[go: up one dir, main page]

WO2018062341A1 - 自動二輪車燃料タンク用鋼板および燃料タンク部材 - Google Patents

自動二輪車燃料タンク用鋼板および燃料タンク部材 Download PDF

Info

Publication number
WO2018062341A1
WO2018062341A1 PCT/JP2017/035099 JP2017035099W WO2018062341A1 WO 2018062341 A1 WO2018062341 A1 WO 2018062341A1 JP 2017035099 W JP2017035099 W JP 2017035099W WO 2018062341 A1 WO2018062341 A1 WO 2018062341A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel tank
steel plate
chromate
galvanized layer
steel sheet
Prior art date
Application number
PCT/JP2017/035099
Other languages
English (en)
French (fr)
Inventor
鈴木 幸子
安藤 聡
千代子 多田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112019004095-1A priority Critical patent/BR112019004095B1/pt
Priority to JP2017560358A priority patent/JP6354915B1/ja
Priority to CN201780053218.5A priority patent/CN109642330B/zh
Publication of WO2018062341A1 publication Critical patent/WO2018062341A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention is an automatic machine that has excellent press workability in the tank manufacturing process, seam weldability, corrosion resistance on the inner surface of the tank when the tank is used, corrosion resistance, particularly moisture resistance, and global procurement in emerging markets.
  • TECHNICAL FIELD The present invention relates to a motorcycle fuel tank steel plate and a fuel tank member that are optimal for motorcycles.
  • a plated steel plate for a fuel tank for a motorcycle for example, a single-side plated steel plate with zinc (Zn) -nickel (Ni) alloy plating only on the inner surface side of a tank member, or Zn-Ni alloy plating in Japan.
  • Zn zinc
  • Ni zinc
  • an electric Zn—Ni alloy plating layer containing 5 to 30% by mass of Ni is provided on at least one side of the steel plate at 1 to 40 g / m 2 per side.
  • chromic acid having a mass ratio (trivalent chromium) / (total chromium) of more than 0.5 and a mass ratio (phosphoric acid) / (total chromium) of 0.1 are formed on the upper layer of the plating layer.
  • a method for producing a steel plate for a fuel tank heated by applying a chromate treatment solution containing phosphoric acid and an organic reducing agent of ⁇ 5.0 is disclosed.
  • Patent Document 2 discloses that a steel plate for a fuel tank having excellent press formability even under severe press conditions in a fuel tank manufacturing process, containing 5 to 1000 ppm by mass of Ni on the inner surface of the tank.
  • a pure galvanized layer having an adhesion amount of 1 to 150 g / m 2 , and a chromic acid having a mass ratio (trivalent chromium) / (total chromium) of more than 0.5 on the pure galvanized layer;
  • a method for manufacturing a steel sheet is disclosed.
  • Patent Documents 1 and 2 that disclose a method for manufacturing a steel plate for a fuel tank for a motorcycle do not cause a problem in Japan, but the following problem may occur when manufacturing in an emerging country.
  • the steel sheet for a fuel tank made of an electric Zn—Ni alloy plating material described in Patent Document 1 is excellent in press workability and seam weldability when manufactured into a tank, and excellent in corrosion resistance as a fuel tank.
  • electric Zn-Ni alloy plating is expensive in chemicals, difficult to manage chemicals (concentration, replenishment method, etc.), and requires equipment for that purpose. Problems sometimes occurred from the viewpoint.
  • a galvanized steel sheet that is more advantageous than electric Zn-Ni alloy plating in terms of cost, chemical solution management, and current efficiency, and has excellent global procurement ability is a fuel tank. It is thought that it is suitable for materials for use.
  • Patent Document 2 As a material that has solved such a problem, a material by galvanization containing 5 to 1000 mass ppm of Ni described in Patent Document 2 has been proposed.
  • Patent Document 2 is excellent in press workability, seam weldability, and inner surface corrosion resistance (deterioration gasoline resistance) as a fuel tank, as in Patent Document 1, as in Patent Document 1.
  • the steel sheets for fuel tanks described in Patent Documents 1 and 2 are excellent in resistance to deterioration gasoline on the inner surface side of the fuel tank.
  • the corrosion that occurs on the inner surface side is caused by the condensation water generated in the gas phase of the fuel tank falling and collecting at the bottom of the fuel tank, or by rainwater entering the fuel tank.
  • a water layer is formed, and organic acid in deteriorated gasoline and poor gasoline is concentrated in this water layer and corrosion occurs. What is rust generated in the air layer newly generated in the Asian region? Is different.
  • the present invention has been made in view of such circumstances, and press workability in the tank manufacturing process, seam weldability, and corrosion resistance on the tank inner surface side, particularly corrosion resistance in the gas phase portion on the tank inner surface side (hereinafter referred to as moisture resistance). It is an object of the present invention to provide a steel plate and a fuel tank member for motorcycle fuel tanks that are optimal for motorcycles that are superior to each other, and that have excellent global procurement in emerging markets.
  • Corrosion resistance is improved by having a galvanized layer on the surface, but when the fuel is left in the fuel tank for a long period of time, when poor fuel is used, or when dew condensation occurs due to a difference in temperature between day and night The corrosive environment in the tank becomes severe due to organic acids and moisture mixed in the fuel.
  • FIG. 2A shows the case where Ra exceeds 2.0 ⁇ m, and the case where the film thickness of the chromate layer on the uneven portion of the base steel sheet roughness is less than 10 nm.
  • FIG. 2B shows a case where Ra is 0.5 to 2.0 ⁇ m (in the scope of the present invention) and the thickness of the chromate layer of the convex portion is 10 nm or more.
  • FIG. 2C shows the case where Ra is less than 0.5 ⁇ m, and the case where the film thickness of the chromate layer of the convex portion exceeds 100 nm.
  • a base steel plate refers to the steel plate before plating.
  • the film thickness of the chromate layer of the convex part here refers to the film thickness (hereinafter referred to as the minimum film thickness of the chromate film) where the film thickness of the chromate layer is partially reduced in the convex part.
  • the convex portion with a thin chromate layer works favorably as a conduction point and the seam weldability is good, but the convex portion is rusted because the effect of the chromate film on the convex portion is not sufficient.
  • both internal corrosion resistance and moisture resistance decreased.
  • the film thickness of the chromate layer was 10 nm or more, and the target level performance of the present invention was shown from the viewpoints of press workability, seam weldability, internal corrosion resistance, and moisture resistance.
  • the chromate adhesion amount was managed by the Cr adhesion amount per unit area.
  • the steel plate for motorcycle fuel tank and the fuel tank member using the same are not the Cr adhesion amount. It has been found that management by film thickness is extremely important in achieving various performances.
  • a steel plate for a fuel tank of a motorcycle made of a single-side plated steel plate, A galvanized layer having an adhesion amount of 1 to 70 g / m 2 on a base steel sheet having an arithmetic average roughness Ra of 0.5 to 2.0 ⁇ m;
  • the galvanized layer contains 5 to 1000 ppm by mass of Ni; Having a chromate film on the galvanized layer, A steel plate for a motorcycle fuel tank, wherein the chromate film has a minimum film thickness of 10 nm or more and 100 nm or less.
  • a fuel tank steel plate for a motorcycle made of a single-side plated steel plate, A galvanized layer having an adhesion amount of 1 to 70 g / m 2 on a base steel sheet having an arithmetic average roughness Ra of 0.5 to 2.0 ⁇ m;
  • the galvanized layer contains 5 to 1000 ppm by mass of Ni; Having a chromate film on the galvanized layer, A steel plate for a motorcycle fuel tank, wherein the thickness of the chromate film on the uneven surface of the base steel plate roughness is 10 nm or more and 100 nm or less.
  • a fuel tank member for a motorcycle made of a single-side plated steel plate The surface having a galvanized layer with an adhesion amount of 1 to 70 g / m 2 on the base steel plate having an arithmetic average roughness Ra of 0.5 to 2.0 ⁇ m is the inner surface side of the fuel tank member,
  • the galvanized layer contains 5 to 1000 ppm by mass of Ni; Having a chromate film on the galvanized layer, A fuel tank member having a minimum film thickness of the chromate film of 10 nm or more and 100 nm or less.
  • a fuel tank member for a motorcycle made of a single-side plated steel plate The surface having a galvanized layer with an adhesion amount of 1 to 70 g / m 2 on the base steel plate having an arithmetic average roughness Ra of 0.5 to 2.0 ⁇ m is the inner surface side of the fuel tank member,
  • the galvanized layer contains 5 to 1000 ppm by mass of Ni; Having a chromate film on the galvanized layer,
  • a fuel tank member, wherein a thickness of the chromate film on the convex and concave portions of the base steel plate roughness is 10 nm or more and 100 nm or less.
  • excellent seam weldability means that the sample is broken by a peel tensile test method (JIS Z 3141: test method for seam welded joint) as described in the seam weldability of Examples described later. Load is applied, the form of rupture is observed, the form of rupture is a base material rupture, and the welding current is sufficient when the nugget wrap is sufficient and the current is 3 kA or more.
  • the cup obtained by cup drawing with the plating layer side as the punch surface is used as a test material.
