[go: up one dir, main page]

WO2017191779A1 - 異方性導電フィルム - Google Patents

異方性導電フィルム Download PDF

Info

Publication number
WO2017191779A1
WO2017191779A1 PCT/JP2017/016282 JP2017016282W WO2017191779A1 WO 2017191779 A1 WO2017191779 A1 WO 2017191779A1 JP 2017016282 W JP2017016282 W JP 2017016282W WO 2017191779 A1 WO2017191779 A1 WO 2017191779A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive film
conductive particles
repeating unit
film
Prior art date
Application number
PCT/JP2017/016282
Other languages
English (en)
French (fr)
Inventor
恭志 阿久津
怜司 塚尾
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017085743A external-priority patent/JP7274810B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020217007174A priority Critical patent/KR20210031536A/ko
Priority to US16/096,606 priority patent/US10854571B2/en
Priority to KR1020187021396A priority patent/KR102228112B1/ko
Priority to CN201780025129.XA priority patent/CN109417233B/zh
Publication of WO2017191779A1 publication Critical patent/WO2017191779A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1712Layout
    • H01L2224/1714Circular array, i.e. array with radial symmetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/819Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector with the bump connector not providing any mechanical bonding
    • H01L2224/81901Pressing the bump connector against the bonding areas by means of another connector
    • H01L2224/81903Pressing the bump connector against the bonding areas by means of another connector by means of a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to an anisotropic conductive film.
  • anisotropic conductive film in which conductive particles are dispersed in an insulating resin binder is widely used when an electronic component such as an IC chip is mounted on a wiring board or the like.
  • anisotropic conductive films by narrowing the pitch of bumps due to high-density mounting of electronic components, it is strongly required to improve the trapping property of conductive particles in the bumps and avoid short circuit between adjacent bumps. .
  • Patent Literature 1 In response to such a request, it has been proposed to arrange the conductive particles in the anisotropic conductive film in a grid-like arrangement and to incline the arrangement axis with respect to the longitudinal direction of the anisotropic conductive film (patent) Literature 1, Patent Literature 2).
  • the bump layout corresponds to the inclination angle of the arrangement axis and the distance between the conductive particles. Therefore, if the bumps have a narrow pitch, the distance between the conductive particles must be reduced, the number density of the conductive particles increases, and the manufacturing cost of the anisotropic conductive film increases.
  • an object of the present invention is to deal with a narrow pitch bump and to reduce the number density of conductive particles as compared with a conventional anisotropic conductive film.
  • the present inventor does not arrange the conductive particles in a plan view of the anisotropic conductive film, but repeatedly arranges the conductive particles vertically and horizontally by repeating polygonal units composed of a plurality of conductive particles.
  • the inventors have found that the above-mentioned problems can be solved by obliquely intersecting the sides of the rectangular shape with respect to the longitudinal direction or the short direction of the anisotropic conductive film, and have conceived the present invention.
  • the present invention is an anisotropic conductive film in which conductive particles are arranged in an insulating resin binder, In a plan view, polygonal repeating units formed by sequentially connecting the centers of a plurality of conductive particles are repeatedly arranged, Provided is an anisotropic conductive film in which the polygons of the repeating unit have sides oblique to the longitudinal direction or the short direction of the anisotropic conductive film.
  • the conductive particles are not arranged in a simple lattice pattern, but the repeating units formed by a plurality of conductive particles are repeatedly arranged.
  • the narrowed part exists uniformly throughout the film.
  • the polygon of the repeating unit has a side that is oblique to the longitudinal direction or the short direction of the anisotropic conductive film, the trapping property of the conductive particles in the bump is high. Therefore, it is possible to connect bumps having a narrow pitch without causing a short circuit.
  • the portion where the interparticle distance of the conductive particles is increased is uniformly present throughout the film, so that the number density of the conductive particles in the entire anisotropic conductive film is increased. It can suppress and the increase in the manufacturing cost accompanying the increase in the number density of electroconductive particle can be suppressed. Further, by suppressing an increase in the number density of the conductive particles, an increase in thrust required for the pressing jig at the time of anisotropic conductive connection can be suppressed. Therefore, the pressure applied to the electronic component from the pressing jig during the anisotropic conductive connection can be reduced, and deformation of the electronic component can be prevented.
  • FIG. 1A is a plan view illustrating the arrangement of conductive particles of the anisotropic conductive film 1A of the example.
  • FIG. 1B is a plan view illustrating the arrangement of the conductive particles of the anisotropic conductive film 1A of the example.
  • FIG. 1C is a cross-sectional view of the anisotropic conductive film 1A of the example.
  • FIG. 2A is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1Ba of the example.
  • FIG. 2B is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1Bb of the example.
  • FIG. 1A is a plan view illustrating the arrangement of conductive particles of the anisotropic conductive film 1A of the example.
  • FIG. 1B is a plan view illustrating the arrangement of the conductive particles of the anisotropic conductive film 1A of the example.
  • FIG. 1B is a plan view illustrating the arrangement of the
  • FIG. 3A is a plan view illustrating the arrangement of conductive particles of the anisotropic conductive film 1Ca of the example.
  • FIG. 3B is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1Cb of the example.
  • FIG. 4A is a plan view illustrating the arrangement of conductive particles of the anisotropic conductive film 1Da of the example.
  • FIG. 4B is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1Db of the example.
  • FIG. 5A is a plan view illustrating the arrangement of conductive particles of the anisotropic conductive film 1Ea of the example.
  • FIG. 5B is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1Eb of the example.
  • FIG. 6 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1F of the example.
  • FIG. 7 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1G of the example.
  • FIG. 8 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1H of the example.
  • FIG. 9 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1I of the example.
  • FIG. 10 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1J of the example.
  • FIG. 11 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1K of the example.
  • FIG. 12 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1L of the example.
  • FIG. 13 is a plan view for explaining the arrangement of the conductive particles of the anisotropic conductive film 1M of the example.
  • FIG. 14 is a cross-sectional view of the anisotropic conductive film 1a of the example.
  • FIG. 15 is a cross-sectional view of the anisotropic conductive film 1b of the example.
  • FIG. 16 is a cross-sectional view of the anisotropic conductive film 1c of the example.
  • FIG. 17 is a cross-sectional view of the anisotropic conductive film 1d of the example.
  • FIG. 18 is a cross-sectional view of the anisotropic conductive film 1e of the example.
  • FIG. 1A is a plan view showing the arrangement of conductive particles of an anisotropic conductive film 1A according to an embodiment of the present invention
  • FIG. 1C is a cross-sectional view thereof.
  • the anisotropic conductive film 1A has a structure in which the conductive particles 2 are arranged in a single layer on the surface of the insulating resin binder 3 or in the vicinity thereof, and the insulating adhesive layer 4 is laminated thereon.
  • the anisotropic conductive film of the present invention may have a configuration in which the insulating adhesive layer 4 is omitted and the conductive particles 2 are embedded in the insulating resin binder 3.
  • the electroconductive particle 2 what is used in the well-known anisotropic conductive film can be selected suitably, and can be used.
  • examples thereof include metal particles such as nickel, copper, silver, gold, and palladium, and metal-coated resin particles in which the surfaces of resin particles such as polyamide and polybenzoguanamine are coated with a metal such as nickel.
  • the size of the conductive particles to be arranged is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and further preferably 2 ⁇ m or more and 6 ⁇ m or less.
  • the average particle diameter of the conductive particles 2 can be measured by an image type or laser type particle size distribution meter. You may obtain
  • the surface of the conductive particles 2 is preferably covered with an insulating coat or an insulating particle treatment. Such a coating is easy to peel off from the surface of the conductive particles 2 and does not interfere with the anisotropic conductive connection. Further, protrusions may be provided on the entire surface or a part of the surface of the conductive particles 2. The height of the protrusion is preferably within 20% of the conductive particle diameter, and preferably within 10%.
  • FIG. 1A to FIG. 7 below will describe an example of the arrangement of repeating units when the polygonal repeating unit 5 is a trapezoid.
  • the arrangement of the conductive particles 2 in a plan view of the anisotropic conductive film 1A shown in FIG. 1A is such that the polygonal repeating unit 5 formed by sequentially connecting the centers of the plurality of conductive particles 2a, 2b, 2c, and 2d is orthogonal. This is repeated in two directions (X direction and Y direction), and is disposed on one surface of the anisotropic conductive film 1 (that is, entirely).
  • the anisotropic conductive film of this invention can have the area
  • the conductive particles are arranged on a part of the apex of the regular triangle when the regular triangles are arranged without gaps (or the apex of the regular hexagon when the regular hexagons are arranged without gaps).
  • the conductive particles at the predetermined lattice points are regularly removed from the arrangement in which the conductive particles exist at each lattice point of the hexagonal lattice. Therefore, the trapezoidal apex of the repeating unit 5 composed of the conductive particles 2a, 2b, 2c, and 2d is a part of a regular hexagon that is a combination of regular triangles, and exists at lattice points of a hexagonal lattice.
  • the sides 2c and 2d overlap with the sides 2g and 2h of the adjacent trapezoidal repeating unit (that is, the repeating unit including the conductive particles 2e, 2f, 2g, and 2h). .
  • a regular hexagonal repeating unit 5x composed of the conductive particles 2p, 2q, 2r, 2s, 2t, and 2u has one side in the X direction.
  • the repeat unit in the present invention is a polygon composed of four or more conductive particles, It is preferable to regard the polygon as the smallest unit that is repeated in the vertical and horizontal directions of the anisotropic conductive film without overlapping the sides of the square.
  • Each side of the trapezoid of the repeating unit 5 (FIG. 1A) is oblique to the longitudinal direction and the lateral direction of the anisotropic conductive film 1A.
  • the outer tangent L1 of the conductive particle 2a in the longitudinal direction of the anisotropic conductive film penetrates the conductive particle 2b adjacent to the conductive particle 2a in the longitudinal direction of the anisotropic conductive film.
  • the outer tangent L2 of the conductive particle 2a in the short direction of the anisotropic conductive film penetrates the conductive particle 2d adjacent to the conductive particle 2a in the short direction of the anisotropic conductive film.
  • the polygonal side of the repeating unit 5 is the longitudinal direction or the short direction of the anisotropic conductive film 1A.
  • the trapping property of the conductive particles 2 can be improved.
  • the repeating unit does not necessarily have all sides thereof obliquely crossed with the longitudinal direction or the short direction of the anisotropic conductive film, but the short direction of each bump is anisotropically conductive.
  • the longitudinal direction of a film it is preferable that each side of a repeating unit crosses the longitudinal direction or short direction of an anisotropic conductive film from the point of the capture
  • the polygon forming the repeating unit has a side in the longitudinal direction or the lateral direction of the anisotropic conductive film.
  • the bump arrangement pattern may be radial (for example, JP 2007-19550 A, JP 2015-232660 A, etc.). In this case, the angle formed by the longitudinal direction of each bump and the longitudinal direction and short direction of the anisotropic conductive film changes gradually.
  • the repeating unit 5 can be arranged with respect to the longitudinal edges of the individual bumps arranged radially.
  • the sides of the polygon are oblique. Therefore, it is possible to avoid a phenomenon in which most of the conductive particles applied to the edge of the bump at the time of anisotropic conductive connection are not captured by the bump and the capturing property of the conductive particle is lowered.
  • the polygon which makes the repeating unit 5 has the side of the longitudinal direction or a transversal direction of an anisotropic conductive film from the point which makes easy confirmation of the quality of a connection state by the impression after anisotropic conductive connection.
  • the polygon forming the repeating unit 5 has a side in the longitudinal direction or the short direction of the anisotropic conductive film, and a symmetrical shape having the short direction or the longitudinal direction of the anisotropic conductive film as the axis of symmetry.
  • the repeating unit 5 is repeatedly arrange
  • the trapezoid of the repeating unit 5 is a trapezoid having an axis of symmetry in the short direction of the anisotropic conductive film, and the bottom and upper sides thereof are the length of the anisotropic conductive film.
  • the base and top of a similar trapezoidal repeating unit may be parallel to the lateral direction of the anisotropic conductive film, as in the anisotropic conductive film 1Bb shown in FIG. 2B.
  • the arrangement of the conductive particles 2 in the repeating unit 5 and the vertical and horizontal repeating pitches of the repeating unit 5 can be changed as appropriate according to the shape and pitch of the terminals to be connected for anisotropic conductive connection. Therefore, as compared with the case where the conductive particles 2 are arranged in a simple lattice pattern, the entire anisotropic conductive film can achieve high trapping properties with a small number of conductive particles. For example, in order to increase the number density of the conductive particles in the longitudinal direction of the anisotropic conductive film with respect to the above-described anisotropic conductive film 1Ba, a trapezoidal repeating unit 5 like the anisotropic conductive film 1Ca shown in FIG. 3A.
  • the trapezoidal repeating unit 5 and the trapezoidal repeating unit were inverted with respect to the longitudinal axis of the film in the longitudinal direction of the anisotropic conductive film. It is good also as arrangement
  • the anisotropic conductive film 1Cb shown in FIG. In the longitudinal direction of the conductive conductive film, the trapezoidal repeating unit 5 is repeated in its shape, and in the width direction of the anisotropic conductive film, the repeating unit 5 and the repeating unit are arranged in the short direction of the anisotropic conductive film. It is good also as arrangement
  • different repeating units 5, 5B are used as in the anisotropic conductive film 1Ea shown in FIG. 5A.
  • the interval between the repeating rows in the longitudinal direction of the anisotropic conductive film may be widened, and the repeating unit 5 as shown in the anisotropic conductive film 1Eb shown in FIG. 5B in order to reduce the number density in the longitudinal direction of the anisotropic conductive film.
  • the interval between the repeating rows in the width direction of the anisotropic conductive film of 5B may be widened.
  • the repeat pitch in the Y direction of the repeat unit 5 may be increased with respect to the arrangement of the conductive particles of the anisotropic conductive film 1A shown in FIG. 1A.
  • each conductive particle 2 overlaps one of the vertices of the regular hexagon when the regular hexagons are arranged without gaps.
  • the arrangement of the conductive particles shown in FIG. It differs from the arrangement of the conductive particles shown in FIG. 1A in that not all the conductive particles are necessarily the apexes of a regular hexagon when regular hexagons are arranged without gaps.
  • the repetition pitch in the Y direction may be further expanded, and the single conductive particles 2p may be arranged between the repeating units 5 adjacent in the Y direction. These repeating units may be arranged.
  • the repeating pitch in the X direction of the repeating unit 5 may be appropriately changed, and a single conductive particle or a separate repeating unit may be arranged between the repeating pitches in the X direction.
  • the trapezoidal repeating unit 5 or the repeating unit 5B obtained by inverting it is repeated in the short or long direction of the anisotropic conductive film.
  • a row of single conductive particles 2p may be disposed between the row in the width direction of the anisotropic conductive film and the row in the width direction of the anisotropic conductive film of the repeating unit 5B.
