WO2018116948A1 - 組成物、硬化物および積層体 - Google Patents
組成物、硬化物および積層体 Download PDFInfo
- Publication number
- WO2018116948A1 WO2018116948A1 PCT/JP2017/044865 JP2017044865W WO2018116948A1 WO 2018116948 A1 WO2018116948 A1 WO 2018116948A1 JP 2017044865 W JP2017044865 W JP 2017044865W WO 2018116948 A1 WO2018116948 A1 WO 2018116948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- composition
- compound
- resin
- formula
- Prior art date
Links
- KOPFXOPMKAVBFA-UHFFFAOYSA-N C=CCOC(CC(CC(CC1)=CC(OCC=C)=C1N)C=C1)=C1N Chemical compound C=CCOC(CC(CC(CC1)=CC(OCC=C)=C1N)C=C1)=C1N KOPFXOPMKAVBFA-UHFFFAOYSA-N 0.000 description 1
- MXMOOSOICRKZCC-UHFFFAOYSA-N C=COC1CCC(CC(CC(CC(CC2)CC(CC(CC3)CCC3OC=C)C2[N](CC2)(C2=O)O)CC2)C2NC(CCC=O)=O)CC1 Chemical compound C=COC1CCC(CC(CC(CC(CC2)CC(CC(CC3)CCC3OC=C)C2[N](CC2)(C2=O)O)CC2)C2NC(CCC=O)=O)CC1 MXMOOSOICRKZCC-UHFFFAOYSA-N 0.000 description 1
- VHNLRXLUIXUCOI-UHFFFAOYSA-N CC(C)(c(cc1)cc(N(C(CC2)=O)C2=O)c1OCC=C)C(C=C1N(C(CC2)=O)C2=O)=CCC1OCC=C Chemical compound CC(C)(c(cc1)cc(N(C(CC2)=O)C2=O)c1OCC=C)C(C=C1N(C(CC2)=O)C2=O)=CCC1OCC=C VHNLRXLUIXUCOI-UHFFFAOYSA-N 0.000 description 1
- VVKWDPCXOKGMEJ-UHFFFAOYSA-N CC(C)(c(cc1)cc(N(C(CC2)O)C2O)c1OCC=C)c(cc1)cc([N+](CCC2)(C2O)[O-])c1OCC=C Chemical compound CC(C)(c(cc1)cc(N(C(CC2)O)C2O)c1OCC=C)c(cc1)cc([N+](CCC2)(C2O)[O-])c1OCC=C VVKWDPCXOKGMEJ-UHFFFAOYSA-N 0.000 description 1
- AEKVXVMLQHIHAM-UHFFFAOYSA-N CC(C)(c(cc1)cc(N)c1OCC=C)c(cc1)cc(N)c1OCC=C Chemical compound CC(C)(c(cc1)cc(N)c1OCC=C)c(cc1)cc(N)c1OCC=C AEKVXVMLQHIHAM-UHFFFAOYSA-N 0.000 description 1
- RCYNJDVUURMJOZ-UHFFFAOYSA-N Nc1ccc(Cc(cc2)cc(O)c2N)cc1O Chemical compound Nc1ccc(Cc(cc2)cc(O)c2N)cc1O RCYNJDVUURMJOZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/40—Imides, e.g. cyclic imides
- C08F222/406—Imides, e.g. cyclic imides substituted imides comprising nitrogen other than the imide nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/40—Imides, e.g. cyclic imides
- C08F222/402—Alkyl substituted imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L35/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/04—Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/40—Imides, e.g. cyclic imides
- C08F222/404—Imides, e.g. cyclic imides substituted imides comprising oxygen other than the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/625—Hydroxyacids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/145—Organic substrates, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27N—MANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
- B27N3/00—Manufacture of substantially flat articles, e.g. boards, from particles or fibres
- B27N3/002—Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/40—Imides, e.g. cyclic imides
- C08F222/408—Imides, e.g. cyclic imides substituted imides comprising other heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2335/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
Definitions
- the present invention provides a composition containing a (meth) allyl group-containing maleimide compound and a hydroxyl group-containing maleimide compound that are excellent in heat resistance and adhesion. Moreover, it is related with the hardened
- the present invention also relates to a heat-resistant material, a heat-resistant member, an electronic material, and an electronic member containing the composition.
- Thermosetting resins such as epoxy resins, cyanate ester resins, bismaleimide-triazine resins, and benzoxazine resins are used as resin materials for electronic components used for semiconductor sealing materials and insulating layers for multilayer printed boards.
- resin materials for electronic components used for semiconductor sealing materials and insulating layers for multilayer printed boards.
- BMI bismaleimide
- BMI having a DDM (4,4′-diaminodiphenylmethane) or DDE (4,4′-diaminodiphenyl ether) skeleton is distributed as a high heat-resistant resin.
- BMI with high heat resistance has a high melting point and low solvent solubility, in addition to the problem that it can be used only in limited applications, it has low adhesion to the substrate, and further improvements and performance improvements are strong. It is desired.
- An object of the present invention is to provide a specific maleimide compound-containing composition having excellent heat resistance and adhesion. Moreover, it is providing the hardened
- composition containing a (meth) allyl group-containing maleimide compound having a specific structure and a hydroxyl group-containing maleimide compound having a specific structure solves the above problems.
- the present invention has a structure having at least one benzene ring, has at least one group having a (meth) allyl group, and further has at least one group having a maleimide group.
- the present invention also provides the specific maleimide compound-containing composition of the present invention, a cured product containing the composition, and a laminate having the cured product layer. Moreover, this invention provides the composition for heat-resistant materials characterized by containing the specific maleimide compound containing composition of this invention, and the composition for electronic materials.
- composition containing a (meth) allyl group-containing maleimide compound having a specific structure and a hydroxyl group-containing maleimide compound having a specific structure of the present invention is excellent in heat resistance, and can be suitably used for a heat-resistant member and an electronic member. Moreover, since it is excellent in adhesiveness, it can be used especially suitably for a semiconductor sealing material, a circuit board, a buildup film, a buildup board, etc., an adhesive, or a resist material. Moreover, it can be used suitably also for the matrix resin of a fiber reinforced resin, and is especially suitable as a highly heat resistant prepreg.
- the present invention has a structure having at least one benzene ring, has at least one group having a (meth) allyl group, and further has at least one group having a maleimide group.
- a hydroxyl group-containing maleimide compound having a structure having at least one benzene ring, a group having at least one benzene ring, at least one group having a hydroxyl group, and further having at least one maleimide group;
- the composition containing is provided.
- the (meth) allyl group-containing maleimide compound of the present invention has a structure having at least one benzene ring, has at least one group having a (meth) allyl group, and further has at least one group having a maleimide group. It is a compound characterized by having the formula (1).
- n 1 and m 1 are each independently an integer of 1 to 5, and Aly is a group having a (meth) allyl group represented by the following formula (2): Is a group having a maleimide group represented by the following formula (3), and A 1 has a structure having one or more benzene rings.
- Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.
- Z 2 is a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent, and R 2 and R 3 are each independently a hydrogen atom or a methyl group. Represents.
- the (meth) allyl group-containing maleimide compound of the present invention has one or more benzene rings, thereby improving the heat resistance, particularly the heat decomposition temperature of the compound of the present invention. Moreover, since a glass transition temperature rises by having a maleimide group, heat resistance further improves. In addition, the (meth) allyl group improves the reactivity and lowers the melting point, so that the handling property is improved and it can be suitably used in various applications.
- a 1 in the formula (1) has a structure having one or more benzene rings.
- Examples of the structure having one or more benzene rings include a structure represented by the following formula (10).
- the benzene ring may or may not have a substituent, and the bonding method of the substituent is not particularly limited. Further, when there are a plurality of benzene rings, the benzene rings may be directly bonded to each other, may be bonded via a linking group, or the benzene rings may be condensed to form a condensed ring. It doesn't matter.
- X in Formula (10) represents a direct bond or a divalent linking group. Examples of the divalent linking group include an optionally substituted hydrocarbon group having 1 to 3 carbon atoms, an oxygen atom, a carbonyl group, a sulfur atom, a sulfone group, and a divalent alicyclic structure.
- Y in Formula (10) represents a trivalent linking group. Examples of the trivalent linking group include a substituted hydrocarbon group having 1 to 3 carbon atoms, a nitrogen atom, and a trivalent alicyclic structure.
- preferred structures include any of the structures represented by the following formula (11).
- a hydrogen atom of a benzene ring structure may be replaced with a substituent as long as the structure does not impair the effects of the present invention.
- substituent include known and conventional ones.
- an optionally substituted hydrocarbon group having 1-6 carbon atoms, halogen atom, hydroxyl group, amino group, amide group, ureido group, urethane group, carboxyl group, alkoxy group, thioether group, acyl group examples include an acyloxy group, an alkoxycarbonyl group, a cyano group, and a nitro group.
- n 1 may be an integer of 1 to 5, and n 1 of 2 or more is preferable because the melting point is lowered. Further, m 1 may be an integer of 1 to 5, and m 1 of 2 or more is preferable because heat resistance is improved.
- Z 1 represents a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent.
- the hydrocarbon group having 1 to 10 carbon atoms include an alkylene group, an alkenylene group, a cycloalkylene group, an arylene group, an aralkylene group, and a group obtained by combining a plurality of them.
- the alkylene group include a methylene group, a methine group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group.
- Examples of the alkenylene group include a vinylene group, a 1-methylvinylene group, a propenylene group, a butenylene group, and a pentenylene group.
- Examples of the alkynylene group include an ethynylene group, a propynylene group, a butynylene group, a pentynylene group, and a hexynylene group.
- Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
- arylene group examples include a phenylene group, a tolylene group, a xylylene group, and a naphthylene group.
- preferred structures for Z 1 include a direct bond or a methylene group.
- Z 2 represents a direct bond or a hydrocarbon group having 1 or 2 carbon atoms which may have a substituent.
- a direct bond or a methylene group is preferred.
- particularly preferred structures are (12-1), (12-2), (12-3), (12-4), (12-5), (12-6), (12-8), ( 12-12) and (12-13). It is preferable that a group containing a (meth) allyl group and a maleimide group are present in the same benzene ring because the melting point tends to decrease. Moreover, since it will improve heat resistance when it hardens
- a hydroxyl group-containing aromatic amino compound having a benzene ring By using a hydroxyl group-containing aromatic amino compound having a benzene ring, it has a structure having at least one benzene ring of the present invention, has at least one group having a (meth) allyl group, and further has 1 maleimide group.
- a (meth) allyl group-containing maleimide compound, which is a compound having at least one, can be produced.
- the hydroxyl group-containing aromatic amino compound having a benzene ring is preferably a compound having any one of the structures represented by the formula (6), a hydroxyl group and an amino group.
- any phenol compound having an amino group may be used.
- the amino group can be protected by a known and commonly used method.
- the amino group can be protected by acetylation.
- acetylation a known and commonly used acetylating agent may be used, and examples thereof include acetic anhydride and acetyl chloride.
- step 1-2 for example, (meth) allylation is performed by reacting a halogenated (meth) allyl compound in the presence of a base with a hydroxyl group of a hydroxyl group-containing aromatic amino compound in which the amino group is protected.
