoroalkanediyl, perfluorooxaalkanediyl or
- Rfi contains at least 1, 2, 3, 4, or even 5 carbon atoms; and at most 8, 10, 12, or even 14 carbon atoms.
- Rf 2 is a non- fluorinated, a fluorinated or a perfluorinated arylene.
- the arylene may be non-substituted or substituted with one or more halogen atoms other than F, perfluorinated alkyl residues, perfluorinated alkoxy residues, perfluorinated oxaalkyl residues, perfluorinated polyoxaalkyl residues, fluorinated,
- Rf2 contains at least 1, 2, 3, 4, or even 5 carbon atoms; and at most 10, 12, or even 14 carbon atoms.
- the fluorinated block copolymer comprises: at least one A block polymeric unit, wherein each A block has a glass transition (Tg) temperature of greater than 0°C, 5°C, 10°C, 15°C, or even 20°C; and less than 100°C, 90°C 80°C, 70°C, 60°C, or even 50°C.
- Tg glass transition
- the glass transition of the A block and B block can be difficult to determine in DSC on the polymer gum, therefore, torsion rheology of the cured sample can be used to determine the Tg.
- T a which is the first transition and is associated with the glass transition of the B block
- ⁇ ⁇ a second, higher transition
- the weight average molecular weight of the semi-crystalline segment is at least 1000, 5000, 10000, or even 25000 daltons; and at most 400000, 600000, or even 800000 daltons.
- the B block is a fluorinated segment derived from at least one fluorinated monomer
- the B block is a copolymer derived from VDF and at least one comonomer.
- the comonomers may be selected from a perfluorinated olefins comprising 2-8 carbon atoms (such as TFE, or HFP); halogenated fluorinated olefins, wherein the halogen is chlorine, bromine, and/or iodine comprising 2-8 carbon atoms (such as chlorotrifluoroethylene); fluorinated vinyl ethers such as perfluorovinyl ethers and perfluoroallyl ethers as described above; and non-fluorinated olefins comprising 2-8 carbon atoms such as ethylene, or propylene.
- a perfluorinated olefins comprising 2-8 carbon atoms
- halogenated fluorinated olefins wherein the halogen is chlorine, bromine, and/or iodine comprising 2-8 carbon atoms
- Exemplary B bock compositions include the following: (a) 45-85 wt% VDF, 15-45 wt% HFP, and 0-30 wt% TFE; (b) 50-80 wt% VDF, 5-50 wt% of a fluorinated vinyl ether such as PAVE, and 0-20 wt% TFE 0-20%; and (c) 20-30 wt% VDF, 10-30 wt% of a non-fluorinated olefin, 18-27 wt% of HFP and/or PAVE, and 10-30 wt% TFE.
- the B block is a copolymer derived from HFP, and VDF.
- Exemplary B bock compositions include the following: 25-65 wt % VDF and 15-60 wt % HFP; or even 35-60 wt % VDF and 25-50 wt % HFP.
- Other comonomers may be added in amounts ranging from at least 0.1, 0.5, 1, or even 2 wt % and at most 5, 10, 15, 20, or even 30 wt%.
- Such comonomers include perfluorovinyl ether and perfluoroallyl ether monomers as described above.
- the B block is derived from HFP, VDF, and a bisolefin monomer, such as those described above.
- the B block comprises 25-65 wt % VDF, 15-60 wt % HFP and 0.01-1 wt% of a bisolefin monomer; or even 35-60 wt % VDF, 25-50 wt % HFP and 0.01-1 wt% of a bisolefin monomer.
- Such bisolefin monomers are described above.
- Other comonomers may be added in amounts ranging from at least 0.1, 0.5, 1, or even 2 wt % and at most 5, 10, 15, 20, or even 30 wt%.
- Such comonomers include perfluorovinyl ether and perfluoroallyl ether monomers as described above.
- the B block is derived from TFE and a comonomer selected from fluorinated olefins comprising 2-8 carbon atoms (such as TFE, HFP, trifluoroethylene); halogenated fluorinated olefins, wherein the halogen is chlorine, bromine, and/or iodine comprising 2-8 carbon atoms (such as chlorotrifluoroethylene); fluorinated vinyl ethers such as perfluorovinyl ethers and perfluoroallyl ethers as described above; and non-fluorinated olefins comprising 2-8 carbon atoms such as ethylene, or propylene.
- fluorinated olefins comprising 2-8 carbon atoms
- halogenated fluorinated olefins wherein the halogen is chlorine, bromine, and/or iodine comprising 2-8 carbon atoms (such as chlorotrifluoroethylene)
- Exemplary B bock compositions include the following: (a) 50-80 wt% TFE and 20-50 wt% of a fluorinated vinyl ether; (b) 45-65 wt% TFE, 20-55 wt% of a non-fluorinated olefin, and 0-30 wt% VDF; and (c) 32-60 wt% TFE, 10-40 wt% of a non-fluorinated olefin, and 20-40 wt% of a fluorinated vinyl ether.
- the B block of the present disclosure is an amorphous segment, meaning that there is an absence of long-range order (i.e., in long-range order the arrangement and orientation of the macromolecules beyond their nearest neighbors is understood).
- the amorphous segment has no detectable crystalline character by DSC. If studied under DSC, the B block would have no melting point or melt transitions with an enthalpy more than 2 milliJoules/g by DSC.
- the B block of the present disclosure is semi-crystalline, meaning that the block would have at least one melting point (T m ) of greater than 60, 70, 80, or even 90°C; and at most 1 10, 120, 130, or even 150°C and a measurable enthalpy, (for example, greater than 2 millijoules/gram) when measured by DSC.
- T m melting point
- the modulus of the B block is such that it can be processed as an elastomer.
- the B block has a modulus at 100°C as measured at a strain of 1% and a frequency of 1 Hz of less than 2.5, 2.0, 1.5, 1, or even 0.5 MPa.
- the A block and/or B block may be polymerized in the presence of a chain transfer agent.
