[go: up one dir, main page]

WO2018119163A1 - Lipide cationique ionisable pour l'administration d'arn - Google Patents

Lipide cationique ionisable pour l'administration d'arn Download PDF

Info

Publication number
WO2018119163A1
WO2018119163A1 PCT/US2017/067756 US2017067756W WO2018119163A1 WO 2018119163 A1 WO2018119163 A1 WO 2018119163A1 US 2017067756 W US2017067756 W US 2017067756W WO 2018119163 A1 WO2018119163 A1 WO 2018119163A1
Authority
WO
WIPO (PCT)
Prior art keywords
atx
etoac
solution
added
compound
Prior art date
Application number
PCT/US2017/067756
Other languages
English (en)
Inventor
Joseph E. Payne
Padmanabh Chivukula
Steven P. Tanis
Priya Karmali
Original Assignee
Payne Joseph E
Padmanabh Chivukula
Tanis Steven P
Priya Karmali
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/387,067 external-priority patent/US10383952B2/en
Priority to KR1020197021199A priority Critical patent/KR102299053B1/ko
Priority to EP25156699.8A priority patent/EP4527831A3/fr
Priority to JP2019533410A priority patent/JP7437935B2/ja
Priority to KR1020217027797A priority patent/KR102385562B1/ko
Priority to PL17826404.0T priority patent/PL3558943T3/pl
Priority to AU2017379059A priority patent/AU2017379059B2/en
Priority to CA3046885A priority patent/CA3046885C/fr
Priority to RS20240048A priority patent/RS65078B1/sr
Application filed by Payne Joseph E, Padmanabh Chivukula, Tanis Steven P, Priya Karmali filed Critical Payne Joseph E
Priority to HRP20231742TT priority patent/HRP20231742T1/hr
Priority to SI201731472T priority patent/SI3558943T1/sl
Priority to IL290592A priority patent/IL290592B2/en
Priority to CN201780086949.XA priority patent/CN110325511B/zh
Priority to FIEP17826404.0T priority patent/FI3558943T3/fi
Priority to CN202210319695.4A priority patent/CN114917203A/zh
Priority to ES17826404T priority patent/ES2969232T3/es
Priority to DK17826404.0T priority patent/DK3558943T3/da
Priority to IL306099A priority patent/IL306099B1/en
Priority to EP23196560.9A priority patent/EP4310075A3/fr
Priority to EP17826404.0A priority patent/EP3558943B1/fr
Publication of WO2018119163A1 publication Critical patent/WO2018119163A1/fr
Priority to IL267511A priority patent/IL267511B/en
Priority to AU2021200663A priority patent/AU2021200663B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C333/00Derivatives of thiocarbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C333/02Monothiocarbamic acids; Derivatives thereof
    • C07C333/04Monothiocarbamic acids; Derivatives thereof having nitrogen atoms of thiocarbamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics

Definitions

  • nucleic acids are currently being developed as therapeutics for the treatment of a number of diseases.
  • these molecules are being developed, there has been developed a need to produce them in a form that is stable and has a long shelf-life and that can be easily incorporated into an anhydrous organic or anhydrous polar aprotic solvent to enable encapsulations of the nucleic acids without the side-reactions that can occur in a polar aqueous solution or nonpolar solvents.
  • the description herein relates to novel lipid compositions that facilitate the intracellular delivery of biologically active and therapeutic molecules.
  • the description relates also to pharmaceutical compositions that comprise such lipid compositions, and that are useful to deliver therapeutically effective amounts of biologically active molecules into the cells of patients.
  • the delivery of a therapeutic compound to a subject is important for its therapeutic effects and usually it can be impeded by limited ability of the compound to reach targeted cells and tissues. Improvement of such compounds to enter the targeted cells of tissues by a variety of means of delivery is crucial.
  • the description herein relates the novel lipids, in compositions and methods for preparation that facilitate the targeted intracellular delivery of biological active molecules.
  • biologically active molecules for which effective targeting to a patient's tissues is often not achieved include: numerous proteins including immunoglobulin proteins, polynucleotides such as genomic DNA, cDNA, or mRNA antisense
  • polynucleotides and many low molecular weight compounds, whether synthetic or naturally occurring, such as the peptide hormones and antibiotics.
  • nucleic acids are currently being developed as therapeutics for the treatment of a number of diseases. These nucleic acids include mRNA for gene expression, DNA in gene therapy, plasmids, small interfering nucleic acids (siNA), siRNA, and microRNA (miRNA) for use in RNA interference (RNAi), antisense molecules, ribozymes, antagomirs, and aptamers.
  • mRNA small interfering nucleic acids
  • siRNA small interfering nucleic acids
  • miRNA microRNA
  • antisense molecules ribozymes
  • antagomirs antagomirs
  • aptamers RNA interference
  • Ri is a branched chain alkyl consisting of 10 to 31 carbons
  • R2 is a linear alkyl, alkenyl, or alkynyl consisting of 2 to 20 carbons, or a branched chain alkyl consisting of 10 to 31 carbons;
  • Li and L2 are the same or different, each a linear alkane of 1 to 20 carbons or a linear alkene of 2 to 20 carbons;
  • Xi is S or O
  • R3 is a linear or branched alkylene consisting of 1 to 6 carbons
  • R4 and R5 are the same or different, each a hydrogen or a linear or branched alkyl consisting of 1 to 6 carbons; or
  • Ri is a branched, noncyclic alkyl or alkenyl of 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19,
  • Li is linear alkane of 1 to 15 carbons
  • R21S a linear alkyl or alkenyl of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 carbons or a branched, noncyclic alkyl or alkenyl of 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20,
  • L2 is a linear alkane of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 carbons
  • X is O or S
  • R3 is a linear alkane of 1, 2, 3, 4, 5, or 6 carbons
  • R4 and R5 are the same or different, each a linear or branched, noncyclic alkyl of 1, 2, 3, 4, 5, or 6 carbons;
  • Ri has 8, 9, 10, 11, 12, 13, 14, 16, or 17 carbons.
  • Ri comprises two identical alkyl or alkenyl groups.
  • Ri comprises an alkenyl group.
  • R2 is an alkenyl
  • R2 is a branched, noncyclic alkyl.
  • L2 has 4, 5, 6, or 7 carbons.
  • the compound is selected from the group consisting of compounds of formulas ATX-0082, ATX-0085, ATX-0083, ATX-0121, ATX-0091, ATX- 0102, ATX-0098, ATX-0092, ATX-0084, ATX-0095, ATX-0125, ATX-0094, ATX-0109, ATX-0110, ATX-0118, ATX-0108, ATX-0107, ATX-0093, ATX-0097, and ATX-0096
  • Ri is a branched, noncyclic alkyl or alkenyl of 12, 13, 14, 16, 17, 18, 19, 20, 21, or 22 carbons;
  • Li is a linear alkane of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 carbons;
  • R21S linear alkyl or alkenyl of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 carbons or a
  • L 2 is a linear alkane of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 carbons
  • X is O or S
  • R3 is linear alkane of 1, 2, 3, 4, 5, or 6 carbons
  • R4 and R5 are the same or different, each a linear or branched, noncyclic alkyl of 1, 2, 3, 4, 5, or 6 carbons;
  • a 1 mM solution of the compound has a pKa of 5.6 to 7.0 as measured by
  • the compound has a c-LogD value is between 10 and 14;
  • Ri has 12, 13, 14, 16, or 17 carbons.
  • Ri comprises two identical alkyl or alkenyl groups.
  • Ri comprises an alkyl group.
  • R2 is an alkenyl
  • R2 is a branched, noncyclic alkyl.
  • Li and L2 independently have 1, 2, or 3 carbons.
  • Li and L2 both have 3 carbons.
  • R3 is propylene or butylene.
  • the compound's c-LogD value is at least 11 and its measured pKa more basic than 6.
  • the compound is selected from the group consisting of compounds of formulas ATX-0111, ATX-0132, ATX-0134, ATX-0100, ATX-0117, ATX-0114, ATX-01 15. ATX-0101, ATX-0106.
  • Ri is a branched, noncyclic alkyl of 12, 13, 14, 16, 17, 18, 19, 20, 21 , or 22 carbons;
  • Li is a linear alkane of 1 , 2, or 3carbons;
  • R2 is linear alkenyl of 8, 9, 10, 11 , or 12 carbons or a branched, noncyclic alkyl of 12,
  • L2 is a linear alkane of 1 , 2, or 3 carbons
  • X is O or S
  • R3 is linear alkane of 2 or 3 carbons
  • R4 and R5 are the same or different, each a linear or branched, noncyclic alkyl of 1 or 2 carbons; or a pharmaceutically acceptable salt or solvate thereof.
  • cationic lipids described herein are in a
  • the pharmaceutical composition preferably comprises a lipid nanoparticle comprising a nucleic acid, preferably a RNA polynucleotide.
  • the lipid nanoparticle preferably increases the lifetime of RNA in the circulation.
  • the lipid nanoparticle therein delivers the nucleic acid to cells in the body.
  • the nucleic acid has an activity of suppressing the expression of a target gene.
  • the nucleic acid has an activity of increasing production of a protein it encodes upon expression in cells of the body.
  • compositions for introducing a nucleic acid into a cell of a mammal by using any of the compositions, above.
  • the cell may be in a liver, lung, kidney, brain, blood, spleen, or bone.
  • the composition preferably is administered intravenously, subcutaneously, intraperitoneally, or intrathecally.
  • the composition preferably is administered intravenously, subcutaneously, intraperitoneally, or intrathecally.
  • compositions described herein are used in a method for treating cancer or inflammatory disease.
  • the disease may be one selected from the group consisting of immune disorder, cancer, renal disease, fibrotic disease, genetic abnormality, inflammation, and cardiovascular disorder.
  • FIG. 1 shows the synthetic pathway of ATX-0043 from hexanoate (SM 1), 4-aminobutanoic acid (SM 2), and 4-bromobutyric acid (SM 3). Intermediates (Ints) 1-8 and reactions are described in Example 2.
  • FIG. 2 shows the synthetic pathway of ATX-0057 from octanoate (SM 1), 4- aminobutanoic acid (SM 2), and 4-bromobutyric acid (SM 3). Ints 1-8 and reactions are described in Example 3.
  • FIG. 3 shows the synthetic pathway of ATX-0058 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-7 and reactions are described in Example 4.
  • FIG. 4 shows the synthetic pathway of ATX-0081 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-8 and reactions are described in Example 5.
  • FIG. 5 shows the synthetic pathway of ATX-0082 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-7 and reactions are described in Example 6.
  • FIG. 6 shows the synthetic pathway of ATX-0086 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-8 and reactions are described in Example 7.
  • FIG. 7 shows the synthetic pathway of ATX-0087 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-8 and reactions are described in Example 8.
  • FIG. 8 shows the synthetic pathway of ATX-0088 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-8 and reactions are described in Example 9.
  • FIG. 9 shows the synthetic pathway of ATX-0083 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-8 and reactions are described in Example 10.
  • FIG. 10 shows the synthetic pathway of ATX-0084 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-8 and reactions are described in Example 11.
  • FIG. 11 shows the synthetic pathway of ATX-0061 from SM 1 and SM 2, which are the same as in FIG. 1. Ints 1-5 and reactions are described in Example 12.
  • FIG. 12 shows the synthetic pathway of ATX-0063 from SM 1 and SM 2, which are the same as in FIG. 1. Ints 1-5 and reactions are described in Example 13.
  • FIG. 13 shows the synthetic pathway of ATX-0064 from SM 1 and SM 2, which are the same as in FIG. 1. Ints 1-5 and reactions are described in Example 14.
  • FIG. 14 shows the synthetic pathway of ATX-0081. Ints 1-6 and reactions are described in Example 15.
  • FIG. 15 shows the synthetic pathway of ATX-0085 from SM 1, SM 2 and SM3, which are the same as in FIG. 2. Ints 1-11 and reactions are described in Example 16.
  • FIG. 16 shows the synthetic pathway of ATX-0134. Ints 1-6 and reactions are described in Example 17.
  • FIG. 17 shows the EPO mRNA levels (ng/ml) following injection of 0.03 mg/kg and 0.1 mg/kg mRNA in nanoparticles comprising ATX-002, ATX-0057, ATX-0081. ATX-0082, ATX-0083, ATX-0084, ATX-0085, ATX-0086. or ATX-0087 cationic lipid into mice.
  • FIG. 18 shows the anti-Factor VII knockdown activity of liposomes with ATX-0057 and ATX-0058 vs. the activity of ATX-002 and control (PBS alone).
  • FIG. 19 shows the anti-EPO knockdown activity of liposomes with ATX- 0057 vs. the activity of ATX-002.
  • composition means a product comprising the specified ingredients in the specified amounts, as well as any product that results, directly or indirectly, from
  • “In combination with” means the administration of a compound of formula I with other medicaments in the methods of treatment of this invention, meaning that the compounds of formula I and the other medicaments are administered sequentially or concurrently in separate dosage forms, or are administered concurrently in the same dosage form.
  • “Mammal” means a human or other mammal, or means a human being.
  • Patient means both human and other mammals, preferably human.
  • Alkyl means a saturated or unsaturated, straight or branched, hydrocarbon chain.
  • the alkyl group has 1-18 carbons, i.e. is a Ci-Cls group, or is a C1-C12 group, a C1-C6 group, or a C1-C4 group.
  • the alkyl group has zero branches (i.e. , is a straight chain), one branch, two branches, or more than two branches.
  • Alkenyl is an unsaturated alkyl that may have one double bond, two double bonds, or more than two double bonds.
  • Alkynyl is an unsaturated alkyl that may have one triple bond, two triple bonds, or more than two triple bonds.
  • Alkyl chains may be optionally substituted with 1 substituent (i.e. , the alkyl group is mono-substituted), or 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc.
  • the substituents may be selected from the group consisting of hydroxy, amino, alkylamino, boronyl, carboxy, nitro, cyano, and the like.
  • the alkyl group incorporates one or more heteroatoms, the alkyl group is referred to herein as a heteroalkyl group.
  • the substituents on an alkyl group are hydrocarbons, then the resulting group is simply referred to as a substituted alkyl.
  • the alkyl group including substituents has less than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, or 7 carbons.
  • “Lower alkyl” means a group having one to six carbons in the chain which chain may be straight or branched.
  • suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, and hexyl.
  • Alkoxy means an alkyl-O-group wherein alkyl is as defined above.
  • Non- limiting examples of alkoxy groups include: methoxy, ethoxy, n-propoxy, isopropoxy, n- butoxy and heptoxy.
  • the bond to the parent moiety is through the ether oxygen.
  • Alkoxyalkyl means an alkoxy-alkyl-group in which the alkoxy and alkyl are as previously described. Preferred alkoxyalkyl comprise a lower alkyl group. The bond to the parent moiety is through the alkyl.
  • Alkylaryl means an alkyl-aryl-group in which the alkyl and aryl are as previously described. Preferred alkylaryls comprise a lower alkyl group. The bond to the parent moiety is through the aryl.
  • Aminoalkyl means an NH2-alkyl-group, wherein alkyl is as defined above, bound to the parent moiety through the alkyl group.
  • Carboxyalkyl means an HOOC-alkyl-group, wherein alkyl is as defined above, bound to the parent moiety through the alkyl group.
  • “Commercially available chemicals” and the chemicals used in the Examples set forth herein may be obtained from standard commercial sources, where such sources include, for example, Acros Organics (Pittsburgh, Pa.), Sigma-Adrich Chemical (Milwaukee, Wis.), Avocado Research (Lancashire, U.K.), Bionet (Cornwall, U.K.), Boron Molecular (Research Triangle Park, N.C.), Combi-Blocks (San Diego, Calif), Eastman Organic Chemicals, Eastman Kodak Company (Rochester, N.Y.), Fisher Scientific Co. (Pittsburgh, Pa.), Frontier Scientific (Logan, Utah), ICN Biomedicals, Inc.
  • Halo means fluoro, chloro, bromo, or iodo groups. Preferred are fluoro, chloro or bromo, and more preferred are fluoro and chloro.
  • Halogen means fluorine, chlorine, bromine, or iodine. Preferred are fluorine, chlorine and bromine.
  • Heteroalkyl means a saturated or unsaturated, straight or branched, chain containing carbon and at least one heteroatom.
  • the heteroalkyl group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms.
  • the heteroalkyl chain contains from 1 to 18 (i.e., 1-18) member atoms (carbon and heteroatoms), and in various embodiments contain 1-12, or 1-6, or 1-4 member atoms.
  • the heteroalkyl group has zero branches (i.e., is a straight chain), one branch, two branches, or more than two branches.
  • the hetereoalkyl group is saturated.
  • the heteroalkyl group is unsaturated.
  • the unsaturated heterolkyl may have one double bond, two double bonds, more than two double bonds, and/or one triple bond, two triple bonds, or more than two triple bonds.
  • Heteroalkyl chains may be substituted or unsubstituted.
  • the heteroalkyl chain is unsubstituted.
  • the heteroalkyl chain is substituted.
  • a substituted heteroalkyl chain may have 1 substituent (i.e. , by monosubstituted), or may have, e.g. , 1-2 substituents, or 1-3 substituents, or 1-4 substituents.
  • Exemplary heteroalkyl substituents include esters (— C(O)— O— R) and carbonyls (— C(O)— ).
  • Hydroxyalkyl means an HO-alkyl-group, in which alkyl is previously defined. Preferred hydroxyalkyls contain lower alkyl. Non-limiting examples of suitable hydroxyalkyl groups include hydroxymethyl and 2 -hydroxy ethyl.
  • Hydrate means a solvate wherein the solvent molecule is H2O.
  • Lipid means an organic compound that comprises an ester of fatty acid and is characterized by being insoluble in water, but soluble in many organic solvents. Lipids are usually divided into at least three classes: (1) “simple lipids,” which include fats and oils as well as waxes; (2) “compound lipids,” which include phospholipids, glycolipids, cationic lipids, non-cationic lipids, neutral lipids, and anionic lipids, all described in more detail herein; and (3) "derived lipids” such as steroids.
