KR20180072100A - Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts - Google Patents
Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts Download PDFInfo
- Publication number
- KR20180072100A KR20180072100A KR1020160175321A KR20160175321A KR20180072100A KR 20180072100 A KR20180072100 A KR 20180072100A KR 1020160175321 A KR1020160175321 A KR 1020160175321A KR 20160175321 A KR20160175321 A KR 20160175321A KR 20180072100 A KR20180072100 A KR 20180072100A
- Authority
- KR
- South Korea
- Prior art keywords
- hydrogen peroxide
- catalyst
- palladium
- noble metal
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B01J35/026—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/468—Iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- B01J35/0006—
-
- B01J35/023—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
- C01B15/029—Preparation from hydrogen and oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
본 발명은 과산화수소 직접생산 반응에서 과산화수소의 생산속도를 높이기 위해 갈바닉 치환반응을 이용하여 팔라듐(Pd) 나노 팔면체의 표면에 존재하는 극소량의 팔라듐(Pd) 원자를 백금(Pt) 등의 귀금속 원자로 치환한 것을 특징으로 하는 과산화수소 직접 제조용 촉매 및 이를 이용한 과산화수소 직접 제조방법에 관한 것으로서, 팔라듐(Pd) 나노 팔면체의 표면 상에서 치환된 극소량의 백금(Pt) 등의 귀금속에 의해 과산화수소 생성속도가 크게 증가하는 것을 특징으로 한다.In order to increase the production rate of hydrogen peroxide in a direct hydrogen peroxide production reaction, a palladium (Pd) atom is substituted with a noble metal atom such as platinum (Pt) by using a galvanic substitution reaction and a very small amount of palladium The present invention relates to a catalyst for direct preparation of hydrogen peroxide and a method for directly preparing hydrogen peroxide using the same, characterized in that the rate of hydrogen peroxide generation is greatly increased by noble metals such as platinum (Pt) substituted on the surface of palladium (Pd) .
Description
본 발명은 갈바닉 치환 반응을 통하여 팔면체의 표면에 존재하는 팔라듐(Pd)이 백금(Pt) 등의 귀금속으로 치환된 팔라듐(Pd) 나노 팔면체 촉매 및 이를 이용한 과산화수소의 제조방법에 관한 것이다.The present invention relates to a palladium (Pd) nano-octahedral catalyst in which palladium (Pd) existing on the surface of an octahedron is substituted with a noble metal such as platinum (Pt) through a galvanic substitution reaction and a method for producing hydrogen peroxide using the same.
과산화수소는 펄프와 종이의 표백, 공정 과정 중에 생성되는 폐수의 처리 외에도 세제, 살균제, 추출 작용제 등으로서 다양한 산업 분야에서 이용되고 있는 산화제이다. 특히, 과산화수소는 HNO3, N2O, NaClO 등의 다른 산화제들에 비해 47 wt.%에 달하는 가장 많은 양의 활성 산소를 포함하고 있으면서 부생성물로 물만 생성되는 친환경적인 산화제이므로 최근 엄격해지는 환경적인 규제들에 대하여 과산화수소의 수요가 늘어날 것으로 예상된다.Hydrogen peroxide is an oxidizing agent used in various industrial fields such as bleaching of pulp and paper, treatment of wastewater generated during processing, detergent, bactericide, extraction agent and the like. In particular, since hydrogen peroxide is the environmentally friendly oxidizing agent containing only the largest amount of active oxygen, which is 47 wt.%, Compared with other oxidizing agents such as HNO 3 , N 2 O and NaClO, Demand for hydrogen peroxide is expected to increase with regulations.
현재 과산화수소의 상업적 생산은 모두 안트라퀴논 산화 공정(Anthraquinone Oxidation process, AO process)에 의해 이루어지고 있으나, 인체에 유독한 안트라퀴논 화합물 및 유기용매를 사용하여야 하는 단점과, 운반 시의 폭발 위험성 때문에 안정제를 첨가하거나 희석하는 과정으로 인해 운반 비용이 높다는 단점이 있다.At present, commercial production of hydrogen peroxide is carried out by the anthraquinone oxidation process (AO process), but the use of toxic anthraquinone compounds and organic solvents in the human body and the risk of explosion during transportation are all important factors in stabilizing agents There is a disadvantage in that the transportation cost is high due to the addition or dilution process.
상기 문제점을 개선하기 위해 인체에 무독하고 환경 친화적이면서 경제적인 과산화수소 생산 공정으로서 과산화수소 직접 합성(direct synthesis of H2O2) 방법이 제시되어 있다. 직접 합성 방법은 안트라퀴논 산화 공정(AO process)과 달리 유독한 유기물을 사용하지 않고 부생성물로 물만을 생성한다. 또한, 중소형 규모의 공장을 설비할 경우 안트라퀴논 산화 공정에 비해 경제성이 높기 때문에 과산화수소가 필요한 공장 주위에 건설하기 용이하여, 운반 시 발생하는 폭발의 위험성을 크게 줄일 수 있다 (대한민국 공개특허 2002-0032225호). 다만, 과산화수소 직접 합성 방법은 과산화수소 선택도가 낮은 단점이 있고, 이를 해결하기 위하여 귀금속인 Pd가 직접 합성의 활성을 높이는 촉매로 사용되고 있다.In order to solve the above problems, direct synthesis of H 2 O 2 has been proposed as a process for producing hydrogen peroxide which is nontoxic, environmentally friendly and economical to the human body. Unlike the anthraquinone oxidation process (AO process), direct synthesis does not use toxic organic materials but only water as an byproduct. In addition, since a plant having a small-sized scale is more economical than an anthraquinone oxidation process, it is easy to construct around a plant requiring hydrogen peroxide, thereby greatly reducing the risk of explosion during transportation (Korean Patent Laid-Open Publication No. 2002-0032225 number). However, the direct synthesis of hydrogen peroxide has a disadvantage of low selectivity for hydrogen peroxide. To solve this problem, Pd, a noble metal, is used as a catalyst for directly enhancing the activity of synthesis.