  • Degraded gasoline 30 ml + 3 ml of organic acid aqueous solution (mixed with 100 ppm formic acid + 100 ppm acetic acid) is added to the cup, sealed with stainless steel through a Viton ring to prevent the gasoline from evaporating, and left inside at 40 ° C for 1 month, then generated inside
  • the corrosion resistance is evaluated from the amount of red rust, and the case where no red rust is generated on the side wall of the cup inner surface in contact with the gasoline phase and the bottom of the cup inner surface in contact with the water phase.
  • the side wall of the cup is a part that mainly comes in contact with gasoline, but the bottom of the cup is a part where water accumulates and the organic acid is concentrated. Tend to be low.
  • the sample which carried out cup squeezing on the same conditions as said inner surface corrosion resistance is set
  • being excellent in press workability means that there is little surface damage in a slidability test. Evaluation of surface damage in the slidability test is as follows. The contact area between the mold and the sample is 3 mm ⁇ 10 mm on the plating layer side of each sample, as described in the slidability test of the examples described later.
  • An excellent steel plate and fuel tank member for a motorcycle fuel tank that is excellent for a motorcycle can be obtained.
  • FIG. 1 is a schematic view of a seam welding apparatus used for a seam weldability test and a cross-sectional view of an electrode (Example).
  • Figures 2 (a) to 2 (c) show the cross-section of a steel sheet after applying a chromate solution to steel sheets of different roughness so that the amount of Cr deposited per unit area is the same and baking and observing them with a TEM. It is the schematic of the cross section explaining the result.
  • a fuel tank member is a product formed into a fuel tank product shape, and usually a plurality of fuel tank members are joined and painted to form a fuel tank product.
  • the fuel tank member of the present invention is a fuel tank member formed by press-forming the steel plate of the present invention.
  • the surface of the fuel tank member of the present invention has a galvanized layer with a coating amount of 1 to 70 g / m 2 and a chromate film on one surface, and the outer surface of the fuel tank member is a steel plate surface. is there.
  • the fuel tank member of the present invention is obtained by pressing a steel plate having a galvanized layer and a chromate film on only one side of the present invention so that the galvanized layer side is the inner surface side of the fuel tank.
  • the amount of zinc deposited on one side is 1 to 70 g / m 2 on a steel plate having a Ra of the steel plate (base steel plate) surface of 0.5 to 2.0 ⁇ m. It has a galvanized layer and a chromate film on the galvanized layer.
  • the steel sheet roughness (Ra) is preferably 0.5 to 2.0 ⁇ m.
  • Ra may be adjusted only on the inner surface of the fuel tank member, but from the viewpoint of press formability, Ra on both surfaces of the steel plate is preferably 0.5 ⁇ m or more.
  • the method for controlling the surface roughness of the steel sheet is not particularly specified, it is mainly controlled by changing the roll surface roughness, rolling load and tension at the time of pressure rolling.
  • the roll processing method include shot dull, laser dull, and electric discharge dull processing.
  • the fuel tank member of the present invention has a galvanized layer on the inner surface side thereof. Since the galvanized layer shows a lower potential than the steel substrate (non-plated (bare) steel plate), even if this plated layer is damaged, the occurrence of red rust (iron rust) can be suppressed by the sacrificial anticorrosive action of zinc. And exhibits excellent corrosion resistance.
  • the zinc adhesion amount per side of the galvanized layer is 1 to 70 g / m 2 . This is because when the zinc adhesion amount is less than 1 g / m 2 , there is no effect of improving the corrosion resistance, and when it exceeds 70 g / m 2 , seam welding becomes difficult. From the viewpoint of corrosion resistance, 1 g / m 2 or more is preferable. From the viewpoint of seam weldability, 50 g / m 2 or less is preferable.
  • the present invention 5 to 1000 ppm by mass of Ni is added to the galvanized layer for the purpose of further improving the press workability. It was found that when a galvanized layer containing 5 to 1000 ppm by mass of Ni was used as the plating composition, the initial friction coefficient of press working was low and the occurrence of plating surface damage was small.
  • the galvanizing treatment is performed by a normal method.
  • the galvanized layer of the present invention may contain inevitable impurity elements contained in a normal galvanized layer in addition to the Ni.
  • a chromate film is formed on the aforementioned galvanized layer as a countermeasure against corrosion occurring in a severe corrosive environment on the inner surface side of the fuel tank member and as a countermeasure for improving press formability.
  • a chromate film it is possible to achieve further improvement in corrosion resistance when in contact with an organic acid or moisture, and it is effective in measures against clogging of FI due to generation of corrosion products.
  • the hard chromate layer has an effect of reducing metal touch between the mold and the galvanized layer, and the press formability is further improved.
  • the chromate film according to the present invention is a trivalent chromium chromate film that does not contain hexavalent chromium.
  • hexavalent chromium is not eluted even when the fuel tank member of the present invention is immersed in boiling water or an alkaline solution. Therefore, even when rainwater or condensed water enters the fuel tank of the fuel tank member of the present invention, hexavalent chromium does not elute therein.
  • chromic acid having a mass ratio of trivalent chromium to total chromium of more than 0.5
  • phosphoric acid having a mass ratio of 0.1 to 5.0 with respect to total chromium
  • an organic reducing agent A chromate treatment solution containing is used. After this chromate treatment solution is applied to the surface of the galvanized layer, the chromate film can be formed by heating so that the steel plate temperature is 120 ° C. or higher.
  • the chromate treatment liquid is in a state where hexavalent chromium and trivalent chromium are mixed. Among these, hexavalent chromium is reduced to trivalent chromium by reaction with an organic reducing agent during heating after coating. Of these total chromium amounts of hexavalent chromium and trivalent chromium, if the amount of hexavalent chromium is excessive, hexavalent chromium may remain in the chromate film after heating.
  • the mass ratio of the valent chromium is more than 0.5.
  • the mass ratio of phosphoric acid is 0.1 to 5.0 with respect to the total chromium.
  • the chromate treatment solution contains an organic reducing agent in addition to the chromic acid and phosphoric acid.
  • the organic reducing agent to be contained in the chromate treatment solution it is preferable to use at least one selected from diols and saccharides.
  • diols and saccharides For example, ethylene glycol, saccharose, sucrose and the like are advantageously suitable.
  • This organic reducing agent is preferably contained in the chromate treatment solution so that the mass ratio with respect to the total chromium is 0.1 to 0.4. If it is 0.1 or more, a sufficient reduction effect is obtained, and there is no possibility that hexavalent chromium remains in the chromate film.
  • the chromate treatment liquid may contain an inorganic inhibitor as necessary for the purpose of improving the corrosion resistance.
  • an inorganic colloid such as silica, ZrO 2 , TiO 2 or the like is added as an inorganic inhibitor in a mass ratio of less than 0.05 with respect to the total chromium.
  • the film thickness where the film thickness of the chromate layer is partially thin at the above-described convex portion that is, the minimum value of the minimum film thickness of the chromate film. It was found that the corrosion resistance is remarkably improved when the thickness is 10 nm. Therefore, in this invention, the minimum film thickness of a chromate film shall be 10 nm or more. As for the upper limit of the minimum film thickness of the chromate film, thicker is more advantageous for the corrosion resistance. Does not exceed 100 nm.
  • the Ra of the steel sheet is set to 0.5 to 2.0 ⁇ m, and it is achieved by appropriately adjusting the concentration of the chromate treatment liquid and the squeezing pressure of the roll. be able to.
  • the minimum film thickness of the chromate film can be measured by observing the cross section of the film with a transmission electron microscope and measuring the film thickness on the screen.
  • a sample for observation of the steel sheet on which the chromate film is formed is prepared by the FIB method or the like, and the cross section of the chromate film is observed. Since the steel plate protrusion is the thinnest portion of the chromate film, the thickness of the chromate film at this location is read from the magnification at the time of observation. For example, a 500 mm square sample for measurement is prepared, 10 fields of view are observed, and the minimum film thickness of each chromate film is measured.
  • the fuel tank steel plate according to the present invention has a galvanized layer with an adhesion amount of 1 to 70 g / m 2 on a base steel plate having an arithmetic average roughness Ra of 0.5 to 2.0 ⁇ m, as described above for the fuel tank member.
  • the galvanized layer is a steel plate containing 5 to 1000 ppm by mass of Ni, having a chromate film on the galvanized layer, and having a minimum film thickness of 10 nm or more and 100 nm or less.
