WO2018016359A1 - Noble metal catalyst for manufacturing hydrogen peroxide, and method for manufacturing hydrogen peroxide - Google Patents
Noble metal catalyst for manufacturing hydrogen peroxide, and method for manufacturing hydrogen peroxide Download PDFInfo
- Publication number
- WO2018016359A1 WO2018016359A1 PCT/JP2017/025067 JP2017025067W WO2018016359A1 WO 2018016359 A1 WO2018016359 A1 WO 2018016359A1 JP 2017025067 W JP2017025067 W JP 2017025067W WO 2018016359 A1 WO2018016359 A1 WO 2018016359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen peroxide
- noble metal
- metal catalyst
- oxygen
- hydrogen
- Prior art date
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 240
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 116
- 239000003054 catalyst Substances 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 85
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 85
- 239000001301 oxygen Substances 0.000 claims abstract description 85
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000001257 hydrogen Substances 0.000 claims abstract description 56
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 56
- 239000012429 reaction media Substances 0.000 claims abstract description 46
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 31
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 31
- 125000001246 bromo group Chemical group Br* 0.000 claims abstract description 27
- 239000010931 gold Substances 0.000 claims abstract description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052737 gold Inorganic materials 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 63
- 238000004969 ion scattering spectroscopy Methods 0.000 claims description 40
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 25
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 21
- 229910052794 bromium Inorganic materials 0.000 claims description 21
- 238000004458 analytical method Methods 0.000 claims description 19
- 238000005502 peroxidation Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 55
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 239000012685 metal catalyst precursor Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 14
- 150000002431 hydrogen Chemical class 0.000 description 13
- 239000001569 carbon dioxide Substances 0.000 description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- -1 pulp Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 5
- 150000004056 anthraquinones Chemical class 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012046 mixed solvent Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000002516 radical scavenger Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 101150003085 Pdcl gene Proteins 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 150000001649 bromium compounds Chemical class 0.000 description 3
- 239000012018 catalyst precursor Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005443 coulometric titration Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 230000002292 Radical scavenging effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012431 aqueous reaction media Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 150000004659 dithiocarbamates Chemical class 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical class ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229940038031 nitrogen 10 % Drugs 0.000 description 1
- 229940063896 nitrogen 60 % Drugs 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229940062054 oxygen 30 % Drugs 0.000 description 1
- 229940063729 oxygen 80 % Drugs 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical group FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/128—Halogens; Compounds thereof with iron group metals or platinum group metals
- B01J27/13—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/135—Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
- C01B15/029—Preparation from hydrogen and oxygen
Definitions
- the present invention relates to a noble metal catalyst used in a method for obtaining hydrogen peroxide by directly reacting hydrogen and oxygen, and a method for producing hydrogen peroxide using the same.
- Hydrogen peroxide is used as a bleaching agent and disinfectant for paper, pulp, fiber, etc. because it has an oxidizing power and a strong bleaching and disinfecting action. It also includes epoxidation and hydroxylation. It is an important industrial product used extensively in oxidation reactions.
- hydrogen peroxide is used in the semiconductor industry for cleaning the surface of semiconductor substrates and the like, for chemical polishing of copper, tin and other copper alloy surfaces, and for etching electronic circuits. And since hydrogen peroxide is a decomposition product of water and oxygen, it is positioned as important from the viewpoint of green chemistry and attracts attention as an alternative material for chlorine bleach.
- an anthraquinone method an electrolytic method, a method using oxidation of isopropyl alcohol, and the like are known as methods for producing hydrogen peroxide, and the anthraquinone method is mainly employed industrially.
- the anthraquinone method is a multi-step method such as hydrogenation of anthraquinone, oxidation with air, extraction of hydrogen peroxide produced with water, and further purification and concentration. Therefore, this method is not necessarily an ideal method for producing hydrogen peroxide because it requires high capital investment, uses a large amount of energy, and releases an organic solvent for dissolving anthraquinone to the atmosphere. I can't say that.
- Patent Document 2 discloses a method for producing hydrogen peroxide using a platinum group metal catalyst supported on an oxide support in a method for producing hydrogen peroxide catalytically from hydrogen and oxygen in a reaction medium.
- water is usually suitable as the reaction medium, and hydrochloric acid aqueous solution, hydrobromic acid aqueous solution, phosphoric acid aqueous solution, sulfuric acid aqueous solution, etc., particularly hydrochloric acid aqueous solution, It has been reported that an aqueous hydrogen acid solution can be suitably used.
- a mixed aqueous solution of sodium chloride, potassium chloride or the like as a chloride ion component and sulfuric acid or phosphoric acid as a hydrogen ion component can be suitably employed instead of the hydrochloric acid aqueous solution.
- a combination of a mixed aqueous solution of sodium bromide, potassium bromide or the like as the bromide ion component and sulfuric acid, phosphoric acid or the like as the hydrogen ion component can be suitably employed instead of the hydrobromic acid aqueous solution.
- Patent Document 3 is a method for producing an aqueous hydrogen peroxide solution directly from hydrogen and oxygen in a stirred reactor, in which hydrogen and oxygen are separately made into small bubbles, made acidic by adding an inorganic acid in advance, and hydrogen and oxygen.
- a method has been proposed in which the amount of oxygen introduced is a constant molar ratio.
- the aqueous reaction medium may include a stabilizer against hydrogen peroxide (eg, phosphonate or tin) and a decomposition inhibitor (eg, halide).
- bromides are particularly preferred decomposition inhibitors among the halides, and are advantageously used in combination with free bromine (Br 2 ).
- Patent Document 4 is a method for producing an organic hydrogen peroxide solution or an organic hydrogen peroxide aqueous solution by a direct synthesis method, in which a non-explosive gaseous mixture containing hydrogen and oxygen and a liquid reaction medium are used.
- a production process is disclosed for passing through a fixed bed comprising a mixture containing a noble metal catalyst.
- the document also discloses that the liquid reaction medium contains a strong acid and a halide.
- Patent Document 5 is a method for directly synthesizing an aqueous solution of hydrogen peroxide from hydrogen and oxygen by heterogeneous catalysis in a three-phase system, which is a solid heterogeneous catalyst suspended in a granular state in a liquid aqueous phase.
- the catalyst reacts directly on the surface of the catalyst and the catalyst comprises a pure compound of palladium or a combination of metal and at least one other noble metal.
- the document discloses that in this method, the metal compound is supported on a carrier containing at least one compound selected from zirconium dioxide and superacid zirconium dioxide, and the liquid aqueous phase is 0.1% relative to the aqueous phase. It discloses that it contains bromide ions at a concentration of 05-3 mmol / l and its pH is in the range of 0-4.
- Patent Documents 6 and 7 disclose a method for producing hydrogen peroxide in which hydrogen and oxygen are reacted in a reaction medium in the presence of a noble metal catalyst and a radical scavenger without using a halogen ion as a decomposition inhibitor. .
- the present inventors have achieved the production of high-concentration hydrogen peroxide by using a noble metal catalyst having a specific configuration in a method for obtaining hydrogen peroxide by directly reacting hydrogen and oxygen. As a result, the present invention has been completed.
- the first embodiment of the present invention is a noble metal catalyst used in a method of directly reacting hydrogen and oxygen to obtain hydrogen peroxide, It is a noble metal catalyst containing palladium, gold, oxygen atoms and bromine atoms, wherein the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst.
- the second embodiment of the present invention introduces a gas containing hydrogen and oxygen into the reaction medium;
- a method for producing hydrogen peroxide comprising bringing hydrogen and oxygen introduced in a reaction medium into contact with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. It is.
- hydrogen peroxide having a high concentration can be produced in a method in which hydrogen and oxygen are directly reacted to obtain hydrogen peroxide.
- high concentration hydrogen peroxide can be manufactured with the manufacturing method of hydrogen peroxide of this invention.
- high concentration hydrogen peroxide refers to, for example, 5% by weight or more, more preferably 10% by weight or more.
- Embodiment 1 Noble Metal Catalyst
- the noble metal catalyst of the present invention contains palladium, gold, oxygen atoms, and bromine atoms, and the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst.
- the noble metal catalyst of the present invention contains palladium and gold as noble metals.
- the molar ratio of palladium to gold (palladium / gold) is preferably from 0.1 to 10, and more preferably from 1 to 5.
- the noble metal catalyst of the present invention may contain other noble metals such as platinum or silver in addition to palladium and gold.
- a noble metal containing palladium and gold that does not contain an oxygen atom and a bromine atom is also referred to as a noble metal catalyst precursor.
- the noble metal can be supported on a support such as carbon, silica, alumina, silica alumina, titanium oxide or zirconia in order to increase the catalyst efficiency and the reaction efficiency.
- rutile type titanium oxide is preferably used as the carrier.
- a conventionally known method can be employed without any particular limitation, but an impregnation method or an ion exchange method is preferable.
- an impregnation method an evaporation to dryness method, an equilibrium adsorption method, a pore filling method, or the like can be employed.
- the amount of the noble metal supported on the carrier is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the carrier.
- the amount of the noble metal catalyst (supported catalyst when supported on a carrier) is preferably 1 to 100 g with respect to 1 L of the reaction medium, and 1 to 1 L with respect to 1 L. 40 g is more preferable.
- the noble metal can be used without being supported alone, and for example, it can be used in the form of a nanocolloid in which the noble metal is dispersed in a dispersant such as polyvinylpyrrolidone.
- the precious metal catalyst of the present invention has oxygen atoms and bromine atoms on the outermost surface.
- Oxygen atoms and bromine atoms are present on the outermost surface means that oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst, but other than oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst. It does not exclude the presence of atoms and the presence of oxygen and bromine atoms inside the noble metal catalyst. Since the noble metal catalyst of the present invention has an oxygen atom and a bromine atom on the outermost surface thereof, a high concentration of hydrogen peroxide can be produced in the method for producing hydrogen peroxide using the noble metal catalyst.
- the catalyst In a conventional method for producing hydrogen peroxide directly from oxygen and hydrogen using a noble metal catalyst, the catalyst also functions as a decomposition catalyst for hydrogen peroxide, so that the generated hydrogen peroxide is simultaneously decomposed. For this reason, some compounds are often used to suppress decomposition in such a method, and it is known in the prior art that halogen ions such as chlorine ions and bromine ions are present in the liquid phase of the reaction medium. . However, a configuration in which an oxygen atom and a bromine atom are present in the noble metal catalyst itself as in the noble metal catalyst of the present invention has not been known.
- the present inventors have found the constitution of the noble metal catalyst of the present invention for the first time, and have found that production of hydrogen peroxide at a high concentration can be achieved under the conditions in which the noble metal catalyst of the present invention exists.
- the mechanism in the noble metal catalyst of the present invention, due to the presence of oxygen atoms and bromine atoms on the outermost surface, resorption of the produced hydrogen peroxide to the noble metal catalyst is suppressed, It is considered that the decomposition of hydrogen peroxide is suppressed, and as a result, the production concentration of hydrogen peroxide increases.
- Low energy ion scattering (LEIS) analysis is a method in which a solid surface is irradiated with a rare gas or alkali element ion beam of several hundred eV to several keV, and the sample is measured by measuring the energy spectrum and angular spectrum of the scattered ions. It is a method of analysis, and qualitative and quantitative determination of the outermost layer atoms is possible.
- LIS low energy ion scattering spectrometer
- Qtac100 manufactured by ION-TOF can be used as a low energy ion scattering spectrometer
- the ratio of the detected amount of bromine atom to palladium is 0.10 or more, more preferably 0.15 or more. More preferably, it is 0.3 or more. Further, the ratio of the detected amount of bromine atoms to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 0.45 or less, and more preferably 0.40 or less. The ratio of the detected amount of bromine atoms to palladium, which is measured by this low energy ion scattering (LEIS) analysis, is preferably maintained at a constant value in the process of producing hydrogen peroxide described later.
- LIS low energy ion scattering
- the amount of change between the start of the reaction and the end of the reaction is preferably ⁇ 0.5 or less, more preferably ⁇ 0.30 or less, and even more preferably ⁇ 0.25 or less. Due to the presence of this specific amount of bromine on the outermost surface of the noble metal catalyst, a high concentration of hydrogen peroxide can be produced.
- the ratio of oxygen atom to palladium, measured by low energy ion scattering (LEIS) analysis is 1.5 or more, more preferably 1.7 or more. Further, the ratio of oxygen atom to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 4.0 or less, and more preferably 3.5 or less. It is considered that when oxygen atoms are present in this amount on the outermost surface of the noble metal catalyst, palladium is in an oxidized state, and as a result, bromine atoms are likely to be present on the outermost surface of the noble metal catalyst.
- the ratio of the detected amount of oxygen atoms to palladium, measured by this low energy ion scattering (LEIS) analysis, preferably remains unchanged or slightly increases in the course of the hydrogen peroxide production method described below. It is more preferable to increase at a change amount of 0 to 0.25 per hour, more preferable to increase at a change amount of ⁇ 0 to 0.1 per hour, and a change of ⁇ 0 to 0.05 per hour. It is preferable to increase the amount. From the start of the direct reaction of hydrogen and oxygen to the end of the reaction, the amount of oxygen atoms on the outermost surface of the noble metal catalyst does not change or slightly increases, so that the suppression of hydrogen peroxide decomposition is maintained even in the later stage of the reaction.
- LIS low energy ion scattering
- a concentration of hydrogen peroxide can be produced. Although a similar effect can be obtained by adding a bromine component in excess to the reaction medium, it is considered that the adsorption amount of bromine atoms can be efficiently maintained by bringing the surface of the noble metal catalyst into an oxidized state.
- the noble metal catalyst of the present invention can be produced by bringing a noble metal catalyst precursor into contact with an oxygen component and a bromine component in a medium.
- a gas containing oxygen is introduced into a liquid phase medium containing a bromine component, and the bromine component in the liquid phase medium, the introduced oxygen, and the noble metal catalyst precursor are brought into contact under a pressure of 0.1 MPa or more.
- the oxygen partial pressure in the introduced gas is preferably 20% or more, more preferably 30% or more, more preferably 40% or more, and more preferably 50% or more, It is more preferably 60% or more, more preferably 70% or more, and more preferably 80% or more.
- the upper limit of the partial pressure of oxygen in the introduced gas can be set as appropriate in consideration of the partial pressure of other gas components, such as 95% and 90%.
- the introduced gas may contain hydrogen gas, nitrogen gas, argon gas, helium gas or carbon dioxide in addition to oxygen gas.
- the liquid phase medium include water, alcohols such as methanol and ethanol, ketones such as acetone, and mixed solvents thereof. Among these, water and alcohols are preferable.
- the bromine component include bromides such as bromic acid, bromate, and sodium bromide. Among these, sodium bromide is preferable.
- the amount of the bromine component used is preferably 0.01 mM to 10 mM, more preferably 0.02 mM to 5 mM, and further preferably 0.02 mM to 1 mM in the reaction medium.
- the reaction pressure is preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa, and further preferably 1 MPa to 2 MPa.