  • Lipid particle means a lipid formulation that can be used to deliver a therapeutic nucleic acid (e.g. , mRNA) to a target site of interest (e.g., cell, tissue, organ, and the like).
  • the lipid particle is a nucleic acid-lipid particle, which is typically formed from a cationic lipid, a non-cationic lipid (e.g. , a phospholipid), a conjugated lipid that prevents aggregation of the particle (e.g. , a PEG-lipid), and optionally cholesterol.
  • the therapeutic nucleic acid e.g., mRNA
  • Lipid particles typically have a mean diameter of from 30 nm to 150 nm, from 40 nm to 150 nm, from 50 nm to 150 nm, from 60 nm to 130 nm, from 70 nm to 110 nm, from 70 nm to 100 nm, from 80 nm to 100 nm, from 90 nm to 100 nm, from 70 to 90 nm, from 80 nm to 90 nm, from 70 nm to 80 nm, or 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 1 15 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm,
  • Lipid encapsulated means a lipid particle that provides a therapeutic nucleic acid such as an mRNA with full encapsulation, partial encapsulation, or both.
  • the nucleic acid e.g. , mRNA
  • the nucleic acid is fully encapsulated in the lipid particle.
  • Lipid conjugate means a conjugated lipid that inhibits aggregation of lipid particles.
  • Such lipid conjugates include, but are not limited to, PEG-lipid conjugates such as, e.g. , PEG coupled to dialkyloxypropyls (e.g., PEG-DAA conjugates), PEG coupled to diacylglycerols (e.g., PEG-DAG conjugates), PEG coupled to cholesterol, PEG coupled to phosphatidylethanolamines, and PEG conjugated to ceramides, cationic PEG lipids, polyoxazoline (POZ)-lipid conjugates, polyamide oligomers, and mixtures thereof.
  • PEG-lipid conjugates such as, e.g. , PEG coupled to dialkyloxypropyls (e.g., PEG-DAA conjugates), PEG coupled to diacylglycerols (e.g., PEG-DAG conjugates), PEG coupled to cholesterol, PEG coupled to phosphat
  • PEG or POZ can be conjugated directly to the lipid or may be linked to the lipid via a linker moiety.
  • Any linker moiety suitable for coupling the PEG or the POZ to a lipid can be used including, e.g. , non-ester-containing linker moieties and ester-containing linker moieties.
  • non-ester-containing linker moieties such as amides or carbamates, are used.
  • Amphipathic lipid means the material in which the hydrophobic portion of the lipid material orients into a hydrophobic phase, while the hydrophilic portion orients toward the aqueous phase.
  • Hydrophilic characteristics derive from the presence of polar or charged groups such as carbohydrates, phosphate, carboxylic, sulfate, amino, sulfhydryl, nitro, hydroxyl, and other like groups. Hydrophobicity can be conferred by the inclusion of apolar groups that include, but are not limited to, long-chain saturated and unsaturated aliphatic hydrocarbon groups and such groups substituted by one or more aromatic, cycloaliphatic, or heterocyclic group(s). Examples of amphipathic compounds include, but are not limited to, phospholipids, aminolipids, and sphingolipids.
  • phospholipids include, but are not limited to, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, palmitoyloleoyl phosphatidylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dipalmitoylphosphatidylcholine, dioleoylphosphatidylcholine, distearoylphosphatidylcholine, and dilinoleoylphosphatidylcholine.
  • amphipathic lipids Other compounds lacking in phosphorus, such as sphingolipid, glycosphingolipid families, diacylglycerols, and ⁇ -acyloxyacids, are also within the group designated as amphipathic lipids. Additionally, the amphipathic lipids described above can be mixed with other lipids including triglycerides and sterols.
  • Neutral lipid means a lipid species that exist either in an uncharged or neutral zwitterionic form at a selected pH. At physiological pH, such lipids include, for example, diacylphosphatidylcholine, diacylphosphatidylethanolamine, ceramide,
  • Non-cationic lipid means an amphipathic lipid or a neutral lipid or anionic lipid, and is described in more detail below.
  • Anionic lipid means a lipid that is negatively charged at physiological pH. These lipids include, but are not limited to, phosphatidylglycerols, cardiolipins,
  • diacylphosphatidylserines diacylphosphatidic acids, N-dodecanoyl
  • phosphatidylethanolamines N-succinyl phosphatidylethanolamines, N- glutarylphosphatidylethanolamines, lysylphosphatidylglycerols,
  • POPG palmitoyloleyolphosphatidylglycerol
  • Hydrophilic lipids means compounds having apolar groups that include, but are not limited to, long-chain saturated and unsaturated aliphatic hydrocarbon groups and such groups optionally substituted by one or more aromatic, cycloaliphatic, or heterocyclic group(s). Suitable examples include, but are not limited to, diacylglycerol, dialkylglycerol, N-N-dialkylamino, l,2-diacyloxy-3-aminopropane, and l,2-dialkyl-3-aminopropane.
  • “Cationic lipid” and “amino lipid” are used interchangeably mean those lipids and salts thereof having one, two, three, or more fatty acid or fatty alkyl chains and a pH-titratable amino head group (e.g. , an alkylamino or dialkylamino head group).
  • the cationic lipid is typically protonated (i.e. , positively charged) at a pH below the pKa of the cationic lipid and is substantially neutral at a pH above the pKa.
  • the cationic lipids of the invention may also be termed titratable cationic lipids.
  • the cationic lipids comprise: a protonatable tertiary amine (e.g. , pH-titratable) head group; Ci8 alkyl chains, wherein each alkyl chain independently has 0 to 3 (e.g., 0, 1, 2, or 3) double bonds; and ether, ester, or ketal linkages between the head group and alkyl chains.
  • a protonatable tertiary amine e.g. , pH-titratable
  • Ci8 alkyl chains wherein each alkyl chain independently has 0 to 3 (e.g., 0, 1, 2, or 3) double bonds
  • ether, ester, or ketal linkages between the head group and alkyl chains e.g., 1, 2, or 3
  • Such cationic lipids include, but are not limited to, DSDMA, DODMA, DLinDMA, DLenDMA, ⁇ - DLenDMA, DLin-K-DMA, DLin-K-C2-DMA (also known as DLin-C2K-DMA, XTC2, and C2K), DLin-K-C3 -DM A, DLin-K-C4-DMA, DLen-C2K-DMA, y-DLen-C2K-DMA, DLin- M-C2-DMA (also known as MC2), DLin-M-C3 -DMA (also known as MC3) and (DLin-MP- DMA)(also known as 1-Bl 1).
  • Substituted means substitution with specified groups other than hydrogen, or with one or more groups, moieties, or radicals which can be the same or different, with each, for example, being independently selected.
  • Antisense nucleic acid means a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 Nature 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 Science 261, 1004 and Woolf et al, U.S. Pat. No. 5,849,902).
  • antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule.
  • an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop.
  • the antisense molecule can be complementary to two (or even more) noncontiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both.
  • antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex.
  • the antisense oligonucleotides can comprise one or more RNAse H activating region, which is capable of activating RNAse H cleavage of a target RNA.
  • Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof.
  • Antisense RNA is an RNA strand having a sequence complementary to a target gene mRNA, that can induce RNAi by binding to the target gene mRNA.
  • Antisense RNA is an RNA strand having a sequence complementary to a target gene mRNA, and thought to induce RNAi by binding to the target gene mRNA.
  • Sense RNA has a sequence complementary to the antisense RNA, and annealed to its complementary antisense RNA to form iNA. These antisense and sense RNAs have been conventionally synthesized with an RNA synthesizer.
  • Nucleic acid means deoxyribonucleotides or ribonucleotides and polymers thereof in single- or double-stranded form.
  • the term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2'-0-methyl ribonucleotides, peptide-nucleic acids (PNAs).
  • PNAs peptide-nucleic acids
  • RNA means a molecule comprising at least one ribonucleotide residue.
  • ribonucleotide is meant a nucleotide with a hydroxyl group at the 2' position of a ⁇ -D-ribo- furanose moiety.
  • the terms include double-stranded RNA, single-stranded RNA, isolated RNA such as partially purified RNA, essentially pure RNA, synthetic RNA, recombinantly produced RNA, as well as altered RNA that differs from naturally occurring RNA by the addition, deletion, substitution, and/or alteration of one or more nucleotides.
  • Such alterations can include addition of non-nucleotide material, such as to the end(s) of an interfering RNA or internally, for example at one or more nucleotides of the RNA.
  • Nucleotides in the RNA molecules of the instant invention can also comprise non-standard nucleotides, such as non- naturally occurring nucleotides or chemically synthesized nucleotides or deoxynucleotides. These altered RNAs can be referred to as analogs or analogs of naturally-occurring RNA.
  • ribonucleic acid and "RNA” refer to a molecule containing at least one ribonucleotide residue, including siRNA, antisense RNA, single stranded RNA, microRNA, mRNA, noncoding RNA, and multivalent RNA.
  • a ribonucleotide is a nucleotide with a hydroxyl group at the 2' position of a B-D-ribo-furanose moiety.
  • RNA double-stranded RNA
  • single-stranded RNA isolated RNA such as partially purified RNA, essentially pure RNA, synthetic RNA, recombinantly produced RNA, as well as modified and altered RNA that differs from naturally occurring RNA by the addition, deletion, substitution, modification, and/or alteration of one or more nucleotides.
  • Alterations of an RNA can include addition of non-nucleotide material, such as to the end(s) of an interfering RNA or internally, for example at one or more nucleotides of an RNA nucleotides in an RNA molecule include non-standard nucleotides, such as non-naturally occurring nucleotides or chemically synthesized nucleotides or deoxynucleotides. These altered RNAs can be referred to as analogs.
  • Nucleotides means natural bases (standard) and modified bases well known in the art. Such bases are generally located at the ⁇ position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar, and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate, and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see, for example, Usman and McSwiggen, supra; Eckstein, et al, International PCT Publication No.
  • base modifications that can be introduced into nucleic acid molecules include: inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2,4,6- trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5- alkylcytidines (e.g. , 5-methylcytidine), 5-alkyluridines (e.g.
  • modified bases in this aspect is meant nucleotide bases other than adenine, guanine, cytosine, and uracil at ⁇ position or their equivalents.
  • Complementary nucleotide bases means a pair of nucleotide bases that form hydrogen bonds with each other.
  • nucleic acid can form hydrogen bond(s) with another nucleic acid sequence either by traditional Watson-Crick or by other non-traditional modes of binding.
  • miRNA means single-stranded RNA molecules of 21-23 nucleotides in length, which regulate gene expression miRNAs are encoded by genes that are transcribed from DNA but not translated into protein (non-coding RNA); instead they are processed from primary transcripts known as pri-miRNA to short stem-loop structures called pre-miRNA and finally to functional miRNA. Mature miRNA molecules are partially complementary to one or more messenger RNA (mRNA) molecules, and their main function is to downregulate gene expression
  • mRNA messenger RNA
  • siRNA mean a class of double-stranded RNA molecules, 16-40 nucleotides in length, that play a variety of roles in biology. Most notably, siRNA is involved in the RNA interference (RNAi) pathway, where it interferes with the expression of a specific gene. In addition to their role in the RNAi pathway, siRNAs also act in RNAi-related pathways, e.g. , as an antiviral mechanism or in shaping the chromatin structure of a genome; the complexity of these pathways is only now being elucidated.
  • RNAi RNA interference
  • RNAi means an RNA-dependent gene silencing process that is controlled by the RNA-induced silencing complex (RISC) and is initiated by short double-stranded RNA molecules in a cell, where they interact with the catalytic RISC component argonaute.
  • RISC RNA-induced silencing complex
  • the double-stranded RNA or RNA-like iNA or siRNA is exogenous (coming from infection by a virus with an RNA genome or from transfected iNA or siRNA), the RNA or iNA is imported directly into the cytoplasm and cleaved to short fragments by the enzyme dicer.
  • the initiating dsRNA can also be endogenous (originating in the cell), as in pre- microRNAs expressed from RNA-coding genes in the genome.
  • RNA-induced silencing complex RISC
  • argonaute proteins endonucleases
  • salts denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
  • compound of formula I contain both a basic moiety, such as, but not limited to, a pyridine or imidazole, and an acidic moiety, such as, but not limited to, a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term “salt(s)" as used herein.
  • the salts can be pharmaceutically acceptable (i. e.
  • salts of a compound of formula I may be formed, for example, by reacting a compound of formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
  • Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2 -hydroxy ethanesulfonates, lactates, maleates, methanesulfonates, 2-napthalenesulfonates, nicotinates, nitrates, oxalates, pectinates, persulfates, 3-phenylpropionates
  • Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as benzathines, dicyclohexylamines, hydrabamines (formed with N,N-bis(dehydroabietyl)ethylenediamine), N-methyl-D-glucamines, N-methyl-D-glucamides, t-butyl amines, and salts with amino acids such as arginine or lysine.
  • Basic nitrogen-containing groups may be quartemized with agents such as lower alkyl halides (e.g.
  • dialkyl sulfates e.g., dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides e.g., decyl, lauryl, myristyl, and stearyl chlorides, bromides, and iodides
  • arylalkyl halides e.g., benzyl and
  • Compound of formula I can exist in unsolvated and solvated forms, including hydrated forms.
  • the solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, are equivalent to the unsolvated forms for the purposes of this disclosure.
  • polymorphs of the compound of this disclosure i.e. , polymorphs of the compound of formula I are within the scope of this disclosure.
  • Individual stereoisomers of the compound of this disclosure may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers.
  • the chiral centers of the compound herein can have the S or R configuration as defined by the IUPAC 1974 Recommendations.
  • the use of the terms “salt”, “solvate”, and the like, is intended to equally apply to the salt and solvate of enantiomers, stereoisomers, rotamers, tautomers, racemates, or prodrugs of the disclosed compound.
  • Classes of compounds that can be used as the chemotherapeutic agent include: alkylating agents, antimetabolites, natural products and their derivatives, hormones and steroids (including synthetic analogs), and synthetics. Examples of compounds within these classes are given below.