  • the base steel plate for example, in mass%, C: 0.0007 to 0.0050%, Si: 0.5% or less, Mn: 2.0% or less, P: 0.1% or less, S: 0.00. 015% or less, Al: 0.01 to 0.20%, N: 0.01% or less, or Ti: 0.005 to 0.08%, B: 0.001 to 0.01%, Nb: 0
  • a cold-rolled steel sheet containing at least one of .0005 to 0.0050% or more and the balance being Fe and inevitable impurities is preferable.
  • the content is preferably 0.0050% or less. Moreover, if content is 0.0007% or more, the improvement of deep drawability will be recognized, without causing the cost increase of a decarburization process. Therefore, the C content is preferably 0.0007 to 0.0050%.
  • Si 0.5% or less Si has an action of increasing the strength of steel, and can be added according to a desired strength. However, if the amount is 0.5% or less, the deep drawability does not deteriorate. Therefore, the Si amount is preferably 0.5% or less.
  • Mn 2.0% or less Mn, like Si, has the effect of increasing the strength of steel, so it can be added according to the desired strength. However, if the amount is 2.0% or less, the deep drawability does not deteriorate. Accordingly, the Mn content is preferably 2.0% or less.
  • P 0.1% or less P segregates at the grain boundary to strengthen the grain boundary, suppresses cracking of the welded portion, and has an effect of strengthening the steel.
  • the P content is preferably 0.1% or less. In order to more reliably suppress cracking in the welded portion, it is more preferable that the P content is 0.01 to 0.05%. When the P content is less than 0.01%, the effect of suppressing cracks in the welded portion is not significant. Further, when the P content exceeds 0.05%, the deep drawability tends to decrease.
  • S 0.015% or less S adversely affects deep drawability. However, if the amount is 0.015% or less, no adverse effect is observed. Therefore, the S content is preferably 0.015% or less.
  • Al 0.01-0.20% Al is added for deoxidizing steel and improving the yield of carbonitride-forming elements such as Ti. If the amount is 0.01% or more and 0.20% or less, the effect of addition can be obtained, and even if the amount exceeds 0.20%, a greater effect cannot be obtained. Accordingly, the Al content is preferably 0.01 to 0.20%.
  • N 0.01% or less N adversely affects deep drawability. However, if the amount is 0.01% or less, no adverse effect is observed. Therefore, the N content is preferably 0.01% or less.
  • the balance is Fe and inevitable impurities.
  • the amount of inevitable impurities should just be in a normal range, for example, O is 0.010% or less.
  • At least one of Ti: 0.005 to 0.08%, B: 0.001 to 0.01%, Nb: 0.0005 to 0.0050% or more may be added. Good. Addition of at least one of Ti, B, and Nb is suitable for improving deep drawability.
  • Ti 0.005 to 0.08%
  • Ti has the effect of improving deep drawability by forming precipitates with C and N in steel to reduce solid solution C and N.
  • the amount is 0.005% or more and 0.08% or less, the effect can be obtained, and even if the amount exceeds 0.08%, a greater effect cannot be obtained. Therefore, the Ti content is preferably 0.005 to 0.08%.
  • B 0.001 to 0.01% B, like P, has the effect of suppressing cracks in the weld. If the amount is 0.001% or more, the effect is obtained, while if it is 0.01% or less, the deep drawability does not deteriorate. Accordingly, the B content is preferably 0.001 to 0.01%, and more preferably 0.001 to 0.004%.
  • B and P suppress cracks in the weld.
  • the weld crack is presumed to be due to liquid metal embrittlement in which copper (Cu), which is the main component of the electrode, and zinc of the plating component become liquid during welding and enter the steel grain boundaries and embrittle the grain boundaries.
  • Cu copper
  • zinc of the plating component become liquid during welding and enter the steel grain boundaries and embrittle the grain boundaries.
  • B and P are easily segregated at the grain boundary, the grain boundary is strengthened to suppress such weld cracking.
  • the other component composition is not particularly limited, but in the case where the crystal grains of the hot-rolled sheet are refined and the deep drawability after cold rolling-annealing is improved, in addition to the above components, Nb: It is preferable to add in the range of 0.0005 to 0.0050%.
  • the thickness of the steel plate is preferably 0.6 to 2.0 mm. If it is 0.6 mm or more, the strength as a tank can be secured, and if it is 2.0 mm or less, the degree of molding freedom can be secured.
  • the steel plate used for the fuel tank member is a cold-rolled steel plate having a thickness of 0.8 mm (mass%, C: 0.0015%, Si: 0.01%, Mn: 0.08%, P: 0.011% , S: 0.008%, Al: 0.05%, N: 0.0019%, Ti: 0.035%, Nb: 0.0030% and B: 0.004%, the balance being Fe and Cold-rolled steel sheet having an inevitable impurity composition).
  • Table 1 shows the results of measuring Ra by adjusting the roughness of the steel sheet by changing the roll surface roughness during rolling. Electrogalvanizing treatment was performed on one surface of this steel sheet to form a galvanized layer having a coating adhesion amount per one surface shown in Table 1 to obtain a galvanized steel sheet.
  • Some of the obtained galvanized steel sheets were chromated on the surface of the galvanized layer. Specifically, a chromate treatment solution having the composition shown in Table 1 was applied by a roll coater, and then heated so that the maximum reached steel plate temperature was 150 ° C. to form a chromate film. The treatment was carried out by adjusting the concentration of the chromate treatment solution according to the target chromate film thickness. The minimum film thickness of the chromate film is as shown in Table 1.
  • a fuel tank member can be manufactured by pressing the steel plate for a fuel tank obtained as described above.
  • Each sample of the obtained fuel tank steel plate was evaluated for chromium elution resistance, slidability, seam weldability, internal corrosion resistance and moisture resistance after forming, and global procurement.
  • Each evaluation method is as follows.
  • Table 1 shows a conventional example (No. 41) that has a Zn—Ni alloy plating only on the inner surface side of the tank member and a chromate film on the upper layer.
  • Change rate (%) (Amount of chromium before immersion ⁇ Amount of chromium after immersion) / Amount of chromium attached before immersion ⁇ 100 About change rate (%) obtained by the said measurement, it determined as follows using symbol (circle) (excellent) and symbol x (inferior). ⁇ : Change rate within 2.0% ⁇ : Change rate over 2.0% (2) Slidability test As a press workability evaluation, a slidability test was performed on the plating layer side of each sample. The occurrence of surface damage due to galling that occurred on the surface of the sample after the test was observed and evaluated with a magnifier of 10 times magnification.
  • a sample with a blank diameter of ⁇ 100 mm coated with rust preventive oil was processed into a cup shape with a height of 30 mm using a punch with ⁇ 50 mm and a shoulder R of 2.75 mm.
  • the following deteriorated gasoline was added into the cup and sealed with stainless steel through a Viton ring so that the gasoline would not evaporate.
  • the corrosion resistance was evaluated from the amount of red rust generated inside.
  • the side wall part of the cup inner surface in contact with the gasoline phase and the bottom part of the cup inner surface in contact with the aqueous phase were evaluated.
  • Electrode Chrome-copper alloy electrode shape Electrode diameter 230mm ⁇ , electrode thickness 8.0mm, end 4mmR Center tip 15mmR (4.5mm width) ⁇ Welding method: 2 pieces, lap seam welding ⁇ Pressure: 2.942kN (300kgf) Energizing time: 2/50 sec energization on, 1/50 sec energization off ⁇ Cooling: Internal water cooling ⁇ Welding speed: 2.5 m / min ⁇ Welding current: Vary. A load was applied to the sample after lap seam welding by a peel tensile test method (JIS Z 3141: test method for seam welded joint) until the sample broke, and the form of fracture was observed.
  • JIS Z 3141 test method for seam welded joint
  • the appropriate current range was determined by setting the welding current (kA), in which the form of the fracture was a base metal fracture and the nugget lap was sufficient, as the appropriate current, and was evaluated according to the following criteria. 3: 4 kA or more 2: 3 kA or more and less than 4 kA 1: less than 3 kA (6)
  • Global procurement property was evaluated by the following criteria using symbol ⁇ (excellent) and symbol x (inferior). ⁇ : Easy to procure materials outside of Japan. ⁇ : Difficult to procure materials outside Japan
  • all of the examples of the present invention are excellent in press workability, seam weldability and global procurement required for the production of fuel tank members.
  • all of the examples of the present invention are particularly excellent in moisture resistance among chromium elution resistance, corrosion resistance on the inner surface side of the tank, and corrosion resistance required when used as a fuel tank member. It can be seen that the formation of a chromate film has excellent moisture resistance among press workability, corrosion resistance on the inner surface side, and corrosion resistance. Furthermore, it can be seen that the moisture resistance is further improved by setting the minimum film thickness of the chromate film to 10 nm or more.
  • a comparative example outside the scope of the present invention does not satisfy any of press workability, seam weldability, inner surface corrosion resistance, moisture resistance, and global procurement.
  • the motorcycle fuel tank steel plate and the fuel tank member using the steel plate of the present invention can be used particularly as a fuel tank steel plate and a fuel tank member of a motorcycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Laminated Bodies (AREA)