- a halogenated (meth) allyl compound examples include (meth) allyl bromide and (meth) allyl chloride, and examples of the base include potassium carbonate.
- step 1-3) and step 1-4 the protected amino group is deprotected and the amino group is converted to maleimide.
- maleimidation of an amino group it can be maleimidated by reacting, for example, a compound represented by the following formula (13).
- R 2 and R 3 each independently represents a hydrogen atom or a methyl group.
- Examples of the compound represented by the formula (13) include maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and the like.
- a (meth) allyl group-containing maleimide compound can be produced.
- unreacted monomers may remain in the reaction product, or other compounds different from the (meth) allyl group-containing maleimide compound may be produced as a product. is there. Examples of other compounds include unclosed amic acid, isoimide, monomers, and product oligomers. Substances other than these (meth) allyl group-containing maleimide compounds may be removed through a purification process, or may be used while contained depending on the application.
- composition of the present invention has a structure having one or more benzene rings in addition to the (meth) allyl group-containing maleimide compound, one or more groups having a hydroxyl group, and one or more maleimide groups.
- a hydroxyl group-containing maleimide compound represented by the formula (4) is contained.
- n 2 and m 2 are each independently an integer of 1 to 5
- MI is a group having a maleimide group represented by the formula (3)
- a 2 is a structure having one or more benzene rings.
- the composition of the present invention contains both a (meth) allyl group-containing maleimide compound and a hydroxyl group-containing maleimide compound, thereby improving adhesion to the substrate. Moreover, since the hydroxyl-containing maleimide compound of this invention has an aromatic ring structure, the composition containing it has high heat resistance.
- n 2 may be an integer of 1 to 5
- m 2 may be an integer of 1 to 5.
- a ratio of 1: 2 to 2: 1 is particularly preferable because both heat resistance and a low melting point can be achieved.
- the bonding site between the hydroxyl group and the maleimide group but it is preferable that the maleimide group and the group containing the hydroxyl group exist on the same benzene ring, since the heat resistance is further improved.
- a particularly preferred structure is the following structure in which A 2 is a benzene ring structure and n 2 and m 2 are both 1.
- the method for producing a hydroxyl group-containing maleimide compound of the present invention is not particularly limited, and has a structure having one or more benzene rings of the present invention by maleimidizing a hydroxyl group-containing aromatic amino compound having a benzene ring, A hydroxyl group-containing maleimide compound having at least one group having a hydroxyl group and further having at least one maleimide group can be produced.
- Preferred examples of the hydroxyl group-containing aromatic amino compound having a benzene ring include compounds having any one of the structures represented by formula (10), a hydroxyl group and an amino group. Specifically, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2,4-dihydroxyaniline, 2,6-dihydroxyaniline, 2,2-bis (3-amino-4-hydroxyphenyl) propane 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) sulfone, 4,4′-diamino-3,3′-dihydroxy Biphenyl, 3,3′-diamino-4,4′-dihydroxybiphenyl, 9,9-bis (3-amino-4-hydroxyphenyl) fluorene, 1,3-bis (4-amino-3-hydroxyphenoxy) benzene
- conventionally known compounds such as 4,4′-diamino-4 ′′
- maleimidation of the amino group for example, it can be maleimidated by reacting the compound represented by the formula (13).
- Examples of the compound represented by the formula (13) include maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and the like.
- a hydroxyl group-containing maleimide having a structure having one or more benzene rings of the present invention, having one or more groups having a hydroxyl group, and further having one or more maleimide groups by passing through the above steps A compound can be produced.
- an unreacted monomer may remain in the reaction product, or another compound different from the hydroxyl group-containing maleimide compound may be produced as a product.
- examples of other compounds include unclosed amic acid, isoimide, monomers, and product oligomers. Substances other than these hydroxyl group-containing maleimide compounds may be removed through a purification step, or may be used as contained depending on the application.
- composition of the present invention contains the (meth) allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound of the present invention.
- the cured product obtained by curing the composition of the present invention is excellent in heat decomposability and has a high glass transition temperature and low linear expansion, and therefore can be suitably used for a heat resistant member.
- it since it is excellent in the adhesiveness to a base material, it can be used especially suitably with respect to the electronic member which needs to combine various members, such as a board
- the mixing ratio of the (meth) allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be appropriately prepared and used within a range not impairing the effects of the present invention.
- (Meth) allyl group-containing maleimide compound: hydroxyl group-containing maleimide compound 1: 5 to 5: 1 is preferable. This is because, within this range, the balance between heat resistance and adhesion is excellent. Particularly preferred is 1: 2 to 4: 1.
- the production method of the composition containing the (meth) allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound of the present invention is not particularly limited. As a simple method, a (meth) allyl group-containing maleimide compound and a hydroxyl group-containing maleimide compound are used. What is necessary is just to mix as it is.
- a uniform composition can be produced by a production method comprising a step of producing a mixed solution by mixing a maleimide compound and a solvent and a step of removing the solvent from the obtained mixed solution.
- the two maleimide compounds can be dispersed at the molecular level, and the viscosity of the compound can be reduced.
- the (meth) allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be mixed by dissolving in one solvent.
- the (meth) allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be separately dissolved in a solvent, and then the solutions may be mixed.
- the solvent for dissolving the (meth) allyl group-containing maleimide compound and the hydroxyl group-containing maleimide compound may be different solvents as long as they are compatible, and of course, the same solvent may be used.
- Examples of the solvent for producing the mixed liquid include ketones such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK), cyclic ethers such as tetrahydrofuran (THF) and dioxolane, methyl acetate, ethyl acetate and butyl acetate.
- ethyl acetate, methyl ethyl ketone, and toluene are preferable from the viewpoints of solubility of the composition, volatility when the solvent is distilled off, and solvent recovery.
- the composition it can also be produced by mixing a (meth) allyl group-containing maleimide compound and a precursor of a hydroxyl group-containing maleimide compound and then simultaneously forming a maleimide.
- this method the synthesis process can be simplified, and the two maleimide compounds can be dispersed at the molecular level, thereby reducing the viscosity of the compound.
- a composition containing a (meth) allyl group-containing compound and a hydroxyl group-containing maleimide compound can be collectively produced by a production method having a step of maleimidizing an aromatic amino compound mixture.
- n 1 and m 1 are each independently an integer of 1 to 5
- Aly is a group having a (meth) allyl group represented by the following formula (7)
- B 1 is a group having an amino group represented by the following formula (8)
- a 1 is a structure having one or more benzene rings.
- Z 1 is a hydrocarbon group having 1 to 10 carbon atoms which may have a direct bond or a substituent, and R 1 represents a hydrogen atom or a methyl group.
- Z 2 is a hydrocarbon group having 1 or 2 carbon atoms which may have a direct bond or a substituent, and R 2 and R 3 are each independently a hydrogen atom or a methyl group. Represents.
- n 2 and m 2 are each independently an integer of 1 to 5
- B 2 is a group having a maleimide group represented by the formula (8)
- a 2 is a structure having one or more benzene rings.
- the composition of the present invention may further contain an epoxy compound.
- an epoxy compound By containing the epoxy compound, the adhesion to the substrate is further improved.
- the maleimide group which a (meth) allyl group-containing maleimide compound and a maleimide group which has a hydroxyl-containing maleimide compound react with each other forms a composite crosslinking system. Therefore, heat resistance and low linear expansion are further improved.
- the mixing ratio of the hydroxyl group-containing maleimide compound and the epoxy compound is 1: 2 to 2: 1 as the ratio of the hydroxyl group equivalent to the epoxy equivalent of the hydroxyl group-containing maleimide compound. It is preferable from the viewpoint of heat resistance. Particularly preferred is 1: 1.5 to 1.5: 1.
- Examples of the epoxy compound of the present invention include an epoxy resin and a phenoxy resin.
- the epoxy resin is not particularly limited as long as it has an epoxy group.
- bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol sulfide type epoxy resin, Phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, polyhydroxy naphthalene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, tri Phenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin , Naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy
- the phenoxy resin is a high molecular weight thermoplastic polyether resin based on diphenol and epihalohydrin such as epichlorohydrin, and preferably has a weight average molecular weight of 20,000 to 100,000.
- Examples of the structure of the phenoxy resin include bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, Examples thereof include those having one or more skeletons selected from a terpene skeleton and a trimethylcyclohexane skeleton.
- an aromatic epoxy compound is preferable, and a polycyclic aromatic epoxy compound having a plurality of aromatic rings is more preferable.
- the following structure is mentioned as a preferable epoxy compound.
- the composition of the present invention may further contain a filler.
- the filler include inorganic fillers and organic fillers.
- examples of the inorganic filler include inorganic fine particles.
- those having excellent heat resistance include alumina, magnesia, titania, zirconia, silica (quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, amorphous fine powder amorphous Silica, etc.), etc .; those that are excellent in heat conduction, such as boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide, diamond, etc .; For example, a metal filler and / or a metal-coated filler using iron, copper, magnesium, aluminum, gold, silver, platinum, zinc, manganese, stainless steel, etc .; Minerals such as talc, zeolite, wollastonite, smectite, potassium titanate, Magnesium oxide, sepiolite, zonolite, aluminum borate, calcium carbonate, titanium oxide, barium sul
- the silica and the like as excellent ultraviolet shielding, titanium oxide, zinc oxide and the like.
- These inorganic fine particles may be appropriately selected depending on the application, and may be used alone or in combination of two or more.
- the inorganic fine particles have various characteristics in addition to the characteristics described in the examples, and therefore may be selected according to the timely use.
- silica when silica is used as the inorganic fine particles, there is no particular limitation, and known silica fine particles such as powdered silica and colloidal silica can be used.
- known silica fine particles such as powdered silica and colloidal silica can be used.
- commercially available powdered silica fine particles include Aerosil 50 and 200 manufactured by Nippon Aerosil Co., Ltd., Sildex H31, H32, H51, H52, H121, and H122 manufactured by Asahi Glass Co., Ltd., and E220A manufactured by Nippon Silica Industry Co., Ltd. , E220, SYLYSIA470 manufactured by Fuji Silysia Co., Ltd., SG flake manufactured by Nippon Sheet Glass Co., Ltd., and the like.
- colloidal silica examples include methanol silica sol, IPA-ST, MEK-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST-OUP, manufactured by Nissan Chemical Industries, Ltd. ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL and the like can be mentioned.
- silica fine particles may be used.
- the silica fine particles may be surface-treated with a reactive silane coupling agent having a hydrophobic group or those modified with a compound having a (meth) acryloyl group.
- a reactive silane coupling agent having a hydrophobic group or those modified with a compound having a (meth) acryloyl group.
- a commercially available powdery silica modified with a compound having a (meth) acryloyl group as a commercially available colloidal silica modified with a compound having a (meth) acryloyl group, such as Aerosil RM50, R711 manufactured by Nippon Aerosil Co., Ltd. Examples include MIBK-SD manufactured by Nissan Chemical Industries, Ltd.
- the shape of the silica fine particles is not particularly limited, and those having a spherical shape, a hollow shape, a porous shape, a rod shape, a plate shape, a fiber shape, or an indefinite shape can be used.