  • the conductive particles 2 are arranged in an orthorhombic lattice, and the single conductive particle 2p is present at the center of the unit lattice.
  • the repeating unit 5 itself may be formed in a diamond shape as in the anisotropic conductive film 1I shown in FIG.
  • the conductive particles 2 are inclined with respect to the longitudinal direction and the short direction of the anisotropic conductive film and to them. Since it exists in the direction, it becomes easy to improve both the capturing property of the conductive particles and the suppression of the short circuit at the time of anisotropic conductive connection.
  • the particle arrangement is the same as that of the anisotropic conductive film 1J in FIG. Also good.
  • the repeating unit is not limited to the arrangement in which the conductive particles occupy a part of the apexes of the regular hexagon (that is, the lattice points of the hexagonal lattice) when the regular triangles are arranged without gaps.
  • the conductive particles may occupy a part of the lattice points of the square lattice.
  • FIG. 5A shows an arrangement in which a trapezoid similar to the arrangement of conductive particles shown in FIG. 5A and a repeating unit 5B in which the same trapezoid is inverted are alternately repeated in the longitudinal direction and the short direction of the anisotropic conductive film. 12 can be formed on lattice points of a tetragonal lattice like the anisotropic conductive film 1L shown in FIG.
  • the number of vertices forming the polygon of the repeating unit is not limited to four, but may be five or more, six or more, or seven or more. However, in order to make it easy to recognize the shape of the repeating unit in the design and production process of manufacturing the anisotropic conductive film, it is preferable that the number of vertices of the repeating unit is an even number.
  • the polygonal shape forming the repeating unit may be a regular polygon or may not be a regular polygon, but a shape having an axis of symmetry is preferable from the viewpoint of easily recognizing the shape of the repeating unit.
  • each conductive particle constituting the repeating unit may not be present at a lattice point of a hexagonal lattice or a tetragonal lattice.
  • the repeating unit 5 may be configured from conductive particles positioned at the apex of a regular octagon.
  • the polygonal shape of the repeating unit is the shape of the bump or terminal for anisotropic conductive connection, the pitch, the inclination angle of the bump or terminal in the longitudinal direction with respect to the film longitudinal direction of the anisotropic conductive film, and the insulation in the anisotropic conductive film. It can be appropriately determined according to the resin composition of the conductive resin binder.
  • the arrangement of the conductive particles in the present invention is not limited to the illustrated arrangement of repeating units, and for example, the illustrated arrangement of repeating units may be inclined.
  • an aspect in which the film is inclined by 90 °, that is, a mode in which the longitudinal direction and the short direction of the film are interchanged is also included.
  • interval of the electrically-conductive particle in a repeating unit may be used.
  • the shortest interparticle distance of the conductive particles is preferably 0.5 times or more the average particle diameter of the conductive particles both between the adjacent conductive particles in the repeating unit and between the adjacent conductive particles between the repeating units. If this distance is too short, a short circuit is likely to occur due to contact between the conductive particles.
  • the upper limit of the distance between adjacent conductive particles is determined according to the bump shape and bump pitch. For example, when the bump width is 200 ⁇ m and the space between the bumps is 200 ⁇ m, when at least one conductive particle is present in either the bump width or the space between the bumps, the shortest distance between the conductive particles is less than 400 ⁇ m. From the viewpoint of ensuring the trapping property of the conductive particles, the thickness is preferably less than 200 ⁇ m.
  • the number density of the conductive particles is a conductive material because it suppresses the manufacturing cost of the anisotropic conductive film and prevents the thrust required for the pressing jig used for anisotropic conductive connection from becoming excessively large.
  • the average particle diameter of the particles is less than 10 ⁇ m, 50000 / mm 2 or less is preferable, 35000 / mm 2 or less is more preferable, and 30000 / mm 2 or less is more preferable.
  • the number density of the conductive particles is preferably 300 / mm 2 or more, more preferably 500 / mm 2 or more, since there is a concern about poor conduction due to insufficient capture of the conductive particles at the terminal if the number density is too small. 800 / mm 2 or more is more preferable.
  • the average particle size of conductive particles is not less than 10 [mu] m, preferably from 15 / mm 2 or higher, more preferably 50 / mm 2 or higher, more preferably 160 / mm 2 or higher. This is because as the conductive particle diameter increases, the occupied area ratio of the conductive particles also increases. For the same reason, it is preferably 1800 pieces / mm 2 or less, more preferably 1100 pieces / mm 2 or less, and still more preferably 800 pieces / mm 2 or less.
  • the number density of the conductive particles may be locally deviated (for example, 200 ⁇ m ⁇ 200 ⁇ m) from the number density described above.
  • thermopolymerizable composition As the insulating resin binder 3, a thermopolymerizable composition, a photopolymerizable composition, a photothermal combined polymerizable composition, etc. that are used as an insulating resin binder in a known anisotropic conductive film are appropriately selected and used. can do.
  • thermo polymerizable composition a thermal radical polymerizable resin composition containing an acrylate compound and a thermal radical polymerization initiator, a thermal cationic polymerizable resin composition containing an epoxy compound and a thermal cationic polymerization initiator, and an epoxy compound And a thermal anion polymerization initiator containing a thermal anion polymerization initiator, and the photopolymerizable composition includes a photo radical polymerizable resin composition containing an acrylate compound and a photo radical polymerization initiator.
  • a plurality of types of polymerizable compositions may be used in combination. Examples of the combination include the combined use of a thermal cationic polymerizable composition and a thermal radical polymerizable composition.
  • the photopolymerization initiator a plurality of types that react to light having different wavelengths may be contained. Accordingly, the wavelength used for the photocuring of the resin constituting the insulating resin layer during the production of the anisotropic conductive film and the photocuring of the resin for bonding the electronic components to each other during the anisotropic conductive connection. Can be used properly.
  • the insulating resin binder 3 When the insulating resin binder 3 is formed using a photopolymerizable composition, all or part of the photopolymerizable compound contained in the insulating resin binder 3 is obtained by photocuring during the production of the anisotropic conductive film. Can be photocured. By this photocuring, the arrangement of the conductive particles 2 in the insulating resin binder 3 is maintained or fixed, and it is expected that the short circuit is suppressed and the capture is improved. Moreover, the viscosity of the insulating resin layer in the manufacturing process of an anisotropic conductive film can be adjusted by adjusting the conditions of this photocuring.
  • the blending amount of the photopolymerizable compound in the insulating resin binder 3 is preferably 30% by mass or less, more preferably 10% by mass or less, and still more preferably less than 2% by mass. This is because when the amount of the photopolymerizable compound is too large, the thrust applied to the indentation at the time of anisotropic conductive connection increases.
  • the heat-polymerizable composition contains a heat-polymerizable compound and a heat-polymerization initiator.
  • the heat-polymerizable compound one that also functions as a photopolymerizable compound may be used.
  • you may make a thermopolymerizable composition contain a photopolymerizable initiator while containing a photopolymerizable compound separately from a thermopolymerizable compound.
  • a photopolymerizable compound and a photopolymerization initiator are contained separately from the thermally polymerizable compound.
  • a thermal cationic polymerization initiator is used as the thermal polymerization initiator
  • an epoxy resin is used as the thermopolymerizable compound
  • a photoradical initiator is used as the photopolymerization initiator
  • an acrylate compound is used as the photopolymerizable compound.
  • the insulating binder 3 may include a cured product of these polymerizable compositions.
  • acrylate compound used as the heat or photopolymerizable compound a conventionally known thermal polymerization type (meth) acrylate monomer can be used.
  • a monofunctional (meth) acrylate monomer or a bifunctional or higher polyfunctional (meth) acrylate monomer can be used.
  • the epoxy compound used as the polymerizable compound forms a three-dimensional network structure and imparts good heat resistance and adhesion, and it is preferable to use a solid epoxy resin and a liquid epoxy resin in combination.
  • the solid epoxy resin means an epoxy resin that is solid at room temperature.
  • the liquid epoxy resin means an epoxy resin that is liquid at room temperature.
  • the normal temperature means a temperature range of 5 to 35 ° C. defined by JIS Z 8703.
  • two or more epoxy compounds can be used in combination.
  • an oxetane compound may be used in combination.
  • the solid epoxy resin is not particularly limited as long as it is compatible with a liquid epoxy resin and is solid at room temperature, and includes a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a polyfunctional type epoxy resin, a dicyclopentadiene type epoxy resin, A novolak phenol type epoxy resin, a biphenyl type epoxy resin, a naphthalene type epoxy resin, and the like are listed, and one of these can be used alone, or two or more can be used in combination. Among these, it is preferable to use a bisphenol A type epoxy resin.
  • the liquid epoxy resin is not particularly limited as long as it is liquid at normal temperature, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac phenol type epoxy resin, naphthalene type epoxy resin, and the like. Can be used alone or in combination of two or more. In particular, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of film tackiness and flexibility.
  • thermal radical polymerization initiators examples include organic peroxides and azo compounds.
  • an organic peroxide that does not generate nitrogen that causes bubbles can be preferably used.
  • the amount of the thermal radical polymerization initiator used is preferably 2 to 60 parts by weight, more preferably 100 parts by weight of the (meth) acrylate compound. 5 to 40 parts by mass.
  • thermal cationic polymerization initiator those known as thermal cationic polymerization initiators for epoxy compounds can be employed.
  • thermal cationic polymerization initiators for epoxy compounds.
  • iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. that generate an acid by heat are used.
  • an aromatic sulfonium salt showing a good potential with respect to temperature can be preferably used.
  • the amount of the thermal cationic polymerization initiator used is preferably 2 to 60 mass relative to 100 parts by mass of the epoxy compound. Part, more preferably 5 to 40 parts by weight.
  • thermal anionic polymerization initiator commonly used known ones can be used.
  • organic acid dihydrazide, dicyandiamide, amine compound, polyamidoamine compound, cyanate ester compound, phenol resin, acid anhydride, carboxylic acid, tertiary amine compound, imidazole, Lewis acid, Bronsted acid salt, polymercaptan curing agent , Urea resin, melamine resin, isocyanate compound, block isocyanate compound, and the like one kind can be used alone, or two or more kinds can be used in combination.
  • it is preferable to use a microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane.
  • the film-forming resin corresponds to, for example, a high-molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • the film-forming resin include various resins such as phenoxy resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, polyimide resin, and butyral resin. These may be used alone or in combination of two or more. May be used. Among these, it is preferable to use a phenoxy resin from the viewpoints of film formation state, connection reliability, and the like.
  • the thermal polymerizable composition may contain an insulating filler for adjusting the melt viscosity.
  • an insulating filler for adjusting the melt viscosity. Examples of this include silica powder and alumina powder.
  • the size of the insulating filler is preferably 20 to 1000 nm, and the blending amount is preferably 5 to 50 parts by mass with respect to 100 parts by mass of a thermally polymerizable compound (photopolymerizable compound) such as an epoxy compound. .
  • fillers softeners, accelerators, anti-aging agents, colorants (pigments, dyes), organic solvents, ion catchers and the like different from the above-described insulating fillers may be contained.
  • a stress relaxation agent examples include a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer.
  • the silane coupling agent examples include epoxy, methacryloxy, amino, vinyl, mercapto sulfide, and ureido.
  • the inorganic filler examples include silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like.
  • the insulating resin binder 3 can be formed by forming a coating composition containing the above-described resin into a film by a coating method and drying it, or by further curing it, or by previously forming a film by a known method.
  • the insulating resin binder 3 may be obtained by laminating a resin layer as necessary.
  • the insulating resin binder 3 is preferably formed on a release film such as a release-treated polyethylene terephthalate film.
  • the minimum melt viscosity of the insulating resin binder 3 can be appropriately determined according to the manufacturing method of the anisotropic conductive film.
  • the insulating resin binder is a film.
  • the minimum melt viscosity of the resin is preferably 1100 Pa ⁇ s or more.
  • a recess 3b is formed around the exposed portion of the conductive particles 2 pushed into the insulating resin binder 3 as shown in FIG. 14 or 15, or an insulating resin binder as shown in FIG.
  • the minimum melt viscosity is preferably 1500 Pa ⁇ s or more, more preferably 2000 Pa ⁇ s or more, and still more preferably 3000 to 15000 Pa ⁇ s, particularly from the point of forming a recess 3 c directly above the conductive particles 2 pushed into the 3. 3000 to 10000 Pa ⁇ s.
  • This minimum melt viscosity is obtained by using a rotary rheometer (TA instrument) as an example, using a measuring plate having a temperature rising rate of 10 ° C./min, a measuring pressure of 5 g, and a diameter of 8 mm. Can do. Further, when the step of pushing the conductive particles 2 into the insulating resin binder 3 is preferably performed at 40 to 80 ° C., more preferably 50 to 60 ° C., 60 ° C. from the viewpoint of forming the recesses 3b or 3c as described above.
  • the lower limit of the viscosity is preferably 3000 Pa ⁇ s or more, more preferably 4000 Pa ⁇ s or more, still more preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s or less, more preferably 15000 Pa ⁇ s or less, and further Preferably, it is 10,000 Pa ⁇ s or less.
  • the conductive particles 2 are sandwiched between connection objects such as opposing electronic components when the anisotropic conductive film is used.
  • connection objects such as opposing electronic components
  • the conductive particles 2 in the anisotropic conductive film can be prevented from flowing due to the flow of the molten insulating resin binder 3.
  • the thickness La of the insulating resin binder 3 is preferably 1 ⁇ m to 60 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, and still more preferably 2 ⁇ m to 15 ⁇ m. Further, regarding the thickness La of the insulating resin binder 3, the ratio (La / D) thereof is preferably 0.6 to 10 in relation to the average particle diameter D of the conductive particles 2. If the thickness La of the insulating resin binder 3 is too large, the conductive particles are likely to be misaligned during anisotropic conductive connection, and the trapping property of the conductive particles at the terminal is lowered. This tendency is remarkable when La / D exceeds 10.
  • La / D is preferably 8 or less, and more preferably 6 or less.
  • the thickness La of the insulating resin binder 3 is too small and La / D is less than 0.6, it is difficult to maintain the conductive particles in a predetermined particle dispersion state or a predetermined arrangement by the insulating resin binder 3.
  • the ratio (La / D) between the layer thickness La of the insulating resin binder 3 and the particle diameter D of the conductive particles 2 is preferably 0.8-2.
  • the embedded state of the conductive particles 2 in the insulating resin binder 3 is not particularly limited, but when anisotropic conductive connection is performed by sandwiching an anisotropic conductive film between opposing parts and heating and pressing, As shown in FIGS. 14 and 15, the conductive particles 2 are partially exposed from the insulating resin binder 3, and are in contact with the tangent plane 3 p of the surface 3 a of the insulating resin binder in the central portion between the adjacent conductive particles 2.
  • a recess 3b is formed around the exposed portion of the conductive particle 2, or the insulating resin binder portion directly above the conductive particle 2 pushed into the insulating resin binder 3 as shown in FIG.
  • a recess 3c is formed with respect to the similar tangential plane 3p so that undulation is present on the surface of the insulating resin binder 3 immediately above the conductive particles 2.
  • the conductive particles 2 have the recesses 3b shown in FIGS.
