WO2017179930A2 - 세탁기 - Google Patents
세탁기 Download PDFInfo
- Publication number
- WO2017179930A2 WO2017179930A2 PCT/KR2017/004030 KR2017004030W WO2017179930A2 WO 2017179930 A2 WO2017179930 A2 WO 2017179930A2 KR 2017004030 W KR2017004030 W KR 2017004030W WO 2017179930 A2 WO2017179930 A2 WO 2017179930A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tub
- water
- repellent
- sump
- super water
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F35/00—Washing machines, apparatus, or methods not otherwise provided for
- D06F35/005—Methods for washing, rinsing or spin-drying
- D06F35/008—Methods for washing, rinsing or spin-drying for disinfecting the tub or the drum
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/26—Casings; Tubs
- D06F37/261—Tubs made by a specially selected manufacturing process or characterised by their assembly from elements
- D06F37/262—Tubs made by a specially selected manufacturing process or characterised by their assembly from elements made of plastic material, e.g. by injection moulding
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/26—Casings; Tubs
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F39/00—Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00
- D06F39/08—Liquid supply or discharge arrangements
- D06F39/083—Liquid discharge or recirculation arrangements
Definitions
- the present invention relates to a washing machine with improved drainage performance.
- a washing machine is a device that cleans a laundry object by washing, rinsing, dehydrating, drying, and the like to remove contaminants on clothes, etc. (hereinafter referred to as a laundry object) contained in a drum by using water and a detergent. to be.
- the washing machine may be classified into a pulsator type washing machine in which washing is performed by water flow according to the operation of a pulsator, and a drum type washing machine using drops of an object to be washed by rotation of the drum itself.
- the drum type washing machine includes a tub provided inside the cabinet and the wash water is stored therein, a drum rotatably installed in the tub, a water supply unit for supplying the wash water to the tub, and washing the tub after the washing is finished. A drain for discharging the water out of the cabinet.
- the drainage device may include a drain hose and a drain pump.
- the drain hose guides the wash water of the tub to the outside of the cabinet, and the drain pump discharges the wash water flowing along the drain hose.
- the inside of the tub is very high humidity even after the operation of the drain pump, the contaminated wash water of the tub will remain in the form of water droplets on the inner surface of the tub without draining through the drain hose.
- the residual water remaining on the inner surface of the tub causes odor due to the generation of bacteria, such as mold, and contaminates the newly watered water in the subsequent use of the washing machine.
- the first object of the present invention is to provide a washing machine capable of discharging the washing water remaining on the inner surface of the tub to the outside without leaving.
- a second object of the present invention is to provide a washing machine capable of directing the flow of residual water remaining on the inner surface (front and rear, circumferential surface, sump) of the tub.
- a third object of the present invention is to provide a washing machine capable of preventing undercut of the injection mold after injection molding the tub by the injection mold.
- Such a first object of the present invention may be achieved by providing a super water-repellent fine protrusion where water can reach the inside of the washing machine, and removing residual water inside the washing machine by using the lotus leaf effect of the super water-repellent fine protrusion.
- the second object of the present invention can be achieved by forming an asymmetrical gradient on both inclined surfaces of the super water-repellent micro-projections to allow water to flow toward the drain.
- a third object of the present invention can be achieved by providing an orientation to the super water-repellent micro-projections in the direction in which the injection mold is separated to prevent the undercut of the injection mold.
- a tub provided inside the cabinet and storing the washing water therein; And a plurality of super water-repellent fine protrusions formed on an inner surface of the tub to remove residual water in the tub.
- the plurality of super water-repellent fine protrusions may be injection molded by an injection mold together with the tub, and may be integrally formed on an inner surface of the tub.
- the tub the tub for forming the front of the tub when the inlet for the input of the laundry object is formed on the front surface, the tub is divided into the front portion and the rear portion along the circumferential surface cover; And a tub body coupled to the rear end of the tub cover and forming a rear portion of the tub.
- the plurality of super water-repellent fine protrusions may be formed on the front surface of the tub cover and the rear surface of the tub body.
- each of the plurality of super water-repellent microprotrusions may have an upper width smaller than or equal to a lower width.
- each of the plurality of super water-repellent fine protrusions may be formed in any one of a round shape, a triangle, and a quadrangle.
- the plurality of super water-repellent micro-projections may be symmetrically formed on both sides with respect to one-way centerline spaced apart from each other in parallel with the inner surface of the tub.
- the plurality of super water-repellent micro-projections are spaced in parallel with each other in a direction crossing the first direction center line and the first direction center line which are spaced in parallel with each other along the inner surface of the tub. Both sides may be formed symmetrically based on the two-way centerline.
- the first direction center line and the second direction center line may be formed in a lattice shape.
- the plurality of super water-repellent fine protrusions may be formed on the circumferential surface of the tub.
- the plurality of super water-repellent fine protrusions may be formed to protrude along the longitudinal direction in the tub in a direction in which the injection mold is separated to prevent undercut of the injection mold after injection molding.
- the plurality of super water-repellent fine protrusions may be spaced apart from each other in the circumferential direction of the tub.
- the plurality of super water-repellent micro-projections may be symmetrically formed on both sides of the circumferential center line of the circumferential surface spaced apart from each other in parallel with the circumferential surface of the tub.
- Both sides may be asymmetrically formed as a reference.
- the sump is formed on the bottom surface of the tub, the sump having a drain for discharging the washing water in the tub to the outside, wherein the plurality of super water-repellent fine projections are the sump It can be formed on the surface of the.
- the sump is formed concave along the longitudinal direction of the tub toward the front surface of the tub at the lower end of the rear surface of the tub, the plurality of super water-repellent micro-protrusions are injected after injection molding
- the undercut of the mold may be formed to protrude along the longitudinal direction of the sump in the direction in which the injection mold is separated.
- the sump is formed at a position lower than the circumferential surface of the tub, and may be inclined downward toward the front surface of the tub.
- the drain is formed to be spaced apart in one direction from the longitudinal centerline of the sump, the sump, one side is in communication with the drain, so that the remaining water in the sump to guide the drain It may further include a residual guide flow path formed to be spaced apart from the longitudinal center line of the sump.
- Both sides are asymmetrically formed on the basis of the first slope surface portion having a small inclination toward the residual water guide passage portion and a second slope surface having a relatively large slope on the other side facing the direction opposite to the residual water guide passage portion.
- the super water-repellent micro-projections are formed to have a directionality, it is possible to prevent the occurrence of undercuts (that the micro-projections of the mold and the micro-projections of the tub interfere with each other) when the mold is separated after completion of the injection molding.
- a gradient may be formed in the super water-repellent micro-projections so that water flowing along the micro-projections may flow in a predetermined direction, for example, toward a drain.
- washing water containing contaminants is rolled by the super water-repellent micro-projections so as not to remain in the tub and flows to the drain, fresh rinsing water that is newly supplied may be prevented from mixing with the contaminated washing water.
- FIG. 1 is a front view of the tub according to the present invention seen from the front.
- FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
- Figure 3a is a picture showing a drop of water drops falling from the lotus leaf.
- Figure 3b is a conceptual diagram for explaining the lotus leaf effect of the super water-repellent micro-projections applied to the inside of the washing machine according to the present invention.
- 3C is a conceptual diagram for explaining a correlation between a contact angle between water and a surface and a water repellent property.
- Figure 4 is a view showing an example of the super water-repellent micro-projections applied to the tub cover according to the present invention.
- FIG. 5 is a view showing an example in which the super water-repellent micro-projections according to the present invention is applied to the tub body.
- FIG. 6a and 6b is a schematic view for explaining a manufacturing method of the tub by the plastic injection mold according to the present invention, Figure 6a shows a case in which the injection mold is closed and Figure 6b shows a case in which the injection mold is open.
- Figure 7a is a schematic diagram showing a first embodiment of a super water-repellent micro-protrusion according to the present invention.
- FIG. 7B is a plan view of the super water-repellent microprojection of FIG. 7A seen from above.
- FIG. 7B is a plan view of the super water-repellent microprojection of FIG. 7A seen from above.
- Figure 8a is a schematic diagram showing a second embodiment of the super water-repellent micro-protrusion according to the present invention.
- FIG. 8B is a plan view of the super water-repellent microprojection of FIG. 8A seen from above.
- Figure 9a is a schematic diagram showing a third embodiment of the super water-repellent micro-projections according to the present invention.
- FIG. 9B is a plan view of the super water-repellent microprojection of FIG. 9A seen from above.
- Figure 10a is a schematic diagram showing a fourth embodiment of the super water-repellent micro-projections according to the present invention.
- FIG. 10B is a plan view of the super water-repellent microprojection of FIG. 10A seen from above.
- Figure 11a is a schematic diagram showing a fifth embodiment of the super water-repellent micro-projections according to the present invention.
- FIG. 11B is a plan view of the super water-repellent microprojection of FIG. 11A seen from above.
- FIG. 11B is a plan view of the super water-repellent microprojection of FIG. 11A seen from above.
- Figure 13a is a schematic diagram showing a seventh embodiment of the super water-repellent micro-protrusions according to the present invention.
- FIG. 13B is a plan view of the super water-repellent microprojection of FIG. 13A seen from above.
- FIG. 14 is a perspective view showing an example in which the super water-repellent fine projection according to the present invention is applied to the circumferential surface of the tub cover.
- 15 is a perspective view showing an example in which the super water-repellent fine projection according to the present invention is applied to the circumferential surface of the tub body.
- 16 is a schematic view showing the structure of the super water-repellent micro-projections having an asymmetric inclined surface according to the present invention.
- Figure 17a and 17b is a schematic diagram for explaining the manufacturing method of the tub by the plastic injection mold according to the present invention
- Figure 17a is a case in which the injection mold is closed and
- Figure 17b is a case in which the injection mold is open
- Figure 17c is a side view showing a state seen from the DD direction of FIG. 17b.
- FIG. 18A is a partially enlarged view of “C” in FIG. 14 and is a plan view showing an example of super water-repellent microprojections having directivity.
- FIG. 18B is a cross-sectional view illustrating a cross-sectional shape of the super water-repellent fine protrusion viewed in the E-E direction of FIG. 18A.
- Figure 19a is a plan view showing another example of the super water-repellent micro-protrusion having a direction according to the present invention.
- 19B is a cross-sectional view illustrating a cross-sectional shape of the super water-repellent microprojection of FIG. 19A.
- 20 is a front view of the tub according to the present invention seen from the front.
- FIG. 21 is a cross-sectional view taken along line II of FIG. 20.
- FIG. 22A is a cross-sectional view taken along line G-G showing an example of a sump in FIG. 21.
- FIG. 22B is a perspective view illustrating a super water-repellent fine protrusion applied to the sump of FIG. 22A.
- FIG. 23A is a perspective view illustrating another example of the sump in FIG. 21.
- FIG. 23B is a plan view of the sump of FIG. 23A seen from above.
- FIG. 23B is a plan view of the sump of FIG. 23A seen from above.
- FIG. 23C is a sectional view taken along the line H-H in FIG. 23A.
- FIG. 24A and 24B are schematic views illustrating a method of manufacturing a tub by a plastic injection mold according to the present invention
- FIG. 24A is a case where the injection mold is in a closed state
- FIG. 24B is a case where the injection mold is in an open state
- FIG. 24C is a side view as seen in direction II of FIG. 24B.
- FIG. 25A is an enlarged view of a portion “X” of FIG. 22B and is a plan view illustrating an example of super water-repellent microprojections having directivity.
- FIG. 25B is a cross-sectional view illustrating a cross-sectional shape of the super water-repellent fine protrusion viewed in the J-J direction of FIG. 25A.
- Figure 26a is a plan view showing another example of the super water-repellent micro-protrusion having a direction according to the present invention.
- FIG. 26B is a cross-sectional view illustrating a cross-sectional shape of the super water-repellent fine protrusion viewed in the K-K direction of FIG. 26A.
- FIG. 1 is a front view of the tub 10 according to the present invention seen from the front, and FIG. 2 is a sectional view taken along the line A-A of FIG.
- Tub 10 provides a storage space for storing the wash water therein.
- Tub 10 is provided inside the cabinet.
- the tub 10 is fixedly supported inside the cabinet by a support member such as a damper and a spring.
- Tub 10 is made of a cylindrical shape, the inlet for the input of the laundry object may be formed on the front surface (10a ') of the tub (10).
- a rubber gasket 11 may be formed in the circumferential direction along the circumference of the inlet of the tub 10 to prevent the washing water in the tub 10 from leaking out of the tub 10.
- a driving unit for rotating the drum may be provided on the rear surface 10b 'of the tub 10.
- the drive motor may have a stator and a rotor for rotating the drum.
- the rotor generates rotational force by electromagnetic interaction with the stator.
- the rotor may be connected to the rear surface 10b 'of the drum through the rotating shaft to drive the drum.
- a rotating shaft support 10b1 may be formed on the rear surface 10b 'of the tub 10 so that the rotating shaft can pass therethrough.
- the cabinet forms the outline and skeleton of the washing machine. Openings are formed on the front surface 10a 'of the cabinet for input of laundry objects. In addition, a door for opening and closing the opening may be rotatably installed.
- a water supply hose is provided inside the cabinet. One side of the water supply hose is connected to the external water pipe through the external water supply hose and the other side is connected to the tub 10, the washing water may be supplied to the inside of the tub 10 along the water supply hose.
- a drum may be rotatably provided inside the tub 10.
- the drum is provided with a receiving space therein for injecting laundry objects.
- a plurality of through holes are formed in the drum, and the wash water of the tub 10 may flow into the drum through the through holes.
- a plurality of lifters may be provided inside the drum.
- the lifter rotates together with the drum and lifts the laundry object inserted into the drum to the upper part of the drum, and taps the laundry object by using a drop of gravity.