- the primary particle size is preferably in the range of 5 to 200 nm. If the thickness is less than 5 nm, the dispersion of the inorganic fine particles in the dispersion becomes insufficient, and if the diameter exceeds 200 nm, sufficient strength of the cured product may not be maintained.
- titanium oxide fine particles not only extender pigments but also ultraviolet light responsive photocatalysts can be used.
- anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide and the like can be used.
- particles designed to respond to visible light by doping a different element in the crystal structure of titanium oxide can also be used.
- an element to be doped in titanium oxide anionic elements such as nitrogen, sulfur, carbon, fluorine and phosphorus, and cationic elements such as chromium, iron, cobalt and manganese are preferably used.
- a sol or slurry dispersed in powder an organic solvent or water can be used.
- Examples of commercially available powdered titanium oxide fine particles include Aerosil P-25 manufactured by Nippon Aerosil Co., Ltd., ATM-100 manufactured by Teika Co., Ltd., and the like. Moreover, examples of commercially available slurry-like titanium oxide fine particles include Teika Co., Ltd. TKD-701.
- the composition of the present invention may further contain a fibrous substrate.
- the fibrous substrate of the present invention is not particularly limited, but those used for fiber reinforced resins are preferable, and examples thereof include inorganic fibers and organic fibers.
- Inorganic fibers include carbon fibers, glass fibers, boron fibers, alumina fibers, silicon carbide fibers, etc., as well as carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers). ), Ceramic fibers, alumina fibers, natural fibers, basalt and other mineral fibers, boron fibers, boron nitride fibers, boron carbide fibers, and metal fibers.
- the metal fiber include aluminum fiber, copper fiber, brass fiber, stainless steel fiber, and steel fiber.
- Organic fibers include polybenzazole, aramid, PBO (polyparaphenylene benzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate and other synthetic fibers, cellulose, pulp, Mention may be made of natural fibers such as cotton, wool and silk, regenerated fibers such as proteins, polypeptides and alginic acid.
- carbon fiber and glass fiber are preferable because they have a wide industrial application range. Of these, only one type may be used, or a plurality of types may be used simultaneously.
- the fibrous substrate of the present invention may be an aggregate of fibers, or may be continuous, discontinuous, woven or non-woven. Moreover, the fiber bundle which arranged the fiber in one direction may be sufficient, and the sheet form which arranged the fiber bundle may be sufficient. Further, it may be a three-dimensional shape in which the aggregate of fibers has a thickness.
- the composition of the present invention may contain a reactive compound in addition to the (meth) allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound of the present invention, and the epoxy compound described above.
- a reactive compound By adding a reactive compound, it is possible to impart various characteristics such as reactivity, heat resistance, and handling properties to the resin.
- the reactive compound mentioned here is a compound having a reactive group, and may be a monomer, an oligomer, or a polymer.
- the reactive group may be a (meth) allyl group-containing maleimide compound, a hydroxyl group-containing maleimide compound of the present invention, a functional group that does not react with the epoxy compound described above, or a functional group that reacts, but in order to further improve heat resistance
- Is preferably a functional group that reacts with the (meth) allyl group-containing maleimide compound, the hydroxyl group-containing maleimide compound, and the epoxy compound described above. Examples thereof include a cyanate group, a maleimide group, a phenolic hydroxyl group, an oxazine ring, an amino group, and a group having a carbon-carbon double bond.
- Examples of the compound having a cyanato group include cyanate ester resins.
- Examples of the compound having a maleimide group include a maleimide resin and a bismaleimide resin.
- Examples of the compound having a phenolic hydroxyl group include phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, and biphenyl aralkyl resin.
- Examples of the compound having an oxazine ring include benzoxazine obtained by reacting a phenol compound or an aromatic amino compound with formaldehyde. These phenol compounds and aromatic amino compounds may have a reactive functional group in the structure.
- Examples of the compound having an amino group include DDM (4,4′-diaminodiphenylmethane), DDE (4,4′-diaminodiphenyl ether), 3,4′-diaminodiphenyl ether, 2,2- ⁇ bis-4- (4-aminophenoxy). And aromatic amino compounds such as phenyl ⁇ propane and 4,4′-bis (4-aminophenoxy) biphenyl.
- Examples of the compound having a group having a carbon-carbon double bond include maleimide compounds, vinyl compounds, (meth) allyl compounds, and the like.
- the above-mentioned reactive compound may have only one type of reactive group or a plurality of types, and the number of functional groups may be one or plural. A plurality of types may be used simultaneously.
- Preferable reactive compounds include cyanate ester resins, maleimide compounds, vinyl compounds, aromatic amino compounds and the like. Among these, maleimide compounds, cyanate ester resins, and aromatic amino compounds are particularly preferable.
- the maleimide compound is a (meth) allyl group-containing maleimide compound of the present invention, and the cross-linking density is improved by the self-addition reaction between maleimide groups or the ene reaction between allyl group and maleimide group. Will improve.
- a high-temperature and long-time curing condition is required in order to obtain a uniform cured product using a maleimide compound. Therefore, in many cases, a peroxide-based catalyst is used in combination for promoting the reaction.
- the allyl group-containing maleimide compound of the present invention does not use a catalyst, the curing reaction proceeds and a uniform cured product can be obtained.
- a cured product of the cyanate ester resin and the (meth) allyl group-containing maleimide compound of the present invention exhibits excellent dielectric properties.
- An aromatic amino compound has a crosslink density improved by a Michael addition reaction between an amino group and a maleimide group, thereby improving a heat decomposition temperature and a glass transition temperature.
- cyanate ester resin examples include bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol sulfide type cyanate ester resin, phenylene ether type cyanate ester resin, Naphthylene ether type cyanate ester resin, biphenyl type cyanate ester resin, tetramethylbiphenyl type cyanate ester resin, polyhydroxynaphthalene type cyanate ester resin, phenol novolac type cyanate ester resin, cresol novolac type cyanate ester resin, triphenylmethane type cyanate ester Resin, tetraphenylethane type cyanate ester resin, di Clopentadiene-phenol addition reaction type cyanate ester resin, phenol aralkyl type cyanate ester resin, naphthol novolak type cyanate ester resin, napht
- cyanate ester resins bisphenol A-type cyanate ester resins, bisphenol F-type cyanate ester resins, bisphenol E-type cyanate ester resins, and polyhydroxynaphthalene-type cyanate ester resins are particularly preferred in that a cured product having excellent heat resistance can be obtained.
- a naphthylene ether type cyanate ester resin or a novolak type cyanate ester resin is preferably used, and a dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferred in that a cured product having excellent dielectric properties can be obtained.
- maleimide compounds include various compounds represented by any of the following structural formulas (i) to (iii).
- R is an m-valent organic group
- ⁇ and ⁇ are each a hydrogen atom, a halogen atom, an alkyl group, or an aryl group, and s is an integer of 1 or more.
- R is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group or an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 repeating units.
- R is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, a halogen atom, a hydroxyl group or an alkoxy group, s is an integer of 1 to 3, and t is an average of 0 to 10 repeating units.
- the oxazine compound is not particularly limited.
- a reaction product of bisphenol F, formalin and aniline Fa type benzoxazine resin
- a reaction product of 4,4′-diaminodiphenylmethane, formalin and phenol P -D-type benzoxazine resin
- reaction product of bisphenol A, formalin and aniline reaction product of dihydroxydiphenyl ether, formalin and aniline
- reaction product of diaminodiphenyl ether, formalin and phenol dicyclopentadiene-phenol addition type resin
- Examples include a reaction product of formalin and aniline, a reaction product of phenolphthalein, formalin and aniline, a reaction product of dihydroxydiphenyl sulfide, formalin and aniline. These may be used alone or in combination of two or more.
- vinyl compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2 -Alkyl (meth) acrylates having an alkyl group having 1 to 22 carbon atoms such as ethylhexyl (meth) acrylate and lauryl (meth) acrylate; aralkyl such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate (Meth) acrylates; cycloalkyl (meth) acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-methoxyethyl (meth) acrylate, 4-methoxybutyl (meth) acryl
- allylic compounds include allyl esters such as allyl acetate, allyl chloride, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, allyl lactate, etc.
- Allyloxy alcohols such as allyloxymethanol and allyloxyethanol; diallyl phthalate, diallyl isophthalate, diallyl cyanurate, diallyl isocyanurate, pentaerythritol diallyl ether, trimethylolpropane diallyl ether, glyceryl diallyl ether, bisphenol A diallyl ether, Bisphenol F diallyl ether, ethylene glycol diallyl ether, diethylene glycol diallyl ether, triethylene glycol diallyl ether Compounds containing two allyl groups such as ter, propylene glycol diallyl ether, dipropylene glycol diallyl ether, tripropylene glycol diallyl ether; triallyl isocyanurate, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, trimethylolpropane tri A compound containing three or more allyl groups such as ally
- Both maleimide groups and (meth) allyl groups are present in the composition of the present invention.
- the ratio of the maleimide group and the (meth) allyl group is not particularly limited, but the number of moles of maleimide group: number of moles of (meth) allyl group is preferably 1:10 to 10: 1, and is preferably 1: 5 to 5: 1. It is preferable because of its excellent heat resistance. In particular, a ratio of 1: 2 to 3: 1 is preferable because of excellent balance between heat resistance and composition viscosity.
- the composition of the present invention may use a dispersion medium for the purpose of adjusting the solid content and viscosity of the composition.
- the dispersion medium may be a liquid medium that does not impair the effects of the present invention, and examples thereof include various organic solvents and liquid organic polymers.
- organic solvent examples include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK), cyclic ethers such as tetrahydrofuran (THF) and dioxolane, and esters such as methyl acetate, ethyl acetate, and butyl acetate.
- ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK)
- cyclic ethers such as tetrahydrofuran (THF) and dioxolane
- esters such as methyl acetate, ethyl acetate, and butyl acetate.
- Aromatics such as toluene and xylene
- alcohols such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether.
- the liquid organic polymer is a liquid organic polymer that does not directly contribute to the curing reaction.
- modified carboxyl group-containing polymer Floren G-900, NC-500: Kyoeisha
- acrylic polymer Floren WK-20: Kyoeisha
- amine salts of specially modified phosphate esters HIPLAAD ED-251: Enomoto Kasei
- modified acrylic block copolymers DISPERBYK2000; Big Chemie
- the composition of this invention may have resin other than the various compounds mentioned above of this invention.
- resin a known and commonly used resin may be blended as long as the effects of the present invention are not impaired.
- a thermosetting resin or a thermoplastic resin can be used.
- thermosetting resin is a resin having characteristics that can be substantially insoluble and infusible when cured by heating or means such as radiation or a catalyst. Specific examples include phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene.
- thermosetting polyimide resins thermosetting polyimide resins, benzoxazine resins, active ester resins, aniline resins, cyanate ester resins, styrene / maleic anhydride (SMA) resins, maleimide resins other than allyl group-containing maleimide compounds obtained by the present invention, etc. It is done.
- thermosetting resins can be used alone or in combination of two or more.