  • a compound of formula I includes a pharmaceutically acceptable salt thereof, in a lipid composition, comprising a nanoparticle or a bilayer of lipid molecules.
  • the lipid bilayer preferably further comprises a neutral lipid or a polymer.
  • the lipid composition preferably comprises a liquid medium.
  • the composition preferably further encapsulates a nucleic acid.
  • the nucleic acid preferably has an activity of suppressing the expression of the target gene by utilizing RNA interference (RNAi).
  • RNAi RNA interference
  • the lipid composition preferably further comprises a nucleic acid and a neutral lipid or a polymer.
  • the lipid composition preferably encapsulates the nucleic acid.
  • the description provides lipid particles comprising one or more therapeutic mRNA molecules encapsulated within the lipid particles.
  • the mRNA is fully encapsulated within the lipid portion of the lipid particle such that the mRNA in the lipid particle is resistant in aqueous solution to nuclease degradation.
  • the lipid particles described herein are substantially non-toxic to mammals such as humans.
  • the lipid particles typically have a mean diameter of from 30 nm to 150 nm, from 40 nm to 150 nm, from 50 nm to 150 nm, from 60 nm to 130 nm, from 70 nm to 110 nm, or from 70 to 90 nm.
  • the lipid particles of the invention also typically have a lipid:RNA ratio (mass/mass ratio) of from 1 : 1 to 100: 1, from 1 : 1 to 50: 1, from 2: 1 to 25: 1, from 3: 1 to 20: 1, from 5: 1 to 15: 1, or from 5: 1 to 10: 1, or from 10: 1 to 14: 1, or from 9: 1 to 20: 1.
  • the lipid particles have a lipid: RNA ratio (mass/mass ratio) of 12: 1.
  • the lipid particles have a lipid: mRNA ratio (mass/mass ratio) of 13: 1.
  • the lipid particles comprise an mRNA, a cationic lipid (e.g., one or more cationic lipids or salts thereof described herein), a phospholipid, and a conjugated lipid that inhibits aggregation of the particles (e.g. , one or more PEG-lipid conjugates).
  • the lipid particles can also include cholesterol.
  • the lipid particles may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mRNA that express one or more polypeptides.
  • the mRNA may be fully encapsulated within the lipid portion of the particle, thereby protecting the nucleic acid from nuclease degradation.
  • a lipid particle comprising an mRNA is fully encapsulated within the lipid portion of the particle, thereby protecting the nucleic acid from nuclease degradation.
  • the mRNA in the lipid particle is not substantially degraded after exposure of the particle to a nuclease at 37°C for at least 20, 30, 45, or 60 minutes.
  • the mRNA in the lipid particle is not substantially degraded after incubation of the particle in serum at 37°C for at least 30, 45, or 60 minutes or at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, or 36 hours.
  • the mRNA is complexed with the lipid portion of the particle.
  • the nucleic acid-lipid particle compositions are substantially non-toxic to mammals such as humans.
  • “Fully encapsulated” means that the nucleic acid (e.g. , mRNA) in the nucleic acid-lipid particle is not significantly degraded after exposure to serum or a nuclease assay that would significantly degrade free RNA. When fully encapsulated, preferably less than 25% of the nucleic acid in the particle is degraded in a treatment that would normally degrade 100% of free nucleic acid, more preferably less than 10%, and most preferably less than 5% of the nucleic acid in the particle is degraded. “Fully encapsulated” also means that the nucleic acid-lipid particles do not rapidly decompose into their component parts upon in vivo administration.
  • the present invention provides a nucleic acid-lipid particle composition comprising a plurality of nucleic acid-lipid particles.
  • the lipid particle comprises mRNA that is fully encapsulated within the lipid portion of the particles, such that from 30% to 100%, from 40% to 100%, from 50% to 100%, from 60% to 100%, from 70% to 100%, from 80% to 100%, from 90% to 100%, from 30% to 95%, from 40% to 95%, from 50% to 95%, from 60% to 95%, from 70% to 95%, from 80% to 95%, from 85% to 95%, from 90% to 95%, from 30% to 90%, from 40% to 90%, from 50% to 90%, from 60% to 90%, from 70% to 90%, from 80% to 90%, or at least 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% (or any fraction thereof or range therein) of the particles have the mRNA encapsulated therein.
  • the proportions of the components can be varied and the delivery efficiency of a particular formulation can be measured using assays know in the art.
  • the description includes synthesis of certain cationic lipid compounds.
  • the compounds are particularly suitable for delivering polynucleotides to cells and tissues as demonstrated in subsequent sections.
  • the lipomacrocycle compound described herein may be used for other purposes as well as, for example, recipients and additives.
  • the cationic lipid compounds may be combined with an agent to form microparticles, nanoparticles, liposomes, or micelles.
  • the agent to be delivered by the particles, liposomes, or micelles may be in the form of a gas, liquid, or solid, and the agent may be a polynucleotide, protein, peptide, or small molecule.
  • the lipomacrocycle compounds may be combined with other cationic lipid compounds, polymers (synthetic or natural), surfactants, cholesterol, carbohydrates, proteins, or lipids, to form the particles. These particles may then optionally be combined with a pharmaceutical excipient to form a pharmaceutical composition.
  • the present description provides novel cationic lipid compounds and drug delivery systems based on the use of such cationic lipid compounds.
  • the system may be used in the pharmaceutical/drug delivery arts to deliver polynucleotides, proteins, small molecules, peptides, antigen, or drugs, to a patient, tissue, organ, or cell.
  • These novel compounds may also be used as materials for coating, additives, excipients, materials, or bioengineering.
  • the cationic lipid compounds of the present description provide for several different uses in the drug delivery art.
  • the amine-containing portion of the cationic lipid compounds may be used to complex polynucleotides, thereby enhancing the delivery of polynucleotide and preventing their degradation.
  • the cationic lipid compounds may also be used in the formation of picoparticles, nanoparticles, microparticles, liposomes, and micelles containing the agent to be delivered.
  • the cationic lipid compounds are biocompatible and biodegradable, and the formed particles are also biodegradable and biocompatible and may be used to provide controlled, sustained release of the agent to be delivered.
  • These and their corresponding particles may also be responsive to pH changes given that these are protonated at lower pH. They may also act as proton sponges in the delivery of an agent to a cell to cause endosome lysis.
  • the cationic lipid compounds are relatively non- cytotoxic.
  • the cationic lipid compounds may be biocompatible and biodegradable.
  • the cationic lipid may have a measured pKa (in the formulation milieu) in the range of approximately 5.5 to approximately 7.5, more preferably between approximately 6.0 and approximately 7.0. It may be designed to have a desired pKa between approximately 3.0 and approximately 9.0, or between approximately 5.0 and approximately 8.0.
  • the cationic lipid compounds described herein are particularly attractive for drug delivery for several reasons: they contain amino groups for interacting with DNA, RNA, other polynucleotides, and other negatively charged agents, for buffering the pH, for causing endo-osmolysis, for protecting the agent to be delivered, they can be synthesized from commercially available starting materials; and/or they are pH responsive and can be engineered with a desired pKa.
  • Non-limiting examples of non-cationic lipids include phospholipids such as lecithin, phosphatidylethanolamine, lysolecithin, lysophosphatidylethanolamine,
  • phosphatidylserine phosphatidylinositol
  • sphingomyelin egg sphingomyelin (ESM)
  • cephalin phosphatidylserine
  • phosphatidylinositol phosphatidylinositol
  • sphingomyelin egg sphingomyelin (ESM)
  • cephalin phosphatidic acid
  • cerebrosides phosphatidic acid
  • dicetylphosphate dicetylphosphate
  • DSPC distearoylphosphatidylcholine
  • DOPC dioleoylphosphatidylcholine
  • DPPC dipalmitoylphosphatidylcholine
  • DOPG dioleoylphosphatidylglycerol
  • dipalmitoylphosphatidylglycerol DPPG
  • dioleoylphosphatidylethanolamine DOPE
  • palmitoyloleoyl-phosphatidylcholine POPC
  • palmitoyloleoyl-phosphatidylethanolamine POPE
  • palmitoyloleyol-phosphatidylglycerol POPG
  • dipalmitoyl- phosphatidylethanolamine DPPE
  • dimyristoyl- phosphatidylethanolamine DMPE
  • distearoyl-phosphatidylethanolamine DSPE
  • monomethyl-phosphatidylethanolamine dimethyl-phosphatidylethanolamine
  • dielaidoyl- phosphatidylethanolamine DEPE
  • acyl groups in these lipids are preferably acyl groups derived from fatty acids having C10-C24 carbon chains, e.g. , lauroyl, myristoyl, palmitoyl, stearoyl, or oleoyl.
  • non-cationic lipids include sterols such as cholesterol and derivatives thereof.
  • cholesterol derivatives include polar analogues such as 5a-cholestanol, 5a-coprostanol, cholesteryl-(2'-hydroxy)-ethyl ether, cholesteryl-(4'- hydroxy)-butyl ether, and 6-ketocholestanol; non-polar analogues such as 5a- cholestane, cholestenone, 5a-cholestanone, 5a-cholestanone, and cholesteryl decanoate; and mixtures thereof.
  • the cholesterol derivative is a polar analogue such as cholesteryl-(4'-hydroxy)-butyl ether.
  • the non-cationic lipid present in lipid particles comprises or consists of a mixture of one or more phospholipids and cholesterol or a derivative thereof. In other embodiments, the non-cationic lipid present in the lipid particles comprises or consists of one or more phospholipids, e.g., a cholesterol-free lipid particle formulation. In yet other embodiments, the non-cationic lipid present in the lipid particles comprises or consists of cholesterol or a derivative thereof, e.g. , a phospholipid-free lipid particle formulation.
  • non-cationic lipids include nonphosphorous containing lipids such as, e.g. , stearylamine, dodecylamine, hexadecylamine, acetyl palmitate, glycerol ricinoleate, hexadecyl stearate, isopropyl myristate, amphoteric acrylic polymers, triethanolamine-lauryl sulfate, alkyl-aryl sulfate polyethyloxylated fatty acid amides, dioctadecyldimethyl ammonium bromide, ceramide, and sphingomyelin.
  • nonphosphorous containing lipids such as, e.g. , stearylamine, dodecylamine, hexadecylamine, acetyl palmitate, glycerol ricinoleate, hexadecyl stearate, isopropyl my
  • the non-cationic lipid comprises from 10 mol % to 60 mol %, from 20 mol % to 55 mol %, from 20 mol % to 45 mol %, 20 mol % to 40 mol %, from 25 mol % to 50 mol %, from 25 mol % to 45 mol %, from 30 mol % to 50 mol %, from 30 mol % to 45 mol %, from 30 mol % to 40 mol %, from 35 mol % to 45 mol %, from 37 mol % to 42 mol %, or 35 mol %, 36 mol %, 37 mol %, 38 mol %, 39 mol %, 40 mol %, 41 mol %, 42 mol %, 43 mol %, 44 mol %, or 45 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the mixture may comprise up to 40 mol %, 45 mol %, 50 mol %, 55 mol %, or 60 mol % of the total lipid present in the particle.
  • the phospholipid component in the mixture may comprise from 2 mol % to 20 mol %, from 2 mol % to 15 mol %, from 2 mol % to 12 mol %, from 4 mol % to 15 mol %, or from 4 mol % to 10 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the phospholipid component in the mixture comprises from 5 mol % to 10 mol %, from 5 mol % to 9 mol %, from 5 mol % to 8 mol %, from 6 mol % to 9 mol %, from 6 mol % to 8 mol %, or 5 mol %, 6 mol %, 7 mol %, 8 mol %, 9 mol %, or 10 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the cholesterol component in the mixture may comprise from 25 mol % to 45 mol %, from 25 mol % to 40 mol %, from 30 mol % to 45 mol %, from 30 mol % to 40 mol %, from 27 mol % to 37 mol %, from 25 mol % to 30 mol %, or from 35 mol % to 40 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the cholesterol component in the mixture comprises from 25 mol % to 35 mol %, from 27 mol % to 35 mol %, from 29 mol % to 35 mol %, from 30 mol % to 35 mol %, from 30 mol % to 34 mol %, from 31 mol % to 33 mol %, or 30 mol %, 31 mol %, 32 mol %, 33 mol %, 34 mol %, or 35 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the cholesterol or derivative thereof may comprise up to 25 mol %, 30 mol %, 35 mol %, 40 mol %, 45 mol %, 50 mol %, 55 mol %, or 60 mol % of the total lipid present in the particle.
  • the cholesterol or derivative thereof in the phospholipid-free lipid particle formulation may comprise from 25 mol % to 45 mol %, from 25 mol % to 40 mol %, from 30 mol % to 45 mol %, from 30 mol % to 40 mol %, from 31 mol % to 39 mol %, from 32 mol % to 38 mol %, from 33 mol % to 37 mol %, from 35 mol % to 45 mol %, from 30 mol % to 35 mol %, from 35 mol % to 40 mol %, or 30 mol %, 31 mol %, 32 mol %, 33 mol %, 34 mol %, 35 mol %, 36 mol %, 37 mol %, 38 mol %, 39 mol %, or 40 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the non-cationic lipid comprises from 5 mol % to 90 mol %, from 10 mol % to 85 mol %, from 20 mol % to 80 mol %, 10 mol % (e.g. , phospholipid only), or 60 mol % (e.g. , phospholipid and cholesterol or derivative thereof) (or any fraction thereof or range therein) of the total lipid present in the particle.
  • the percentage of non-cationic lipid present in the lipid particles is a target amount, and that the actual amount of non-cationic lipid present in the formulation may vary, for example, by ⁇ 5 mol %.
  • a composition containing a cationic lipid compound may be 30-70% cationic lipid compound, 0-60 % cholesterol, 0-30% phospholipid and 1-10% polyethylene glycol (PEG).
  • the composition is 30-40% cationic lipid compound, 40- 50% cholesterol, and 10-20% PEG.
  • the composition is 50-75% cationic lipid compound, 20-40% cholesterol, and 5-10% phospholipid, and 1-10% PEG.
  • the composition may contain 60-70% cationic lipid compound, 25-35% cholesterol, and 5- 10% PEG.
  • the composition may contain up to 90% cationic lipid compound and 2-15% helper lipid.
  • the formulation may be a lipid particle formulation, for example containing 8-30% compound, 5-30% helper lipid , and 0-20% cholesterol; 4-25% cationic lipid, 4-25% helper lipid, 2- 25% cholesterol, 10- 35% cholesterol-PEG, and 5% cholesterol-amine; or 2- 30% cationic lipid, 2-30% helper lipid, 1- 15% cholesterol, 2- 35% cholesterol-PEG, and 1- 20% cholesterol-amine; or up to 90% cationic lipid and 2-10% helper lipids, or even 100% cationic lipid.
  • the lipid particles described herein may further comprise a lipid conjugate.
  • the conjugated lipid is useful in that it prevents the aggregation of particles.
  • Suitable conjugated lipids include, but are not limited to, PEG-lipid conjugates, cationic-polymer- lipid conjugates, and mixtures thereof.
  • the lipid conjugate is a PEG-lipid.
  • PEG-lipids include, but are not limited to, PEG coupled to dialkyloxypropyls (PEG-DAA), PEG coupled to diacylglycerol (PEG-DAG), PEG coupled to phospholipids such as phosphatidylethanolamine (PEG-PE), PEG conjugated to ceramides, PEG conjugated to cholesterol or a derivative thereof, and mixtures thereof.
  • PEG is a linear, water-soluble polymer of ethylene PEG repeating units with two terminal hydroxyl groups.