- the reaction time is usually 0.01 to 100 hours, preferably 0.5 to 10 hours.
- the noble metal catalyst of the present invention can also be prepared in use by the hydrogen peroxide production method of Embodiment 2 described later.
- the above-mentioned noble metal catalyst precursor is added to a reaction medium containing a bromine component, and the oxygen introduced into the reaction medium is brought into contact with the noble metal catalyst precursor under a pressure of 0.1 MPa or more.
- Noble metal catalysts can be produced in the system. And in the manufacturing process of hydrogen peroxide as it is, it can be used as a noble metal catalyst for directly reacting hydrogen and oxygen to obtain hydrogen peroxide.
- the noble metal catalyst of the present invention is preferable because it is supported on a support because the effect of suppressing the decomposition of high-concentration hydrogen peroxide in the late stage of the reaction is enhanced.
- Embodiment 2 Method for producing hydrogen peroxide
- the method for producing hydrogen peroxide of the present invention comprises introducing a gas containing hydrogen and oxygen into a reaction medium, Contacting hydrogen and oxygen introduced in the reaction medium with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide.
- the noble metal catalyst used in the method for producing hydrogen peroxide according to the present invention is the noble metal catalyst of the first embodiment. Therefore, the description overlapping with the above is omitted as appropriate.
- the amount of the noble metal catalyst (supported catalyst when supported on a carrier) is preferably 1 to 100 g per 1 L of the reaction medium, and 1 to 40 g per 1 L. More preferred.
- the oxygen partial pressure in the introduced gas is preferably 20% or more, more preferably 30% or more, and more preferably 40% or more. 50% or more is more preferable, 60% or more is more preferable, 70% or more is more preferable, and 80% or more is more preferable.
- the upper limit of the partial pressure of oxygen in the introduced gas can be set as appropriate in consideration of the partial pressure of other gas components, such as 95% and 90%.
- the above-mentioned noble metal catalyst precursor is added to the reaction medium containing the bromine component, and hydrogen and oxygen introduced into the reaction medium, and the noble metal
- the noble metal catalyst of the first embodiment can be prepared in use in a reaction system, and hydrogen, oxygen and the first This is preferable because the step of obtaining hydrogen peroxide by bringing the noble metal catalyst of the embodiment into contact with a pressure of 0.1 MPa or more can be performed.
- the hydrogen partial pressure in the introduced gas is such that the explosion range is avoided and oxygen is excessive with respect to hydrogen (for example, the volume ratio of the flow rate of hydrogen gas to oxygen gas is 1: 2 to 1:10). For example, 5 to 20%, preferably 10 to 15%. Furthermore, in order to further reduce the risk of explosion from the viewpoint of safety, it is preferable to dilute hydrogen and oxygen.
- the diluent gas that can be used in this case is an inert gas that does not affect the reaction between hydrogen and oxygen.
- nitrogen gas, argon gas, and helium gas can be used. Nitrogen gas is preferable from the viewpoint of cost.
- oxygen may be diluted with compressed air and used as an oxygen mixed gas.
- carbon dioxide may be contained in the gas. In this case, the partial pressure of carbon dioxide in the gas is, for example, 0.01 to 5%, preferably 1 to 2%.
- the gas containing hydrogen and oxygen is introduced into the reaction medium, it is usually introduced into the liquid phase, that is, into the reaction solution from the viewpoint of reaction efficiency.
- the reaction medium preferably contains a bromine component.
- the bromine component include bromides such as bromic acid, bromate, and sodium bromide. Among these, sodium bromide is preferable.
- the above-mentioned noble metal catalyst precursor is added to the reaction medium, and oxygen having a partial pressure of 20% or more introduced into the reaction medium and the noble metal catalyst precursor is 0.1 MPa or more.
- the noble metal catalyst of the first embodiment can be preparatively produced at the time of use, and hydrogen and oxygen and the noble metal catalyst of the first embodiment can be directly added in the reaction system in an amount of 0. 0. This is preferable because the step of obtaining hydrogen peroxide by bringing it into contact under a pressure of 1 MPa or more can be carried out.
- the amount of the bromine component used is preferably 0.01 mM to 10 mM in the reaction medium, more preferably 0.02 mM to 5 mM, and further preferably 0.02 mM to 1 mM.
- a halogen other than bromine or a halogen ion for example, chlorine or chlorine ion
- a halogen ion for example, chlorine or chlorine ion
- the method for producing hydrogen peroxide of the present invention is usually carried out in a reaction medium that is in a liquid phase.
- the reaction medium can be used without particular limitation as long as it does not inhibit the reaction between hydrogen and oxygen.
- Such reaction media are well known to those skilled in the art.
- reaction medium examples include water, alcohols such as methanol and ethanol, ketones such as acetone, and mixed solvents thereof. Among these, water and alcohol are preferable. Further, a hydrocarbon solvent such as heptane, hexane or pentane having a water solubility of 0.1 g / L or less, or a fluorinated liquid having a perfluorocarbon structure may be used as an auxiliary solvent.
- reaction media may contain additives for pH adjustment, stabilizer effect or gas solubility improvement, for example, acids such as phosphoric acid and sulfuric acid, and fluorine-based inert liquids. You may contain.
- the weight of the reaction medium is the weight including the additives.
- reaction media may contain a radical scavenger.
- Any radical scavenger may be used as long as it has a radical scavenging function. Examples thereof include carbon dioxide, nitrone compounds, nitroso compounds, dithiocarbamate derivatives and ascorbic acid as exemplified in JP-A-2014-15353. Derivatives.
- These radical scavengers may be in the form of salts, or in the form of hydrates where possible. Examples of the salt include sodium salt and potassium salt.
- hydrogen and oxygen introduced in the reaction medium are brought into contact with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide.
- the reactor can be of any type such as a stirring tank type, bubble column type, fixed bed type, microreactor, etc., and the reaction can be carried out either batchwise or continuously.
- the reaction apparatus includes a gas introduction part and a gas discharge part, and usually includes a thermometer and a pressure gauge.
- a reactor made of Teflon (registered trademark) lining stainless steel, Inconel or Hastelloy is preferably used.
- a reactor formed of stainless steel or glass lining may be used.
- the reaction temperature of hydrogen and oxygen during the synthesis of hydrogen peroxide is preferably from 0 to 100 ° C., particularly preferably from 5 to 50 ° C.
- the reaction pressure is 0.1 MPa or more, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa, and further preferably 1 MPa to 2 MPa.
- the reaction time is usually 0.01 to 100 hours, preferably 0.5 to 50 hours.
- the method for producing hydrogen peroxide of the present invention comprises: Introducing a gas containing hydrogen and oxygen into a reaction medium containing a bromine component at an oxygen partial pressure of 20% or more in the introduced gas; Contacting the introduced oxygen in the reaction medium with the above noble metal catalyst precursor under a pressure of 0.1 MPa or more to obtain a noble metal catalyst;
- a method for producing hydrogen peroxide comprising bringing hydrogen and oxygen introduced in a reaction medium into contact with the noble metal catalyst obtained in the above step under a pressure of 0.1 MPa or more to obtain hydrogen peroxide.
- the noble metal catalyst of the first embodiment can be prepared in use in the reaction system, and the process of obtaining the next hydrogen peroxide can be carried out as it is under the condition that the noble metal catalyst is present. This is preferable because it is possible.
- reaction conditions such as the amount of bromine component, oxygen partial pressure, reaction pressure and the like are as defined above.
- the noble metal catalyst preferably has a ratio of the detected amount of bromine atom to palladium as measured by low energy ion scattering (LEIS) analysis, preferably 0.10 or more, more preferably. Is 0.15 or more, more preferably 0.3 or more. Further, the ratio of the detected amount of bromine atoms to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 0.45 or less, and more preferably 0.40 or less.
- LEIS low energy ion scattering
- the ratio of the detected amount of bromine atoms to palladium which is measured by the low energy ion scattering (LEIS) analysis here, preferably keeps a constant value during the process of producing hydrogen peroxide, and direct reaction between hydrogen and oxygen
- the amount of change from the start to the end of the reaction is preferably ⁇ 0.5 or less, more preferably ⁇ 0.3 or less, and more preferably ⁇ 0.25 or less. Since this specific amount of bromine is present on the outermost surface of the noble metal catalyst from the start of the direct reaction of hydrogen and oxygen to the end of the reaction, a high concentration of hydrogen peroxide can be produced.
- the noble metal catalyst preferably has a ratio of oxygen atom to palladium as measured by low energy ion scattering (LEIS) analysis of 1.5 or more, more preferably 1. 7 or more. Further, the ratio of oxygen atom to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 4.0 or less, and more preferably 3.5 or less. It is considered that when oxygen atoms are present in this amount on the outermost surface of the noble metal catalyst, palladium is in an oxidized state, and as a result, bromine atoms are likely to be present on the outermost surface of the noble metal catalyst.
- LEIS low energy ion scattering
- the ratio of the detected amount of oxygen atom to palladium, as measured by this low energy ion scattering (LEIS) analysis, is preferably unchanged or slightly increased during the process of producing hydrogen peroxide, and is preferably 0 to 0 per hour. It is more preferable to increase at a change amount of .25, more preferable to increase at a change amount of ⁇ 0 to 0.1 per hour, and increase at a change amount of ⁇ 0 to 0.05 per hour. It is preferable to continue. From the start of the direct reaction of hydrogen and oxygen to the end of the reaction, the amount of oxygen atoms on the outermost surface of the noble metal catalyst does not change or slightly increases, so that the suppression of hydrogen peroxide decomposition is maintained even in the latter stage of the reaction.
- LIS low energy ion scattering
- Hydrogen peroxide can be produced. Although a similar effect can be obtained by adding a bromine component in excess to the reaction medium, it is considered that the adsorption amount of bromine atoms can be efficiently maintained by bringing the surface of the noble metal catalyst into an oxidized state.
- the suspension was transferred to a 300 ml beaker and heated to remove the solvent. Thereafter, the obtained solid was dried with an oven at 85 ° C. for 1 day to obtain a support-supported noble metal catalyst precursor (Pd—Au / TiO 2 ).
- the gas was blown into the autoclave at a rate of 250 ml / min (hydrogen 10%, oxygen 80%, nitrogen 10%) (oxygen partial pressure in the gas 80%), and the pressure was 1M.
- the mixture was adjusted to Pascal and reacted with stirring at a rotational speed of 1000 rpm to produce a noble metal catalyst.
- hydrogen peroxide was also produced.
- the noble metal catalyst was taken out from the reaction solution at regular intervals after the noble metal catalyst precursor was introduced into the reaction solution, and the surface of the noble metal catalyst at each reaction time was measured by low energy ion scattering (LEIS) analysis.
- the reaction time of 0 hour means a state in which the noble metal catalyst is taken out immediately after the noble metal catalyst precursor is introduced into the reaction solution.
- the surface analysis of the noble metal catalyst was performed as follows. Elemental analysis of the surface of the noble metal catalyst was performed using a low energy ion scattering spectrometer (LEIS) Qtac100 (manufactured by ION-TOF) under the conditions of 2 KeV to 5 KeV helium ion or neon ion beam irradiation. Each element was identified in the obtained energy spectrum. The detection amount (integral value) of each element was calculated, and the ratio of the detection amount of bromine atoms to palladium (Br / Pd) and the ratio of the detection amount of oxygen atoms to palladium (O / Pd) were determined. Table 1 shows the ratio of these detected amounts.
- Example 2 A noble metal catalyst was produced in the same manner as in Example 1, except that the gas composition of Example 1 was changed to a gas composition of 10% hydrogen, 18% oxygen, and 72% nitrogen (partial oxygen pressure in gas 18%).
- the surface of the noble metal catalyst at each reaction time was measured by low energy ion scattering (LEIS) analysis. The results are shown in Table 1. In the course of the reaction, hydrogen peroxide was also produced.
- rutile titanium oxide (IV) rutile titanium oxide (IV)
- the suspension was transferred to a 300 ml beaker and heated to remove the solvent. Thereafter, the obtained solid was dried with an oven at 85 ° C. for 1 day to obtain a support-supported noble metal catalyst precursor (Pd—Au / TiO 2 ).
- Example 4 Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 30% oxygen, 59% nitrogen, and 1% carbon dioxide (partial oxygen partial pressure in gas 30%), the same as in Example 3 Hydrogen peroxide was produced. The peak of hydrogen peroxide concentration was found 45 hours after the start of the reaction and was 7.7 wt%.
- Example 5 Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 50% oxygen, 39% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 50%), the same as in Example 3 Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 30 to 40 hours after the start of the reaction and was 9.0 wt%.
- Example 6 Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 70% oxygen, 19% nitrogen, and 1% carbon dioxide (oxygen partial pressure in gas 70%), the same as in Example 3 Hydrogen peroxide was produced. A peak of the hydrogen peroxide concentration was found 40 hours after the start of the reaction and was 11.0 wt%.
- Example 7 In the same manner as in Example 3, except that the gas composition of Example 3 was changed to a gas composition of 10% hydrogen, 89% oxygen, and 1% carbon dioxide (partial oxygen partial pressure 89%). Manufactured. A peak of the hydrogen peroxide concentration was found 45 hours after the start of the reaction and was 11.5 wt%.
- Example 1 Comparative Example 1 Except that the gas composition of Example 3 was changed to a gas composition of 10% hydrogen, 19.2% oxygen, 69.8% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 19.2%). In the same manner as in Example 3, hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 25 hours after the start of the reaction, and was 4.7 wt%.
- Example 8 (1) a PdCl 2 and HAuCl 4 was reduced with oxalic acid as a dispersing agent produced polyvinylpyrrolidone (PVP) of Colloidal noble metal catalyst precursor, were nanocolloidal noble metal catalyst precursor (Pd-Au nano colloid) was prepared.
- PVP polyvinylpyrrolidone
- Pd-Au nano colloid nanocolloidal noble metal catalyst precursor
- the nanocolloid noble metal catalyst precursor (Pd—Au nanocolloid) produced in the above was placed in a 270 ml autoclave lined with Teflon (registered trademark) equipped with a stirrer and a gas blowing tube. ) 74.52 mg, 130 ml of reaction solution (containing 0.5 mM phosphoric acid and 2.0 mM sodium bromide, the reaction medium is water and ethanol).
- Example 9 Except for changing the gas composition of Example 8 to a gas composition of 10% hydrogen, 60% oxygen, 29% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 60%), the same as in Example 8. Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 8 hours after the start of the reaction and was 8.0 wt%.
- Example 10 Except that the gas composition of Example 8 was changed to a gas composition of 10% hydrogen, 80% oxygen, 9% nitrogen, and 1% carbon dioxide (oxygen partial pressure in the gas 80%), the same as in Example 8. Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 14 hours after the start of the reaction, and was 10.0 wt%.
- the method for producing hydrogen peroxide of the present invention can produce high-concentration hydrogen peroxide.