- Detergent input portion is provided in the cabinet, detergent may be stored in the detergent input portion.
- Detergent input unit is connected to the water supply hose, and after receiving the wash water from the outside to mix the wash water and the detergent may supply the detergent into the tub 10 together with the wash water.
- a drain 10b2 is formed at the bottom of the tub 10 so that the contaminated washing water is discharged to the outside of the cabinet.
- the drain hose is formed so that one side is in communication with the drain port 10b2 and the other side is in communication with the outside of the cabinet to discharge the wash water to the outside of the cabinet.
- a pump casing and a drain pump may be provided at the bottom of the tub 10.
- One side of the pump casing may be connected to the drain port 10b2 through a drain hose and the other side may be connected to the drain pump.
- the wash water discharged from the tub 10 may be pumped by the drainage pump and discharged to the outside of the cabinet through the drainage hose.
- the tub 10 may be formed to be inclined upward toward the front of the cabinet so that the front surface 10a 'is positioned higher than the rear surface 10b'.
- the center line of rotation of the drum penetrating the longitudinal center of the tub 10 may be formed to be inclined at an angle with respect to the horizontal plane.
- the tub 10 may be injection molded by the injection mold 20 using a polymer resin.
- the tub 10 may be divided into two parts (TWO PARTS) along the circumferential surface for injection molding.
- the tub 10 may be composed of a tub cover 10a disposed in front of the drum in the rotational axis direction and a tub body 10b disposed behind the tub cover 10a.
- the front (forward direction) means the direction facing the front surface (10a ') of the cabinet in which the laundry opening is formed.
- the rear means a direction facing the rear surface 10b 'of the cabinet opposite to the inlet.
- the tub cover 10a may form the front portion of the tub 10, and the tub body 10b may form the rear portion of the tub 10.
- the tub cover 10a forms a part of the front surface 10a 'and the circumferential surface of the tub 10, that is, the front circumferential surface in the longitudinal direction of the tub 10.
- the tub body 10b forms a part of the rear surface 10b 'of the tub 10 and a portion of the circumferential surface, that is, a circumferential surface of the rear side in the longitudinal direction of the tub 10.
- the rear surface 10b 'of the tub cover 10a is opened toward the tub body 10b, and the front surface 10a' of the tub body 10b is opened toward the tub cover 10a, and the tub cover 10a is opened.
- the tub body 10b may be in communication with each other.
- Flange-shaped coupling portions protrude from each other to face each other along the circumferential surface of the rear end of the tub cover 10a and the front end portion of the tub body 10b, and the coupling portion may be fastened by a fastening member such as a bolt.
- a sealing member is coupled between the rear face 10b 'of the tub cover 10a and the front face 10a' of the tub body 10b, thereby providing airtightness between the tub cover 10a and the tub body 10b. I can keep it.
- Inlet is formed in the front surface (10a ') of the tub cover (10a).
- the laundry object is introduced into the drum through the inlet.
- the drum has an opening in the front face 10a 'so as to communicate with the inlet of the tub cover 10a.
- the inlet of the tub cover 10a may be formed smaller than the diameter of the tub cover 10a.
- the sump 12 may be concave on the bottom surface of the tub body 10b.
- the sump 12 is located lower than the lowest end of the circumferential surface in the tub body 10b. As a result, the wash water in the tub 10 may flow into the sump 12 by gravity.
- the sump 12 has a drain 10b2 on one side for draining the wash water to the outside.
- the drain port 10b2 may be connected to the drain hose described above to drain the wash water to the outside.
- Figure 3a is a view showing a drop of water droplets (3) rolled from the lotus leaf (1)
- Figure 3b is a conceptual diagram for explaining the lotus leaf effect of the super water-repellent fine projections 13 applied to the washing machine according to the present invention
- 3C is a conceptual diagram for explaining a correlation between a contact angle between water and a surface and a water repellent property.
- the surface of the lotus leaf 1 has numerous hydrophobic nano-projections 2 (about one nanometer in diameter), so that water does not penetrate even if it rains. This condensation then flows down the surface.
- lotus leaf (1) is not attached to the water droplets (3) will roll down. At this time, the dust and dirt attached to the fine protrusions also fall together, the lotus leaf (1) can always maintain a clean state.
- the lotus leaf effect includes the self-cleaning (maintaining cleanliness) effect of the lotus leaf 1 as well as the effect of the water droplet 3 rolling off and not getting wet.
- the water droplet 3 shown in FIG. 3B has a small contact area when it comes in contact with the nano-projections 2 having a smaller size than the magnetic field, and the contact angle is greater than 100 °, so that the lotus leaf 1 has hydrophobicity. Due to this, the water droplets 3 do not penetrate between the microprojections but are floated on the microprojections and meet with other droplets 3 to form larger droplets 3, and the larger droplets 3 flow and become heavier, rolling down and falling down. .
- the angle at which the water shown in FIG. 3C contacts the surface of the contact object is referred to as a contact angle, and exhibits hydrophilicity when the contact angle between the water and the surface is less than 90 °, and the water repellency when the contact angle is greater than 90 ° and less than 150 °.
- the contact angle is more than 150 ° exhibits super water repellency.
- FIG. 4 is a view showing an example in which the super water-repellent micro-projections 13 according to the present invention are applied to the tub cover 10a
- FIG. 5 is the super water-repellent micro-projections 13 according to the present invention applied to the tub body 10b. The figure shows an example.
- the super water-repellent fine protrusion 13 may be applied to the inner surface of the tub 10.
- the super water-repellent fine protrusion 13 may be applied to the inner surface of the tub cover 10a or the tub body 10b.
- the super water-repellent fine protrusions 13 may be integrally formed on the front surface 10a 'of the tub cover 10a of FIG. 4 so as to be covered by a predetermined pattern. Although not shown, the super water-repellent fine protrusions 13 may be formed on the inner circumferential surface of the tub cover 10a.
- the super water-repellent fine protrusion 13 may be integrally formed on the rear surface 10b 'of the tub body 10b of FIG. 5 so as to be covered by a predetermined pattern.
- the super water-repellent micro-projections 13 may be formed on the inner circumferential surface of the tub body 10b.
- the super water-repellent fine protrusion 13 has a size in the range of 0.2 mm to 0.4 mm in order to exert super water repellent performance with a contact angle between water and the surface of 150 ° or more.
- the super water-repellent fine protrusions 13 preferably have a size of 0.2 mm or less (or 0.25 mm or less). Because, when the size of the fine protrusions is larger than the upper limit of 0.25mm, foreign matter may be caught between the fine protrusions, it is preferable that the fine protrusions have a size of less than the upper limit in order to prevent the foreign matter caught.
- the super water-repellent micro-projections 13 cover the inner surface of the tub 10, when the water droplets 3 form on the surface of the tub 10, the water droplets 3 do not get wet on the surface of the tub 10 and are round balls. Roll along the microprojections while maintaining the shape of a sphere. The droplet 3 slides toward the sump 12 in the tub 10 by gravity.