  • PEGs are classified by their molecular weights; and include the following: monomethoxypoly ethylene glycol (MePEG-OH), monomethoxypoly ethylene glycol- succinate (MePEG-S), monomethoxypoly ethylene glycol-succinimidyl succinate (MePEG-S- NHS), monomethoxypoly ethylene glycol-amine (MePEG-NEh),
  • MePEG-TRES monomethoxypoly ethylene glycol-tresylate
  • MePEG-IM monomethoxypoly ethylene glycol-imidazolyl-carbonyl
  • HO-PEG-S HO-PEG-S-NHS
  • the PEG moiety of the PEG-lipid conjugates described herein may comprise an average molecular weight ranging from 550 daltons to 10,000 daltons. In certain instances, the PEG moiety has an average molecular weight of from 750 daltons to 5,000 daltons (e.g. , from 1,000 daltons to 5,000 daltons, from 1,500 daltons to 3,000 daltons, from 750 daltons to 3,000 daltons, from 750 daltons to 2,000 daltons). In preferred embodiments, the PEG moiety has an average molecular weight of 2,000 daltons or 750 daltons.
  • the PEG can be optionally substituted by an alkyl, alkoxy, acyl, or aryl group.
  • the PEG can be conjugated directly to the lipid or may be linked to the lipid via a linker moiety.
  • Any linker moiety suitable for coupling the PEG to a lipid can be used including, e.g., non-ester-containing linker moieties and ester-containing linker moieties.
  • the linker moiety is a non-ester-containing linker moiety.
  • Suitable non-ester-containing linker moieties include, but are not limited to, amido (- C(O)NH-), amino (-NR-), carbonyl (-C(O)-), carbamate (-NHC(O)O-), urea (-NHC(O)NH-), disulphide (-S-S-), ether (-0-), succinyl (- (0)CCH 2 CH 2 C(0)-), succinamidyl (- NHC(0)CH2CH2C(0)NH-), ether, disulphide, as well as combinations thereof (such as a linker containing both a carbamate linker moiety and an amido linker moiety).
  • a carbamate linker is used to couple the PEG to the lipid.
  • an ester-containing linker moiety is used to couple the PEG to the lipid.
  • Suitable ester-containing linker moieties include, e.g., carbonate (- OC(O)O-), succinoyl, phosphate esters (-O-(O)POH-O-), sulfonate esters, and combinations thereof.
  • Phosphatidylethanolamines having a variety of acyl chain groups of varying chain lengths and degrees of saturation can be conjugated to PEG to form the lipid conjugate.
  • Such phosphatidylethanolamines are commercially available, or can be isolated or synthesized using conventional techniques known to those of skill in the art.
  • Phosphatidylethanolamines containing saturated or unsaturated fatty acids with carbon chain lengths in the range of C10 to C20 are preferred. Phosphatidylethanolamines with mono- or di- unsaturated fatty acids and mixtures of saturated and unsaturated fatty acids can also be used. Suitable phosphatidylethanolamines include, but are not limited to, dimyristoyl- phosphatidylethanolamine (DMPE), dipalmitoyl-phosphatidylethanolamine (DPPE), dioleoyl-phosphatidylethanolamine (DOPE), and distearoyl-phosphatidylethanolamine (DSPE).
  • DMPE dimyristoyl- phosphatidylethanolamine
  • DPPE dipalmitoyl-phosphatidylethanolamine
  • DOPE dioleoyl-phosphatidylethanolamine
  • DSPE distearoyl-phosphatidylethanolamine
  • diacylglycerol or “DAG” includes a compound having 2 fatty acyl chains, R 1 and R 2 , both of which have independently between 2 and 30 carbons bonded to the 1- and 2-position of glycerol by ester linkages.
  • the acyl groups can be saturated or have varying degrees of unsaturation. Suitable acyl groups include, but are not limited to, lauroyl (C12), myristoyl (C14), palmitoyl (Ci6), stearoyl (Cis), and icosoyl (C20).
  • R 1 and R 2 are the same, i.e. , R 1 and R 2 are both myristoyl (i.e. , dimyristoyl), R 1 and R 2 are both stearoyl (i.e. , distearoyl).
  • dialkyloxy propyl or "DAA” includes a compound having 2 alkyl chains, Ri and R2 , both of which have independently between 2 and 30 carbons.
  • the alkyl groups can be saturated or have varying degrees of unsaturation.
  • the PEG-DAA conjugate is a PEG-didecyloxypropyl (C10) conjugate, a PEG-dilauryloxy propyl (C12) conjugate, a PEG-dimyristyloxypropyl (C14) conjugate, a PEG-dipalmityloxy propyl (Ci6) conjugate, or a PEG-distearyloxy propyl (Cis) conjugate.
  • the PEG preferably has an average molecular weight of 750 or 2,000 daltons.
  • the terminal hydroxyl group of the PEG is substituted with a methyl group.
  • hydrophilic polymers can be used in place of PEG.
  • suitable polymers that can be used in place of PEG include, but are not limited to, polyvinylpyrrolidone, polymethyloxazoline, polyethyloxazoline,
  • the lipid conjugate (e.g. , PEG-lipid) comprises from 0.1 mol % to 2 mol %, from 0.5 mol % to 2 mol %, from 1 mol % to 2 mol %, from 0.6 mol % to 1.9 mol %, from 0.7 mol % to 1.8 mol %, from 0.8 mol % to 1.7 mol %, from 0.9 mol % to 1.6 mol %, from 0.9 mol % to 1.8 mol %, from 1 mol % to 1.8 mol %, from 1 mol % to 1.7 mol %, from 1.2 mol % to 1.8 mol %, from 1.2 mol % to 1.7 mol %, from 1.2 mol % to 1.8 mol %, from 1.2 mol % to 1.7 mol %, from 1.3 mol % to 1.6 mol %, or from 1.4 mol % to 1.5 mol % (or any
  • the lipid conjugate (e.g., PEG-lipid) comprises from 0 mol % to 20 mol %, from 0.5 mol % to 20 mol %, from 2 mol % to 20 mol %, from 1.5 mol % to 18 mol %, from 2 mol % to 15 mol %, from 4 mol % to 15 mol %, from 2 mol % to 12 mol %, from 5 mol % to 12 mol %, or 2 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • PEG-lipid comprises from 0 mol % to 20 mol %, from 0.5 mol % to 20 mol %, from 2 mol % to 20 mol %, from 1.5 mol % to 18 mol %, from 2 mol % to 15 mol %, from 4 mol % to 15 mol %, from 2 mol % to 12 mol %, from 5 mol
  • the lipid conjugate (e.g. , PEG-lipid) comprises from 4 mol % to 10 mol %, from 5 mol % to 10 mol %, from 5 mol % to 9 mol %, from 5 mol % to 8 mol %, from 6 mol % to 9 mol %, from 6 mol % to 8 mol %, or 5 mol %, 6 mol %, 7 mol %, 8 mol %, 9 mol %, or 10 mol % (or any fraction thereof or range therein) of the total lipid present in the particle.
  • PEG-lipid comprises from 4 mol % to 10 mol %, from 5 mol % to 10 mol %, from 5 mol % to 9 mol %, from 5 mol % to 8 mol %, from 6 mol % to 9 mol %, from 6 mol % to 8 mol %, or 5 mol %, 6 mol %, 7 mol
  • the percentage of lipid conjugate (e.g., PEG-lipid) present in the lipid particles of the invention is a target amount, and the actual amount of lipid conjugate present in the formulation may vary, for example, by ⁇ 2 mol %.
  • concentration of the lipid conjugate can be varied depending on the lipid conjugate employed and the rate at which the lipid particle is to become fusogenic.
  • composition and concentration of the lipid conjugate By controlling the composition and concentration of the lipid conjugate, one can control the rate at which the lipid conjugate exchanges out of the lipid particle and, in turn, the rate at which the lipid particle becomes fusogenic.
  • other variables including, e.g. , pH, temperature, or ionic strength, can be used to vary and/or control the rate at which the lipid particle becomes fusogenic.
  • Other methods which can be used to control the rate at which the lipid particle becomes fusogenic will become apparent to those of skill in the art upon reading this disclosure. Also, by controlling the composition and
  • concentration of the lipid conjugate one can control the lipid particle size.
  • the nucleic acid-lipid compositions of this disclosure may be administered by various routes, for example, to effect systemic delivery via intravenous, parenteral, intraperitoneal, or topical routes.
  • a siRNA may be delivered intracellularly, for example, in cells of a target tissue such as lung or liver, or in inflamed tissues.
  • this disclosure provides a method for delivery of siRNA in vivo.
  • a nucleic acid-lipid composition may be administered intravenously, subcutaneously, or intraperitoneally to a subject.
  • the disclosure provides methods for in vivo delivery of interfering RNA to the lung of a mammalian subject.
  • this disclosure provides a method of treating a disease or disorder in a mammalian subject.
  • a therapeutically effective amount of a composition of this disclosure containing a nucleic, a cationic lipid, an amphiphile, a phospholipid, cholesterol, and a PEG-linked cholesterol may be administered to a subject having a disease or disorder associated with expression or overexpression of a gene that can be reduced, decreased, downregulated, or silenced by the composition.
  • compositions and methods of the disclosure may be administered to subjects by a variety of mucosal administration modes, including by oral, rectal, vaginal, intranasal, intrapulmonary, or transdermal or dermal delivery, or by topical delivery to the eyes, ears, skin, or other mucosal surfaces.
  • the mucosal tissue layer includes an epithelial cell layer.
  • the epithelial cell can be pulmonary, tracheal, bronchial, alveolar, nasal, buccal, epidermal, or gastrointestinal.
  • Compositions of this disclosure can be administered using conventional actuators such as mechanical spray devices, as well as pressurized, electrically activated, or other types of actuators.
  • compositions of this disclosure may be administered in an aqueous solution as a nasal or pulmonary spray and may be dispensed in spray form by a variety of methods known to those skilled in the art.
  • Pulmonary delivery of a composition of this disclosure is achieved by administering the composition in the form of drops, particles, or spray, which can be, for example, aerosolized, atomized, or nebulized.
  • Particles of the composition, spray, or aerosol can be in either a liquid or a solid form.
  • Preferred systems for dispensing liquids as a nasal spray are disclosed in U.S. Pat. No. 4,511,069.
  • Such formulations may be conveniently prepared by dissolving compositions according to the present disclosure in water to produce an aqueous solution, and rendering said solution sterile.
  • the formulations may be presented in multi-dose containers, for example in the sealed dispensing system disclosed in U.S. Pat. No. 4,511,069.
  • Other suitable nasal spray delivery systems have been described in TRANSDERMAL SYSTEMIC MEDICATION, Y. W. Chien ed., Elsevier Publishers, New York, 1985; and in U.S. Pat. No. 4,778,810.
  • Additional aerosol delivery forms may include, e.g. , compressed air-Jet-, ultrasonic-, and piezoelectric nebulizers, which deliver the biologically active agent dissolved or suspended in a pharmaceutical solvent, e.g., water, ethanol, or mixtures thereof.
  • Nasal and pulmonary spray solutions of the present disclosure typically comprise the drug or drug to be delivered, optionally formulated with a surface active agent, such as a nonionic surfactant (e.g., polysorbate-80), and one or more buffers.
  • a surface active agent such as a nonionic surfactant (e.g., polysorbate-80)
  • the nasal spray solution further comprises a propellant.
  • the pH of the nasal spray solution may be from pH 6.8 to 7.2.
  • pharmaceutical solvents employed can also be a slightly acidic aqueous buffer of pH 4-6.
  • Other components may be added to enhance or maintain chemical stability, including preservatives, surfactants, dispersants, or gases.
  • this disclosure is a pharmaceutical product which includes a solution containing a composition of this disclosure and an actuator for a pulmonary, mucosal, or intranasal spray or aerosol.
  • a dosage form of the composition of this disclosure can be liquid, in the form of droplets or an emulsion, or in the form of an aerosol.
  • a dosage form of the composition of this disclosure can be solid, which can be reconstituted in a liquid prior to administration.
  • the solid can be administered as a powder.
  • the solid can be in the form of a capsule, tablet, or gel.
  • the biologically active agent can be combined with various pharmaceutically acceptable additives, as well as a base or carrier for dispersion of the active agent(s).
  • additives include pH control agents such as arginine, sodium hydroxide, glycine, hydrochloric acid, citric acid, and mixtures thereof.
  • Other additives include local anesthetics (e.g., benzyl alcohol), isotonizing agents (e.g. , sodium chloride, mannitol, sorbitol), adsorption inhibitors (e.g., Tween 80), solubility enhancing agents (e.g., cyclodextrins and derivatives thereof), stabilizers (e.g., serum albumin), and reducing agents (e.g., glutathione).
  • local anesthetics e.g., benzyl alcohol
  • isotonizing agents e.g. , sodium chloride, mannitol, sorbitol
  • adsorption inhibitors e.g., Tween 80
  • solubility enhancing agents e.g., cyclodextrins and derivatives thereof
  • the tonicity of the formulation is typically adjusted to a value at which no substantial, irreversible tissue damage will be induced in the mucosa at the site of administration.
  • the tonicity of the solution is adjusted to a value of 1/3 to 3, more typically 1/2 to 2, and most often 3/4 to 1.7.
  • the biologically active agent may be dispersed in a base or vehicle, which may comprise a hydrophilic compound having a capacity to disperse the active agent and any desired additives.
  • the base may be selected from a wide range of suitable carriers, including but not limited to, copolymers of polycarboxylic acids or salts thereof, carboxylic anhydrides (e.g., maleic anhydride) with other monomers (e.g. , methyl(meth)acrylate, acrylic acid, etc.), hydrophilic vinyl polymers such as polyvinyl acetate, polyvinyl alcohol,
  • polyvinylpyrrolidone cellulose derivatives such as hydroxymethylcellulose
  • hydroxypropylcellulose, etc. and natural polymers such as chitosan, collagen, sodium alginate, gelatin, hyaluronic acid, and nontoxic metal salts thereof.
  • a biodegradable polymer is selected as a base or carrier, for example, polylactic acid, poly(lactic acid-gly colic acid) copolymer, polyhydroxybutyric acid, poly(hydroxybutyric acid-gly colic acid) copolymer, and mixtures thereof.
  • synthetic fatty acid esters such as poly glycerin fatty acid esters, sucrose fatty acid esters, etc., can be employed as carriers.
  • Hydrophilic polymers and other carriers can be used alone or in combination, and enhanced structural integrity can be imparted to the carrier by partial crystallization, ionic bonding, crosslinking, and the like.
  • the carrier can be provided in a variety of forms, including fluid or viscous solutions, gels, pastes, powders, microspheres, and films for direct application to the nasal mucosa. The use of a selected carrier in this context may result in promotion of absorption of the biologically active agent.
  • Formulations for mucosal, nasal, or pulmonary delivery may contain a hydrophilic low molecular weight compound as a base or excipient.
  • a hydrophilic low molecular weight compound provides a passage medium through which a water-soluble active agent, such as a physiologically active peptide or protein, may diffuse through the base to the body surface where the active agent is absorbed.
  • the hydrophilic low molecular weight compound optionally absorbs moisture from the mucosa or the administration atmosphere and dissolves the water-soluble active peptide.
  • the molecular weight of the hydrophilic low molecular weight compound is generally not more than 10,000 and preferably not more than 3,000.
  • hydrophilic low molecular weight compounds include polyol compounds, such as oligo-, di- and monosaccarides including sucrose, mannitol, lactose, L-arabinose, D-erythrose, D-ribose, D-xylose, D-mannose, D-galactose, lactulose, cellobiose, gentibiose, glycerin, polyethylene glycol, and mixtures thereof.
