[go: up one dir, main page]

WO2018135119A1 - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
WO2018135119A1
WO2018135119A1 PCT/JP2017/041327 JP2017041327W WO2018135119A1 WO 2018135119 A1 WO2018135119 A1 WO 2018135119A1 JP 2017041327 W JP2017041327 W JP 2017041327W WO 2018135119 A1 WO2018135119 A1 WO 2018135119A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary coil
switching element
current
biased
coil
Prior art date
Application number
PCT/JP2017/041327
Other languages
French (fr)
Japanese (ja)
Inventor
羽田 正二
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to KR1020187018614A priority Critical patent/KR102449387B1/en
Publication of WO2018135119A1 publication Critical patent/WO2018135119A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a forward type switching power supply.
  • Insulating switching power supplies that extract desired DC power from the secondary coil by turning on and off DC power input to the primary coil of the transformer by a switching element are well known.
  • a forward system in an insulating switching power supply is also well known.
  • an exciting current flows in the primary coil during the ON period of the switching element, a load current flows in the secondary coil according to the turns ratio by mutual induction, and a load current also flows in the primary coil correspondingly.
  • the load current of the secondary coil is output through an output diode and an external choke coil, and magnetizes the external choke coil to store magnetic energy.
  • an output current flows through the flywheel diode so as to release the magnetic energy stored in the external choke coil.
  • the forward method requires a reset circuit on the primary side of the transformer in order to release the magnetic energy accumulated in the transformer by the exciting current during the on period.
  • the reset circuit is generally configured by a diode, a capacitor, and a resistor, and there is also a configuration in which a reset coil is added to the primary coil, and various types of reset circuits are known (for example, Patent Document 1).
  • a reset circuit configured to regenerate the reset current to the input side is also known, but power cannot be sent to the secondary side.
  • an object of the present invention is to eliminate the need for a reset circuit in a forward-type switching power supply and to output magnetic energy stored in a transformer as secondary power.
  • the present invention provides the following configuration.
  • symbol in a parenthesis is a code
  • An aspect of the present invention is a switching power supply, A transformer (T), A switching element (Q) having a control end, which is driven on and off to conduct or cut off a current flowing through the primary coil (N1) of the transformer (T) by an input voltage; A choke coil (CH) connected between one end of the secondary coil (N2) of the transformer and the first output end (3); Connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4), and occurs at the other end of the secondary coil (N2) when the switching element (Q) is turned on.
  • a transformer (T) A switching element (Q) having a control end, which is driven on and off to conduct or cut off a current flowing through the primary coil (N1) of the transformer (T) by an input voltage
  • a choke coil (CH) connected between one end of the secondary coil (N2) of the transformer and the first output end (3); Connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4), and occurs at the
  • a first rectifier (D1) that is forward biased with respect to the potential and reversely biased with respect to the potential generated at the other end of the secondary coil (N2) when turned off; Connected between one end of the secondary coil (N2) of the transformer (T) and the second output end (4), and is generated at one end of the secondary coil (N2) when the switching element (Q) is turned on.
  • a second rectifier (D2) that is reverse-biased with respect to the potential and forward-biased with respect to the potential generated at one end of the secondary coil (N2) when turned off; The other end of the secondary coil (N2) is connected between the other end of the secondary coil (N2) of the transformer (T) and the first output end (3), and the switching element (Q) is turned on.
  • a third rectifying means (D3) which is reverse-biased with respect to the potential generated at the time and is forward-biased with respect to the potential generated at the other end of the secondary coil (N2) when turned off; And a smoothing capacitor (C) connected between the first output terminal (3) and the second output terminal (4).
  • the first rectifying means (D1), the second rectifying means (D2), and the third rectifying means (D3) are diodes.
  • Another aspect of the present invention is connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4) instead of the first rectifying means (D1).
  • a second switching element (Q2) having a current path and a control end that is driven on and off to turn on or off the current flowing through the current path;
  • the second switching element (Q2) is preferably driven on / off in synchronization with the switching element (Q).
  • each of the second rectifying means (D2) and the third rectifying means (D3) is a diode.
  • the present invention adds a third rectifying means in addition to the rectifying means corresponding to the conventional choke coil, output diode and flywheel diode as a secondary side component,
  • a current that releases the magnetic energy accumulated in the transformer during the ON period of the switching element can be supplied to the secondary coil during the OFF period and output. Therefore, the utilization efficiency of the transformer is improved.
  • the reset circuit on the primary side in the conventional forward method becomes unnecessary. Therefore, power loss due to the reset circuit does not occur. Further, the reset circuit can be omitted simply by adding one rectifying means which is a diode, so that the entire circuit can be made compact and low in cost. Furthermore, since the magnetic energy stored in the transformer can be output as a current to the secondary side, it is possible to perform a larger power conversion than before.
  • FIG. 1 is a circuit diagram schematically showing a configuration example of a first embodiment of a switching power supply according to the present invention.
  • FIG. 2 is a diagram showing the flow of current during the ON period in the circuit shown in FIG.
  • FIG. 3 is a diagram showing a current flow during an off period in the circuit shown in FIG.
  • FIG. 4 is a diagram schematically showing an example of the temporal change in voltage and current in the circuit diagram shown in FIG.
  • FIG. 5 is a circuit diagram schematically showing a configuration example of the second embodiment of the switching power supply according to the present invention.
  • FIG. 6 is a diagram showing a current flow during the ON period in the circuit shown in FIG.
  • FIG. 7 is a diagram showing a current flow during the off period in the circuit shown in FIG.
  • the switching power supply according to the present invention is an insulating type that performs power conversion between a pair of input terminals and a pair of output terminals via a transformer.
  • DC power is supplied between the pair of input terminals.
  • the supplied DC power may be an output of another arbitrary DC power supply or an output after rectification of the AC power supply. Therefore, the input DC voltage includes not only a constant voltage but also a unipolar variable voltage. For example, pulsating flow after AC rectification, square wave, triangular wave, and the like.
  • a load is connected to the pair of output ends (omitted in the drawing).
  • FIG. 1 is a circuit diagram schematically showing a configuration example of a first embodiment of a switching power supply according to the present invention.
  • DC power is supplied between the input terminal 1 and the input terminal 2. That is, a DC voltage is applied. Further, DC power is output between the output terminal 3 and the output terminal 4.
  • an input voltage at which the input terminal 1 has a positive potential is applied to the input terminal 2 that is the reference potential on the input side, and the output terminal 3 has a positive potential with respect to the output terminal 4 that is the reference potential on the output side. A case where a voltage is output will be described.
  • This circuit has a transformer T having a primary coil N1 and a secondary coil N2.
  • the winding start terminal of each coil is indicated by a black circle (the black circle indicates the polarity of the coil).
  • “one end” and “the other end” include both “winding start terminal” and “winding end terminal”, and “winding end terminal” and “winding start terminal”.