Abstract

タンク製造工程でのプレス加工性、シーム溶接性およびタンク内面側の耐食性、特にタンク内面側の気相部での耐食性(以下、耐湿性と称す。)のそれぞれに優れ、かつ、新興国市場でのグルーバル調達性に優れた自動二輪車用として最適な自動二輪車燃料タンク用鋼板および燃料タンク部材を得る。片面めっき鋼板からなる自動二輪車の燃料タンク用鋼板であって、算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有し、亜鉛めっき層が5~1000質量ppmのNiを含み、亜鉛めっき層の上にクロメート皮膜を有し、クロメート皮膜の最小膜厚が10nm以上、100nm以下である。

Description

自動二輪車燃料タンク用鋼板および燃料タンク部材
 本発明はタンク製造工程でのプレス加工性、シーム溶接性、およびタンク使用時のタンク内面側の耐食性、耐食性の中でも特に耐湿性、並びに新興国市場でのグルーバル調達性のそれぞれに優れた、自動二輪車用として最適な自動二輪車燃料タンク用鋼板および燃料タンク部材に関する。
 近年、新興国、特にアジア地域での自動二輪車の需要拡大に伴い、その生産量は著しく増加している。アジアにおいては、自動二輪車用の燃料タンク用鋼板には、冷延鋼板(めっきのない裸鋼板)が使用されていたが、近年めっき化の動きが急速に高まっている。これは、自動二輪車用のエンジンがEURO3環境規制対応によりFI(Fuel Injection)化した結果、FI装置の目詰まり対策が必要となったためであり、赤錆がFI装置に詰まることを防止するために、めっき鋼板を使用することにより耐食性(耐赤錆性)を向上させ、燃料タンク内で発生する赤錆を低減させることを目的としている。
 自動二輪車用燃料タンク用のめっき鋼板としては、日本国内において、例えば、タンク部材の内面側のみに亜鉛(Zn)-ニッケル(Ni)合金めっきを施した片面めっき鋼板、またはZn-Ni合金めっきの上層にさらにクロメート処理を施した片面めっき鋼板がある。この燃料タンク用鋼板の製造技術としては、例えば、特許文献1には、鋼板の少なくとも片面に、Niを5~30質量%含む電気Zn-Ni合金めっき層を、片面当たり1~40g/mの付着量で形成した後、該めっき層の上層に質量比(3価クロム)/(全クロム)が0.5超のクロム酸、質量比(リン酸)/(全クロム)が0.1~5.0のリン酸および有機還元剤を含有するクロメート処理液を塗布し、加熱した燃料タンク用鋼板の製造方法が開示されている。
 その他、特許文献2には、燃料タンク製造工程における厳しいプレス条件であっても優れたプレス成形性を有する燃料タンク用鋼板として、タンクの内面側になる面に、Niを5~1000質量ppm含み付着量が1~150g/mである純亜鉛めっき層を有し、さらに該純亜鉛めっき層上には、質量比(3価クロム)/(全クロム)が0.5超のクロム酸、質量比(リン酸)/(全クロム)が0.1~5.0のリン酸および有機還元剤を含有するクロメート処理液を塗布後、加熱することにより形成されてなるクロメート皮膜を有する燃料タンク用鋼板の製造方法が開示されている。
特許第4654714号公報 特開2013-221206号公報
 自動二輪車が新興国、特にアジア地域で現地生産されるようになると、その材料も現地で調達されるケースが急速に増えている。燃料タンク用鋼板もその一つである。自動二輪車用燃料タンク用鋼板の製造方法を開示した特許文献1、2は日本国内では問題は発生しないが、新興国において製造する場合は、下記の問題が発生する場合があった。
 特許文献1に記載の電気Zn-Ni合金めっき材による燃料タンク用鋼板は、タンクに製造する際のプレス加工性、シーム溶接性に優れ、燃料タンクとしての耐食性にも優れている。しかしながら、電気Zn-Ni合金めっきは、薬液コストが高いこと、薬液の管理(濃度、補給方法等)が困難であり、そのための設備を必要とすることから製造メーカーが限られ、材料調達性の観点から問題が発生する場合があった。
 このことから、新興国向けの燃料タンク用材料としては、コスト、薬液管理、および電流効率の面から電気Zn-Ni合金めっきに比べて有利で、グローバル調達性に優れた亜鉛めっき鋼板が燃料タンク用材料に適しているものと考えられる。
 一方で、燃料タンク用材料として亜鉛めっき鋼板を使用する場合、プレス加工によりめっき層表面が損傷を受けやすくなる。損傷を受けた部分は、めっき層がなくなるか、めっき層が残存している場合でも実付着量が著しく減少することになるため、耐食性が低下することになる。
 このような課題を解消された材料として提案されたのが、特許文献2に記載のNiを5~1000質量ppm含む亜鉛めっきによる材料である。特許文献2は、特許文献1と同様に、タンクに製造する際のプレス加工性、シーム溶接性、燃料タンクとしての内面耐食性(耐劣化ガソリン性)に優れている。
 しかしながら、アジア地域に特有の問題として、燃料タンク内部のガソリンと接触していない気相部の錆が新たな問題として発生した。これは、燃料タンク内部の気相部が、長時間にわたり高湿度下にあった場合、あるいは長時間にわたり結露が発生した場合に発生するものとみられ、高温多湿で、昼夜の寒暖差が大きい地域に発生する場合が多い。
 特許文献1、2に記載の燃料タンク用鋼板は、燃料タンクの内面側の耐劣化ガソリン性に優れるものではある。しかし、この内面側で発生する腐食は、燃料タンクの気相部に発生した結露水が落下して燃料タンクの底部に溜ったり、燃料タンク内に雨水等が混入したことにより、ガソリンの中に水層部が形成され、この水層部に劣化ガソリンや粗悪ガソリン中の有機酸が濃縮し、腐食が発生するものであるから、新たにアジア地域で発生した気層部に発生する錆とは異なるものである。
 本発明は、かかる事情に鑑みてなされたものであり、タンク製造工程でのプレス加工性、シーム溶接性およびタンク内面側の耐食性、特にタンク内面側の気相部での耐食性(以下、耐湿性と称す。)のそれぞれに優れ、かつ、新興国市場でのグルーバル調達性に優れた自動二輪車用として最適な自動二輪車燃料タンク用鋼板および燃料タンク部材を提供することを目的とする。
 燃料タンク部材製造工程でのプレス加工時のめっき層損傷の防止策を検討するために、まず、このプレス加工をシミュレートできる試験条件について検討した。その結果、下記摺動試験により、実プレス加工で発生するめっき層の損傷を再現できることがわかった。
<試験条件>
・金型とサンプルの接触面積:3mm×10mm
・摺動距離:100mm
・加圧力:200MPa
・摺動速度:1.0m/min
・潤滑油:防錆油
 上記試験条件で、種々検討した結果、めっき層の損傷を防止するためには、下地鋼板表面の算術平均粗さRa(JIS B 0601-2001)(以下、Raと称す)を0.5μm以上に制御することが必要であることを見出した。
 さらに、燃料タンク用材料に亜鉛めっき鋼板を適用しようとした場合、タンク内面側の耐食性(以下、耐食性と称する場合もある。)についても考慮する必要がある。亜鉛めっき層を表面に有することにより耐食性は向上するが、長期間燃料タンク内に燃料を放置した場合、または、粗悪な燃料を用いた場合、または、昼夜の寒暖差により結露水が発生した場合等、燃料内に混入する有機酸や水分によりタンク内の腐食環境は厳しくなる。そこで、燃料タンク内の防錆対策について検討した結果、Raを制御した鋼板に亜鉛めっき層を形成した亜鉛めっき鋼板にさらにクロメート処理を施し、そのクロメート層の最小膜厚を制御することが、耐食性の向上に極めて有効であるとの知見を得た。
 粗さが異なる鋼板に、単位面積当たりのCr付着量が同じになるようにクロメート液を塗布し、焼き付け乾燥した後の鋼板断面をTEMで観察した結果、鋼板の粗さにより、クロメート層の膜厚分布が異なり、それが、内面耐食性、耐湿性、プレス加工性、及び、シーム溶接性に影響することがわかった。特徴的な断面を3つに分類し、各断面の概略図を図2に示す。図2(a)はRaが2.0μmを超えた場合であり、素地鋼板粗さの凹凸の凸部のクロメート層の膜厚が10nm未満となる場合である。図2(b)はRaが0.5~2.0μm(本発明の範囲)であり、上記凸部のクロメート層の膜厚が10nm以上となる場合である。図2(c)はRaが0.5μm未満の場合であり、上記凸部のクロメート層の膜厚が100nmを超える場合である。なお、素地鋼板とは、めっき前の鋼板を指す。また、ここでいう凸部のクロメート層の膜厚とは、凸部において部分的にクロメート層の膜厚が薄くなったところの膜厚(以下、クロメート皮膜の最小膜厚と称す)を指す。
