WO2018133144A1 - Amoled像素驱动系统及amoled像素驱动方法 - Google Patents
Amoled像素驱动系统及amoled像素驱动方法 Download PDFInfo
- Publication number
- WO2018133144A1 WO2018133144A1 PCT/CN2017/073725 CN2017073725W WO2018133144A1 WO 2018133144 A1 WO2018133144 A1 WO 2018133144A1 CN 2017073725 W CN2017073725 W CN 2017073725W WO 2018133144 A1 WO2018133144 A1 WO 2018133144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- node
- initialization
- electrically connected
- low level
- Prior art date
Links
- 229920001621 AMOLED Polymers 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000010409 thin film Substances 0.000 claims abstract description 141
- 238000012545 processing Methods 0.000 claims description 42
- 239000003990 capacitor Substances 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 12
- 238000005286 illumination Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 6
- 241000750042 Vini Species 0.000 abstract description 29
- 230000000694 effects Effects 0.000 abstract description 13
- 208000032005 Spinocerebellar ataxia with axonal neuropathy type 2 Diseases 0.000 description 13
- 208000033361 autosomal recessive with axonal neuropathy 2 spinocerebellar ataxia Diseases 0.000 description 13
- 101000622427 Homo sapiens Vang-like protein 1 Proteins 0.000 description 10
- 102100023517 Vang-like protein 1 Human genes 0.000 description 10
- 238000010586 diagram Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3258—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0819—Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0243—Details of the generation of driving signals
- G09G2310/0251—Precharge or discharge of pixel before applying new pixel voltage
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
- G09G2320/045—Compensation of drifts in the characteristics of light emitting or modulating elements
Definitions
- the present invention relates to the field of display technologies, and in particular, to an AMOLED pixel driving system and an AMOLED pixel driving method.
- OLED Organic Light Emitting Display
- OLED Organic Light Emitting Display
- the OLED display device can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor (Thin Film Transistor, according to the driving method). TFT) matrix addressing two types.
- the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
- the AMOLED is a current driving device. When a current flows through the organic light emitting diode, the organic light emitting diode emits light, and the luminance of the light is determined by the current flowing through the organic light emitting diode itself. Most existing integrated circuits (ICs) only transmit voltage signals, so the pixel driving circuit of AMOLED needs to complete the task of converting a voltage signal into a current signal.
- ICs integrated circuits
- FIG. 1 is a prior art AMOLED pixel driving circuit, comprising: a first thin film transistor T10, a second thin film transistor T20, a third thin film transistor T30, a fourth thin film transistor T40, a capacitor C10, and an organic light emitting layer.
- the diode D10, the gate of the first thin film transistor T10 is connected to the first scan signal Scan1, the source is connected to the data signal Data, the drain is electrically connected to the gate of the second thin film transistor T20, and the second thin film transistor T20
- the drain is connected to the power supply voltage OVDD, the source is electrically connected to the anode of the organic light emitting diode D10, the gate of the third thin film transistor T30 is connected to the second scan signal Scan2, and the source is electrically connected to the second thin film transistor T20.
- the gate and the drain are electrically connected to the source of the fourth thin film transistor T40, the gate of the fourth thin film transistor T40 is connected to the second scan signal Scan2, the source is connected to the initialization voltage Vini, and the drain is electrically connected to the organic light
- the AMOLED pixel driving circuit sequentially performs pixel driving through four stages of reset, threshold voltage detection, threshold voltage compensation, and illumination, which can be realized.
- the source of the fourth thin film transistor T40 in the light emitting phase The voltage is lower than the voltage of the gate and the source of the second thin film transistor T20, which causes the gate and source of the second thin film transistor T20 to generate a leakage current.
- the presence of the leakage current causes the OLED compensation data to drift, and the second thin film transistor
- the voltage at the gate and source of T20 is distorted, which affects the compensation effect.
- the object of the present invention is to provide an AMOLED pixel driving system, which can effectively compensate the threshold voltage of the driving thin film transistor, stabilize the current flowing through the organic light emitting diode, reduce leakage current, improve the stability of the compensation data in the light emitting stage, and improve the compensation effect.
- the object of the present invention is to provide an AMOLED pixel driving method, which can effectively compensate the threshold voltage of the driving thin film transistor, stabilize the current flowing through the organic light emitting diode, reduce leakage current, improve the stability of the compensation data in the light emitting stage, and improve the compensation effect. .
- an AMOLED pixel driving system including: a pixel driving circuit, and an initialization voltage power supply module electrically connected to the pixel driving circuit;
- the pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a capacitor, and an organic light emitting diode;
- the gate of the first thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
- the gate of the second thin film transistor is electrically connected to the first node, the drain is connected to the power supply voltage, and the source is electrically connected to the second node;
- the gate of the third thin film transistor is connected to the second scan signal, the source is electrically connected to the first node, and the drain is electrically connected to the third node;
- the gate of the fourth thin film transistor is connected to the second scan signal, the source is electrically connected to the third node, and the drain is electrically connected to the second node;
- One end of the capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
- the anode of the organic light emitting diode is electrically connected to the second node, and the cathode is grounded;
- the initialization voltage supply module is electrically connected to the third node, and provides an initialization signal having a high and low alternating level to the third node according to a timing, and a high level of the initialization signal is equal to when the organic light emitting diode emits light.
- the level of the first node is equal to or equal to the level of the second node when the organic light emitting diode emits light or greater than the level of the first node when the organic light emitting diode emits light.
- the initialization voltage power supply module includes: a multiplexer, an initialization high voltage generation module, And initializing a low voltage generating module;
- the input ends of the multiplexer are respectively electrically connected to the initialization high voltage generating module and the initialization low voltage generating module, the output end is electrically connected to the third node, and the control end accesses the first strobe signal and the second selected communication number.
- the AMOLED pixel driving system further includes: a control signal generating module, a first scan signal output processing module electrically connected to the control signal generating module, and a data signal output processing module electrically connected to the control signal generating module ;
- the control signal generating module provides an enable signal of the first scan signal and a drive signal of the data signal to the first scan signal output processing module and the data signal output processing module to control the first scan signal output processing module, and
- the data signal output processing module outputs the first scan signal and the data signal, respectively;
- the first strobe signal is an enable signal of the first scan signal
- the second strobe signal is a drive signal of the data signal
- the first scan signal When the enable signal of the first scan signal is high level, the first scan signal is low level, and when the enable signal of the first scan signal is low level, the first scan signal is High level
- the driving signal of the data signal When the driving signal of the data signal is low level, the data signal is low level, and when the driving signal of the data signal is high level, the data signal is high level;
- the initialization signal is at a high level, and the initialization signal is at a low level at other times.
- the first scan signal, the second scan signal, and the data signal are combined to sequentially correspond to a reset phase, a threshold voltage detection phase, a threshold voltage compensation phase, and an illumination phase;
- the first scan signal provides a low level
- the second scan signal provides a high level
- the data signal provides a low level
- the initialization signal is provided at a low level
- the first scan signal is switched to a high level, the second scan signal is switched to a low level, the data signal is maintained at a low level, and the initialization signal is maintained at a low level.
- the first scan signal is maintained at a high level
- the second scan signal is maintained at a low level
- the data signal is switched to a high level
- the initialization signal is maintained at a low level
- the first scan signal is switched to a low level, the second scan signal is maintained at a low level, the data signal is maintained at a high level, and the initialization signal is switched to a high level.
- the low level of the data signal is higher than the low level of the initialization signal.
- the control signal generating module is an FPGA.
- the invention also provides an AMOLED pixel driving method, comprising the following steps:
- Step S1 providing an AMOLED pixel driving system, comprising: a pixel driving circuit, and an initialization voltage power supply module electrically connected to the pixel driving circuit;
- the pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a capacitor, and an organic light emitting diode;
- the gate of the first thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
- the gate of the second thin film transistor is electrically connected to the first node, the drain is connected to the power supply voltage, and the source is electrically connected to the second node;
- the gate of the third thin film transistor is connected to the second scan signal, the source is electrically connected to the first node, and the drain is electrically connected to the third node;
- the gate of the fourth thin film transistor is connected to the second scan signal, the source is electrically connected to the third node, and the drain is electrically connected to the second node;
- One end of the capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
- the anode of the organic light emitting diode is electrically connected to the second node, and the cathode is grounded;
- the initialization voltage power supply module is electrically connected to the third node, and provides an initialization signal to the third node;
- Step S2 entering a reset phase
- the first scan signal provides a low level
- the second scan signal provides a high level
- the data signal provides a low level
- the initialization signal is provided at a low level
- the first thin film transistor is turned off
- the third and fourth thin film transistors are turned on, and the electrical average of the first node and the second node is equal to a low level of the initialization signal;
- Step S3 entering a threshold voltage detection phase
- the first scan signal is switched to a high level
- the second scan signal is switched to a low level
- the data signal is maintained at a low level
- the initialization signal is maintained at a low level
- the first thin film transistor is turned on
- the third and fourth thin film transistors are turned off, the level of the first node is equal to the low level of the data signal, the level of the second node is equal to the low level of the initialization signal, and the low level of the data signal is greater than the initialization
- Step S4 entering a threshold voltage compensation phase
- the first scan signal maintains a high level
- the second scan signal maintains a low level
- the data signal switches to a high level
- the initialization signal maintains a low level
- the first thin film transistor is turned on
- the third And the fourth thin film transistor is turned off, the level of the first node is equal to the high level of the data signal
- the level of the second node is equal to Vref-Vth+ ⁇ V, wherein Vref is the low of the data signal Level
- Vth is the threshold voltage of the second thin film transistor
- ⁇ V is the voltage charged by the capacitor from the threshold voltage detection phase to the threshold voltage compensation phase;
- Step S5 entering a lighting stage
- the first scan signal is switched to a low level, the second scan signal is maintained at a low level, the data signal is maintained at a high level, the initialization signal is switched to a high level, and the first thin film transistor is turned off, The third and fourth thin film transistors are turned on, and the organic light emitting diode emits light, and the high level of the initialization signal is equal to the level of the first node at this time or equal to the level of the second node at this time or greater than the level of the first node at this time. .