  • the switching power supply of the present invention has a forward circuit as a basic configuration, it is preferable that the primary coil N1 and the secondary coil N2 are tightly coupled, that is, the coupling coefficient of magnetic coupling is close to 1.
  • One end of the primary coil N1 (in this example, the winding start terminal) is connected to the input end 1.
  • the other end of the primary coil N1 (the winding end terminal in this example) is connected to the drain of the switching element Q, which is an N-channel FET, and the source is connected to the input end 2.
  • a pulse voltage having a predetermined switching frequency and duty ratio is input to the gate, which is the control terminal of the switching element Q, as the control voltage Vg.
  • switching element Q a switching element such as an IGBT or a bipolar transistor may be used in addition to the FET.
  • the switching power supply of the present invention has a forward system as a basic configuration, but a reset circuit on the primary side of the transformer that is essential in a general forward system is not provided as shown, and is unnecessary.
  • a choke coil CH is connected between one end of the secondary coil N2 (in this example, the winding start terminal) and the output end 3.
  • a diode D1 is connected between the other end of the secondary coil N2 (winding end terminal in this example) and the output end 4.
  • the polarity of the diode D1 is such that the anode is on the output end 4 side and the cathode is on the other end side of the secondary coil.
  • the diode D1 is forward-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned on, and is reverse-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned off. It is connected in the direction.
  • a diode D2 is connected between one end of the secondary coil N2 and the output end 4.
  • the polarity of the diode D2 is such that the anode is on the output end 4 side and the cathode is on one end side of the secondary coil N2.
  • the diode D2 is reverse-biased with respect to a potential generated at one end of the secondary coil N2 when the switching element Q is turned on, and is forward-biased with respect to a potential generated at one end of the secondary coil N2 when the switching element Q is turned off. Connected in the direction.
  • a diode D3 is connected between the other end of the secondary coil N2 and the output end 3.
  • the polarity of the diode D3 is such that the anode is on the other end side of the secondary coil N2 and the cathode is on the output end 3 side.
  • the diode D3 is reverse-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned on, and forward-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned off. It is connected in the direction.
  • the diodes D1, D2, and D3 are turned on when a forward bias voltage (anode has a high potential with respect to the cathode) is applied, and is blocked with respect to a reverse bias voltage (the anode has a low potential with respect to the cathode).
  • the rectifying means includes a rectifying device or a rectifying circuit equivalent to a diode in addition to a diode which is a rectifying element.
  • a smoothing capacitor C is connected between the output terminal 3 and the output terminal 4.
  • a load is connected between the output terminal 3 and the output terminal 4.
  • an input voltage in which the input terminal 1 is a negative potential may be applied to the input terminal 2 which is the primary side reference potential. In that case, the polarity of each diode on the secondary side is reversed.
  • FIG. 2 is a diagram showing the flow of current during the ON period in the circuit shown in FIG.
  • FIG. 3 is a diagram showing a current flow during an off period in the circuit shown in FIG.
  • FIG. 4 is a diagram schematically showing an example of the temporal change in voltage and current in the circuit diagram shown in FIG.
  • FIG. 2 shows a current flow in the ON period.
  • the control voltage Vg that is a pulse voltage input to the gate of the switching element Q is, for example, as shown in FIG.
  • the control signal Vg When the control signal Vg is turned on, the current path of the switching element Q becomes conductive, a DC voltage is applied to one end of the primary coil N1, and one end of the primary coil N1 has a positive potential and the other end has a negative potential.
  • a current id flows through the path of the input terminal 1 ⁇ the primary coil N1 ⁇ the switching element Q ⁇ the input terminal 2.
  • the change in the on period of the current id is as shown in FIG.
  • the diode D1 becomes forward biased and becomes conductive, and the first current i1 flows through the path of the secondary coil N2, the choke coil CH, the output terminal 3, the load (or the smoothing capacitor C), the output terminal 4, and the diode D1.
  • the change in the ON period of the first current i1 is as shown in FIG.
  • the first current i1 corresponds to the output current during the ON period in the normal forward method.
  • the first current i1 on the secondary side is also an exciting current of the choke coil CH, and thereby magnetic energy is accumulated in the choke coil CH.
  • the current id flowing through the primary coil N1 includes a load current caused by mutual induction with the secondary coil N2 and an exciting current that accumulates magnetic energy in the transformer T. During the ON period, the magnetic flux of the transformer T is increased by the exciting current, and magnetic energy is accumulated.
  • FIG. 3 shows a current flow in the off period.
  • the control signal Vg is turned off, the current path of the switching element Q is interrupted, and the current id flowing through the primary coil N1 disappears. Thereby, back electromotive force is generated in the primary coil N1 and the secondary coil N2.
  • the other end of the secondary coil N2 becomes a positive potential due to the back electromotive force, and the diode D1 is reverse-biased, so the first current i1 does not flow.
  • the second current i2 flows so as to release the magnetic energy accumulated in the choke coil CH.
  • the path of the second current i2 is choke coil CH ⁇ output terminal 3 ⁇ load (or smoothing capacitor) ⁇ output terminal 4 ⁇ diode D2.
  • the change in the off period of the second current i2 is as shown in FIG.
  • the second current i2 corresponds to an output current during an off period in the normal forward method, and the diode D2 functions as a flywheel diode with respect to the second current i2.
  • FIG. 4 (F) shows the total current flowing on the secondary side.
  • the voltage Vo and current Io output between the output terminal 3 and the output terminal 4 are smoothed by the smoothing capacitor C, as shown in FIG.
  • the switching power supply according to the present invention can discharge the magnetic energy accumulated in the transformer during the on period as a secondary output current during the off period by adding the diode D3 while using the forward system as a basic configuration. This eliminates the need for a reset circuit on the primary side. Conventionally, it has been necessary to take a countermeasure against the withstand voltage of the switching element by a spike voltage generated at the time of OFF, but the countermeasure against the spike becomes unnecessary because the magnetic energy is released to the secondary side.
  • FIG. 5 is a circuit diagram schematically showing a configuration example of the second embodiment of the switching power supply according to the present invention.
  • a second switching element Q2 is provided instead of the first diode D1 in the first embodiment.
  • the second switching element Q2 is an N-channel FET in this example.
  • the drain is connected to the other end of the secondary coil N 2, and the source is connected to the output end 4. That is, the current path of the second switching element Q2 is connected between the other end of the secondary coil N2 and the output end 4.
  • the second switching element Q2 is driven on and off in synchronization with the switching element Q connected to the primary coil N1. Accordingly, the same control voltage Vg as that of the switching element Q is input to the gate which is the control end of the second switching element Q2.
  • FIG. 6 shows the current flow during the ON period.
  • the operation on the primary side in the on period is the same as that in the first embodiment.
  • FIG. 7 shows the flow of current during the off period.
  • the operation on the primary side in the on period is the same as that in the first embodiment.
  • the other end of the secondary coil N2 becomes a positive potential due to the back electromotive force.
  • the second switching element Q2 is turned off by the control voltage Vg, the current path is cut off. Therefore, the first current i1 does not flow.
  • the second current i2 and the third current i3 flow as in the first embodiment.
  • the second switching element Q2 may be a P-channel FET instead of an N-channel FET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