- Thermoplastic resin means a resin that can be melt-molded by heating. Specific examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone Fat, polyarylate resins, thermoplastic polyimide resins, polyamideimide
- the composition of the present invention may use a curing agent depending on the formulation.
- a curing agent depending on the formulation.
- an amine curing agent when a compound having an epoxy group is blended, an amine curing agent, an amide curing agent, an acid anhydride type
- Various curing agents such as a curing agent, a phenol-based curing agent, an active ester-based curing agent, a carboxyl group-containing curing agent, and a thiol-based curing agent may be used in combination.
- amine curing agents include diaminodiphenylmethane, diaminodiphenylethane, diaminodiphenyl ether, diaminodiphenylsulfone, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine, metaxylenediamine, paraxylenediamine, diethyltoluenediamine, diethylenetriamine, triethylenetetramine, Examples include isophorone diamine, imidazole, BF3-amine complex, guanidine derivative, and guanamine derivative.
- amide-based curing agent examples include polyamide resins synthesized from dimer of dicyandiamide and linolenic acid and ethylenediamine.
- acid anhydride curing agents examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
- phenolic curing agents include bisphenol A, bisphenol F, bisphenol S, resorcin, catechol, hydroquinone, fluorene bisphenol, 4,4'-biphenol, 4,4 ', 4 "-trihydroxytriphenylmethane, naphthalenediol, 1 , 1,2,2-tetrakis (4-hydroxyphenyl) ethane, calixarene, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Xylok) Resin), polyhydric phenol novolak resin synthesized from formaldehyde and polyhydric hydroxy compound represented by resorcinol novolak resin, naphthol aralkyl resin, trimethylo Rumethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-
- the curing accelerator can be used alone or in combination with the above-mentioned curing agent.
- Various compounds that accelerate the curing reaction of the epoxy resin can be used as the curing accelerator, and examples thereof include phosphorus compounds, tertiary amine compounds, imidazole compounds, organic acid metal salts, Lewis acids, and amine complex salts.
- the use of an imidazole compound, a phosphorus compound, and a tertiary amine compound is preferable, and particularly when used as a semiconductor sealing material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, and the like.
- 2-ethyl-4-methyl-imidazole for imidazole compounds
- triphenylphosphine for phosphorus compounds
- N, N-dimethyl-4-aminopyridine for tertiary amines
- 1,8-diazabicyclo- [5. 4.0] -undecene is preferred.
- composition of the present invention may have other blends.
- catalyst, polymerization initiator, inorganic pigment, organic pigment, extender pigment, clay mineral, wax, surfactant, stabilizer, flow regulator, coupling agent, dye, leveling agent, rheology control agent, UV absorber, An antioxidant, a flame retardant, a plasticizer, etc. are mentioned.
- the cured product obtained by curing the composition of the present invention can be suitably used as a heat-resistant member because it has a low linear expansion and is excellent in a high glass transition temperature and a thermal decomposition resistance. Furthermore, since it is excellent in adhesiveness to a base material, it can be suitably used for an electronic member. There are no particular limitations on the method for molding the cured product, and the composition may be molded alone, or may be laminated with a substrate to form a laminate.
- thermosetting when hardening the composition of this invention.
- a known and commonly used curing catalyst may be used, but the composition of the present invention can be cured without using a curing catalyst due to a reaction between a maleimide group and an allyl group.
- it may be cured by one heating, or may be cured through a multi-step heating process.
- a curing catalyst for example, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide and potassium hydroxide; tetra Titanates such as isopropyl titanate and tetrabutyl titanate; 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 2-ethyl-4-methyl-imidazole, 1-methylimidazole, N, Compounds containing various basic nitrogen atoms such as N-dimethyl-4-aminopyridine (DMAP) Substances, DMAP
- the (meth) allyl group-containing maleimide compound of the present invention has a carbon-carbon double bond, it can be used in combination with active energy ray curing. What is necessary is just to mix
- Known photopolymerization initiators may be used, and for example, one or more selected from the group consisting of acetophenones, benzyl ketals, and benzophenones can be preferably used.
- Examples of the acetophenones include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4 -(2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone and the like.
- Examples of the benzyl ketals include 1-hydroxycyclohexyl-phenyl ketone and benzyl dimethyl ketal.
- Examples of the benzophenones include benzophenone and methyl o-benzoylbenzoate.
- Examples of the benzoins include benzoin, benzoin methyl ether, and benzoin isopropyl ether.
- a photoinitiator may be used independently and may use 2 or more types together.
- thermosetting may be performed after active energy ray irradiation, or active energy ray curing may be performed after thermosetting.
- you may carry out combining each hardening method 2 times or more, and should just select a hardening method suitably according to a use.
- cured material of this invention can be made into a laminated body by laminating
- the base material of the laminate may be used as appropriate depending on the application, such as inorganic materials such as metal and glass, or organic materials such as plastic and wood, and the shape of the laminate may be flat, sheet, or three-dimensional. It may have a three-dimensional shape. The shape may be any shape according to the purpose, such as one having curvature on the entire surface or part thereof. Moreover, there is no restriction
- the cured product of the present invention may be used as a base material, and the cured product of the present invention may be further laminated. For applications such as circuit boards and semiconductor package substrates, it is preferable to laminate metal foils, and examples of metal foils include copper foils, aluminum foils, gold foils, and silver foils. Is preferred.
- the cured product layer may be formed directly on the substrate by coating or molding, or already molded products may be laminated.
- the coating method is not particularly limited, spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, A screen printing method, an inkjet method, etc. are mentioned.
- direct molding in-mold molding, insert molding, vacuum molding, extrusion lamination molding, press molding and the like can be mentioned.
- laminating a molded composition an uncured or semi-cured composition layer may be laminated and then cured, or a cured product layer obtained by completely curing the composition may be laminated on a substrate. Good.
- the cured product of the present invention may be laminated by applying and curing a precursor that can be a substrate, and the precursor that can be a substrate or the composition of the present invention is uncured or semi-cured. You may make it harden
- a precursor which can become a base material Various curable resin compositions etc. are mentioned.
- the composition containing the fibrous substrate can be used as a fiber reinforced resin.
- the method for incorporating the fibrous substrate into the composition is not particularly limited as long as it does not impair the effects of the present invention, and the fibrous substrate and the composition are kneaded, coated, impregnated, poured, crimped, etc.
- the method of compounding by a method is mentioned, It can select suitably according to the form of a fiber, and the use of a fiber reinforced resin.
- the method for molding the fiber reinforced resin of the present invention is not particularly limited. If a plate-shaped product is to be manufactured, an extrusion molding method is generally used, but a flat press is also possible. In addition, an extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, or the like can be used. If a film-like product is manufactured, the solution casting method can be used in addition to the melt extrusion method. When the melt molding method is used, inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding are used. , Fiber molding, blow molding, injection molding, rotational molding, coating molding, and the like.
- cured material can be manufactured using the various hardening method using an active energy ray.
- a thermosetting resin is used as the main component of the matrix resin
- a molding method in which a molding material is made into a prepreg and pressurized and heated by a press or an autoclave can be cited.
- RTM (Resin Transfer Molding) molding examples thereof include VaRTM (Vaccum Assist Resin Transfer Molding) molding, laminate molding, hand layup molding, and the like.
- the fiber reinforced resin of the present invention can form a state called an uncured or semi-cured prepreg. After the product is distributed in a prepreg state, final curing may be performed to form a cured product. In the case of forming a laminate, it is preferable to form a prepreg and then laminate other layers and then perform final curing to form a laminate in which the layers are in close contact with each other.
- the mass ratio of the composition to be used at this time and the fibrous substrate is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60 mass%.
- the composition of the present invention can be suitably used for a heat-resistant member because the cured product has low linear expansion and excellent thermal decomposition resistance. Moreover, since it is excellent in the adhesiveness to a base material, it can be used conveniently especially for an electronic member. In particular, it can be suitably used for semiconductor encapsulants, circuit boards, build-up films, build-up boards, etc., adhesives and resist materials. Moreover, it can be used suitably also for the matrix resin of a fiber reinforced resin, and is especially suitable as a highly heat resistant prepreg.
- the heat-resistant member and electronic member thus obtained can be suitably used for various applications, such as industrial machine parts, general machine parts, automobile / railway / vehicle parts, space / aviation-related parts, electronic / electric parts, Examples include, but are not limited to, building materials, containers / packaging members, daily necessities, sports / leisure products, wind power generation casing members, and the like.
- Semiconductor encapsulating material As a method for obtaining a semiconductor encapsulating material from the composition of the present invention, the composition, and a compounding agent such as a curing accelerator and an inorganic filler, if necessary, an extruder, a kneader, A method of sufficiently melting and mixing until uniform using a roll or the like can be mentioned. At that time, fused silica is usually used as the inorganic filler, but when used as a high thermal conductive semiconductor encapsulant for power transistors and power ICs, crystalline silica, alumina, nitridation having higher thermal conductivity than fused silica.
- a compounding agent such as a curing accelerator and an inorganic filler, if necessary, an extruder, a kneader, A method of sufficiently melting and mixing until uniform using a roll or the like can be mentioned.
- fused silica is usually used as the inorganic filler, but when used as a high thermal conductive
- High filling such as silicon, or fused silica, crystalline silica, alumina, silicon nitride, or the like may be used.
- the filling rate is preferably in the range of 30 to 95% by mass of inorganic filler per 100 parts by mass of the curable resin composition. Among them, flame retardancy, moisture resistance and solder crack resistance are improved, linear expansion coefficient In order to achieve a lowering of 70 parts by mass, 70 parts by mass or more is more preferable, and 80 parts by mass or more is more preferable.
- semiconductor device As semiconductor package molding for obtaining a semiconductor device from the curable resin composition of the present invention, the above-mentioned semiconductor sealing material is molded using a casting, transfer molding machine, injection molding machine or the like, and further 50 to 250 ° C. And heating for 2 to 10 hours.
- Printed Circuit Board As a method for obtaining a printed circuit board from the composition of the present invention, the above-mentioned prepreg is laminated by a conventional method, and a copper foil is appropriately stacked, and the pressure is applied at 1 to 10 MPa at 170 to 300 ° C. for 10 minutes to The method of carrying out thermocompression bonding for 3 hours is mentioned.
- the method for obtaining a build-up substrate from the composition of the present invention includes, for example, the following steps. First, the above-mentioned composition containing rubber, filler, etc. as appropriate is applied to a circuit board on which a circuit is formed using a spray coating method, a curtain coating method or the like and then cured (step 1). Then, after drilling a predetermined through-hole part, etc., if necessary, the surface is treated with a roughening agent, the surface is washed with hot water to form irregularities, and a metal such as copper is plated (process) 2).
- a step of repeating such an operation sequentially as desired, and alternately building up and forming a resin insulating layer and a conductor layer having a predetermined circuit pattern (step 3).
- the through-hole portion is formed after the outermost resin insulating layer is formed.
- the build-up board of the present invention is obtained by subjecting a copper foil with a resin obtained by semi-curing the resin composition on a copper foil to thermocompression bonding at 170 to 300 ° C. on a wiring board on which a circuit is formed. It is also possible to produce a build-up substrate by forming the chemical surface and omitting the plating process.