- the initialization voltage power supply module includes: a multiplexer, an initialization high voltage generation module, and an initialization low voltage generation module;
- the input ends of the multiplexer are respectively electrically connected to the initialization high voltage generating module and the initialization low voltage generating module, the output end is electrically connected to the third node, and the control end accesses the first strobe signal and the second selected communication number.
- the AMOLED pixel driving system further includes: a control signal generating module, a first scan signal output processing module electrically connected to the control signal generating module, and a data signal output processing module electrically connected to the control signal generating module ;
- the control signal generating module provides an enable signal of the first scan signal and a drive signal of the data signal to the first scan signal output processing module and the data signal output processing module to control the first scan signal output processing module, and
- the data signal output processing module outputs the first scan signal and the data signal, respectively;
- the first strobe signal is an enable signal of the first scan signal
- the second strobe signal is a drive signal of the data signal
- the first scan signal When the enable signal of the first scan signal is high level, the first scan signal is low level, and when the enable signal of the first scan signal is low level, the first scan signal is high Level
- the driving signal of the data signal When the driving signal of the data signal is low level, the data signal is low level, and when the driving signal of the data signal is high level, the data signal is high level;
- the initialization signal is at a high level, and the initialization signal is at a low level at other times.
- the control signal generating module is an FPGA.
- the present invention also provides an AMOLED pixel driving system, comprising: a pixel driving circuit, and an initialization voltage power supply module electrically connected to the pixel driving circuit;
- the pixel driving circuit includes: a first thin film transistor, a second thin film transistor, a third thin film transistor, a fourth thin film transistor, a capacitor, and an organic light emitting diode;
- the gate of the first thin film transistor is connected to the first scan signal, the source is connected to the data signal, and the drain is electrically connected to the first node;
- the gate of the second thin film transistor is electrically connected to the first node, the drain is connected to the power supply voltage, and the source is electrically connected to the second node;
- the gate of the third thin film transistor is connected to the second scan signal, the source is electrically connected to the first node, and the drain is electrically connected to the third node;
- the gate of the fourth thin film transistor is connected to the second scan signal, the source is electrically connected to the third node, and the drain is electrically connected to the second node;
- One end of the capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
- the anode of the organic light emitting diode is electrically connected to the second node, and the cathode is grounded;
- the initialization voltage supply module is electrically connected to the third node, and provides an initialization signal having a high and low alternating level to the third node according to a timing, and a high level of the initialization signal is equal to when the organic light emitting diode emits light.
- the level of the first node is equal to or equal to the level of the second node when the organic light emitting diode emits light or greater than the level of the first node when the organic light emitting diode emits light;
- the initialization voltage power supply module includes: a multiplexer, an initialization high voltage generation module, and an initialization low voltage generation module;
- the input ends of the multiplexer are respectively electrically connected to the initialization high voltage generating module and the initialization low voltage generating module, the output end is electrically connected to the third node, and the control end accesses the first strobe signal and the second selected communication number;
- the first scan signal, the second scan signal, and the data signal are combined to sequentially correspond to a reset phase, a threshold voltage detection phase, a threshold voltage compensation phase, and an illumination phase;
- the first scan signal provides a low level
- the second scan signal provides a high level
- the data signal provides a low level
- the initialization signal provides a low level
- the first scan signal is switched to a high level, the second scan signal is switched to a low level, the data signal is maintained at a low level, and the initialization signal is maintained at a low level.
- the first scan signal is maintained at a high level
- the second scan signal is maintained at a low level
- the data signal is switched to a high level
- the initialization signal is maintained at a low level
- the first scan signal is switched to a low level, the second scan signal is maintained at a low level, the data signal is maintained at a high level, and the initialization signal is switched to a high level.
- the present invention provides an AMOLED pixel driving system including
- the pixel driving circuit of the 4T1C architecture and the initialization voltage power supply module electrically connected to the pixel driving circuit provide a high level initialization signal for the pixel driving circuit during the light emitting phase by the initialization voltage power supply module, and effectively compensate the driving thin film transistor
- the threshold voltage stabilizes the current flowing through the organic light emitting diode, and also reduces the leakage current of the gate and source of the driving thin film transistor in the light emitting phase, improves the stability of the compensation data in the light emitting phase, and improves the compensation effect.
- the invention also provides an AMOLED pixel driving method, which can effectively compensate the threshold voltage of the driving thin film transistor, stabilize the current flowing through the organic light emitting diode, improve the stability of the compensation data in the light emitting phase, reduce the leakage current, and improve the compensation effect.
- FIG. 1 is a circuit diagram of a conventional AMOLED pixel driving circuit
- FIG. 2 is a circuit diagram of an AMOLED pixel driving system of the present invention.
- FIG. 3 is a timing diagram of an AMOLED pixel driving system of the present invention.
- FIG. 4 is a flow chart of a method for driving an AMOLED pixel according to the present invention.
- the present invention provides an AMOLED pixel driving system, including: a pixel driving circuit 10, and an initialization voltage power supply module 20 electrically connected to the pixel driving circuit 10;
- the pixel driving circuit 1 includes: a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a fourth thin film transistor T4, a capacitor C1, and an organic light emitting diode D1;
- the gate of the first thin film transistor T1 is connected to the first scan signal Scan1, the source is connected to the data signal Data, and the drain is electrically connected to the first node G;
- the gate of the second thin film transistor T2 is electrically connected to the first node G, the drain is connected to the power supply voltage OVDD, and the source is electrically connected to the second node S;
- the gate of the third thin film transistor T3 is connected to the second scan signal Scan2, the source is electrically connected to the first node G, and the drain is electrically connected to the third node B;
- the gate of the fourth thin film transistor T4 is connected to the second scan signal Scan2, the source is electrically connected to the third node B, and the drain is electrically connected to the second node S;
- One end of the capacitor C1 is electrically connected to the first node G, and the other end is electrically connected to the second node S;
- the anode of the organic light emitting diode D1 is electrically connected to the second node S, and the cathode is grounded;
- the initialization voltage power supply module 20 is electrically connected to the third node B, and provides an initialization signal Vini having a high and low alternating level to the second node B according to a timing.
- the first thin film transistor T1, the second thin film transistor T2, the third thin film transistor T3, and the fourth thin film transistor T4 may select any one of a low temperature polysilicon thin film transistor, an oxide semiconductor thin film transistor, and an amorphous silicon thin film transistor.
- a low temperature polysilicon thin film transistor an oxide semiconductor thin film transistor
- an amorphous silicon thin film transistor an oxide semiconductor thin film transistor
- the high level of the initialization signal Vini may be set equal to the level of the first node G when the organic light emitting diode D1 emits light or the level of the second node S when the organic light emitting diode D1 emits light, to Reducing a voltage difference between the first and second nodes G, S and the third node B when the organic light emitting diode D1 emits light, thereby reducing the first node G and the second node S when the organic light emitting diode D1 emits light
- Leakage current ensures the accuracy of OLED compensation data and improves compensation.
- the high level of the initialization signal Vini may also be set to be greater than the level of the first node G when the organic light emitting diode D1 emits light, and the level of the third node B is greater than the level of the first node G. It is greater than the level of the second node S, so that the leakage current when the organic light emitting diode D1 emits light is reversed, the levels of the first and second nodes G and S are raised, the voltage distortion is compensated, and the accuracy of the OLED compensation data is ensured and improved. Compensation effect.
- the voltage value of the high level of the initialization signal Vini can be selected by experimental and simulation analysis, and moderately adjusted according to different process conditions and pixel design.
- the initialization voltage power supply module 20 includes: a multiplexer 21, an initialization high voltage generation module 22, and an initialization low voltage generation module 23;
- the input ends of the multiplexer 21 are electrically connected to the initialization high voltage generating module 22 and the initialization low voltage generating module 23, respectively, the output end is electrically connected to the third node B, and the control end is connected to the first strobe signal and a second strobe signal, the first strobe signal and the second strobe signal may be selected according to requirements, and the multiplexer 21 is controlled by the first strobe signal and the second strobe signal
- the high level generated by the initialization high voltage generating module 22 or the low level generated by the initializing low voltage generating module 23 is output at a corresponding timing.
- the AMOLED pixel driving system further includes: a control signal generating module 30, a first scan signal output processing module 40 electrically connected to the control signal generating module 30, and an electrical property with the control signal generating module 30.
- the control signal generating module 30 is a Field Programmable Gate Array (FPGA).