  • the resistance received from the insulating resin binder 3 is reduced as compared with the case where there is no recess 3b. For this reason, the conductive particles 2 are easily sandwiched between the opposing electrodes, and the conduction performance is improved.
  • the depression 3c (FIG. 16) is formed on the surface of the resin just above the conductive particles 2, so that heating and pressurization are performed as compared with the case where there is no depression 3c.
  • the pressure at that time is easily concentrated on the conductive particles 2, and the conductive particles 2 are easily sandwiched between the electrodes, so that the conduction performance is improved.
  • (Le / D) is preferably less than 50%, more preferably less than 30%, and still more preferably 20 to 25%, and the recess 3b around the exposed portion of the conductive particles 2 (the maximum diameter in FIGS. 14 and 15).
  • the ratio (Ld / D) between Ld and the average particle diameter D of the conductive particles 2 is preferably 100% or more, more preferably 100 to 150%, and the dent 3c in the resin immediately above the conductive particles 2 (FIG. 14).
  • the ratio (Lf / D) between the maximum depth Lf and the average particle diameter D of the conductive particles 2 is preferably greater than 0, preferably less than 10%, more preferably less than 5%.
  • the diameter Lc of the exposed portion of the conductive particles 2 can be made equal to or smaller than the average particle diameter D of the conductive particles 2, and is preferably 10 to 90% of the particle diameter D.
  • the conductive particles 2 may be exposed at one point on the top 2t of the conductive particles 2, or the conductive particles 2 may be completely embedded in the insulating resin binder 3 so that the diameter Lc becomes zero.
  • the ratio (Lb) between the distance Lb of the deepest part of the conductive particles 2 from the tangential plane 3p (hereinafter referred to as the embedding amount) Lb and the average particle diameter D of the conductive particles 2 / D) is preferably 60% or more and 105% or less.
  • an insulating adhesive layer 4 having a viscosity and adhesiveness different from those of the resin constituting the insulating resin binder 3 is laminated. It may be.
  • the insulating adhesive layer 4 has the dent 3b formed in the insulating resin binder 3 as in the anisotropic conductive film 1d shown in FIG. It may be laminated on the surface on which the dent 3b is formed, or may be laminated on the surface opposite to the surface on which the dent 3b is formed, like the anisotropic conductive film 1e shown in FIG. The same applies when the indentation 3c is formed in the insulating resin binder 3.
  • an anisotropic conductive film is used to anisotropically connect an electronic component, the space formed by the electrodes and bumps of the electronic component is filled to improve adhesion. Can do.
  • the insulating adhesive layer 4 is an IC chip or the like regardless of whether the insulating adhesive layer 4 is on the formation surface of the recesses 3b and 3c. It is preferable that it is on the first electronic component side (in other words, the insulating resin binder 3 is on the second electronic component side such as a substrate). By doing so, unintentional movement of the conductive particles can be avoided, and the trapping property can be improved.
  • the first electronic component such as an IC chip is on the pressing jig side
  • the second electronic component such as a substrate is on the stage side
  • the anisotropic conductive film is temporarily bonded to the second electronic component
  • the first electronic component is The component and the second electronic component are subjected to main pressure bonding.
  • the first electronic component and the second electronic component may be temporarily bonded after the anisotropic conductive film is temporarily attached to the first electronic component. Crimp the parts.
  • the insulating adhesive layer 4 a material used as an insulating adhesive layer in a known anisotropic conductive film can be appropriately selected and used.
  • the insulating adhesive layer 4 may have a viscosity adjusted to be lower by using the same resin as the insulating resin binder 3 described above. As the minimum melt viscosity between the insulating adhesive layer 4 and the insulating resin binder 3 is different, the space formed by the electrodes and bumps of the electronic component is more easily filled with the insulating adhesive layer 4, and the electronic components are bonded to each other. The effect which improves property can be expected.
  • the minimum melt viscosity ratio between the insulating adhesive layer 4 and the insulating resin binder 3 is preferably 2 or more, more preferably 5 or more, and still more preferably 8 or more.
  • this ratio is too large, when a long anisotropic conductive film is used as a wound body, there is a possibility that the resin protrudes or blocks, so that it is preferably 15 or less in practice.
  • the preferable minimum melt viscosity of the insulating adhesive layer 4 more specifically satisfies the above-mentioned ratio and is 3000 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less, and particularly 100 to 2000 Pa ⁇ s.
  • a coating composition containing a resin similar to the resin forming the insulating resin binder 3 is formed by coating and dried, further cured, or known in advance. It can form by forming into a film by the method of.
  • the thickness of the insulating adhesive layer 4 is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 2 ⁇ m or more and 15 ⁇ m or less.
  • the minimum melt viscosity of the whole anisotropic conductive film combining the insulating resin binder 3 and the insulating adhesive layer 4 depends on the thickness ratio of the insulating resin binder 3 and the insulating adhesive layer 4, it is practically used. May be 8000 Pa ⁇ s or less, and may be 200 to 7000 Pa ⁇ s, and preferably 200 to 4000 Pa ⁇ s to facilitate filling between the bumps.
  • an insulating filler such as silica fine particles, alumina, or aluminum hydroxide may be added to the insulating resin binder 3 and the insulating adhesive layer 4 as necessary. It is preferable that the compounding quantity of an insulating filler shall be 3 to 40 mass parts with respect to 100 mass parts of resin which comprises those layers. Thereby, even if the anisotropic conductive film melts at the time of anisotropic conductive connection, it is possible to suppress unnecessary movement of the conductive particles by the molten resin.
  • a transfer mold for arranging conductive particles in a predetermined arrangement is manufactured, a conductive particle is filled in a recess of the transfer mold, and formed on a release film.
  • the conductive particles 2 are transferred onto the insulating resin binder 3 by applying the pressure by covering the insulating resin binder 3 and pressing the conductive particles 2 into the insulating resin binder 3.
  • an insulating adhesive layer 4 is further laminated on the conductive particles 2.
  • the anisotropic conductive film 1A can be obtained.
  • an insulating resin binder is placed thereon, the conductive particles are transferred from the transfer mold to the surface of the insulating resin binder, and the conductive particles on the insulating resin binder are insulated.
  • An anisotropic conductive film may be manufactured by pushing into a conductive resin binder.
  • the embedding amount (Lb) of the conductive particles can be adjusted by the pressing force, temperature, etc. at the time of the pressing. Further, the shape and depth of the recesses 3b and 3c can be adjusted by the viscosity of the insulating resin binder during pressing, the pressing speed, the temperature, and the like.
  • the lower limit of the viscosity of the insulating resin binder when the conductive particles are pushed in is preferably 3000 Pa ⁇ s or more, more preferably 4000 Pa ⁇ s or more, further preferably 4500 Pa ⁇ s or more, and the upper limit is preferably 20000 Pa ⁇ s.
  • the upper limit is preferably 20000 Pa ⁇ s.
  • such a viscosity is preferably obtained at 40 to 80 ° C., more preferably 50 to 60 ° C. More specifically, when manufacturing the anisotropic conductive film 1a having the recess 3b shown in FIG.
  • the viscosity of the insulating resin binder when the conductive particles are pushed in is 8000 Pa ⁇ s (
  • the viscosity of the insulating resin binder when the conductive particles are pushed in is 4500 Pa ⁇ s (50 to 60 ° C.). 60 ° C.).
  • a fine adhesive may be applied to the top surface of the convex portions so that the conductive particles adhere to the top surface.
  • transfer molds can be manufactured by using and applying known techniques such as machining, photolithography, and printing.
  • a method for arranging the conductive particles in a predetermined arrangement a method using a biaxially stretched film or the like may be used instead of a method using a transfer mold.
  • the anisotropic conductive film is preferably a film wound body wound on a reel in order to continuously provide for connection of electronic components.
  • the length of the film wound body should just be 5 m or more, and it is preferable that it is 10 m or more. Although there is no particular upper limit, it is preferably 5000 m or less, more preferably 1000 m or less, and even more preferably 500 m or less, from the viewpoint of handleability of the shipment.
  • the film winding body may be one in which anisotropic conductive films shorter than the entire length are connected and connected with a tape. There may be a plurality of connected locations, may exist regularly, or may exist randomly.
  • the thickness of the connecting tape is not particularly limited as long as it does not hinder the performance, but if it is too thick, it affects the protrusion and blocking of the resin, and is preferably 10 to 40 ⁇ m.
  • the width of the film is not particularly limited, but is 0.5 to 5 mm as an example.
  • continuous anisotropic conductive connection can be performed, which can contribute to cost reduction of the connection body.
  • the anisotropic conductive film of the present invention is formed by heat or light between a first electronic component such as an FPC, an IC chip, or an IC module and a second electronic component such as an FPC, a rigid substrate, a ceramic substrate, a glass substrate, or a plastic substrate. It can be preferably applied when anisotropic conductive connection is made. Further, the first electronic components can be anisotropically conductively connected by stacking IC chips or IC modules. The connection structure thus obtained and the manufacturing method thereof are also part of the present invention.
  • the interface on the side where the conductive particles are present in the thickness direction of the anisotropic conductive film is temporarily attached to a second electronic component such as a wiring board.
  • the first electronic component such as an IC chip is mounted on the temporarily attached anisotropic conductive film and thermocompression-bonded from the first electronic component side from the viewpoint of improving connection reliability.
  • it can also connect using photocuring.
  • it is preferable to match the longitudinal direction of the terminals of the electronic component with the short direction of the anisotropic conductive film.
  • Experimental Example 1 to Experimental Example 8 (Preparation of anisotropic conductive film) Regarding the anisotropic conductive film used for the COG connection, the influence of the resin composition of the insulating resin binder and the arrangement of the conductive particles on the film forming ability and the conduction characteristics was examined as follows.
  • blending shown in Table 1 was prepared, respectively.
  • the minimum melt viscosity of the resin composition was adjusted according to the preparation conditions of the insulating resin composition.
  • a resin composition for forming an insulating resin binder is coated on a PET film having a film thickness of 50 ⁇ m with a bar coater, dried in an oven at 80 ° C. for 5 minutes, and insulated with a thickness La shown in Table 2 on the PET film.
  • a functional resin binder layer was formed.
  • an insulating adhesive layer was formed on a PET film with a thickness shown in Table 2.
  • a metal mold was prepared so that the arrangement of the conductive particles in plan view was as shown in Table 2, and the distance between the centers of the closest conductive particles in the repeating unit was 6 ⁇ m.
  • a known transparent resin pellet was poured into the mold in a melted state, and cooled and hardened to form a resin mold having recesses arranged as shown in Table 2.
  • the conductive particles are arranged in a hexagonal lattice arrangement (number density 32,000 / mm 2 ), and one of the lattice axes is inclined 15 ° with respect to the longitudinal direction of the anisotropic conductive film. .
  • metal-coated resin particles (Sekisui Chemical Co., Ltd., AUL703, average particle diameter of 3 ⁇ m) are prepared, and the conductive particles are filled in the resin-type dents, and the above-mentioned insulating resin binder is put thereon. It was stuck by pressing at 60 ° C. and 0.5 MPa. Then, the insulating resin binder is peeled from the mold, and the conductive particles on the insulating resin binder are pressed into the insulating resin binder by pressing (pressing conditions: 60 to 70 ° C., 0.5 Mpa). A film was prepared in which conductive particles were embedded in the binder in the state shown in Table 2.
  • the embedded state of the conductive particles was controlled by the indentation condition.
  • Experimental Example 4 the film shape was not maintained after the conductive particles were pushed in, but in other experimental examples, a film in which the conductive particles were embedded could be produced.
  • a dent was recognized around the exposed portion of the embedded conductive particles or directly above the embedded conductive particles as shown in Table 2.
  • Table 4 shows the dent most clearly for each experimental example. The measured value of what was observed was shown.
  • An anisotropic conductive film having a two-layered resin layer was prepared by laminating an insulating adhesive layer on the side of the film embedded with conductive particles into which the conductive particles were pressed.
  • Experimental Example 4 since the film shape was not maintained after the conductive particles were pushed in, the subsequent evaluation was not performed.
  • the terminal characteristics of the IC for conducting characteristic evaluation and the glass substrate correspond to each other, and the sizes are as follows. Further, when connecting the evaluation IC and the glass substrate, the longitudinal direction of the anisotropic conductive film and the short direction of the bump were matched.
  • Evaluation criteria for initial conduction resistance (no problem if it is less than 2 ⁇ for practical use) A: Less than 0.4 ⁇ B: 0.4 ⁇ or more and less than 0.8 ⁇ C: 0.8 ⁇ or more
  • connection object for evaluation produced in (a) is placed in a thermostatic bath at a temperature of 85 ° C. and a humidity of 85% RH for 500 hours, and the subsequent conduction resistance is the same as the initial conduction resistance. And evaluated according to the following three evaluation criteria.
  • Conduction reliability evaluation criteria (practically no problem if less than 5 ⁇ ) A: Less than 1.2 ⁇ B: 1.2 ⁇ or more and less than 2 ⁇ C: 2 ⁇ or more
  • Table 2 shows that in Experimental Example 4 where the minimum melt viscosity of the insulating resin layer is 800 Pa ⁇ s, it is difficult to form a film having a dent in the insulating resin binder near the conductive particles.
  • the minimum melt viscosity of the insulating resin binder is 1500 Pa ⁇ s or more, it is possible to form a convex portion in the vicinity of the conductive particles of the insulating resin binder by adjusting the conditions at the time of embedding the conductive particles.
  • the anisotropic conductive film has good conduction characteristics for COG.
  • the anisotropic conductive connection can be performed at a lower pressure.
  • IC for evaluating short-circuit occurrence rate (7.5 ⁇ m space comb tooth TEG (test element group): Outline 15 x 13mm Thickness 0.5mm Bump specifications Size 25 ⁇ 140 ⁇ m, distance between bumps 7.5 ⁇ m, bump height 15 ⁇ m
  • the short is less than 50 ppm, it is practically preferable, and the anisotropic conductive films of Experimental Examples 1 to 3 and 5 to 8 are all less than 50 ppm.
  • a resin composition for forming an insulating resin binder and an insulating adhesive layer with the composition shown in Table 3 was prepared, and an anisotropic conductive film was prepared in the same manner as in Experimental Example 1 using these.
  • Table 4 shows the arrangement of the conductive particles and the distance between the centers of the closest conductive particles in this case.
  • the conductive particles were arranged in a hexagonal lattice arrangement (number density 15000 / mm 2 ), and one of the lattice axes was inclined 15 ° with respect to the longitudinal direction of the anisotropic conductive film.
  • Non-alkali glass substrate Electrode ITO wiring thickness 0.7mm
  • Evaluation criteria for initial conduction resistance A Less than 1.6 ⁇ B: 1.6 ⁇ or more and less than 2.0 ⁇ C: 2.0 ⁇ or more
  • Table 4 shows that it is difficult to form a film having a dent in Experimental Example 12 where the minimum melt viscosity of the insulating resin layer is 800 Pa ⁇ s.
  • the minimum melt viscosity of the insulating resin layer is 1500 Pa ⁇ s or more
  • a recess can be formed in the vicinity of the conductive particles of the insulating resin binder by adjusting the conditions at the time of embedding the conductive particles. It can be seen that the anisotropic conductive film has good conduction characteristics for FOG.
  • (C) Short-circuit occurrence rate The number of shorts of the connection object for evaluation whose initial conduction resistance was measured was measured, and the short-circuit occurrence rate was obtained from the measured number of shorts and the number of gaps of the connection object for evaluation. If the short-circuit occurrence rate is less than 100 ppm, there is no practical problem. In all of Experimental Examples 9 to 11 and 13 to 16, the short-circuit occurrence rate was less than 100 ppm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