- the chain transfer agent is of the formula Y(CF 2 ) q Y, wherein: (i) Y is independently selected from Br, or I, wherein optionally one Y is CI and (ii) q is an integer from 1 to 12, preferably 3-12.
- Exemplary iodo-perfluoro-compounds include 1,3-diiodoperfluoropropane, 1,4- diiodoperfluorobutane, 1, 6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1, 10- diiodoperfluorodecane, 1, 12-diiodoperfluorododecane, and mixtures thereof.
- the chain transfer agent is a fluorinated di-iodo ether compound of the formula:
- X is independently selected from F, H, and CI;
- R is F, or a partially fluorinated or perfluorinated alkane comprising 1-3 carbons
- Rf and R'f are independently selected from F and a monovalent perfluoroalkane having 1-3 carbons;
- R"f is a divalent fluoroalkylene having 1-5 carbons or a divalent fluorinated alkylene ether having 1-8 carbons and at least one ether linkage;
- k is 0 or 1 ; and n, m, q, and p are independently selected from an integer from 0-5, with the proviso that when k is 0, n plus m are at least 1 and p plus q are at least 1.
- Exemplary fluorinated di-iodo ether compounds include: I-CF2-CF2-O-CF2-CF2-I; I-CF2-CF2-0-(CF2)b-I wherein b is an integer from 3 - 10;
- a is an integer from 0-6, b is an integer from 0-5, c, is an integer from 1-6, d is an integer from 0-6 and z is an integer from 0-6;
- fluorinated di-iodo ether compound are disclosed in WO 2015/134435 (Hintzer et al.), herein incorporated by reference.
- the B block may be polymerized in the presence of cure-site monomers to introduce additional cure-sites into the fluoropolymer, which can then be used in subsequent crosslinking reactions.
- the fluorinated block copolymer comprises: at least one B block polymeric unit, wherein each B block has a Tg temperature of less than 0°C, - 10°C, -20°C, or even -30°C.
- Tg temperature 0°C, - 10°C, -20°C, or even -30°C.
- the Tg of the polymeric blocks may be estimated by use of the Fox equation, based on the Tgs of the constituent monomers and the weight percent thereof.
- the Fox equation is described in W.R. Sorenson and T.W. Campbell's text entitled "Preparative Methods of Polymer Chemistry” Interscience, New York (1968) p. 209. Specific values for Tgs of appropriate homoplolymers can be obtained from P. Peyser's chapter in polymer handbook, 3 rd ed., edited by J. Brandrup and E.H.
- the Tg of the polymeric blocks may be measured by analyzing a polymer comprising the constituent monomers and weight percent thereof via differential scanning calorimetry (DSC) or dynamic mechanical analysis (DMA).
- DSC differential scanning calorimetry
- DMA dynamic mechanical analysis
- the weight average molecular weight of the B block segment is at least 5000, 10000, or even 25000; and at most 400000, 600000, or even 800000.
- the A block and B block are covalently bonded together.
- the A block is directly connected to the B block (in other words, a carbon atom of the A block is covalently bonded to a carbon atom of the B block).
- the block copolymers of the present disclosure are a linear block copolymer.
- the linear block copolymer can be divided into di-block ((A-B) structure), tri-block ((A-B-A) structure), multi-block (-(A-B)n- structure), and combinations thereof.
- the block copolymers of the present disclosure may be a branched copolymer, for example a comb-type polymer wherein branches extend from a main polymer chain.
- the fluorinated block copolymer comprises at least one B block and at least two A blocks, wherein B is a midblock and A is an end block. In another embodiment of the present disclosure, the fluorinated block copolymer comprises at least one A block and at least two B blocks, wherein A is a midblock and B is an end block.
- the composition of the end blocks does not have to be identical to one another, but preferably they are similar in composition.
- the fluorinated block copolymer consists essentially of at least one A block and at least one B block.
- the fluorinated block copolymer comprises only A and B block segments, however, the ends of the polymer chain, where the polymerization was terminated, may comprise a different group (a couple of atoms in size) as a result of the initiator and or chain transfer agent used during the polymerization.
- more than two different blocks are used.
- multiple blocks with different weight average molecular weights or multiple blocks with different concentrations of the block polymeric units can be used.
- a third block may be present that is derived from at least one different monomer.
- the fluorinated block copolymer has a Tg of less than 0, -5, -10, -15, -20, or even -25°C as determined by DSC as described in the Example Section below.
- the fluorinated block copolymer of the present disclosure can be prepared by various known methods as long as the A block and B block are covalently bonded to each other in a blocked or grafted form.
- the B block can be prepared by iodine transfer polymerization as described in U.S. Pat. No. 4,158,678 (Tatemoto et al.).
- a radical initiator and an iodine chain transfer agent are used to generate for example an amorphous polymer latex.
- the radical polymerization initiator to be used for preparing the amorphous segment may be the same as the initiators known in the art that are used for polymerization of fluorine-containing elastomer. Examples of such an initiator are organic and inorganic peroxides and azo compounds.
- Typical examples of the initiator are persulfates, peroxy carbonates, peroxy esters, and the like, in one embodiment, ammonium persulfate (APS) is used, either solely, or in combination with a reducing agent like sulfites.
- APS ammonium persulfate
- the iodine chain transfer agent is used from 0.01 to 1 % by weight based on the total weight of the amorphous polymer.
- various emulsifying agents can be used. From the viewpoint of inhibiting a chain transfer reaction against the molecules of emulsifying agent that arises during the polymerization, desirable emulsifying agents are salts of carboxylic acid having a fluorocarbon chain or fluoropolyether chain.
- the amount of emulsifying agent is from about 0.05% by weight to about 2% by weight, or even 0.2 to 1.5% by weight based on the added water.
- the cure-site monomer may be added to the polymerization in a batch or continuous fashion during the polymerization of the A block (and optionally the B block) as known in the art.
- the thus-obtained latex comprises an amorphous polymer that has an iodine atom which becomes a starting point of block copolymerization of the semicry stall ine segment.
- the monomer composition can be changed and the block copolymerization of the semicrystalline segment onto the amorphous polymer can be carried out.