A forward switching power supply that does not require a reset circuit and can output, to a secondary side, energy that has been stored at a transistor. A switching power supply that has: a transistor; a switching element Q that is turned on and off so as to conduct or to cut off current that flows in a primary coil; a choke coil that is connected between an output terminal 3 and one end of a secondary coil; a first rectification means that is connected between an output terminal 4 and another end of the secondary coil and that, with respect to the potential of the other end of the secondary coil, is forward-biased when on and reverse-biased when off; a second rectification means that is connected between output terminal 4 and the one end of the secondary coil and that, with respect to the potential of the one end of the secondary coil, is reverse-biased when on and forward-biased when off; a third rectification means that is connected between output terminal 3 and the other end of the secondary coil and that, with respect to the potential of the other end of the secondary coil, is reverse-biased when on and forward-biased when off; and a smoothing capacitor that is between the output terminals.

Description

スイッチング電源Switching power supply
 本発明は、フォワード方式のスイッチング電源に関する。 The present invention relates to a forward type switching power supply.
 トランスの一次コイルに入力される直流電力をスイッチング素子によりオンオフすることにより、二次コイルから所望する直流電力を取り出す絶縁型のスイッチング電源は周知である。絶縁型のスイッチング電源におけるフォワード方式もまた周知である。 Insulating switching power supplies that extract desired DC power from the secondary coil by turning on and off DC power input to the primary coil of the transformer by a switching element are well known. A forward system in an insulating switching power supply is also well known.
 フォワード方式では、スイッチング素子のオン期間に一次コイルに励磁電流が流れ、相互誘導により巻数比に応じて二次コイルに負荷電流が流れ、対応して一次コイルにも負荷電流が流れる。二次コイルの負荷電流は、出力ダイオードと外付けチョークコイルを通して出力されると共に、外付けチョークコイルを励磁して磁気エネルギーを蓄積する。スイッチング素子のオフ期間には外付けチョークコイルに蓄積された磁気エネルギーを放出するようにフライホイールダイオードを通して出力電流が流れる。 In the forward method, an exciting current flows in the primary coil during the ON period of the switching element, a load current flows in the secondary coil according to the turns ratio by mutual induction, and a load current also flows in the primary coil correspondingly. The load current of the secondary coil is output through an output diode and an external choke coil, and magnetizes the external choke coil to store magnetic energy. During the OFF period of the switching element, an output current flows through the flywheel diode so as to release the magnetic energy stored in the external choke coil.
 フォワード方式は、オン期間に励磁電流によりトランスに蓄積された磁気エネルギーをオフ期間に放出するために、トランスの一次側にリセット回路が必要である。リセット回路は、一般的にダイオード、コンデンサ及び抵抗により構成され、また、一次コイルにリセット用コイルを付加した構成もあり、多様な構成のリセット回路が公知である(例えば特許文献1等)。 The forward method requires a reset circuit on the primary side of the transformer in order to release the magnetic energy accumulated in the transformer by the exciting current during the on period. The reset circuit is generally configured by a diode, a capacitor, and a resistor, and there is also a configuration in which a reset coil is added to the primary coil, and various types of reset circuits are known (for example, Patent Document 1).
特開平9-2756681号公報JP-A-9-2756681
 しかしながら、フォワード方式のスイッチング電源における一般的なリセット回路では、リセット電流がダイオードを通してコンデンサを充電し、コンデンサに蓄積されたエネルギーが抵抗によって消費される構成となっており、電力が無駄に消費されることとなる。また、一次コイルにリセット用コイルを付加した構成は、トランスが大きくなるという欠点がある。 However, in a general reset circuit in a forward-type switching power supply, a reset current charges a capacitor through a diode, and energy stored in the capacitor is consumed by a resistor, so that power is wasted. It will be. Further, the configuration in which the reset coil is added to the primary coil has a disadvantage that the transformer becomes large.
 また、リセット電流を入力側に回生させる構成のリセット回路も公知であるが、二次側に電力を送ることはできない。 A reset circuit configured to regenerate the reset current to the input side is also known, but power cannot be sent to the secondary side.
 以上の問題点に鑑み本発明の目的は、フォワード方式のスイッチング電源においてリセット回路を不要とするとともに、トランスに蓄積された磁気エネルギーを二次側の電力として出力可能とすることである。 In view of the above problems, an object of the present invention is to eliminate the need for a reset circuit in a forward-type switching power supply and to output magnetic energy stored in a transformer as secondary power.
 上記の目的を達成するべく、本発明は、以下の構成を提供する。なお、括弧内の符号は後述する図面中の符号であり、参考のために付するものである。 In order to achieve the above object, the present invention provides the following configuration. In addition, the code | symbol in a parenthesis is a code | symbol in drawing mentioned later, and attaches | subjects it for reference.
・ 本発明の態様は、スイッチング電源において、
 トランス(T)と、
 入力電圧により前記トランス(T)の一次コイル(N1)に流れる電流を導通又は遮断するべくオンオフ駆動される、制御端を具備するスイッチング素子(Q)と、
 前記トランスの二次コイル(N2)の一端と第1出力端(3)の間に接続されたチョークコイル(CH)と、
 前記トランス(T)の二次コイル(N2)の他端と第2出力端(4)の間に接続され、前記スイッチング素子(Q)のオン時に前記二次コイル(N2)の他端に生じる電位に対して順バイアスとなりかつオフ時に該二次コイル(N2)の他端に生じる電位に対して逆バイアスとなる第1整流手段(D1)と、
 前記トランス(T)の前記二次コイル(N2)の一端と前記第2出力端(4)の間に接続され、前記スイッチング素子(Q)のオン時に前記二次コイル(N2)の一端に生じる電位に対して逆バイアスとなりかつオフ時に該二次コイル(N2)の一端に生じる電位に対して順バイアスとなる第2整流手段(D2)と、
 前記トランス(T)の前記二次コイル(N2)の他端と前記第1出力端(3)の間に接続され、前記スイッチング素子(Q)のオン時に前記二次コイル(N2)の他端に生じる電位に対して逆バイアスとなりかつオフ時に該二次コイル(N2)の他端に生じる電位に対して順バイアスとなる第3整流手段(D3)と、
 前記第1出力端(3)と前記第2出力端(4)の間に接続された平滑コンデンサ(C)と、を有することを特徴とする。
・ 上記態様において、前記第1整流手段(D1)、前記第2整流手段(D2)及び前記第3整流手段(D3)がそれぞれダイオードであることが好適である。
・ 本発明の別の態様は、前記第1整流手段(D1)に替えて、前記トランス(T)の二次コイル(N2)の他端と第2出力端(4)の間に接続された電流路と該電流路を流れる電流を導通又は遮断するべくオンオフ駆動される制御端とを具備する第2のスイッチング素子(Q2)を有し、
 前記第2のスイッチング素子(Q2)は前記スイッチング素子(Q)と同期してオンオフ駆動されることが好適である。
・ 上記別の態様において、前記第2整流手段(D2)及び前記第3整流手段(D3)がそれぞれダイオードであることが好適である。
An aspect of the present invention is a switching power supply,
A transformer (T),
A switching element (Q) having a control end, which is driven on and off to conduct or cut off a current flowing through the primary coil (N1) of the transformer (T) by an input voltage;
A choke coil (CH) connected between one end of the secondary coil (N2) of the transformer and the first output end (3);
Connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4), and occurs at the other end of the secondary coil (N2) when the switching element (Q) is turned on. A first rectifier (D1) that is forward biased with respect to the potential and reversely biased with respect to the potential generated at the other end of the secondary coil (N2) when turned off;
Connected between one end of the secondary coil (N2) of the transformer (T) and the second output end (4), and is generated at one end of the secondary coil (N2) when the switching element (Q) is turned on. A second rectifier (D2) that is reverse-biased with respect to the potential and forward-biased with respect to the potential generated at one end of the secondary coil (N2) when turned off;
The other end of the secondary coil (N2) is connected between the other end of the secondary coil (N2) of the transformer (T) and the first output end (3), and the switching element (Q) is turned on. A third rectifying means (D3) which is reverse-biased with respect to the potential generated at the time and is forward-biased with respect to the potential generated at the other end of the secondary coil (N2) when turned off;
And a smoothing capacitor (C) connected between the first output terminal (3) and the second output terminal (4).
In the above aspect, it is preferable that the first rectifying means (D1), the second rectifying means (D2), and the third rectifying means (D3) are diodes.