- Build-up film As a method for obtaining a build-up film from the composition of the present invention, the above composition is applied to the surface of a support film (Y) as a substrate, and an organic solvent is further applied by heating or hot air blowing. It can be produced by drying to form a layer (X) of the composition.
- organic solvent used herein examples include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
- ketones such as acetone, methyl ethyl ketone, and cyclohexanone
- acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like.
- Carbitols, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. are preferably
- the thickness of the layer (X) to be formed is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
- the layer (X) of the said composition in this invention may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
- the above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil.
- the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.
- the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, and preferably 25 to 50 ⁇ m.
- the thickness of the protective film is preferably 1 to 40 ⁇ m.
- the support film (Y) described above is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled after the curable resin composition layer constituting the build-up film is heat-cured, adhesion of dust and the like in the curing step can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.
- a multilayer printed circuit board can be produced using the build-up film obtained as described above.
- the layer (X) is protected with a protective film
- the layer (X) is peeled and then laminated on one or both sides of the circuit board so as to be in direct contact with the circuit board, for example, by a vacuum laminating method.
- the laminating method may be a batch method or a continuous method using a roll. If necessary, the build-up film and the circuit board may be heated (preheated) as necessary before lamination.
- the laminating conditions are preferably a pressure bonding temperature (lamination temperature) of 70 to 140 ° C.
- Conductive paste Examples of a method for obtaining a conductive paste from the composition of the present invention include a method of dispersing conductive particles in the composition.
- the conductive paste can be a paste resin composition for circuit connection or an anisotropic conductive adhesive depending on the type of conductive particles used.
- HPLC “LC1260” manufactured by Agilent Technologies Analysis conditions: Table 1 below
- DSC “X-DSC7000” manufactured by Hitachi High-Tech Science Co., Ltd.
- Atmosphere Nitrogen Heating program: 30 ° C for 5 minutes ⁇ Temperature rising rate 10 ° C / min ⁇ 350 ° C for 2 minutes
- Example 1 Synthesis of maleimide composition (D) A 3 L flask equipped with a thermometer, a condenser tube, a Dean-Stark trap and a stirrer was charged with 132.48 g (1.351 mol) of maleic anhydride and 1.53 L of toluene at room temperature. Stir. The flask was transferred to an ice bath, and a mixed solution of 109.14 g (0.322 mol) of the reaction product (a-3), 63.76 g (0.584 mol) of 4-aminophenol, and 280 mL of DMF was added dropwise. After completion of the dropwise addition, the reaction was further continued at room temperature for 2 hours.
- Example 3 Synthesis of Maleimide Composition (F) Maleimide composition (F) was obtained in the same manner as in Example 1 except that 4-aminophenol in Example 1 was changed to 3-aminophenol.
- Example 2 The reaction product (a-3) in Example 1 was changed to the reaction product (h-3), and the same operation as in Example 1 was performed to obtain a maleimide composition (G).
- ⁇ Melt viscosity of maleimide component The melt viscosity of the maleimide component was measured at 150 ° C. using a dynamic viscoelasticity meter (“ARES” manufactured by TA instrument).
- Curing conditions The resin composition was charged into a mold on which a copper foil having a thickness of 18 ⁇ m (“JTCSLC-18 ⁇ ” manufactured by JX Metals Co., Ltd., untreated surface) was placed, and press molding was performed at 200 ° C. for 2 hours, 250 ° C. And heated for 2 hours to obtain a cured product.
- Hardened sheet thickness 2mm
- ⁇ Heat-resistant decomposition> The cured product having a thickness of 2 mm is finely cut and measured under a nitrogen atmosphere using a thermogravimetric analyzer (“TG / DTA6200” manufactured by SII Nanotechnology Co., Ltd.) at a heating rate of 5 ° C./min. The temperature at which the weight decreases (Td5) was determined.
- TG / DTA6200 thermogravimetric analyzer
- Td5 The temperature at which the weight decreases
- the materials used in the table are as follows.
- BMI-1000 4,4′-diphenylmethane bismaleimide (manufactured by Daiwa Kasei Kogyo Co., Ltd.)
- N-655-EXP-S Cresol novolac type epoxy resin (manufactured by DIC Corporation)
- HP-4700 Naphthalene type epoxy resin (manufactured by DIC Corporation)
- HP-6000 naphthylene ether type epoxy resin (manufactured by DIC Corporation)
- TD-2131 Phenol novolak (manufactured by DIC Corporation)
- TPP Triphenylphosphine (made by Hokuko Chemical Co., Ltd.)
- Comparative Example 4 Comparative Example 6 and Comparative Example 7, when the maleimide in the composition did not contain an allyl group, the copper foil peeled off immediately after the cured product was created, and the adhesion force could not be measured.
- Viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “DMS7100” manufactured by Hitachi High-Tech Science Co., Ltd., deformation mode: double-end bending, measurement mode: sine wave vibration, frequency 1 Hz, temperature rising rate 3 ° C./min) was used to evaluate the glass transition temperature at the temperature at which the change in the elastic modulus was maximum (the tan ⁇ change rate was the largest).
- ⁇ Bending strength> A cured product having a thickness of 0.8 mm was cut out from the laminated plate into a size of 15 mm in width and 100 mm in length, and this was used as a test piece, which was evaluated according to JIS-K7107.
- HP-4700 Naphthalene type epoxy resin (manufactured by DIC Corporation)
- N-680 Cresol novolac type epoxy resin (manufactured by DIC Corporation)
- TD-2090 Phenol novolak (manufactured by DIC Corporation)
- 2E4MZ 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
- both the bending strength and the tensile strength showed higher glass transition temperature and mechanical strength than the conventional epoxy cured product.
- the composition of the present invention has a low viscosity, and its cured product has a high glass transition temperature, is excellent in heat decomposability, and has high adhesion, and is therefore suitable for heat resistant members and electronic members. It can be used. In particular, it can be suitably used for semiconductor encapsulants, circuit boards, build-up films, build-up boards, etc., adhesives and resist materials. Moreover, it can be used suitably also for the matrix resin of a fine fat, and is especially suitable as a highly heat-resistant prepreg.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Wood Science & Technology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Reinforced Plastic Materials (AREA)
- Pyrrole Compounds (AREA)
- Laminated Bodies (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