狭ピッチのバンプに対応することができ、かつ従来の異方性導電フィルムよりも導電粒子の個数密度を低減させることのできる異方性導電フィルムを提供する。異方性導電フィルム1Aでは、絶縁性樹脂バインダ3に導電粒子2が配置されており、平面視にて、複数の導電粒子2の中心を順次結んで形成される多角形の繰り返しユニット5が縦横に繰り返し配置されている。繰り返しユニット5の多角形の辺は、異方性導電フィルムの長手方向又は短手方向と斜交している。

Description

異方性導電フィルム
 本発明は、異方性導電フィルムに関する。
 絶縁性樹脂バインダに導電粒子を分散させた異方性導電フィルムが、ICチップ等の電子部品を配線基板等に実装する際に広く使用されている。異方性導電フィルムにおいては、電子部品の高密度実装に伴うバンプの狭ピッチ化により、バンプにおける導電粒子の捕捉性を高め、かつ隣り合うバンプ間のショートを回避することが強く求められている。
 このような要請に対し、異方性導電フィルムにおける導電粒子の配置を格子状の配列とし、かつその配列軸を異方性導電フィルムの長手方向に対して傾斜させることが提案されている(特許文献1、特許文献2)。
特許4887700号公報 特開平9-320345号公報
 特許文献1、2に記載のように、導電粒子を単純な格子状に配置する場合、配列軸の傾斜角や導電粒子間の距離によってバンプのレイアウトに対応することとなる。そのため、バンプが狭ピッチになると導電粒子間の距離を狭めざるを得ず、導電粒子の個数密度が増加し、異方性導電フィルムの製造コストが増加する。
 また、導電粒子間の距離を狭め、かつショートを回避できるようにするためには、異方性導電接続時に導電粒子が絶縁性樹脂バインダの樹脂流動によって流されることを抑制することが必要となり、絶縁性樹脂バインダの設計にも制約がかかる。
 そこで本発明は、狭ピッチのバンプに対応することができ、かつ従来の異方性導電フィルムよりも導電粒子の個数密度を低減させることを課題とする。
 本発明者は、異方性導電フィルムの平面視における導電粒子を単純な格子状配列とせず、複数の導電粒子からなる多角形のユニットの繰り返しにより導電粒子を縦横に繰り返し配置し、かつその多角形をなす辺を異方性導電フィルムの長手方向又は短手方向に対して斜交させることで上述の課題を解決できることを見出し、本発明を想到した。
 即ち、本発明は、絶縁性樹脂バインダに導電粒子が配置された異方性導電フィルムであって、
平面視にて、複数の導電粒子の中心を順次結んで形成される多角形の繰り返しユニットが繰り返し配置されており、
繰り返しユニットの多角形が、異方性導電フィルムの長手方向又は短手方向と斜交した辺を有する異方性導電フィルムを提供する。
 本発明の異方性導電フィルムによれば、個々の導電粒子を単純な格子状の配列とせず、複数の導電粒子で形成される繰り返しユニットが繰り返し配置されているので、導電粒子の粒子間距離を狭めた部分がフィルム全体に一様に存在する。また、繰り返しユニットの多角形が異方性導電フィルムの長手方向又は短手方向と斜交している辺を有するので、バンプにおける導電粒子の捕捉性が高い。したがって、狭ピッチのバンプを、ショートを引き起こすことなく接続することが可能となる。
 一方、本発明の異方性導電フィルムによれば、導電粒子の粒子間距離を広げた部分もフィルム全体に一様に存在するので、異方性導電フィルム全体の導電粒子の個数密度の増加を抑制し、導電粒子の個数密度の増加に伴う製造コストの増加を抑制することができる。また、導電粒子の個数密度の増加を抑えることにより、異方性導電接続時に押圧治具に必要とされる推力の増加を抑制することもできる。したがって、異方性導電接続時に押圧治具から電子部品に加える圧力を低下させ、電子部品の変形を防止することができる。
図1Aは、実施例の異方性導電フィルム1Aの導電粒子の配置を説明する平面図である。 図1Bは、実施例の異方性導電フィルム1Aの導電粒子の配置を説明する平面図である。 図1Cは、実施例の異方性導電フィルム1Aの断面図である。 図2Aは、実施例の異方性導電フィルム1Baの導電粒子の配置を説明する平面図である。 図2Bは、実施例の異方性導電フィルム1Bbの導電粒子の配置を説明する平面図である。 図3Aは、実施例の異方性導電フィルム1Caの導電粒子の配置を説明する平面図である。 図3Bは、実施例の異方性導電フィルム1Cbの導電粒子の配置を説明する平面図である。 図4Aは、実施例の異方性導電フィルム1Daの導電粒子の配置を説明する平面図である。 図4Bは、実施例の異方性導電フィルム1Dbの導電粒子の配置を説明する平面図である。 図5Aは、実施例の異方性導電フィルム1Eaの導電粒子の配置を説明する平面図である。 図5Bは、実施例の異方性導電フィルム1Ebの導電粒子の配置を説明する平面図である。 図6は、実施例の異方性導電フィルム1Fの導電粒子の配置を説明する平面図である。 図7は、実施例の異方性導電フィルム1Gの導電粒子の配置を説明する平面図である。 図8は、実施例の異方性導電フィルム1Hの導電粒子の配置を説明する平面図である。 図9は、実施例の異方性導電フィルム1Iの導電粒子の配置を説明する平面図である。 図10は、実施例の異方性導電フィルム1Jの導電粒子の配置を説明する平面図である。 図11は、実施例の異方性導電フィルム1Kの導電粒子の配置を説明する平面図である。 図12は、実施例の異方性導電フィルム1Lの導電粒子の配置を説明する平面図である。 図13は、実施例の異方性導電フィルム1Mの導電粒子の配置を説明する平面図である。 図14は、実施例の異方性導電フィルム1aの断面図である。 図15は、実施例の異方性導電フィルム1bの断面図である。 図16は、実施例の異方性導電フィルム1cの断面図である。 図17は、実施例の異方性導電フィルム1dの断面図である。 図18は、実施例の異方性導電フィルム1eの断面図である。
 以下、本発明の異方性導電フィルムを図面を参照しながら詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。
<異方性導電フィルムの全体構成>
 図1Aは、本発明の実施例の異方性導電フィルム1Aの導電粒子の配置を示す平面図であり、図1Cは、その断面図である。
 この異方性導電フィルム1Aは、導電粒子2が絶縁性樹脂バインダ3の表面又はその近傍に単層で配置され、その上に絶縁性接着層4が積層した構造を有している。
 なお、本発明の異方性導電フィルムとしては、絶縁性接着層4を省略し、絶縁性樹脂バインダ3に導電粒子2が埋め込まれた構成としてもよい。
<導電粒子>
 導電粒子2としては、公知の異方性導電フィルムにおいて使用されているものを適宜選択して使用することができる。例えば、ニッケル、銅、銀、金、パラジウムなどの金属粒子、ポリアミド、ポリベンゾグアナミン等の樹脂粒子の表面をニッケルなどの金属で被覆した金属被覆樹脂粒子等を挙げることができる。配置される導電粒子の大きさは、好ましくは1μm以上30μm以下、より好ましくは1μm以上10μm以下、更に好ましくは2μm以上6μm以下である。
 導電粒子2の平均粒子径は、画像型ないしはレーザー式の粒度分布計により測定することができる。異方性導電フィルムを平面視で観察し、粒子径を計測して求めてもよい。その場合、好ましくは200個以上、より好ましくは500個以上、更により好ましくは1000個以上を計測する。
 導電粒子2の表面は、絶縁コートや絶縁粒子処理などにより被覆されていることが好ましい。このような被覆は導電粒子2の表面から剥がれ易く且つ異方性導電接続に支障をきたさないものとする。また、導電粒子2の表面の全面又は一部に突起が設けられていてもよい。突起の高さは導電粒子径の20%以内、好ましくは10%以内であることが好ましい。
<導電粒子の配置>
 以下の図1Aから図7に、一例として、多角形の繰り返しユニット5が台形である場合の繰り返しユニットの配置例について説明する。
 図1Aに示した異方性導電フィルム1Aの平面視における導電粒子2の配置は、複数の導電粒子2a、2b、2c、2dの中心を順次結んで形成される多角形の繰り返しユニット5が直交する2方向(X方向、Y方向)に繰り返され、異方性導電フィルム1の一面に(即ち、全体的に)配置された状態となっている。なお、本発明の異方性導電フィルムは、必要に応じて導電粒子が配置されていない領域をもつことができる。
 この導電粒子2の配置は、正3角形を隙間無く並べた場合の正3角形の頂点の一部(あるいは正6角形を隙間無く並べた場合の正6角形の頂点)に導電粒子を配置したものとも見ることができる。更に言い換えると、6方格子の各格子点に導電粒子が存在する配置から所定の格子点の導電粒子を規則的に抜いた配置といえる。そのため、導電粒子2a、2b、2c、2dからなる繰り返しユニット5の台形の頂点は正3角形を組み合わせた正6角形の一部となっており、6方格子の格子点に存在する。この台形の一辺2a、2bを中心にして反転させると、辺2c、2dが隣接する台形の繰り返しユニット(即ち、導電粒子2e、2f、2g、2hからなる繰り返しユニット)の辺2g、2hと重なる。
 なお、この導電粒子2の繰り返しユニットを考える場合に、図1Bに示すように、導電粒子2p、2q、2r、2s、2t、2uからなる正6角形の繰り返しユニット5xが、X方向に一辺を重ねながら繰り返され、Y方向には辺も頂点も重ねることなく繰り返されたものとも見ることができるが、本発明において繰り返しユニットは、4個以上の導電粒子からなる多角形であって、該多角形の辺を重ねること無く異方性導電フィルムの縦横に繰り返される最小の単位の多角形と捉えることが好ましい。
 繰り返しユニット5(図1A)の台形の各辺は、いずれも異方性導電フィルム1Aの長手方向及び短手方向と斜交している。これにより、導電粒子2aの、異方性導電フィルムの長手方向の外接線L1が、該導電粒子2aと異方性導電フィルムの長手方向で隣接する導電粒子2bを貫く。また、導電粒子2aの、異方性導電フィルムの短手方向の外接線L2が、該導電粒子2aと異方性導電フィルムの短手方向で隣接する導電粒子2dを貫く。一般に、異方性導電接続時には、異方性導電フィルムの長手方向がバンプの短手方向となるので、繰り返しユニット5の多角形の辺が異方性導電フィルム1Aの長手方向又は短手方向と斜交していると、バンプの縁に沿って複数の導電粒子が直線状に並ぶことを防止でき、これにより直線状に並んだ複数の導電粒子がまとまって端子から外れて導通に寄与しなくなるという現象を回避できるので、導電粒子2の捕捉性を向上させることができる。
 なお、本発明において、繰り返しユニットは、必ずしもその全ての辺が異方性導電フィルムの長手方向又は短手方向と斜交していなくてもよいが、各バンプの短手方向が異方性導電フィルムの長手方向となる場合には導電粒子の捕捉性の点から、繰り返しユニットの各辺が異方性導電フィルムの長手方向又は短手方向と斜交していることが好ましい。
 これに対し、バンプの配列パターンが放射状の場合(所謂、ファンアウトバンプ)には、繰り返しユニットをなす多角形が、異方性導電フィルムの長手方向又は短手方向の辺を有することが好ましい。即ち、接続すべきバンプ同士が熱膨張によっても位置ズレしないようにするため、バンプの配列パターンを放射状にする場合があり(例えば、特開2007-19550号公報、特開2015-232660号公報等)、その場合に個々のバンプの長手方向と異方性導電フィルムの長手方向および短手方向とがなす角度は漸次変化する。そのため、繰り返しユニット5の多角形の辺を異方性導電フィルムの長手方向又は短手方向と斜行させなくても、放射状に配列した個々のバンプの長手方向の縁辺に対して繰り返しユニット5の多角形の辺は斜交する。したがって、異方性導電接続時にバンプの縁にかかっていた導電粒子の多くがそのバンプに捕捉されず、導電粒子の捕捉性が低下するという現象を回避することができる。
 一方、バンプの放射状の配列パターンは、通常、左右対称に形成される。したがって、異方性導電接続後の圧痕によって接続状態の良否の確認を容易にする点から、繰り返しユニット5をなす多角形が、異方性導電フィルムの長手方向又は短手方向の辺を有すること、特に、繰り返しユニット5をなす多角形が異方性導電フィルムの長手方向又は短手方向の辺を有し、かつ異方性導電フィルムの短手方向又は長手方向を対称軸とする対称な形状であって、その繰り返しユニット5が異方性導電フィルムの長手方向又は短手方向に繰り返し配置されていることが好ましい。例えば図2Aに示す異方性導電フィルム1Baのように、繰り返しユニット5の台形を異方性導電フィルムの短手方向の対称軸を有する台形とし、その底辺と上辺を異方性導電フィルムの長手方向と平行にしてもよく、また、図2Bに示す異方性導電フィルム1Bbのように同様の台形の繰り返しユニットの底辺と上辺を異様性導電フィルムの短手方向と平行にしてもよい。
 本発明において、繰り返しユニット5における導電粒子2の配置や、繰り返しユニット5の縦横の繰り返しピッチは、異方性導電接続の接続対象とする端子の形状やピッチに応じて適宜変更することができる。したがって、導電粒子2を単純な格子状の配列とする場合に比して、異方性導電フィルム全体としては少ない導電粒子数で高い捕捉性を達成することができる。例えば、上述の異方性導電フィルム1Baに対し、異方性導電フィルムの長手方向の導電粒子の個数密度をあげるために、図3Aに示す異方性導電フィルム1Caのように台形の繰り返しユニット5を異方性導電フィルムの幅方向にその形状のまま繰り返し、異方性導電フィルムの長手方向には、台形の繰り返しユニット5と、該台形の繰り返しユニットをフィルムの長手方向の軸で反転させた形状の繰り返しユニット5Bとを交互に繰り返す配置としてもよい。この場合、図4Aに示す異方性導電フィルム1Daのように異方性導電フィルムの短手方向にも台形の繰り返しユニット5とそれを反転させた形状の繰り返しユニット5Bとを交互に繰り返す配置としてもよい。
 同様に、上述の異方性導電フィルム1Bbに対し、異方性導電フィルムの短手方向の導電粒子の個数密度をあげるために、図3Bに示す異方性導電フィルム1Cbのように、異方性導電フィルムの長手方向には台形の繰り返しユニット5をその形状のまま繰り返し、異方性導電フィルムの幅方向には、繰り返しユニット5と、該繰り返しユニットを異方性導電フィルムの短手方向の軸で反転させた形状の繰り返しユニット5Bとを交互に繰り返す配置としてもよい。また図4Bに示す異方性導電フィルム1Dbのように異方性導電フィルムの長手方向にも短手方向にも繰り返しユニット5と、それを反転させた形状の繰り返しユニット5Bとを交互に繰り返す配置としてもよい。