Another aspect of the present invention is connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4) instead of the first rectifying means (D1). A second switching element (Q2) having a current path and a control end that is driven on and off to turn on or off the current flowing through the current path;
The second switching element (Q2) is preferably driven on / off in synchronization with the switching element (Q).
In the other aspect, it is preferable that each of the second rectifying means (D2) and the third rectifying means (D3) is a diode.
 本発明は、フォワード方式のスイッチング電源において、二次側の構成要素として、従来のチョークコイル、出力ダイオード及びフライホイールダイオードに相当する整流手段に加えて、第3の整流手段を追加したことにより、従来のフォワード方式における出力電流に加え、スイッチング素子のオン期間にトランスに蓄積された磁気エネルギーを放出させる電流をオフ期間に二次コイルに流して出力することができる。よってトランスの利用効率が向上する。 In the forward type switching power supply, the present invention adds a third rectifying means in addition to the rectifying means corresponding to the conventional choke coil, output diode and flywheel diode as a secondary side component, In addition to the output current in the conventional forward method, a current that releases the magnetic energy accumulated in the transformer during the ON period of the switching element can be supplied to the secondary coil during the OFF period and output. Therefore, the utilization efficiency of the transformer is improved.
 この結果、トランスの磁気リセットを行うことができるので、従来のフォワード方式における一次側のリセット回路が不要となる。従って、リセット回路による電力損失を生じない。また好適にはダイオードである整流手段を1つ追加するだけでリセット回路を省くことができるので、回路全体をコンパクトとしかつ低コストとすることがる。さらに、トランスに蓄積された磁気エネルギーを二次側に電流として出力することができるので、従来よりも大きな電力変換が可能である。 As a result, since the magnetic reset of the transformer can be performed, the reset circuit on the primary side in the conventional forward method becomes unnecessary. Therefore, power loss due to the reset circuit does not occur. Further, the reset circuit can be omitted simply by adding one rectifying means which is a diode, so that the entire circuit can be made compact and low in cost. Furthermore, since the magnetic energy stored in the transformer can be output as a current to the secondary side, it is possible to perform a larger power conversion than before.
図1は、本発明によるスイッチング電源の第1の実施形態の構成例を概略的に示す回路図である。FIG. 1 is a circuit diagram schematically showing a configuration example of a first embodiment of a switching power supply according to the present invention. 図2は、図1に示した回路におけるオン期間の電流の流れを示した図である。FIG. 2 is a diagram showing the flow of current during the ON period in the circuit shown in FIG. 図3は、図1に示した回路におけるオフ期間の電流の流れを示した図である。FIG. 3 is a diagram showing a current flow during an off period in the circuit shown in FIG. 図4は、図1に示した回路図における電圧及び電流の時間変化の例を模式的に示した図である。FIG. 4 is a diagram schematically showing an example of the temporal change in voltage and current in the circuit diagram shown in FIG. 図5は、本発明によるスイッチング電源の第2の実施形態の構成例を概略的に示す回路図である。FIG. 5 is a circuit diagram schematically showing a configuration example of the second embodiment of the switching power supply according to the present invention. 図6は、図5に示した回路におけるオン期間の電流の流れを示した図である。FIG. 6 is a diagram showing a current flow during the ON period in the circuit shown in FIG. 図7は、図5に示した回路におけるオフ期間の電流の流れを示した図である。FIG. 7 is a diagram showing a current flow during the off period in the circuit shown in FIG.
 以下、図面を参照しつつ、本発明によるスイッチング電源の実施形態について詳細に説明する。 Hereinafter, embodiments of a switching power supply according to the present invention will be described in detail with reference to the drawings.
 本発明によるスイッチング電源は、一対の入力端と一対の出力端の間でトランスを介して電力変換を行う絶縁型のものである。一対の入力端の間に直流電力が供給される。供給される直流電力は、別の任意の直流電源の出力でもよく、交流電源の整流後の出力でもよい。従って入力される直流電圧は、一定電圧の場合の他、一極性の変動する電圧の場合も含まれる。例えば、交流整流後の脈流、方形波、三角波等である。一対の出力端には負荷が接続される(図面では省略)。 The switching power supply according to the present invention is an insulating type that performs power conversion between a pair of input terminals and a pair of output terminals via a transformer. DC power is supplied between the pair of input terminals. The supplied DC power may be an output of another arbitrary DC power supply or an output after rectification of the AC power supply. Therefore, the input DC voltage includes not only a constant voltage but also a unipolar variable voltage. For example, pulsating flow after AC rectification, square wave, triangular wave, and the like. A load is connected to the pair of output ends (omitted in the drawing).
(1)第1の実施形態
<スイッチング電源の構成>
 図1は、本発明によるスイッチング電源の第1の実施形態の構成例を概略的に示す回路図である。本回路は、入力端1と入力端2の間に直流電力が供給される。すなわち直流電圧が印加される。また、出力端3と出力端4の間に直流電力が出力される。以下では、入力側の基準電位である入力端2に対して入力端1が正電位となる入力電圧が印加され、出力側の基準電位である出力端4に対して出力端3が正電位となる電圧が出力される場合について説明する。
(1) First Embodiment <Configuration of Switching Power Supply>
FIG. 1 is a circuit diagram schematically showing a configuration example of a first embodiment of a switching power supply according to the present invention. In this circuit, DC power is supplied between the input terminal 1 and the input terminal 2. That is, a DC voltage is applied. Further, DC power is output between the output terminal 3 and the output terminal 4. In the following, an input voltage at which the input terminal 1 has a positive potential is applied to the input terminal 2 that is the reference potential on the input side, and the output terminal 3 has a positive potential with respect to the output terminal 4 that is the reference potential on the output side. A case where a voltage is output will be described.
 本回路は、一次コイルN1と二次コイルN2を具備するトランスTを有する。各コイルの巻き始め端子を黒丸で示している(黒丸はコイルの極性を示す)。コイルについて「一端」と「他端」という場合は、「巻き始め端子」と「巻き終わり端子」の場合と、「巻き終わり端子」と「巻き始め端子」の場合の双方が含まれる。 This circuit has a transformer T having a primary coil N1 and a secondary coil N2. The winding start terminal of each coil is indicated by a black circle (the black circle indicates the polarity of the coil). Regarding the coil, “one end” and “the other end” include both “winding start terminal” and “winding end terminal”, and “winding end terminal” and “winding start terminal”.
 本発明のスイッチング電源はフォワード方式の回路を基本構成とするので、一次コイルN1と二次コイルN2は密結合であること、すなわち磁気結合の結合係数が1に近いことが好適である。 Since the switching power supply of the present invention has a forward circuit as a basic configuration, it is preferable that the primary coil N1 and the secondary coil N2 are tightly coupled, that is, the coupling coefficient of magnetic coupling is close to 1.
 一次コイルN1の一端(本例では巻き始め端子)が入力端1に接続されている。一次コイルN1の他端(本例では巻き終わり端子)にNチャネルFETであるスイッチング素子Qのドレインが接続され、ソースが入力端2に接続されている。スイッチング素子Qの制御端であるゲートには、制御電圧Vgとして、所定のスイッチング周波数及びデューティ比のパルス電圧が入力される。 One end of the primary coil N1 (in this example, the winding start terminal) is connected to the input end 1. The other end of the primary coil N1 (the winding end terminal in this example) is connected to the drain of the switching element Q, which is an N-channel FET, and the source is connected to the input end 2. A pulse voltage having a predetermined switching frequency and duty ratio is input to the gate, which is the control terminal of the switching element Q, as the control voltage Vg.
 この場合、制御電圧Vgがソース(入力端2)電位に対して正電位のときスイッチング素子Qはオンとなり、一次コイルN1と入力端2の間の電流路が導通する。制御電圧Vgが零のときスイッチング素子Qはオフとなり、一次コイルN1と入力端2の間の電流路は遮断される。 In this case, when the control voltage Vg is positive with respect to the source (input terminal 2) potential, the switching element Q is turned on, and the current path between the primary coil N1 and the input terminal 2 is conducted. When the control voltage Vg is zero, the switching element Q is turned off, and the current path between the primary coil N1 and the input terminal 2 is interrupted.
 スイッチング素子Qとして、FET以外に例えばIGBT又はバイポーラトランジスタ等のスイッチング素子を用いてもよい。 As the switching element Q, a switching element such as an IGBT or a bipolar transistor may be used in addition to the FET.