그러나, 과산화수소 직접 생성반응에서 물이 생성되는 부 반응 또한 자발적으로 일어나기 때문에, 과산화수소의 선택도와 높은 생성속도 얻기 위한 연구가 필요하다. However, since the adverse reactions in which water is generated in the direct hydrogen peroxide reaction also occur spontaneously, studies for obtaining the selectivity and high production rate of hydrogen peroxide are necessary.
따라서, 본 발명은 과산화수소 직접 제조 방법에서 팔라듐(Pd) 촉매를 사용할 때, 과산화수소 선택도와 생성 속도를 높일 수 있는 촉매를 제공하고자 한다. 또한 상기 촉매를 이용한 과산화수소 직접 제조방법을 제공하고자 한다.Accordingly, the present invention provides a catalyst capable of increasing hydrogen peroxide selectivity and production rate when a palladium (Pd) catalyst is used in a direct production method of hydrogen peroxide. The present invention also provides a method for directly producing hydrogen peroxide using the catalyst.
본 발명은 상기 과제를 해결하기 위하여, 과산화수소 제조용 팔라듐(Pd) 나노 팔면체 촉매로서, 상기 팔라듐(Pd) 나노 팔면체는 갈바닉 치환 반응으로 팔면체 표면의 극소량의 팔라듐(Pd) 원자가 귀금속 원자로 치환된 것을 특징으로 하고, 상기 팔라듐(Pd) 나노 팔면체 촉매는 귀금속/팔라듐의 몰 비(mole ratio)가 0.001 ~ 0.1인 것을 특징으로 하는 과산화수소 직접 제조용 촉매를 제공한다.The present invention provides a palladium (Pd) nano-octahedral catalyst for the production of hydrogen peroxide, wherein the palladium (Pd) nano octahedron is characterized in that a very small amount of palladium (Pd) , And the palladium (Pd) nano octahedral catalyst has a mole ratio of noble metal / palladium of 0.001 to 0.1.
본 발명의 일 구현예에 의하면, 상기 귀금속 원자는 Au, Pt 및 Ir 중에서 선택되는 어느 하나일 수 있다.According to an embodiment of the present invention, the noble metal atom may be any one selected from Au, Pt, and Ir.
본 발명의 일 구현예에 의하면, 상기 촉매는 실리카(SiO2), 티타니아(TiO2), 티타늄 나이트라이드(TiN), 마그네슘 산화물, 세륨 산화물, 탄소 또는 이들의 혼합물을 담체로 사용할 수 있다.According to an embodiment of the present invention, the catalyst may be selected from the group consisting of silica (SiO 2 ), titania (TiO 2 ), titanium nitride (TiN), magnesium oxide, cerium oxide, carbon or mixtures thereof.
본 발명의 일 구현예에 의하면, 상기 갈바닉 치환 반응에 할로겐 이온 (F-, Cl-, Br-, I-)을 사용하고, 상기 갈바닉 치환 반응에서 할로겐 이온 (F-, Cl-, Br-, I-)의 농도가 0.01~0.05 M 농도일 수 있다.According to one embodiment, the galvanic halogen ions in the displacement reaction (F -, Cl -, Br -, I -) the use, wherein the galvanic halogen ions (F in the substitution reaction, and -, Cl -, Br -, I - ) may be 0.01 to 0.05 M concentration.
또한, 본 발명은 상기 과산화수소 제조용 직접 촉매 및 용매를 포함하는 반응기에 수소 및 산소를 공급하여 반응시키는 단계를 포함하는 과산화수소의 직접 제조방법을 제공하고자 한다.The present invention also provides a method for directly producing hydrogen peroxide comprising the step of supplying hydrogen and oxygen to a reactor containing the direct catalyst for preparing hydrogen peroxide and a solvent to react.
본 발명의 일 구현예에 의하면, 상기 용매는 메탄올, 에탄올 및 이들의 혼합물 중에서 선택되는 알코올 용매이거나, 또는 상기 알코올 용매와 물의 혼합 용매일 수 있다.According to an embodiment of the present invention, the solvent may be an alcohol solvent selected from methanol, ethanol and mixtures thereof, or may be used for mixing the alcohol solvent and water.
본 발명의 일 구현예에 의하면, 상기 용매는 황산(H2SO4), 염산(HCl), 인산(H3PO4) 및 질산(HNO3) 중에서 선택되는 1종 이상의 산을 더 포함할 수 있다.According to one embodiment, the solvent is sulfuric acid (H 2 SO 4), hydrochloric acid (HCl), phosphoric acid (H 3 PO 4) and nitric acid (HNO 3) may further include at least one acid selected from have.
본 발명의 일 구현예에 의하면, 상기 수소와 산소의 몰비는 1 : 5 내지 1 : 15일 수 있다.According to an embodiment of the present invention, the molar ratio of hydrogen to oxygen may be 1: 5 to 1:15.
본 발명의 일 구현예에 의하면, 상기 반응은 1 내지 40 기압의 압력 및 0 내지 30 ℃의 온도에서 수행되는 것일 수 있다.According to one embodiment of the present invention, the reaction may be carried out at a pressure of from 1 to 40 atm and at a temperature of from 0 to 30 < 0 > C.
본 발명에 따른 갈바닉 치환 반응을 통하여 표면에 존재하는 일부의 팔라듐(Pd) 원자가백금(Pt) 등의 귀금속 원자로 치환된 팔라듐(Pd) 나노 팔면체 촉매는 실리카 담체 조건에서 과산화수소 직접 제조 방법에 적용할 경우 높은 과산화수소 생성 속도를 달성할 수 있다.The palladium (Pd) nano-octahedral catalyst in which some palladium (Pd) atoms present on the surface through the galvanic substitution reaction according to the present invention are substituted with noble metal atoms such as platinum (Pt) A high hydrogen peroxide generation rate can be achieved.
도 1의 (a) 내지 (d)는 각각 (a) Pd 나노 팔면체, (b) 갈바닉 치환 반응에 의해 Pt로 일부 치환된 Pd 나노 팔면체 촉매, (c) 상기 Pd 나노 팔면체를 촉매를 실리카 담체에 담지한 것, (d) 갈바닉 치환 반응에 의해 Pt로 일부 치환된 Pd 나노 팔면체 촉매 촉매를 실리카 담체에 담지한 것에 대한 TEM 이미지이다.