- the ball-shaped water droplets 3 do not touch the inner surface of the tub 10 by the super water-repellent micro-projections 13, and the super water-repellent micro-projections 13 support the water droplets 3.
- the water droplets 3 merge along with the other water droplets 3 while moving along the surface in the tub 10 to create a larger water droplet 3 and move to the sump 12 and the drain 10b2 by gravity to discharge to the outside. Will be.
- FIG. 6a and 6b is a schematic view for explaining the manufacturing method of the tub 10 by the plastic injection mold according to the present invention
- Figure 6a is a case in which the injection mold is closed
- Figure 6b is an injection mold in the open state Shows.
- the injection mold is divided into a fixed part and a moving part.
- the first molding part 211 having the same shape as that of the outer surface of the tub cover 10a or the tub body 10b is provided inside the fixing part.
- the moving part is provided with a second molding part 221 having the same shape as the shape of the inner surface of the tub cover 10a or the tub body 10b on one outer side.
- the first molding part 211 and the second molding part 221 may be formed to face each other, and the second molding part 221 may be inserted into the fixing part toward the first molding part 211.
- An injection molding machine is provided at one side of the fixing part, and the molten resin of the plastic is injected from the injection molding machine into the space between the first molding part 211 and the second molding part 221.
- the micro-molding protrusion 23 is formed on the surface of the second molding part 221, and the super-water-repellent micro-projection 13 is injection molded integrally with the tub 10 by the micro-molding protrusion 23.
- the micro molding protrusion 23 is formed on the right side of the moving part, but the second water repellent micro protrusion 13 is formed on the circumferential surface of the tub cover 10a or the tub body 10b.
- the fine molding protrusion 23 may be formed on the outer circumferential surface of the molding part 221.
- the moving part is separated from the fixing part for taking out the injection product.
- the moving part may be separated in the longitudinal direction of the tub cover 10a or the tub body 10b.
- the longitudinal direction of the tub cover 10a or the tub body 10b means a direction parallel to the circumferential surface of the tub body 10b of the tub cover 10a.
- Figure 7a is a schematic view showing a first embodiment of the super water-repellent micro-projections 13 according to the present invention
- Figure 7b is a plan view of the super water-repellent micro-projections 13 of Figure 7a seen from above.
- the super water-repellent fine protrusions 13 according to the first embodiment are formed in a brick (square) shape.
- the upper width and the lower width of the microprotrusions are the same, and the height of the microprotrusions may be half 2/10 of the size of the microprotrusions in comparison with the horizontal and vertical lengths 4/10.
- the super water-repellent fine protrusions 13 may be spaced apart from each other by 1/10 size.
- the super water-repellent fine protrusions 13 may be spaced apart in two directions (two directions, a transverse direction and a longitudinal direction).
- FIG. 8A is a schematic view showing a second embodiment of the super water-repellent micro-projections 113 according to the present invention
- FIG. 8B is a plan view of the super water-repellent micro-projections 113 of FIG. 8A seen from above.
- the super water-repellent fine protrusions 113 according to the second embodiment are formed in a brick (square) shape.
- the upper width and the lower width of the microprotrusions are the same, the width, length and height of the microprotrusions are all the same as 2/10, the microprotrusions may be formed spaced apart from each other by 5/100 size.
- the super water-repellent fine protrusions 113 may be spaced apart in two directions.
- FIG. 9A is a schematic view showing a third embodiment of the super water-repellent micro-projection 213 according to the present invention
- FIG. 9B is a plan view of the super-water-repellent micro-projection 213 of FIG. 9A seen from above.
- the super water-repellent fine protrusion 213 according to the third embodiment is formed in a convex upward shape.
- the round micro-projections may be formed without being spaced apart from each other in a continuous direction.
- the pitch between the fine protrusions may be made in the same ratio (5/100) in the horizontal and vertical directions, respectively.
- the gap between the depressions (valleys) between the fine protrusions may be formed in the same ratio in the horizontal and vertical directions.
- FIG. 10A is a schematic view showing a fourth embodiment of the super water-repellent micro-projection 313 according to the present invention
- FIG. 10B is a plan view of the super-water-repellent micro-projection 313 of FIG. 10A seen from above.
- the super water-repellent fine protrusion 313 has a tip-shaped protrusion.
- a dent between the pointed bumps can be rounded down.
- Pointed protrusions and indentations can be formed alternately in succession.
- the pitch between the sharp protrusions may be made in the same ratio (5/100) in the horizontal and vertical directions, respectively.
- FIG. 11A is a schematic view showing a fifth embodiment of the super water-repellent micro-projection 413 according to the present invention
- FIG. 11B is a plan view of the super-water-repellent micro-projection 413 of FIG. 11A seen from above.
- the super water-repellent fine protrusion 413 according to the fifth embodiment may be formed in a trapezoidal shape.
- the trapezoidal microprojections have a narrow upper width compared to the lower width.
- the upper width of the microprojections may be 1/10 and the lower width may be 3/10.
- the height of the microprojections can be longer than the upper width.
- the height of the microprojections may be 2/10 and the upper width may be 1/10.
- trapezoidal fine protrusions 413 may be formed to be spaced apart in one direction.
- FIG. 12A is a schematic view showing a sixth embodiment of the super water-repellent micro-projections 513 according to the present invention
- FIG. 12B is a plan view of the super-water-repellent micro-projections 513 of FIG. 12A seen from above.
- the super water-repellent fine protrusion 513 may be formed in a triangular or square pyramid shape.
- Square pyramidal micro-projections 513 have a pointed tip and forms four triangular surfaces along the circumferential surface.
- the height of the microprojections 513 may be 2/10, and the horizontal and vertical lengths of the bottom quadrangle may be 4/10.
- FIG. 13A is a schematic view showing a seventh embodiment of the super water-repellent micro-projections 613 according to the present invention
- FIG. 13B is a plan view of the super-water-repellent micro-projections 613 of FIG. 13A seen from above.
- the super water-repellent fine protrusion 613 according to the seventh embodiment may be formed in the shape of a triangle or a square pyramid.
- the height of the fine protrusion 613 according to the seventh embodiment, the horizontal and vertical length of the bottom square may be the same at the ratio of 2/10.
- the super water-repellent fine protrusion 613 may have one direction or two directions.
- the fine protrusions 413 of FIGS. 11A and 11B have a unidirectional characteristic.
- the fine protrusions have a directionality means that the fine protrusions form a certain pattern in any direction.
- the fine protrusions 413 of FIGS. 11A and 11B protrude in a trapezoidal shape along one direction.
- the trapezoidal fine protrusions 413 may be formed to be spaced apart at regular intervals in a direction crossing the one direction.
- the micro-projections 413 having one direction are spaced apart from each other in a direction intersecting with one direction, and the micro-projections 413 having one direction are symmetrically symmetrically with respect to the center line of the one direction spaced apart from each other in parallel. Can be formed.