- the noble metal catalyst of the present invention can be obtained, and at the same time, the hydrogen peroxide under the conditions in which the noble metal catalyst of the present invention exists. It was found that a high concentration of hydrogen peroxide was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Provided are a noble metal catalyst and a method for manufacturing hydrogen peroxide, with which it is possible to manufacture high-concentration hydrogen peroxide. A noble metal catalyst used in a method for directly reacting hydrogen and oxygen to obtain hydrogen peroxide, the noble metal catalyst containing palladium, gold, oxygen atoms, and bromine atoms, the oxygen atoms and the bromine atoms being present on the outermost surface of the noble metal catalyst; and a method for manufacturing hydrogen peroxide, the method including introducing air containing hydrogen and oxygen into a reaction medium, bringing the hydrogen and oxygen introduced in the reaction medium into contact with the noble metal catalyst under a pressure of 0.1 MPa or more to obtain hydrogen peroxide.
Description
本発明は、水素と酸素を直接反応させて過酸化水素を得る方法に用いる貴金属触媒、及びそれを使用する過酸化水素の製造方法に関する。
The present invention relates to a noble metal catalyst used in a method for obtaining hydrogen peroxide by directly reacting hydrogen and oxygen, and a method for producing hydrogen peroxide using the same.
過酸化水素は、酸化力を有し強力な漂白・殺菌作用を持つことから、紙、パルプ、繊維等の漂白剤、殺菌剤として利用されており、また、エポキシ化及びヒドロキシル化をはじめとする酸化反応に広範囲に用いられる重要な工業製品である。
Hydrogen peroxide is used as a bleaching agent and disinfectant for paper, pulp, fiber, etc. because it has an oxidizing power and a strong bleaching and disinfecting action. It also includes epoxidation and hydroxylation. It is an important industrial product used extensively in oxidation reactions.
更に過酸化水素は、半導体産業において半導体基板等の表面の清浄に、銅、錫及び他の銅合金表面の化学的研磨に、及び電子回路の蝕刻等に用いられる。そして、過酸化水素は分解生成物が水と酸素であるため、グリーンケミストリーの観点から重要な位置付けがなされており、塩素系漂白剤の代替材料としても注目されている。
Furthermore, hydrogen peroxide is used in the semiconductor industry for cleaning the surface of semiconductor substrates and the like, for chemical polishing of copper, tin and other copper alloy surfaces, and for etching electronic circuits. And since hydrogen peroxide is a decomposition product of water and oxygen, it is positioned as important from the viewpoint of green chemistry and attracts attention as an alternative material for chlorine bleach.
従来、過酸化水素の製造法としてはアントラキノン法、電解法、イソプロピルアルコールの酸化による方法などが知られており、工業的には主にアントラキノン法が採用されている。しかし、アントラキノン法は、アントラキノンの水素添加、空気による酸化、水による生成した過酸化水素の抽出、更には精製、濃縮等といったように多段階からなる方法である。そのため当該方法は、設備投資が高くなること、エネルギーを多量に使用すること、およびアントラキノンを溶解するための有機溶剤の大気への放出があることから、必ずしも理想的な過酸化水素の製造法とはいえない。
Conventionally, an anthraquinone method, an electrolytic method, a method using oxidation of isopropyl alcohol, and the like are known as methods for producing hydrogen peroxide, and the anthraquinone method is mainly employed industrially. However, the anthraquinone method is a multi-step method such as hydrogenation of anthraquinone, oxidation with air, extraction of hydrogen peroxide produced with water, and further purification and concentration. Therefore, this method is not necessarily an ideal method for producing hydrogen peroxide because it requires high capital investment, uses a large amount of energy, and releases an organic solvent for dissolving anthraquinone to the atmosphere. I can't say that.
上記の問題点を解決する方法として、反応媒体中で触媒を用いて、酸素と水素から直接的に過酸化水素を製造する方法がある。例えば、水と酸と非酸性の酸素含有有機化合物との存在下に液相で金属成分として金、白金又はパラジウムを含有する固体触媒に対して水素と酸素を接触させて過酸化水素を製造する方法が提案されており、ある程度の過酸化水素が生成する事が知られている(特許文献1)。
As a method for solving the above problems, there is a method of directly producing hydrogen peroxide from oxygen and hydrogen using a catalyst in a reaction medium. For example, hydrogen peroxide is produced by bringing hydrogen and oxygen into contact with a solid catalyst containing gold, platinum or palladium as a metal component in the liquid phase in the presence of water, an acid, and a non-acidic oxygen-containing organic compound. A method has been proposed, and it is known that a certain amount of hydrogen peroxide is generated (Patent Document 1).
特許文献2は、反応媒体中で、水素と酸素から接触的に過酸化水素を製造する方法において、酸化物担体に担持された白金族金属触媒を用いる過酸化水素の製造方法を開示している。当該文献は、反応媒体については通常水が好適であり、生成する過酸化水素の分解抑制のために、塩酸水溶液、臭化水素酸水溶液、りん酸水溶液、硫酸水溶液など、特に塩酸水溶液、臭化水素酸水溶液を好適に用いることができることを報告している。また塩酸水溶液のかわりに塩化物イオン成分として塩化ナトリウム、塩化カリウム等と水素イオン成分である硫酸、りん酸等の混合水溶液の組み合わせも好適に採用することができる旨記載されている。さらには、臭化水素酸水溶液のかわりに臭化物イオン成分として臭化ナトリウム、臭化カリウム等と水素イオン成分である硫酸、りん酸等との混合水溶液の組み合わせも好適に採用することができる旨記載されている。
Patent Document 2 discloses a method for producing hydrogen peroxide using a platinum group metal catalyst supported on an oxide support in a method for producing hydrogen peroxide catalytically from hydrogen and oxygen in a reaction medium. . In this document, water is usually suitable as the reaction medium, and hydrochloric acid aqueous solution, hydrobromic acid aqueous solution, phosphoric acid aqueous solution, sulfuric acid aqueous solution, etc., particularly hydrochloric acid aqueous solution, It has been reported that an aqueous hydrogen acid solution can be suitably used. Further, it is described that a mixed aqueous solution of sodium chloride, potassium chloride or the like as a chloride ion component and sulfuric acid or phosphoric acid as a hydrogen ion component can be suitably employed instead of the hydrochloric acid aqueous solution. Furthermore, it is described that a combination of a mixed aqueous solution of sodium bromide, potassium bromide or the like as the bromide ion component and sulfuric acid, phosphoric acid or the like as the hydrogen ion component can be suitably employed instead of the hydrobromic acid aqueous solution. Has been.
特許文献3は、撹拌型反応器において水素及び酸素から直接過酸化水素水溶液を製造する方法であって、水素及び酸素を別々に小さな気泡形態で、無機酸を添加して予め酸性とし且つ水素及び酸素の導入量を一定のモル比とする方法を提案している。当該文献はまた、前記水性反応媒体は、過酸化水素に対する安定剤(例えば、ホスホネートまたはスズ)及び分解抑制剤(例えば、ハロゲン化物)を含み得ると記載している。さらに前記文献は、ハロゲン化物の内、臭化物が特に好ましい分解抑制剤であり、有利には遊離状態の臭素(Br2)との組み合わせで使用される旨記載している。
Patent Document 3 is a method for producing an aqueous hydrogen peroxide solution directly from hydrogen and oxygen in a stirred reactor, in which hydrogen and oxygen are separately made into small bubbles, made acidic by adding an inorganic acid in advance, and hydrogen and oxygen. A method has been proposed in which the amount of oxygen introduced is a constant molar ratio. The document also states that the aqueous reaction medium may include a stabilizer against hydrogen peroxide (eg, phosphonate or tin) and a decomposition inhibitor (eg, halide). Furthermore, the document states that bromides are particularly preferred decomposition inhibitors among the halides, and are advantageously used in combination with free bromine (Br 2 ).
特許文献4では直接合成法による有機過酸化水素溶液または有機過酸化水素水溶液の製造法であって、その際、水素および酸素を含有する非爆発性のガス状の混合物と液体反応媒体とを、貴金属触媒を含む混合物からなる固定床に導通させる製造法が開示されている。当該文献はまた、前記液体反応媒体が、強酸及びハロゲン化物を含有することを開示している。
Patent Document 4 is a method for producing an organic hydrogen peroxide solution or an organic hydrogen peroxide aqueous solution by a direct synthesis method, in which a non-explosive gaseous mixture containing hydrogen and oxygen and a liquid reaction medium are used. A production process is disclosed for passing through a fixed bed comprising a mixture containing a noble metal catalyst. The document also discloses that the liquid reaction medium contains a strong acid and a halide.
特許文献5は、水素と酸素からの、三相系における不均質触媒作用による過酸化水素の水溶液の直接合成方法であって、液体水相に粒体状態で懸濁されている固形不均質触媒の表面で直接反応し、該触媒は純粋パラジウム又はパラジウムと少なくとも1種の他の貴金属との組合せから選ばれる金属化合物からなる直接合成法を開示している。さらに当該文献は、この方法において前記金属化合物が二酸化ジルコニウム及び超酸性二酸化ジルコニウムから選ばれる少なくとも1種の化合物を含む担体上に担持されていること、前記液体水相が水相に対して0.05~3mmol/リットルの濃度で臭化物イオンを含有し、且つそのpHが0~4の範囲にあることを開示している。
Patent Document 5 is a method for directly synthesizing an aqueous solution of hydrogen peroxide from hydrogen and oxygen by heterogeneous catalysis in a three-phase system, which is a solid heterogeneous catalyst suspended in a granular state in a liquid aqueous phase. Wherein the catalyst reacts directly on the surface of the catalyst and the catalyst comprises a pure compound of palladium or a combination of metal and at least one other noble metal. Further, the document discloses that in this method, the metal compound is supported on a carrier containing at least one compound selected from zirconium dioxide and superacid zirconium dioxide, and the liquid aqueous phase is 0.1% relative to the aqueous phase. It discloses that it contains bromide ions at a concentration of 05-3 mmol / l and its pH is in the range of 0-4.
特許文献6及び7は、ハロゲンイオンを分解抑制剤として用いることなく、反応媒体中、貴金属触媒及びラジカル捕捉剤の存在下で水素と酸素を反応させる、過酸化水素の製造方法を開示している。
Patent Documents 6 and 7 disclose a method for producing hydrogen peroxide in which hydrogen and oxygen are reacted in a reaction medium in the presence of a noble metal catalyst and a radical scavenger without using a halogen ion as a decomposition inhibitor. .
しかしながら、かかる従来の過酸化水素の直接製造法では、いずれも高濃度の過酸化水素を得ることができず、実用化への課題の一つとなっている。
However, none of the conventional methods for directly producing hydrogen peroxide can provide high-concentration hydrogen peroxide, which is one of the problems for practical application.
本発明者らは、鋭意検討の結果、特定の構成を有する貴金属触媒を、水素と酸素を直接反応させて過酸化水素を得る方法に使用することにより、高濃度の過酸化水素の製造が達成されることを見出し、本発明を完成した。
As a result of intensive studies, the present inventors have achieved the production of high-concentration hydrogen peroxide by using a noble metal catalyst having a specific configuration in a method for obtaining hydrogen peroxide by directly reacting hydrogen and oxygen. As a result, the present invention has been completed.
すなわち、前記課題を解決するための具体的手段は、以下のとおりである。
That is, specific means for solving the above-described problems are as follows.
本発明の第1の実施形態は、水素と酸素を直接反応させて過酸化水素を得る方法に用いる貴金属触媒であって、
パラジウムと金と酸素原子と臭素原子とを含み、前記酸素原子及び臭素原子は貴金属触媒の最表面に存在する、貴金属触媒である。 The first embodiment of the present invention is a noble metal catalyst used in a method of directly reacting hydrogen and oxygen to obtain hydrogen peroxide,
It is a noble metal catalyst containing palladium, gold, oxygen atoms and bromine atoms, wherein the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst.
パラジウムと金と酸素原子と臭素原子とを含み、前記酸素原子及び臭素原子は貴金属触媒の最表面に存在する、貴金属触媒である。 The first embodiment of the present invention is a noble metal catalyst used in a method of directly reacting hydrogen and oxygen to obtain hydrogen peroxide,
It is a noble metal catalyst containing palladium, gold, oxygen atoms and bromine atoms, wherein the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst.
本発明の第2の実施形態は、反応媒体中に水素及び酸素を含む気体を導入することと、
反応媒体中、導入された水素及び酸素と、上記第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む、過酸化水素の製造方法である。 The second embodiment of the present invention introduces a gas containing hydrogen and oxygen into the reaction medium;
A method for producing hydrogen peroxide, comprising bringing hydrogen and oxygen introduced in a reaction medium into contact with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. It is.
反応媒体中、導入された水素及び酸素と、上記第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む、過酸化水素の製造方法である。 The second embodiment of the present invention introduces a gas containing hydrogen and oxygen into the reaction medium;
A method for producing hydrogen peroxide, comprising bringing hydrogen and oxygen introduced in a reaction medium into contact with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. It is.
本発明の貴金属触媒を使用することにより、水素と酸素を直接反応させて過酸化水素を得る方法において、高濃度の過酸化水素を製造することができる。また、本発明の過酸化水素の製造方法により、高濃度の過酸化水素を製造することができる。
By using the noble metal catalyst of the present invention, hydrogen peroxide having a high concentration can be produced in a method in which hydrogen and oxygen are directly reacted to obtain hydrogen peroxide. Moreover, high concentration hydrogen peroxide can be manufactured with the manufacturing method of hydrogen peroxide of this invention.
以下、本発明の貴金属触媒及び過酸化水素の製造方法について詳細に説明する。なお、本明細書中において、高濃度の過酸化水素とは、例えば、5重量%以上の、より好ましくは10重量%以上の過酸化水素をいう。
Hereinafter, the noble metal catalyst and the method for producing hydrogen peroxide of the present invention will be described in detail. In the present specification, high concentration hydrogen peroxide refers to, for example, 5% by weight or more, more preferably 10% by weight or more.
実施形態1:貴金属触媒
本発明の貴金属触媒は、パラジウムと金と酸素原子と臭素原子とを含み、前記酸素原子及び臭素原子は貴金属触媒の最表面に存在する。 Embodiment 1: Noble Metal Catalyst The noble metal catalyst of the present invention contains palladium, gold, oxygen atoms, and bromine atoms, and the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst.
本発明の貴金属触媒は、パラジウムと金と酸素原子と臭素原子とを含み、前記酸素原子及び臭素原子は貴金属触媒の最表面に存在する。 Embodiment 1: Noble Metal Catalyst The noble metal catalyst of the present invention contains palladium, gold, oxygen atoms, and bromine atoms, and the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst.