 本発明のスイッチング電源はフォワード方式を基本構成としているが、一般的なフォワード方式において必須のトランス一次側のリセット回路は、図示の通り設けられておらず、不要である。 The switching power supply of the present invention has a forward system as a basic configuration, but a reset circuit on the primary side of the transformer that is essential in a general forward system is not provided as shown, and is unnecessary.
 二次コイルN2の一端(本例では巻き始め端子)と出力端3の間にはチョークコイルCHが接続されている。 A choke coil CH is connected between one end of the secondary coil N2 (in this example, the winding start terminal) and the output end 3.
 二次コイルN2の他端(本例では巻き終わり端子)と出力端4の間にはダイオードD1が接続されている。ダイオードD1の極性は、アノードが出力端4側、カソードが二次コイルの他端側となる向きである。ダイオードD1は、スイッチング素子Qのオン時に二次コイルN2の他端に生じる電位に対して順バイアスとなり、かつ、スイッチング素子Qのオフ時に二次コイルN2の他端に生じる電位に対して逆バイアスとなる向きで接続されている。 A diode D1 is connected between the other end of the secondary coil N2 (winding end terminal in this example) and the output end 4. The polarity of the diode D1 is such that the anode is on the output end 4 side and the cathode is on the other end side of the secondary coil. The diode D1 is forward-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned on, and is reverse-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned off. It is connected in the direction.
 さらに、二次コイルN2の一端と出力端4の間にはダイオードD2が接続されている。ダイオードD2の極性は、アノードが出力端4側、カソードが二次コイルN2の一端側となる向きである。ダイオードD2は、スイッチング素子Qのオン時に二次コイルN2の一端に生じる電位に対して逆バイアスとなり、かつ、スイッチング素子Qのオフ時に二次コイルN2の一端に生じる電位に対して順バイアスとなる向きで接続されている。 Furthermore, a diode D2 is connected between one end of the secondary coil N2 and the output end 4. The polarity of the diode D2 is such that the anode is on the output end 4 side and the cathode is on one end side of the secondary coil N2. The diode D2 is reverse-biased with respect to a potential generated at one end of the secondary coil N2 when the switching element Q is turned on, and is forward-biased with respect to a potential generated at one end of the secondary coil N2 when the switching element Q is turned off. Connected in the direction.
 さらに、二次コイルN2の他端と出力端3の間にはダイオードD3が接続されている。ダイオードD3の極性は、アノードが二次コイルN2の他端側、カソードが出力端3側となる向きである。ダイオードD3は、スイッチング素子Qのオン時に二次コイルN2の他端に生じる電位に対して逆バイアスとなり、かつ、スイッチング素子Qのオフ時に二次コイルN2の他端に生じる電位に対して順バイアスとなる向きで接続されている。 Furthermore, a diode D3 is connected between the other end of the secondary coil N2 and the output end 3. The polarity of the diode D3 is such that the anode is on the other end side of the secondary coil N2 and the cathode is on the output end 3 side. The diode D3 is reverse-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned on, and forward-biased with respect to the potential generated at the other end of the secondary coil N2 when the switching element Q is turned off. It is connected in the direction.
 ダイオードD1、D2、D3は、順バイアスの電圧(アノードがカソードに対して高電位)が印加されると導通し、逆バイアスの電圧(アノードがカソードに対して低電位)に対して遮断される整流手段の一つである。整流手段には、整流素子であるダイオードの他に、ダイオードと等価の整流デバイス又は整流回路も含まれるものとする。 The diodes D1, D2, and D3 are turned on when a forward bias voltage (anode has a high potential with respect to the cathode) is applied, and is blocked with respect to a reverse bias voltage (the anode has a low potential with respect to the cathode). One of the rectifying means. The rectifying means includes a rectifying device or a rectifying circuit equivalent to a diode in addition to a diode which is a rectifying element.
 出力端3と出力端4の間には平滑コンデンサCが接続されている。図示しないが、これらの出力端3と出力端4の間には負荷が接続されている。 A smoothing capacitor C is connected between the output terminal 3 and the output terminal 4. Although not shown, a load is connected between the output terminal 3 and the output terminal 4.
 本発明のスイッチング電源の別の構成例として、一次側の基準電位である入力端2に対して入力端1が負電位となる入力電圧を印加する構成とすることもできる。その場合、二次側の各ダイオードの極性を逆向きとする。 As another configuration example of the switching power supply according to the present invention, an input voltage in which the input terminal 1 is a negative potential may be applied to the input terminal 2 which is the primary side reference potential. In that case, the polarity of each diode on the secondary side is reversed.
<スイッチング電源の動作>
 図2は、図1に示した回路におけるオン期間の電流の流れを示した図である。図3は、図1に示した回路におけるオフ期間の電流の流れを示した図である。図4は、図1に示した回路図における電圧及び電流の時間変化の例を模式的に示した図である。
<Operation of switching power supply>
FIG. 2 is a diagram showing the flow of current during the ON period in the circuit shown in FIG. FIG. 3 is a diagram showing a current flow during an off period in the circuit shown in FIG. FIG. 4 is a diagram schematically showing an example of the temporal change in voltage and current in the circuit diagram shown in FIG.
・オン期間の動作
 図2は、オン期間の電流の流れを示している。スイッチング素子Qのゲートに入力されるパルス電圧である制御電圧Vgは、例えば図4(A)の通りである。制御信号Vgがオンになると、スイッチング素子Qの電流路が導通し、直流電圧が一次コイルN1の一端に印加され、一次コイルN1の一端が正電位、他端が負電位となる。これにより、入力端1→一次コイルN1→スイッチング素子Q→入力端2の経路で電流idが流れる。電流idのオン期間の変化は、図4(B)の通りである。
-Operation in ON Period FIG. 2 shows a current flow in the ON period. The control voltage Vg that is a pulse voltage input to the gate of the switching element Q is, for example, as shown in FIG. When the control signal Vg is turned on, the current path of the switching element Q becomes conductive, a DC voltage is applied to one end of the primary coil N1, and one end of the primary coil N1 has a positive potential and the other end has a negative potential. As a result, a current id flows through the path of the input terminal 1 → the primary coil N1 → the switching element Q → the input terminal 2. The change in the on period of the current id is as shown in FIG.
 一次コイルN1に電流が流れるとトランスTのコアを通って二次コイルN2を通る磁束が増加し、相互誘導による起電力が二次コイルN2に生じ、二次コイルN2の一端が正電位、他端が負電位となる。これによりダイオードD1が順バイアスとなって導通し、二次コイルN2→チョークコイルCH→出力端3→負荷(又は平滑コンデンサC)→出力端4→ダイオードD1の経路で第1電流i1が流れる。第1電流i1のオン期間の変化は、図4(C)の通りである。第1電流i1は、通常のフォワード方式におけるオン期間の出力電流に相当する。 When a current flows through the primary coil N1, the magnetic flux passing through the core of the transformer T and the secondary coil N2 increases, an electromotive force due to mutual induction is generated in the secondary coil N2, and one end of the secondary coil N2 has a positive potential. The end is a negative potential. As a result, the diode D1 becomes forward biased and becomes conductive, and the first current i1 flows through the path of the secondary coil N2, the choke coil CH, the output terminal 3, the load (or the smoothing capacitor C), the output terminal 4, and the diode D1. The change in the ON period of the first current i1 is as shown in FIG. The first current i1 corresponds to the output current during the ON period in the normal forward method.
 二次側の第1電流i1は、チョークコイルCHの励磁電流でもあり、これによりチョークコイルCHに磁気エネルギーが蓄積される。 The first current i1 on the secondary side is also an exciting current of the choke coil CH, and thereby magnetic energy is accumulated in the choke coil CH.
 ダイオードD2は、二次コイルN2の一端が正電位となり逆バイアスとなるので電流は流れない。ダイオードD3も、二次コイルN2の他端が負電位となり逆バイアスとなるので電流は流れない。 In the diode D2, since one end of the secondary coil N2 becomes a positive potential and becomes a reverse bias, no current flows. Also in the diode D3, the other end of the secondary coil N2 has a negative potential and is reverse-biased, so no current flows.
 なお、一次コイルN1に流れる電流idは、二次コイルN2との相互誘導による負荷電流とトランスTに磁気エネルギーを蓄積する励磁電流を含むものである。オン期間には、励磁電流によりトランスTの磁束が増加し磁気エネルギーが蓄積される。 The current id flowing through the primary coil N1 includes a load current caused by mutual induction with the secondary coil N2 and an exciting current that accumulates magnetic energy in the transformer T. During the ON period, the magnetic flux of the transformer T is increased by the exciting current, and magnetic energy is accumulated.