- the control signal generating module 30 provides the first scan signal output processing module 40 and the data signal output processing module 50 with the enable signal OE1 of the first scan signal Scan1 and the drive signal STB2 of the data signal Data, respectively, to control the first The scan signal output processing module 40 and the data signal output processing module 50 respectively output the first scan signal Scan1 and the data signal Data;
- the first strobe signal may be the enable signal OE1 of the first scan signal Scan1, and the second strobe signal may be the drive signal STB2 of the data signal Data; when the first scan signal Scan1 is enabled When the energy signal OE1 is at a high level, the first scan signal Scan1 is at a low level, and when the enable signal OE1 of the first scan signal Scan1 is at a low level, the first scan signal Scan1 is at a high level; When the driving signal STB2 of the data signal Data is at a low level, the data signal Data is at a low level, and when the driving signal STB2 of the data signal Data is at a high level, the data signal Data is at a high level; When the enable signal OE1 of the first scan signal Scan1 and the drive signal STB2 of the data signal Data are both at a high level, the initialization signal Vini is at a high level, and the initialization signal Vini is low at other times. level.
- the working process of the AMOLED pixel driving system of the present invention is: combining the first scan signal Scan1, the second scan signal Scan2, and the data signal Data, which sequentially correspond to a reset phase 1 a threshold voltage detection phase 2, a threshold voltage compensation phase 3, and an illumination phase 4;
- the first scan signal Scan1 provides a low level
- the second scan signal Scan2 provides a high level
- the data signal Data provides a low level
- the initialization signal Vini provides a low level
- the first thin film transistor T1 is turned off
- the third and fourth thin film transistors T3, T4 are turned on
- the electric average of the first node G and the second node S is equal to the low level of the initialization signal Vini;
- the first scan signal Scan1 is switched to a high level
- the second scan signal Scan2 is switched to a low level
- the data signal Data is maintained at a low level
- the initialization signal Vini is maintained low.
- the first thin film transistor T1 is turned on, the third and fourth thin film transistors T3, T4 are turned off, the level of the first node G is equal to the low level of the data signal Data, and the level of the second node S is equal to the initialization.
- the first sweep The signal Scan1 is maintained at a high level, the second scan signal Scan2 is maintained at a low level, the data signal Data is switched to a high level, the initialization signal Vini is maintained at a low level, the first thin film transistor T1 is turned on, and the third And the fourth thin film transistors T3, T4 are turned off, the first node G
- the level of the second signal S is equal to Vref-Vth+ ⁇ V, where Vref is the low level of the data signal Data, Vth is the threshold voltage of the second thin film transistor T2, and ⁇ V is From the threshold voltage detection phase 2 to the threshold voltage compensation phase 3, the voltage charged by the capacitor C1, the gate-source voltage of the second thin film transistor T2, that is, the voltage difference across the capacitor C1 is Vdata-Vref+Vth
- the driving current I K(Vdata-Vref ⁇ V) 2 flowing through the organic light emitting diode D1 is a structural parameter of the thin film transistor.
- the K value is relatively stable, and the driving current expression is known.
- the driving current is independent of the threshold voltage Vth of the second thin film transistor T2, eliminating the influence of the threshold voltage Vth, improving the uniformity and stability of the current of the organic light emitting diode, and improving the display quality of the organic light emitting diode, and at the same time,
- the initialization signal Vini provides a high level such that the level of the third node B is equal to the level of the first node G at this time or equal to the level of the second node S at this time or greater than the level of the first node G at this time, capable of Suppressing the leakage current of the gate and the source of the driving thin film transistor, that is, the second thin film transistor T2, or inverting the leakage current, thereby compensating or mitigating the compensation data voltage distortion caused by the leakage current, and improving the light-emitting level Compensation data stability, improved compensation effect of the pixel driving circuit.
- the present invention further provides an AMOLED pixel driving method, including the following steps:
- Step S1 provides an AMOLED pixel driving system as shown in FIG. 2, and the system is not repeatedly described herein;
- Step S2 entering the reset phase 1;
- the first scan signal Scan1 provides a low level
- the second scan signal Scan2 provides a high level
- the data signal Data provides a low level
- the initialization signal Vini provides a low level
- the first thin film transistor T is turned off
- the third and fourth thin film transistors T3, T4 are turned on, and the electric average of the first node G and the second node S is equal to the low level of the initialization signal Vini;
- Step S3 entering the threshold voltage detection phase 2;
- the first scan signal Scan1 is switched to a high level
- the second scan signal Scan2 is switched to a low level
- the data signal Data is maintained at a low level
- the initialization signal Vini is maintained low.
- the first thin film transistor T1 is turned on
- the third and fourth thin film transistors T3, T4 are turned off
- the level of the first node G is equal to the low level of the data signal Data
- the level of the second node S is equal to the initialization.
- a low level of the signal Vini a low level of the data signal Data is greater than a low level of the initialization signal Vini, and the capacitor C1 starts to be charged;
- Step S4 entering the threshold voltage compensation phase 3;
- the first scan signal Scan1 maintains a high level
- the second scan signal Scan2 maintains a low level
- the data signal Data switches to a high level
- the initialization signal Vini maintains a low level
- the first thin film transistor T1 is turned on
- the third and fourth thin film transistors T3, T4 are turned off
- the level of the first node G is equal to the high level of the data signal Data
- the level of the second node S is equal to Vref-Vth + ⁇ V
- Vth is the threshold voltage of the second thin film transistor T2
- ⁇ V is the voltage charged by the capacitor C1 from the threshold voltage detecting phase 2 to the threshold voltage compensation phase 3, and the gate of the second thin film transistor T2
- the source voltage is Vdata-Vref+Vth- ⁇ V, where Vdata is a high level of the data signal Data;
- Step S5 entering the lighting stage 4;
- the first scan signal Scan1 is switched to a low level, the second scan signal Scan2 is maintained at a low level, the data signal Data is maintained at a high level, and the initialization signal Vini is switched to a high level, the first film The transistor T1 is turned off, the third and fourth thin film transistors T3, T4 are turned on, and the organic light emitting diode D1 is illuminated.
- the high level of the initialization signal Vini is equal to the level of the first node G at this time or equal to the second node S at this time. The level is greater than the level of the first node G at this time.
- the voltage difference across the capacitor C1, that is, the gate-source voltage of the second thin film transistor T2 is still Vdata-Vref+Vth- ⁇ V, and the current flows through
- K is a structural parameter of the thin film transistor.
- the K value is relatively stable, and the driving current expression knows that the driving current is
- the threshold voltage Vth of the second thin film transistor T2 is independent, the influence of the threshold voltage Vth is eliminated, the uniformity and stability of the current of the organic light emitting diode are improved, and the display quality of the organic light emitting diode is improved, and at the same time, the initialization signal Vini Providing a high level such that the level of the third node B is equal to the level of the first node G at this time or equal to the level of the second node S at this time or greater than the level of the first node G at this time, and the driving film can be suppressed
- the transistor is the leakage current of the gate and the source of the second thin film transistor T2 or reverses the leakage current, thereby compensating or mitigating the compensation data voltage distortion caused by the leakage current, and improving the illumination phase compensation. According stability, improved compensation effect of the pixel driving circuit.
- the initialization voltage power supply module 20 includes: a multiplexer 21, an initialization high voltage generation module 22, and an initialization low voltage generation module 23;
- the input ends of the multiplexer 21 are electrically connected to the initialization high voltage generating module 22, respectively. And initializing the low voltage generating module 23, the output end is electrically connected to the third node B, and the control end is connected to the first strobe signal and the second strobe signal, and the first strobe signal and the second strobe signal may be according to It is necessary to select a suitable signal, and the multiplexer 21 is controlled by the first strobe signal and the second strobe signal to output a high level generated by the initialization high voltage generating module 22 or low by the initialization at a corresponding timing. The low level generated by the voltage generating module 23.
- the AMOLED pixel driving system further includes: a control signal generating module 30, a first scan signal output processing module 40 electrically connected to the control signal generating module 30, and an electrical property with the control signal generating module 30.
- the connected data signal output processing module 50 preferably, the control signal generating module 30 is an FPGA.
- the control signal generating module 30 provides the first scan signal output processing module 40 and the data signal output processing module 50 with the enable signal OE1 of the first scan signal Scan1 and the drive signal STB2 of the data signal Data, respectively, to control the first The scan signal output processing module 40 and the data signal output processing module 50 respectively output the first scan signal Scan1 and the data signal Data;
- the first strobe signal may be the enable signal OE1 of the first scan signal Scan1, and the second strobe signal may be the drive signal STB2 of the data signal Data; when the first scan signal Scan1 is enabled When the energy signal OE1 is at a high level, the first scan signal Scan1 is at a low level, and when the enable signal OE1 of the first scan signal Scan1 is at a low level, the first scan signal Scan1 is at a high level; When the driving signal STB2 of the data signal Data is at a low level, the data signal Data is at a low level, and when the driving signal STB2 of the data signal Data is at a high level, the data signal Data is at a high level; When the enable signal OE1 of the first scan signal Scan1 and the drive signal STB2 of the data signal Data are both at a high level, the initialization signal Vini is at a high level, and the initialization signal Vini is low at other times. level.
- the present invention provides an AMOLED pixel driving system, including a pixel driving circuit of a 4T1C architecture, and an initialization voltage power supply module electrically connected to the pixel driving circuit, which is driven by a pixel in an illumination phase by an initialization voltage supply module.
- the circuit provides a high-level initialization signal, which effectively compensates the threshold voltage of the driving thin film transistor, stabilizes the current flowing through the organic light emitting diode, and reduces the leakage current of the gate and source of the driving thin film transistor during the light emitting period, thereby improving the light emission.
- the stage compensates the stability of the data and improves the compensation effect.