 更に、上述の異方性導電フィルム1Caに対し、異方性導電フィルムの短手方向の個数密度を下げるために図5Aに示す異方性導電フィルム1Eaのように、繰り返しユニット5、5Bの異方性導電フィルムの長手方向の繰り返し列同士の間隔を広げても良く、異方性導電フィルムの長手方向の個数密度を下げるために図5Bに示す異方性導電フィルム1Ebのように繰り返しユニット5、5Bの異方性導電フィルムの幅方向の繰り返し列同士の間隔を広げても良い。
 また、図6に示す異方性導電フィルム1Fのように、図1Aに示した異方性導電フィルム1Aの導電粒子の配置に対し、繰り返しユニット5のY方向の繰り返しピッチを広げても良い。図1Aに示した導電粒子2の配置では、各導電粒子2が、正6角形を隙間無く並べた場合の正6角形の頂点のいずれかと重なるが、図6に示した導電粒子の配置では、必ずしも全ての導電粒子が、正6角形を隙間無く並べた場合の正6角形の頂点とはならない点で図1Aに示した導電粒子の配置と異なる。
 また、図7に示す異方性導電フィルム1Gのように、更にY方向の繰り返しピッチを広げ、Y方向で隣接する繰り返しユニット5の間に単独の導電粒子2pを配置してもよく、更に別個の繰り返しユニットを配置してもよい。また、繰り返しユニット5のX方向の繰り返しピッチを適宜変更してもよく、X方向の繰り返しピッチの間に単独の導電粒子又は別個の繰り返しユニットを配置してもよい。
 図8に示す異方性導電フィルム1Hのように、台形の繰り返しユニット5又はそれを反転させた繰り返しユニット5Bが異方性導電フィルムの短手方向又は長手方向に繰り返されており、繰り返しユニット5の異方性導電フィルムの幅方向の列と、繰り返しユニット5Bの異方性導電フィルムの幅方向の列との間に、単独の導電粒子2pの列を配置してもよい。これにより、導電粒子2が斜方格子に配列し、かつ単位格子の中心に単独の導電粒子2pが存在する配置となる。導電粒子を斜方格子に配列させた場合において導電粒子の個数密度を下げるため、図9に示す異方性導電フィルム1Iのように繰り返しユニット5自体を菱形に形成してもよい。図8及び図9に示したように斜方格子状に導電粒子を導電粒子2を配置することにより、導電粒子2が異方性導電フィルムの長手方向、短手方向及びそれらに対して傾斜した方向に存在することになるので、異方性導電接続時における導電粒子の捕捉性の向上とショートの抑制が両立し易くなる。
 また、図10に示す異方性導電フィルム1Jのように、導電粒子4個からなる菱形の繰り返しユニット5の長方格子状の配列と、該繰り返しユニット5を異方性導電フィルムの長手方向又は短手方向に反転させた菱形の繰り返しユニット5Bの長方格子状の配列とをそれらの格子点が重なり合わないように重ねた配列としてもよい。図11に示す異方性導電フィルム1Kのように、図10の異方性導電フィルム1Jと同様の粒子配置であって、フィルム短手方向の繰り返しユニット5、5Bの配列同士の間隔を広げても良い。
 繰り返しユニットは、正3角形を隙間無く並べた場合の正6角形の頂点(即ち、6方格子の格子点)の一部を導電粒子が占める配置に限定されるものではない。正方格子の格子点の一部を導電粒子が占めるようにしてもよい。例えば、図5Aに示した導電粒子の配置と同様の台形を繰り返しユニット5とそれを反転させた繰り返しユニット5Bを、異方性導電フィルムの長手方向と短手方向に交互に繰り返した配置を図12に示す異方性導電フィルム1Lのように正方格子の格子点上に形成することができる。
 また、繰り返しユニットの多角形をなす頂点の数は4個に限られず5以上でもよく、6以上でもよく、7以上でもよい。但し、異方性導電フィルム製造の設計や生産工程において、繰り返しユニットの形状を認識し易くするため、繰り返しユニットの頂点の数を偶数とすることが好ましい。
 繰り返しユニットをなす多角形の形状は、正多角形でもよく、正多角形でなくてもよいが、繰り返しユニットの形状を認識し易くする点からは、対称軸のある形状が好ましい。この場合、繰り返しユニットを構成する各導電粒子は、6方格子又は正方格子の格子点に存在していなくてもよい。例えば、図13に示す異方性導電フィルム1Mのように、正8角形の頂点に位置する導電粒子から繰り返しユニット5を構成してもよい。繰り返しユニットの多角形の形状は、異方性導電接続するバンプ乃至端子の形状、ピッチ、異方性導電フィルムのフィルム長手方向に対するバンプ乃至端子の長手方向の傾斜角、異方性導電フィルムにおける絶縁性樹脂バインダの樹脂組成等に応じて適宜定めることができる。
 なお、本発明における導電粒子の配置としては、図示した繰り返しユニットの配列に限られず、例えば、図示した繰り返しユニットの配列を傾斜させたものでもよい。この場合、90°傾斜させたもの、即ち、フィルムの長手方向と短手方向を入れ替えた態様も含まれる。また、繰り返しユニットの間隔や繰り返しユニット内の導電粒子の間隔を変更したものであってもよい。
<導電粒子の最短粒子間距離>
 導電粒子の最短粒子間距離は、繰り返しユニット内で隣接する導電粒子間においても、繰り返しユニット間で隣接する導電粒子間においても、導電粒子の平均粒子径の0.5倍以上が好ましい。この距離が短すぎると導電粒子相互の接触によりショートが起こりやすくなる。隣接する導電粒子の距離の上限は、バンプ形状やバンプピッチに応じて定める。例えば、バンプ幅200μm、バンプ間スペース200μmの場合に、バンプ幅又はバンプ間スペースのいずれかに導電粒子を最低1個存在させるとき、導電粒子の最短粒子間距離は400μm未満とする。導電粒子の捕捉性を確実にする点からは、200μm未満とすることが好ましい。
<導電粒子の個数密度>
 導電粒子の個数密度は、異方性導電フィルムの製造コストを抑制する点、及び異方性導電接続時に使用する押圧治具に必要とされる推力が過度に大きくならないようにする点から、導電粒子の平均粒子径が10μm未満の場合、50000個/mm2以下が好ましく、35000個/mm2以下がより好ましく、30000個/mm2以下が更に好ましい。一方、導電粒子の個数密度は、少なすぎると端子で導電粒子が十分に捕捉されないことによる導通不良が懸念されることから、300個/mm2以上が好ましく、500個/mm2以上がより好ましく、800個/mm2以上が更に好ましい。
 また、導電粒子の平均粒子径が10μm以上の場合は、15個/mm2以上が好ましく、50個/mm2以上がより好ましく、160個/mm2以上が更に好ましい。導電粒子径が大きくなれば、導電粒子の占有面積率も高まるからである。同様の理由から、1800個/mm2以下が好ましく、1100個/mm2以下がより好ましく、800個/mm2以下が更に好ましい。
 なお、導電粒子の個数密度は、局所的(一例として、200μm×200μm)には、上述の個数密度を外れていても良い。
<絶縁性樹脂バインダ>
 絶縁性樹脂バインダ3としては、公知の異方性導電フィルムにおいて絶縁性樹脂バインダとして使用されている熱重合性組成物、光重合性組成物、光熱併用重合性組成物等を適宜選択して使用することができる。このうち熱重合性組成物としては、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性樹脂組成物、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合性樹脂組成物等をあげることができ、光重合性組成物としては、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂組成物等をあげることができる。特に問題が生じないのであれば、複数種の重合性組成物を併用してもよい。併用例としては、熱カチオン重合性組成物と熱ラジカル重合性組成物の併用などがあげられる。
 ここで、光重合開始剤としては波長の異なる光に反応する複数種類を含有させてもよい。これにより、異方性導電フィルムの製造時における、絶縁性樹脂層を構成する樹脂の光硬化と、異方性導電接続時に電子部品同士を接着するための樹脂の光硬化とで使用する波長を使い分けることができる。
 絶縁性樹脂バインダ3を光重合性組成物を使用して形成する場合に、異方性導電フィルムの製造時の光硬化により、絶縁性樹脂バインダ3に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、絶縁性樹脂バインダ3における導電粒子2の配置が保持乃至固定化され、ショートの抑制と捕捉の向上が見込まれる。また、この光硬化の条件を調整することにより、異方性導電フィルムの製造工程における絶縁性樹脂層の粘度を調整することができる。
 絶縁性樹脂バインダ3における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%未満が更に好ましい。光重合性化合物が多すぎると異方性導電接続時の押し込みにかかる推力が増加するためである。
 一方、熱重合性組成物は、熱重合性化合物と熱重合開始剤とを含有するが、この熱重合性化合物として、光重合性化合物としても機能するものを使用してもよい。また、熱重合性組成物には、熱重合性化合物とは別に光重合性化合物を含有させると共に光重合性開始剤を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物と光重合開始剤を含有させる。例えば、熱重合開始剤として熱カチオン系重合開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル開始剤、光重合性化合物としてアクリレート化合物を使用する。絶縁性バインダ3には、これらの重合性組成物の硬化物を含めてもよい。
 熱又は光重合性化合物として使用されるアクリレート化合物としては従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。
 また、重合性化合物として使用されるエポキシ化合物は、3次元網目構造を形成し、良好な耐熱性、接着性を付与するものであり、固形エポキシ樹脂と液状エポキシ樹脂とを併用することが好ましい。ここで、固形エポキシ樹脂とは、常温で固体であるエポキシ樹脂を意味する。また、液状エポキシ樹脂とは、常温で液状であるエポキシ樹脂を意味する。また、常温とは、JIS Z 8703で規定される5~35℃の温度範囲を意味する。本発明では2種以上のエポキシ化合物を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。
 固形エポキシ樹脂としては、液状エポキシ樹脂と相溶し、常温で固体であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、ビスフェノールA型エポキシ樹脂を用いることが好ましい。
 液状エポキシ樹脂としては、常温で液状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。特に、フィルムのタック性、柔軟性などの観点から、ビスフェノールA型エポキシ樹脂を用いることが好ましい。
 熱重合開始剤のうち熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
 熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
 熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
 熱アニオン重合開始剤としては、通常用いられる公知のものを使用することができる。例えば、有機酸ジヒドラジド、ジシアンジアミド、アミン化合物、ポリアミドアミン化合物、シアナートエステル化合物、フェノール樹脂、酸無水物、カルボン酸、三級アミン化合物、イミダゾール、ルイス酸、ブレンステッド酸塩、ポリメルカプタン系硬化剤、ユリア樹脂、メラミン樹脂、イソシアネート化合物、ブロックイソシアネート化合物などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることが好ましい。
 熱重合性組成物には、膜形成樹脂を含有させることが好ましい。膜形成樹脂は、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂を好適に用いることが好ましい。
 熱重合性組成物には、溶融粘度調整のために、絶縁フィラーを含有させてもよい。これはシリカ粉やアルミナ粉などが挙げられる。絶縁性フィラーの大きさは粒子径20~1000nmが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(光重合性化合物)100質量部に対して5~50質量部とすることが好ましい。
 更に、上述の絶縁フィラーとは異なる充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい。
 また、必要に応じて、応力緩和剤、シランカップリング剤、無機フィラー等を配合してもよい。応力緩和剤としては、水添スチレン-ブタジエンブロック共重合体、水添スチレン-イソプレンブロック共重合体等を挙げることができる。また、シランカップリング剤としては、エポキシ系、メタクリロキシ系、アミノ系、ビニル系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。また、無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を挙げることができる。
 絶縁性樹脂バインダ3は、上述した樹脂を含むコーティング組成物を塗布法により成膜し乾燥させることや、更に硬化させることにより、あるいは予め公知の手法によりフィルム化することにより形成することができる。絶縁性樹脂バインダ3は、必要に応じて樹脂層を積層することにより得ても良い。また、絶縁性樹脂バインダ3は、剥離処理されたポリエチレンテレフタレートフィルム等の剥離フィルム上に形成することが好ましい。
(絶縁性樹脂バインダの粘度)