市場では、DDM(4,4’-ジアミノジフェニルメタン)やDDE(4,4’-ジアミノジフェニルエーテル)骨格を有するBMIが、高耐熱樹脂として流通している。しかし、高耐熱性のBMIは高融点かつ低溶剤溶解性となるため、限られた用途でしか使用できないという課題に加え、基材への密着性が低く、更なる改良、性能の向上が強く望まれている。
本発明の(メタ)アリル基含有マレイミド化合物は、ベンゼン環を1個以上有する構造を有し、(メタ)アリル基を有する基を1個以上有し、さらにマレイミド基を有する基を1個以上有することを特徴とする、式(1)で表されることを特徴とする化合物である。
式(10)中のXは直接結合または2価の連結基を表す。2価の連結基としては例えば置換基を有していても良い炭素数1~3の炭化水素基、酸素原子、カルボニル基、硫黄原子、スルホン基、2価の脂環構造等が挙げられる。
式(10)中のYは3価の連結基を表す。3価の連結基としては、例えば置換基を有する炭素数1~3の炭化水素基、窒素原子、3価の脂環構造等が挙げられる。
mとnの比率としては、m:n=1:5~5:1であれば良い。好ましくは1:2~2:1である場合、耐熱性と低融点が両立できるため、特に好ましい。
(メタ)アリル基を含有する基とマレイミド基を含有する基の結合場所に特に限定はないが、マレイミド基を含有する基と(メタ)アリル基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
炭素数1~10の炭化水素基とは、例えばアルキレン基、アルケニレン基、シクロアルキレン基、アリーレン基、アラルキレン基、およびそれらを複数組み合わせた基があげられる。
アルキレン基としては、メチレン基、メチン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基等が挙げられる。
アルケニレン基としては、ビニレン基、1-メチルビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
アルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、へキシニレン基等が挙げられる。
シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
アリーレン基としては、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられる。
式(2)において、Z1として好ましい構造としては、直接結合またはメチレン基が挙げられる。
本発明の(メタ)アリル基含有マレイミド化合物の製造方法は、特に限定は無いが、以下の工程を経ることで、効率的に製造を行うことが出来る。
1-1)ベンゼン環を有する水酸基含有芳香族アミノ化合物のアミノ基を保護する工程
1-2)1-1)で得られた化合物の水酸基を(メタ)アリル化する工程
1-3)1-2)で得られた化合物の保護アミノ基から脱保護する工程
1-4)1-3)で得られた化合物のアミノ基をマレイミド化する工程
芳香族アミノフェノール化合物を製造するには、水酸基含有芳香族化合物をニトロ化した後に還元する方法が挙げられる。
本発明の組成物は、前記(メタ)アリル基含有マレイミド化合物のほかに、ベンゼン環を1個以上有する構造を有し、水酸基を有する基を1個以上有し、さらにマレイミド基を1個以上有することを特徴とする、式(4)で表される水酸基含有マレイミド化合物を含有する。
MIは前記式(3)で表されるマレイミド基を有する基であって、
A2はベンゼン環を1個以上有する構造である。)
mとnの比率としては、m:n=1:5~5:1であれば良い。好ましくは1:2~2:1である場合、耐熱性と低融点が両立できるため、特に好ましい。
水酸基とマレイミド基の結合場所に特に限定はないが、マレイミド基と水酸基を含有する基が同じベンゼン環上に存在すると、耐熱性が更に向上するため好ましい。
芳香族アミノフェノール化合物を製造するには、水酸基含有芳香族化合物をニトロ化した後に還元する方法が挙げられる。
本発明の組成物は、本発明の(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物を含有する。
本発明の組成物を硬化して得られる硬化物は、耐熱分解性に優れ、高ガラス転移温度、低線膨張であることから、耐熱部材に好適に使用可能である。また、基材への密着性に優れることから、基板や端子等様々な部材を組み合わせる必要のある電子部材に対し特に好適に使用可能である。
本発明の(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物を含有する組成物の製造方法は、特に限定は無く、簡便な方法としては(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物をそのまま混合すればよい。
また、(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物を個別に溶剤に溶解させたのち、溶液同士を混合する方法であってもよい。このとき、(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物のそれぞれを溶解させる溶剤は、相溶するものであれば異なる溶剤でもよく、もちろん同一の溶剤を用いてもかまわない。
芳香族アミノ化合物混合物をマレイミド化する工程とを有する製造方法により、(メタ)アリル基含有化合物と水酸基含有マレイミド化合物を含有する組成物を一括で製造することができる。
Alyは下記式(7)で表される(メタ)アリル基を有する基であって、
B1は下記式(8)で表されるアミノ基を有する基であって、
A1はベンゼン環を1個以上有する構造である。
B2は前記式(8)で表されるマレイミド基を有する基であって、
A2はベンゼン環を1個以上有する構造である。)
本発明の組成物には、更にエポキシ化合物を含有させても良い。エポキシ化合物を含有させることで、更に基材への密着性が向上する。また、エポキシ化合物の有するエポキシ基と、水酸基含有マレイミド化合物の有する水酸基が反応し、さらには(メタ)アリル基含有マレイミド化合物と水酸基含有マレイミド化合物の有するマレイミド基同士が反応する複合架橋系を形成することから、耐熱性や低線膨張性が更に向上する。
好ましいエポキシ化合物として、以下の構造が挙げられる。
本発明の組成物は、更にフィラーを含有してもよい。フィラーとしては、無機フィラーと有機フィラーが挙げられる。無機フィラーとしては、例えば無機微粒子が挙げられる。
これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ-ルシリカゾル、IPA-ST、MEK-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL等を挙げることができる。
本発明の組成物は、更に繊維質基質を含有してもよい。本発明の繊維質基質は、特に限定はないが、繊維強化樹脂に用いられるものが好ましく、無機繊維や有機繊維が挙げられる。
本発明の組成物は、本発明の(メタ)アリル基含有マレイミド化合物、水酸基含有マレイミド化合物、前述したエポキシ化合物のほかに、反応性化合物を含有してもよい。反応性化合物を添加することで、反応性や耐熱性、ハンドリング性など様々な特徴を樹脂に付与することが可能である。
ここで言う反応性化合物とは、反応性基を有する化合物であり、モノマーであってもオリゴマーであってもポリマーであってもかまわない。
マレイミド基を有する化合物としては、マレイミド樹脂、ビスマレイミド樹脂が挙げられる。
フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂が挙げられる。
オキサジン環を有する化合物としては、フェノール化合物、芳香族アミノ化合物をホルムアルデヒドとを反応させることで得られるベンゾオキサジンが挙げられる。これらのフェノール化合物、芳香族アミノ化合物は構造中に反応性官能基を有していても良い。
アミノ基を有する化合物としてはDDM(4,4’-ジアミノジフェニルメタン)やDDE(4,4’-ジアミノジフェニルエーテル)、3,4’-ジアミノジフェニルエーテル、2,2-{ビス4-(4-アミノフェノキシ)フェニル}プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル等の芳香族アミノ化合物が挙げられる。
炭素―炭素間二重結合を有する基を有する化合物としては、マレイミド化合物、ビニル系化合物、(メタ)アリル系化合物等があげられる。
その中でも特に好ましくは、マレイミド化合物、シアネートエステル樹脂、芳香族アミノ化合物である。
通常、マレイミド化合物を用い、均一な硬化物を得る為には、高温かつ長時間の硬化条件が必要となるため、多くの場合、反応促進のために過酸化物系触媒が併用される。しかし、本発明のアリル基含有マレイミド化合物は触媒を使用しない場合においても、硬化反応が進行し、均一な硬化物を得ることができる。過酸化物系触媒を使用することで、組成物の粘度上昇や、ポットライフの低下、また、硬化物中に微量の過酸化物が残存することによる物性低下等の課題があるが、本発明のアリル基含有マレイミド化合物は過酸化物系硬化剤を使用しなくてもよいことから、それら課題を解決することができる。
本発明の組成物は、組成物の固形分量や粘度を調整する目的として、分散媒を使用してもよい。分散媒としては、本発明の効果を損ねることのない液状媒体であればよく、各種有機溶剤、液状有機ポリマー等が挙げられる。
また、本発明の組成物は、本発明の前述した各種化合物以外の樹脂を有していてもよい。樹脂としては、本発明の効果を損なわない範囲であれば公知慣用の樹脂を配合すればよく、例えば熱硬化性樹脂や熱可塑性樹脂を用いることができる。
本発明の組成物は、配合物に応じて硬化剤を用いてもよい、例えば、エポキシ基を有する化合物を配合している場合には、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、活性エステル系硬化剤、カルボキシル基含有硬化剤、チオール系硬化剤などの各種の硬化剤を併用してもかまわない。
これらの硬化剤は、単独でも2種類以上の併用でも構わない。
本発明の組成物は、その他の配合物を有していてもかまわない。例えば、触媒、重合開始剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、難燃剤、可塑剤等が挙げられる。
本発明の組成物を硬化して得られる硬化物は、低線膨張で、高ガラス転移温度、耐熱分解性に優れることから、耐熱部材として好適に使用可能である。さらには、基材への密着性に優れることから、電子部材に好適に使用可能である。硬化物の成形方法は特に限定は無く、組成物単独で成形してもよいし、基材と積層することで積層体としてもかまわない。
熱硬化を行う場合、1回の加熱で硬化させてもよいし、多段階の加熱工程を経て硬化させてもかまわない。
本発明の硬化物は基材と積層することで積層体とすることができる。
積層体の基材としては、金属やガラス等の無機材料や、プラスチックや木材といった有機材料等、用途によって適時使用すればよく、積層体の形状としても、平板、シート状、あるいは三次元構造を有していても立体状であってもかまわない。全面にまたは一部に曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。また、本発明の硬化物を基材とし、更に本発明の硬化物を積層してもかまわない。
回路基板や半導体パッケージ基板といった用途の場合、金属箔を積層することが好ましく、金属箔としては銅箔、アルミ箔、金箔、銀箔などが挙げられ、加工性が良好なことから銅箔を用いることが好ましい。
成形された組成物を積層する場合、未硬化または半硬化された組成物層を積層してから硬化させてもよいし、組成物を完全硬化した硬化物層を基材に対し積層してもよい。
また、本発明の硬化物に対して、基材となりうる前駆体を塗工して硬化させることで積層させてもよく、基材となりうる前駆体または本発明の組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。基材となりうる前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
本発明の組成物が繊維質基質を有し、該繊維質基質が強化繊維の場合、繊維質基質を含有する組成物は繊維強化樹脂として用いることができる。
組成物に対し繊維質基質を含有させる方法は、本発明の効果を損なわない範囲であればとくに限定はなく、繊維質基質と組成物とを、混練、塗布、含浸、注入、圧着、等の方法で複合化する方法が挙げられ、繊維の形態及び繊維強化樹脂の用途によって適時選択することができる。
本発明の繊維強化樹脂は、未硬化あるいは半硬化のプリプレグと呼ばれる状態を形成することができる。プリプレグの状態で製品を流通させた後、最終硬化をおこなって硬化物を形成してもよい。積層体を形成する場合は、プリプレグを形成した後、その他の層を積層してから最終硬化を行うことで、各層が密着した積層体を形成できるため、好ましい。
この時用いる組成物と繊維質基質の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
本発明の組成物は、その硬化物が低線膨張であって耐熱分解性に優れることから、耐熱部材に好適に使用可能である。また、基材への密着性に優れることから、特に電子部材に好適に使用可能である。特に、半導体封止材、回路基板、ビルドアップフィルム、ビルドアップ基板等や、接着剤やレジスト材料に好適に使用可能である。また、繊維強化樹脂のマトリクス樹脂にも好適に使用可能であり、高耐熱性のプリプレグとして特に適している。こうして得られる耐熱部材や電子部材は、各種用途に好適に使用可能であり、例えば、産業用機械部品、一般機械部品、自動車・鉄道・車両等部品、宇宙・航空関連部品、電子・電気部品、建築材料、容器・包装部材、生活用品、スポーツ・レジャー用品、風力発電用筐体部材等が挙げられるが、これらに限定される物ではない。
本発明の組成物から半導体封止材料を得る方法としては、前記組成物、及び硬化促進剤、及び無機充填剤等の配合剤とを必要に応じて押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材として用いる場合は、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などを用いるとよい。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30~95質量%の範囲で用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上がより好ましく、80質量部以上であることがさらに好ましい。
本発明の硬化性樹脂組成物から半導体装置を得る半導体パッケージ成形としては、上記半導体封止材料を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50~250℃で2~10時間の間、加熱する方法が挙げられる。
本発明の組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
本発明の組成物からビルドアップ基板を得る方法は、例えば以下の工程が挙げられる。まず、ゴム、フィラーなどを適宜配合した上記組成物を、回路を形成した回路基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる工程(工程1)。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって凹凸を形成させ、銅などの金属をめっき処理する工程(工程2)。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成する工程(工程3)。なお、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、本発明のビルドアップ基板は、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170~300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の組成物からビルドアップフィルムを得る方法としては、基材である支持フィルム(Y)の表面に、上記組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて組成物の層(X)を形成させることにより製造することができる。