- the invention also provides an AMOLED pixel driving method, which can effectively compensate the threshold voltage of the driving thin film transistor, stabilize the current flowing through the organic light emitting diode, improve the stability of the compensation data in the light emitting phase, reduce the leakage current, and improve the compensation effect.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electroluminescent Light Sources (AREA)
- Control Of El Displays (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
一种AMOLED像素驱动系统及AMOLED像素驱动方法。该AMOLED像素驱动系统包括4T1C架构的像素驱动电路(10)、以及与像素驱动电路(10)电性连接的初始化电压供电模块(20),通过初始化电压供电模块(20)在发光阶段(4)为像素驱动电路(10)提供高电平的初始化信号(Vini),在有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管(D1)的电流稳定的同时,还能减少发光阶段(4)驱动薄膜晶体管栅极和源极的漏电流,提升发光阶段(4)补偿数据的稳定性和阈值电压补偿效果。
Description
本发明涉及显示技术领域,尤其涉及一种AMOLED像素驱动系统及AMOLED像素驱动方法。
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED是电流驱动器件,当有电流流过有机发光二极管时,有机发光二极管发光,且发光亮度由流过有机发光二极管自身的电流决定。大部分已有的集成电路(Integrated Circuit,IC)都只传输电压信号,故AMOLED的像素驱动电路需要完成将电压信号转变为电流信号的任务。
请参阅图1,图1为现有的一种AMOLED像素驱动电路,包括:第一薄膜晶体管T10、第二薄膜晶体管T20、第三薄膜晶体管T30、第四薄膜晶体管T40、电容C10、以及有机发光二极管D10,所述第一薄膜晶体管T10的栅极接入第一扫描信号Scan1,源极接入数据信号Data,漏极电性连接第二薄膜晶体管T20的栅极,所述第二薄膜晶体管T20的漏极接入电源电压OVDD,源极电性连接有机发光二极管D10的阳极,所述第三薄膜晶体管T30的栅极接入第二扫描信号Scan2,源极电性连接第二薄膜晶体管T20的栅极,漏极电性连接第四薄膜晶体管T40的源极,所述第四薄膜晶体管T40的栅极接入第二扫描信号Scan2,源极接入初始化电压Vini,漏极电性连接有机发光二极管D10的阳极,所述电容C10的一端电性连接第二薄膜晶体管T20的栅极,另一端电性连接有机发光二极管D10的阳极,所述有机发光二极管D10的阴极接地。该AMOLED像素驱动电路依次经过复位、阈值电压侦测、阈值电压补偿、和发光四个阶段来完成像素驱动,可以实现
对驱动薄膜晶体管即第二薄膜晶体管T20的阈值电压特性漂移的补偿,然而由于该AMOLED像素驱动电路中的初始化电压Vini始终为低电平,因此在发光阶段所述第四薄膜晶体管T40的源极电压会低于第二薄膜晶体管T20的栅极和源极的电压,进而导致第二薄膜晶体管T20的栅极和源极产生漏电流,漏电流的存在使OLED补偿数据存在漂移,第二薄膜晶体管T20的栅极和源极两点电压出现畸变,影响补偿效果。
发明内容
本发明的目的在于提供一种AMOLED像素驱动系统,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,减少漏电流,提升发光阶段补偿数据的稳定性,提升补偿效果。
本发明的目的还在于提供一种AMOLED像素驱动方法,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,减少漏电流,提升发光阶段补偿数据的稳定性,提升补偿效果。
为实现上述目的,本发明提供了一种AMOLED像素驱动系统,包括:像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块;
所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、电容、以及有机发光二极管;
所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第一节点;
所述第二薄膜晶体管的栅极电性连接于第一节点,漏极接入电源电压,源极电性连接于第二节点;
所述第三薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第一节点,漏极电性连接于第三节点;
所述第四薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第二节点;
所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阳极电性连接于第二节点,阴极接地;
所述初始化电压供电模块电性连接于第三节点,并按照时序向所述第三节点提供具有高低交替电平的初始化信号,且所述初始化信号的高电平等于所述有机发光二极管发光时第一节点的电平或等于所述有机发光二极管发光时第二节点的电平或大于所述有机发光二极管发光时第一节点的电平。
所述初始化电压供电模块包括:多路复用器、初始化高电压产生模块、
以及初始化低电压产生模块;
所述多路复用器的输入端分别电性连接初始化高电压产生模块和初始化低电压产生模块,输出端电性连接于第三节点,控制端接入第一选通信号与第二选通信号。
所述AMOLED像素驱动系统还包括:控制信号产生模块、与所述控制信号产生模块电性连接的第一扫描信号输出处理模块、以及与所述控制信号产生模块电性连接的数据信号输出处理模块;
所述控制信号产生模块向所述第一扫描信号输出处理模块、以及数据信号输出处理模块分别提供第一扫描信号的使能信号、以及数据信号的驱动信号控制第一扫描信号输出处理模块、以及数据信号输出处理模块分别输出第一扫描信号和数据信号;
所述第一选通信号为第一扫描信号的使能信号,所述第二选通信号为数据信号的驱动信号;
当所述第一扫描信号的使能信号为高电平时,所述第一扫描信号为低电平,当所述第一扫描信号的使能信号为低电平时,所述第一扫描信号为高电平;
当所述数据信号的驱动信号为低电平时,所述数据信号为低电平,当所述数据信号的驱动信号为高电平时,所述数据信号为高电平;
当所述第一扫描信号的使能信号和所述数据信号的驱动信号均为高电平时,所述初始化信号为高电平,其余时刻所述初始化信号均为低电平。
所述第一扫描信号、所述第二扫描信号、以及数据信号相组合,先后对应于一复位阶段、一阈值电压侦测阶段、一阈值电压补偿阶段、以及一发光阶段;
在所述复位阶段中,所述第一扫描信号提供低电平,所述第二扫描信号提供高电平,所述数据信号提供低电平,所述初始化信号提供为低电平;
在所述阈值电压侦测阶段中,所述第一扫描信号切换至高电平,所述第二扫描信号切换至低电平,所述数据信号维持低电平,所述初始化信号维持低电平;
在所述阈值电压补偿阶段中,所述第一扫描信号维持高电平,所述第二扫描信号维持低电平,所述数据信号切换至高电平,所述初始化信号维持低电平;
在发光阶段中,所述第一扫描信号切换至低电平,所述第二扫描信号维持低电平,所述数据信号维持高电平,所述初始化信号切换至高电平。
所述数据信号的低电平高于所述初始化信号的低电平。
所述控制信号产生模块为FPGA。
本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤S1、提供一AMOLED像素驱动系统,包括:像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块;
所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、电容、以及有机发光二极管;
所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第一节点;
所述第二薄膜晶体管的栅极电性连接于第一节点,漏极接入电源电压,源极电性连接于第二节点;
所述第三薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第一节点,漏极电性连接于第三节点;
所述第四薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第二节点;
所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阳极电性连接于第二节点,阴极接地;
所述初始化电压供电模块电性连接于第三节点,并向所述第三节点提供初始化信号;
步骤S2、进入复位阶段;
所述第一扫描信号提供低电平,所述第二扫描信号提供高电平,所述数据信号提供低电平,所述初始化信号提供为低电平,所述第一薄膜晶体管关闭,第三和第四薄膜晶体管打开,所述第一节点和第二节点的电平均等于初始化信号的低电平;
步骤S3、进入阈值电压侦测阶段;
所述第一扫描信号切换至高电平,所述第二扫描信号切换至低电平,所述数据信号维持低电平,所述初始化信号维持低电平,所述第一薄膜晶体管打开,第三和第四薄膜晶体管关闭,所述第一节点的电平等于数据信号的低电平,第二节点的电平等于初始化信号的低电平,所述数据信号的低电平大于所述初始化信号的低电平,所述电容开始充电;
步骤S4、进入阈值电压补偿阶段;
所述第一扫描信号维持高电平,所述第二扫描信号维持低电平,所述数据信号切换至高电平,所述初始化信号维持低电平,所述第一薄膜晶体管打开,第三和第四薄膜晶体管关闭,所述第一节点的电平等于数据信号的高电平,第二节点的电平等于Vref-Vth+ΔV,其中Vref为数据信号的低
电平,Vth为第二薄膜晶体管的阈值电压,ΔV为从阈值电压侦测阶段到阈值电压补偿阶段电容所充的电压;
步骤S5、进入发光阶段;
所述第一扫描信号切换至低电平,所述第二扫描信号维持低电平,所述数据信号维持高电平,所述初始化信号切换至高电平,所述第一薄膜晶体管关闭,第三和第四薄膜晶体管打开,有机发光二极管发光,所述初始化信号的高电平等于此时第一节点的电平或等于此时第二节点的电平或大于此时第一节点的电平。
所述初始化电压供电模块包括:多路复用器、初始化高电压产生模块、以及初始化低电压产生模块;
所述多路复用器的输入端分别电性连接初始化高电压产生模块和初始化低电压产生模块,输出端电性连接于第三节点,控制端接入第一选通信号与第二选通信号。
所述AMOLED像素驱动系统还包括:控制信号产生模块、与所述控制信号产生模块电性连接的第一扫描信号输出处理模块、以及与所述控制信号产生模块电性连接的数据信号输出处理模块;
所述控制信号产生模块向所述第一扫描信号输出处理模块、以及数据信号输出处理模块分别提供第一扫描信号的使能信号、以及数据信号的驱动信号控制第一扫描信号输出处理模块、以及数据信号输出处理模块分别输出第一扫描信号和数据信号;