도 2는 갈바닉 치환 반응에 의해서 Pt로 일부 치환된 Pd 나노 팔면체 촉매를 HAADF로 관찰하고 Pd와 Pt를 매핑한 이미지이다.
도 3은 기존 Pd 나노 팔면체 촉매와 갈바닉 치환 반응에 의해 Pt로 일부 치환된 Pd 나노 팔면체 촉매를 이용하여 과산화수소의 직접 제조 생산속도를 비교한 그래프이다.1 (a) to 1 (d) each show a Pd nanosecopolymer (a), a Pd nanos octahedron catalyst partially substituted with Pt by galvanic substitution reaction, (c) , And (d) a Pd nanos octahedral catalyst catalyst partly substituted with Pt by a galvanic substitution reaction on a silica carrier.
FIG. 2 is an image in which Pd and Pt are mapped by observing Pd nano octahedral catalyst partially substituted with Pt by galvanic substitution reaction with HAADF.
FIG. 3 is a graph comparing the direct production rate of hydrogen peroxide using a conventional Pd nano octahedral catalyst and a Pd nano octahedral catalyst partially substituted with Pt by a galvanic substitution reaction.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 측면은 과산화수소 직접 제조용 촉매로서, 팔라듐(Pd) 나노 팔면체의 표면에 존재하는 팔라듐(Pd) 원자 극소량을 백금(Pt) 등의 귀금속으로 치환한 것을 특징으로 하고, 상기 팔라듐(Pd) 나노 팔면체 촉매는 귀금속/팔라듐의 몰 비(mole ratio)가 0.001 ~ 0.1인 것을 특징으로 하는 것으로서, 본 발명에 따른 촉매를 이용하여 과산화수소 직접 제조시에 일반 Pd 나노 팔면체 촉매보다 높은 과산화수소 생성 속도를 나타내는 것이 특징이다.One aspect of the present invention is a catalyst for the direct preparation of hydrogen peroxide which is characterized in that a very small amount of palladium (Pd) atom existing on the surface of the palladium (Pd) nano octahedron is substituted with a noble metal such as platinum (Pt) The nano-octahedral catalyst is characterized in that the mole ratio of noble metal / palladium is 0.001 to 0.1. The catalyst according to the present invention exhibits a higher rate of hydrogen peroxide generation than a normal Pd nano-octahedral catalyst in the direct preparation of hydrogen peroxide .
본 발명의 발명자들은 팔라듐(Pd) 촉매 연구에서 {111} 면으로 둘러싸인 팔라듐(Pd) 나노 팔면체 입자가 {100} 면으로 둘러싸인 팔라듐(Pd) 나노 육면체 입자에 비해 선택도와 생성 속도에서 훨씬 우수함을 확인하였고, 나아가서 순수한 백금(Pt)으로 이루어진 촉매 입자는 과산화수소 분해 반응 속도를 높여 과산화수소 합성에 큰 활성을 나타내지 않지만, 팔라듐(Pd)에 소량의 백금(Pt) 원자가 첨가된 경우 과산화수소 선택도와 생성 속도가 크게 향상됨을 실험으로 확인하였다.The inventors of the present invention have found that palladium (Pd) nano-octahedral particles surrounded by {111} faces are much better in selectivity and production rate than palladium (Pd) nano-hexahedral particles surrounded by {100} In addition, catalytic particles composed of pure platinum (Pt) increase the rate of hydrogen peroxide decomposition and do not show great activity for the synthesis of hydrogen peroxide. However, when a small amount of platinum (Pt) atom is added to palladium (Pd) And the improvement was confirmed by experiments.
또한, 본 발명에서는 팔라듐(Pd) 나노 팔면체 입자의 표면에 존재하는 극소량의 팔라듐(Pd) 원자를 백금(Pt)으로 치환하기 위한 방법으로 갈바닉 치환 반응을 이용하였다.Further, in the present invention, a galvanic substitution reaction is used as a method for replacing a very small amount of palladium (Pd) atoms present on the surface of the palladium (Pd) nanosecuhedral particles with platinum (Pt).
Pd2 +의 표준 환원 전위가 Pt2 +보다 낮기 때문에 갈바닉 치환 반응이 가능하고, Br- 이온이 흡착하여 Pd를 Pd2 +으로 에칭시켜서 Pd와 Pt의 갈바닉 치환 반응을 촉진하는 역할을 한다. Br-에 의해 Pd가 에칭되는 반응은 하기 [화학식 1]을 따르고 Pd와 Pt 사이의 갈바닉 치환 반응은 하기[화학식 2]를 따른다.Since the standard reduction potential of Pd 2 + is lower than that of Pt 2 + , a galvanic substitution reaction is possible, and Br - ions are adsorbed to etch Pd 2 + to promote galvanic substitution reaction of Pd and Pt. The reaction in which Pd is etched by Br - is according to the following formula (1), and the galvanic substitution reaction between Pd and Pt follows the following formula (2).
[화학식 1] Pd(s) + 4Br- → PdBr4 2 - + 2e- Pd (s) + 4Br - ? PdBr 4 2 - + 2e -
[화학식 2] Pt2 + + 2e- → Pt(s)???????? Pt 2 + + 2e - ? Pt (s)
본 발명에서는 팔라듐(Pd) 나노 팔면체의 표면에 존재하는 극소량 팔라듐(Pd) 원자를 백금(Pt) 원자로 치환하는 갈바닉 치환 반응 과정을 포함하는 촉매 제조 방법을 사용하였으며, 상기 제조 방법을 적용하였을 때 실제로 백금(Pt) 원자가 팔면체 입자의 표면 상에 치환되어 위치하고 있음을 확인하였고, 상기 촉매를 과산화수소 직접 제조에 적용하였을 때 일반 팔라듐(Pd) 나노 팔면체 촉매에 비해 과산화수소 생성 속도가 크게 증가한 것 또한 확인하였다.In the present invention, a catalyst production method comprising a galvanic substitution reaction process in which a very small amount of palladium (Pd) atoms existing on the surface of a palladium (Pd) nano octahedron is substituted with a platinum (Pt) atom was used. It was confirmed that the platinum (Pt) atom was substituted on the surface of the octahedron particle, and when the catalyst was applied to the direct preparation of hydrogen peroxide, the hydrogen peroxide generation rate was significantly increased as compared with the ordinary palladium (Pd) nano octahedral catalyst.