  • hydrophilic low molecular weight compounds include N-methylpyrrolidone, alcohols (e.g., oligovinyl alcohol, ethanol, ethylene glycol, propylene glycol, etc.), and mixtures thereof.
  • compositions of this disclosure may alternatively contain as pharmaceutically acceptable carriers substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, and wetting agents, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, and mixtures thereof.
  • pharmaceutically acceptable carriers include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.
  • the biologically active agent may be administered in a time-release formulation, for example in a composition which includes a slow release polymer.
  • the active agent can be prepared with carriers that will protect against rapid release, for example a controlled release vehicle such as a polymer, microencapsulated delivery system, or bioadhesive gel.
  • Prolonged delivery of the active agent, in various compositions of the disclosure can be brought about by including in the composition agents that delay absorption, for example, aluminum monosterate hydrogels and gelatin.
  • Example 1 Exemplary lipids
  • the first pair of numbers denotes the number of carbons in the ester, including the carbonyl, for Li and L2; the pair of numbers in the parenthesis denotes the number of carbons in each branch of the branched alkyl, Ri or if R2 is also branched, R1/R2 (an asterisk denotes a double bond); the number of carbons in R3 is given; and the last line denotes the substitution for R4 and R5.
  • the ATX number is given for reference herein. Calculated LogD values (c-LogD) and calculated pKa (c-pKa) values are given, as well as measured pKa in parenthesis
  • c-LogD and c-pKa values are generated by ACD Labs Structure Designer vl2.0. Bioactivity is percentage in vivo Factor VII knockdown at a dose of 0.03 mg/kg, unless otherwise designated.
  • FIG. 1 shows the synthetic pathway of ATX-0043 that is described further as follows.
  • reaction mass was quenched with saturated NH4CI solution (20 ml) and then EtOAc (20 mL) was added. Organic layer was separated and the aqueous layer was washed with EtOAc (2 x20 mL). Combined organic layer was concentrated and the resulting crude was subjected to column chromatography. Progress of the reaction was monitored by TLC (60% EtOAc/Hex; Rf: 0.5; PMA charring).
  • FIG. 2 shows the synthetic pathway of ATX-0057 that is described further as follows.
  • Quantity produced 80 g (crude; required compound and alcohol).
  • the first purification was done using silica gel (60-120 mesh) 22 g of crude compound was adsorbed on 60 g of silica gel and poured onto 500 g of silica gel taken in the column. Compound was eluted at 35% EtOAc/hexane.
  • the second purification was done using neutral alumina with HPLC grade solvents. Crude compound, 7.5 g, was adsorbed on 18 g of neutral alumina and the resulting was poured onto 130 g of neutral alumina taken in the column. Compound was eluted at 10% EtOAc/hexane. Yield, 29%; confirmed by 3 ⁇ 4 NMR, HPLC, and Mass.
  • FIG. 3 shows the synthetic pathway of ATX-0058 that is described further as follows.
  • ATX-0058 Step 2 [0234] To a solution of 28 g hexyl magnesium bromide (1 eq.) in THF (100 ml), stirred at 0°C under nitrogen atmosphere, was added 36.8 g N-methoxy-N-methyloctanamide (1.3 eq.) in 200 ml THF and the resulting reaction mixture was stirred at room temperature for 5 hours.
  • ATX-0058 Step 7 [0251] To a solution of 20 g 4-bromo butyric acid (1 eq.) dissolved in DCM (150 ml), cooled to 0°C was added 1.5 eq. EDC.HC1, 3 eq. Et 3 N, and 0.1 eq. DMAP sequentially with 10 minutes interval. To this resulting solution 0.7 eq. (Z)-non-2-en-l-ol was added, by dissolving in 100 ml DCM, using a funnel, and stirred at room temperature for 24 hours under nitrogen atmosphere.
  • a first purification was done using silica gel (60-120 mesh). 5.0 g of crude compound was adsorbed on 9 g of silica gel and poured onto 90 g of silica gel taken in the column. Compound was eluted at 35% EtOAc/hexane. A second purification was done using neutral alumina with HPLC grade solvents. 1.5 g of crude compound was adsorbed on 4 g of neutral alumina and the resulting was poured onto 40 g of neutral alumina taken in the column. Compound was eluted at 10% EtOAc/hexane. Quantity produced, 1.2 g; yield, 21%; confirmed by 3 ⁇ 4 NMR; HPLC; Mass.
  • FIG. 4 shows the synthetic pathway of ATX-0081 that is described further as follows.
  • Quantity produced 8.5 g (crude; required compound and alcohol).
  • the first purification was done using silica gel (60-120 mesh) of crude compound was adsorbed on 60 g of silica gel and poured onto 500 g of silica gel taken in the column. Compound was eluted at 35% EtOAc/hexane.
  • the second purification was done using neutral alumina with HPLC grade solvents. Crude compound was adsorbed on 18 g of neutral alumina and the resulting was poured onto 130 g of neutral alumina taken in the column. Compound was eluted at 10% EtOAc/hexane. Quantity produced, 1.5 g; yield, 45%; confirmed by 3 ⁇ 4 NMR, HPLC, and Mass.
  • FIG. 5 shows the synthetic pathway of ATX-0082 that is described further as follows.
  • Quantity produced 8 g (crude; required compound and alcohol).
  • the second purification was done using neutral alumina with HPLC grade solvents. Crude compound was adsorbed on 18 g of neutral alumina and the resulting was poured onto 130 g of neutral alumina taken in the column. Compound was eluted at 10% EtOAc/hexane. Quantity produced, 1.2 g; yield, 43%; confirmed by 3 ⁇ 4 NMR, HPLC, and Mass.
  • FIG. 6 shows the synthetic pathway of ATX-0086 that is described further as follows.
  • Quantity produced 8 g (crude; required compound and alcohol).
  • the first purification was done using silica gel (60-120 mesh) of crude compound was adsorbed on 60 g of silica gel and poured onto 500 g of silica gel taken in the column. Compound was eluted at 35% EtOAc/hexane.
  • the second purification was done using neutral alumina with HPLC grade solvents. Crude compound was adsorbed on 18 g of neutral alumina and the resulting was poured onto 130 g of neutral alumina taken in the column. Compound was eluted at 10% EtOAc/hexane. Quantity produced, 1.2 g; yield, 43%; confirmed by 3 ⁇ 4 NMR, HPLC, and Mass.
  • FIG. 7 shows the synthetic pathway of ATX-0087 that involves nine steps.
  • Quantity produced 15 g (crude; required compound and alcohol).
  • the second purification was done using neutral alumina with HPLC grade solvents. Crude compound was adsorbed on 18 g of neutral alumina and the resulting was poured onto 130 g of neutral alumina taken in the column. Compound was eluted at 10% EtOAc/hexane. Quantity produced, 1.2 g; yield, 43%; confirmed by 3 ⁇ 4 NMR, HPLC, and Mass.
  • FIG. 8 shows the synthetic pathway of ATX-0088 that is described further as follows.
  • FIG. 9 shows the synthetic pathway of ATX-0083 that is described further as follows.
  • ATX-0083 Step 4 [0439] To a solution of 50 g 4-aminobutanoic acid (1 eq.) dissolved in THF, 490 ml 1 N aqueous NaOH solution (1 eq.) was added at 0°C, followed by 140 ml Boc anhydride (1.3 eq.), sequentially using additional funnel, over a period of 15 minutes. The resulting solution was stirred at room temperature for 4 hours.
  • a first purification was done using neutral alumina. Crude compound, dissolved in hexane, was loaded at the top of neutral alumina (700 g loaded in the column). Compound was eluted at 8-10% EtOAc/hexane. A second purification was done using silica gel (100-200 mesh). Compound, dissolved in hexane, was loaded at the top of silica gel (500g loaded in the column). Compound was eluted at 20-25% EtOAc/hexane.
  • FIG. 10 shows the synthetic pathway of ATX-0084 that is described further as follows.
  • a -0084 Step 1 [0465] In a 500 ml single neck round bottom flask, 30 g heptanoic acid (1 eq.) dissolved in of DCM (200 ml) was taken and then added 26.7 g oxalyl chloride (1.5 eq.) slowly at 0°C, stirring under nitrogen atmosphere and then added 1 ml DMF (catalytic). The resulting reaction mixture was stirred at room temperature for 2 hours.
  • a -0084 Step 3 [0474] To a solution of 30 g tridecan-7-one (1 eq.) dissolved in 200 ml MeOH/THF, 8.5 g sodium borohydride (0.5 eq.) was added at 0°C and the resulting solution was stirred at room temperature for 2 hours.
  • a first purification was done using silica gel (100-200 mesh). 4.6 g of crude compound was adsorbed on 10.0 g of silica gel and poured onto 90.0 g of silica gel taken in the column. Compound was eluted at 50% EtOAc/hexane. A second purification was done using neutral alumina with HPLC grade solvents. 2.0 g of crude compound was adsorbed on 6.0 g of neutral alumina and the resulting was poured onto 40.0 g of neutral alumina taken in the column. Compound was eluted at 20% EtOAc/hexane. Quantity produced, 1.2 g; yield, 38 % (300 mg mixture).
  • Example 12 Synthesis of ATX-0061
  • FIG. 11 shows the synthetic pathway of ATX-0061 that is described further as follows
  • FIG. 12 shows the synthetic pathway of ATX-0063 that is described further as follows.
  • ATX-0063 Ste 1
  • reaction was monitored by TLC (60% EtOAc/hexane; Rf: 0.3), starting was absent from reaction product.
  • FIG. 13 shows the synthetic pathway of ATX-0064 that is described further as follows.
  • ATX-0064 Ste 1
  • reaction mass was diluted with saturated NaHCCb solution (80 ml), organic layer was separated, aqueous layer was washed with DCM (40 ml), dried over sodium sulphate and concentrated under reduced pressure.
  • FIG. 14 shows the synthetic pathway of ATX-0081 that is described further as follows. [0602] ATX-0081: Step 1 Ethyl formate
  • reaction mass was quenched with sat. NH4CI solution (500 mL). The organic layer was separated and the aqueous layer was washed with EtOAc (3 x 100 mL). Combined organic layer was dried over anh.Na2S04 and concentrated under reduced pressure.
  • reaction mass was quenched with water (250 mL) and the organic layer was separated.
  • the aqueous layer was washed with DCM (2 x 150 mL).
  • the combined organic layers were concentrated under reduced pressure.
  • the resulting crude was washed with sat.NaHCC solution (150 mL) and then extracted with EtOAc (2 xl50 mL). The organic layer was separated and concentrated under reduced pressure.
  • FIG. 15 shows the synthetic pathway of ATX-0085 that is described further as follows.
  • reaction mass was quenched with sat. NH4CI solution (200 mL). The organic layer was separated and the aqueous layer was washed with ether (2 x 100 mL). The combined organic layers were dried over anh.Na2S04 and concentrated under reduced pressure.
  • FIG. 16 shows the synthetic pathway of ATX-0134 that is described further as follows.
  • Quantity produced 30.0 g (crude).
  • Example 15 Synthesis of ATX-0044 and ATX-0091 to ATX-0133.
  • ATX-0044, ATX-0085, ATX-0111, ATX-0132, ATX-0100, ATX-0117, ATX-0114, ATX-0115, ATX-0101, ATX-0106, ATX-0116, ATX-0122, ATX-0123, ATX- 0124, ATX-0126, ATX-0129, and ATX-0133 were synthesized using the methods of the previous examples.
  • pK a of cationic lipids in LNP or micellar formulations were measured by the procedure of Jayaraman, 2012, Angew. Chem. Int. Ed. , 51 :8529-33, hereby incorporated by reference.
  • Lipid micelles or LNPs are diluted to 1 mM total lipids in universal buffer with a pH range between 3 and 12 in presence of 0.06 mg/mL 6-(/ toluidino)-2-naphthalenesulfonic acid sodium salt (TNS) reagent (Sigma Aldrich), a pH sensitive fluorescence probe.
  • TNS 6-(/ toluidino)-2-naphthalenesulfonic acid sodium salt
  • the anionic TNS molecule fluoresces when associated with the surface of positively charged membranes but is not fluorescent when free in solution, allowing measurement of pKa.
  • the TNS signal is measured on a spectral plate reader.
  • the TNS signal is plotted as function of the pH and analyzed using a non
  • Reagents used in the assay include
  • Reagents are sterile filtered through a 0.2 ⁇ filter.
  • Preparation of UB solution includes adding 5 mL of 1 M HC1 to a 350 mL stock solution.
  • Example 17 In vivo EPO mRNA stability
  • Terminal blood collection was performed via cardiac puncture under 2% isoflurane at 6 hours after formulation injections. Blood was collected into 0.109 M citrate buffer tube and processed by centrifugation at 5000 rpm for 10 minutes. Serum was collected and epo mRNA levels were analyzed. Results are shown at FIG. 17. Results show a substantial improvement over ATX-0002 for ATX-0057, ATX-0081, ATX-0082, ATX-0083, ATX- 0084, ATX-0085, ATX-0086, and ATX-0087.
  • Example 18 In vivo mouse Factor VII silencing and EPO expression
  • Factor VII a blood-clotting factor
  • hepatocytes the cells comprising the liver parenchyma.
  • gene silencing indicates successful delivery to parenchyma, as opposed to delivery to the cells of the reticulo-endothelial system (e.g., Kupffer cells).
  • Factor VII is a secreted protein that can be readily measured in serum, obviating the need to euthanize animals.
  • Silencing at the mRNA level can be readily determined by measuring levels of protein. This is because the protein's short half-life (2-5 hour).
  • Compositions with siRNA directed to Factor VIII were formulated with the lipid, and comparator sample phosphate-buffered saline (PBS).
  • PBS comparator sample phosphate-buffered saline
  • Female C57BL/6 mice (6-8 week old) were used for FVII siRNA knockdown (KD) experiments.
  • Table 1 shows knockdown resulting from lipid nanoparticles comprising the lipids disclosed herein.
  • mice Female Balb/c mice (6-8 week old) were used for evaluation of epo protein expression in vivo following delivery of lipid encapsulated mouse epo mRNA. All formulations were administered intravenously via tail vein injection at a dose of 0.03 and 0.1 mg/kg at a dosing volume of 5mL/kg. Terminal blood collection was performed via cardiac puncture under 2% isoflurane at 6 hours after formulation injections. Blood was collected into 0.109 M citrate buffer tube and processed by centrifugation at 5000 rpm for 10 minutes. Serum was collected and epo protein levels were analyzed by epo ELISA assay (R&D systems).
  • a standard curve was constructed using samples from PBS-injected mice and relative Factor VII expression was determined by comparing treated groups to untreated PBS control. The results showed that epo mRNA is expressed at substantially higher amounts in ATX-0057 nanoparticles than ATX-002 at 0.1 mg/ml (FIG. 19).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne un composé de formule I consistant en un composé dans lequel Ri représente un alkyle à chaîne ramifiée constitué de 10 à 31 atomes de carbone ; R2 représente un alkyle linéaire, un alcényle ou un alcynyle constitué de 2 à 20 atomes de carbone, ou un alkyle à chaîne ramifiée comprenant de 10 à 31 atomes de carbone ; Li et L2 sont identiques ou différents, chacun étant un alcane linéaire de 1 à 20 atomes de carbone ou un alcène linéaire de 2 à 20 atomes de carbone ; Xi représente S ou O ; R3 est un alkylène linéaire ou ramifié constitué de 1 à 6 atomes de carbone ; R4 et R5 sont identiques ou différents, représentant chacun l'hydrogène ou un alkyle linéaire ou ramifié constitué de 1 à 6 atomes de carbone ; l'invention concerne également un sel pharmaceutiquement acceptable dudit composé.
PCT/US2017/067756 2016-12-21 2017-12-20 Lipide cationique ionisable pour l'administration d'arn WO2018119163A1 (fr)