所述第一选通信号为第一扫描信号的使能信号,所述第二选通信号为数据信号的驱动信号;
当所述第一扫描信号的使能信号高电平时,所述第一扫描信号为低电平,当所述第一扫描信号的使能信号为低电平时,所述第一扫描信号为高电平;
当所述数据信号的驱动信号为低电平时,所述数据信号为低电平,当所述数据信号的驱动信号为高电平时,所述数据信号为高电平;
当所述第一扫描信号的使能信号和所述数据信号的驱动信号均为高电平时,所述初始化信号为高电平,其余时刻所述初始化信号均为低电平。
所述控制信号产生模块为FPGA。
本发明还提供一种AMOLED像素驱动系统,包括:像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块;
所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、电容、以及有机发光二极管;
所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第一节点;
所述第二薄膜晶体管的栅极电性连接于第一节点,漏极接入电源电压,源极电性连接于第二节点;
所述第三薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第一节点,漏极电性连接于第三节点;
所述第四薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第二节点;
所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阳极电性连接于第二节点,阴极接地;
所述初始化电压供电模块电性连接于第三节点,并按照时序向所述第三节点提供具有高低交替电平的初始化信号,且所述初始化信号的高电平等于所述有机发光二极管发光时第一节点的电平或等于所述有机发光二极管发光时第二节点的电平或大于所述有机发光二极管发光时第一节点的电平;
其中,所述初始化电压供电模块包括:多路复用器、初始化高电压产生模块、以及初始化低电压产生模块;
所述多路复用器的输入端分别电性连接初始化高电压产生模块和初始化低电压产生模块,输出端电性连接于第三节点,控制端接入第一选通信号与第二选通信号;
其中,所述第一扫描信号、所述第二扫描信号、以及数据信号相组合,先后对应于一复位阶段、一阈值电压侦测阶段、一阈值电压补偿阶段、以及一发光阶段;
在所述复位阶段中,所述第一扫描信号提供低电平,所述第二扫描信号提供高电平,所述数据信号提供低电平,所述初始化信号提供低电平;
在所述阈值电压侦测阶段中,所述第一扫描信号切换至高电平,所述第二扫描信号切换至低电平,所述数据信号维持低电平,所述初始化信号维持低电平;
在所述阈值电压补偿阶段中,所述第一扫描信号维持高电平,所述第二扫描信号维持低电平,所述数据信号切换至高电平,所述初始化信号维持低电平;
在发光阶段中,所述第一扫描信号切换至低电平,所述第二扫描信号维持低电平,所述数据信号维持高电平,所述初始化信号切换至高电平。
本发明的有益效果:本发明提供一种AMOLED像素驱动系统,包括
4T1C架构的像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块,通过初始化电压供电模块在发光阶段为像素驱动电路提供高电平的初始化信号,在有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定的同时,还能减少发光阶段驱动薄膜晶体管栅极和源极的漏电流,提升发光阶段补偿数据的稳定性,提升补偿效果。本发明还提供一种AMOLED像素驱动方法,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,提升发光阶段补偿数据的稳定性,减少漏电流,提升补偿效果。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种AMOLED像素驱动电路的电路图;
图2为本发明的AMOLED像素驱动系统的电路图;
图3为本发明的AMOLED像素驱动系统的时序图;
图4为本发明的AMOLED像素驱动方法的流程图。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2,本发明提供一种AMOLED像素驱动系统,包括:像素驱动电路10、以及与所述像素驱动电路10电性连接的初始化电压供电模块20;
所述像素驱动电路1包括:第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4、电容C1、以及有机发光二极管D1;
所述第一薄膜晶体管T1的栅极接入第一扫描信号Scan1,源极接入数据信号Data,漏极电性连接于第一节点G;
所述第二薄膜晶体管T2的栅极电性连接于第一节点G,漏极接入电源电压OVDD,源极电性连接于第二节点S;
所述第三薄膜晶体管T3的栅极接入第二扫描信号Scan2,源极电性连接于第一节点G,漏极电性连接于第三节点B;
所述第四薄膜晶体管T4的栅极接入第二扫描信号Scan2,源极电性连接于第三节点B,漏极电性连接于第二节点S;
所述电容C1的一端电性连接于第一节点G,另一端电性连接于第二节点S;
所述有机发光二极管D1的阳极电性连接于第二节点S,阴极接地;
所述初始化电压供电模块20电性连接于第三节点B,并按照时序向所述第二节点B提供具有高低交替电平的初始化信号Vini。
具体地,所述第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、第四薄膜晶体管T4可选择低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、以及非晶硅薄膜晶体管中任意一种。
具体地,所述初始化信号Vini的高电平可以设置成等于所述有机发光二极管D1发光时第一节点G的电平或等于所述有机发光二极管D1发光时第二节点S的电平,以减少所述有机发光二极管D1发光时第一和第二节点G、S与第三节点B之间的电压差,从而减小所述有机发光二极管D1发光时第一节点G和第二节点S的漏电流,保证OLED补偿数据的准确性,改善补偿效果。
进一步地,所述初始化信号Vini的高电平还可以设置成大于所述有机发光二极管D1发光时第一节点G的电平,此时第三节点B的电平大于第一节点G的电平大于第二节点S的电平,以使得有机发光二极管D1发光时的漏电流反向,抬升第一和第二节点G、S的电平,补偿电压畸变,保证OLED补偿数据的准确性,改善补偿效果。
需要说明的是,初始化信号Vini的高电平的电压值可以通过实验和仿真分析选得最佳值,并根据不同的制程条件和像素设计进行适度调节。
具体地,如图2所示,所述初始化电压供电模块20包括:多路复用器21、初始化高电压产生模块22、以及初始化低电压产生模块23;
所述多路复用器21的输入端分别电性连接初始化高电压产生模块22和初始化低电压产生模块23,输出端电性连接于第三节点B,控制端接入第一选通信号与第二选通信号,所述第一选通信号与第二选通信号可以根据需要选择适合的信号,通过所述第一选通信号与第二选通信号控制所述多路复用器21在相应的时刻输出由初始化高电压产生模块22产生的高电平或由初始化低电压产生模块23产生的低电平。
进一步地,所述AMOLED像素驱动系统还包括:控制信号产生模块30、与所述控制信号产生模块30电性连接的第一扫描信号输出处理模块40、以及与所述控制信号产生模块30电性连接的数据信号输出处理模块50,优
选地,所述控制信号产生模块30为现场可编程门阵列(Field Programmable Gate Array,FPGA)。
所述控制信号产生模块30向所述第一扫描信号输出处理模块40、以及数据信号输出处理模块50分别提供第一扫描信号Scan1的使能信号OE1、以及数据信号Data的驱动信号STB2控制第一扫描信号输出处理模块40、以及数据信号输出处理模块50分别输出第一扫描信号Scan1和数据信号Data;
此时,所述第一选通信号可以为第一扫描信号Scan1的使能信号OE1,所述第二选通信号可以为数据信号Data的驱动信号STB2;当所述第一扫描信号Scan1的使能信号OE1为高电平时,所述第一扫描信号Scan1为低电平,当所述第一扫描信号Scan1的使能信号OE1为低电平时,所述第一扫描信号Scan1为高电平;当所述数据信号Data的驱动信号STB2为低电平时,所述数据信号Data为低电平,当所述数据信号Data的驱动信号STB2为高电平时,所述数据信号Data为高电平;当所述第一扫描信号Scan1的使能信号OE1和所述数据信号Data的驱动信号STB2均为高电平时,所述初始化信号Vini为高电平,其余时刻所述初始化信号Vini均为低电平。
具体地,请参阅图3,本发明的AMOLED像素驱动系统的工作过程为:所述第一扫描信号Scan1、所述第二扫描信号Scan2、以及数据信号Data相组合,先后对应于一复位阶段1、一阈值电压侦测阶段2、一阈值电压补偿阶段3、以及一发光阶段4;
在所述复位阶段1中,所述第一扫描信号Scan1提供低电平,所述第二扫描信号Scan2提供高电平,所述数据信号Data提供低电平,所述初始化信号Vini提供低电平,所述第一薄膜晶体管T1关闭,第三和第四薄膜晶体管T3、T4打开,所述第一节点G和第二节点S的电平均等于初始化信号Vini的低电平;在所述阈值电压侦测阶段2中,所述第一扫描信号Scan1切换至高电平,所述第二扫描信号Scan2切换至低电平,所述数据信号Data维持低电平,所述初始化信号Vini维持低电平,所述第一薄膜晶体管T1打开,第三和第四薄膜晶体管T3、T4关闭,所述第一节点G的电平等于数据信号Data的低电平,第二节点S的电平等于初始化信号Vini的低电平,并预设所述数据信号Data的低电平高于所述初始化信号Vini的低电平,使得所述电容C1在此时开始充电;在所述阈值电压补偿阶段3中,所述第一扫描信号Scan1维持高电平,所述第二扫描信号Scan2维持低电平,所述数据信号Data切换至高电平,所述初始化信号Vini维持低电平,所述第一薄膜晶体管T1打开,第三和第四薄膜晶体管T3、T4关闭,所述第一节点G
的电平等于数据信号Data的高电平,第二节点S的电平等于Vref-Vth+ΔV,其中Vref为数据信号Data的低电平,Vth为第二薄膜晶体管T2的阈值电压,ΔV为从阈值电压侦测阶段2到阈值电压补偿阶段3电容C1所充的电压,第二薄膜晶体管T2的栅源极电压即电容C1两端的电压差为Vdata-Vref+Vth-ΔV,其中Vdata为数据信号Data的高电平;在发光阶段4中,所述第一扫描信号Scan1切换至低电平,所述第二扫描信号Scan2维持低电平,所述数据信号Data维持高电平,所述初始化信号Vini切换至高电平,所述第一薄膜晶体管T1关闭,第三和第四薄膜晶体管T3、T4打开,有机发光二极管D1发光,所述初始化信号Vini的高电平等于此时第一节点G的电平或等于此时第二节点S的电平或大于此时第一节点G的电平。