- the center line in one direction refers to a line connecting the center of the upper width in the case of the trapezoidal protrusion 413.
- the first inclined surface 413a and the second inclined surface 413b may be symmetrically formed on both sides of the micro-projection 413 on the one-way center line.
- the center line in one direction means a line connecting upper vertices.
- the fine protrusions 13, 113, 213, 313, 513, and 613 of FIGS. 7A to 10B and 12A to 13B have bidirectionality.
- the fine protrusions 13, 113, 213, 313, 513, and 613 of the remaining drawings may be formed in a predetermined pattern in two directions, that is, in the transverse direction and the longitudinal direction.
- micro-projections 13, 113, 213, 313, 513 and 613 are bidirectionally formed in a predetermined pattern in two directions, ie, the transverse direction and the longitudinal direction intersecting with each other, and the micro-projections 13, 113, 213, 313, 513 and 613 having bidirectionality are spaced apart in parallel to each other. It can be formed symmetrically with respect to the center line in the longitudinal direction.
- the transverse center line and the longitudinal center line may have a lattice shape.
- micro-projections 13, 113, 213, 313, 513, 613 having bidirectionality may further improve super water repellent performance compared to the micro-projections 413 having unidirectionality.
- Figure 14 is a perspective view showing an example of the super water-repellent fine projections 130 according to the present invention applied to the circumferential surface (100a ') of the tub cover (100a),
- Figure 15 is a super water-repellent fine projections 130 according to the present invention It is a perspective view showing the example applied to the circumferential surface 100b 'of the tub body 100b.
- the super water-repellent fine protrusion 130 may be applied to the inner surface of the tub 100 to improve the drainage of the wash water.
- the super water-repellent fine protrusion 130 may be applied to the inner surface of the tub cover 100a or the tub body 100b.
- the tub cover 100a shows the tub cover 100a viewed from the rear.
- the super water-repellent fine protrusions 130 are integrally formed on the circumferential surface 100a 'in the tub cover 100a illustrated in FIG. 14 so as to be covered by a predetermined pattern.
- the super water-repellent fine protrusions 130 are integrally formed on the circumferential surface 100b 'in the tub body 100b shown in FIG. 15 so as to be covered by a predetermined pattern.
- the super water-repellent micro-projections 130 have a size in the range of 0.2 mm to 0.4 mm in order to exhibit super water repellent performance with a contact angle ⁇ between water and the surface of 150 ° or more.
- the super water-repellent fine protrusion 130 preferably has a size of 0.2mm or less (or 0.25mm or less). Because, when the size of the fine protrusions is larger than the upper limit of 0.25mm, foreign matter may be caught between the fine protrusions, it is preferable that the fine protrusions have a size of less than the upper limit in order to prevent the foreign matter caught.
- the super water-repellent micro-projections 130 cover the inner surface of the tub 100, when the water droplets 2 form on the surface of the tub 100, the water droplets 2 do not get wet on the surface of the tub 10 and are round balls or the like. Roll along the microprojections while maintaining the shape of a sphere. The droplet 2 slides toward the sump 120 in the tub 100 by gravity.
- the ball-shaped water droplets 2 do not touch the inner surface of the tub 100 by the super water-repellent fine protrusions 13, and the super water-repellent fine protrusions 130 support the water droplets 2.
- water droplet 2 merges with other water droplets 2 while moving along the surface in the tub 100 to create a larger water droplet 2 and moves to the sump 120 and the drain hole 100b2 by gravity to drain the drain hose. Will be discharged to the outside.
- the super water-repellent fine protrusions 13 formed on the inner surface of the tub 100 may be integrally formed with the tub 100 by injection molding.
- the super water-repellent fine protrusions 130 formed on the circumferential surfaces 100a 'and 100b' of the tub 100 may have directionality for smooth separation of the injection mold. That is, the super water-repellent fine protrusions 130 formed on the circumferential surfaces 100a 'and 100b' of the tub 100 have directivity in the direction in which the injection mold 200 is separated after molding. As the super water-repellent micro-projections 130 have a direction in a specific direction, it is possible to remove the undercut of the injection mold, that is, to prevent the smooth separation of the mold. In order to remove the undercut of the injection mold may be provided with a separate core, in this case there is a problem that the manufacturing cost increases.
- the super water-repellent fine protrusion 130 can remove the undercut of the injection mold without a separate core because it has a direction in the direction in which the mold is separated, to prevent the physical performance degradation due to the undercut of the water repellent surface Can be.
- the super water-repellent fine protrusions 130 formed on the circumferential surfaces 100a 'and 100b' of the tub 100 may be formed to have a slope having a predetermined slope to guide the residual flow in a constant direction.
- 16 is a schematic view showing the structure of the super water-repellent fine protrusions 130 according to the present invention has an asymmetric inclined surface.
- the super water-repellent fine protrusions 130 may be formed of, for example, a right triangle in cross section. However, the cross-sectional shape is not limited to this.
- the super water-repellent fine protrusion 130 may be composed of a first inclined surface 130a which is formed to be inclined downward in one direction from the upper vertex and a second inclined surface 130b which is inclined downward in the opposite direction from the upper vertex.
- the inclination (gradient) of the first inclined plane 130a (the right inclined plane based on the upper vertex in FIG. 6) is smaller than the inclination of the second inclined plane 130b (smooth).
- a vertical line passing through the upper vertex and a horizontal line positioned below the upper vertex meet and intersect, and the length of the horizontal extension line extending from the intersection of the vertical line and the horizontal line to the right vertex is called a, and the horizontal line extending from the intersection to the left vertex
- the length of the extension line is b and the vertical extension line connecting the upper vertex and the intersection point is the height h
- h / a is the slope of the first slope 130a
- h / b is the slope of the second slope 130b.
- the super water-repellent micro-projections 130 are asymmetrical with the first and second slopes 13b on both sides formed at different slopes (h / a ⁇ h / b) with respect to the upper vertex.
- the super water-repellent fine protrusion 130 forms a contact angle ⁇ of 150 degrees or more with the water droplet 2 and has super water repellency.
- the water droplets 2 may move in one direction with directionality in the super water-repellent micro-projections 130 due to the characteristics of the surface structure of the super water-repellent micro-projections 130 having an asymmetric inclined surface. That is, the flow of the water droplets 2 is made toward the first inclined surface 130a from the second inclined surface 130b of the super water-repellent fine protrusion 130.
- first inclined surface 130a and the second inclined surface 130b of the super water-repellent fine protrusion 130 are formed such that the residual water formed on the circumferential surfaces 100a 'and 100b' of the tub 100 flows toward the sump 120.
- the tub 100 may be disposed alternately in the circumferential direction.
- the first inclined surface 130a is formed to be inclined downward toward the drain hole 100b2 or the sump 120 at the upper vertex of the microprotrusion
- the second inclined surface 13b is the drain port 100b2 or the sump 120 at the upper vertex of the microprotrusion.
- the first slope 130a and the second slope 130b have different inclination angles, and the slope h / a of the first slope 130a is smaller than the slope h / b of the second slope 130b.