本発明の貴金属触媒は、貴金属として、パラジウム及び金を含む。パラジウムと金のモル比(パラジウム/金)は、0.1~10であることが好ましく、1~5であることがより好ましい。本発明の貴金属触媒は、パラジウム及び金の他に、白金又は銀等のその他の貴金属を含んでいてもよい。なお、本明細書中において、酸素原子及び臭素原子を含んでいない状態のパラジウム及び金を含む貴金属を、貴金属触媒前駆体とも呼ぶ。
The noble metal catalyst of the present invention contains palladium and gold as noble metals. The molar ratio of palladium to gold (palladium / gold) is preferably from 0.1 to 10, and more preferably from 1 to 5. The noble metal catalyst of the present invention may contain other noble metals such as platinum or silver in addition to palladium and gold. In the present specification, a noble metal containing palladium and gold that does not contain an oxygen atom and a bromine atom is also referred to as a noble metal catalyst precursor.
貴金属は、触媒効率及び反応効率を高めるために、炭素、シリカ、アルミナ、シリカアルミナ、酸化チタン又は酸化ジルコニアなどの担体に担持させることができる。担体としては、好ましくはルチル型酸化チタンが用いられる。
The noble metal can be supported on a support such as carbon, silica, alumina, silica alumina, titanium oxide or zirconia in order to increase the catalyst efficiency and the reaction efficiency. As the carrier, rutile type titanium oxide is preferably used.
上記貴金属を担体に担持する方法としては、従来公知の方法を特に制限なく採用することができるが、含浸法またはイオン交換法が好ましい。前記含浸法としては、蒸発乾固法、平衡吸着法、ポアフィリング法などを採用することができる。
As a method of supporting the noble metal on the carrier, a conventionally known method can be employed without any particular limitation, but an impregnation method or an ion exchange method is preferable. As the impregnation method, an evaporation to dryness method, an equilibrium adsorption method, a pore filling method, or the like can be employed.
前記貴金属の担体への担持量は、担体100重量部に対して、貴金属0.01~10重量部が好ましく、0.05~5重量部がより好ましい。そして、本発明の過酸化水素の製造方法において、貴金属触媒(担体に担持されている場合は担持触媒)の使用量は、反応媒体1Lに対して1~100gが好ましく、1Lに対して1~40gがより好ましい。
The amount of the noble metal supported on the carrier is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the carrier. In the method for producing hydrogen peroxide according to the present invention, the amount of the noble metal catalyst (supported catalyst when supported on a carrier) is preferably 1 to 100 g with respect to 1 L of the reaction medium, and 1 to 1 L with respect to 1 L. 40 g is more preferable.
貴金属は、単体には担持させることなく使用することもでき、例えば、ポリビニルピロリドン等の分散剤中に貴金属を分散させたナノコロイドの状態で使用することもできる。
The noble metal can be used without being supported alone, and for example, it can be used in the form of a nanocolloid in which the noble metal is dispersed in a dispersant such as polyvinylpyrrolidone.
本発明の貴金属触媒は、その最表面に酸素原子及び臭素原子が存在する。「その最表面に酸素原子及び臭素原子が存在する」とは、貴金属触媒の最も外側に酸素原子及び臭素原子が存在することを意味するが、貴金属触媒の最表面に酸素原子及び臭素原子以外の原子が存在すること、及び貴金属触媒の内側に酸素原子及び臭素原子が存在することを排除するものではない。本発明の貴金属触媒は、その最表面に酸素原子及び臭素原子が存在することにより、これを用いる過酸化水素の製造方法において、高濃度の過酸化水素の製造を達成することができる。従来の貴金属触媒を用いて酸素と水素から直接的に過酸化水素を製造する方法においては、前記触媒は過酸化水素の分解触媒としても機能するために生成した過酸化水素の分解も同時に起こる。このため、このような方法では分解を抑制するために何らかの化合物を用いることが多く、従来技術では塩素イオンや臭素イオンなどのハロゲンイオンを反応媒体の液相中に存在させることが知られている。しかしながら、本発明の貴金属触媒のように、貴金属触媒自体に酸素原子及び臭素原子が存在している構成は知られていなかった。本発明者らは、この本発明の貴金属触媒の構成を初めて見出し、この本発明の貴金属触媒が存在する条件下において高濃度の過酸化水素の製造を達成することを見出した。その機構としては、明らかではないが、本発明の貴金属触媒では、その最表面に酸素原子及び臭素原子が存在することにより、製造された過酸化水素の貴金属触媒への再吸着が抑制されて、過酸化水素の分解が抑制され、結果として過酸化水素の製造濃度が増加することが考えられる。
The precious metal catalyst of the present invention has oxygen atoms and bromine atoms on the outermost surface. “Oxygen atoms and bromine atoms are present on the outermost surface” means that oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst, but other than oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst. It does not exclude the presence of atoms and the presence of oxygen and bromine atoms inside the noble metal catalyst. Since the noble metal catalyst of the present invention has an oxygen atom and a bromine atom on the outermost surface thereof, a high concentration of hydrogen peroxide can be produced in the method for producing hydrogen peroxide using the noble metal catalyst. In a conventional method for producing hydrogen peroxide directly from oxygen and hydrogen using a noble metal catalyst, the catalyst also functions as a decomposition catalyst for hydrogen peroxide, so that the generated hydrogen peroxide is simultaneously decomposed. For this reason, some compounds are often used to suppress decomposition in such a method, and it is known in the prior art that halogen ions such as chlorine ions and bromine ions are present in the liquid phase of the reaction medium. . However, a configuration in which an oxygen atom and a bromine atom are present in the noble metal catalyst itself as in the noble metal catalyst of the present invention has not been known. The present inventors have found the constitution of the noble metal catalyst of the present invention for the first time, and have found that production of hydrogen peroxide at a high concentration can be achieved under the conditions in which the noble metal catalyst of the present invention exists. Although it is not clear as the mechanism, in the noble metal catalyst of the present invention, due to the presence of oxygen atoms and bromine atoms on the outermost surface, resorption of the produced hydrogen peroxide to the noble metal catalyst is suppressed, It is considered that the decomposition of hydrogen peroxide is suppressed, and as a result, the production concentration of hydrogen peroxide increases.
貴金属触媒の最表面に酸素原子及び臭素原子が存在することは、低エネルギーイオン散乱(Low Energy Ion Scattering:LEIS)分析により確認することができる。低エネルギーイオン散乱(LEIS)分析法とは、数100eVから数keVの希ガスまたはアルカリ元素のイオンビームを固体表面に照射し、散乱されたイオンのエネルギースペクトルと角度スペクトルを測定することにより試料を分析する方法であり、最表層原子の定性、定量が可能である。低エネルギーイオン散乱分光装置(LEIS)としては、例えばION-TOF社製のQtac100を用いることができる。
The presence of oxygen atoms and bromine atoms on the outermost surface of the noble metal catalyst can be confirmed by low energy ion scattering (LEIS) analysis. Low energy ion scattering (LEIS) analysis is a method in which a solid surface is irradiated with a rare gas or alkali element ion beam of several hundred eV to several keV, and the sample is measured by measuring the energy spectrum and angular spectrum of the scattered ions. It is a method of analysis, and qualitative and quantitative determination of the outermost layer atoms is possible. As a low energy ion scattering spectrometer (LEIS), for example, Qtac100 manufactured by ION-TOF can be used.
本発明の貴金属触媒において、好ましくは、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比が、0.10以上であり、より好ましくは0.15以上であり、より好ましくは0.3以上である。また、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比は、0.45以下であることが好ましく、0.40以下であることがより好ましい。この低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比は、後述する過酸化水素の製造方法の過程において一定の値を保つことが好ましく、水素と酸素の直接反応開始から反応終了までの間の変化量がΔ0.5以下であることが好ましく、Δ0.30以下であることがより好ましく、Δ0.25以下あることがより好ましい。貴金属触媒の最表面にこの特定量の臭素が存在することにより、高濃度の過酸化水素を製造することができる。
In the noble metal catalyst of the present invention, the ratio of the detected amount of bromine atom to palladium, preferably measured by low energy ion scattering (LEIS) analysis, is 0.10 or more, more preferably 0.15 or more. More preferably, it is 0.3 or more. Further, the ratio of the detected amount of bromine atoms to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 0.45 or less, and more preferably 0.40 or less. The ratio of the detected amount of bromine atoms to palladium, which is measured by this low energy ion scattering (LEIS) analysis, is preferably maintained at a constant value in the process of producing hydrogen peroxide described later. The amount of change between the start of the reaction and the end of the reaction is preferably Δ0.5 or less, more preferably Δ0.30 or less, and even more preferably Δ0.25 or less. Due to the presence of this specific amount of bromine on the outermost surface of the noble metal catalyst, a high concentration of hydrogen peroxide can be produced.
本発明の貴金属触媒において、好ましくは、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の比が、1.5以上であり、より好ましくは1.7以上である。また、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の比は、4.0以下であることが好ましく、3.5以下であることがより好ましい。酸素原子がこの量で貴金属触媒の最表面に存在することにより、パラジウムが酸化状態となり、結果として臭素原子が貴金属触媒の最表面に存在しやすくなっていることが考えられる。この低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の検出量の比は、後述する過酸化水素の製造方法の過程において変化しないこと又は微増していくことが好ましく、1時間当たり0~0.25の変化量で増加していくことがより好ましく、1時間当たりΔ0~0.1の変化量で増加していくことがより好ましく、1時間当たりΔ0~0.05の変化量で増加していくことが好ましい。水素と酸素の直接反応開始から反応終了までの間、貴金属触媒最表面の酸素原子の量が変化しないこと又は微増していくことにより、反応後期においても過酸化水素の分解抑制が維持され、高濃度の過酸化水素を製造することができる。反応媒体に臭素成分を過剰に添加することにより類似の効果は得られるが、貴金属触媒の表面を酸化状態にすることで、効率よく臭素原子の吸着量を維持することができると考えられる。
In the noble metal catalyst of the present invention, preferably, the ratio of oxygen atom to palladium, measured by low energy ion scattering (LEIS) analysis, is 1.5 or more, more preferably 1.7 or more. Further, the ratio of oxygen atom to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 4.0 or less, and more preferably 3.5 or less. It is considered that when oxygen atoms are present in this amount on the outermost surface of the noble metal catalyst, palladium is in an oxidized state, and as a result, bromine atoms are likely to be present on the outermost surface of the noble metal catalyst. The ratio of the detected amount of oxygen atoms to palladium, measured by this low energy ion scattering (LEIS) analysis, preferably remains unchanged or slightly increases in the course of the hydrogen peroxide production method described below. It is more preferable to increase at a change amount of 0 to 0.25 per hour, more preferable to increase at a change amount of Δ0 to 0.1 per hour, and a change of Δ0 to 0.05 per hour. It is preferable to increase the amount. From the start of the direct reaction of hydrogen and oxygen to the end of the reaction, the amount of oxygen atoms on the outermost surface of the noble metal catalyst does not change or slightly increases, so that the suppression of hydrogen peroxide decomposition is maintained even in the later stage of the reaction. A concentration of hydrogen peroxide can be produced. Although a similar effect can be obtained by adding a bromine component in excess to the reaction medium, it is considered that the adsorption amount of bromine atoms can be efficiently maintained by bringing the surface of the noble metal catalyst into an oxidized state.
本発明の貴金属触媒は、貴金属触媒前駆体を、媒体中において、酸素成分及び臭素成分と接触させることにより製造することができる。例えば、臭素成分を含む液相媒体に酸素を含む気体を導入し、液相媒体中の臭素成分と、導入された酸素と、貴金属触媒前駆体とを0.1MPa以上の圧力下で接触させることにより、貴金属触媒を得ることができる。導入される気体中の酸素分圧は、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることがより好ましく、50%以上であることがより好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましい。導入される気体中の酸素分圧の上限としては、95%、90%等と、他の気体成分の分圧を勘案して適宜設定することができる。導入される気体は、酸素ガスの他に、水素ガス、窒素ガス、アルゴンガス、ヘリウムガス又は二酸化炭素を含んでいてもよい。液相媒体は、水、メタノール、エタノール等のアルコール、アセトン等のケトン、及びこれらの混合溶媒が挙げられ、これらの中でも、水及びアルコールが好ましい。臭素成分としては、臭素酸、臭素酸塩、臭化ナトリウム等の臭化物が挙げられるが、これらの中でも、臭化ナトリウムが好ましい。臭素成分の使用量は、反応媒体中0.01mM~10mMであることが好ましく、0.02mM~5mMであることがより好ましく、0.02mM~1mMであることがさらに好ましい。反応の圧力は、好ましくは0.1MPa~10MPaであり、より好ましくは0.5MPa~5MPaであり、さらに好ましくは1MPa~2MPaである。また、反応時間は通常0.01~100時間であり、好ましくは0.5~10時間である。
The noble metal catalyst of the present invention can be produced by bringing a noble metal catalyst precursor into contact with an oxygen component and a bromine component in a medium. For example, a gas containing oxygen is introduced into a liquid phase medium containing a bromine component, and the bromine component in the liquid phase medium, the introduced oxygen, and the noble metal catalyst precursor are brought into contact under a pressure of 0.1 MPa or more. Thus, a noble metal catalyst can be obtained. The oxygen partial pressure in the introduced gas is preferably 20% or more, more preferably 30% or more, more preferably 40% or more, and more preferably 50% or more, It is more preferably 60% or more, more preferably 70% or more, and more preferably 80% or more. The upper limit of the partial pressure of oxygen in the introduced gas can be set as appropriate in consideration of the partial pressure of other gas components, such as 95% and 90%. The introduced gas may contain hydrogen gas, nitrogen gas, argon gas, helium gas or carbon dioxide in addition to oxygen gas. Examples of the liquid phase medium include water, alcohols such as methanol and ethanol, ketones such as acetone, and mixed solvents thereof. Among these, water and alcohols are preferable. Examples of the bromine component include bromides such as bromic acid, bromate, and sodium bromide. Among these, sodium bromide is preferable. The amount of the bromine component used is preferably 0.01 mM to 10 mM, more preferably 0.02 mM to 5 mM, and further preferably 0.02 mM to 1 mM in the reaction medium. The reaction pressure is preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa, and further preferably 1 MPa to 2 MPa. The reaction time is usually 0.01 to 100 hours, preferably 0.5 to 10 hours.
本発明の貴金属触媒は、後述する実施形態2の過酸化水素の製造方法によって、用時調製的に製造することもできる。例えば、臭素成分を含む反応媒体中に上記の貴金属触媒前駆体を添加し、反応媒体中に導入された酸素と、貴金属触媒前駆体とを0.1MPa以上の圧力下で接触させることにより、反応系において貴金属触媒を製造することができる。そして、そのまま過酸化水素の製造工程において、水素と酸素を直接反応させて過酸化水素を得るための貴金属触媒として使用することができる。
The noble metal catalyst of the present invention can also be prepared in use by the hydrogen peroxide production method of Embodiment 2 described later. For example, the above-mentioned noble metal catalyst precursor is added to a reaction medium containing a bromine component, and the oxygen introduced into the reaction medium is brought into contact with the noble metal catalyst precursor under a pressure of 0.1 MPa or more. Noble metal catalysts can be produced in the system. And in the manufacturing process of hydrogen peroxide as it is, it can be used as a noble metal catalyst for directly reacting hydrogen and oxygen to obtain hydrogen peroxide.