팔라듐(Pd) 촉매에 소량의 백금(Pt) 원자가 첨가된 경우에 과산화수소가 생성되는 반응의 반응속도상수가 높아지고 물이 생성되는 반응의 반응속도상수가 낮아져서, 과산화수소 생성 속도가 높아진 것으로 판단된다.The reaction rate constant for the reaction in which hydrogen peroxide is generated increases when a small amount of platinum (Pt) atom is added to the palladium (Pd) catalyst, and the reaction rate constant for the reaction in which water is produced is lowered.
따라서, 상기 요인에 의해서 갈바닉 치환 반응으로 극소량의 귀금속 백금(Pt)으로 치환한 팔라듐(Pd) 나노 팔면체를 실리카에 담지하여 과산화수소 직접 제조 반응에 참여시킬 경우 기존의 일반 팔라듐(Pd) 나노 팔면체를 실리카에 담지한 촉매보다 2배 정도 높은 과산화수소 생성 속도를 얻을 수 있다.Therefore, when the palladium (Pd) nanoparticle substituted with a very small amount of noble metal platinum (Pt) by galvanic substitution reaction is supported on silica to participate in the hydrogen peroxide direct preparation reaction, the conventional general palladium (Pd) It is possible to obtain a hydrogen peroxide generation rate about twice as high as that of the catalyst supported on the catalyst.
또한, 본 발명의 다른 일 측면은 상기 본 발명에 따른 과산화수소 직접 제조용 나노입자 촉매 및 용매를 포함하는 반응기에 수소 및 산소를 공급하여 반응시키는 단계를 포함하는 과산화수소의 직접 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a method for directly producing hydrogen peroxide comprising the step of supplying hydrogen and oxygen to a reactor including a nanoparticle catalyst and a solvent for direct preparation of hydrogen peroxide according to the present invention and reacting.
상기 용매는 메탄올, 에탄올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 알코올 용매이거나, 또는 상기 알코올 용매와 물의 혼합용매인 것일 수 있으며, 바람직하게는 에탄올과 물의 혼합용매인 것일 수 있다.The solvent may be an alcohol solvent selected from the group consisting of methanol, ethanol and mixtures thereof, or a mixed solvent of the alcohol solvent and water, preferably a mixed solvent of ethanol and water.
상기 용매에는 산을 더 포함할 수 있다. 산을 첨가할 경우 주로 생성된 과산화수소의 분해를 억제하여 과산화수소 수율을 크게 증가시킬 수 있다.The solvent may further include an acid. The addition of an acid can greatly increase the yield of hydrogen peroxide by inhibiting the decomposition of the produced hydrogen peroxide.
상기 산으로는 황산(H2SO4), 염산(HCl), 인산(H3PO4) 및 질산(HNO3)으로부터 선택되는 1종 이상인 것일 수 있으며, 바람직하게는 인산일 수 있으며, 상기 산의 용매 내에서의 농도는 0 내지 1 M일 수 있으며, 바람직하게는 0~0.1 M일 수 있다.The acid may be one or more selected from sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ) and nitric acid (HNO 3 ), preferably phosphoric acid, In the solvent may be from 0 to 1 M, preferably from 0 to 0.1 M.
반응물인 수소와 산소는 가스형태로서 용매에 대한 용해도를 향상시키기 위하여 용매에 담길 수 있는 관 (Dip Tube)을 이용하여 용매에 직접 공급하는 것이 바람직할 수 있다.The reactants, hydrogen and oxygen, may be in a gaseous form and may be preferably fed directly to the solvent using a Dip Tube which may be contained in a solvent to improve the solubility in the solvent.
수소 가스는 1~4 mL/min의 유속으로 흘려줄 수 있으며, 산소 가스는 10~40 mL/min의 유속으로 흘려주는 것이 바람직할 수 있다. 더욱 바람직하게는 수소 가스는 1.5~2.5 mL/min로, 산소 가스는 15~25 mL/min로 유지하여, 수소 : 산소 몰 비가 1 : 5 ~ 1 : 15일 수 있다. 수소와 산소의 비율이 1 : 1로 반응하지만, 수소의 농도가 높을 경우 폭발의 위험성이 있기 때문에 1 : 5보다 산소의 비율이 낮을 경우 폭발의 위험성이 있으며, 1 : 15보다 산소의 양이 많을 경우는 공급하는 수소의 농도가 낮아 효율적이지 못하기 때문에 상기 수소 : 산소 몰 비의 범위가 바람직하다.The hydrogen gas may be flowed at a flow rate of 1 to 4 mL / min, and the oxygen gas may be flowed at a flow rate of 10 to 40 mL / min. More preferably, the hydrogen: oxygen molar ratio may be 1: 5 to 1: 15 while the hydrogen gas is maintained at 1.5 to 2.5 mL / min and the oxygen gas is maintained at 15 to 25 mL / min. The ratio of hydrogen to oxygen is 1: 1, but if the concentration of hydrogen is high, there is a danger of explosion. Therefore, if the ratio of oxygen is lower than 1: 5, there is danger of explosion. The range of the hydrogen: oxygen molar ratio is preferable because the concentration of supplied hydrogen is low and thus it is not efficient.
수소 가스와 산소 가스를 일정한 유속으로 흘려주면서 BPR (Back Pressure Regulator)을 사용하여 전체 반응 압력을 조절하게 되며, 반응 압력은 반응기에 연결되어 있는 압력계를 통하여 측정될 수 있다. 반응 압력은 1 내지 40 기압, 바람직하게는 상압으로 유지하는 것이 바람직하며, 반응 온도는 0 내지 30 ℃로 유지하면서 반응을 진행하는 것이 바람직할 수 있다.While the hydrogen gas and the oxygen gas are flowed at a constant flow rate, the entire reaction pressure is regulated using a BPR (Back Pressure Regulator), and the reaction pressure can be measured through a pressure gauge connected to the reactor. The reaction pressure is preferably maintained at 1 to 40 atm, preferably at normal pressure, and it may be preferable to conduct the reaction while maintaining the reaction temperature at 0 to 30 占 폚.