- a fluorinated emulsifier having improved environmental attributes may be used during the polymerization of the block copolymers disclosed herein.
- the fluorinated emulsifier corresponds to the general formula:
- Y represents hydrogen, CI or F
- Rf represents a linear or branched partially fluorinated alkylene having 4 to 10 carbon atoms and optionally comprising catenary oxygen atoms
- Z represents COO " or SO3 "
- M represents a hydrogen ion, an alkali metal ion or an ammonium ion.
- exemplary fluorinated emulsifiers may be of the general formula:
- L represents a linear or branched partially or fully fluorinated alkylene group or an aliphatic hydrocarbon group
- Rf represents a linear or branched partially or fully fluorinated aliphatic group or a linear or branched partially or fully fluorinated group interrupted with one or more oxygen atoms
- X 1+ represents a cation having the valence i and i is 1, 2 or 3.
- the emulsifier is selected from CF3-0-(CF2)3-0-CHF-CF2-COOH and salts thereof. Specific examples are described in U.S. Pat. No. 7671112 (Hintzer et al.), which is incorporated herein by reference.
- Exemplary emulsifiers include: CF3CF 2 OCF 2 CF 2 OCF 2 COOH, CHF 2 (CF 2 ) 5 COOH, CF 3 (CF 2 )6COOH, CF 3 0(CF 2 )30CF(CF 3 )COOH, CF 3 CF 2 CH 2 OCF 2 CH 2 OCF 2 COOH, CF 3 0(CF 2 ) 3 0CHFCF 2 COOH, CF 3 0(CF 2 ) 3 0CF 2 COOH,
- a non-ionic, non-fluorinated saturated emulsifier may be used during the polymerization of the block copolymers disclosed herein.
- Such non-ionic, non-fluorinated emulsifiers include polycaprolactones, siloxanes, polyethylene/polypropylene glycols (cyclodextrines), carbosilanes and sugar-based emulsifiers.
- Other examples include polyether alcohols, sugar-based emulsifiers or hydrocarbon based emulsifiers, wherein the long chain unit may contain from 4 to 40 carbon atoms.
- a non-fluorinated, saturated anionic emulsifier may be used during the polymerization of the block copolymers disclosed herein.
- Such non-fluorinated anionic emulsifiers include
- polyvinylphosphinic acids polyacrylic acids, polyvinyl sulfonic acids, and alkyl phosphonic acids (for example, alkyl phosphates, hydrocarbon anionic surfactants as described, for example in U.S. Pat. Nos. 7521513 and 6512063 (Tang), herein incorporated by reference).
- alkyl phosphonic acids for example, alkyl phosphates, hydrocarbon anionic surfactants as described, for example in U.S. Pat. Nos. 7521513 and 6512063 (Tang), herein incorporated by reference.
- emulsifiers and their use in polymerization is described in WO 2016/137851 (Jochum et al.) herein incorporated by reference.
- the fluorinated block copolymer gum of the present disclosure may be crosslinked.
- Crosslinking of the resulting fluorinated block copolymer can be performed using a cure system that is known in the art such as: a peroxide curative, 2,3-dimethyl-2,3-dimethyl-2,3-diphenyl butane, and other radical initiators such as an azo compound, and other cure systems such as a polyol and polyamine cure systems.
- Peroxide curatives include organic or inorganic peroxides.
- Organic peroxides are preferred, particularly those that do not decompose during dynamic mixing temperatures.
- the crosslinking using a peroxide can be performed generally by using an organic peroxide as a crosslinking agent and, if desired, a polyolefin crosslinking aid including, for example, bisolefins (such as diallyl ether of glycerin, triallylphosphoric acid, diallyl adipate, diallylmelamine and triallyl isocyanurate (TAIC), fluorinated TAIC comprising a fluorinated olefinic bond, tri(methyl)allyl isocyanurate (TMAIC), tri(methyl)allyl cyanurate, poly-triallyl isocyanurate (poly-TAIC), xylylene-bis(diallyl isocyanurate) (XBD), and N,N'-m-phenylene
- organic peroxide examples include benzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, 2,5-di-methyl-2,5-di-tert-butylperoxyhexane, 2,4-dichlorobenzoyl peroxide, l, l-bis(tert- butylperoxy)-3,3,5-trimethylchlorohexane, tert-butyl peroxy isopropylcarbonate (TBIC), tert-butyl peroxy 2-ethylhexyl carbonate (TBEC), tert-amyl peroxy 2-ethylhexyl carbonate, tert-hexylperoxy isopropyl carbonate, carbonoperoxoic acid, 0,0'-l,3-propanediyl 00,00'-bis(l, l-dimethylethyl) ester, tert-butylperoxy benzoate
- peroxide curatives are listed in U.S. Pat. No. 5,225,504 (Tatsu et al).
- the amount of peroxide curing agent used generally will be 0.1 to 5, preferably 1 to 3 parts by weight per 100 parts of fluorinated block copolymer.
- Other conventional radical initiators are suitable for use with the present disclosure.
- Examples of azo compounds useful in curing the fluorinated block copolymers of the present disclosure are those that have a high decomposition temperature. In other words, they decompose above the upper use temperature of the resulting product. Such azo compounds may be found for example in "Polymeric Materials Encyclopedia, by J.C. Salamone, ed., CRC Press Inc., New York, (1996) Vol. 1, page 432-440.
- Crosslinking using a polyol is performed generally by using a polyol compound as a crosslinking agent; a crosslinking aid such as ammonium salt, phosphonium salt and iminium salt; and a hydroxide or oxide of a divalent metal such as magnesium, calcium, or zinc.
- a polyol compound include bisphenol AF, bisphenol A, bisphenol S, dihydroxybenzophenone, hydroquinone, 2,4,6- trimercapto-S-triazine, 4,4'-thiodiphenol, and a metal salt thereof.
- Crosslinking using a polyamine is performed generally by using a polyamine compound as a crosslinking agent, and an oxide of a divalent metal such as magnesium, calcium, or zinc.