本発明の組成物から導電ペーストを得る方法としては、例えば、導電性粒子を該組成物中に分散させる方法が挙げられる。上記導電ペーストは、用いる導電性粒子の種類によって、回路接続用ペースト樹脂組成物や異方性導電接着剤とすることができる。
尚、高速液体クロマトグラフ(HPLC)、1Hおよび13C-NMR、FD-MSスペクトル、DSCは以下の条件にて測定した。
分析条件:下記表1
流量:1.0mL/分
使用カラム:Poroshell 120 EC-C18
磁場強度:600MHz
積算回数:32回
溶媒:DMSO-d6
試料濃度:30質量%
磁場強度:150MHz
積算回数:320回
溶媒:DMSO-d6
試料濃度:30質量%
測定範囲:m/z=50.00~2000.00
変化率:25.6mA/min
最終電流値:40mA
カソード電圧:-10kV
雰囲気:窒素
昇温プログラム:30℃5分保持→昇温速度10℃/分→350℃2分保持
(1)アミノ基保護工程
温度計、冷却管、攪拌機を取り付けた3Lフラスコに2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(BAPA、和歌山精化工業株式会社製)150.21g(0.58mol)、DMF(N,N-ジメチルホルムアミド)1L、イオン交換水0.45Lを仕込み室温で撹拌した。反応液を60℃まで加熱した後、無水酢酸148.22g(1.45mol)をゆっくりと滴下した。滴下終了後、60℃で2時間反応させた後、室温まで空冷した。析出物をろ過し、イオン交換水2Lで洗浄した後、80℃で10時間真空乾燥を行い、下記化学反応式における固体状の反応物(a-1)を177.21g(収率89.2%)得た。
温度計、冷却管、攪拌機を取り付けた3Lフラスコに反応物(a-1)150.00g(0.438mol)、アセトン2.2Lを仕込み攪拌した。次に炭酸カリウム133.79g(0.968mol)を加え、反応液を加熱し還流状態とした。1時間還流した後、臭化アリル116.60g(0.964mol)を1時間かけて滴下した。滴下終了後、12時間還流下で反応させた後、室温まで空冷した。ろ過後、反応液を減圧濃縮し、さらに80℃で10時間真空乾燥を行い、反応物(a-2)を177.88g(収率96.1%)得た。
温度計、冷却管、攪拌機を取り付けた1Lフラスコに(a-2)170.00g(0.402mol)、エタノール330mLを仕込み攪拌した。濃塩酸108.97gを加え60℃に加熱した。60℃で30時間反応後、室温まで空冷した。反応液を20%水酸化ナトリウム水溶液で中和後、酢酸エチル400mLで抽出した。イオン交換水200mLで2回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し、得られた反応物を80℃で10時間真空乾燥を行い液状の反応物(a-3)を127.73g(収率93.8%)得た。
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた3Lフラスコに無水マレイン酸76.49g(0.780mol)、トルエン1.8Lを仕込み室温で攪拌した。次に反応物(a-3)120.00g(0.355mol)とDMF200mLの混合溶液を1時間かけて滴下した。滴下終了後、室温でさらに2時間反応させた。p-トルエンスルホン酸一水和物9.82gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液274.58gを得た。酢酸エチル800mLに溶解させイオン交換水300mLで3回、2%炭酸水素ナトリウム水溶液300mLで3回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、アリル基含有マレイミド化合物Aを含有する粗生成物を104.57g得た。得られた粗生成物の純度は75.0%(HPLC面積%、検出波長275nm)であった。
得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=55/45、体積比)で分離精製することで、アリル基含有マレイミド化合物(A)を55.91g(収率31.5%)得た。
13C-NMR:δ169.97ppm、151.96ppm、142.39ppm、134.93ppm、133.19ppm、128.52ppm、128.09ppm、119.61ppm、116.65ppm、112.96ppm、68.26ppm、41.27ppm、30.60ppm
マススペクトル:M+=498
融点(DSCピークトップ):134℃
純度:96.7%(HPLC面積%、検出波長275nm)
Polymer Vol.37 No.16,3721-3727;1996,の文献に記載の方法に従って、4-アミノフェノールを原料として水酸基含有マレイミド化合物(B)を合成した。
13C-NMR:δ170.26ppm、156.98ppm、134.48ppm、128.35ppm、122.47ppm、115.37ppm
マススペクトル:M+=189
融点(DSCピークトップ):187℃
純度:95.0%(HPLC面積%、検出波長275nm)
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた3Lフラスコに無水マレイン酸25.05g(0.255mol)、トルエン520mLを仕込み室温で攪拌した。次に2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(BAPA、和歌山精化工業株式会社製)30.00g(0.116mol)とDMF80mLの混合溶液を1時間かけて滴下した。滴下終了後、室温でさらに2時間反応させた。p-トルエンスルホン酸一水和物2.75gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を6時間行った。室温まで空冷後、減圧濃縮し橙色溶液113.77gを得た。酢酸エチル400mLに溶解させイオン交換水100mLで4回、2%炭酸水素ナトリウム水溶液100mLで5回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で10時間真空乾燥を行い、水酸基含有マレイミド化合物(C)を含有する粗生成物を27.83g得た。
13C-NMR:δ170.18ppm、151.66ppm、141.05ppm、134.91ppm、128.58ppm、127.72ppm、117.82ppm、115.97ppm、41.04ppm、30.76ppm
マススペクトル:M+=418
純度:85.7%(HPLC面積%、検出波長275nm)
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた3Lフラスコに無水マレイン酸132.48g(1.351mol)、トルエン1.53Lを仕込み室温で攪拌した。フラスコを氷浴へ移し、反応物(a-3)を109.14g(0.322mol)、4-アミノフェノールを63.76g(0.584mol)、DMF280mLの混合溶液を滴下した。滴下終了後、室温でさらに2時間反応させた。p-トルエンスルホン酸一水和物15.27gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を9時間行った。室温まで空冷後、減圧濃縮し褐色溶液553.22gを得た。酢酸エチル1.4Lに溶解させイオン交換水400mLで4回、2%炭酸水素ナトリウム水溶液400mLで5回洗浄し、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で11時間真空乾燥を行い、アリル基含有マレイミド化合物および水酸基含有マレイミド化合物を含有する、マレイミド組成物(D)を192.55g得た。
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた3Lフラスコに無水マレイン酸76.49g(0.780mol)、トルエン1.8Lを仕込み室温で攪拌した。次に反応物(a-3)120.00g(0.355mol)とDMF200mLの混合溶液を1時間かけて滴下した。滴下終了後、室温でさらに2時間反応させた。p-トルエンスルホン酸一水和物9.82gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を8時間行った。室温まで空冷後、減圧濃縮し褐色溶液274.58gを得た。酢酸エチル800mLに溶解させイオン交換水300mLで3回、2%炭酸水素ナトリウム水溶液300mLで3回洗浄し、アリル基含有マレイミド化合物(A)を含有する樹脂溶液(e-1)815.4gを得た。ここに、合成例(2)で得た水酸基含有マレイミド化合物(B)を75.7g(0.400mol)を加えて攪拌することで、アリル基含有マレイミド化合物および水酸基含有マレイミド化合物が均一に混合した樹脂溶液とし、硫酸ナトリウムを加え乾燥後、減圧濃縮し得られた反応物を80℃で4時間真空乾燥を行い、アリル基含有マレイミド化合物および水酸基含有マレイミド化合物を含有する、マレイミド組成物(E)を175.2g得た。
実施例1における4-アミノフェノールを3-アミノフェノールに変えて実施例1と同様の操作を行い、マレイミド組成物(F)を得た。
温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた3Lフラスコに無水マレイン酸118.65g(1.210mol)、トルエン1.0Lを仕込み室温で攪拌した。フラスコを氷浴へ移し、反応物(a-3)を122.97g(0.363mol)、4-アミノフェノールを40.86g(0.374mol)、DMF190mLの混合溶液を滴下した。滴下終了後、室温でさらに2時間反応させた。p-トルエンスルホン酸一水和物14.12gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を9時間行った。以下、実施例1と同様の分離工程を行い、マレイミド組成物(G)を169.92g得た。
Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences,71(1),5-12;2001,の文献に記載の方法に従って反応物(h-1)を合成した。
(1)組成物の作製
合成例1~3で得られたアリル基含有マレイミド化合物および水酸基含有マレイミド化合物、実施例1~5で得られたマレイミド組成物、エポキシ樹脂、フェノール樹脂、比較用ビスマレイミド、触媒を表2~表5に示す割合で乳鉢での粉砕混合により配合し、組成物を調製した。
マレイミド成分の溶融粘度は、動的粘弾性測定器(TA instrument社製「ARES」)を用いて、150℃での粘度を測定した。
<樹脂組成物のゲルタイム>
表2~表5に示す割合で配合した組成物のゲルタイム(タック消失時間)を200℃で測定した。
調整した組成物を下記条件で加熱し、樹脂硬化物を得た。
硬化物板厚:2mm
<ガラス転移温度>
厚さ2mmの硬化物を幅5mm、長さ50mmのサイズに切り出し、これを試験片とした。この試験片を粘弾性測定装置(DMA:日立ハイテクサイエンス社製固体粘弾性測定装置「DMS7100」、変形モード:両持ち曲げ、測定モード:正弦波振動、周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
<耐熱分解性>
厚さ2mmの硬化物を細かく裁断し、熱重量分析装置(SIIナノテクノロジー社製「TG/DTA6200」)を用いて、昇温速度を5℃/分として窒素雰囲気下で測定を行い、5%重量減少する温度(Td5)を求めた。
<金属密着性>
銅箔を貼合した厚さ2mmの硬化物を幅10mm、長さ70mmのサイズに切り出し、これを試験片とした。この試験片を引っ張り試験機(エー・アンド・デイ社製「テンシロンRTC」)にて、90°方向のピール強度を評価した(試験速度:50mm/min)。
BMI-1000:4,4’-ジフェニルメタンビスマレイミド(大和化成工業株式会社製)
N-655-EXP-S:クレゾールノボラック型エポキシ樹脂(DIC株式会社製)
HP-4700:ナフタレン型エポキシ樹脂(DIC株式会社製)
HP-6000:ナフチレンエーテル型エポキシ樹脂(DIC株式会社製)
TD-2131:フェノールノボラック(DIC株式会社製)
TPP:トリフェニルホスフィン(北興化学工業株式会社製)
表6に示す割合で化合物と触媒とを配合し、組成物を調製した。この組成物をメチルエチルケトンで不揮発分を58質量%に調整して、樹脂組成物溶液を得た。下記条件で積層板を作製した。
基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
プライ数:6
プリプレグ化条件:160℃、3分
硬化条件:200℃、40kg/cm2で1.5時間、成型後板厚:0.8mm
<樹脂組成物のゲルタイム>
表6に示す割合で配合した樹脂組成物のゲルタイム(タック消失時間)を160℃で測定した。
<ガラス転移温度>
積層板から厚さ0.8mmの硬化物を幅5mm、長さ50mmのサイズに切り出し、これを試験片とした。この試験片を粘弾性測定装置(DMA:日立ハイテクサイエンス社製固体粘弾性測定装置「DMS7100」、変形モード:両持ち曲げ、測定モード:正弦波振動、周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
<曲げ強度>
積層板から厚さ0.8mmの硬化物を幅15mm、長さ100mmのサイズに切り出し、これを試験片とし、JIS-K7107に準拠して評価した。
<引っ張り強度>
積層板から厚さ0.8mmの硬化物を幅15mm、長さ120mmのサイズに切り出し、これを試験片とし、JIS-K7165に準拠して評価した。
HP-4700:ナフタレン型エポキシ樹脂(DIC株式会社製)
N-680:クレゾールノボラック型エポキシ樹脂(DIC株式会社製)
TD-2090:フェノールノボラック(DIC株式会社製)
2E4MZ:2-エチル-4-メチルイミダゾール(四国化成工業株式会社製)
Claims (19)
- 下記式(1)で表されることを特徴とする(メタ)アリル基含有マレイミド化合物と、下記式(4)で表されることを特徴とする水酸基含有マレイミド化合物とを含有することを特徴とする、組成物。
・・・(1)
(式(1)中、n1及びm1はそれぞれ独立して1~5の整数であって、
Alyは下記式(2)で表される(メタ)アリル基を有する基であって、
MIは下記式(3)で表されるマレイミド基を有する基であって、
A1はベンゼン環を1個以上有する構造である。
(式(2)中、Z1は直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、R1は水素原子またはメチル基を表す。)
(式(3)中、Z2は直接結合または置換基を有していても良い炭素数1または2の炭化水素基であって、R2及びR3はそれぞれ独立して水素原子またはメチル基を表す。)
(式(4)中、n2及びm2はそれぞれ独立して1~5の整数であって、
MIは前記式(3)で表されるマレイミド基を有する基であって、
A2はベンゼン環を1個以上有する構造である。) - 前記一般式(4)において、A2がベンゼン環構造であって、n2及びm2がいずれも1である、請求項1または2のいずれかに記載の組成物。
- さらに、エポキシ化合物を含有する、請求項1から3のいずれかに記載の組成物。
- 更に、フィラーを含有する、請求項1から4のいずれかに記載の組成物。
- 更に、繊維質基質を含有する、請求項1から5のいずれかに記載の組成物。
- 請求項1から6のいずれかに記載の組成物を硬化してなる硬化物。
- 基材と請求項7に記載の硬化物層とを有することを特徴とする積層体。
- 請求項1から6のいずれかに記載の組成物を含有することを特徴とする、耐熱材料用組成物。
- 請求項7に記載の硬化物を含有することを特徴とする耐熱部材。
- 請求項1から6のいずれかに記載の組成物を含有することを特徴とする、電子材料用組成物。
- 請求項7に記載の硬化物を含有することを特徴とする電子部材。
- 請求項1から6のいずれかに記載の組成物を含有することを特徴とする、半導体封止材。
- 請求項6に記載の、繊維質基質を含有する組成物を含有することを特徴とするプリプレグ。
- 請求項14に記載のプリプレグに更に銅箔層を有することを特徴とする回路基板。
- ビルドアップフィルムである、請求項8に記載の積層体。
- 請求項16に記載のビルドアップフィルムを有することを特徴とするビルドアップ基板。
- 下記式(6)で表される(メタ)アリル基含有アミノ化合物と、下記式(9)で表される水酸基含有アミノ化合物とを混合して芳香族アミノ化合物混合物を製造する工程と、