Priority Applications (21)

Application Number Priority Date Filing Date Title
EP17826404.0A EP3558943B1 (fr) 2016-12-21 2017-12-20 Lipide cationique ionisable pour l'administration d'arn
SI201731472T SI3558943T1 (sl) 2016-12-21 2017-12-20 Ionizabilen kationski lipid za dostavo rna
JP2019533410A JP7437935B2 (ja) 2016-12-21 2017-12-20 Rna送達のためのイオン化可能なカチオン性脂質
KR1020217027797A KR102385562B1 (ko) 2016-12-21 2017-12-20 Rna 전달을 위한 이온화가능한 양이온성 지질
PL17826404.0T PL3558943T3 (pl) 2016-12-21 2017-12-20 Jonizowalny lipid kationowy do dostarczania RNA
AU2017379059A AU2017379059B2 (en) 2016-12-21 2017-12-20 Ionizable cationic lipid for RNa delivery
CA3046885A CA3046885C (fr) 2016-12-21 2017-12-20 Lipide cationique ionisable pour l'administration d'arn
CN201780086949.XA CN110325511B (zh) 2016-12-21 2017-12-20 用于rna递送的可离子化阳离子脂质
EP25156699.8A EP4527831A3 (fr) 2016-12-21 2017-12-20 Lipide cationique ionisable pour administration d'arn
HRP20231742TT HRP20231742T1 (hr) 2016-12-21 2017-12-20 Kationski lipid koji se može ionizirati za isporuku rna
IL290592A IL290592B2 (en) 2016-12-21 2017-12-20 Ionizable cationic lipid for rna delivery
KR1020197021199A KR102299053B1 (ko) 2016-12-21 2017-12-20 Rna 전달을 위한 이온화가능한 양이온성 지질
RS20240048A RS65078B1 (sr) 2016-12-21 2017-12-20 Jonizujući katjonski lipid za dostavu rnk
FIEP17826404.0T FI3558943T3 (fi) 2016-12-21 2017-12-20 Ionisoituva kationinen lipidi RNA:n antamista varten
CN202210319695.4A CN114917203A (zh) 2016-12-21 2017-12-20 用于rna递送的可离子化阳离子脂质
ES17826404T ES2969232T3 (es) 2016-12-21 2017-12-20 Lípido catiónico ionizable para la administración de ARN
DK17826404.0T DK3558943T3 (en) 2016-12-21 2017-12-20 Ionizable cationic lipid for rna delivery
IL306099A IL306099B1 (en) 2016-12-21 2017-12-20 Ionizable cationic lipid for RNA delivery
EP23196560.9A EP4310075A3 (fr) 2016-12-21 2017-12-20 Lipide cationique ionisable pour administration d'arn
IL267511A IL267511B (en) 2016-12-21 2019-06-19 A cationic lipid that can be ionized for the administration of RNA
AU2021200663A AU2021200663B2 (en) 2016-12-21 2021-02-02 Ionizable cationic lipid for rna delivery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/387,067 2016-12-21
US15/387,067 US10383952B2 (en) 2016-12-21 2016-12-21 Ionizable cationic lipid for RNA delivery
USPCT/US2017/015886 2017-01-31
PCT/US2017/015886 WO2018118102A1 (fr) 2016-12-21 2017-01-31 Lipide cationique ionisable destiné à l'absorption d'arn