- a polyamine compound or the precursor of the polyamine compound include hexamethylenediamine and a carbamate thereof, 4,4'-bis(aminocyclohexyl)methane and a carbamate thereof, and ⁇ , ⁇ '- dicinnamylidene- 1 ,6-hexamethylenediamine .
- the crosslinking agent (and crosslinking aid, if used) each may be used in a conventionally known amount, and the amount used can be appropriately determined by one skilled in the art.
- the amount used of each of these components participating in the crosslinking may be, for example, about 1 part by mass or more, about 5 parts by mass or more, about 10 parts by mass or more, or about 15 parts by mass or more, and about 60 parts by mass or less, about 40 parts by mass or less, about 30 parts by mass or less, or about 20 parts by mass or less, per 100 parts by mass of the fluorinated block copolymer.
- the total amount of the components participating in the crosslinking may be, for example, about 1 part by mass or more, about 5 parts by mass or more, or about 10 parts by mass or more, and about 60 parts by mass or less, about 40 parts by mass or less, or about 30 parts by mass or less, per 100 parts by mass of the fluorinated block copolymer.
- a dual cure or multi cure system is used, wherein at least two different cure systems are used.
- peroxide curing system and a bisphenol curing system or a peroxide curing system and a triazine curing system are used.
- Such a multi cure system may provide enhanced physical properties and/or ease of handling.
- adjuvants such as, for example, acid acceptors, fillers, process aids, or colorants may be added to the composition.
- acid acceptors may be used to facilitate the cure and thermal stability of the composition.
- Suitable acid acceptors may include magnesium oxide, lead oxide, calcium oxide, calcium hydroxide, dibasic lead phosphite, zinc oxide, barium carbonate, strontium hydroxide, calcium carbonate, hydrotalcite, alkali stearates, magnesium oxalate, or combinations thereof.
- the acid acceptors are preferably used in an amount raging from about 1 to about 20 parts per 100 parts by weight of the fluorinated block copolymer.
- Fillers include: an organic or inorganic filler such as clay, silica (SiC ), alumina, iron red, talc, diatomaceous earth, barium sulfate, wollastonite (CaSiC ), calcium carbonate (CaCC ), calcium fluoride, titanium oxide, iron oxide and carbon black fillers, a polytetrafluoroethylene powder, PFA
- an organic or inorganic filler such as clay, silica (SiC ), alumina, iron red, talc, diatomaceous earth, barium sulfate, wollastonite (CaSiC ), calcium carbonate (CaCC ), calcium fluoride, titanium oxide, iron oxide and carbon black fillers, a polytetrafluoroethylene powder, PFA
- TFE/perfluorovinyl ether copolymer powder an electrically conductive filler, a heat-dissipating filler, and the like may be added as an optional component to the composition.
- Those skilled in the art are capable of selecting specific fillers at required amounts to achieve desired physical characteristics in the vulcanized compound.
- the filler components may result in a compound that is capable of retaining a preferred elasticity and physical tensile, as indicated by an elongation and tensile strength value, while retaining desired properties such as retraction at lower temperature (TR-10).
- the composition comprises less than 40, 30, 20, 15, or even 10% by weight of the filler.
- the fluorinated block copolymer composition is mixed with the curing agent and optional conventional adjuvants.
- the method for mixing the block copolymer of the present disclosure with the curing agent(s) and optional adjuvants is performed similarly to an elastomer such as for example, kneading with use of a twin roll for rubber, a pressure kneader or a Banbury mixer.
- the method for mixing the block copolymer of the present disclosure with the curing agent(s) and optional adjuvants is performed similarly to a plastic, such as by extrusion or injection molding.
- the mixture may then be processed and shaped such as by extrusion or molding to form an article of various shapes such as sheet, a hose, a hose lining, an o-ring, a gasket, a packer, or a seal composed of the composition of the present disclosure.
- the shaped article may then be heated to cure the gum composition and form a cured elastomeric article. Pressing of the compounded mixture (i.e., press cure) is typically conducted at a temperature of about 120-220°C, or even about 140-200°C, for a period of about 1 minute to about 15 hours, usually for about 1-15 minutes. A pressure of about 700-20,000 kPa
- the molds first may be coated with a release agent and prebaked.
- the molded vulcanizate can be post cured in an oven at a temperature of about 140-240°C, or even at a temperature of about 160-230°C, for a period of about 1-24 hours or more, depending on the cross-sectional thickness of the sample.
- the temperature during the post cure is usually raised gradually from the lower limit of the range to the desired maximum temperature.
- the maximum temperature used is preferably about 260°C, and is held at this value for about 1 hour or more.
- Fluorinated block copolymers of the present disclosure may be used in articles, such as a hose, a seal (e.g., a gasket, an o-ring, a packer element, a blow-out preventor, a valve, etc.), a stator, or a sheet. These compositions may or may not be post cured.
- a fluorinated block copolymer having good toughness e.g., high tensile strength
- the fluorinated block copolymer of the present disclosure balances the toughness imparted by the A block and/or the cure-site monomer with the viscosity (and optional flexibility) imparted by the B block.
- This balancing of the A block and B block generates a fluorinated block copolymer that can be processed as a traditional elastomer, for example a polymer that can be processed with a two-roll mill or an internal mixer or as a traditional plastic, depending on the modulus of the resulting block copolymer.
- Mill blending is a process that rubber manufacturers use to combine the polymer gum with the requisite curing agents and/or additives. In order to be mill blended, the curable composition must have a sufficient modulus.
- the fluorinated block copolymer of the present disclosure should have a modulus of at least 0.1, 0.3, or even 0.5 MPa (megaPascals); and at most 2.5, 2.2, or even 2.0 MPa at 100°C as measured at a strain of 1% and a frequency of 1 Hz (Hertz).
- the amount of the A block to B block used in the fluorinated block copolymer can vary based on the properties of the individual polymeric segments.
- the storage modulus is a property that can be used to take into account using less of a semicrystalline segment with a high degree of crystallinity in the block copolymer versus more of a semicrystalline segment with a lower degree of crystallinity.