 図2(a)の場合、クロメート層の膜厚が薄い凸部が通電点として有利に働きシーム溶接性は良好であるが、凸部のクロメート皮膜の効果が十分でないことから凸部が錆の起点となり内面耐食性、耐湿性とも低下した。図2(b)の場合には、クロメート層の膜厚が10nm以上で、プレス加工性、シーム溶接性、内面耐食性、耐湿性のそれぞれの観点で本発明の目標レベルの性能を示した。図2(c)の場合、凸部のクロメート層の膜厚が100nmを超えたため、内面耐食性および耐湿性は良好であるが、溶接時の通電点が減少し、シーム溶接性が極端に低下した。
 以上の通り、従来ではクロメート付着量は単位面積当たりのCr付着量で管理していたが、今回のように、自動二輪車燃料タンク用鋼板およびそれを用いた燃料タンク部材においてはCr付着量ではなく、膜厚で管理することが各種の性能を両立させる上で極めて重要であることが判明した。
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1] 片面めっき鋼板からなる自動二輪車の燃料タンク用鋼板であって、
算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有し、
前記亜鉛めっき層が5~1000質量ppmのNiを含み、
前記亜鉛めっき層の上にクロメート皮膜を有し、
前記クロメート皮膜の最小膜厚が10nm以上、100nm以下である自動二輪車燃料タンク用鋼板。
[2] 片面めっき鋼板からなる自動二輪車の燃料タンク用鋼板であって、
算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有し、
前記亜鉛めっき層が5~1000質量ppmのNiを含み、
前記亜鉛めっき層の上にクロメート皮膜を有し、
素地鋼板粗さの凹凸の凸部の前記クロメート皮膜の膜厚が10nm以上、100nm以下である自動二輪車燃料タンク用鋼板。
[3] 片面めっき鋼板からなる自動二輪車用の燃料タンク部材であって、
算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有する面が前記燃料タンク部材の内面側であり、
前記亜鉛めっき層が5~1000質量ppmのNiを含み、
前記亜鉛めっき層の上にクロメート皮膜を有し、
前記クロメート皮膜の最小膜厚が10nm以上、100nm以下である燃料タンク部材。
[4] 片面めっき鋼板からなる自動二輪車用の燃料タンク部材であって、
算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有する面が前記燃料タンク部材の内面側であり、
前記亜鉛めっき層が5~1000質量ppmのNiを含み、
前記亜鉛めっき層の上にクロメート皮膜を有し、
素地鋼板粗さの凹凸の凸部の前記クロメート皮膜の膜厚が10nm以上、100nm以下である燃料タンク部材。
 なお、本発明において、シーム溶接性に優れるとは、後述の実施例のシーム溶接性で記載のように、ピール引張り試験法(JIS Z 3141:シーム溶接継手の試験方法)により、サンプルが破断するまで荷重を加え、破断の形態を観察し、破断の形態が母材破断で、ナゲットのラップが十分である溶接電流が3kA以上の場合をいう。
また、タンク使用時のタンク内面側の耐食性に優れるとは、後述の実施例の内面耐食性で記載のように、めっき層側をポンチ面としてカップ絞り加工により得られたカップを供試材とし、劣化ガソリン:30ml+有機酸水溶液3ml(ギ酸100ppm+酢酸100ppm混合)をカップ内に加え、ガソリンが蒸発しないようにバイトン製リングを介してステンレスで密封し、40℃で1ヶ月放置したのち、内部に発生した赤錆の量から耐食性を評価し、ガソリン相と接するカップ内面の側壁部及び水相と接するカップ内面の底部において、赤錆発生なしの場合をいう。なお、カップ側壁部は主にガソリンと接触する部位であるが、カップ底部は水が溜り、有機酸が濃縮する部位であるため、カップ底部の方が側壁部より腐食しやすく、評価点が相対的に低くなる傾向がある。
また、耐湿性に優れるとは、上記の内面耐食性と同じ条件でカップ絞りしたサンプルを50℃×98%RH×360時間の条件下に置き、カップ側壁部に発生した錆の量を評価し、白錆発生なし、あるいは白錆発生面積:5%未満の場合をいう。
また、プレス加工性に優れるとは、摺動性試験での表面損傷が少ないことを言う。
摺動性試験での表面損傷の評価は、後述の実施例の摺動性試験で記載のように、各サンプルのめっき層側に、金型とサンプルの接触面積:3mm×10mm、摺動距離:100mm、加圧力:200MPa、摺動速度:1.0m/min、潤滑油:防錆油とする試験条件で摺動性試験を実施し、試験後のサンプル表面に発生したかじりによる表面損傷の発生状況について、倍率10倍のルーぺで観察することにより行った。
 本発明によれば、燃料タンク製造工程でのプレス加工性、シーム溶接性、およびタンク使用時のタンク内面側の耐食性、耐食性の中でも特に耐湿性、並びに新興国市場でのグローバル調達性のそれぞれに優れた、自動二輪車用として最適な自動二輪車燃料タンク用鋼板および燃料タンク部材が得られる。
図1は、シーム溶接性の試験に用いたシーム溶接装置概略図と電極の断面図である(実施例)。 図2(a)~図2(c)は、粗さが異なる鋼板に、単位面積当たりのCr付着量が同じになるようにクロメート液を塗布し、焼き付け乾燥した後の鋼板断面をTEMで観察した結果を説明する断面の概略図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 (燃料タンク部材)
 燃料タンク部材とは、燃料タンク製品形状に成形した物であり、通常複数の燃料タンク部材を接合、塗装し燃料タンク製品となる。本発明の燃料タンク部材は本発明の鋼板をプレス成形してなる燃料タンク部材である。
 また、本発明の燃料タンク部材の内面側の表面に片面あたりの付着量が1~70g/mの亜鉛めっき層とクロメート皮膜を有し、前記燃料タンク部材の外面側の表面は鋼板表面である。本発明の燃料タンク部材は、本発明の片面にのみ亜鉛めっき層とクロメート皮膜を有する鋼板を、亜鉛めっき層側が燃料タンクの内面側となるようにプレス加工することにより得られる。
 (鋼板粗さ)
 本発明において、燃料タンク部材の内面側は、鋼板(素地鋼板)表面のRaを、0.5~2.0μmとした鋼板上に、亜鉛の片面あたりの付着量が1~70g/mの亜鉛めっき層と該亜鉛めっき上のクロメート皮膜を有することを特徴とする。
 Raが0.5μm未満では、プレス成形性が不足し、プレス加工時に金型と鋼板の間で肩かじりが発生しやすくなり、プレス加工ができなくなる。一方、Raが2.0μmを超えると上述のように素地鋼板粗さの凹凸の凸部のクロメート層の膜厚が10nm未満となり、内面耐食性および耐湿性が低下する。そのため、鋼板粗さ(Ra)は0.5~2.0μmとするのがよい。
 Raは、燃料タンク部材の内面となる側だけ調整すれば良いが、プレス成形性の観点からは、鋼板の両面のRaを0.5μm以上とすることが好ましい。
 鋼板の表面粗さの制御方法としては特に規定しないが、主に調圧圧延時のロール表面粗さ、圧延荷重や張力を変化させて制御する。ロール加工方法としては、ショットダル、レーザーダル、放電ダル加工等が挙げられる。
 (亜鉛めっき層)
 本発明の燃料タンク部材は、その内面側に、亜鉛めっき層を有する。亜鉛めっき層は、鋼素地(非めっき(裸)鋼板)よりも卑な電位を示すため、このめっき層が損傷した場合も亜鉛の犠牲防食作用により赤錆(鉄錆)の発生を抑制することができ、優れた耐食性を示す。
 亜鉛めっき層の片面あたりの亜鉛付着量は、1~70g/mとする。亜鉛付着量が1g/m未満では耐食性の向上効果がなく、70g/mを超える場合、シーム溶接が困難になるからである。なお、耐食性の観点からは1g/m以上が好ましい。シーム溶接性の観点からは50g/m以下が好ましい。
 さらに、本発明においては、更なるプレス加工性の向上を目的として、亜鉛めっき層中にNiを5~1000質量ppm添加する。めっき組成として、Niを5~1000質量ppm添加する亜鉛めっき層を用いると、プレス加工の初期の摩擦係数が低く、かつめっきの表面損傷の発生が少ないことがわかった。亜鉛めっき処理は通常の方法により行う。本発明の亜鉛めっき層中には、上記Niの他に、通常の亜鉛めっき層に含まれる不可避的不純物元素を含んでも問題ない。
 (クロメート皮膜)