值得一提的是,在发光阶段4中,因为电容C1的存储作用,电容C1两端的电压差即第二薄膜晶体管T2的栅源极电压不变仍然为Vdata-Vref+Vth-ΔV,此时该流过有机发光二极管D1的驱动电流I=K(Vdata-Vref-ΔV)2,K为薄膜晶体管的结构参数,对于相同结构的薄膜晶体管,K值相对稳定,由该驱动电流表达式可知,驱动电流与第二薄膜晶体管T2的阈值电压Vth无关,消除了阈值电压Vth的影响,提升了有机发光二极管电流的一致性和稳定性,提高了有机发光二极管的显示品质,与此同时,所述初始化信号Vini提供高电平,使得第三节点B的电平等于此时第一节点G的电平或等于此时第二节点S的电平或大于此时第一节点G的电平,能够抑制驱动薄膜晶体管即第二薄膜晶体管T2的栅极与源极的漏电流或使漏电流反向,进而补偿或缓解因漏电流导致的补偿数据电压畸变,提升发光阶段补偿数据的稳定性,改善像素驱动电路的补偿效果。
请参阅图4,并同时参阅图3,本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤S1、提供一如图2所示AMOLED像素驱动系统,此处不再对该系统进行重复描述;
步骤S2、进入复位阶段1;
所述第一扫描信号Scan1提供低电平,所述第二扫描信号Scan2提供高电平,所述数据信号Data提供低电平,所述初始化信号Vini提供低电平,所述第一薄膜晶体管T)关闭,第三和第四薄膜晶体管T3、T4打开,所述第一节点G和第二节点S的电平均等于初始化信号Vini的低电平;
步骤S3、进入阈值电压侦测阶段2;
所述第一扫描信号Scan1切换至高电平,所述第二扫描信号Scan2切换至低电平,所述数据信号Data维持低电平,所述初始化信号Vini维持低电
平,所述第一薄膜晶体管T1打开,第三和第四薄膜晶体管T3、T4关闭,所述第一节点G的电平等于数据信号Data的低电平,第二节点S的电平等于初始化信号Vini的低电平,所述数据信号Data的低电平大于所述初始化信号Vini的低电平,所述电容C1开始充电;
步骤S4、进入阈值电压补偿阶段3;
所述第一扫描信号Scan1维持高电平,所述第二扫描信号Scan2维持低电平,所述数据信号Data切换至高电平,所述初始化信号Vini维持低电平,所述第一薄膜晶体管T1打开,第三和第四薄膜晶体管T3、T4关闭,所述第一节点G的电平等于数据信号Data的高电平,第二节点S的电平等于Vref-Vth+ΔV,第二其中Vref为数据信号Data的低电平,Vth为第二薄膜晶体管T2的阈值电压,ΔV为从阈值电压侦测阶段2到阈值电压补偿阶段3电容C1所充的电压,第二薄膜晶体管T2的栅源极电压为Vdata-Vref+Vth-ΔV,其中Vdata为数据信号Data的高电平;
步骤S5、进入发光阶段4;
所述第一扫描信号Scan1切换至低电平,所述第二扫描信号Scan2维持低电平,所述数据信号Data维持高电平,所述初始化信号Vini切换至高电平,所述第一薄膜晶体管T1关闭,第三和第四薄膜晶体管T3、T4打开,有机发光二极管D1发光,所述初始化信号Vini的高电平等于此时第一节点G的电平或等于此时第二节点S的电平或大于此时第一节点G的电平。
具体地,在发光阶段4中,因为电容C1的存储作用,电容C1两端的电压差即第二薄膜晶体管T2的栅源极电压不变仍然为Vdata-Vref+Vth-ΔV,此时该流过有机发光二极管D1的驱动电流I=K(Vdata-Vref-ΔV)2,K为薄膜晶体管的结构参数,对于相同结构的薄膜晶体管,K值相对稳定,由该驱动电流表达式可知,驱动电流与第二薄膜晶体管T2的阈值电压Vth无关,消除了阈值电压Vth的影响,提升了有机发光二极管电流的一致性和稳定性,提高了有机发光二极管的显示品质,与此同时,所述初始化信号Vini提供高电平,使得第三节点B的电平等于此时第一节点G的电平或等于此时第二节点S的电平或大于此时第一节点G的电平,能够抑制驱动薄膜晶体管即第二薄膜晶体管T2的栅极与源极的漏电流或使漏电流反向,进而补偿或缓解因漏电流导致的补偿数据电压畸变,提升发光阶段补偿数据的稳定性,改善像素驱动电路的补偿效果。
具体地,如图2所示,所述初始化电压供电模块20包括:多路复用器21、初始化高电压产生模块22、以及初始化低电压产生模块23;
所述多路复用器21的输入端分别电性连接初始化高电压产生模块22
和初始化低电压产生模块23,输出端电性连接于第三节点B,控制端接入第一选通信号与第二选通信号,所述第一选通信号与第二选通信号可以根据需要选择适合的信号,通过所述第一选通信号与第二选通信号控制所述多路复用器21在相应的时刻输出由初始化高电压产生模块22产生的高电平或由初始化低电压产生模块23产生的低电平。
进一步地,所述AMOLED像素驱动系统还包括:控制信号产生模块30、与所述控制信号产生模块30电性连接的第一扫描信号输出处理模块40、以及与所述控制信号产生模块30电性连接的数据信号输出处理模块50,优选地,所述控制信号产生模块30为FPGA。
所述控制信号产生模块30向所述第一扫描信号输出处理模块40、以及数据信号输出处理模块50分别提供第一扫描信号Scan1的使能信号OE1、以及数据信号Data的驱动信号STB2控制第一扫描信号输出处理模块40、以及数据信号输出处理模块50分别输出第一扫描信号Scan1和数据信号Data;
此时,所述第一选通信号可以为第一扫描信号Scan1的使能信号OE1,所述第二选通信号可以为数据信号Data的驱动信号STB2;当所述第一扫描信号Scan1的使能信号OE1为高电平时,所述第一扫描信号Scan1为低电平,当所述第一扫描信号Scan1的使能信号OE1为低电平时,所述第一扫描信号Scan1为高电平;当所述数据信号Data的驱动信号STB2为低电平时,所述数据信号Data为低电平,当所述数据信号Data的驱动信号STB2为高电平时,所述数据信号Data为高电平;当所述第一扫描信号Scan1的使能信号OE1和所述数据信号Data的驱动信号STB2均为高电平时,所述初始化信号Vini为高电平,其余时刻所述初始化信号Vini均为低电平。
综上所述,本发明提供一种AMOLED像素驱动系统,包括4T1C架构的像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块,通过初始化电压供电模块在发光阶段为像素驱动电路提供高电平的初始化信号,在有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定的同时,还能减少发光阶段驱动薄膜晶体管栅极和源极的漏电流,提升发光阶段补偿数据的稳定性,提升补偿效果。本发明还提供一种AMOLED像素驱动方法,能够有效补偿驱动薄膜晶体管的阈值电压,使流过有机发光二极管的电流稳定,改善发光阶段补偿数据的稳定性,减少漏电流,提升补偿效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形
都应属于本发明权利要求的保护范围。
Claims (14)
- 一种AMOLED像素驱动系统,包括:像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块;所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、电容、以及有机发光二极管;所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第一节点;所述第二薄膜晶体管的栅极电性连接于第一节点,漏极接入电源电压,源极电性连接于第二节点;所述第三薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第一节点,漏极电性连接于第三节点;所述第四薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第二节点;所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;所述有机发光二极管的阳极电性连接于第二节点,阴极接地;所述初始化电压供电模块电性连接于第三节点,并按照时序向所述第三节点提供具有高低交替电平的初始化信号,且所述初始化信号的高电平等于所述有机发光二极管发光时第一节点的电平或等于所述有机发光二极管发光时第二节点的电平或大于所述有机发光二极管发光时第一节点的电平。
- 如权利要求1所述的AMOLED像素驱动系统,其中,所述初始化电压供电模块包括:多路复用器、初始化高电压产生模块、以及初始化低电压产生模块;所述多路复用器的输入端分别电性连接初始化高电压产生模块和初始化低电压产生模块,输出端电性连接于第三节点,控制端接入第一选通信号与第二选通信号。
- 如权利要求2所述的AMOLED像素驱动系统,还包括:控制信号产生模块、与所述控制信号产生模块电性连接的第一扫描信号输出处理模块、以及与所述控制信号产生模块电性连接的数据信号输出处理模块;所述控制信号产生模块向所述第一扫描信号输出处理模块、以及数据信号输出处理模块分别提供第一扫描信号的使能信号、以及数据信号的驱动信号控制第一扫描信号输出处理模块、以及数据信号输出处理模块分别 输出第一扫描信号和数据信号;所述第一选通信号为第一扫描信号的使能信号,所述第二选通信号为数据信号的驱动信号;当所述第一扫描信号的使能信号为高电平时,所述第一扫描信号为低电平,当所述第一扫描信号的使能信号为低电平时,所述第一扫描信号为高电平;当所述数据信号的驱动信号为低电平时,所述数据信号为低电平,当所述数据信号的驱动信号为高电平时,所述数据信号为高电平;当所述第一扫描信号的使能信号和所述数据信号的驱动信号均为高电平时,所述初始化信号为高电平,其余时刻所述初始化信号均为低电平。
- 如权利要求1所述的AMOLED像素驱动系统,其中,所述第一扫描信号、所述第二扫描信号、以及数据信号相组合,先后对应于一复位阶段、一阈值电压侦测阶段、一阈值电压补偿阶段、以及一发光阶段;在所述复位阶段中,所述第一扫描信号提供低电平,所述第二扫描信号提供高电平,所述数据信号提供低电平,所述初始化信号提供低电平;在所述阈值电压侦测阶段中,所述第一扫描信号切换至高电平,所述第二扫描信号切换至低电平,所述数据信号维持低电平,所述初始化信号维持低电平;在所述阈值电压补偿阶段中,所述第一扫描信号维持高电平,所述第二扫描信号维持低电平,所述数据信号切换至高电平,所述初始化信号维持低电平;在发光阶段中,所述第一扫描信号切换至低电平,所述第二扫描信号维持低电平,所述数据信号维持高电平,所述初始化信号切换至高电平。
- 如权利要求4所述的AMOLED像素驱动系统,其中,所述数据信号的低电平高于所述初始化信号的低电平。
- 如权利要求3所述的AMOLED像素驱动系统,其中,所述控制信号产生模块为FPGA。