- the fluorinated block copolymer of the present disclosure has a melting point of at least 100, 1 10, 150, or even 175 °C; and at most 275, 250, or even 200 °C. It is believed that the melting point of the fluorinated block copolymer is based on the melting point of the semicrystalline segment since amorphous polymer does not have a melting point. In one embodiment, the melting point of the block copolymer is greater than the upper use temperature of the resulting article to maximize the reinforcement effect of the A block.
- the fluorinated block copolymer of the present disclosure has a Tg of greater than -40, -30, or even -20°C; and at most 15, 10, 0, or even -5°C as measured by DSC as described in the Example Section below. Both the A block and the B block will have a Tg. In general, the Tg of the B block is believed to be responsible for the Tg of the reported block copolymer.
- the fluorinated block copolymer of the present disclosure has a melt flow index of greater than 5, 10, 20, or even 30; and at most 40, 50, 60, 70, 80, or even 90 as measured by ASTM D 1238-13 "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion
- the fluorinated block copolymer may comprise iodine.
- the fluorinated block copolymer comprises at least 0.05, 0.1, or even 0.2 wt %; and at most 0.5, 0.8, or even 1 wt % of iodine based on the weight of the fluorinated block copolymer.
- the fluorinated block copolymers of the present disclosure may have a weight average molecular weight (Mw) of at least 50,000 dalton, at least 100,000 dalton, at least 300,000 dalton, at least 500,000 dalton, at least, 750,000 dalton, at least 1,000,000 dalton, or even at least 1,500,000 dalton and not such a high molecular weight as to cause premature gelling of the fluorinated block copolymer.
- Mw weight average molecular weight
- the fluorinated block copolymers of the present disclosure wherein the A block and B block are covalently bonded together, have improved properties over the mixture (or blend) of the two individual polymers, for example higher tensile strength and improved compression set.
- the fluorinated block copolymers of the present disclosure have been found to have good tensile strength, and 100% modulus. Surprisingly, it has also been discovered that the fluorinated block copolymer of the present disclosure has good compression set. Compression set is the deformation of the polymer remaining once a force is removed. Generally, lower compression set values are better (i.e., less deformation of the material). Typically, plastics (comprising a semicrystalline morphology) do not have a good compression set. Therefore, it was surprising that the fluorinated block copolymer comprising the semicrystalline segment has a good compression set. It was also surprising that the fluorinated block copolymers of the present disclosure retained their properties at elevated temperatures.
- Exemplary embodiments of the present disclosure include, but should not be limited to, the following:
- Embodiment 1 A curable composition comprising:
- a block is a semi-crystalline segment comprising repeating divalent monomelic units derived from at least a fluorinated olefin and a cure-site monomer;
- B block is a segment comprising repeating dilvalent monomelic units derived from at least a fluorinated monomer.
- CF 2 CFOCF 2 CF 2 I
- CF2 CFOCF 2 CF 2 CF2l
- CF2 CFOCF 2 CF 2 CH2l
- CF2 CFCF 2 OCH 2 CH2l
- CF 2 CFO(CF 2 )3-OCF 2 CF 2 l
- CF 2 CFCF 2 Br
- CF 2 CFOCF 2 CF 2 Br
- CF 2 CFC1
- CF 2 CFCF 2 C1, and combinations thereof.
- Embodiment 3 The curable composition of any one of the previous embodiments, wherein the cure-site monomer is a nitrile-containing cure-site monomer comprising at least one of:
- Embodiment 4 The curable composition of any one of the previous embodiments, wherein the A block is derived from TFE, and less than 5 wt % a comonomer.
- Embodiment 5 The curable composition of any one of embodiments 1-3, wherein the A block is derived from TFE, HFP, and VDF.
- Embodiment 6 The curable composition of embodiment 5, wherein the A block comprises repeating divalent monomelic units further derived from at least one of a perfluorovinyl ether monomer, and a perfluoroallyl ether monomer.
- Embodiment 7 The curable composition of embodiment 6, wherein the perfluorovinyl ether is selected from at least one of: perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether
- PEVE perfluoro (n-propyl vinyl) ether
- PPVE-1 perfluoro-2-propoxypropylvinyl ether
- PPVE-2 perfluoro-3-methoxy-n-propylvinyl ether
- CF2 CFOCF 2 OCF2CF 3
- CF3-(CF2)2-0-CF(CF 3 )-CF2-0-CF(CF 3 )-CF2-0-CF CF2.
- Embodiment 9 The curable composition of any one of the previous embodiments, wherein the fluorinated block copolymer has a melting point of at least 100 and at most 275 °C.
- Embodiment 10 The curable composition of any one of the previous embodiments, wherein the B block is derived from at least VDF, and the nitrile -containing cure-site monomer.
- Embodiment 11 The curable composition of any one of the previous embodiments, wherein the B block is derived from at least VDF, HFP, and the nitrile -containing cure-site monomer.
- Embodiment 12 The curable composition of embodiment 11, wherein the B block segment further comprises repeating divalent monomelic units derived from TFE, a halogenated cure-site monomer, a nitrile cure-site monomer, a perfluorovinyl ether monomer, a perfluoroallyl ether monomer, and combinations thereof.
- Embodiment 13 The curable composition of any one of the previous embodiments, wherein the B block is semi-crystalline.
- Embodiment 14 The curable composition of any one of embodiments 1-12, wherein the B block is amorphous.
- Embodiment 15 The curable composition of any one of the previous embodiments, wherein the Tg of the A block is greater than 0 °C and less 80 °C.
- Embodiment 16 The curable composition of any one of the previous embodiments, wherein the Tg of the B block is less than 0 °C.
- Embodiment 17 The curable composition of any one of the previous embodiments, wherein at least one of the A block, the B block, or both the A block and the B block are derived from a bisolefin monomer is of the formula
- R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently H, C1-C5 alkyl group, or a C1-C5 fluorinated alkyl group; and Z is an alkylene or cycloalkylene CI -CI 8 radical, which is linear or branched, optionally containing oxygen atoms and optionally fluorinated.
- Embodiment 19 The curable composition of any one of the previous embodiments, wherein the fluorinated block copolymer comprises about 0.05 wt % to about 1 wt % of iodine based on the weight of the fluorinated block copolymer.