 本発明では、燃料タンク部材内面側の厳しい腐食環境で発生する腐食の対策、およびプレス成形性向上の対策として、前述の亜鉛めっき層上に、クロメート皮膜を形成させる。クロメート皮膜を形成させることにより、有機酸や水分に接触した場合のなお一層の耐食性向上が達成でき、腐食生成物の発生によるFIの目詰まり対策に効果的である。また、硬質なクロメート層は、金型と亜鉛めっき層とのメタルタッチを軽減する効果もあり、よりプレス成形性も向上する。
 なお、本発明によるクロメート皮膜は6価クロムを含まない3価クロムによるクロメート皮膜とする。3価クロムによるクロメート皮膜とすることにより、本発明の燃料タンク部材を沸騰水、または、アルカリ液への浸漬した場合も6価クロムが溶出することはない。従って、たとえ、本発明の燃料タンク部材による燃料タンク内に雨水、結露水が侵入した場合もその中に6価クロムが溶出することはない。
 このようなクロメート皮膜を形成するには、全クロムに対する3価クロムの質量比が0.5を超えるクロム酸、全クロムに対する質量比が0.1~5.0のリン酸、および有機還元剤を含有するクロメート処理液を用いる。このクロメート処理液を、亜鉛めっき層表面に塗布した後、鋼板温度が120℃以上になるように加熱することによりクロメート皮膜を形成することができる。
 クロメート処理液は、6価クロムと3価クロムが混合した状態になっている。このうち、6価クロムは、塗布後の加熱時に、有機還元剤との反応により3価クロムに還元される。これらの6価クロムと3価クロムを合わせた全クロム量のうち、6価クロムの量が過剰な場合、加熱後のクロメート皮膜中に6価クロムが残存する場合があるため、全クロムに対する3価クロムの質量比を0.5超とする。リン酸の質量比は、全クロムに対して0.1~5.0とする。リン酸の質量比が0.1未満だと、3価クロムが高分子化してゲル状の沈殿物となる。このため、クロメート処理液としての性状を維持できなくなり、鋼板に塗布することができなくなる。一方、この比が5.0を超えると、クロメート皮膜中にリン酸が過度に残存し、湿潤環境下でこのリン酸が溶出し、孔食やめっきの黒変を引き起こす。
 本発明では、クロメート処理液に上記クロム酸およびリン酸のほかに、有機還元剤を含有させる。クロメート処理液に含有させる有機還元剤は、ジオール類と糖類の中から選んだ少なくとも1種を用いることが好ましい。例えば、エチレングリコール、サッカロース、しょ糖などが有利に適合する。この有機還元剤は、全クロムに対する質量比が0.1~0.4となるようにクロメート処理液中に含有させることが好ましい。0.1以上であれば十分な還元効果が得られ、クロメート皮膜中に6価クロムを残存させる可能性がない。一方、0.4以下であればクロメート処理液の安定性を維持できなくなる場合がない。なお、有機還元剤は、クロメート処理液の安定性を高める観点から、クロメート処理液を亜鉛めっき層に塗布する直前に、クロメート処理液に添加することが好ましい。
 さらに、クロメート処理液には、耐食性を向上させる目的で、必要に応じて無機インヒビターを含有させることができる。例えば、無機インヒビターとして、シリカ、ZrO、TiO、などの無機コロイドを、全クロムに対する質量比で0.05未満添加する。
 (クロメート皮膜の最小膜厚)
 本発明では、更なる耐食性向上のため、クロメート皮膜の断面を透過型電子顕微鏡で観察したところ、亜鉛めっき層表面の粗さの凸部は、部分的にクロメート層の膜厚が薄く、鋼板表面の粗さの凹部はクロメート層の膜厚が厚くなっていることが観察された。さらに、腐食初期のクロメート皮膜の断面を観察した結果、腐食が発生する箇所はクロメート皮膜が薄くなっている凸部であることが分かった。そこで、腐食初期のクロメート皮膜の膜厚について種々解析した結果、上記した凸部の部分的にクロメート層の膜厚が薄くなっているところの膜厚、すなわち、クロメート皮膜の最小膜厚の最小値が10nmであれば、耐食性が格段に向上することが判明した。よって、本発明では、クロメート皮膜の最小膜厚を10nm以上とする。なお、クロメート皮膜の最小膜厚の上限は、厚い方が耐食性には有利であるが、厚くなると、通電点となる鋼板凸部が少なくなり、溶接性が低下するため、クロメート皮膜の最小膜厚は、100nmを超えない。
 このような最小クロメート皮膜の膜厚を確保するためには、鋼板のRaを0.5~2.0μmとした上で、クロメート処理液の濃度、ロールの絞り圧で適宜調整することで達成することができる。
 クロメート皮膜の最小膜厚は、皮膜の断面を透過型電子顕微鏡により観察し、その撮影画面より膜厚を測定することができる。クロメート皮膜を形成した鋼板をFIB法等で観察用のサンプルを作製し、クロメート皮膜の断面を観察する。鋼板凸部はクロメート皮膜が最も薄い部分であるため、この箇所のクロメート皮膜の膜厚を観察時の倍率から読み取る。例えば、500mm角の測定用のサンプルを作製し、10視野観察し、各クロメート皮膜の最小膜厚を測定する。
 (燃料タンク用鋼板)
 次に、本発明の燃料タンク用鋼板について説明する。
 本発明の燃料タンク用鋼板は、上述の燃料タンク部材の通り、算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有し、前記亜鉛めっき層が5~1000質量ppmのNiを含み、前記亜鉛めっき層の上にクロメート皮膜を有し、前記クロメート皮膜の最小膜厚が10nm以上、100nm以下の鋼板である。
 素地鋼板としては、例えば、質量%で、C:0.0007~0.0050%、Si:0.5%以下、Mn:2.0%以下、P:0.1%以下、S:0.015%以下、Al:0.01~0.20%、N:0.01%以下、またはさらにTi:0.005~0.08%、B:0.001~0.01%、Nb:0.0005~0.0050%以上の少なくとも一種を含有し、残部がFeおよび不可避的不純物からなる冷延鋼板が好適である。
 以下、各成分の限定理由について説明する。なお、以下の説明において、鋼成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。
 C:0.0007~0.0050%
Cは、深絞り性に悪影響を及ぼすため、含有量は0.0050%以下とすることが好ましい。また、含有量を0.0007%以上であれば、脱炭処理のコスト増を招くことなく深絞り性の向上が認められる。従って、C量は0.0007~0.0050%とすることが好ましい。
 Si:0.5%以下
Siは、鋼の強度を増加させる作用を有するので、所望の強度に応じて添加することができる。しかし、その量が0.5%以下であれば深絞り性が低下しない。従って、Si量は0.5%以下とすることが好ましい。
 Mn:2.0%以下
Mnは、Si同様、鋼の強度を増加させる作用を有するので、所望の強度に応じて添加することができる。しかし、その量が2.0%以下であれば深絞り性が低下しない。従って、Mn量は2.0%以下とすることが好ましい。
 P:0.1%以下
Pは、粒界に偏析して粒界を強化し、溶接部の割れを抑制すると共に、鋼を強化する作用を有する。しかし、その量が0.1%以下であれば深絞り性が劣化しない。従って、P量は0.1%以下とすることが好ましい。なお、溶接部の割れをより確実に抑制するには、P量を0.01~0.05%とすることがより好ましい。P含有量が0.01%未満では、溶接部割れを抑制する効果が顕著ではなくなる。また、P含有量が0.05%を超えると深絞り性が低下する傾向があるからである。
 S:0.015%以下
Sは、深絞り性に悪影響を及ぼす。しかし、その量が0.015%以下であれば悪影響は認められない。従って、S量は0.015%以下とすることが好ましい。
 Al:0.01~0.20%
Alは、鋼の脱酸やTiなどの炭窒化物形成元素の歩留り向上のために添加される。その量が0.01%以上、0.20%以下であればその添加効果が得られ、0.20%超えてもさらに大きな効果は得られない。従って、Al量は0.01~0.20%とすることが好ましい。
 N:0.01%以下
Nは、深絞り性に悪影響を及ぼす。しかし、その量が0.01%以下であれば悪影響は認められない。従って、N量は0.01%以下とすることが好ましい。
 残部はFeおよび不可避的不純物である。ここで、不可避的不純物の量は通常の範囲内であればよく、例えばOは0.010%以下である。
 なお、上記の成分に加え、さらにTi:0.005~0.08%、B:0.001~0.01%、Nb:0.0005~0.0050%以上の少なくとも一種を添加してもよい。Ti、B、Nbの少なくとも一種を添加することは、深絞り性を向上させる上で好適である。