- the motive force F which gives the directivity of the water droplet 2 consists of a following formula.
- r lv surface tension of water
- ⁇ A forward angle of water
- ⁇ B backward angle of water
- w 1 angle of right vertex
- w 2 angle of left vertex
- Figure 17a and 17b is a schematic view for explaining the manufacturing method of the tub by the plastic injection mold according to the present invention
- Figure 17a is a case in which the injection mold is closed
- Figure 17b shows a case in which the injection mold is open.
- FIG. 17C is a side view illustrating a state viewed from the D-D direction of FIG. 17B.
- the injection mold is divided into a fixed part and a moving part.
- the first molding part 211 having the same shape as the shape of the outer surface of the tub cover 100a or the tub body 100b is provided inside the fixing part.
- the moving part is provided with a second molding part 2201 having the same shape as the shape of the inner surface of the tub cover 100a or the tub body 100b on one outer side.
- the first molding part 2101 and the second molding part 2201 may be formed to face each other, and the second molding part 2201 may be inserted into the fixing part toward the first molding part 2101.
- An injection molding machine is provided at one side of the fixing part, and molten resin of the plastic is injected from the injection molding machine into the space between the first molding part 2101 and the second molding part 2201.
- the micro molding protrusion 230 is formed on the surface of the second molding part 2201, and the super water-repellent micro protrusion 130 is injection molded integrally with the tub 100 by the micro forming protrusion 230.
- a fine molding protrusion 230 is formed on the circumferential surface of the moving part.
- the super water-repellent fine protrusions 130 may be injection molded on the circumferential surfaces 10a 'and 10b' in the tub cover 100a or the tub body 100b.
- the moving part is separated from the fixing part for taking out the injection product.
- the moving part may be separated in the longitudinal direction of the tub cover 100a or the tub body 100b.
- the longitudinal direction of the tub cover 100a or the tub body 100b means a direction parallel to the circumferential surface 100b 'of the tub body 100b of the tub cover 100a.
- the super water-repellent fine protrusions 130 formed on the circumferential surfaces 100a 'and 100b' of the tub cover 100a or the tub body 100b have a moving part or a moving mold 220 from the fixed part after injection molding is completed. Directional in the direction of separation.
- the super water-repellent micro-projections 130 have a directionality means that when the mold is separated after the molding is completed by the injection mold 200, the super-water-repellent micro-projections 130 are fine molding protrusions of the moving mold 220 ( It means that the super water-repellent fine protrusions 130 protrude along the separation direction of the moving mold 220 so as not to interfere with the 230.
- FIG. 18A is a partially enlarged view of “C” in FIG. 14, which is a plan view showing an example of the super water-repellent microprojections 130 having a directivity
- FIG. 18B is a super water-repellent microprojections 1310 seen in the EE direction of FIG. 18A. This is a cross-sectional view showing the cross-sectional shape of.
- the separation direction of the moving mold 220 may be a longitudinal direction of the tub 100.
- the movable mold 220 is separated or removed from the stationary mold 210 along the longitudinal center line of the tub cover 100a from the front surface of the tub cover 100a toward the rear opening.
- the super water-repellent fine protrusion 1310 may have a direction in the longitudinal direction of the tub 100, the longitudinal direction of the tub cover 100a, or the longitudinal direction of the tub body 100b.
- the super water-repellent fine protrusions 130 may include the circumferential surfaces 100a 'and 100b' of the tub 100, the circumferential surface 100a 'of the tub cover 100a, or the circumferential surface 100b' of the tub body 100b. It may have a direction in the direction parallel to).
- the super water-repellent fine protrusion 1310 has a tub cover 100a or a tub body (1) in order to have a direction in the separation direction of the mold, that is, the longitudinal direction of the tub 100, the tub cover 100a or the tub body 100b. It has a constant cross-sectional shape along the longitudinal direction of 100b).
- the super water-repellent fine protrusion 1310 illustrated in FIG. 18A has a triangular cross-sectional shape.
- the super water-repellent fine protrusion 1310 is formed such that the triangular cross-sectional shape is constantly maintained along the longitudinal direction of the tub cover 100a or the tub body 100b.
- the super water-repellent micro-projections 130 may form a straight line with the vertices of the triangle continuously connected along the longitudinal direction of the tub (100). Both sides of the triangle may be formed symmetrically with both sides having the same length and angle of inclination with respect to a vertex or a straight line extending from the vertex.
- Both sides of the super water-repellent micro-projections 1310 are symmetric with each other and have the same length and inclined surfaces.
- the super water-repellent fine protrusion 1310 may have a cross-sectional shape of an isosceles triangle. At this time, the base side (P) and the height (h) of the isosceles triangle may be the same length.
- the plurality of super water-repellent micro-projections 1310 may be formed in the shape of a triangular cross-section continuously adjacent to each other in the circumferential direction of the tub 100 or spaced apart at regular intervals.
- the plurality of super water-repellent fine protrusions 1310 shown in FIG. 18A are continuously formed adjacent to each other. Continuously adjacently formed means that the inclined surfaces of the two adjacent fine protrusions face each other to form a straight valley.
- FIG. 19A is a plan view showing another example of the super water-repellent micro-projections 2310 having a directionality according to the present invention
- FIG. 19B is a cross-sectional view showing the cross-sectional shape of the super water-repellent micro-projections 2310 of FIG. 19A.
- the super water-repellent microprojections 2310 illustrated in FIGS. 19A and 19B have the following differences as compared to the super water-repellent microprojections 1310 of FIGS. 18A and 18B, and the remaining components are superhydrophobic microstructures of FIGS. 18A and 18B. Since it is the same as or similar to the projection 1310, detailed description thereof will be omitted.
- the super water-repellent microprojections 2310 illustrated in FIGS. 19A and 19B may have a trapezoidal shape.
- the upper side w and the lower side P of the trapezoid may be made parallel to each other.
- the upper side (w) may have a length of about 1/3 of the lower side (P).
- An inclined surface symmetrical with each other may be formed on both sides with respect to the center line of the upper side w of the trapezoid.
- the width P of the trapezoid (including the upper surface and both inclined surfaces) may be 3/2 of the height h of the trapezoidal cross section.
- the super water-repellent fine protrusion 2310 may be constantly maintained along the longitudinal direction of the tub 100 so that the cross-sectional shape of the trapezoid has a constant direction in the separation direction of the mold, that is, the longitudinal direction of the tub 100.
- the super water-repellent micro-projections 2310 may be formed in a trapezoidal cross-sectional shape spaced apart in the circumferential direction of the tub 100 or continuously.
- the super water-repellent fine protrusions 2310 illustrated in FIG. 9B are formed to be spaced apart in the circumferential direction of the tub 100.
- FIG. 20 is a front view of the tub 200 according to the present invention seen from the front, and FIG. 21 is a sectional view taken along the line I-I of FIG. 20.