- Embodiment 20 The curable composition of any one of the previous embodiments, further comprising a peroxide cure system.
- Embodiment 21 The curable composition of any one of the previous embodiments, further comprising a polyol cure system.
- Embodiment 22 A cured article derived from the curable composition of any one of the previous embodiments.
- Embodiment 23 The cured article of embodiment 22, wherein the article is a packer, an o-ring, a seal, a gasket, a hose, or a sheet.
- Embodiment 24 The curable composition of any one of embodiments 1-21, wherein the glass transition temperature of the fluorinated block copolymer is less than
- T m Melting point
- T g glass transition temperature
- the first heat cycle started at -85°C and was ramped at a rate of 10°C/min up to 300 °C.
- the cooling cycle started at the final temperature from the first heat cycle and was cooled to -85°C at 10°C/min.
- the second heat cycle started at -85°C and was ramped at a rate of 10°C/min back up to 300 °C. Results are reported in Table 1.
- Modulus at 100°C was determined using a rheometer (RPA 2000 by Alpha technologies,
- Cure Rheology tests were carried out using uncured, compounded samples using a rheometer (PPA 2000 by Alpha technologies, Akron, OH), in accordance with ASTM D 5289-93a at 177 °C, no pre-heat, 12 min elapsed time, and a 0.5 degree arc. Both the minimum torque (ML) and highest torque attained during a specified period of time when no plateau or maximum torque (MH) was obtained were measured.
- O-rings having a cross-section thickness of 0.139 in (3.5 mm) and sheets having a thickness of 2.0 mm were molded using the uncured compounded sample and press cured, followed by a postcure as noted in Table 2.
- the dumbbell specimens were cutout from the sheets and subjected to physical property testing similar to the procedure disclosed in ASTM D412-06a (2013). Tensile strength at break, elongation at break, 50% modulus, and 100% Modulus were reported. 50% Modulus and 100% Modulus were determined by the tensile strength at 50% elongation and 100% elongation respectively.
- the O-rings were subjected to compression set testing similar to the procedure disclosed in ASTM 395- 89 method B, with 25 % initial deflection. Results are reported in Table 2.
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, 20 g of MV32I, 330 g of Emulsifier, and 20 g of APS. 2500 g of deionized water was used to flush the reactants into the reactor. Vacuum was broken with HFP. Immediately following this addition, the reactor was pressured up with a HFP/VDF ratio of 0.88 and a TFE/VDF ratio of 1.0 until the reactor reached a pressure of 1.5 MPa. Once at pressure, monomer ratios were changed to HFP/VDF of 1.24 and TFE/VDF of 0.73. The reaction was run until 25% solids, stopped, and the latex was left in the reactor.
- a block The latex from the B block above still in the reactor was then brought to 60 °C. With the reactor at temperature, the agitator rate was set at 350 rpm and the vacuum was broken with nitrogen. The reactor was brought up to a pressure of 1.6 MPa using a HFP/VDF ratio of 0.768 and a TFE/VDF ratio of 8.068. The reaction was carried out at the same ratios until 30% solids. The latex was then coagulated using a 1.25% magnesium chloride solution in deionized water, and oven dried at 130 °C for 32 h.
- the fluorinated block copolymer had a Tg of - 1 1 °C, and Tm determined by DSC of 272
- B block A 40 liter reactor was charged with 22500 g of deionized water and heated to
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, 330 g of Emulsifier, and 20 g of APS. 2500 g of deionized water was used to flush the reactants into the reactor. Vacuum was broken with HFP.
- the reactor was pressured up with a HFP/VDF ratio of 0.88 and a TFE/VDF ratio of 1.0 until the reactor reached a pressure of 1.5 MPa. Once at pressure, monomer ratios were changed to HFP/VDF of 1.24 and TFE/VDF of 0.73. The reaction was run until 25% solids, stopped, and the latex was left in the reactor.
- a block The latex from the B block above still in the reactor was then brought to 60 °C.
- the fluorinated block copolymer had a Tg of - 1 1 °C, and Tm determined by DSC of 277
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, lOg of MV32I, 330 g of Emulsifier, and 20 g of APS. 2500 g of deionized water was used to flush the reactants into the reactor. Vacuum was broken with HFP. Immediately following this addition, the reactor was pressured up with a HFP/VDF ratio of 0.88 and a TFE/VDF ratio of 1.0 until the reactor reached a pressure of 1.5 MPa. Once at pressure, monomer ratios were changed to HFP/VDF of 1.24 and TFE/VDF of 0.73. The reaction was run until 25% solids, stopped, and the latex was left in the reactor.
- a block The latex from the B block above still in the reactor was then brought to 60 °C. Once at temperature, 10 g of MV32I were added. With the reactor at temperature, the agitator rate was set at 350 rpm and the vacuum was broken with nitrogen. The reactor was brought up to a pressure of 1.6 MPa using a HFP/VDF ratio of 0.768 and a TFE/VDF ratio of 8.068. The reaction was carried out at the same ratios until 30% solids. The latex was then coagulated using a 1.25% magnesium chloride solution in deionized water, and oven dried at 130 °C for 32 h.
- the fluorinated block copolymer had a Tg of - 10 °C, and Tm determined by DSC of 284
- B block A 40 liter reactor was charged with 22500 g of deionized water and heated to
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, 14.6g of MV5CN, 330 g of Emulsifier, and 20 g of APS. 2500 g of deionized water was used to flush the reactants into the reactor. Vacuum was broken with HFP. Immediately following this addition, the reactor was pressured up with a HFP/VDF ratio of 0.88 and a TFE/VDF ratio of 1.0 until the reactor reached a pressure of 1.5 MPa. Once at pressure, monomer ratios were changed to HFP/VDF of 1.24 and TFE/VDF of 0.73. The reaction was run until 25% solids, stopped, and left in the reactor.
- a block The latex from the B block above still in the reactor was then brought to 60 C.