바람직하게는, 상기 반응기에 반응물로 질소를 더 공급하여 반응시킬 수 있다. 질소를 사용할 경우 수소와 산소의 비율을 1 : 1로 맞추어도 폭발 범위를 벗어나는 것이 가능하며, 추후 공기 중의 산소를 사용할 때, 추가적인 질소의 분리가 필요 없이 사용 가능한 장점이 있다.Preferably, the reactor is further reacted by supplying nitrogen as a reactant. When using nitrogen, it is possible to deviate from the explosion range even if the ratio of hydrogen to oxygen is set to 1: 1, and there is an advantage that it can be used without additional nitrogen separation when using oxygen in the air in the future.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나, 이러한 실시예는 본 발명을 좀 더 명확하게 설명하기 위하여 제시되는 것일 뿐, 본 발명의 범위를 제한하는 목적으로 제시되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, these embodiments are provided to explain the present invention more clearly and not to limit the scope of the present invention.
비교예Comparative Example 1. Pd 나노 팔면체/ 1. Pd nano octahedral / SiOSiO 22 촉매 제조 Catalyst preparation
Pd 나노 팔면체 입자는 Pd 나노 육면체를 seed로 하여 결정을 성장시키는 방법으로 합성되며, seed가 되는 Pd 나노 육면체는 다음의 과정을 따른다.Pd nano octahedral particles are synthesized by growing crystals with Pd nanocapsules as seeds. The Pd nanocapsules as seeds follow the following procedure.
L-ascorbic acid (Sigma-Aldrich, ≥99%, 0.680 mmol), 폴리비닐피롤리돈 (PVP, M.W.=55,000 g/mol, 0.189 mmol), KBr (Sigma-Aldrich, ≥99%, 5 mmol)를 DI water에 녹인 용액 16 mL를 준비한다. 이 용액의 온도를 80 ℃로 높인 뒤 63.8 mM의 Na2PdCl4 (Sigma-Aldrich, ≥98%) 용액을 6 mL 첨가하고 80 ℃에서 3시간 동안 교반한다. 합성된 Pd 나노 육면체 용액 5 mL에 아세톤 50 mL를 첨가하여 원심분리기로 침전시킴으로써 Pd 나노 육면체를 수집하고, 용액에 남은 PVP와 Br- 이온을 제거하기 위해 DI water에 여러 회 세척한다.Polyvinylpyrrolidone (PVP, MW = 55,000 g / mol, 0.189 mmol) and KBr (Sigma-Aldrich, ≥99%, 5 mmol) Prepare 16 mL of the solution dissolved in DI water. After raising the temperature of this solution to 80 ° C, add 6 mL of 63.8 mM Na 2 PdCl 4 (Sigma-Aldrich, ≥98%) solution and stir at 80 ° C for 3 hours. To 5 mL of the synthesized Pd nanocomposite solution, 50 mL of acetone was added, and the Pd nanoclusters were collected by centrifugation. The Pd nanoclusters were collected and washed several times in DI water to remove residual PVP and Br - ions in the solution.
세척 과정까지 끝난 Pd 나노 육면체 용액을 DI water 22 mL에 분산시킨다. PVP (0.189 mmol)과 포름알데히드 용액 (Sigma-Aldrich, 37wt.% in H2O, 200 μL)를 DI water에 녹인 용액 16 mL와 Pd 나노 육면체 용액 0.6 mL를 30분 동안 교반한 후 온도를 55 ℃로 높인다. 33 mM의 Na2PdCl4 용액을 6 mL 첨가하고 55 ℃에서 4시간 동안 교반한다. 합성된 Pd 팔면체 용액 5 mL에 아세톤 50 mL를 첨가하여 원심분리기로 침전시킴으로써 Pd 팔면체를 수집하고, 용액에 남은 PVP를 제거하기 위해 DI water에 여러 회 세척한다.The Pd nanocomposite solution after the washing process is dispersed in 22 mL of DI water. 16 mL of a solution of PVP (0.189 mmol) and formaldehyde solution (Sigma-Aldrich, 37 wt.% In H 2 O, 200 μL) dissolved in DI water and 0.6 mL of a Pd nano hexahedron solution were stirred for 30 minutes, Lt; / RTI > Add 6 mL of 33 mM Na 2 PdCl 4 solution and stir at 55 ° C for 4 hours. To 5 mL of the synthesized Pd octahedron solution, 50 mL of acetone was added, and the Pd octahedra was collected by centrifugation. The Pd octahedron was collected and washed several times in DI water to remove remaining PVP in the solution.
다음은 실리카 담지 과정이다. Pd 팔면체 용액 적당량을 실리카 겔 (Sigma-Aldrich, Davisil Grade 633, pore size=60 Å, 200-425 mesh particle size) 용액에 분산시킨 뒤 8시간 동안 교반시켜 SiO2에 담지한다. 용액에 남은 PVP를 제거하기 위해 아세트산을 첨가하여 24시간 동안 더 교반한다. 이 용액을 원심분리하여 수집하고 여러 회 세척한 뒤, 60 ℃의 드라잉 오븐에서 하루 이상 완전히 말린다. 상기 촉매는 수소와 질소의 혼합가스 (수소 : 질소 = 1 : 9)를 사용하여 60 ℃에서 2시간 환원하였다.The following is the silica supporting process. An appropriate amount of the Pd octahedron solution is dispersed in a silica gel (Sigma-Aldrich, Davisil Grade 633, pore size = 60 Å, 200-425 mesh particle size) solution and stirred for 8 hours to carry on SiO 2 . To remove the remaining PVP in the solution, acetic acid is added and stirring is continued for 24 hours. This solution is collected by centrifugation, washed several times and dried thoroughly for more than one day in a drying oven at 60 ° C. The catalyst was reduced at 60 DEG C for 2 hours using a mixed gas of hydrogen and nitrogen (hydrogen: nitrogen = 1: 9).