また、本発明の貴金属触媒は、担体に担持させることにより、反応後期における高濃度の過酸化水素の分解抑制効果が高まるので、好ましい。
Further, the noble metal catalyst of the present invention is preferable because it is supported on a support because the effect of suppressing the decomposition of high-concentration hydrogen peroxide in the late stage of the reaction is enhanced.
実施形態2:過酸化水素の製造方法
本発明の過酸化水素の製造方法は、反応媒体中に水素及び酸素を含む気体を導入することと、
反応媒体中、導入された水素及び酸素と、上記第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む。本発明の過酸化水素の製造方法により、高濃度の過酸化水素を製造することができる。 Embodiment 2: Method for producing hydrogen peroxide The method for producing hydrogen peroxide of the present invention comprises introducing a gas containing hydrogen and oxygen into a reaction medium,
Contacting hydrogen and oxygen introduced in the reaction medium with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. By the method for producing hydrogen peroxide according to the present invention, high-concentration hydrogen peroxide can be produced.
本発明の過酸化水素の製造方法は、反応媒体中に水素及び酸素を含む気体を導入することと、
反応媒体中、導入された水素及び酸素と、上記第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む。本発明の過酸化水素の製造方法により、高濃度の過酸化水素を製造することができる。 Embodiment 2: Method for producing hydrogen peroxide The method for producing hydrogen peroxide of the present invention comprises introducing a gas containing hydrogen and oxygen into a reaction medium,
Contacting hydrogen and oxygen introduced in the reaction medium with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. By the method for producing hydrogen peroxide according to the present invention, high-concentration hydrogen peroxide can be produced.
本発明の過酸化水素の製造方法で使用される貴金属触媒は、上記第1の実施形態の貴金属触媒である。そのため、上記と重複する記載について、適宜記載を割愛する。本発明の過酸化水素の製造方法において、貴金属触媒(担体に担持されている場合は担持触媒)の使用量は、反応媒体1Lに対して1~100gが好ましく、1Lに対して1~40gがより好ましい。
The noble metal catalyst used in the method for producing hydrogen peroxide according to the present invention is the noble metal catalyst of the first embodiment. Therefore, the description overlapping with the above is omitted as appropriate. In the method for producing hydrogen peroxide of the present invention, the amount of the noble metal catalyst (supported catalyst when supported on a carrier) is preferably 1 to 100 g per 1 L of the reaction medium, and 1 to 40 g per 1 L. More preferred.
本発明の過酸化水素の製造方法において、導入される気体中の酸素分圧は、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることがより好ましく、50%以上であることがより好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましい。導入される気体中の酸素分圧の上限としては、95%、90%等と、他の気体成分の分圧を勘案して適宜設定することができる。導入される気体中の酸素分圧が上記割合であることにより、製造される過酸化水素の濃度を増加することができる。この機構としては、明らかではないが、貴金属触媒表面に酸素量を増加することにより、過酸化水素生成の速度を向上することができるためと考えられる。
In the method for producing hydrogen peroxide of the present invention, the oxygen partial pressure in the introduced gas is preferably 20% or more, more preferably 30% or more, and more preferably 40% or more. 50% or more is more preferable, 60% or more is more preferable, 70% or more is more preferable, and 80% or more is more preferable. The upper limit of the partial pressure of oxygen in the introduced gas can be set as appropriate in consideration of the partial pressure of other gas components, such as 95% and 90%. When the oxygen partial pressure in the introduced gas is the above ratio, the concentration of the produced hydrogen peroxide can be increased. Although this mechanism is not clear, it is thought that the rate of hydrogen peroxide generation can be improved by increasing the amount of oxygen on the surface of the noble metal catalyst.
また、導入される気体中の酸素分圧が上記割合である場合は、臭素成分を含む反応媒体中に上記の貴金属触媒前駆体を添加し、反応媒体中に導入された水素及び酸素と、貴金属触媒前駆体とを0.1MPa以上の圧力下で接触させることにより、反応系において上記第1の実施形態の貴金属触媒を用時調製的に製造することができ、そのまま水素及び酸素と第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得る工程を進めることができるため、好ましい。
Further, when the oxygen partial pressure in the introduced gas is the above ratio, the above-mentioned noble metal catalyst precursor is added to the reaction medium containing the bromine component, and hydrogen and oxygen introduced into the reaction medium, and the noble metal By contacting the catalyst precursor with a pressure of 0.1 MPa or more, the noble metal catalyst of the first embodiment can be prepared in use in a reaction system, and hydrogen, oxygen and the first This is preferable because the step of obtaining hydrogen peroxide by bringing the noble metal catalyst of the embodiment into contact with a pressure of 0.1 MPa or more can be performed.
導入される気体中の水素分圧は、爆発範囲を避け、かつ、水素に対して酸素が過剰となるような割合(例えば水素ガスと酸素ガスの流量の体積割合が1:2~1:10となるような割合)が好ましく、例えば5~20%、好ましくは10~15%である。さらに安全性の観点から爆発の危険性をより低下させるため、水素及び酸素は希釈することが好ましい。この場合使用できる希釈ガスは、水素と酸素の反応に影響しない不活性ガスであり、例えば窒素ガス、アルゴンガス及びヘリウムガスが使用できる。コストの点からは窒素ガスが好ましい。なお、酸素は圧縮空気で希釈して酸素混合ガスとして使用してもよい。また、気体中に二酸化炭素を含んでいてもよく、その場合の気体中の二酸化炭素分圧は、例えば0.01~5%、好ましくは1~2%である。
The hydrogen partial pressure in the introduced gas is such that the explosion range is avoided and oxygen is excessive with respect to hydrogen (for example, the volume ratio of the flow rate of hydrogen gas to oxygen gas is 1: 2 to 1:10). For example, 5 to 20%, preferably 10 to 15%. Furthermore, in order to further reduce the risk of explosion from the viewpoint of safety, it is preferable to dilute hydrogen and oxygen. The diluent gas that can be used in this case is an inert gas that does not affect the reaction between hydrogen and oxygen. For example, nitrogen gas, argon gas, and helium gas can be used. Nitrogen gas is preferable from the viewpoint of cost. Note that oxygen may be diluted with compressed air and used as an oxygen mixed gas. In addition, carbon dioxide may be contained in the gas. In this case, the partial pressure of carbon dioxide in the gas is, for example, 0.01 to 5%, preferably 1 to 2%.
水素及び酸素を含む気体は、反応媒体中に導入されるが、反応効率の点から通常液相、すなわち反応溶液中に導入される。
Although the gas containing hydrogen and oxygen is introduced into the reaction medium, it is usually introduced into the liquid phase, that is, into the reaction solution from the viewpoint of reaction efficiency.
本発明の過酸化水素の製造方法において、反応媒体が臭素成分を含むことが好ましい。臭素成分としては、臭素酸、臭素酸塩、臭化ナトリウム等の臭化物が挙げられるが、これらの中でも、臭化ナトリウムが好ましい。反応媒体が臭素成分を含む場合は、反応媒体中に上記の貴金属触媒前駆体を添加し、反応媒体中に導入された分圧20%以上の酸素と、貴金属触媒前駆体とを0.1MPa以上の圧力下で接触させることにより、反応系において上記第1の実施形態の貴金属触媒を用時調製的に製造することができ、そのまま水素及び酸素と第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得る工程を進めることができるため、好ましい。
In the method for producing hydrogen peroxide of the present invention, the reaction medium preferably contains a bromine component. Examples of the bromine component include bromides such as bromic acid, bromate, and sodium bromide. Among these, sodium bromide is preferable. When the reaction medium contains a bromine component, the above-mentioned noble metal catalyst precursor is added to the reaction medium, and oxygen having a partial pressure of 20% or more introduced into the reaction medium and the noble metal catalyst precursor is 0.1 MPa or more. In the reaction system, the noble metal catalyst of the first embodiment can be preparatively produced at the time of use, and hydrogen and oxygen and the noble metal catalyst of the first embodiment can be directly added in the reaction system in an amount of 0. 0. This is preferable because the step of obtaining hydrogen peroxide by bringing it into contact under a pressure of 1 MPa or more can be carried out.
臭素成分の使用量は、反応媒体中0.01mM~10mMであることが好ましく、0.02mM~5mMであることがより好ましく、0.02mM~1mMであることがさらに好ましい。
The amount of the bromine component used is preferably 0.01 mM to 10 mM in the reaction medium, more preferably 0.02 mM to 5 mM, and further preferably 0.02 mM to 1 mM.
本発明の過酸化水素の製造方法においては、過酸化水素の分解抑制のために従来使用されている、臭素以外のハロゲン又はハロゲンイオン(例えば、塩素又は塩素イオン)を使用してもよい。
In the method for producing hydrogen peroxide of the present invention, a halogen other than bromine or a halogen ion (for example, chlorine or chlorine ion) conventionally used for suppressing decomposition of hydrogen peroxide may be used.
本発明の過酸化水素の製造方法は、通常液相である反応媒体中で実施される。反応媒体は、水素と酸素の反応を阻害しないものであれば特に制限なく使用することができる。このような反応媒体は当業者に周知である。
The method for producing hydrogen peroxide of the present invention is usually carried out in a reaction medium that is in a liquid phase. The reaction medium can be used without particular limitation as long as it does not inhibit the reaction between hydrogen and oxygen. Such reaction media are well known to those skilled in the art.
前記反応媒体の例としては、水、メタノール、エタノール等のアルコール、アセトン等のケトン、及びこれらの混合溶媒が挙げられる。これらの中でも、水及びアルコールが好ましい。さらに水溶解度が0.1g/L以下のヘプタン、ヘキサン、ペンタン等の炭化水素溶剤、パーフルオロカーボン構造を持つフッ素系液体を補助溶媒として用いてもよい。
Examples of the reaction medium include water, alcohols such as methanol and ethanol, ketones such as acetone, and mixed solvents thereof. Among these, water and alcohol are preferable. Further, a hydrocarbon solvent such as heptane, hexane or pentane having a water solubility of 0.1 g / L or less, or a fluorinated liquid having a perfluorocarbon structure may be used as an auxiliary solvent.
さらに、これらの反応媒体は、pH調整、安定剤効果又はガス溶解性向上などのために添加物を含有していてもよく、例えばリン酸、硫酸等の酸や、フッ素系不活性液体などを含有していてもよい。反応媒体がこれらの添加物を含有する場合には、反応媒体の重量は、添加物を含めた重量とする。
Further, these reaction media may contain additives for pH adjustment, stabilizer effect or gas solubility improvement, for example, acids such as phosphoric acid and sulfuric acid, and fluorine-based inert liquids. You may contain. When the reaction medium contains these additives, the weight of the reaction medium is the weight including the additives.
これらの反応媒体は、ラジカル補足剤を含有していてもよい。ラジカル補足剤としては、ラジカル補足機能を有する限りいずれのものでもよいが、例えば、二酸化炭素や、特開2014-15353号公報に例示されるようなニトロン化合物、ニトロソ化合物、ジチオカルバメート誘導体及びアスコルビン酸誘導体が挙げられる。これらのラジカル捕捉剤は、塩の形態であってもよく、また水和物が可能である場合には、その形態であってもよい。前記塩としては、ナトリウム塩やカリウム塩などが挙げられる。
These reaction media may contain a radical scavenger. Any radical scavenger may be used as long as it has a radical scavenging function. Examples thereof include carbon dioxide, nitrone compounds, nitroso compounds, dithiocarbamate derivatives and ascorbic acid as exemplified in JP-A-2014-15353. Derivatives. These radical scavengers may be in the form of salts, or in the form of hydrates where possible. Examples of the salt include sodium salt and potassium salt.
本発明においては、反応媒体中、導入された水素及び酸素と、上記第1の実施形態の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得る。
In the present invention, hydrogen and oxygen introduced in the reaction medium are brought into contact with the noble metal catalyst of the first embodiment under a pressure of 0.1 MPa or more to obtain hydrogen peroxide.
この反応は圧力を高く設定することによって、水中に溶存できる水素濃度および酸素濃度を増加でき、過酸化水素の収率を高めることができるため、通常耐圧性のあるオートクレーブなどの反応装置を使用して実施される。
In this reaction, by setting the pressure high, the hydrogen concentration and oxygen concentration that can be dissolved in water can be increased, and the yield of hydrogen peroxide can be increased. Therefore, a reaction device such as a pressure-resistant autoclave is usually used. Implemented.
前記反応装置は撹拌槽型、気泡塔型、固定床型、マイクロリアクターなど、いずれの型式も使用可能であり、また反応は回分式でも連続式でも行うことができる。前記反応装置はガス導入部及びガス放出部を備え、さらに通常、温度計及び圧力計などを備えている。
The reactor can be of any type such as a stirring tank type, bubble column type, fixed bed type, microreactor, etc., and the reaction can be carried out either batchwise or continuously. The reaction apparatus includes a gas introduction part and a gas discharge part, and usually includes a thermometer and a pressure gauge.
また、本発明の反応においては腐食性のハロゲンが使用されることもあるので、反応装置としてはテフロン(登録商標)ライニングのステンレス鋼、インコネル又はハステロイで形成されたものが好適に使用される。ステンレス鋼や、グラスライニングで形成された反応装置を使用してもよい。
Further, since corrosive halogen may be used in the reaction of the present invention, a reactor made of Teflon (registered trademark) lining stainless steel, Inconel or Hastelloy is preferably used. A reactor formed of stainless steel or glass lining may be used.
本発明において過酸化水素合成時の水素と酸素の反応温度は、0~100℃が好ましく、特に5~50℃の範囲が好ましい。反応の圧力は、0.1MPa以上であり、好ましくは0.1MPa~10MPaであり、より好ましくは0.5MPa~5MPaであり、さらに好ましくは1MPa~2MPaである。また、反応時間は通常0.01~100時間であり、好ましくは0.5~50時間である。
In the present invention, the reaction temperature of hydrogen and oxygen during the synthesis of hydrogen peroxide is preferably from 0 to 100 ° C., particularly preferably from 5 to 50 ° C. The reaction pressure is 0.1 MPa or more, preferably 0.1 MPa to 10 MPa, more preferably 0.5 MPa to 5 MPa, and further preferably 1 MPa to 2 MPa. The reaction time is usually 0.01 to 100 hours, preferably 0.5 to 50 hours.