- the fluorinated block copolymer had a Tg of - 1 1 °C, and Tm determined by DSC of 258
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, 330 g of Emulsifier, and 20 g of APS. 2500 g of deionized water was used to flush the reactants into the reactor. Vacuum was broken with HFP.
- the reactor was pressured up with a HFP/VDF ratio of 0.88 and a TFE/VDF ratio of 1.0 until the reactor reached a pressure of 1.5 MPa. Once at pressure, monomer ratios were changed to HFP/VDF of 1.24 and TFE/VDF of 0.73. The reaction was run until 25% solids, stopped, and the latex was left in the reactor.
- a block The latex from the B block above still in the reactor was then brought to 60 °C. Once at temperature, 14.6 g of MV5CN were added. With the reactor at temperature, the agitator rate was set at 350 rpm and the vacuum was broken with nitrogen. The reactor was brought up to a pressure of 1.6 MPa using a HFP/VDF ratio of 0.768 and a TFE/VDF ratio of 8.068. The reaction was carried out at the same ratios until 30% solids. The latex was then coagulated using a 1.25% magnesium chloride solution in deionized water, and oven dried at 130 C for 32 h.
- the fluorinated block copolymer had a Tg of - 10 °C, and Tm determined by DSC of 257
- B block A 40 liter reactor was charged with 22500 g of deionized water and heated to
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, 7.3 g of MV5CN, 330 g of Emulsifier, and 20 g of APS.
- a block The latex from the B block above still in the reactor was then brought to 60 °C.
- the fluorinated block copolymer had a Tg of - 1 1 °C, and Tm determined by DSC of 249
- the agitator rate was then brought to 350 rpm, followed by additions of 40 g of potassium phosphate, 140 g of 1,4 Diiodooctafluorobutane, 330 g of Emulsifier, and 20 g of APS. 2500 f of deionized water was used to flush the reactants into the reactor. Vacuum was broken with HFP.
- the reactor was pressured up with a HFP/VDF ratio of 0.88 and a TFE/VDF ratio of 1.0 until the reactor reached a pressure of 1.5 MPa. Once at pressure, monomer ratios were changed to HFP/VDF of 1.24 and TFE/VDF of 0.73. The reaction was run until 25% solids, stopped, and the latex was left in the reactor.
- a block The latex from the B block above still in the reactor was then brought to 71.1 °C. With the reactor at temperature, the agitator rate was set at 350 rpm and the vacuum was broken with nitrogen. The reactor was brought up to a pressure of 1.6 MPa using a HFP/VDF ratio of 0.768 and a TFE/VDF ratio of 8.068. The reaction was carried out at the same ratios until 30% solids. The latex was then coagulated using a 1.25% magnesium chloride solution in deionized water, and oven dried at 130 °C for 32 h.
- the fluorinated block copolymer had a Tg of - 11 °C, and Tm determined by DSC of 258
- NA means not applicable.
- EX-2 and EX-3 because the polymer failed prior to 100% strain, the 100% modulus was not able to be record. Examination of the 50% modulus (i.e., 50% strain) shows improved tensile of the examples over the CE-2.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
L'invention concerne un copolymère séquencé fluoré comportant: a) au moins un bloc A qui est un segment semi-cristallin comprenant des unités monomères divalentes récurrentes dérivées d'au moins un monomère fluoré, et un monomère de site de durcissement; b) au moins un bloc B qui est un segment comprenant des unités monomères divalentes récurrentes dérivées d'au moins un monomère fluoré.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762447675P | 2017-01-18 | 2017-01-18 | |
US62/447,675 | 2017-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018136332A1 true WO2018136332A1 (fr) | 2018-07-26 |
Family
ID=61231307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/013553 WO2018136332A1 (fr) | 2017-01-18 | 2018-01-12 | Copolymères séquencés fluorés dérivés de monomères de site de durcissement |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018136332A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020261089A1 (fr) | 2019-06-28 | 2020-12-30 | 3M Innovative Properties Company | Composés de triazine fonctionnalisés, compositions comprenant de tels composés et articles à base de fluoropolymère durci |
US11261280B2 (en) | 2017-01-18 | 2022-03-01 | 3M Innovative Properties Company | Fluorinated block copolymers |
US11267922B2 (en) | 2017-01-18 | 2022-03-08 | 3M Innovative Properties Company | Fluorinated block copolymers derived from nitrile cure-site monomers |
CN114269844A (zh) * | 2019-08-27 | 2022-04-01 | 3M创新有限公司 | 包含金属氟化物颗粒的可固化含氟聚合物组合物及其制品 |
US11326040B2 (en) | 2016-12-28 | 2022-05-10 | 3M Innovative Properties Company | Silicon-containing halogenated elastomers |
US11597816B2 (en) | 2017-12-22 | 2023-03-07 | 3M Innovative Properties Company | Peroxide-cured halogenated elastomers having a silicon-containing superficial layer |
US12084561B2 (en) | 2018-12-14 | 2024-09-10 | 3M Innovative Properties Company | Curable fluoropolymer compositions comprising bis phthalonitrile-containing compound and cured articles therefrom |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158678A (en) | 1976-06-30 | 1979-06-19 | Daikin Kogyo Co., Ltd. | Segmented polymers containing fluorine and iodine and their production |
US5225504A (en) | 1992-02-14 | 1993-07-06 | Nok Corporation | Process for producing peroxide-vulcanizable, fluorine-containing elastomer |
US6512063B2 (en) | 2000-10-04 | 2003-01-28 | Dupont Dow Elastomers L.L.C. | Process for producing fluoroelastomers |
US6646077B1 (en) * | 2002-07-11 | 2003-11-11 | Dupont Dow Elastomers Llc | Peroxide curable fluoroelastomers |