실시예Example 1. 극소량이 Pt로 치환된 Pd 나노 팔면체 (이하, Pt-Pd 나노 팔면체(1)로 표시함)/ 1. Pd nano octahedron substituted with a very small amount of Pt (hereinafter referred to as Pt-Pd nano octahedron (1)) / SiOSiO 22 촉매 제조 Catalyst preparation
비교예 1의 실리카 담지 과정 이전까지의 제법으로 제작한 Pd 나노 팔면체 용액을 DI water 5 mL에 분산시킨다. PVP (0.132 g)과 KBr (0.06 g)를 DI water에 녹인 용액 11 mL와 Pd 팔면체 용액 5 mL의 온도를 90 ℃로 높인다. K2PtCl4 (Sigma-Aldrich, ≥98%, 0.42 mg)를 DI water에 녹인 용액 6 mL를 60 mL/시 의 속도로 주입한 뒤 90℃에서 16시간 동안 교반한다. 합성된 Pt-Pd 나노 팔면체 용액 5 mL에 아세톤 50 mL를 첨가하여 원심분리기로 침전시킴으로써 Pd 팔면체를 수집하고, 용액에 남은 PVP를 제거하기 위해 DI water에 여러 회 세척한다.The Pd nanosecal body solution prepared by the method up to the silica supporting step of Comparative Example 1 was dispersed in 5 mL of DI water. Increase the temperature of PVD (0.132 g) and KBr (0.06 g) in DI water (11 mL) and Pd octahedron solution (5 mL) to 90 ° C. 6 mL of a solution of K 2 PtCl 4 (Sigma-Aldrich, ≥98%, 0.42 mg) in DI water is injected at a rate of 60 mL / hr and stirred at 90 ° C. for 16 hours. To 5 mL of the synthesized Pt-Pd nano-octahedron solution, add 50 mL of acetone, precipitate the Pd octahedra by centrifugation, and wash several times in DI water to remove residual PVP in the solution.
이후 실리카 담지 과정과 촉매 환원 조건은 비교예 1과 동일하다.The silica supporting process and the catalyst reduction conditions are the same as in Comparative Example 1.
실시예Example 2. 극소량이 Pt로 치환된 Pd 나노 팔면체 (이하, Pt-Pd 나노 팔면체(2)로 표시함)/ 2. Pd nano octahedron (hereinafter referred to as Pt-Pd nano octahedron (2)) in which a very small amount is substituted with Pt / SiOSiO 22 촉매 제조 Catalyst preparation
KBr을 0.06 g이 아닌 0.12 g 넣고 합성하는 것 이외의 과정은 모두 실시예 1과 같다. Except that 0.02 g of KBr was added instead of 0.06 g, the procedure was the same as that of Example 1 except for the synthesis.
실험예Experimental Example 1. One. 유도결합플라즈마Inductively coupled plasma 분광분석기(ICP- Spectrometer (ICP- OESOES )를 이용한 Pd, Pt의 함량 측정) To determine the contents of Pd and Pt
ICP-OES 분석을 통하여 비교예 1 및 실시예 1 내지 2의 촉매의 Pd와 Pt의 함량을 측정하였고, 그 결과를 하기 [표 1]에 나타내었다. Pt가 첨가되지 않은 비교예 1의 경우 Pd가 7839 ppm이었으며, Pt와 갈바닉 치환 반응을 진행한 실시예 2의 경우 Pd는 5963 ppm이고 Pt는 93.58 ppm으로 측정되었다. 이 측정치로써 계산한 Pt/Pd 몰수의 비율은 0.0086, 즉 0.86%이다.The contents of Pd and Pt in the catalysts of Comparative Example 1 and Examples 1 and 2 were measured through ICP-OES analysis, and the results are shown in Table 1 below. In the case of Comparative Example 1 in which Pt was not added, Pd was 7839 ppm, and in Example 2 in which Pt and galvanic substitution proceeded, Pd was 5963 ppm and Pt was 93.58 ppm. The ratio of the number of moles of Pt / Pd calculated by this measurement is 0.0086, or 0.86%.
KBr을 보다 적게 넣고 합성한 실시예 1의 경우 Pd가 6849 ppm, Pt가 68.76 ppm으로 측정되었으며, Pt/Pd의 몰비(mole ratio)는 0.0055이다.Pd was 6849 ppm and Pt was 68.76 ppm, and the mole ratio of Pt / Pd was 0.0055 in Example 1 in which KBr was added in a smaller amount.
실험예Experimental Example 2. 투과 전자 현미경 관찰(Transmission Electron Microscope) 2. Transmission Electron Microscope (Transmission Electron Microscope)
비교예 1 및 실시예 1 내지 2의 촉매를 투과 전자 현미경(TEM)으로 관찰하여 하기 도 1에 나타내었다. 전자 현미경으로 관찰된 사진은 상기 실험예 1을 보충하는 자료로 사용하였다. 비교예 1과 실시예 1 내지 2 모두 거의 같은 크기로 나타났으며 같은 팔면체 입자의 형태를 보였다.The catalysts of Comparative Example 1 and Examples 1 and 2 were observed with a transmission electron microscope (TEM) and are shown in FIG. The photographs observed with an electron microscope were used as data supplementing the above Experimental Example 1. Comparative Example 1 and Examples 1 and 2 were almost the same size and showed the same octahedral particle shape.
실험예Experimental Example 3. 3. HAADFHAADF -STEM(High-Angle Annular Dark-Field imaging-Scanning Transmission Electron Microscope) 관찰-STM (High-Angle Annular Dark-Field Imaging-Scanning Transmission Electron Microscope) Observation
실시예 2인 Pt-Pd 나노 팔면체 촉매 입자를 HAADF-STEM으로 관찰하여 하기 도 2에 나타내었다. HAADF-STEM으로 관찰된 사진은 상기 실험예 1을 보충하는 자료로 사용하였다.The Pt-Pd nano octahedral catalyst particles of Example 2 were observed by HAADF-STEM and are shown in FIG. The photographs observed with HAADF-STEM were used as supplementary data for Experimental Example 1 above.