Publications (1)

Publication Number Publication Date
WO2018119163A1 true WO2018119163A1 (fr) 2018-06-28

Family

ID=60943160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/067756 WO2018119163A1 (fr) 2016-12-21 2017-12-20 Lipide cationique ionisable pour l'administration d'arn

Country Status (1)

Country Link
WO (1) WO2018119163A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191780A1 (fr) * 2018-03-30 2019-10-03 Arcturus Therapeutics, Inc. Particules de lipide pour l'administration d'acides nucléiques
WO2020118115A1 (fr) 2018-12-06 2020-06-11 Arcturus Therapeutics, Inc. Compositions et méthodes pour traiter une déficience en ornithine transcarbamylase
WO2020191103A1 (fr) * 2019-03-19 2020-09-24 Arcturus Therapeutics, Inc. Procédé de fabrication de nanoparticules d'arn encapsulées dans des lipides
WO2020255062A1 (fr) 2019-06-20 2020-12-24 Janssen Sciences Ireland Unlimited Company Administration de nanoparticules lipidiques ou de liposomes de vaccins contre le virus de l'hépatite b (vhb)
WO2021067598A1 (fr) 2019-10-04 2021-04-08 Ultragenyx Pharmaceutical Inc. Procédés pour une utilisation thérapeutique améliorée d'aav recombinant
WO2021178510A1 (fr) * 2020-03-03 2021-09-10 Arcturus Therapeutics, Inc. Compositions et procédés pour le traitement d'une déficience en ornithine transcarbamylase
WO2022008613A1 (fr) 2020-07-08 2022-01-13 Janssen Sciences Ireland Unlimited Company Vaccins à base de réplicon d'arn contre le vhb
WO2022146654A1 (fr) 2020-12-28 2022-07-07 Janssen Pharmaceuticals, Inc. Nucléases effectrices de type activateur de transcription (talens) ciblant le vhb
WO2023031394A1 (fr) 2021-09-03 2023-03-09 CureVac SE Nouvelles nanoparticules lipidiques pour l'administration d'acides nucléiques
JP2023517644A (ja) * 2020-03-09 2023-04-26 アークトゥラス・セラピューティクス・インコーポレイテッド コロナウイルスワクチン組成物及び方法
WO2023073228A1 (fr) 2021-10-29 2023-05-04 CureVac SE Arn circulaire amélioré pour exprimer des protéines thérapeutiques
JP2023524071A (ja) * 2020-05-01 2023-06-08 アークトゥラス・セラピューティクス・インコーポレイテッド 嚢胞性線維症を治療するための核酸及び方法
WO2023144330A1 (fr) 2022-01-28 2023-08-03 CureVac SE Inhibiteurs de facteurs de transcription codés par un acide nucleique
WO2023218420A1 (fr) 2022-05-13 2023-11-16 Janssen Pharmaceuticals, Inc. Compositions d'arnm pour induire une inversion latente du vih-1
WO2023227608A1 (fr) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Vaccin à base d'acide nucléique codant pour un polypeptide antigénique fimh d'escherichia coli
US11938227B2 (en) 2020-09-13 2024-03-26 Arcturus Therapeutics, Inc. Lipid nanoparticles encapsulation of large RNA
WO2024184500A1 (fr) 2023-03-08 2024-09-12 CureVac SE Nouvelles formulations de nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2024233750A1 (fr) * 2023-05-10 2024-11-14 Arcturus Therapeutics, Inc. Lipides cationiques ionisables pour l'administration d'arn
WO2024230934A1 (fr) 2023-05-11 2024-11-14 CureVac SE Acide nucléique thérapeutique pour le traitement de maladies ophtalmiques
WO2025080939A1 (fr) 2023-10-13 2025-04-17 Ultragenyx Pharmaceutical, Inc. Compositions et méthodes de traitement d'états associés à des mutations de protéine matricielle oligomérique du cartilage (comp)
US12311033B2 (en) 2023-05-31 2025-05-27 Capstan Therapeutics, Inc. Lipid nanoparticle formulations and compositions
WO2025128853A2 (fr) 2023-12-13 2025-06-19 Ultragenyx Pharmaceutical Inc. Compositions et méthodes de traitement d'états pathologiques associés à une surexpression d'ube3a

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511069A (en) 1981-06-04 1985-04-16 The Pharmasol Corporation Dispensing system
US4778810A (en) 1987-01-08 1988-10-18 Nastech Pharmaceutical Co., Inc. Nasal delivery of caffeine
WO1992007065A1 (fr) 1990-10-12 1992-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Ribozymes modifies
WO1993015187A1 (fr) 1992-01-31 1993-08-05 Massachusetts Institute Of Technology Nucleoenzymes
US5849902A (en) 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
WO2016081029A1 (fr) * 2014-11-18 2016-05-26 Arcturus Therapeutics, Inc. Lipide cationique ionisable pour l'administration d'arn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511069A (en) 1981-06-04 1985-04-16 The Pharmasol Corporation Dispensing system
US4778810A (en) 1987-01-08 1988-10-18 Nastech Pharmaceutical Co., Inc. Nasal delivery of caffeine
WO1992007065A1 (fr) 1990-10-12 1992-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Ribozymes modifies
WO1993015187A1 (fr) 1992-01-31 1993-08-05 Massachusetts Institute Of Technology Nucleoenzymes
US5849902A (en) 1996-09-26 1998-12-15 Oligos Etc. Inc. Three component chimeric antisense oligonucleotides
WO2016081029A1 (fr) * 2014-11-18 2016-05-26 Arcturus Therapeutics, Inc. Lipide cationique ionisable pour l'administration d'arn

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"TRANSDERMAL SYSTEMIC MEDICATION", 1985, ELSEVIER PUBLISHERS
ANDERSON ET AL.: "The Practice of Medicinal Chemistry", 1996, ACADEMIC PRESS
BURGIN ET AL., BIOCHEMISTRY, vol. 35, 1996, pages 14090
JAYARAMAN, ANGEW. CHEM. INT., vol. 51, 2012, pages 8529 - 33
LIMBACH ET AL., NUCLEIC ACIDS RES., vol. 22, 1994, pages 2183
P. GOULD, INTERNATIONAL J. PHARMACEUTICS, vol. 33, 1986, pages 201 - 217
S. BERGE ET AL., J. PHARMACEUTICAL SCIENCES, vol. 66, no. 1, 1977, pages 1 - 19

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12083224B2 (en) 2018-03-30 2024-09-10 Arcturus Therapeutics, Inc. Lipid particles for nucleic acid delivery
WO2019191780A1 (fr) * 2018-03-30 2019-10-03 Arcturus Therapeutics, Inc. Particules de lipide pour l'administration d'acides nucléiques
WO2020118115A1 (fr) 2018-12-06 2020-06-11 Arcturus Therapeutics, Inc. Compositions et méthodes pour traiter une déficience en ornithine transcarbamylase
EP4299750A2 (fr) 2018-12-06 2024-01-03 Arcturus Therapeutics, Inc. Compositions et méthodes pour traiter une déficience en ornithine transcarbamylase
US11685906B2 (en) 2018-12-06 2023-06-27 Arcturus Therapeutics, Inc. Compositions and methods for treating ornithine transcarbamylase deficiency
WO2020191103A1 (fr) * 2019-03-19 2020-09-24 Arcturus Therapeutics, Inc. Procédé de fabrication de nanoparticules d'arn encapsulées dans des lipides
CN113840926A (zh) * 2019-03-19 2021-12-24 阿克丘勒斯治疗公司 脂质包封的rna纳米颗粒的制备方法
US11737979B2 (en) 2019-03-19 2023-08-29 Arcturus Therapeutics, Inc. Method of making lipid-encapsulated RNA nanoparticles
EP3942050A4 (fr) * 2019-03-19 2023-02-22 Arcturus Therapeutics, Inc. Procédé de fabrication de nanoparticules d'arn encapsulées dans des lipides
US12220485B2 (en) 2019-03-19 2025-02-11 Arcturus Therapeutics, Inc. Method of making lipid-encapsulated RNA nanoparticles
WO2020255062A1 (fr) 2019-06-20 2020-12-24 Janssen Sciences Ireland Unlimited Company Administration de nanoparticules lipidiques ou de liposomes de vaccins contre le virus de l'hépatite b (vhb)
WO2021067598A1 (fr) 2019-10-04 2021-04-08 Ultragenyx Pharmaceutical Inc. Procédés pour une utilisation thérapeutique améliorée d'aav recombinant
US12351834B2 (en) 2020-03-03 2025-07-08 Arcturus Therapeutics, Inc. Compositions and methods for the treatment of ornithine transcarbamylase deficiency
JP2023516676A (ja) * 2020-03-03 2023-04-20 アークトゥラス・セラピューティクス・インコーポレイテッド オルニチントランスカルバミラーゼ欠損症の治療のための組成物及び方法
WO2021178510A1 (fr) * 2020-03-03 2021-09-10 Arcturus Therapeutics, Inc. Compositions et procédés pour le traitement d'une déficience en ornithine transcarbamylase
JP2023517644A (ja) * 2020-03-09 2023-04-26 アークトゥラス・セラピューティクス・インコーポレイテッド コロナウイルスワクチン組成物及び方法
JP2023524071A (ja) * 2020-05-01 2023-06-08 アークトゥラス・セラピューティクス・インコーポレイテッド 嚢胞性線維症を治療するための核酸及び方法
WO2022008613A1 (fr) 2020-07-08 2022-01-13 Janssen Sciences Ireland Unlimited Company Vaccins à base de réplicon d'arn contre le vhb
US11938227B2 (en) 2020-09-13 2024-03-26 Arcturus Therapeutics, Inc. Lipid nanoparticles encapsulation of large RNA
WO2022146654A1 (fr) 2020-12-28 2022-07-07 Janssen Pharmaceuticals, Inc. Nucléases effectrices de type activateur de transcription (talens) ciblant le vhb
WO2023031394A1 (fr) 2021-09-03 2023-03-09 CureVac SE Nouvelles nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2023073228A1 (fr) 2021-10-29 2023-05-04 CureVac SE Arn circulaire amélioré pour exprimer des protéines thérapeutiques
WO2023144330A1 (fr) 2022-01-28 2023-08-03 CureVac SE Inhibiteurs de facteurs de transcription codés par un acide nucleique
WO2023218420A1 (fr) 2022-05-13 2023-11-16 Janssen Pharmaceuticals, Inc. Compositions d'arnm pour induire une inversion latente du vih-1
WO2023227608A1 (fr) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Vaccin à base d'acide nucléique codant pour un polypeptide antigénique fimh d'escherichia coli
WO2024184500A1 (fr) 2023-03-08 2024-09-12 CureVac SE Nouvelles formulations de nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2024233750A1 (fr) * 2023-05-10 2024-11-14 Arcturus Therapeutics, Inc. Lipides cationiques ionisables pour l'administration d'arn
WO2024230934A1 (fr) 2023-05-11 2024-11-14 CureVac SE Acide nucléique thérapeutique pour le traitement de maladies ophtalmiques
US12311033B2 (en) 2023-05-31 2025-05-27 Capstan Therapeutics, Inc. Lipid nanoparticle formulations and compositions
WO2025080939A1 (fr) 2023-10-13 2025-04-17 Ultragenyx Pharmaceutical, Inc. Compositions et méthodes de traitement d'états associés à des mutations de protéine matricielle oligomérique du cartilage (comp)
WO2025128853A2 (fr) 2023-12-13 2025-06-19 Ultragenyx Pharmaceutical Inc. Compositions et méthodes de traitement d'états pathologiques associés à une surexpression d'ube3a

Similar Documents

Publication Publication Date Title
AU2017379059B2 (en) Ionizable cationic lipid for RNa delivery
US10961188B2 (en) Ionizable cationic lipid for RNA delivery
EP3397614B1 (fr) Lipide cationique ionisable
US9670152B2 (en) Ionizable cationic lipid for RNA delivery
EP3221293B1 (fr) Lipide cationique ionisable pour administration d'arn
US9580711B2 (en) Lipid particles with asymmetric cationic lipids for RNA delivery
WO2018119163A1 (fr) Lipide cationique ionisable pour l'administration d'arn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3046885

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019533410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197021199

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017826404

Country of ref document: EP

Effective date: 20190722

ENP Entry into the national phase

Ref document number: 2017379059

Country of ref document: AU

Date of ref document: 20171220

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P-2024/0048

Country of ref document: RS