・オフ期間の動作
 図3は、オフ期間の電流の流れを示している。制御信号Vgがオフになると、スイッチング素子Qの電流路が遮断され、一次コイルN1を流れる電流idは消失する。これにより、一次コイルN1及び二次コイルN2に逆起電力が生じる。
-Operation in Off Period FIG. 3 shows a current flow in the off period. When the control signal Vg is turned off, the current path of the switching element Q is interrupted, and the current id flowing through the primary coil N1 disappears. Thereby, back electromotive force is generated in the primary coil N1 and the secondary coil N2.
 逆起電力により二次コイルN2の他端が正電位となり、ダイオードD1は逆バイアスとなるので第1電流i1は流れない。 The other end of the secondary coil N2 becomes a positive potential due to the back electromotive force, and the diode D1 is reverse-biased, so the first current i1 does not flow.
 一方、二次側では、チョークコイルCHに蓄積された磁気エネルギーを放出するように第2電流i2が流れる。第2電流i2の経路は、チョークコイルCH→出力端3→負荷(又は平滑コンデンサ)→出力端4→ダイオードD2である。第2電流i2のオフ期間の変化は、図4(D)の通りである。第2電流i2は、通常のフォワード方式におけるオフ期間の出力電流に相当し、第2電流i2に関してダイオードD2はフライホイールダイオードとして機能する。 On the other hand, on the secondary side, the second current i2 flows so as to release the magnetic energy accumulated in the choke coil CH. The path of the second current i2 is choke coil CH → output terminal 3 → load (or smoothing capacitor) → output terminal 4 → diode D2. The change in the off period of the second current i2 is as shown in FIG. The second current i2 corresponds to an output current during an off period in the normal forward method, and the diode D2 functions as a flywheel diode with respect to the second current i2.
 さらに、逆起電力により二次コイルN2の一端が負電位、他端が正電位となり、ダイオードD2及びダイオードD3がいずれも順バイアスとなって導通し、二次コイルN2→ダイオードD3→出力端3→負荷(又は平滑コンデンサ)→出力端4→ダイオードD2の経路で第3電流i3が流れる。第3電流i3のオフ期間の変化は、図4(E)の通りである。 Further, due to the counter electromotive force, one end of the secondary coil N2 becomes a negative potential and the other end becomes a positive potential, and both the diode D2 and the diode D3 become forward biased and become conductive. The secondary coil N2 → the diode D3 → the output terminal 3 The third current i3 flows through the path of load (or smoothing capacitor) → output terminal 4 → diode D2. The change in the off period of the third current i3 is as shown in FIG.
 従って、オン期間にトランスTに蓄積された磁気エネルギーは、二次コイルN2を通る第3電流i3が流れることにより放出される。第3電流i3も出力電流となるので、トランスの利用効率が向上する。図4(F)は、二次側に流れる全電流を示す。出力端3と出力端4の間に出力される電圧Voと電流Ioは、平滑コンデンサCにより平滑化され、図4(G)の通りである。 Therefore, the magnetic energy accumulated in the transformer T during the ON period is released by the third current i3 flowing through the secondary coil N2. Since the third current i3 is also an output current, the utilization efficiency of the transformer is improved. FIG. 4 (F) shows the total current flowing on the secondary side. The voltage Vo and current Io output between the output terminal 3 and the output terminal 4 are smoothed by the smoothing capacitor C, as shown in FIG.
 本発明のスイッチング電源は、フォワード方式を基本構成としながら、さらにダイオードD3を追加したことにより、オン期間にトランスに蓄積された磁気エネルギーをオフ期間に二次側の出力電流として放出することができるので、一次側のリセット回路が不要となる。従来はオフ時に発生するスパイク電圧によるスイッチング素子の耐圧対策が必要であったが、磁気エネルギーが二次側に放出されることによりスパイク対策も不要となる。 The switching power supply according to the present invention can discharge the magnetic energy accumulated in the transformer during the on period as a secondary output current during the off period by adding the diode D3 while using the forward system as a basic configuration. This eliminates the need for a reset circuit on the primary side. Conventionally, it has been necessary to take a countermeasure against the withstand voltage of the switching element by a spike voltage generated at the time of OFF, but the countermeasure against the spike becomes unnecessary because the magnetic energy is released to the secondary side.
(2)第2の実施形態
 図5~図7を参照して本発明の第2の実施形態を説明する。上述した第1の実施形態と同じ構成については説明を省略する。
(2) Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the first embodiment described above is omitted.
 図5は、本発明によるスイッチング電源の第2の実施形態の構成例を概略的に示す回路図である。第2の実施形態においては、第1の実施形態における第1ダイオードD1に替えて、第2のスイッチング素子Q2を有する。 FIG. 5 is a circuit diagram schematically showing a configuration example of the second embodiment of the switching power supply according to the present invention. In the second embodiment, a second switching element Q2 is provided instead of the first diode D1 in the first embodiment.
 第2のスイッチング素子Q2は、この例ではNチャネルFETである。ドレインが二次コイルN2の他端に接続され、ソースが出力端4に接続されている。すなわち、第2のスイッチング素子Q2の電流路は、二次コイルN2の他端と出力端4の間に接続される。第2のスイッチング素子Q2は、一次コイルN1に接続されたスイッチング素子Qと同期してオンオフ駆動される。従って、第2のスイッチング素子Q2の制御端であるゲートには、スイッチング素子Qと同じ制御電圧Vgが入力される。 The second switching element Q2 is an N-channel FET in this example. The drain is connected to the other end of the secondary coil N 2, and the source is connected to the output end 4. That is, the current path of the second switching element Q2 is connected between the other end of the secondary coil N2 and the output end 4. The second switching element Q2 is driven on and off in synchronization with the switching element Q connected to the primary coil N1. Accordingly, the same control voltage Vg as that of the switching element Q is input to the gate which is the control end of the second switching element Q2.
 図6は、オン期間の電流の流れを示している。オン期間における一次側の動作は、第1の実施形態と同じである。 FIG. 6 shows the current flow during the ON period. The operation on the primary side in the on period is the same as that in the first embodiment.
 一次コイルN1に電流が流れると、相互誘導による起電力が二次コイルN2に生じ、二次コイルN2の一端が正電位、他端が負電位となる点も第1の実施形態と同じである。このとき、第2のスイッチング素子Q2は、制御電圧Vgによりオンとなっているので電流路が導通状態である。これにより、二次コイルN2→チョークコイルCH→出力端3→負荷(又は平滑コンデンサC)→出力端4→第2のスイッチング素子Q2の経路で第1電流i1が流れる。第2のスイッチング素子Q2に置き換えたことにより、第1の実施形態のダイオードD1に比べてオン期間の損失が少なくなる。その他の動作については、第1の実施形態と同じである。 When a current flows through the primary coil N1, an electromotive force due to mutual induction is generated in the secondary coil N2, and one end of the secondary coil N2 has a positive potential and the other end has a negative potential, as in the first embodiment. . At this time, since the second switching element Q2 is turned on by the control voltage Vg, the current path is conductive. As a result, the first current i1 flows through the path of the secondary coil N2, the choke coil CH, the output terminal 3, the load (or the smoothing capacitor C), the output terminal 4, and the second switching element Q2. By replacing the second switching element Q2, the loss during the ON period is reduced as compared with the diode D1 of the first embodiment. Other operations are the same as those in the first embodiment.
 図7は、オフ期間の電流の流れを示している。オン期間における一次側の動作は、第1の実施形態と同じである。 FIG. 7 shows the flow of current during the off period. The operation on the primary side in the on period is the same as that in the first embodiment.
 逆起電力により二次コイルN2の他端が正電位となる。このとき、第2のスイッチング素子Q2は、制御電圧Vgによりオフとなっているので電流路が遮断状態である。よって第1電流i1は流れない。 The other end of the secondary coil N2 becomes a positive potential due to the back electromotive force. At this time, since the second switching element Q2 is turned off by the control voltage Vg, the current path is cut off. Therefore, the first current i1 does not flow.
 一方、ダイオードD2及びダイオードD3については、第1の実施形態と同様に、第2電流i2及び第3電流i3が流れる。 On the other hand, as for the diode D2 and the diode D3, the second current i2 and the third current i3 flow as in the first embodiment.
 別の実施例として、第2のスイッチング素子Q2は、NチャネルFETではなくPチャネルFETとすることもできる。 As another example, the second switching element Q2 may be a P-channel FET instead of an N-channel FET.
 T トランス
 N1 一次コイル
 N2 二次コイル
 1、2 入力端
 3、4 出力端
 Q スイッチング素子
 D1、D2、D3 ダイオード
 C 平滑コンデンサ
T transformer N1 primary coil N2 secondary coil 1, 2 input terminal 3, 4 output terminal Q switching element D1, D2, D3 diode C smoothing capacitor