 絶縁性樹脂バインダ3の最低溶融粘度は異方性導電フィルムの製造方法等に応じて適宜定めることができる。例えば、異方性導電フィルムの製造方法として、導電粒子を絶縁性樹脂バインダの表面に所定の配置で保持させ、その導電粒子を絶縁性樹脂バインダに押し込む方法を行うとき、絶縁性樹脂バインダがフィルム成形を可能とする点から樹脂の最低溶融粘度を1100Pa・s以上とすることが好ましい。また、後述するように、図14又は図15に示すように絶縁性樹脂バインダ3に押し込んだ導電粒子2の露出部分の周りに凹み3bを形成したり、図16に示すように絶縁性樹脂バインダ3に押し込んだ導電粒子2の直上に凹み3cを形成したりする点から、最低溶融粘度は、好ましくは1500Pa・s以上、より好ましくは2000Pa・s以上、更に好ましくは3000~15000Pa・s、特に3000~10000Pa・sである。この最低溶融粘度は、一例として回転式レオメータ(TA instrument社製)を用い、昇温速度が10℃/分、測定圧力が5gで一定に保持し、直径8mmの測定プレートを使用して求めることができる。また、好ましくは40~80℃、より好ましくは50~60℃で絶縁性樹脂バインダ3に導電粒子2を押し込む工程を行う場合に、上述と同様に凹み3b又は3cの形成の点から、60℃における粘度は、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、更に好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、更に好ましくは10000Pa・s以下である。
 絶縁性樹脂バインダ3を構成する樹脂の粘度を上述のように高粘度とすることにより、異方性導電フィルムの使用時において、対向する電子部品等の接続対象物の間に導電粒子2を挟んで加熱加圧する場合に、異方性導電フィルム内の導電粒子2が、溶融した絶縁性樹脂バインダ3の流動により流されてしまうことを防止することができる。
(絶縁性樹脂バインダの厚み)
 絶縁性樹脂バインダ3の厚みLaは、好ましくは1μm以上60μm以下、より好ましくは1μm以上30μm以下、更に好ましくは2μm以上15μm以下である。また、絶縁性樹脂バインダ3の厚みLaは、導電粒子2の平均粒子径Dとの関係では、それらの比(La/D)が0.6~10が好ましい。絶縁性樹脂バインダ3の厚みLaが大き過ぎると異方性導電接続時に導電粒子が位置ズレしやすくなり、端子における導電粒子の捕捉性が低下する。この傾向はLa/Dが10を超えると顕著である。そこでLa/Dは8以下が好ましく、6以下がより好ましい。反対に絶縁性樹脂バインダ3の厚みLaが小さすぎてLa/Dが0.6未満となると、導電粒子を絶縁性樹脂バインダ3によって所定の粒子分散状態あるいは所定の配列に維持することが困難となる。特に、接続する端子が高密度COGの場合、絶縁性樹脂バインダ3の層厚Laと導電粒子2の粒子径Dとの比(La/D)は、好ましくは0.8~2である。
(絶縁性樹脂バイダにおける導電粒子の埋込態様)
 絶縁性樹脂バインダ3における導電粒子2の埋込状態については特に制限がないが、異方性導電フィルムを対向する部品の間で挟持し、加熱加圧することにより異方性導電接続を行う場合、図14、図15に示すように、導電粒子2を絶縁性樹脂バインダ3から部分的に露出させ、隣接する導電粒子2間の中央部における絶縁性樹脂バインダの表面3aの接平面3pに対して導電粒子2の露出部分の周りに凹み3bが形成されているか、又は図16に示すように、絶縁性樹脂バインダ3内に押し込まれた導電粒子2の直上の絶縁性樹脂バインダ部分に、前記と同様の接平面3pに対して凹み3cが形成され、導電粒子2の直上の絶縁性樹脂バインダ3の表面にうねりが存在するようにすることが好ましい。導電粒子2が対向する電子部品の電極間で挟持されて加熱加圧される際に生じる導電粒子2の偏平化に対し、図14、図15に示した凹み3bがあることにより、導電粒子2が絶縁性樹脂バインダ3から受ける抵抗が、凹み3bが無い場合に比して低減する。このため、対向する電極間において導電粒子2が挟持され易くなり、導通性能も向上する。また、絶縁性樹脂バインダ3を構成する樹脂のうち、導電粒子2の直上の樹脂の表面に凹み3c(図16)が形成されていることにより、凹み3cが無い場合に比して加熱加圧時の圧力が導電粒子2に集中し易くなり、電極において導電粒子2が挟持され易くなり、導通性能が向上する。
 上述の凹み3b、3cの効果を得やすくする点から、導電粒子2の露出部分の周りの凹み3b(図14、図15)の最大深さLeと導電粒子2の平均粒子径Dとの比(Le/D)は、好ましくは50%未満、より好ましくは30%未満、更に好ましくは20~25%であり、導電粒子2の露出部分の周りの凹み3b(図14、図15の最大径Ldと導電粒子2の平均粒子径Dとの比(Ld/D)は、好ましくは100%以上、より好ましくは100~150%であり、導電粒子2の直上の樹脂における凹み3c(図14)の最大深さLfと導電粒子2の平均粒子径Dとの比(Lf/D)は、好ましくは0より大きく、好ましくは10%未満、より好ましくは5%未満である。
 なお、導電粒子2の露出部分の径Lcは、導電粒子2の平均粒子径D以下とすることができ、好ましくは粒子径Dの10~90%である。導電粒子2の頂部2tの1点で露出するようにしてもよく、導電粒子2が絶縁性樹脂バインダ3内に完全に埋まり、径Lcがゼロとなるようにしてもよい。
(絶縁性樹脂バインダの厚さ方向における導電粒子の位置)
 上述の凹み3bの効果を得やすくする点から、接平面3pからの導電粒子2の最深部の距離(以下、埋込量という)Lbと、導電粒子2の平均粒子径Dとの比(Lb/D)(以下、埋込率という)は60%以上105%以下であることが好ましい。
<絶縁性接着層>
 本発明の異方性導電フィルムでは、導電粒子2を配置させている絶縁性樹脂バインダ3上に、絶縁性樹脂バインダ3を構成する樹脂と粘度や粘着性が異なる絶縁性接着層4が積層されていてもよい。
 絶縁性樹脂バインダ3に上述の凹み3bが形成されている場合、図17に示す異方性導電フィルム1dのように、絶縁性接着層4は、絶縁性樹バインダ3に凹み3bが形成されている面に積層されてもよく、図18に示す異方性導電フィルム1eのように、凹み3bが形成されている面と反対側の面に積層されてもよい。絶縁性樹脂バインダ3に凹み3cが形成されている場合も同様である。絶縁性接着層4の積層により、異方性導電フィルムを用いて電子部品を異方性導電接続するときに、電子部品の電極やバンプによって形成される空間を充填し、接着性を向上させることができる。
 また、絶縁性接着層4を絶縁性樹脂バインダ3に積層する場合、絶縁性接着層4が凹み3b、3cの形成面上にあるか否かに関わらず、絶縁性接着層4がICチップ等の第1電子部品側にある(言い換えると、絶縁性樹脂バインダ3が基板等の第2電子部品側にある)ことが好ましい。このようにすることで、導電粒子の不本意な移動を避けることができ、捕捉性を向上させることができる。なお、通常はICチップ等の第1電子部品を押圧治具側とし、基板等の第2電子部品をステージ側とし、異方性導電フィルムを第2電子部品と仮圧着した後に、第1電子部品と第2電子部品を本圧着するが、第2電子部品の熱圧着領域のサイズ等によっては、異方性導電フィルムを第1電子部品と仮貼りした後に、第1電子部品と第2電子部品を本圧着する。
 絶縁性接着層4としては、公知の異方性導電フィルムにおいて絶縁性接着層として使用されているものを適宜選択して使用することができる。絶縁性接着層4は、上述した絶縁性樹脂バインダ3と同様の樹脂を用いて粘度をより低く調整したものとしてもよい。絶縁性接着層4と絶縁性樹脂バインダ3との最低溶融粘度は、差があるほど電子部品の電極やバンプによって形成される空間が絶縁性接着層4で充填されやすくなり、電子部品同士の接着性を向上させる効果が期待できる。また、この差があるほど異方性導電接続時に絶縁性樹脂バインダ3を構成する樹脂の移動量が相対的に小さくなるため、端子における導電粒子の捕捉性が向上しやすくなる。実用上は、絶縁性接着層4と絶縁性樹脂バインダ3との最低溶融粘度比は、好ましくは2以上、より好ましくは5以上、更に好ましくは8以上である。一方、この比が大きすぎると長尺の異方性導電フィルムを巻装体にした場合に、樹脂のはみだしやブロッキングが生じるおそれがあるので、実用上は15以下が好ましい。絶縁性接着層4の好ましい最低溶融粘度は、より具体的には、上述の比を満たし、かつ3000Pa・s以下、より好ましくは2000Pa・s以下であり、特に100~2000Pa・sである。
 絶縁性接着層4の形成方法としては、絶縁性樹脂バインダ3を形成する樹脂と同様の樹脂を含むコーティング組成物を塗布法により成膜し乾燥させることや、更に硬化させることにより、あるいは予め公知の手法によりフィルム化することにより形成することができる。
 絶縁性接着層4の厚みは、好ましくは1μm以上30μm以下、より好ましくは2μm以上15μm以下である。
 また、絶縁性樹脂バインダ3と絶縁性接着層4を合わせた異方性導電フィルム全体の最低溶融粘度は、絶縁性樹脂バインダ3と絶縁性接着層4の厚みの比率にもよるが、実用上は8000Pa・s以下としてもよく、バンプ間への充填を行い易くするためには200~7000Pa・sであってもよく、好ましくは、200~4000Pa・sである。
 更に、絶縁性樹脂バインダ3や絶縁性接着層4には、必要に応じてシリカ微粒子、アルミナ、水酸化アルミニウム等の絶縁性フィラーを加えてもよい。絶縁性フィラーの配合量は、それらの層を構成する樹脂100質量部に対して3質量部以上40質量部以下とすることが好ましい。これにより、異方性導電接続の際に異方性導電フィルムが溶融しても、溶融した樹脂で導電粒子が不用に移動することを抑制することができる。
<異方性導電フィルムの製造方法>
 異方性導電フィルムの製造方法としては、例えば、導電粒子を所定の配列に配置するための転写型を製造し、転写型の凹部に導電粒子を充填し、その上に、剥離フィルム上に形成した絶縁性樹脂バインダ3を被せ圧力をかけ、絶縁性樹脂バインダ3に導電粒子2を押し込むことにより、絶縁性樹脂バインダ3に導電粒子2を転着させる。あるいは更にその導電粒子2上に絶縁性接着層4を積層する。こうして、異方性導電フィルム1Aを得ることができる。
 また、転写型の凹部に導電粒子を充填した後、その上に絶縁性樹脂バインダを被せ、転写型から絶縁性樹脂バインダの表面に導電粒子を転写させ、絶縁性樹脂バインダ上の導電粒子を絶縁性樹脂バインダ内に押し込むことにより異方性導電フィルムを製造してもよい。この押し込み時の押圧力、温度等により導電粒子の埋込量(Lb)を調整することができる。また、凹み3b、3cの形状及び深さを、押し込み時の絶縁性樹脂バインダの粘度、押込速度、温度等により調整することができる。例えば、導電粒子の押し込み時の絶縁性樹脂バインダの粘度を、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、更に好ましくは4500Pa・s以上とし、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、更に好ましくは10000Pa・s以下とする。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。より具体的には、絶縁性樹脂バインダの表面に図14に示した凹み3bを有する異方性導電フィルム1aを製造する場合、導電粒子の押し込み時の絶縁性樹脂バインダの粘度を8000Pa・s(50~60℃)とすることが好ましく、図16に示した凹み3cを有する異方性導電フィルム1cを製造する場合、導電粒子の押し込み時の絶縁性樹脂バインダの粘度を4500Pa・s(50~60℃)とすることが好ましい。
 なお、転写型としては、凹部に導電粒子を充填するものの他、凸部の天面に微粘着剤を付与してその天面に導電粒子が付着するようにしたものを用いても良い。
 これらの転写型は機械加工、フォトリソグラフィ、印刷法等の公知の技術を用い、また応用して製造することができる。
 また、導電粒子を所定の配列に配置する方法としては、転写型を用いる方法に代えて、二軸延伸フィルムを用いる方法等を使用してもよい。
<巻装体>
 異方性導電フィルムは、電子部品の接続に連続的に供するため、リールに巻かれたフィルム巻装体とすることが好ましい。フィルム巻装体の長さは、5m以上であればよく、10m以上であることが好ましい。上限は特にないが、出荷物の取り扱い性の点から、5000m以下であることが好ましく、1000m以下であることがより好ましく、500m以下であることが更に好ましい。
 フィルム巻装体は、全長より短い異方性導電フィルムを繋ぎテープで連結したものでもよい。連結箇所は複数個所存在してもよく、規則的に存在してもよく、ランダムに存在してもよい。繋ぎテープの厚みは、性能に支障を来たさない限り特に制限はないが、厚すぎると樹脂のはみ出しやブロッキングに影響を及ぼすため、10~40μmであることが好ましい。また、フィルムの幅は特に制限はないが、一例として0.5~5mmである。
 フィルム巻装体によれば、連続した異方性導電接続ができ、接続体のコスト削減に寄与することができる。
<接続構造体>
 本発明の異方性導電フィルムは、FPC、ICチップ、ICモジュールなどの第1電子部品と、FPC、リジッド基板、セラミック基板、ガラス基板、プラスチック基板などの第2電子部品とを熱又は光により異方性導電接続する際に好ましく適用することができる。また、ICチップやICモジュールをスタックして第1電子部品同士を異方性導電接続することもできる。このようにして得られる接続構造体及びその製造方法も本発明の一部である。
 異方性導電フィルムを用いた電子部品の接続方法としては、例えば、異方性導電フィルムのフィルム厚方向で導電粒子が近くに存在する側の界面を配線基板などの第2電子部品に仮貼りし、仮貼りされた異方性導電フィルムに対し、ICチップなどの第1電子部品を搭載し、第1電子部品側から熱圧着することが、接続信頼性を高める点から好ましい。また、光硬化を利用して接続することもできる。なお、この接続では接続作業効率の点から、電子部品の端子の長手方向を異方性導電フィルムの短手方向に合わせることが好ましい。
実験例1~実験例8
(異方性導電フィルムの作製)
 COG接続に使用する異方性導電フィルムについて、絶縁性樹脂バインダの樹脂組成と導電粒子の配置がフィルム形成能と導通特性に及ぼす影響を次のようにして調べた。
 まず、表1に示した配合で絶縁性樹脂バインダ及び絶縁性接着層を形成する樹脂組成物をそれぞれ調製した。この場合、絶縁性樹脂組成物の調製条件により樹脂組成物の最低溶融粘度を調整した。絶縁性樹脂バインダを形成する樹脂組成物をバーコーターでフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に表2に示す厚さLaの絶縁性樹脂バインダ層を形成した。同様にして、絶縁性接着層を表2に示す厚さでPETフィルム上に形成した。