 Ti:0.005~0.08%
Tiは、鋼中のCやNと析出物を形成して固溶C、Nを減少させることにより、深絞り性を向上させる効果を有する。しかし、その量が0.005%以上、0.08%以下であればその効果が得られ、0.08%を超えてもさらに大きな効果は得られない。従って、Ti量は0.005~0.08%とすることが好ましい。
 B:0.001~0.01%
Bは、P同様、溶接部の割れを抑制する作用を有する。その量が0.001%以上であればその効果が得られ、一方0.01%以下であれば深絞り性が劣化することがない。従って、B量は0.001~0.01%、望ましくは0.001~0.004%とすることが好ましい。
 BやPが溶接部の割れを抑制する理由は、以下のように考えられる。すなわち、溶接割れは、電極の主成分である銅(Cu)やめっき成分の亜鉛が溶接時に液体になり鋼の粒界に侵入して粒界を脆化する液体金属脆性によるものと推察される。この点、BやPは粒界に偏析し易いため粒界を強化して、こうした溶接割れを抑制する。
 なお、その他の成分組成については特に限定を要しないが、熱延板の結晶粒を微細化し、冷間圧延-焼鈍後の深絞り性を向上させる場合には、上記成分に加え、さらにNb:0.0005~0.0050%の範囲内で添加することが好適である。
 また、鋼板の板厚は0.6~2.0mmであることが好ましい。0.6mm以上であれがタンクとしての強度を確保することができ、2.0mm以下であれば成形の自由度を確保できる。
 以下、実施例により本発明を具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。
 燃料タンク部材に用いる鋼板は、板厚:0.8mmの冷延鋼板(質量%で、C:0.0015%、Si:0.01%、Mn:0.08%、P:0.011%、S:0.008%、Al:0.05%、N:0.0019%、Ti:0.035%、Nb:0.0030%およびB:0.004%を含有し、残部はFeおよび不可避的不純物の組成になる冷延鋼板)とした。この鋼板の粗さを圧延時のロール表面粗さを変えることにより調整し、Raを実測した結果を表1に示す。この鋼板の片面に電気亜鉛めっき処理を行い、表1に示す片面あたりのめっき付着量の亜鉛めっき層を形成し、亜鉛めっき鋼板とした。
 得られた亜鉛めっき鋼板のうち一部は、上記の亜鉛めっき層の表面に、クロメート処理を施した。具体的には、表1に示す組成のクロメート処理液を、ロールコーターによって塗布した後、最高到達鋼板温度が150℃となるように加熱して、クロメート皮膜を形成した。目標とするクロメート皮膜の膜厚によりクロメート処理液の濃度を調整して処理した。クロメート皮膜の最小膜厚は表1に示すとおりである。
 以上により得られた燃料タンク用鋼板をプレス加工することにより燃料タンク部材を製造できる。
 得られた燃料タンク用鋼板の各サンプルについて、耐クロム溶出性、摺動性、シーム溶接性、成形後の内面耐食性および耐湿性、並びにグローバル調達性について評価した。各評価方法は以下のとおりである。
 なお、表1には、タンク部材の内面側のみにZn-Ni合金めっき、その上層にさらにクロメート皮膜を有するものを従来例(No.41)として示した。
 (1)耐クロム溶出性
耐クロム溶出性評価としてクロメート層を形成したサンプルについて6価クロムの溶出性を評価した。
沸騰水浸漬法(JIS K 5400-1990)に基づき、各サンプルのクロム付着量を蛍光X線により測定し、下記式により浸漬前後のクロム付着量の変化率を求めた。クロム付着量測定時の測定誤差を鑑み、クロム付着量の変化率が2.0%以内であれば、クロメート皮膜中に6価クロムが残存しないと判断した。
変化率(%)=(浸漬前クロム付着量-浸漬後クロム付着量)/浸漬前クロム付着量×100
上記測定により得られる変化率(%)について、記号○(優れる)および記号×(劣る)を用いて、下記のように判定した。
○:変化率2.0%以内
×:変化率2.0%超え
 (2)摺動性試験
プレス加工性評価として各サンプルのめっき層側に摺動性試験を実施した。試験後のサンプル表面に発生したかじりによる表面損傷の発生状況について、倍率10倍のルーぺで観察し、評価した。
<試験条件>
・金型とサンプルの接触面積:3mm×10mm
・摺動距離:100mm
・加圧力:200MPa
・摺動速度:1.0m/min
・潤滑油:防錆油
・判定基準
4:表面損傷の発生なし 
3:表面損傷の発生あり(摺動部の5%未満)
2:表面損傷の発生あり(摺動部の5%以上20%未満)
1:表面損傷の発生あり(摺動部の20%以上)
 (3)内面耐食性
内面耐食性評価として各サンプルのめっき層側をポンチ面としてカップ絞り加工により得られたカップを供試材とし、劣化ガソリンに対する耐食性を評価した。
カップ絞りは、防錆油を塗油したブランク径φ100mmのサンプルを、φ50mm、肩R2.75mmのポンチを用いて、高さ30mmカップ状に加工した。次に示す劣化ガソリンをカップ内に加え、ガソリンが蒸発しないようにバイトン製リングを介してステンレスで密封した。40℃で1ヶ月放置したのち、内部に発生した赤錆の量から耐食性を評価した。ガソリン相と接するカップ内面の側壁部と水相と接するカップ内面の底部を評価した。
<試験条件>
・40℃×1ヶ月
・劣化ガソリン組成
レギュラーガソリン 30ml+有機酸水溶液3ml(ギ酸100ppm+酢酸100ppm混合)
・判定基準
4:赤錆発生なし
3:赤錆発生あり(赤錆発生面積 5%未満)
2:赤錆発生あり(赤錆発生面積 5%以上20%未満)
1:赤錆発生あり(赤錆発生面積 20%以上)
 (4)耐湿性
タンク内部の気相部に発生する錆の評価として、(4)と同じ条件でカップ絞りしたサンプルを下記に条件下に置き、カップ側壁部に発生した錆の量から耐湿性を評価した。
<試験条件>
・50℃×98%RH×360時間
・判定基準
4:白錆発生なし
3:白錆発生あり(白錆発生面積5%未満)
2:白錆発生あり(白錆発生面積5%以上20%未満)
1:白錆発生あり(白錆発生面積20%以上)
 (5)シーム溶接性
シーム溶接性の評価として各サンプルのめっき層側同士を合わせてラップシーム溶接を行い、適正電流範囲を評価した。
500mm×300mmとしたサンプルのめっき層側を合わせて(電極接触面はめっき、クロメート皮膜なし)、ラップシーム溶接により溶接を行った(図1参照)。溶接条件は以下の通りである。
・電極:クロム-銅合金製
   電極形状 電極径230mmφ、電極厚み8.0mm、端部4mmR
        中央先端部15mmR(幅4.5mm)
・溶接方法:二枚かさね、ラップシーム溶接
・加圧力:2.942kN(300kgf)
・通電時間:2/50秒通電on、1/50秒通電off
・冷却:内部水冷
・溶接スピード:2.5m/min
・溶接電流:種々変化させる。
ラップシーム溶接後のサンプルに、ピール引張り試験法(JIS Z 3141:シーム溶接継手の試験方法)により、サンプルが破断するまで荷重を加え、破断の形態を観察した。破断の形態が母材破断で、ナゲットのラップが十分である溶接電流(kA)を適正電流として適正電流範囲を求め、以下の基準で評価した。
3:4kA以上
2:3kA以上4kA未満
1:3kA未満
 (6)グローバル調達性
グルーバル調達性を、記号○(優れる)および記号×(劣る)を用いて、次の基準で評価した。
○:日本以外で材料を調達することが容易。
×:日本以外で材料を調達することが困難
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明例はいずれも、燃料タンク部材の製造の際に要求されるプレス加工性、シーム溶接性およびグローバル調達性に優れている。また、本発明例はいずれも、燃料タンク部材として使用される際に要求される耐クロム溶出性、タンク内面側の耐食性、耐食性の中でも特に耐湿性にも優れている。クロメート皮膜を形成させることによりプレス加工性、内面側の耐食性、耐食性の中でも特に耐湿性が優れていることがわかる。さらに、クロメート皮膜の最小膜厚を10nm以上にすることにより、なお一層耐湿性に優れることがわかる。
 一方、本発明の範囲を外れる比較例は、プレス加工性、シーム溶接性、内面耐食性、耐湿性、グローバル調達性のいずれかを満足しない。
 本発明の自動二輪車燃料用タンク鋼板およびその鋼板を用いた燃料タンク部材は、特に自動二輪車の燃料用タンク鋼板および燃料タンク部材として用いることができる。