本発明の過酸化水素の製造方法は、
臭素成分を含む反応媒体中に水素及び酸素を含む気体を、導入される気体中の酸素分圧20%以上で導入することと、
反応媒体中、導入された酸素と、上記の貴金属触媒前駆体とを0.1MPa以上の圧力下で接触させて貴金属触媒を得ることと、
反応媒体中、導入された水素及び酸素と、上記工程により得られた貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む、過酸化水素の製造方法の態様を包含する。この態様によれば、反応系において上記第1の実施形態の貴金属触媒を用時調製的に製造することができ、そのまま貴金属触媒が存在する条件において次の過酸化水素を得る工程を進めることができるため、好ましい。この態様において、臭素成分の量、酸素分圧、反応圧力等の反応条件は、上記定義のとおりである。 The method for producing hydrogen peroxide of the present invention comprises:
Introducing a gas containing hydrogen and oxygen into a reaction medium containing a bromine component at an oxygen partial pressure of 20% or more in the introduced gas;
Contacting the introduced oxygen in the reaction medium with the above noble metal catalyst precursor under a pressure of 0.1 MPa or more to obtain a noble metal catalyst;
A method for producing hydrogen peroxide, comprising bringing hydrogen and oxygen introduced in a reaction medium into contact with the noble metal catalyst obtained in the above step under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. Includes embodiments. According to this aspect, the noble metal catalyst of the first embodiment can be prepared in use in the reaction system, and the process of obtaining the next hydrogen peroxide can be carried out as it is under the condition that the noble metal catalyst is present. This is preferable because it is possible. In this embodiment, reaction conditions such as the amount of bromine component, oxygen partial pressure, reaction pressure and the like are as defined above.
臭素成分を含む反応媒体中に水素及び酸素を含む気体を、導入される気体中の酸素分圧20%以上で導入することと、
反応媒体中、導入された酸素と、上記の貴金属触媒前駆体とを0.1MPa以上の圧力下で接触させて貴金属触媒を得ることと、
反応媒体中、導入された水素及び酸素と、上記工程により得られた貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む、過酸化水素の製造方法の態様を包含する。この態様によれば、反応系において上記第1の実施形態の貴金属触媒を用時調製的に製造することができ、そのまま貴金属触媒が存在する条件において次の過酸化水素を得る工程を進めることができるため、好ましい。この態様において、臭素成分の量、酸素分圧、反応圧力等の反応条件は、上記定義のとおりである。 The method for producing hydrogen peroxide of the present invention comprises:
Introducing a gas containing hydrogen and oxygen into a reaction medium containing a bromine component at an oxygen partial pressure of 20% or more in the introduced gas;
Contacting the introduced oxygen in the reaction medium with the above noble metal catalyst precursor under a pressure of 0.1 MPa or more to obtain a noble metal catalyst;
A method for producing hydrogen peroxide, comprising bringing hydrogen and oxygen introduced in a reaction medium into contact with the noble metal catalyst obtained in the above step under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. Includes embodiments. According to this aspect, the noble metal catalyst of the first embodiment can be prepared in use in the reaction system, and the process of obtaining the next hydrogen peroxide can be carried out as it is under the condition that the noble metal catalyst is present. This is preferable because it is possible. In this embodiment, reaction conditions such as the amount of bromine component, oxygen partial pressure, reaction pressure and the like are as defined above.
本発明の過酸化水素の製造方法において、貴金属触媒は、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比が、好ましくは0.10以上であり、より好ましくは0.15以上であり、より好ましくは0.3以上である。また、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比は、0.45以下であることが好ましく、0.40以下であることがより好ましい。ここの低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比は、過酸化水素の製造方法の過程において一定の値を保つことが好ましく、水素と酸素の直接反応開始から反応終了までの間の変化量がΔ0.5以下であることが好ましく、Δ0.3以下であることがより好ましく、Δ0.25以下であることがより好ましい。水素と酸素の直接反応開始から反応終了までの間、貴金属触媒の最表面にこの特定量の臭素が存在することにより、高濃度の過酸化水素を製造することができる。
In the method for producing hydrogen peroxide of the present invention, the noble metal catalyst preferably has a ratio of the detected amount of bromine atom to palladium as measured by low energy ion scattering (LEIS) analysis, preferably 0.10 or more, more preferably. Is 0.15 or more, more preferably 0.3 or more. Further, the ratio of the detected amount of bromine atoms to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 0.45 or less, and more preferably 0.40 or less. The ratio of the detected amount of bromine atoms to palladium, which is measured by the low energy ion scattering (LEIS) analysis here, preferably keeps a constant value during the process of producing hydrogen peroxide, and direct reaction between hydrogen and oxygen The amount of change from the start to the end of the reaction is preferably Δ0.5 or less, more preferably Δ0.3 or less, and more preferably Δ0.25 or less. Since this specific amount of bromine is present on the outermost surface of the noble metal catalyst from the start of the direct reaction of hydrogen and oxygen to the end of the reaction, a high concentration of hydrogen peroxide can be produced.
本発明の過酸化水素の製造方法において、貴金属触媒は、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の比が、好ましくは1.5以上であり、より好ましくは1.7以上である。また、低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の比は、4.0以下であることが好ましく、3.5以下であることがより好ましい。酸素原子がこの量で貴金属触媒の最表面に存在することにより、パラジウムが酸化状態となり、結果として臭素原子が貴金属触媒の最表面に存在しやすくなっていることが考えられる。この低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の検出量の比は、過酸化水素の製造方法の過程において変化しないこと又は微増することが好ましく、1時間当たり0~0.25の変化量で増加していくことがより好ましく、1時間当たりΔ0~0.1の変化量で増加していくことがより好ましく、1時間当たりΔ0~0.05の変化量で増加していくことが好ましい。水素と酸素の直接反応開始から反応終了までの間、貴金属触媒最表面の酸素原子の量が変化しないこと又は微増することにより、反応後期においても過酸化水素の分解抑制が維持され、高濃度の過酸化水素を製造することができる。反応媒体に臭素成分を過剰に添加することにより類似の効果は得られるが、貴金属触媒の表面を酸化状態にすることで、効率よく臭素原子の吸着量を維持することができると考えられる。
In the method for producing hydrogen peroxide of the present invention, the noble metal catalyst preferably has a ratio of oxygen atom to palladium as measured by low energy ion scattering (LEIS) analysis of 1.5 or more, more preferably 1. 7 or more. Further, the ratio of oxygen atom to palladium, measured by low energy ion scattering (LEIS) analysis, is preferably 4.0 or less, and more preferably 3.5 or less. It is considered that when oxygen atoms are present in this amount on the outermost surface of the noble metal catalyst, palladium is in an oxidized state, and as a result, bromine atoms are likely to be present on the outermost surface of the noble metal catalyst. The ratio of the detected amount of oxygen atom to palladium, as measured by this low energy ion scattering (LEIS) analysis, is preferably unchanged or slightly increased during the process of producing hydrogen peroxide, and is preferably 0 to 0 per hour. It is more preferable to increase at a change amount of .25, more preferable to increase at a change amount of Δ0 to 0.1 per hour, and increase at a change amount of Δ0 to 0.05 per hour. It is preferable to continue. From the start of the direct reaction of hydrogen and oxygen to the end of the reaction, the amount of oxygen atoms on the outermost surface of the noble metal catalyst does not change or slightly increases, so that the suppression of hydrogen peroxide decomposition is maintained even in the latter stage of the reaction. Hydrogen peroxide can be produced. Although a similar effect can be obtained by adding a bromine component in excess to the reaction medium, it is considered that the adsorption amount of bromine atoms can be efficiently maintained by bringing the surface of the noble metal catalyst into an oxidized state.
以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1)
(1)担体担持貴金属触媒の製造
エタノールと水の混合溶媒200ml(水:エタノール=1:1)にシュウ酸2gを加え攪拌した。そこに堺化学製チタニア(ルチル型酸化チタン(IV))10g、HAuCl4 0.05gおよびPdCl2 0.12gを加え、リービッヒ冷却器を用いながら80℃で1時間還流した。 Example 1
(1) Production of support-supported noble metal catalyst 2 g of oxalic acid was added to 200 ml of a mixed solvent of ethanol and water (water: ethanol = 1: 1) and stirred. There Sakai Chemical Co. titania (rutile type titanium oxide (IV)) 10 g, added HAuCl 4 0.05 g and PdCl 2 0.12 g, was refluxed for 1 hour at 80 ° C. while using a Liebig condenser.
(1)担体担持貴金属触媒の製造
エタノールと水の混合溶媒200ml(水:エタノール=1:1)にシュウ酸2gを加え攪拌した。そこに堺化学製チタニア(ルチル型酸化チタン(IV))10g、HAuCl4 0.05gおよびPdCl2 0.12gを加え、リービッヒ冷却器を用いながら80℃で1時間還流した。 Example 1
(1) Production of support-supported noble metal catalyst 2 g of oxalic acid was added to 200 ml of a mixed solvent of ethanol and water (water: ethanol = 1: 1) and stirred. There Sakai Chemical Co. titania (rutile type titanium oxide (IV)) 10 g, added HAuCl 4 0.05 g and PdCl 2 0.12 g, was refluxed for 1 hour at 80 ° C. while using a Liebig condenser.
1時間後、懸濁溶液を300mlビーカーに移し、加熱して溶媒を除去した。その後得られた固体を85℃乾燥機で1日間乾燥させ、担体担持貴金属触媒前駆体(Pd-Au/TiO2)を得た。
After 1 hour, the suspension was transferred to a 300 ml beaker and heated to remove the solvent. Thereafter, the obtained solid was dried with an oven at 85 ° C. for 1 day to obtain a support-supported noble metal catalyst precursor (Pd—Au / TiO 2 ).
次に、攪拌装置およびガス吹き込み管を備えたテフロン(登録商標)で内張りした270mlのオートクレーブに、上記で製造した担体担持貴金属触媒前駆体(Pd-Au/TiO2)1.125g、反応溶液270ml(0.5mMりん酸及び0.05mM臭化ナトリウム含有、反応媒体は水である)を加えた。
Next, in a 270 ml autoclave lined with Teflon (registered trademark) equipped with a stirrer and a gas blowing tube, 1.125 g of the carrier-supported noble metal catalyst precursor (Pd—Au / TiO 2 ) produced above and 270 ml of the reaction solution (Containing 0.5 mM phosphoric acid and 0.05 mM sodium bromide, the reaction medium is water).
オートクレーブ内温度を25℃に調整しながら、ガスを250ml/min(水素10%、酸素80%、窒素10%)の速度でオートクレーブに吹き込みながら(気体中の酸素分圧80%)、圧力を1Mパスカルに調整し、回転数1000rpmで攪拌しながら反応させ、貴金属触媒を製造した。この反応の過程で、過酸化水素も製造された。反応溶液に貴金属触媒前駆体を導入後一定時間毎に、貴金属触媒を反応溶液から取り出し、各反応時間における貴金属触媒の表面を低エネルギーイオン散乱(LEIS)分析により測定した。なお、表1中において反応時間0時間とは、反応溶液に貴金属触媒前駆体を導入後直ぐに貴金属触媒を取り出した状態をいう。
While adjusting the temperature inside the autoclave to 25 ° C., the gas was blown into the autoclave at a rate of 250 ml / min (hydrogen 10%, oxygen 80%, nitrogen 10%) (oxygen partial pressure in the gas 80%), and the pressure was 1M. The mixture was adjusted to Pascal and reacted with stirring at a rotational speed of 1000 rpm to produce a noble metal catalyst. In the course of this reaction, hydrogen peroxide was also produced. The noble metal catalyst was taken out from the reaction solution at regular intervals after the noble metal catalyst precursor was introduced into the reaction solution, and the surface of the noble metal catalyst at each reaction time was measured by low energy ion scattering (LEIS) analysis. In Table 1, the reaction time of 0 hour means a state in which the noble metal catalyst is taken out immediately after the noble metal catalyst precursor is introduced into the reaction solution.
(貴金属触媒の表面分析)
貴金属触媒の表面分析は以下のようにして行った。
低エネルギーイオン散乱分光装置(LEIS)Qtac100(ION-TOF社製)により、2KeV~5KeVのヘリウムイオン又はネオンイオンビーム照射の条件下で、貴金属触媒表面の元素分析を行った。得られたエネルギースペクトラムにおいて各元素を同定した。各元素の検出量(積分値)を算出し、パラジウムに対する臭素原子の検出量の比(Br/Pd)、及びパラジウムに対する酸素原子の検出量の比(O/Pd)を求めた。これら検出量の比を表1に示す。 (Surface analysis of precious metal catalysts)
The surface analysis of the noble metal catalyst was performed as follows.
Elemental analysis of the surface of the noble metal catalyst was performed using a low energy ion scattering spectrometer (LEIS) Qtac100 (manufactured by ION-TOF) under the conditions of 2 KeV to 5 KeV helium ion or neon ion beam irradiation. Each element was identified in the obtained energy spectrum. The detection amount (integral value) of each element was calculated, and the ratio of the detection amount of bromine atoms to palladium (Br / Pd) and the ratio of the detection amount of oxygen atoms to palladium (O / Pd) were determined. Table 1 shows the ratio of these detected amounts.
貴金属触媒の表面分析は以下のようにして行った。
低エネルギーイオン散乱分光装置(LEIS)Qtac100(ION-TOF社製)により、2KeV~5KeVのヘリウムイオン又はネオンイオンビーム照射の条件下で、貴金属触媒表面の元素分析を行った。得られたエネルギースペクトラムにおいて各元素を同定した。各元素の検出量(積分値)を算出し、パラジウムに対する臭素原子の検出量の比(Br/Pd)、及びパラジウムに対する酸素原子の検出量の比(O/Pd)を求めた。これら検出量の比を表1に示す。 (Surface analysis of precious metal catalysts)
The surface analysis of the noble metal catalyst was performed as follows.
Elemental analysis of the surface of the noble metal catalyst was performed using a low energy ion scattering spectrometer (LEIS) Qtac100 (manufactured by ION-TOF) under the conditions of 2 KeV to 5 KeV helium ion or neon ion beam irradiation. Each element was identified in the obtained energy spectrum. The detection amount (integral value) of each element was calculated, and the ratio of the detection amount of bromine atoms to palladium (Br / Pd) and the ratio of the detection amount of oxygen atoms to palladium (O / Pd) were determined. Table 1 shows the ratio of these detected amounts.
(実施例2)
実施例1のガスの組成を水素10%、酸素18%、窒素72%のガス組成(気体中の酸素分圧18%)に変更した以外は、実施例1と同様にして、貴金属触媒を製造し、各反応時間における貴金属触媒の表面を低エネルギーイオン散乱(LEIS)分析により測定した。結果を表1に示す。反応の過程で、過酸化水素も製造された。 (Example 2)
A noble metal catalyst was produced in the same manner as in Example 1, except that the gas composition of Example 1 was changed to a gas composition of 10% hydrogen, 18% oxygen, and 72% nitrogen (partial oxygen pressure in gas 18%). The surface of the noble metal catalyst at each reaction time was measured by low energy ion scattering (LEIS) analysis. The results are shown in Table 1. In the course of the reaction, hydrogen peroxide was also produced.
実施例1のガスの組成を水素10%、酸素18%、窒素72%のガス組成(気体中の酸素分圧18%)に変更した以外は、実施例1と同様にして、貴金属触媒を製造し、各反応時間における貴金属触媒の表面を低エネルギーイオン散乱(LEIS)分析により測定した。結果を表1に示す。反応の過程で、過酸化水素も製造された。 (Example 2)
A noble metal catalyst was produced in the same manner as in Example 1, except that the gas composition of Example 1 was changed to a gas composition of 10% hydrogen, 18% oxygen, and 72% nitrogen (partial oxygen pressure in gas 18%). The surface of the noble metal catalyst at each reaction time was measured by low energy ion scattering (LEIS) analysis. The results are shown in Table 1. In the course of the reaction, hydrogen peroxide was also produced.