Claims (4)

  1.  トランス(T)と、
     入力電圧により前記トランス(T)の一次コイル(N1)に流れる電流を導通又は遮断するべくオンオフ駆動される、制御端を具備するスイッチング素子(Q)と、
     前記トランスの二次コイル(N2)の一端と第1出力端(3)の間に接続されたチョークコイル(CH)と、
     前記トランス(T)の二次コイル(N2)の他端と第2出力端(4)の間に接続され、前記スイッチング素子(Q)のオン時に前記二次コイル(N2)の他端に生じる電位に対して順バイアスとなりかつオフ時に該二次コイル(N2)の他端に生じる電位に対して逆バイアスとなる第1整流手段(D1)と、
     前記トランス(T)の前記二次コイル(N2)の一端と前記第2出力端(4)の間に接続され、前記スイッチング素子(Q)のオン時に前記二次コイル(N2)の一端に生じる電位に対して逆バイアスとなりかつオフ時に該二次コイル(N2)の一端に生じる電位に対して順バイアスとなる第2整流手段(D2)と、
     前記トランス(T)の前記二次コイル(N2)の他端と前記第1出力端(3)の間に接続され、前記スイッチング素子(Q)のオン時に前記二次コイル(N2)の他端に生じる電位に対して逆バイアスとなりかつオフ時に該二次コイル(N2)の他端に生じる電位に対して順バイアスとなる第3整流手段(D3)と、
     前記第1出力端(3)と前記第2出力端(4)の間に接続された平滑コンデンサ(C)と、を有することを特徴とする
     スイッチング電源。
    A transformer (T),
    A switching element (Q) having a control end, which is driven on and off to conduct or cut off a current flowing through the primary coil (N1) of the transformer (T) by an input voltage;
    A choke coil (CH) connected between one end of the secondary coil (N2) of the transformer and the first output end (3);
    Connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4), and occurs at the other end of the secondary coil (N2) when the switching element (Q) is turned on. A first rectifier (D1) that is forward biased with respect to the potential and reversely biased with respect to the potential generated at the other end of the secondary coil (N2) when turned off;
    Connected between one end of the secondary coil (N2) of the transformer (T) and the second output end (4), and is generated at one end of the secondary coil (N2) when the switching element (Q) is turned on. A second rectifier (D2) that is reverse-biased with respect to the potential and forward-biased with respect to the potential generated at one end of the secondary coil (N2) when turned off;
    The other end of the secondary coil (N2) is connected between the other end of the secondary coil (N2) of the transformer (T) and the first output end (3), and the switching element (Q) is turned on. A third rectifying means (D3) which is reverse-biased with respect to the potential generated at the time and is forward-biased with respect to the potential generated at the other end of the secondary coil (N2) when turned off;
    A switching power supply comprising a smoothing capacitor (C) connected between the first output terminal (3) and the second output terminal (4).
  2.  前記第1整流手段(D1)、前記第2整流手段(D2)及び前記第3整流手段(D3)がそれぞれダイオードであることを特徴とする請求項1に記載のスイッチング電源。 The switching power supply according to claim 1, wherein each of the first rectifying means (D1), the second rectifying means (D2), and the third rectifying means (D3) is a diode.
  3.  前記第1整流手段(D1)に替えて、前記トランス(T)の二次コイル(N2)の他端と第2出力端(4)の間に接続された電流路と該電流路を流れる電流を導通又は遮断するべくオンオフ駆動される制御端とを具備する第2のスイッチング素子(Q2)を有し、
     前記第2のスイッチング素子(Q2)は前記スイッチング素子(Q)と同期してオンオフ駆動されることを特徴とする
     請求項1に記載のスイッチング電源。
    Instead of the first rectifying means (D1), a current path connected between the other end of the secondary coil (N2) of the transformer (T) and the second output end (4) and a current flowing through the current path And a second switching element (Q2) having a control end that is driven on and off to turn on or off.
    The switching power supply according to claim 1, wherein the second switching element (Q2) is driven on and off in synchronization with the switching element (Q).
  4.  前記第2整流手段(D2)及び前記第3整流手段(D3)がそれぞれダイオードであることを特徴とする請求項3に記載のスイッチング電源。 The switching power supply according to claim 3, wherein each of the second rectifying means (D2) and the third rectifying means (D3) is a diode.
PCT/JP2017/041327 2017-01-23 2017-11-16 Switching power supply WO2018135119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187018614A KR102449387B1 (en) 2017-01-23 2017-11-16 switching power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017009456A JP2018121390A (en) 2017-01-23 2017-01-23 Switching power supply
JP2017-009456 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135119A1 true WO2018135119A1 (en) 2018-07-26