- 一种AMOLED像素驱动方法,包括如下步骤:步骤S1、提供一AMOLED像素驱动系统,包括:像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块;所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、电容、以及有机发光二极管;所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第一节点;所述第二薄膜晶体管的栅极电性连接于第一节点,漏极接入电源电压,源极电性连接于第二节点;所述第三薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第一节点,漏极电性连接于第三节点;所述第四薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第二节点;所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;所述有机发光二极管的阳极电性连接于第二节点,阴极接地;所述初始化电压供电模块电性连接于第三节点,并向所述第三节点提供初始化信号;步骤S2、进入复位阶段;所述第一扫描信号提供低电平,所述第二扫描信号提供高电平,所述数据信号提供低电平,所述初始化信号提供为低电平,所述第一薄膜晶体管关闭,第三和第四薄膜晶体管打开,所述第一节点和第二节点的电平均等于初始化信号的低电平;步骤S3、进入阈值电压侦测阶段;所述第一扫描信号切换至高电平,所述第二扫描信号切换至低电平,所述数据信号维持低电平,所述初始化信号维持低电平,所述第一薄膜晶体管打开,第三和第四薄膜晶体管关闭,所述第一节点的电平等于数据信号的低电平,第二节点的电平等于初始化信号的低电平,所述数据信号的低电平高于所述初始化信号的低电平,所述电容开始充电;步骤S4、进入阈值电压补偿阶段;所述第一扫描信号维持高电平,所述第二扫描信号维持低电平,所述数据信号切换至高电平,所述初始化信号维持低电平,所述第一薄膜晶体管打开,第三和第四薄膜晶体管关闭,所述第一节点的电平等于数据信号的高电平,第二节点的电平等于Vref-Vth+ΔV,其中Vref为数据信号的低电平,Vth为第二薄膜晶体管的阈值电压,ΔV为从阈值电压侦测阶段到阈值电压补偿阶段电容所充的电压;步骤S5、进入发光阶段;所述第一扫描信号切换至低电平,所述第二扫描信号维持低电平,所述数据信号维持高电平,所述初始化信号切换至高电平,所述第一薄膜晶体管关闭,第三和第四薄膜晶体管打开,有机发光二极管发光,所述初始化信号的高电平等于此时第一节点的电平或等于此时第二节点的电平或大于此时第一节点的电平。
- 如权利要求7所述的AMOLED像素驱动方法,其中,所述初始化电压供电模块包括:多路复用器、初始化高电压产生模块、以及初始化低电压产生模块;所述多路复用器的输入端分别电性连接初始化高电压产生模块和初始化低电压产生模块,输出端电性连接于第三节点,控制端接入第一选通信号与第二选通信号。
- 如权利要求8所述的AMOLED像素驱动方法,其中,所述AMOLED像素驱动系统还包括:控制信号产生模块、与所述控制信号产生模块电性连接的第一扫描信号输出处理模块、以及与所述控制信号产生模块电性连接的数据信号输出处理模块;所述控制信号产生模块向所述第一扫描信号输出处理模块、以及数据信号输出处理模块分别提供第一扫描信号的使能信号、以及数据信号的驱动信号控制第一扫描信号输出处理模块、以及数据信号输出处理模块分别输出第一扫描信号和数据信号;所述第一选通信号为第一扫描信号的使能信号,所述第二选通信号为数据信号的驱动信号;当所述第一扫描信号的使能信号为高电平时,所述第一扫描信号为低电平,当所述第一扫描信号的使能信号为低电平时,所述第一扫描信号为高电平;当所述数据信号的驱动信号为低电平时,所述数据信号为低电平,当所述数据信号的驱动信号为高电平时,所述数据信号为高电平;当所述第一扫描信号的使能信号和所述数据信号的驱动信号均为高电平时,所述初始化信号为高电平,其余时刻所述初始化信号均为低电平。
- 如权利要求9所述的AMOLED像素驱动方法,其中,所述控制信号产生模块为FPGA。
- 一种AMOLED像素驱动系统,包括:像素驱动电路、以及与所述像素驱动电路电性连接的初始化电压供电模块;所述像素驱动电路包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、电容、以及有机发光二极管;所述第一薄膜晶体管的栅极接入第一扫描信号,源极接入数据信号,漏极电性连接于第一节点;所述第二薄膜晶体管的栅极电性连接于第一节点,漏极接入电源电压,源极电性连接于第二节点;所述第三薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第一 节点,漏极电性连接于第三节点;所述第四薄膜晶体管的栅极接入第二扫描信号,源极电性连接于第三节点,漏极电性连接于第二节点;所述电容的一端电性连接于第一节点,另一端电性连接于第二节点;所述有机发光二极管的阳极电性连接于第二节点,阴极接地;所述初始化电压供电模块电性连接于第三节点,并按照时序向所述第三节点提供具有高低交替电平的初始化信号,且所述初始化信号的高电平等于所述有机发光二极管发光时第一节点的电平或等于所述有机发光二极管发光时第二节点的电平或大于所述有机发光二极管发光时第一节点的电平;其中,所述初始化电压供电模块包括:多路复用器、初始化高电压产生模块、以及初始化低电压产生模块;所述多路复用器的输入端分别电性连接初始化高电压产生模块和初始化低电压产生模块,输出端电性连接于第三节点,控制端接入第一选通信号与第二选通信号;其中,所述第一扫描信号、所述第二扫描信号、以及数据信号相组合,先后对应于一复位阶段、一阈值电压侦测阶段、一阈值电压补偿阶段、以及一发光阶段;在所述复位阶段中,所述第一扫描信号提供低电平,所述第二扫描信号提供高电平,所述数据信号提供低电平,所述初始化信号提供低电平;在所述阈值电压侦测阶段中,所述第一扫描信号切换至高电平,所述第二扫描信号切换至低电平,所述数据信号维持低电平,所述初始化信号维持低电平;在所述阈值电压补偿阶段中,所述第一扫描信号维持高电平,所述第二扫描信号维持低电平,所述数据信号切换至高电平,所述初始化信号维持低电平;在发光阶段中,所述第一扫描信号切换至低电平,所述第二扫描信号维持低电平,所述数据信号维持高电平,所述初始化信号切换至高电平。
- 如权利要求11所述的AMOLED像素驱动系统,还包括:控制信号产生模块、与所述控制信号产生模块电性连接的第一扫描信号输出处理模块、以及与所述控制信号产生模块电性连接的数据信号输出处理模块;所述控制信号产生模块向所述第一扫描信号输出处理模块、以及数据信号输出处理模块分别提供第一扫描信号的使能信号、以及数据信号的驱动信号控制第一扫描信号输出处理模块、以及数据信号输出处理模块分别 输出第一扫描信号和数据信号;所述第一选通信号为第一扫描信号的使能信号,所述第二选通信号为数据信号的驱动信号;当所述第一扫描信号的使能信号为高电平时,所述第一扫描信号为低电平,当所述第一扫描信号的使能信号为低电平时,所述第一扫描信号为高电平;当所述数据信号的驱动信号为低电平时,所述数据信号为低电平,当所述数据信号的驱动信号为高电平时,所述数据信号为高电平;当所述第一扫描信号的使能信号和所述数据信号的驱动信号均为高电平时,所述初始化信号为高电平,其余时刻所述初始化信号均为低电平。
- 如权利要求11所述的AMOLED像素驱动系统,其中,所述数据信号的低电平高于所述初始化信号的低电平。
- 如权利要求12所述的AMOLED像素驱动系统,其中,所述控制信号产生模块为FPGA。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/509,199 US10140923B2 (en) | 2017-01-20 | 2017-02-16 | Pixel driving system of AMOLED having initialization signal of alternating high and low levels and method for driving pixel of AMOLED having initialization signal of alternating high and low levels |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710042152.1 | 2017-01-20 | ||
CN201710042152.1A CN106548753B (zh) | 2017-01-20 | 2017-01-20 | Amoled像素驱动系统及amoled像素驱动方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018133144A1 true WO2018133144A1 (zh) | 2018-07-26 |
Family
ID=58398669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073725 WO2018133144A1 (zh) | 2017-01-20 | 2017-02-16 | Amoled像素驱动系统及amoled像素驱动方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10140923B2 (zh) |
CN (1) | CN106548753B (zh) |
WO (1) | WO2018133144A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267299A (zh) * | 2021-12-28 | 2022-04-01 | 昆山工研院新型平板显示技术中心有限公司 | 一种显示装置及驱动方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109870470B (zh) * | 2017-06-30 | 2024-07-16 | 京东方科技集团股份有限公司 | 探测像素电路、探测面板和光电检测装置 |
CN107274836B (zh) * | 2017-08-02 | 2020-03-17 | 深圳市华星光电半导体显示技术有限公司 | 具有温度补偿功能的amoled显示面板及显示装置 |
CN107393466B (zh) * | 2017-08-14 | 2019-01-15 | 深圳市华星光电半导体显示技术有限公司 | 耗尽型tft的oled外部补偿电路 |
CN107833557B (zh) * | 2017-11-20 | 2019-05-31 | 深圳市华星光电半导体显示技术有限公司 | Amoled显示器及其驱动方法 |
KR102559087B1 (ko) * | 2017-12-26 | 2023-07-24 | 엘지디스플레이 주식회사 | 유기 발광 다이오드 디스플레이 장치 |
CN110164375B (zh) | 2018-03-16 | 2021-01-22 | 京东方科技集团股份有限公司 | 像素补偿电路、驱动方法、电致发光显示面板及显示装置 |
CN108182908A (zh) * | 2018-03-26 | 2018-06-19 | 京东方科技集团股份有限公司 | 像素驱动电路及其驱动方法、显示面板及其驱动方法 |
CN108335666B (zh) * | 2018-04-19 | 2020-06-09 | 东南大学 | 一种补偿驱动管阈值电压漂移的硅基oled像素电路及其方法 |
CN108682399B (zh) * | 2018-05-21 | 2020-03-06 | 京东方科技集团股份有限公司 | 显示装置、像素驱动电路及其驱动方法 |
CN108986748B (zh) * | 2018-08-02 | 2021-08-27 | 京东方科技集团股份有限公司 | 一种消除驱动晶体管漏电流的方法及系统、显示装置 |
CN109887465B (zh) * | 2019-03-07 | 2020-05-12 | 深圳市华星光电半导体显示技术有限公司 | 像素驱动电路及显示面板 |
KR102627150B1 (ko) * | 2019-10-14 | 2024-01-22 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치의 화소, 및 유기 발광 표시 장치 |