芳香族アミノ化合物混合物をマレイミド化する工程とを有することを特徴とする、
(メタ)アリル基含有化合物と水酸基含有マレイミド化合物を含有する組成物の製造方法。
・・・(6)
(式(6)中、n1及びm1はそれぞれ独立して1~5の整数であって、
Alyは下記式(7)で表される(メタ)アリル基を有する基であって、
B1は下記式(8)で表されるアミノ基を有する基であって、
A1はベンゼン環を1個以上有する構造である。
(式(7)中、Z1は直接結合または置換基を有していても良い炭素数1~10の炭化水素基であって、R1は水素原子またはメチル基を表す。)
(式(8)中、Z2は直接結合または置換基を有していても良い炭素数1または2の炭化水素基であって、R2及びR3はそれぞれ独立して水素原子またはメチル基を表す。)
(式(9)中、n2及びm2はそれぞれ独立して1~5の整数であって、
B2は前記式(8)で表されるマレイミド基を有する基であって、
A2はベンゼン環を1個以上有する構造である。) - 前記式(1)で表される(メタ)アリル基含有マレイミド化合物と、前記式(4)で表される水酸基含有マレイミド化合物と溶剤とを混合し混合液を製造する工程と、
得られた混合液から溶剤を除去する工程とを有する、
(メタ)アリル基含有化合物と水酸基含有マレイミド化合物を含有する組成物の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17883745.6A EP3560968A4 (en) | 2016-12-20 | 2017-12-14 | COMPOSITION, CURED AND LAMINATED PRODUCT |
KR1020197015038A KR102405074B1 (ko) | 2016-12-20 | 2017-12-14 | 조성물, 경화물 및 적층체 |
US16/470,420 US11104788B2 (en) | 2016-12-20 | 2017-12-14 | Composition, cured product and laminate |
CN201780078903.3A CN110088153B (zh) | 2016-12-20 | 2017-12-14 | 组合物、固化物和层叠体 |
JP2018555783A JP6547913B2 (ja) | 2016-12-20 | 2017-12-14 | 組成物、硬化物および積層体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016246565 | 2016-12-20 | ||
JP2016-246565 | 2016-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116948A1 true WO2018116948A1 (ja) | 2018-06-28 |
Family
ID=62627662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044865 WO2018116948A1 (ja) | 2016-12-20 | 2017-12-14 | 組成物、硬化物および積層体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11104788B2 (ja) |
EP (1) | EP3560968A4 (ja) |
JP (1) | JP6547913B2 (ja) |
KR (1) | KR102405074B1 (ja) |
CN (1) | CN110088153B (ja) |
TW (1) | TWI738940B (ja) |
WO (1) | WO2018116948A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021095532A (ja) * | 2019-12-18 | 2021-06-24 | Dic株式会社 | ガラス繊維含有樹脂組成物、及び、硬化物 |
JP7598033B2 (ja) | 2022-06-28 | 2024-12-11 | Dic株式会社 | ポリマレイミド樹脂、硬化性組成物、硬化物、プリプレグ、回路基板、ビルドアップフィルム、半導体封止材及び半導体装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102320490B1 (ko) * | 2016-06-03 | 2021-11-02 | 디아이씨 가부시끼가이샤 | 치환 또는 비치환 알릴기 함유 말레이미드 화합물 및 그 제조 방법, 그리고 상기 화합물을 사용한 조성물 및 경화물 |
WO2017209237A1 (ja) * | 2016-06-03 | 2017-12-07 | Dic株式会社 | 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物 |
CN110643321B (zh) * | 2019-09-24 | 2022-03-29 | 苏州益可泰电子材料有限公司 | 电子材料胶液及其应用 |
TWI762938B (zh) * | 2020-05-29 | 2022-05-01 | 台光電子材料股份有限公司 | 樹脂組合物及其製品 |
TW202212316A (zh) * | 2020-06-01 | 2022-04-01 | 德商漢高智慧財產控股公司 | 用於低間隙底部填充應用之與助熔劑相容的環氧酚系黏著劑組合物 |
WO2021261308A1 (ja) * | 2020-06-24 | 2021-12-30 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及びプリント配線板 |
CN112079763B (zh) * | 2020-09-22 | 2022-07-05 | 苏州生益科技有限公司 | 改性马来酰亚胺化合物及使用其制作的半固化片及层压板 |
CN114621559B (zh) * | 2020-12-09 | 2023-07-11 | 广东生益科技股份有限公司 | 一种热固性树脂组合物及包含其的预浸料、层压板和高频电路基板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625953A (ja) * | 1985-07-01 | 1987-01-12 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | 新規のマレインイミド及びそれらを含有する新規の熱硬化性組成物 |
JP2001503040A (ja) * | 1996-10-23 | 2001-03-06 | ジェイディーエス ユニフェイス フォトニクス シー.ヴィ. | 架橋性光学ポリカーボネート用架橋剤 |
CN1896058A (zh) * | 2005-07-12 | 2007-01-17 | 中国科学院化学研究所 | 一种马来酰亚胺衍生物及其制备方法 |
JP2015193628A (ja) | 2014-03-28 | 2015-11-05 | 新日鉄住金化学株式会社 | ビスマレイミド化合物、それを含む組成物、及び硬化物 |
WO2017209236A1 (ja) * | 2016-06-03 | 2017-12-07 | Dic株式会社 | 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物 |
WO2017209237A1 (ja) * | 2016-06-03 | 2017-12-07 | Dic株式会社 | 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2589868B1 (fr) * | 1985-11-13 | 1988-05-13 | Rhone Poulenc Spec Chim | Polymeres a groupements imides et procede de preparation |
US5208306A (en) * | 1991-03-25 | 1993-05-04 | The Dow Chemical Company | Mesogenic alkenyl functional maleimides and thermosets thereof |
JPH06262876A (ja) * | 1993-03-16 | 1994-09-20 | Dowa Seisakusho:Kk | 丁合折紙整頓装置 |
JP2000026553A (ja) * | 1998-05-08 | 2000-01-25 | Toagosei Co Ltd | 硬化性組成物 |
JP2009155399A (ja) * | 2007-12-25 | 2009-07-16 | Hitachi Chem Co Ltd | 熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び積層板 |
JP5136331B2 (ja) * | 2008-09-26 | 2013-02-06 | 住友ベークライト株式会社 | 回路基板用樹脂組成物、回路基板用プリプレグおよび積層板 |
TW201204548A (en) * | 2010-02-05 | 2012-02-01 | Sumitomo Bakelite Co | Prepreg, laminate, printed wiring board, and semiconductor device |
-
2017
- 2017-12-14 US US16/470,420 patent/US11104788B2/en active Active
- 2017-12-14 WO PCT/JP2017/044865 patent/WO2018116948A1/ja unknown
- 2017-12-14 KR KR1020197015038A patent/KR102405074B1/ko active Active
- 2017-12-14 EP EP17883745.6A patent/EP3560968A4/en not_active Withdrawn
- 2017-12-14 CN CN201780078903.3A patent/CN110088153B/zh active Active
- 2017-12-14 JP JP2018555783A patent/JP6547913B2/ja active Active
- 2017-12-18 TW TW106144409A patent/TWI738940B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625953A (ja) * | 1985-07-01 | 1987-01-12 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | 新規のマレインイミド及びそれらを含有する新規の熱硬化性組成物 |
JP2001503040A (ja) * | 1996-10-23 | 2001-03-06 | ジェイディーエス ユニフェイス フォトニクス シー.ヴィ. | 架橋性光学ポリカーボネート用架橋剤 |
CN1896058A (zh) * | 2005-07-12 | 2007-01-17 | 中国科学院化学研究所 | 一种马来酰亚胺衍生物及其制备方法 |
JP2015193628A (ja) | 2014-03-28 | 2015-11-05 | 新日鉄住金化学株式会社 | ビスマレイミド化合物、それを含む組成物、及び硬化物 |
WO2017209236A1 (ja) * | 2016-06-03 | 2017-12-07 | Dic株式会社 | 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物 |
WO2017209237A1 (ja) * | 2016-06-03 | 2017-12-07 | Dic株式会社 | 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物 |
Non-Patent Citations (3)
Title |
---|
"Proceedings of the National Academy of Sciences", PHYSICAL SCIENCES, vol. 71, no. 1, 2001, pages 5 - 12 |
POLYMER, vol. 37, no. 16, 1996, pages 3721 - 3727 |
See also references of EP3560968A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021095532A (ja) * | 2019-12-18 | 2021-06-24 | Dic株式会社 | ガラス繊維含有樹脂組成物、及び、硬化物 |
JP7433607B2 (ja) | 2019-12-18 | 2024-02-20 | Dic株式会社 | ガラス繊維含有樹脂組成物、及び、硬化物 |
JP7598033B2 (ja) | 2022-06-28 | 2024-12-11 | Dic株式会社 | ポリマレイミド樹脂、硬化性組成物、硬化物、プリプレグ、回路基板、ビルドアップフィルム、半導体封止材及び半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3560968A4 (en) | 2020-05-27 |
KR102405074B1 (ko) | 2022-06-07 |
KR20190094349A (ko) | 2019-08-13 |
TW201840532A (zh) | 2018-11-16 |
CN110088153A (zh) | 2019-08-02 |
US11104788B2 (en) | 2021-08-31 |
CN110088153B (zh) | 2021-03-30 |
EP3560968A1 (en) | 2019-10-30 |
US20200109276A1 (en) | 2020-04-09 |
JP6547913B2 (ja) | 2019-07-24 |
JPWO2018116948A1 (ja) | 2019-04-11 |
TWI738940B (zh) | 2021-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6547913B2 (ja) | 組成物、硬化物および積層体 | |
KR102365456B1 (ko) | 치환 또는 비치환 알릴기 함유 말레이미드 화합물 및 그 제조 방법, 그리고 상기 화합물을 사용한 조성물 및 경화물 | |
WO2017209236A1 (ja) | 置換または非置換アリル基含有マレイミド化合物およびその製造方法、並びに前記化合物を用いた組成物および硬化物 | |
JP6350890B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP2019065063A (ja) | 組成物および硬化物 | |
CN108473642B (zh) | 恶嗪化合物、组合物及固化物 | |
JP6697183B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP6977257B2 (ja) | 水酸基含有マレイミド化合物 | |
JP6350889B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP6268565B2 (ja) | オキサジン化合物、組成物及び硬化物 | |
JP6886593B2 (ja) | 水酸基含有マレイミド化合物 | |
JP6268564B2 (ja) | オキサジン化合物、組成物及び硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018555783 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17883745 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197015038 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017883745 Country of ref document: EP Effective date: 20190722 |