Figure JPOXMLDOC01-appb-T000001
 次に、導電粒子の平面視における配置が表2に示した配置となり、その繰り返しユニットにおける最近接導電粒子の中心間距離が6μmとなるように金型を作製した。その金型に公知の透明性樹脂のペレットを溶融させた状態で流し込み、冷やして固めることで、凹みが表2に示す配置の樹脂型を形成した。ここで、実験例8では導電粒子の配置を6方格子配列(個数密度32000個/mm2)とし、その格子軸の一つを異方性導電フィルムの長手方向に対して15°傾斜させた。
 導電粒子として、金属被覆樹脂粒子(積水化学工業(株)、AUL703、平均粒子径3μm)を用意し、この導電粒子を樹脂型の凹みに充填し、その上に上述の絶縁性樹脂バインダを被せ、60℃、0.5MPaで押圧することで貼着させた。そして、型から絶縁性樹脂バインダを剥離し、絶縁性樹脂バインダ上の導電粒子を、加圧(押圧条件:60~70℃、0.5Mpa)することで絶縁性樹脂バインダに押し込み、絶縁性樹脂バインダに導電粒子が表2に示す状態で埋め込まれたフィルムを作製した。この場合、導電粒子の埋め込み状態は、押し込み条件でコントロールした。その結果、実験例4では、導電粒子を押し込んだ後にフィルム形状が維持されなかったが、それ以外の実験例では、導電粒子を埋め込んだフィルムを作製することができた。金属顕微鏡による観察で、埋め込まれた導電粒子の露出部分の周り又は埋め込まれた導電粒子の直上には表2に示すように凹みが認められた。なお、実験例4を除く各実験例では導電粒子の露出部分周りの凹みと、導電粒子直往の凹みの双方が観察されたが、表4には、各実験例ごとに凹みが最も明確に観察されたものの計測値を示した。
 導電粒子を埋め込んだフィルムの導電粒子を押し込んだ側に絶縁性接着層を積層することにより樹脂層が2層タイプの異方性導電フィルムを作製した。ただし、実験例4では、導電粒子を押し込んだ後にフィルム形状が維持されなかったので以降の評価を行わなかった。
(評価)
 各実験例の異方性導電フィルムに対し、次のようにして(a)初期導通抵抗と(b)導通信頼性を測定した。結果を表2に示す。
(a)初期導通抵抗
 各実験例の異方性導電フィルムを、ステージ上のガラス基板と押圧ツール側の導通特性評価用ICとの間に挟み、押圧ツールで加熱加圧(180℃、5秒)して各評価用接続物を得た。この場合、押圧ツールによる推力を低(40MPa)、中(60MPa)、高(80MPa)の3段階に変えて3通りの評価用接続物を得た。
 ここで、導通特性評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。また、評価用ICとガラス基板を接続する際には、異方性導電フィルムの長手方向とバンプの短手方向を合わせた。
導通特性評価用IC
 外形 1.8×20.0mm
 厚み 0.5mm
 バンプ仕様 サイズ30×85μm、バンプ間距離50μm、バンプ高さ15μm
ガラス基板(ITO配線)
 ガラス材質 コーニング社製1737F
 外形 30×50mm
 厚み 0.5mm
 電極 ITO配線 
 得られた評価用接続物の初期導通抵抗を測定し、次の3段階の評価基準で評価した。
 初期導通抵抗の評価基準(実用上、2Ω未満であれば問題はない)
 A:0.4Ω未満
 B:0.4Ω以上0.8Ω未満
 C:0.8Ω以上
(b)導通信頼性
 (a)で作製した評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おく信頼性試験を行い、その後の導通抵抗を、初期導通抵抗と同様に測定し、次の3段階の評価基準で評価した。
 導通信頼性の評価基準(実用上、5Ω未満であれば問題はない)
 A:1.2Ω未満
 B:1.2Ω以上2Ω未満
 C:2Ω以上
Figure JPOXMLDOC01-appb-T000002
 表2から絶縁性樹脂層の最低溶融粘度が800Pa・sの実験例4では導電粒子近傍の絶縁性樹脂バインダに凹みを有するフィルムの形成は難しいことがわかる。一方、絶縁性樹脂バインダの最低溶融粘度が1500Pa・s以上の実験例では、導電粒子の埋込時の条件の調整により絶縁性樹脂バインダの導電粒子近傍に凸部を形成できること、こうして得られた異方性導電フィルムはCOG用に導通特性が良好であることがわかる。また、6方格子配列の実験例8に比して導電粒子の個数密度が低い実験例1~7では、異方性導電接続をより低圧で行えることがわかる。
(c)ショート発生率
 実験例1~3と5~8の異方性導電フィルムを使用し、次のショート発生率の評価用ICを使用して180℃、60MPa、5秒の接続条件で評価用接続物を得、得られた評価用接続物のショート数を計測し、評価用ICの端子数に対する計測したショート数の割合としてショート発生率を求めた。
 ショート発生率の評価用IC(7.5μmスペースの櫛歯TEG(test element group):
 外形 15×13mm
 厚み 0.5mm
 バンプ仕様 サイズ25×140μm、バンプ間距離7.5μm、バンプ高さ15μm
 ショートは50ppm未満であれば実用上好ましく、実験例1~3と5~8の異方性導電フィルムは全て50ppm未満であった。
 なお、実験例4を除く各実験例に対し、バンプ1個当たりに捕捉されている導電粒子を計測したところ、いずれも10個以上の導電粒子が捕捉されていた。
 実験例9~16
(異方性導電フィルムの作製)
 FOG接続に使用する異方性導電フィルムについて、絶縁性樹脂バインダの樹脂組成と導電粒子の配置がフィルム形成能と導通特性に及ぼす影響を次のようにして調べた。
 即ち、表3に示した配合で絶縁性樹脂バインダと絶縁性接着層を形成する樹脂組成物を調製し、これらを用いて実験例1と同様にして異方性導電フィルムを作製した。この場合の導電粒子の配置と最近接導電粒子の中心間距離を表4に示す。実験例16では導電粒子の配置を6方格子配列(個数密度15000個/mm2)とし、その格子軸の一つを異方性導電フィルムの長手方向に対して15°傾斜させた。
 この異方性導電フィルムの作成工程において、絶縁性樹脂バインダに導電粒子を押し込んだ後に実験例12ではフィルム形状が維持されなかったが、それ以外の実験例ではフィルム形状が維持された。そのため、実験例12を除く実験例の異方性導電フィルムについて導電粒子の埋込状態を金属顕微鏡で観察して計測し、更に以降の評価を行った。各実験例における導電粒子の埋込状態を表4に示す。表4に示した埋込状態は、表2と同様に各実験例ごとに絶縁性樹脂バインダの凹みが最も明確に観察されたものの計測値である。
(評価)
 各実験例の異方性導電フィルムに対し、次のようにして(a)初期導通抵抗と(b)導通信頼性を測定した。結果を表4に示す。
(a)初期導通抵抗
 各実験例で得た異方性導電フィルムを2mm×40mmで裁断し、導通特性の評価用FPCとガラス基板との間に挟み、ツール幅2mmで加熱加圧(180℃、5秒)して各評価用接続物を得た。この場合、押圧ツールによる推力を低(3MPa)、中(4.5MPa)、高(6MPa)の3段階に変えて3通りの評価用接続物を得た。得られた評価用接続物の導通抵抗を実験例1と同様に測定し、その測定値を次の基準で3段階に評価した。
 評価用FPC:
  端子ピッチ 20μm
  端子幅/端子間スペース 8.5μm/11.5μm
  ポリイミドフィルム厚(PI)/銅箔厚(Cu)=38/8、Sn plating
 ノンアルカリガラス基板:
  電極 ITO配線
  厚み 0.7mm
 初期導通抵抗の評価基準
  A:1.6Ω未満
  B:1.6Ω以上2.0Ω未満
  C:2.0Ω以上
(b)導通信頼性
 (a)で作製した評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おき、その後の導通抵抗を初期導通抵抗と同様に測定し、その測定値を次の基準で3段階に評価した。
 導通信頼性の評価基準
  A:3.0Ω未満
  B:3.0Ω以上4Ω未満
  C:4.0Ω以上
 表4から絶縁性樹脂層の最低溶融粘度が800Pa・sの実験例12では、凹みを有するフィルムの形成は難しいことがわかる。一方、絶縁性樹脂層の最低溶融粘度が1500Pa・s以上の実験例では、導電粒子の埋込時の条件の調整により絶縁性樹脂バインダの導電粒子近傍に凹みを形成できること、こうして得られた異方性導電フィルムはFOG用に導通特性が良好であることがわかる。
(c)ショート発生率
 初期導通抵抗を測定した評価用接続物のショート数を計測し、計測されたショート数と評価用接続物のギャップ数からショート発生率を求めた。ショート発生率は100ppm未満であれば実用上問題はない。
 実験例9~11と13~16のいずれもショート発生率は100ppm未満であった。
 なお、実験例12を除く各実験例に対し、バンプ1個当たりに捕捉されている導電粒子を計測したところ、いずれも10個以上の導電粒子が捕捉されていた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1A、1Ba、1Bb、1Ca、Cb、1Da、Db、1Ea、Eb、1F、1G、1H、1I、1J、1K、1L、1M、1a、1b、1c、1d、1e 異方性導電フィルム
 2、2a、2b、2c、2d、2e、2f、2g、2h、2p、2q、2r、2s、2t、2u 導電粒子
 3 絶縁性樹脂バインダ
 4 絶縁性接着層
 5、5B 繰り返しユニット