US7521513B2 (en) | 2006-11-29 | 2009-04-21 | Dupont Performance Elastomers Llc | Semi-batch process for producing fluoroelastomers |
JP2009227780A (ja) * | 2008-03-21 | 2009-10-08 | Daikin Ind Ltd | 含フッ素グラフト共重合体、含フッ素グラフト共重合体の製造方法、および該含フッ素グラフト共重合体を用いた組成物 |
US7671112B2 (en) | 2005-07-15 | 2010-03-02 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
WO2014062469A1 (fr) * | 2012-10-18 | 2014-04-24 | 3M Innovative Properties Company | Composés fluoro-iodo pour fluoropolymères |
WO2015134435A1 (fr) | 2014-03-06 | 2015-09-11 | 3M Innovative Properties Company | Élastomères hautement fluorés |
WO2016137851A1 (fr) | 2015-02-23 | 2016-09-01 | 3M Innovative Properties Company | Polymères fluorés durcissables par les peroxydes, pouvant être obtenus par polymérisation avec des émulsifiants non fluorés |
WO2017011379A1 (fr) * | 2015-07-13 | 2017-01-19 | 3M Innovative Properties Company | Copolymères séquencés fluorés |
-
2018
- 2018-01-12 WO PCT/US2018/013553 patent/WO2018136332A1/fr active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4158678A (en) | 1976-06-30 | 1979-06-19 | Daikin Kogyo Co., Ltd. | Segmented polymers containing fluorine and iodine and their production |
US5225504A (en) | 1992-02-14 | 1993-07-06 | Nok Corporation | Process for producing peroxide-vulcanizable, fluorine-containing elastomer |
US6512063B2 (en) | 2000-10-04 | 2003-01-28 | Dupont Dow Elastomers L.L.C. | Process for producing fluoroelastomers |
US6646077B1 (en) * | 2002-07-11 | 2003-11-11 | Dupont Dow Elastomers Llc | Peroxide curable fluoroelastomers |
US7671112B2 (en) | 2005-07-15 | 2010-03-02 | 3M Innovative Properties Company | Method of making fluoropolymer dispersion |
US7521513B2 (en) | 2006-11-29 | 2009-04-21 | Dupont Performance Elastomers Llc | Semi-batch process for producing fluoroelastomers |
JP2009227780A (ja) * | 2008-03-21 | 2009-10-08 | Daikin Ind Ltd | 含フッ素グラフト共重合体、含フッ素グラフト共重合体の製造方法、および該含フッ素グラフト共重合体を用いた組成物 |
WO2014062469A1 (fr) * | 2012-10-18 | 2014-04-24 | 3M Innovative Properties Company | Composés fluoro-iodo pour fluoropolymères |
WO2015134435A1 (fr) | 2014-03-06 | 2015-09-11 | 3M Innovative Properties Company | Élastomères hautement fluorés |
WO2016137851A1 (fr) | 2015-02-23 | 2016-09-01 | 3M Innovative Properties Company | Polymères fluorés durcissables par les peroxydes, pouvant être obtenus par polymérisation avec des émulsifiants non fluorés |
WO2017011379A1 (fr) * | 2015-07-13 | 2017-01-19 | 3M Innovative Properties Company | Copolymères séquencés fluorés |
Non-Patent Citations (4)
Title |
---|
"Polymeric Materials Encyclopedia", vol. 1, 1996, CRC PRESS INC., pages: 432 - 440 |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ICHISAKA, TOSHIKI ET AL: "Graft fluoropolymers with good mechanical properties, melt moldability, and flexibility, their manufacture, and crosslinkable compositions", XP002779152, retrieved from STN Database accession no. 2009:1229850 * |
P. PEYSER: "polymer handbook", 1989, WILEY, pages: V-209 through VI - 227 |
W.R. SORENSON; T.W. CAMPBELL: "Preparative Methods of Polymer Chemistry", 1968, INTERSCIENCE, pages: 209 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11326040B2 (en) | 2016-12-28 | 2022-05-10 | 3M Innovative Properties Company | Silicon-containing halogenated elastomers |
US11261280B2 (en) | 2017-01-18 | 2022-03-01 | 3M Innovative Properties Company | Fluorinated block copolymers |
US11267922B2 (en) | 2017-01-18 | 2022-03-08 | 3M Innovative Properties Company | Fluorinated block copolymers derived from nitrile cure-site monomers |
US11597816B2 (en) | 2017-12-22 | 2023-03-07 | 3M Innovative Properties Company | Peroxide-cured halogenated elastomers having a silicon-containing superficial layer |
US12084561B2 (en) | 2018-12-14 | 2024-09-10 | 3M Innovative Properties Company | Curable fluoropolymer compositions comprising bis phthalonitrile-containing compound and cured articles therefrom |
WO2020261089A1 (fr) | 2019-06-28 | 2020-12-30 | 3M Innovative Properties Company | Composés de triazine fonctionnalisés, compositions comprenant de tels composés et articles à base de fluoropolymère durci |
US12168647B2 (en) | 2019-06-28 | 2024-12-17 | 3M Innovative Properties Company | Functionalized triazine compounds, compositions comprising such compounds and cured fluoropolymer articles |
CN114269844A (zh) * | 2019-08-27 | 2022-04-01 | 3M创新有限公司 | 包含金属氟化物颗粒的可固化含氟聚合物组合物及其制品 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11261280B2 (en) | Fluorinated block copolymers | |
US11267922B2 (en) | Fluorinated block copolymers derived from nitrile cure-site monomers | |
US10590224B2 (en) | Fluorinated block copolymers | |
WO2018136332A1 (fr) | Copolymères séquencés fluorés dérivés de monomères de site de durcissement | |
EP3322752B1 (fr) | Résine fluorée réticulable avec de groupements terminaux iodés | |
US12084561B2 (en) | Curable fluoropolymer compositions comprising bis phthalonitrile-containing compound and cured articles therefrom | |
CN111511826B (zh) | 包含官能氟化硅烷化合物的含氟聚合物组合物 | |
KR102669338B1 (ko) | 경화성 플루오르화 중합체 조성물 | |
US12168647B2 (en) | Functionalized triazine compounds, compositions comprising such compounds and cured fluoropolymer articles | |
EP3844206A1 (fr) | Polymères extrêmement fluorés pouvant être durcis par un peroxyde comportant un plastifiant fluoré interne et articles fabriqués avec ceux-ci |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18705744 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18705744 Country of ref document: EP Kind code of ref document: A1 |