- the upper part of the sump 210 is opened to communicate with the inside of the tub body 200b, and the wash water in the tub body 200b flows down and collects into the sump 210.
- An overflow preventing member 210a may be provided at an upper side edge portion of the sump 210.
- Overflow prevention member (210a) is due to the acceleration of the washing water flowing along one side circumferential surface of the tub body (200b) wash water is introduced into the sump 210 and at the same time a part of the wash water in the sump (210) Is to prevent it from flowing over the opposite circumferential surface of the tub 200 through the sump 210.
- the overflow preventing member 210a may be formed to protrude along the longitudinal direction of the sump 210 at the side edge portion of the sump 210.
- the overflow preventing member 210a may be formed to protrude in a direction facing toward each other at the upper end of both sides of the sump 210.
- the sump 210 may be formed to be wider toward the front from the rear surface of the tub body 200b.
- the overflow preventing member 210a may be formed to be wider from the rear surface of the tub body 200b toward the front.
- the overflow prevention member positioned at the upper portion of the drain port 10b2 of the two overflow preventing members 210a may be partially cut to not cover the upper part of the drain port 200b2.
- the sump 210 is provided with a drain 200b2 at one side to drain the wash water stored in the tub 200 to the outside.
- the drain 200b2 may be connected to the drain hose described above to drain the wash water to the outside.
- the drain port 200b2 may be formed to be spaced apart from the longitudinal center line G-G of the tub 200 or the rotation center line of the drum at the sump 210 toward one side, for example, toward the right side panel of the cabinet.
- the sump 210 may be formed to be biased toward one side, for example, to the right side panel of the cabinet from the longitudinal center line G-G of the tub 200 or the rotation center line of the drum at the lower portion of the tub body 200b. That is, the longitudinal center line of the sump 210 does not coincide with the longitudinal center line G-G of the tub body 200b and is spaced apart in one direction.
- the drain hole 200b2 is formed to be spaced apart from the longitudinal center line of the sump 210 in one direction.
- FIG. 22A is a cross-sectional view taken along line G-G showing an example of the sump 210 in FIG. 21, and FIG. 22B is a perspective view showing a super water-repellent fine protrusion 2130 applied to the sump 210 of FIG. 22A.
- the tub cover 200a illustrated in FIG. 22A is disposed at the front in the longitudinal direction of the tub 200, and the tub body 200b is disposed at the rear of the tub 200, and the tub cover 200a and the tub body 200b. ) Are combined with each other.
- the front face of the tub cover 200a is located higher than the rear face of the tub body 200b.
- An inlet for laundry is formed on the front surface of the tub cover 200a.
- the tub cover 200a may be formed to be inclined downward in the 5 ° to 15 ° angle range ⁇ from the front surface to the rear. That is, the rear surface of the tub cover 200a may be located lower than the front surface thereof.
- the tub body 200b may be inclined upward from the rear surface toward the front. That is, the front face of the tub body 200b is located higher than the rear face thereof.
- the sump 210 may be inclined downward from the rear surface of the tub body 200b toward the front.
- the front bottom of the sump 210 is located lower than its rear bottom. The reason is that the drain port 200b2 is formed to be spaced forward from the rear surface of the tub body 200b, and the washing water in the sump 210 flows to the drain port 200b2.
- the bottom of the sump 210 may be formed to be inclined at an angle range of 0.5 to 1 ° with respect to the horizontal plane.
- a plurality of super water-repellent fine protrusions 2130 are integrally formed on the inner surface of the tub 200 to remove residual water in the tub 200.
- the super water-repellent fine protrusion 2130 has a size in the range of 0.2 mm to 0.4 mm in order to exert super water repellent performance with a contact angle between water and the surface of 150 ° or more.
- the super water-repellent fine projections 2130 preferably have a size of 0.2 mm or less (or 0.25 mm or less). Because, when the size of the fine protrusions is larger than the upper limit of 0.25mm, foreign matter may be caught between the fine protrusions, it is preferable that the fine protrusions have a size of less than the upper limit in order to prevent the foreign matter caught.
- the super water-repellent micro-projections 2130 cover the inner surface of the tub 200, when the water droplets 3 form on the surface of the tub 200, the water droplets 3 do not get wet on the surface of the tub 200 and are round balls. Roll along the microprojections while maintaining the shape of a sphere. The droplet 3 slides toward the sump 210 in the tub 200 by gravity.
- the ball-shaped water droplets 3 do not touch the inner surface of the tub 200 by the super water-repellent fine protrusions 2130, and the super water-repellent fine protrusions 2130 support the water droplets 3.
- the water droplets 3 merge with other water droplets 3 while moving along the surface in the tub 200 to form a larger water droplet 3 and move to the sump 210 and the drain hole 200b2 by gravity to move the drain hose. Will be discharged to the outside.
- the plurality of super water-repellent fine protrusions 2130 may be formed on the inner surface of the sump 210.
- the droplets 3 in the sump 210 roll down along the super water-repellent fine protrusion 2130 to form a large droplet 3 and move to the drain hole 200b2.
- FIG. 23A is a perspective view illustrating another example of the sump 2110 in FIG. 21,
- FIG. 23B is a plan view of the sump 2110 of FIG. 23A, and
- FIG. 23C is a cross-sectional view of the residual water in FIG. 23A.
- the sump 2110 shown in FIGS. 23A-23C differs from the sump 210 of FIGS. 22A and 22B as follows. Since the rest of the configuration is the same as or similar to FIGS. 22A and 22B, a detailed description thereof will be omitted.
- the sump 2110 illustrated in FIGS. 23A to 23C further includes a residual water guide flow path 220.
- Residual water guide flow path 220 is provided to guide the residual water in the sump (2110) to the drain (200b2). Residual guide flow path 220 is formed to be spaced apart in one direction from the longitudinal center line of the sump (2110). The residual water guide flow path 220 has a narrow flow path and is formed long in the longitudinal direction of the sump 2110.
- the residual water guide flow path 220 is formed to be inclined downward toward the front portion from the rear portion of the sump (2110). Because the drain port 200b2 is formed at the front end of the residual water guide flow path 220, the front end of the residual water guide flow path 220 is lower than the rear end so that the residual water flows to the drain port 200b2 under the influence of gravity. Preferably located.
- the residual water guide flow path 220 has a larger inclination than the bottom of the sump (210).
- the inclination angle of the bottom surface of the sump 2110 may be 0.5 ° to 1 ° while the inclination angle of the residual guide flow path 220 may be formed within a range of 2 ° to °°.
- the residual water guide passage part 220 may further improve the drainage of the residual water to the drain hole 200b2 than the residual water in the sump 2110.
- the super water-repellent fine protrusions 2130 formed in the sump 2110 may be formed to have a slope having a predetermined slope to guide the residual flow in a constant direction.
- the super water-repellent micro-projections 2130 of the sump 2110 may induce residual water to flow toward the residual water guide passage 220.