하기 도 2는 갈바닉 치환 반응에 의해서 팔면체 표면의 팔라듐(Pd) 원자가 백금(Pt)으로 일부 치환된 팔라듐(Pd) 나노 팔면체 촉매를 HAADF로 관찰하고 팔라듐(Pd)와 백금(Pt)을 매핑한 이미지로서, 치환된 백금(Pt) 원자가 팔면체의 표면에 존재하는 것을 확인할 수 있다.FIG. 2 shows an image obtained by observing a palladium (Pd) nano-octahedral catalyst in which a palladium (Pd) atom on the octahedron surface is partially substituted with platinum (Pt) by HAADF and mapping palladium (Pd) , It can be confirmed that a substituted platinum (Pt) atom exists on the surface of the octahedron.
실험예Experimental Example 4. 과산화수소 제조 4. Manufacture of hydrogen peroxide
실시예 1 내지 2 및 비교예 1의 촉매를 60 ℃에서 2시간 동안 환원하여 이중자켓 반응기에 반응 용매 (DI water, 120 mL; 에탄올 (ethanol) 30 mL; 및 인산 (H3PO4) 0.03 M, KBr 0.15 mM)와 촉매 0.2 g을 넣고 3시간 동안 반응을 진행하였다. 반응 온도는 20 ℃, 압력은 1 atm으로 유지하였고, 반응 가스 (H2/O2=1/10)는 분당 22 mL을 일정하게 흘려주었다. 그리고 반응 후 생성된 과산화수소를 수거하였다.Examples 1 to 2 and Comparative Example 1, the reaction of the catalyst in the at 60 ℃ reduction for 2 hours double jacket reactor solvent (DI water, 120 mL; ethanol (ethanol) 30 mL; and phosphoric acid (H 3 PO 4) 0.03 M , KBr 0.15 mM) and 0.2 g of the catalyst were added, and the reaction was carried out for 3 hours. The reaction temperature was maintained at 20 ° C and the pressure was maintained at 1 atm. The reaction gas (H 2 / O 2 = 1/10) was flowed constantly at 22 mL per minute. The hydrogen peroxide produced after the reaction was collected.
수거한 과산화수소의 농도는 요오드 적정법을 이용하여 하기 [수학식 1]로 측정하였으며, 과산화수소 생성 속도는 하기 [수학식 2]로 계산하였다. 과산화수소 직접 제조반응의 결과는 하기 도 3에 나타내었다.The concentration of the collected hydrogen peroxide was measured by the following equation (1) using the iodometric titration method, and the rate of hydrogen peroxide generation was calculated by the following equation (2). The results of the hydrogen peroxide direct preparation reaction are shown in FIG.
[수학식 1][Equation 1]
[수학식 2] &Quot; (2) "
하기 도 3에 나타난 바와 같이, 실시예 2 촉매를 사용한 것이 비교예 1과 비교하여 과산화수소 생성 속도가 2배 가량 높게 측정되었다. 실시예 1의 경우 비교예 1보다 활성이 높기는 하지만 실시예 2에 비해 낮은 생성 속도를 보였다.As shown in FIG. 3, the hydrogen peroxide generation rate was measured to be twice as high as that in Comparative Example 1, in which the catalyst of Example 2 was used. In the case of Example 1, although the activity was higher than that of Comparative Example 1, the production rate was lower than that of Example 2.
Claims (10)
상기 촉매는 실리카(SiO2), 티타니아(TiO2), 티타늄 나이트라이드(TiN), 마그네슘 산화물, 세륨 산화물, 탄소 또는 이들의 혼합물을 담체로 사용하는 것을 특징으로 하는 과산화수소 제조용 촉매.The method according to claim 1,
Wherein the catalyst is selected from the group consisting of silica (SiO 2 ), titania (TiO 2 ), titanium nitride (TiN), magnesium oxide, cerium oxide, carbon or mixtures thereof.
상기 귀금속 원자는 Au, Pt 및 Ir 중에서 선택되는 어느 하나인 것을 특징으로 하는 과산화수소 제조용 촉매.The method according to claim 1,
Wherein the noble metal atom is any one selected from Au, Pt, and Ir.
상기 갈바닉 치환 반응에 할로겐 이온 (F-, Cl-, Br-, I-)을 사용하는 것을 특징으로 하는 과산화수소 제조용 촉매.The method according to claim 1,
Wherein a halogen ion (F - , Cl - , Br - , I - ) is used for the galvanic substitution reaction.
상기 갈바닉 치환 반응에서 할로겐 이온 (F-, Cl-, Br-, I-)의 농도가 0.01~0.05M 농도인 것을 특징으로 하는 과산화수소 제조용 촉매.5. The method of claim 4,
Wherein the concentration of the halogen ion (F - , Cl - , Br - , I - ) in the galvanic substitution reaction is 0.01 to 0.05M concentration.
상기 용매는 메탄올, 에탄올 및 이들의 혼합물 중에서 선택되는 알코올 용매이거나, 또는 상기 알코올 용매와 물의 혼합 용매인 것을 특징으로 하는 과산화수소의 제조방법.The method according to claim 6,
Wherein the solvent is an alcohol solvent selected from the group consisting of methanol, ethanol and mixtures thereof, or a mixed solvent of the alcohol solvent and water.
상기 용매는 황산(H2SO4), 염산(HCl), 인산(H3PO4) 및 질산(HNO3) 중에서 선택되는 1종 이상의 산을 더 포함하는 것을 특징으로 하는 과산화수소의 제조방법.8. The method of claim 7,
Wherein the solvent further comprises at least one acid selected from sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ) and nitric acid (HNO 3 ).
상기 수소와 산소의 몰비는 1 : 5 내지 1 : 15인 것을 특징으로 하는 과산화수소의 제조방법.The method according to claim 6,
Wherein the molar ratio of hydrogen to oxygen is 1: 5 to 1:15.