Claims (4)

  1.  片面めっき鋼板からなる自動二輪車の燃料タンク用鋼板であって、
    算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有し、
    前記亜鉛めっき層が5~1000質量ppmのNiを含み、
    前記亜鉛めっき層の上にクロメート皮膜を有し、
    前記クロメート皮膜の最小膜厚が10nm以上、100nm以下である自動二輪車燃料タンク用鋼板。
  2.  片面めっき鋼板からなる自動二輪車の燃料タンク用鋼板であって、
    算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有し、
    前記亜鉛めっき層が5~1000質量ppmのNiを含み、
    前記亜鉛めっき層の上にクロメート皮膜を有し、
    素地鋼板粗さの凹凸の凸部の前記クロメート皮膜の膜厚が10nm以上、100nm以下である自動二輪車燃料タンク用鋼板。
  3.  片面めっき鋼板からなる自動二輪車用の燃料タンク部材であって、
    算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有する面が前記燃料タンク部材の内面側であり、
    前記亜鉛めっき層が5~1000質量ppmのNiを含み、
    前記亜鉛めっき層の上にクロメート皮膜を有し、
    前記クロメート皮膜の最小膜厚が10nm以上、100nm以下である燃料タンク部材。
  4.  片面めっき鋼板からなる自動二輪車用の燃料タンク部材であって、
    算術平均粗さRaが0.5~2.0μmの素地鋼板上に付着量1~70g/mの亜鉛めっき層を有する面が前記燃料タンク部材の内面側であり、
    前記亜鉛めっき層が5~1000質量ppmのNiを含み、
    前記亜鉛めっき層の上にクロメート皮膜を有し、
    素地鋼板粗さの凹凸の凸部の前記クロメート皮膜の膜厚が10nm以上、100nm以下である燃料タンク部材。
PCT/JP2017/035099 2016-09-30 2017-09-28 自動二輪車燃料タンク用鋼板および燃料タンク部材 WO2018062341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019004095-1A BR112019004095B1 (pt) 2016-09-30 2017-09-28 Chapa de aço para tanque de combustível de motocicleta e membro de tanque de combustível
JP2017560358A JP6354915B1 (ja) 2016-09-30 2017-09-28 自動二輪車燃料タンク用鋼板および燃料タンク部材
CN201780053218.5A CN109642330B (zh) 2016-09-30 2017-09-28 摩托车燃料箱用钢板和燃料箱构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/004407 2016-09-30
PCT/JP2016/004407 WO2018061061A1 (ja) 2016-09-30 2016-09-30 燃料タンク部材

Publications (1)

Publication Number Publication Date
WO2018062341A1 true WO2018062341A1 (ja) 2018-04-05

Family

ID=61760220

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/004407 WO2018061061A1 (ja) 2016-09-30 2016-09-30 燃料タンク部材
PCT/JP2017/035099 WO2018062341A1 (ja) 2016-09-30 2017-09-28 自動二輪車燃料タンク用鋼板および燃料タンク部材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004407 WO2018061061A1 (ja) 2016-09-30 2016-09-30 燃料タンク部材

Country Status (3)

Country Link
JP (1) JP6354915B1 (ja)
CN (1) CN109642330B (ja)
WO (2) WO2018061061A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024006186A (ja) * 2022-07-01 2024-01-17 Jfeスチール株式会社 電気Zn-Ni合金めっき鋼板の製造方法
WO2024048665A1 (ja) * 2022-08-31 2024-03-07 日本製鉄株式会社 めっき縞鋼板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288795A (ja) * 1988-09-27 1990-03-28 Nkk Corp 自動車外板用電気亜鉛めつき鋼板の製造方法
JPH11181580A (ja) * 1997-12-22 1999-07-06 Nkk Corp クロメート被膜のクロム付着量分析方法及び装置
JP2002004019A (ja) * 2000-06-23 2002-01-09 Nkk Corp 亜鉛めっき鋼板
JP2004002932A (ja) * 2002-05-31 2004-01-08 Nippon Steel Corp 抵抗溶接性に優れたアルミニウムめっき鋼板とこれを用いた加工部品
JP2013221206A (ja) * 2012-04-19 2013-10-28 Jfe Steel Corp 燃料タンク用鋼板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004020A (ja) * 2000-06-23 2002-01-09 Nkk Corp 亜鉛めっき鋼板
CN100552076C (zh) * 2003-02-10 2009-10-21 杰富意钢铁株式会社 镀层附着性优良的合金化热镀锌钢板及其制造方法
US10526690B2 (en) * 2011-09-30 2020-01-07 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288795A (ja) * 1988-09-27 1990-03-28 Nkk Corp 自動車外板用電気亜鉛めつき鋼板の製造方法
JPH11181580A (ja) * 1997-12-22 1999-07-06 Nkk Corp クロメート被膜のクロム付着量分析方法及び装置
JP2002004019A (ja) * 2000-06-23 2002-01-09 Nkk Corp 亜鉛めっき鋼板
JP2004002932A (ja) * 2002-05-31 2004-01-08 Nippon Steel Corp 抵抗溶接性に優れたアルミニウムめっき鋼板とこれを用いた加工部品
JP2013221206A (ja) * 2012-04-19 2013-10-28 Jfe Steel Corp 燃料タンク用鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024006186A (ja) * 2022-07-01 2024-01-17 Jfeスチール株式会社 電気Zn-Ni合金めっき鋼板の製造方法
JP7669992B2 (ja) 2022-07-01 2025-04-30 Jfeスチール株式会社 電気Zn-Ni合金めっき鋼板の製造方法
WO2024048665A1 (ja) * 2022-08-31 2024-03-07 日本製鉄株式会社 めっき縞鋼板

Also Published As

Publication number Publication date
JPWO2018062341A1 (ja) 2018-10-04
BR112019004095A2 (pt) 2019-05-28
JP6354915B1 (ja) 2018-07-11
WO2018061061A1 (ja) 2018-04-05
CN109642330B (zh) 2021-05-28
CN109642330A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US11248287B2 (en) Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance
JP4014907B2 (ja) 耐食性に優れたステンレス鋼製の自動車用燃料タンクおよび給油管
JP5258253B2 (ja) 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
KR101974182B1 (ko) 열간 프레스용 도금 강판 및 도금 강판의 열간 프레스 방법
CN104302802B (zh) 设置有提供牺牲阴极保护的涂层的钢板、利用这样的板制造部件的方法以及所得部件
KR102384093B1 (ko) 란탄을 포함하는 희생 음극 보호 코팅을 구비한 강 시트
EP3359704B1 (en) Steel sheet coated with a metallic coating based on aluminum and comprising titanium
EP3900866A1 (en) Spot welding member
WO2011070877A1 (ja) 熱間プレス部材およびその製造方法
CA2778888C (en) Galvannealed steel sheet having excellent formability and exfoliation resistance after adhesion and production method thereof
JP6406475B1 (ja) 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法
WO2019021695A1 (ja) 高強度冷延鋼板及びその製造方法
JP6354915B1 (ja) 自動二輪車燃料タンク用鋼板および燃料タンク部材
JP5789401B2 (ja) 熱交換器用アルミニウムフィン材
JP5532086B2 (ja) 溶融亜鉛めっき鋼管
CN102828127B (zh) 一种耐蚀性好的热浸镀锡锌燃油箱高强钢板及其制造方法
JP2018188707A (ja) 引張強度が1180MPa以上である耐遅れ破壊性に優れた鋼板
JP2006336097A (ja) 焼付硬化性に優れた合金化溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板
EP3208362B1 (en) Plated steel sheet and fuel tank
JP7301233B2 (ja) アルミニウム系合金めっき鋼板及びその製造方法
JP6597947B1 (ja) 溶融Sn−Zn系合金めっき鋼板およびその製造方法
WO2024195860A1 (ja) Sn-Zn系合金めっき鋼材、バッテリーケースおよび燃料タンク
US20230030466A1 (en) Zinc-based coated steel material having excellent corrosion resistance and spot weldability
JP2010173525A (ja) 自動二輪車燃料タンク用めっき鋼板および燃料タンク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017560358

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856290

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004095

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019004095

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190227

122 Ep: pct application non-entry in european phase

Ref document number: 17856290

Country of ref document: EP

Kind code of ref document: A1