KR102698616B1 (ko) | 2020-11-20 | 2024-08-27 | 엘지디스플레이 주식회사 | 표시장치 및 그의 구동방법 |
CN111179841B (zh) * | 2020-02-28 | 2021-05-11 | 京东方科技集团股份有限公司 | 像素补偿电路及其驱动方法、显示装置 |
US11011113B1 (en) * | 2020-03-26 | 2021-05-18 | Sharp Kabushiki Kaisha | TFT pixel threshold voltage compensation circuit with global compensation |
CN111429842A (zh) | 2020-04-23 | 2020-07-17 | 合肥京东方卓印科技有限公司 | 显示面板及其驱动方法、显示装置 |
CN111627388B (zh) | 2020-06-28 | 2022-01-14 | 武汉天马微电子有限公司 | 显示面板及其驱动方法、显示装置 |
CN111754921B (zh) * | 2020-07-24 | 2023-09-26 | 武汉华星光电半导体显示技术有限公司 | 像素电路 |
CN111951731B (zh) * | 2020-08-21 | 2021-12-21 | 京东方科技集团股份有限公司 | 像素单元阵列及其驱动方法、显示面板和显示装置 |
CN114730542B (zh) | 2020-09-29 | 2025-01-07 | 京东方科技集团股份有限公司 | 像素驱动电路、显示设备以及像素驱动方法 |
US11710453B2 (en) * | 2020-10-26 | 2023-07-25 | Samsung Display Co., Ltd. | Pixel circuit, display device including the same, and method of driving pixel circuit |
CN112419983B (zh) * | 2020-12-01 | 2022-08-02 | 重庆邮电大学 | 一种新型amoled像素驱动电路及驱动方法 |
KR20230060774A (ko) | 2021-10-28 | 2023-05-08 | 엘지디스플레이 주식회사 | 전계발광 표시장치 및 이의 구동 방법 |
CN114530133B (zh) * | 2022-03-04 | 2023-07-25 | 广州华星光电半导体显示技术有限公司 | 显示面板及显示终端 |
CN114743501B (zh) * | 2022-06-09 | 2022-08-23 | 惠科股份有限公司 | 补偿电路、控制芯片和显示装置 |
WO2025004127A1 (ja) * | 2023-06-26 | 2025-01-02 | シャープディスプレイテクノロジー株式会社 | 表示装置およびその駆動方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011039269A (ja) * | 2009-08-11 | 2011-02-24 | Seiko Epson Corp | 発光装置、電子機器および発光装置の駆動方法 |
CN103700347A (zh) * | 2014-01-10 | 2014-04-02 | 深圳市华星光电技术有限公司 | 有机发光二极管的驱动电路 |
CN104751789A (zh) * | 2013-12-31 | 2015-07-01 | 乐金显示有限公司 | 有机发光二极管显示装置及其驱动方法 |
CN105989804A (zh) * | 2015-03-23 | 2016-10-05 | 三星显示有限公司 | 有机发光二极管显示器及其制造方法 |
CN106205495A (zh) * | 2016-09-09 | 2016-12-07 | 深圳市华星光电技术有限公司 | Amoled像素驱动电路及像素驱动方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101498094B1 (ko) * | 2008-09-29 | 2015-03-05 | 삼성디스플레이 주식회사 | 표시 장치 및 그 구동 방법 |
KR101528961B1 (ko) * | 2012-08-30 | 2015-06-16 | 엘지디스플레이 주식회사 | 유기발광 표시장치 및 그 구동방법 |
US8946994B2 (en) * | 2012-09-25 | 2015-02-03 | Lg Display Co., Ltd. | Organic light emitting display device and driving method thereof |
KR102417983B1 (ko) * | 2015-08-27 | 2022-07-07 | 삼성디스플레이 주식회사 | 유기전계발광 표시장치 및 그의 구동방법 |
-
2017
- 2017-01-20 CN CN201710042152.1A patent/CN106548753B/zh active Active
- 2017-02-16 US US15/509,199 patent/US10140923B2/en active Active
- 2017-02-16 WO PCT/CN2017/073725 patent/WO2018133144A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011039269A (ja) * | 2009-08-11 | 2011-02-24 | Seiko Epson Corp | 発光装置、電子機器および発光装置の駆動方法 |
CN104751789A (zh) * | 2013-12-31 | 2015-07-01 | 乐金显示有限公司 | 有机发光二极管显示装置及其驱动方法 |
CN103700347A (zh) * | 2014-01-10 | 2014-04-02 | 深圳市华星光电技术有限公司 | 有机发光二极管的驱动电路 |
CN105989804A (zh) * | 2015-03-23 | 2016-10-05 | 三星显示有限公司 | 有机发光二极管显示器及其制造方法 |
CN106205495A (zh) * | 2016-09-09 | 2016-12-07 | 深圳市华星光电技术有限公司 | Amoled像素驱动电路及像素驱动方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267299A (zh) * | 2021-12-28 | 2022-04-01 | 昆山工研院新型平板显示技术中心有限公司 | 一种显示装置及驱动方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106548753A (zh) | 2017-03-29 |
CN106548753B (zh) | 2018-06-01 |
US20180233085A1 (en) | 2018-08-16 |
US10140923B2 (en) | 2018-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018133144A1 (zh) | Amoled像素驱动系统及amoled像素驱动方法 | |
US11551606B2 (en) | LED driving circuit, display panel, and pixel driving device | |
WO2023005621A1 (zh) | 像素电路及其驱动方法、显示面板 | |
CN106297662B (zh) | Amoled像素驱动电路及驱动方法 | |
CN104867442B (zh) | 一种像素电路及显示装置 | |
WO2018068393A1 (zh) | Oled像素混合补偿电路及混合补偿方法 | |
JP6882591B2 (ja) | Amoledピクセル駆動回路及びピクセル駆動方法 | |
WO2016119304A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2016155053A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2018045660A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2016145693A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
CN108777131B (zh) | Amoled像素驱动电路及驱动方法 | |
WO2019037300A1 (zh) | Amoled像素驱动电路 | |
JP2019532357A (ja) | Amoled画素駆動回路および駆動方法 | |
WO2016123855A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2017156826A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2018149008A1 (zh) | Amoled像素驱动电路及amoled像素驱动方法 | |
WO2016123854A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2016119305A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
WO2017020360A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
US10475385B2 (en) | AMOLED pixel driving circuit and driving method capable of ensuring uniform brightness of the organic light emitting diode and improving the display effect of the pictures | |
CN110349534B (zh) | 像素电路及其驱动方法 | |
WO2019165650A1 (zh) | Amoled像素驱动电路及驱动方法 | |
WO2017156828A1 (zh) | Amoled像素驱动电路及像素驱动方法 | |
KR20200036588A (ko) | 구동특성 보상회로를 갖는 유기발광 표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15509199 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892969 Country of ref document: EP Kind code of ref document: A1 |