Claims (10)

  1.  絶縁性樹脂バインダに導電粒子が配置された異方性導電フィルムであって、
    平面視にて、複数の導電粒子の中心を順次結んで形成される多角形の繰り返しユニットが繰り返し配置されており、
    繰り返しユニットの多角形が、異方性導電フィルムの長手方向又は短手方向と斜交した辺を有する異方性導電フィルム。
  2.  繰り返しユニットが異方性導電フィルムの一面に配置されている請求項1記載の異方性導電フィルム。
  3.  繰り返しユニットが台形である請求項1又は2記載の異方性導電フィルム。
  4.  繰り返しユニットをなす多角形の各辺が異方性導電フィルムの長手方向又は短手方向と斜交している請求項1~3のいずれかに記載の異方性導電フィルム。
  5.  繰り返しユニットをなす多角形が、異方性導電フィルムの長手方向又は短手方向の辺を有する1~3のいずれかに記載の異方性導電フィルム。
  6.  繰り返しユニットを構成する多角形を、該多角形の一辺を中心として反転させた場合に、反転後の繰り返しユニットの多角形の一辺が、反転前に隣接していた繰り返しユニットの一辺と重なる請求項1~5のいずれかに記載の異方性導電フィルム。
  7.  導電粒子ユニットが正多角形の一部をなす請求項1~6のいずれかに記載の異方性導電フィルム。
  8.  導電粒子ユニットを構成する導電粒子の配置が、正6角形を隙間無く並べた場合の6角形の頂点と重なる請求項1~5のいずれかに記載の異方性導電フィルム。
  9.  請求項1~8のいずれかに記載の異方性導電フィルムにより第1電子部品と第2電子部品が異方性導電接続されている接続構造体。
  10.  第1電子部品と第2電子部品を異方性導電フィルムを介して熱圧着することにより第1電子部品と第2電子部品の接続構造体を製造する方法であって、異方性導電フィルムとして、請求項1~8のいずれかに記載の異方性導電フィルムを使用する接続構造体の製造方法。
PCT/JP2017/016282 2016-05-05 2017-04-25 異方性導電フィルム WO2017191779A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217007174A KR20210031536A (ko) 2016-05-05 2017-04-25 이방성 도전 필름
US16/096,606 US10854571B2 (en) 2016-05-05 2017-04-25 Anisotropic conductive film with conductive particles forming repeating units of polygons
KR1020187021396A KR102228112B1 (ko) 2016-05-05 2017-04-25 이방성 도전 필름
CN201780025129.XA CN109417233B (zh) 2016-05-05 2017-04-25 各向异性导电膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-092902 2016-05-05
JP2016092902 2016-05-05
JP2017-085743 2017-04-24
JP2017085743A JP7274810B2 (ja) 2016-05-05 2017-04-24 異方性導電フィルム

Publications (1)

Publication Number Publication Date
WO2017191779A1 true WO2017191779A1 (ja) 2017-11-09

Family

ID=60202976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016282 WO2017191779A1 (ja) 2016-05-05 2017-04-25 異方性導電フィルム

Country Status (3)

Country Link
JP (1) JP7401798B2 (ja)
TW (4) TWI783897B (ja)
WO (1) WO2017191779A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161936A1 (ja) * 2020-02-12 2021-08-19 デクセリアルズ株式会社 擬似ランダムドットパターン及びその作成方法
WO2021161934A1 (ja) * 2020-02-12 2021-08-19 デクセリアルズ株式会社 擬似ランダムドットパターン及びその作成方法
JP2021128335A (ja) * 2020-02-12 2021-09-02 デクセリアルズ株式会社 擬似ランダムドットパターン及びその作成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080522A (ja) * 2005-09-09 2007-03-29 Sumitomo Bakelite Co Ltd 異方導電性フィルムおよび電子・電機機器
JP2009076431A (ja) * 2007-01-31 2009-04-09 Tokai Rubber Ind Ltd 異方性導電膜およびその製造方法
JP2016066573A (ja) * 2013-11-19 2016-04-28 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320345A (ja) * 1996-05-31 1997-12-12 Whitaker Corp:The 異方導電性フィルム
JP2015079586A (ja) 2013-10-15 2015-04-23 デクセリアルズ株式会社 異方性導電フィルム
JP6331776B2 (ja) 2014-06-30 2018-05-30 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体
CN111029875B (zh) 2014-11-17 2022-05-10 迪睿合株式会社 各向异性导电膜、连接结构体及其制造方法
JP6661997B2 (ja) 2015-11-26 2020-03-11 デクセリアルズ株式会社 異方性導電フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080522A (ja) * 2005-09-09 2007-03-29 Sumitomo Bakelite Co Ltd 異方導電性フィルムおよび電子・電機機器
JP2009076431A (ja) * 2007-01-31 2009-04-09 Tokai Rubber Ind Ltd 異方性導電膜およびその製造方法
JP2016066573A (ja) * 2013-11-19 2016-04-28 デクセリアルズ株式会社 異方導電性フィルム及び接続構造体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161936A1 (ja) * 2020-02-12 2021-08-19 デクセリアルズ株式会社 擬似ランダムドットパターン及びその作成方法
WO2021161934A1 (ja) * 2020-02-12 2021-08-19 デクセリアルズ株式会社 擬似ランダムドットパターン及びその作成方法
JP2021128335A (ja) * 2020-02-12 2021-09-02 デクセリアルズ株式会社 擬似ランダムドットパターン及びその作成方法
KR20220118547A (ko) * 2020-02-12 2022-08-25 데쿠세리아루즈 가부시키가이샤 의사 랜덤 도트 패턴 및 그 작성 방법
KR20220119485A (ko) * 2020-02-12 2022-08-29 데쿠세리아루즈 가부시키가이샤 의사 랜덤 도트 패턴 및 그 작성 방법
KR102799884B1 (ko) * 2020-02-12 2025-04-23 데쿠세리아루즈 가부시키가이샤 의사 랜덤 도트 패턴 및 그 작성 방법
KR102799883B1 (ko) * 2020-02-12 2025-04-23 데쿠세리아루즈 가부시키가이샤 의사 랜덤 도트 패턴 및 그 작성 방법

Also Published As

Publication number Publication date
TWI743116B (zh) 2021-10-21
JP2022069457A (ja) 2022-05-11
TW202233787A (zh) 2022-09-01
TWI764831B (zh) 2022-05-11
TW201807131A (zh) 2018-03-01
TW202204555A (zh) 2022-02-01
JP7401798B2 (ja) 2023-12-20
TWI783897B (zh) 2022-11-11
TW202307162A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
JP7274811B2 (ja) 異方性導電フィルム
TWI781119B (zh) 含填料膜
JP2017204462A (ja) 異方性導電フィルム
JP7401798B2 (ja) 異方性導電フィルム
JP7607603B2 (ja) 異方性導電フィルム
JP2017204461A (ja) 異方性導電フィルム
JP2022126655A (ja) フィラー含有フィルム
KR20210033513A (ko) 이방성 도전 필름, 접속 구조체, 접속 구조체의 제조 방법
WO2017191774A1 (ja) 異方性導電フィルム
JP7319578B2 (ja) フィラー含有フィルム
TWI888361B (zh) 異向性導電膜、連接結構體、連接結構體之製造方法
HK40064112A (en) Anisotropic conductive film
HK40001200A (zh) 各向异性导电膜
JP2023117329A (ja) 導電フィルムの設計方法
HK1261541A1 (en) Anisotropic electroconductive film

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20187021396

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021396

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792712

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792712

Country of ref document: EP

Kind code of ref document: A1