表1に示した結果から明らかなとおり、貴金属触媒の最表面に酸素原子及び臭素原子が存在することが確認された。なお、パラジウムに対する臭素原子の検出量の比が0.10以上であり、かつパラジウムに対する酸素原子の比が1.5以上である場合、反応においてより高濃度の過酸化水素が製造された。
As is clear from the results shown in Table 1, it was confirmed that oxygen atoms and bromine atoms were present on the outermost surface of the noble metal catalyst. Note that when the ratio of the detected amount of bromine atoms to palladium was 0.10 or more and the ratio of oxygen atoms to palladium was 1.5 or more, a higher concentration of hydrogen peroxide was produced in the reaction.
(実施例3)
(1)担体担持貴金属触媒前駆体の製造
エタノールと水の混合溶媒200ml(水:エタノール=1:1)にシュウ酸2gを加え攪拌した。そこに堺化学製チタニア(ルチル型酸化チタン(IV))10g、HAuCl4 0.05gおよびPdCl2 0.12gを加え、リービッヒ冷却器を用いながら80℃で1時間還流した。 (Example 3)
(1) Production of carrier-supported noble metal catalyst precursor 2 g of oxalic acid was added to 200 ml of a mixed solvent of ethanol and water (water: ethanol = 1: 1) and stirred. Thereto were added 10 g titania (rutile titanium oxide (IV)), 10 g HAUCl 4 and 0.12 g PdCl 2, and the mixture was refluxed at 80 ° C. for 1 hour using a Liebig condenser.
(1)担体担持貴金属触媒前駆体の製造
エタノールと水の混合溶媒200ml(水:エタノール=1:1)にシュウ酸2gを加え攪拌した。そこに堺化学製チタニア(ルチル型酸化チタン(IV))10g、HAuCl4 0.05gおよびPdCl2 0.12gを加え、リービッヒ冷却器を用いながら80℃で1時間還流した。 (Example 3)
(1) Production of carrier-supported noble metal catalyst precursor 2 g of oxalic acid was added to 200 ml of a mixed solvent of ethanol and water (water: ethanol = 1: 1) and stirred. Thereto were added 10 g titania (rutile titanium oxide (IV)), 10 g HAUCl 4 and 0.12 g PdCl 2, and the mixture was refluxed at 80 ° C. for 1 hour using a Liebig condenser.
1時間後、懸濁溶液を300mlビーカーに移し、加熱して溶媒を除去した。その後得られた固体を85℃乾燥機で1日間乾燥させ、担体担持貴金属触媒前駆体(Pd-Au/TiO2)を得た。
After 1 hour, the suspension was transferred to a 300 ml beaker and heated to remove the solvent. Thereafter, the obtained solid was dried with an oven at 85 ° C. for 1 day to obtain a support-supported noble metal catalyst precursor (Pd—Au / TiO 2 ).
(2)過酸化水素の製造
実験においては、攪拌装置およびガス吹き込み管を備えたテフロン(登録商標)で内張りした270mlのオートクレーブに、上記で製造した担体担持貴金属触媒前駆体(Pd-Au/TiO2)1.125g、反応溶液270ml(0.5mMりん酸及び0.05mM臭化ナトリウム含有、反応媒体は水である)を加えた。 (2) Production of hydrogen peroxide In the experiment, the carrier-supported noble metal catalyst precursor (Pd—Au / TiO) produced in the above was placed in a 270 ml autoclave lined with Teflon (registered trademark) equipped with a stirrer and a gas blowing tube. 2 ) 1.125 g and 270 ml of reaction solution (containing 0.5 mM phosphoric acid and 0.05 mM sodium bromide, the reaction medium is water) were added.
実験においては、攪拌装置およびガス吹き込み管を備えたテフロン(登録商標)で内張りした270mlのオートクレーブに、上記で製造した担体担持貴金属触媒前駆体(Pd-Au/TiO2)1.125g、反応溶液270ml(0.5mMりん酸及び0.05mM臭化ナトリウム含有、反応媒体は水である)を加えた。 (2) Production of hydrogen peroxide In the experiment, the carrier-supported noble metal catalyst precursor (Pd—Au / TiO) produced in the above was placed in a 270 ml autoclave lined with Teflon (registered trademark) equipped with a stirrer and a gas blowing tube. 2 ) 1.125 g and 270 ml of reaction solution (containing 0.5 mM phosphoric acid and 0.05 mM sodium bromide, the reaction medium is water) were added.
オートクレーブ内温度を25℃に調整しながら、ガスを250ml/min(水素10%、酸素25%、窒素64%、二酸化炭素1%)の速度でオートクレーブに吹き込みながら(気体中の酸素分圧25%)、圧力を1Mパスカルに調整し、回転数1000rpmで攪拌しながら反応させた。反応溶液に貴金属触媒前駆体を導入後一定時間毎に、過酸化水素濃度を過酸化水素自動滴定装置(機器名:HP-300、製造会社:平沼産業、よう素電量滴定法を用いる測定方式)を用いて定量し、過酸化水素濃度が低下し始めたのを確認してから、反応を終了させた。過酸化水素濃度のピークは、反応開始30時間後に見られ、6.0wt%であった。結果を表2に示す。
上記の過酸化水素製造の過程で、担体担持貴金属触媒も製造された。 While adjusting the temperature inside the autoclave to 25 ° C., the gas was blown into the autoclave at a rate of 250 ml / min (10% hydrogen, 25% oxygen, 64% nitrogen, 1% carbon dioxide) (25% oxygen partial pressure in the gas) ), The pressure was adjusted to 1 M Pascal, and the reaction was carried out with stirring at a rotational speed of 1000 rpm. Hydrogen peroxide concentration titration device (equipment name: HP-300, manufacturer: Hiranuma Sangyo, measurement method using iodine coulometric titration) at regular intervals after introducing the precious metal catalyst precursor into the reaction solution After confirming that the hydrogen peroxide concentration began to decrease, the reaction was terminated. The peak of hydrogen peroxide concentration was found 30 hours after the start of the reaction and was 6.0 wt%. The results are shown in Table 2.
In the process of producing hydrogen peroxide, a support-supported noble metal catalyst was also produced.
上記の過酸化水素製造の過程で、担体担持貴金属触媒も製造された。 While adjusting the temperature inside the autoclave to 25 ° C., the gas was blown into the autoclave at a rate of 250 ml / min (10% hydrogen, 25% oxygen, 64% nitrogen, 1% carbon dioxide) (25% oxygen partial pressure in the gas) ), The pressure was adjusted to 1 M Pascal, and the reaction was carried out with stirring at a rotational speed of 1000 rpm. Hydrogen peroxide concentration titration device (equipment name: HP-300, manufacturer: Hiranuma Sangyo, measurement method using iodine coulometric titration) at regular intervals after introducing the precious metal catalyst precursor into the reaction solution After confirming that the hydrogen peroxide concentration began to decrease, the reaction was terminated. The peak of hydrogen peroxide concentration was found 30 hours after the start of the reaction and was 6.0 wt%. The results are shown in Table 2.
In the process of producing hydrogen peroxide, a support-supported noble metal catalyst was also produced.
(実施例4)
実施例3のガスの組成を水素10%、酸素30%、窒素59%、二酸化炭素1%のガス組成(気体中の酸素分圧30%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始45時間後に見られ、7.7wt%であった。 (Example 4)
Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 30% oxygen, 59% nitrogen, and 1% carbon dioxide (partial oxygen partial pressure in gas 30%), the same as in Example 3 Hydrogen peroxide was produced. The peak of hydrogen peroxide concentration was found 45 hours after the start of the reaction and was 7.7 wt%.
実施例3のガスの組成を水素10%、酸素30%、窒素59%、二酸化炭素1%のガス組成(気体中の酸素分圧30%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始45時間後に見られ、7.7wt%であった。 (Example 4)
Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 30% oxygen, 59% nitrogen, and 1% carbon dioxide (partial oxygen partial pressure in gas 30%), the same as in Example 3 Hydrogen peroxide was produced. The peak of hydrogen peroxide concentration was found 45 hours after the start of the reaction and was 7.7 wt%.
(実施例5)
実施例3のガスの組成を水素10%、酸素50%、窒素39%、二酸化炭素1%のガス組成(気体中の酸素分圧50%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始30~40時間後に見られ、9.0wt%であった。 (Example 5)
Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 50% oxygen, 39% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 50%), the same as in Example 3 Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 30 to 40 hours after the start of the reaction and was 9.0 wt%.
実施例3のガスの組成を水素10%、酸素50%、窒素39%、二酸化炭素1%のガス組成(気体中の酸素分圧50%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始30~40時間後に見られ、9.0wt%であった。 (Example 5)
Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 50% oxygen, 39% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 50%), the same as in Example 3 Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 30 to 40 hours after the start of the reaction and was 9.0 wt%.
(実施例6)
実施例3のガスの組成を水素10%、酸素70%、窒素19%、二酸化炭素1%のガス組成(気体中の酸素分圧70%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始40時間後に見られ、11.0wt%であった。 (Example 6)
Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 70% oxygen, 19% nitrogen, and 1% carbon dioxide (oxygen partial pressure in gas 70%), the same as in Example 3 Hydrogen peroxide was produced. A peak of the hydrogen peroxide concentration was found 40 hours after the start of the reaction and was 11.0 wt%.
実施例3のガスの組成を水素10%、酸素70%、窒素19%、二酸化炭素1%のガス組成(気体中の酸素分圧70%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始40時間後に見られ、11.0wt%であった。 (Example 6)
Except for changing the gas composition of Example 3 to a gas composition of 10% hydrogen, 70% oxygen, 19% nitrogen, and 1% carbon dioxide (oxygen partial pressure in gas 70%), the same as in Example 3 Hydrogen peroxide was produced. A peak of the hydrogen peroxide concentration was found 40 hours after the start of the reaction and was 11.0 wt%.
(実施例7)
実施例3のガスの組成を水素10%、酸素89%、二酸化炭素1%のガス組成(気体中の酸素分圧89%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始45時間後に見られ、11.5wt%であった。 (Example 7)
In the same manner as in Example 3, except that the gas composition of Example 3 was changed to a gas composition of 10% hydrogen, 89% oxygen, and 1% carbon dioxide (partial oxygen partial pressure 89%). Manufactured. A peak of the hydrogen peroxide concentration was found 45 hours after the start of the reaction and was 11.5 wt%.
実施例3のガスの組成を水素10%、酸素89%、二酸化炭素1%のガス組成(気体中の酸素分圧89%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始45時間後に見られ、11.5wt%であった。 (Example 7)
In the same manner as in Example 3, except that the gas composition of Example 3 was changed to a gas composition of 10% hydrogen, 89% oxygen, and 1% carbon dioxide (partial oxygen partial pressure 89%). Manufactured. A peak of the hydrogen peroxide concentration was found 45 hours after the start of the reaction and was 11.5 wt%.
(比較例1)
実施例3のガスの組成を水素10%、酸素19.2%、窒素69.8%、二酸化炭素1%のガス組成(気体中の酸素分圧19.2%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始25時間後に見られ、4.7wt%であった。 (Comparative Example 1)
Except that the gas composition of Example 3 was changed to a gas composition of 10% hydrogen, 19.2% oxygen, 69.8% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 19.2%). In the same manner as in Example 3, hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 25 hours after the start of the reaction, and was 4.7 wt%.
実施例3のガスの組成を水素10%、酸素19.2%、窒素69.8%、二酸化炭素1%のガス組成(気体中の酸素分圧19.2%)に変更した以外は、実施例3と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始25時間後に見られ、4.7wt%であった。 (Comparative Example 1)
Except that the gas composition of Example 3 was changed to a gas composition of 10% hydrogen, 19.2% oxygen, 69.8% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 19.2%). In the same manner as in Example 3, hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 25 hours after the start of the reaction, and was 4.7 wt%.
(実施例8)
(1)ナノコロイド貴金属触媒前駆体の製造
ポリビニルピロリドン(PVP)を分散剤としてPdCl2とHAuCl4をシュウ酸により還元し、ナノコロイド貴金属触媒前駆体(Pd-Auナノコロイド)を調製した。
(2)過酸化水素の製造
実験においては、攪拌装置およびガス吹き込み管を備えたテフロン(登録商標)で内張りした270mlのオートクレーブに、上記で製造したナノコロイド貴金属触媒前駆体(Pd-Auナノコロイド)74.52mg、反応溶液130ml(0.5mMりん酸及び2.0mM臭化ナトリウム含有、反応媒体は水及びエタノールである)を加えた。 (Example 8)
(1) a PdCl 2 and HAuCl 4 was reduced with oxalic acid as a dispersing agent produced polyvinylpyrrolidone (PVP) of Colloidal noble metal catalyst precursor, were nanocolloidal noble metal catalyst precursor (Pd-Au nano colloid) was prepared.
(2) Production of hydrogen peroxide In the experiment, the nanocolloid noble metal catalyst precursor (Pd—Au nanocolloid) produced in the above was placed in a 270 ml autoclave lined with Teflon (registered trademark) equipped with a stirrer and a gas blowing tube. ) 74.52 mg, 130 ml of reaction solution (containing 0.5 mM phosphoric acid and 2.0 mM sodium bromide, the reaction medium is water and ethanol).
(1)ナノコロイド貴金属触媒前駆体の製造
ポリビニルピロリドン(PVP)を分散剤としてPdCl2とHAuCl4をシュウ酸により還元し、ナノコロイド貴金属触媒前駆体(Pd-Auナノコロイド)を調製した。
(2)過酸化水素の製造
実験においては、攪拌装置およびガス吹き込み管を備えたテフロン(登録商標)で内張りした270mlのオートクレーブに、上記で製造したナノコロイド貴金属触媒前駆体(Pd-Auナノコロイド)74.52mg、反応溶液130ml(0.5mMりん酸及び2.0mM臭化ナトリウム含有、反応媒体は水及びエタノールである)を加えた。 (Example 8)
(1) a PdCl 2 and HAuCl 4 was reduced with oxalic acid as a dispersing agent produced polyvinylpyrrolidone (PVP) of Colloidal noble metal catalyst precursor, were nanocolloidal noble metal catalyst precursor (Pd-Au nano colloid) was prepared.
(2) Production of hydrogen peroxide In the experiment, the nanocolloid noble metal catalyst precursor (Pd—Au nanocolloid) produced in the above was placed in a 270 ml autoclave lined with Teflon (registered trademark) equipped with a stirrer and a gas blowing tube. ) 74.52 mg, 130 ml of reaction solution (containing 0.5 mM phosphoric acid and 2.0 mM sodium bromide, the reaction medium is water and ethanol).