상기 반응은 1 내지 40 기압의 압력 및 0 내지 30 °C의 온도에서 수행되는 것을 특징으로 하는 과산화수소의 제조방법.The method according to claim 6,
Wherein the reaction is carried out at a pressure of from 1 to 40 atm and at a temperature of from 0 to 30 < RTI ID = 0.0 > OC. ≪ / RTI >
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160175321A KR20180072100A (en) | 2016-12-21 | 2016-12-21 | Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts |
PCT/KR2017/015194 WO2018117665A1 (en) | 2016-12-21 | 2017-12-21 | Palladium nano-octahedral catalyst in which palladium atoms are substituted with noble metal atoms through galvanic substitution reaction and method for direct preparation of hydrogen peroxide using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160175321A KR20180072100A (en) | 2016-12-21 | 2016-12-21 | Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180072100A true KR20180072100A (en) | 2018-06-29 |
Family
ID=62627532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160175321A Ceased KR20180072100A (en) | 2016-12-21 | 2016-12-21 | Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180072100A (en) |
WO (1) | WO2018117665A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230011722A (en) | 2021-07-14 | 2023-01-25 | 건국대학교 산학협력단 | Method for preparing metallic nanostructure using galvanic replacement reaction and metallic nanostructure prepared thereby |
KR20230018771A (en) | 2021-07-30 | 2023-02-07 | 건국대학교 산학협력단 | Method for preparing electrorheological fluid containing hollow nanoparticles and electrorheological fluid prepared thereby |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1318549B1 (en) * | 2000-06-01 | 2003-08-27 | Eni Spa | PROCESS FOR THE CONTINUOUS PRODUCTION OF OXYGEN WATER. |
GB0514075D0 (en) * | 2005-07-11 | 2005-08-17 | Cardiff University | Improvements in catalysts |
EP2000205A1 (en) * | 2007-06-01 | 2008-12-10 | Repsol Ypf S.A. | Process to obtain hydrogen peroxide |
KR101359766B1 (en) * | 2011-12-21 | 2014-02-07 | 한국과학기술원 | Method for preparing Pt-Pd bimetallic hollow catalyst, and catalyst and PEMFC using the same |
-
2016
- 2016-12-21 KR KR1020160175321A patent/KR20180072100A/en not_active Ceased
-
2017
- 2017-12-21 WO PCT/KR2017/015194 patent/WO2018117665A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230011722A (en) | 2021-07-14 | 2023-01-25 | 건국대학교 산학협력단 | Method for preparing metallic nanostructure using galvanic replacement reaction and metallic nanostructure prepared thereby |
KR20230018771A (en) | 2021-07-30 | 2023-02-07 | 건국대학교 산학협력단 | Method for preparing electrorheological fluid containing hollow nanoparticles and electrorheological fluid prepared thereby |
Also Published As
Publication number | Publication date |
---|---|
WO2018117665A1 (en) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101804659B1 (en) | Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using the same | |
US7973184B2 (en) | Method for producing propylene oxide | |
US20020119092A1 (en) | Process for producing hydrogen peroxide | |
KR20180024478A (en) | Nano-catalyst for preparing hydrogen peroxide having mesoporous shell and method for preparing hydrogen peroxide using the same | |
KR20140093700A (en) | A catalyst for direct synthesis of hydrogen peroxide | |
KR102233648B1 (en) | Method of preparing rutile titania supported Pd catalyst for synthesis of hydrogen peroxide, and Method of preaparing heydrogen oxide using the Pd catalyst | |
KR20180072100A (en) | Pd octahedron nano catalysts with noble metal doping by galvanic replacement method and method for direct synthesis of hydrogen peroxide using the catalysts | |
Bepari et al. | Synthesis of nanoscale CuO via precursor method and its application in the catalytic epoxidation of styrene | |
KR101804019B1 (en) | Nanoparticle catalysis for synthesis of hydrogen peroxide and method of synthesis of hydrogen peroxide using said catalysis | |
KR101825907B1 (en) | Catalyst for preparing hydrogen peroxide having core-shell structure and method for preparing hydrogen peroxide using the same | |
JP5048643B2 (en) | Direct production method of hydrogen peroxide using ionic liquid | |
KR101515677B1 (en) | Process for Direct Synthesis of H2O2 from H2 and O2 Using Hihgly Uniform Palladium Nanoparticles | |
KR101990025B1 (en) | Method of preparing Pd catalyst for synthesis of hydrogen peroxide using alkali metal, and Method of preaparing heydrogen oxide using the Pd catalyst | |
EP0844251A1 (en) | Process for the production of ruthenium (III) acetate solution | |
TWI589519B (en) | Method of manufacturing hydrogen peroxide | |
WO2018016359A1 (en) | Noble metal catalyst for manufacturing hydrogen peroxide, and method for manufacturing hydrogen peroxide | |
WO2012133149A1 (en) | Method for direct production of hydrogen peroxide using brookite type titanium oxide | |
KR101602696B1 (en) | Direct synthesis of hydrogen peroxide from hydrogen and oxygen using size controlled cubic Pd nanoparticle supported catalysts | |
KR101602695B1 (en) | Direct synthesis of hydrogen peroxide from hydrogen and oxygen using shape controlled Pd nanoparticle supported catalysts | |
EP2468398A1 (en) | Process for the electrochemical synthesis of hydrogen peroxide and use of a catalyst therefore | |
KR102790464B1 (en) | Palladium-containing composition and method for producing hydrogen peroxide | |
KR102717345B1 (en) | Method of preparing catalyst for synthesis of hydrogen peroxide, and Method of preparing hydrogen oxide using the catalyst | |
KR20180065494A (en) | Method of preparing Pd catalyst for synthesis of hydrogen peroxide using sonication, and Method of preaparing heydrogen oxide using the Pd catalyst | |
KR101616195B1 (en) | Direct synthesis of hydrogen peroxide using Pd/silica-alumina catalysts having core/shell structure | |
KR20210055670A (en) | Palladium-containing composition and method for producing hydrogen peroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20161221 |
|
PG1501 | Laying open of application | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20190613 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20161221 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200810 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20210524 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20200810 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20210524 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20210209 Comment text: Amendment to Specification, etc. |
|
PX0601 | Decision of rejection after re-examination |
Comment text: Decision to Refuse Application Patent event code: PX06014S01D Patent event date: 20210805 Comment text: Amendment to Specification, etc. Patent event code: PX06012R01I Patent event date: 20210722 Comment text: Decision to Refuse Application Patent event code: PX06011S01I Patent event date: 20210524 Comment text: Amendment to Specification, etc. Patent event code: PX06012R01I Patent event date: 20210209 Comment text: Notification of reason for refusal Patent event code: PX06013S01I Patent event date: 20200810 |
|
X601 | Decision of rejection after re-examination |