Family

ID=62908714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041327 WO2018135119A1 (en) 2017-01-23 2017-11-16 Switching power supply

Country Status (3)

Country Link
JP (1) JP2018121390A (en)
KR (1) KR102449387B1 (en)
WO (1) WO2018135119A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682750A (en) * 2020-06-02 2020-09-18 西安摩达芯电子科技有限公司 Forward converter for realizing forward and backward excitation energy transmission by parallel LCD (liquid crystal display) on secondary side
CN111682775A (en) * 2020-06-02 2020-09-18 西安科技大学 A Forward Converter Using Secondary Side Series LCD to Realize Excitation Energy Transfer
CN112886824A (en) * 2021-03-16 2021-06-01 西安科技大学 Positive and negative excitation combined converter with three diodes on secondary side and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682779B (en) * 2020-06-02 2022-12-09 西安科技大学 Secondary-side Series LCD Excitation Energy Transfer Forward Converter Suppressing Backflow of Output Energy
CN111682777B (en) * 2020-06-02 2022-12-09 西安科技大学 A Secondary Parallel LCD Forward Converter Can Avoid Reverse Charging of Energy Storage Capacitor
CN113014109B (en) * 2021-03-16 2022-12-09 西安科技大学 A forward converter and system with LC self-resetting circuit on the secondary side
CN113014110B (en) * 2021-03-16 2022-12-09 西安科技大学 A Forward Converter and System of Secondary Parallel LCD Circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278263A (en) * 1988-04-27 1989-11-08 Nec Corp Peak voltage removing circuit
JPH09205768A (en) * 1996-01-25 1997-08-05 Hitachi Ltd Synchronous rectification circuit
JPH1141927A (en) * 1997-07-16 1999-02-12 Fujitsu Ltd DC / DC converter
WO2014188985A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Switching power supply apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275681A (en) 1996-04-04 1997-10-21 Nec Eng Ltd Forward converter
JP3280615B2 (en) * 1998-02-18 2002-05-13 ティーディーケイ株式会社 Switching power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278263A (en) * 1988-04-27 1989-11-08 Nec Corp Peak voltage removing circuit
JPH09205768A (en) * 1996-01-25 1997-08-05 Hitachi Ltd Synchronous rectification circuit
JPH1141927A (en) * 1997-07-16 1999-02-12 Fujitsu Ltd DC / DC converter
WO2014188985A1 (en) * 2013-05-21 2014-11-27 株式会社村田製作所 Switching power supply apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682750A (en) * 2020-06-02 2020-09-18 西安摩达芯电子科技有限公司 Forward converter for realizing forward and backward excitation energy transmission by parallel LCD (liquid crystal display) on secondary side
CN111682775A (en) * 2020-06-02 2020-09-18 西安科技大学 A Forward Converter Using Secondary Side Series LCD to Realize Excitation Energy Transfer
CN111682775B (en) * 2020-06-02 2022-12-09 西安科技大学 A Forward Converter Realizing Excitation Energy Transfer on the Secondary Side in Series with LCD
CN112886824A (en) * 2021-03-16 2021-06-01 西安科技大学 Positive and negative excitation combined converter with three diodes on secondary side and system

Also Published As

Publication number Publication date
KR20190104469A (en) 2019-09-10
JP2018121390A (en) 2018-08-02
KR102449387B1 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2018135119A1 (en) Switching power supply
US5590032A (en) Self-synchronized drive circuit for a synchronous rectifier in a clamped-mode power converter
EP2421137A1 (en) Switching power supply unit
US6597587B1 (en) Current driven synchronous rectifier with energy recovery using hysterisis driver
CN109196765B (en) DC/DC converter
JP2015186363A (en) DC-DC converter
US9490717B2 (en) Switching power supply circuit
JP4816908B2 (en) Multi-output switching power supply
US9564819B2 (en) Switching power supply circuit
US6301139B1 (en) Self-driven synchronous rectifier circuit for non-optimal reset secondary voltage
WO2017199716A1 (en) Switch circuit with active snubber circuit, and dc-dc converter
JP6942040B2 (en) Insulated switching power supply
JP6945429B2 (en) Insulated switching power supply
KR102537358B1 (en) Insulated switching power supply
JP2006149009A (en) Dc/dc converter
WO2019208472A1 (en) Tapped inductor type switching power source
WO2019088093A1 (en) Synchronous rectification forward converter
JP2018121381A (en) Switching power supply
JPH09275681A (en) Forward converter
JP2007221905A (en) Switching power supply
JPH04271267A (en) Power supply

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187018614

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892792

Country of ref document: EP

Kind code of ref document: A1