オートクレーブ内温度を20℃に調整しながら、ガスを600ml/min(水素10%、酸素30%、窒素60%)の速度でオートクレーブに吹き込みながら(気体中の酸素分圧30%)、圧力を1Mパスカルに調整し、回転数1000rpmで攪拌しながら反応させた。反応溶液に貴金属触媒前駆体を導入後一定時間毎に、過酸化水素濃度を過酸化水素自動滴定装置(機器名:HP-300、製造会社:平沼産業、よう素電量滴定法を用いる測定方式)を用いて定量し、過酸化水素濃度が低下し始めたのを確認してから、反応を終了させた。過酸化水素濃度のピークは、反応開始8時間後に見られ、7.0wt%であった。結果を表3に示す。
While adjusting the temperature inside the autoclave to 20 ° C., the gas was blown into the autoclave at a rate of 600 ml / min (hydrogen 10%, oxygen 30%, nitrogen 60%) (oxygen partial pressure in the gas 30%), and the pressure was 1M. The mixture was adjusted to Pascal and reacted while stirring at a rotation speed of 1000 rpm. Hydrogen peroxide concentration titration device (equipment name: HP-300, manufacturer: Hiranuma Sangyo, measurement method using iodine coulometric titration) at regular intervals after introducing the precious metal catalyst precursor into the reaction solution After confirming that the hydrogen peroxide concentration began to decrease, the reaction was terminated. The peak of the hydrogen peroxide concentration was observed 8 hours after the start of the reaction and was 7.0 wt%. The results are shown in Table 3.
(実施例9)
実施例8のガスの組成を水素10%、酸素60%、窒素29%、二酸化炭素1%のガス組成(気体中の酸素分圧60%)に変更した以外は、実施例8と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始8時間後に見られ、8.0wt%であった。 Example 9
Except for changing the gas composition of Example 8 to a gas composition of 10% hydrogen, 60% oxygen, 29% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 60%), the same as in Example 8. Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 8 hours after the start of the reaction and was 8.0 wt%.
実施例8のガスの組成を水素10%、酸素60%、窒素29%、二酸化炭素1%のガス組成(気体中の酸素分圧60%)に変更した以外は、実施例8と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始8時間後に見られ、8.0wt%であった。 Example 9
Except for changing the gas composition of Example 8 to a gas composition of 10% hydrogen, 60% oxygen, 29% nitrogen, and 1% carbon dioxide (partial oxygen pressure in gas 60%), the same as in Example 8. Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 8 hours after the start of the reaction and was 8.0 wt%.
(実施例10)
実施例8のガスの組成を水素10%、酸素80%、窒素9%、二酸化炭素1%のガス組成(気体中の酸素分圧80%)に変更した以外は、実施例8と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始14時間後に見られ、10.0wt%であった。 (Example 10)
Except that the gas composition of Example 8 was changed to a gas composition of 10% hydrogen, 80% oxygen, 9% nitrogen, and 1% carbon dioxide (oxygen partial pressure in the gas 80%), the same as in Example 8. Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 14 hours after the start of the reaction, and was 10.0 wt%.
実施例8のガスの組成を水素10%、酸素80%、窒素9%、二酸化炭素1%のガス組成(気体中の酸素分圧80%)に変更した以外は、実施例8と同様にして、過酸化水素を製造した。過酸化水素濃度のピークは、反応開始14時間後に見られ、10.0wt%であった。 (Example 10)
Except that the gas composition of Example 8 was changed to a gas composition of 10% hydrogen, 80% oxygen, 9% nitrogen, and 1% carbon dioxide (oxygen partial pressure in the gas 80%), the same as in Example 8. Hydrogen peroxide was produced. The peak of the hydrogen peroxide concentration was found 14 hours after the start of the reaction, and was 10.0 wt%.
表2及び表3に示した結果から明らかなとおり、本発明の過酸化水素の製造方法は、高濃度の過酸化水素を製造することができる。また、過酸化水素の製造方法において導入する気体中の酸素分圧を制御することにより、本発明の貴金属触媒を得ることができると同時に、本発明の貴金属触媒が存在する条件下で過酸化水素の製造を行うことができ、高濃度の過酸化水素が得られることがわかった。
As is clear from the results shown in Tables 2 and 3, the method for producing hydrogen peroxide of the present invention can produce high-concentration hydrogen peroxide. In addition, by controlling the oxygen partial pressure in the gas introduced in the method for producing hydrogen peroxide, the noble metal catalyst of the present invention can be obtained, and at the same time, the hydrogen peroxide under the conditions in which the noble metal catalyst of the present invention exists. It was found that a high concentration of hydrogen peroxide was obtained.
Claims (6)
- 水素と酸素を直接反応させて過酸化水素を得る方法に用いる貴金属触媒であって、
パラジウムと金と酸素原子と臭素原子とを含み、前記酸素原子及び臭素原子は貴金属触媒の最表面に存在する、貴金属触媒。 A noble metal catalyst used in a method of directly reacting hydrogen and oxygen to obtain hydrogen peroxide,
A noble metal catalyst comprising palladium, gold, oxygen atoms and bromine atoms, wherein the oxygen atoms and bromine atoms are present on the outermost surface of the noble metal catalyst. - 低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する臭素原子の検出量の比が0.10以上である、請求項1に記載の貴金属触媒。 The noble metal catalyst according to claim 1, wherein the ratio of the detected amount of bromine atoms to palladium as measured by low energy ion scattering (LEIS) analysis is 0.10 or more.
- 低エネルギーイオン散乱(LEIS)分析により測定される、パラジウムに対する酸素原子の比が1.5以上である、請求項1又は2に記載の貴金属触媒。 3. The noble metal catalyst according to claim 1, wherein the ratio of oxygen atom to palladium as measured by low energy ion scattering (LEIS) analysis is 1.5 or more.
- 反応媒体中に水素及び酸素を含む気体を導入することと、
反応媒体中、導入された水素及び酸素と、請求項1~3のいずれかに記載の貴金属触媒とを0.1MPa以上の圧力下で接触させて過酸化水素を得ることとを含む、過酸化水素の製造方法。 Introducing a gas containing hydrogen and oxygen into the reaction medium;
Peroxidation comprising contacting hydrogen and oxygen introduced in a reaction medium with the noble metal catalyst according to any one of claims 1 to 3 under a pressure of 0.1 MPa or more to obtain hydrogen peroxide. A method for producing hydrogen. - 導入される気体中の酸素分圧が20%以上である、請求項4に記載の製造方法。 The production method according to claim 4, wherein the oxygen partial pressure in the introduced gas is 20% or more.
- 反応媒体が臭素成分を含む、請求項4又は5に記載の過酸化水素の製造方法。 The method for producing hydrogen peroxide according to claim 4 or 5, wherein the reaction medium contains a bromine component.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780036190.4A CN109310998A (en) | 2016-07-19 | 2017-07-10 | Precious metal catalyst for hydrogen peroxide production and method for producing hydrogen peroxide |
JP2018528489A JPWO2018016359A1 (en) | 2016-07-19 | 2017-07-10 | Noble metal catalyst for hydrogen peroxide production and method for producing hydrogen peroxide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-141392 | 2016-07-19 | ||
JP2016141392 | 2016-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018016359A1 true WO2018016359A1 (en) | 2018-01-25 |
Family
ID=60992972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025067 WO2018016359A1 (en) | 2016-07-19 | 2017-07-10 | Noble metal catalyst for manufacturing hydrogen peroxide, and method for manufacturing hydrogen peroxide |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2018016359A1 (en) |
CN (1) | CN109310998A (en) |
TW (1) | TWI740982B (en) |
WO (1) | WO2018016359A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020054794A1 (en) * | 2018-09-13 | 2020-03-19 | 三菱瓦斯化学株式会社 | Palladium-containing composition and hydrogen peroxide production method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06510514A (en) * | 1991-03-05 | 1994-11-24 | ゾルヴァイ アンテロクス | Production method of H↓2O↓2 from elements |
US20020103080A1 (en) * | 2000-11-29 | 2002-08-01 | Council Of Scientific & Industrial Research | Process for the activation of a metallic palladium based catalyst useful for the direct oxidation of hydrogen to hydrogen peroxide |
JP2003520662A (en) * | 1999-07-16 | 2003-07-08 | アトフイナ | Supported metal catalyst, method for its production and its application in direct production of hydrogen peroxide |
US20060120949A1 (en) * | 2004-06-25 | 2006-06-08 | Council Of Scientific & Industrial Research | Method for production of hydrogen peroxide with improved yield and selectivity by direct oxidation of hydrogen over palladium containing catalyst |
JP2007537119A (en) * | 2004-05-11 | 2007-12-20 | デグサ ゲーエムベーハー | Direct synthesis of hydrogen peroxide |
JP2014526378A (en) * | 2011-09-16 | 2014-10-06 | ソルヴェイ(ソシエテ アノニム) | Catalyst for H2O2 synthesis and process for preparing the catalyst |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4889705A (en) * | 1988-05-13 | 1989-12-26 | E. I. Du Pont De Nemours And Company | Hydrogen peroxide method using optimized H+ and BR- concentrations |
JPH04360848A (en) * | 1991-06-05 | 1992-12-14 | Takasago Internatl Corp | Production of cyclic mono-or sesquiterpene ketone |
FR2796311B1 (en) * | 1999-07-16 | 2001-09-14 | Atofina | MULTI-STAGE REACTOR, ITS APPLICATIONS AND METHOD FOR MANUFACTURING HYDROGEN PEROXIDE |
DE10009187A1 (en) * | 2000-02-26 | 2001-08-30 | Degussa | Process for the production of hydrogen peroxide by direct synthesis and noble metal catalyst therefor |
US20050201925A1 (en) * | 2004-03-09 | 2005-09-15 | Bi Le-Khac | Process for making hydrogen peroxide |
CN108080031A (en) * | 2011-07-15 | 2018-05-29 | 索尔维公司 | The method and the catalyst carrier for this method for obtaining hydrogen peroxide |
-
2017
- 2017-07-10 JP JP2018528489A patent/JPWO2018016359A1/en active Pending
- 2017-07-10 WO PCT/JP2017/025067 patent/WO2018016359A1/en active Application Filing
- 2017-07-10 CN CN201780036190.4A patent/CN109310998A/en active Pending
- 2017-07-17 TW TW106123731A patent/TWI740982B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06510514A (en) * | 1991-03-05 | 1994-11-24 | ゾルヴァイ アンテロクス | Production method of H↓2O↓2 from elements |
JP2003520662A (en) * | 1999-07-16 | 2003-07-08 | アトフイナ | Supported metal catalyst, method for its production and its application in direct production of hydrogen peroxide |
US20020103080A1 (en) * | 2000-11-29 | 2002-08-01 | Council Of Scientific & Industrial Research | Process for the activation of a metallic palladium based catalyst useful for the direct oxidation of hydrogen to hydrogen peroxide |
JP2007537119A (en) * | 2004-05-11 | 2007-12-20 | デグサ ゲーエムベーハー | Direct synthesis of hydrogen peroxide |
US20060120949A1 (en) * | 2004-06-25 | 2006-06-08 | Council Of Scientific & Industrial Research | Method for production of hydrogen peroxide with improved yield and selectivity by direct oxidation of hydrogen over palladium containing catalyst |
JP2014526378A (en) * | 2011-09-16 | 2014-10-06 | ソルヴェイ(ソシエテ アノニム) | Catalyst for H2O2 synthesis and process for preparing the catalyst |
Non-Patent Citations (3)
Title |
---|
KOHEI MURAKAMI ET AL.: "Pd-Au Shokubai o Mochiita H2O2 Chokusetsu Gosei -Hyomen eno Br Kyuchaku Jotai to H2O2 Gosei", DAI 118 KAI CATSJ MEETING TORONKAI A YOKOSHU, 14 September 2016 (2016-09-14), pages 367, ISSN: 1343-9936 * |
KOHEI MURAKAMI ET AL.: "Pd-Au Shokubai o Mochiita H2O2 Chokusetsu Gosei -Ti02 Tantai no Koka", DAI 117 KAI CATSJ MEETING KOEN YOKOSHU, 10 March 2016 (2016-03-10), pages 190, ISSN: 2187-5928 * |
YUKI OISHI ET AL.: "Tanji Pd-Au Shokubai ni yoru H2 no O2 Sanka ni yoru H2O2 Gosei (6) Halogen no Yakuwari no Kento", DAI 110 KAI CATSJ MEETING TORONKAI A YOKOSHU, 14 September 2012 (2012-09-14), pages 386, ISSN: 1343-9936 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020054794A1 (en) * | 2018-09-13 | 2020-03-19 | 三菱瓦斯化学株式会社 | Palladium-containing composition and hydrogen peroxide production method |
JPWO2020054794A1 (en) * | 2018-09-13 | 2021-08-30 | 三菱瓦斯化学株式会社 | Palladium-containing composition and method for producing hydrogen peroxide |
JP7370332B2 (en) | 2018-09-13 | 2023-10-27 | 三菱瓦斯化学株式会社 | Palladium-containing composition and method for producing hydrogen peroxide |
US11883809B2 (en) | 2018-09-13 | 2024-01-30 | Mitsubishi Gas Chemical Company, Inc. | Palladium-containing composition and hydrogen peroxide production method |
Also Published As
Publication number | Publication date |
---|---|
TW201829060A (en) | 2018-08-16 |
TWI740982B (en) | 2021-10-01 |
JPWO2018016359A1 (en) | 2019-05-09 |
CN109310998A (en) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2615076C (en) | Improvements in catalysts | |
TWI229052B (en) | Process for the continuous production of hydrogen peroxide | |
JP5073133B2 (en) | Catalyst and method for direct synthesis of hydrogen peroxide | |
JP4401485B2 (en) | Novel catalyst, method for producing hydrogen peroxide, and use of hydrogen peroxide in the oxidation process | |
US5965101A (en) | Process for producing hydrogen peroxide | |
TWI238857B (en) | Direct synthesis of hydrogen peroxide in a multicomponent solvent system | |
US20080299034A1 (en) | Process for preparing hydrogen peroxide | |
TW593130B (en) | Direct synthesis of hydrogen peroxide in a new multicomponent solvent system | |
CN105579131A (en) | Catalysts for direct synthesis of hydrogen peroxide | |
WO2018016359A1 (en) | Noble metal catalyst for manufacturing hydrogen peroxide, and method for manufacturing hydrogen peroxide | |
JPH10330103A (en) | Method for producing hydrogen peroxide | |
JPH10324507A (en) | Method for producing hydrogen peroxide | |
JP5048643B2 (en) | Direct production method of hydrogen peroxide using ionic liquid | |
JP6088760B2 (en) | Method for producing hydrogen peroxide | |
KR20180072100A (en) | Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts | |
WO2012133149A1 (en) | Method for direct production of hydrogen peroxide using brookite type titanium oxide | |
JP3620193B2 (en) | Method for producing hydrogen peroxide | |
JPWO2020054794A1 (en) | Palladium-containing composition and method for producing hydrogen peroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018528489 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17830879 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17830879 Country of ref document: EP Kind code of ref document: A1 |