- the first inclined surface and the second inclined surface of the super water-repellent fine protrusion 2130 may flow in the width direction of the sump 2110 so that the residual water in the sump 2110 flows toward the residual water guide flow path 220 or the drain 200b2. Alternately to 200b2 or the residual water guide flow path 220 may be disposed.
- the first inclined surface is formed to be inclined downward toward the drain port 200b2 or the residual water guide passage 220 at the upper end of the fine protrusion
- the second slope is the drain hole 200b2 or the residual water guide passage at the upper point of the fine protrusion 2130. It is formed to be inclined downward in the opposite direction to the portion 220.
- the first slope and the second slope have different inclination angles, and the slope h / a of the first slope is smaller than the slope h / b of the second slope.
- FIG. 24A and 24B are schematic views for explaining a manufacturing method of the tub 200 by the plastic injection mold according to the present invention, and FIG. 24A is a case where the injection mold is in a closed state and FIG. 24B is when the injection mold is in an open state. Shows. 24C is a side view of the I-I direction of FIG. 24B.
- the injection mold is divided into a fixed part and a moving part.
- the first molding part 3110 having the same shape as that of the outer surface of the tub cover 200a or the tub body 200b is provided inside the fixing part.
- the moving part is provided with a second molding part 3210 having the same shape as the shape of the inner surface of the tub cover 200a or the tub body 200b on one outer side.
- the first molding part 3110 and the second molding part 3210 may be formed to face each other, and the second molding part 3210 may be inserted into the fixing part toward the first molding part 3110.
- An injection molding machine is provided at one side of the fixing part, and molten resin of the plastic is injected from the injection molding machine into the space between the first molding part 3110 and the second molding part 3210.
- the micro molding protrusion 330 is formed on the surface of the second molding part 3210, and the super water-repellent micro protrusions 2130 are integrally injection-molded together with the tub 200 by the micro forming protrusions 330.
- a fine molding protrusion 330 is formed at the lower portion of the circumferential surface of the moving part (the part facing the sump 2110).
- the super water-repellent fine protrusions 2130 may be injection molded to the sump 2110 in the tub body 200b.
- the moving part is separated from the fixing part for taking out the injection product.
- the moving part may be separated in the longitudinal direction of the tub cover 200a or the tub body 200b.
- the longitudinal direction of the tub cover 200a or the tub body 200b means a direction parallel to the circumferential surface of the tub body 200b of the tub cover 200a.
- the super water-repellent fine protrusions 2130 formed on the inner surface of the sump 2110 of the tub body 200b have a direction in a direction in which the moving part or the moving mold 320 is separated from the fixing part after injection molding is completed.
- the super water-repellent micro-projections 2130 have a directionality is that when the mold is separated after the molding is completed by the injection mold 300, the super-water-repellent micro-projections 2130 are fine molding projections of the moving mold 320 ( This means that the super water-repellent fine protrusions 2130 protrude along the separation direction of the moving mold 320 so as not to interfere with the 330 (see FIGS. 22B and 23B).
- FIG. 25A is an enlarged view of part “X” of FIG. 22B, which is a plan view showing an example of super water-repellent microprojections 2130 having directionality
- FIG. 25B is a super water-repellent microprojections 2130 viewed in the JJ direction of FIG. 25A. This is a cross-sectional view showing the cross-sectional shape of.
- the separation direction of the moving mold 320 may be a longitudinal direction of the tub 200.
- the moving mold 320 is separated or removed from the stationary mold 310 along the longitudinal center line of the tub cover 200a from the front face of the tub cover 200a toward the rear opening.
- the super water-repellent fine protrusion 2130 may have a direction in the longitudinal direction of the tub 200, the longitudinal direction of the tub cover 200a, the longitudinal direction of the tub body 200b, or the longitudinal direction of the sump 2110.
- the super water-repellent fine projections 2130 are directional in a direction parallel to the circumferential surface of the tub 200, the circumferential surface of the tub cover 200a, the circumferential surface of the tub body 200b, or the inner surface of the sump 2110.
- the super water-repellent fine protrusion 2130 is a tub to have a direction in the separation direction of the mold, that is, the longitudinal direction of the tub 200, the tub cover 200a and the tub body 200b or the longitudinal direction of the sump 2110 It has a constant cross-sectional shape along the longitudinal direction of the cover 200a or the tub body 200b or the longitudinal direction of the sump 2110.
- the super water-repellent fine protrusions 2130 illustrated in FIG. 25A have a triangular cross-sectional shape.
- the super water-repellent fine protrusion 2130 is formed such that the triangular cross-sectional shape is constantly maintained along the longitudinal direction of the tub cover 200a or the tub body 200b or the longitudinal direction of the sump 2110.
- the super water-repellent micro-projections 2130 may be formed in a straight line by connecting the vertices of the triangle in the longitudinal direction of the tub 200 or in the longitudinal direction of the sump 2110. Both sides of the triangle may be formed symmetrically with both sides having the same length and angle of inclination with respect to a vertex or a straight line extending from the vertex.
- Both sides of the super water-repellent micro-projections 2130 are symmetric with each other and have the same length and inclined surfaces.
- the super water-repellent fine protrusions 2130 may have a cross-sectional shape of an isosceles triangle. At this time, the base p and the height h of the isosceles triangle may be the same length.
- the plurality of super water-repellent micro-projections 2130 may be formed to be adjacent to each other in the circumferential direction of the tub 200 or in the width direction of the sump 2110 continuously or spaced apart at regular intervals.
- the plurality of super water-repellent fine protrusions 2130 shown in FIG. 25A are continuously formed adjacent to each other. Continuously adjacently formed means that the inclined surfaces of the two adjacent fine protrusions face each other to form a straight valley.
- Figure 26a is a plan view showing another example of the super water-repellent fine projections 3130 having a direction according to the present invention
- Figure 26b is a cross-sectional view showing the cross-sectional shape of the super water-repellent fine projections 3130 in the KK direction of Figure 26a. .
- the super water-repellent fine protrusions 3130 shown in FIGS. 26A and 26B have the following differences, and the rest of the components are the same as or similar to those of the super water-repellent fine protrusions 3130 of FIGS. 25A and 25B, and thus, detailed descriptions thereof will be omitted. Shall be.
- the super water-repellent fine protrusions 3130 illustrated in FIGS. 26A and 26B may have a trapezoidal shape.
- the upper side w and the lower side p of the trapezoid may be parallel to each other.
- the upper side (w) may have a length of about 1/3 of the lower side (p).
- An inclined surface symmetrical with each other may be formed on both sides with respect to the center line of the upper side w of the trapezoid.
- the width of the trapezoid (including the upper surface and both inclined surfaces) may be 3/2 of the height h of the trapezoidal cross section.
- the super water-repellent fine protrusion 3130 may be constantly maintained along the longitudinal direction of the tub 200 so that the cross-sectional shape of the trapezoid has a direction in the separation direction of the mold, that is, the longitudinal direction of the tub 200.
- the super water-repellent fine protrusions 3130 may be formed in a trapezoidal cross-sectional shape spaced apart in the circumferential direction of the tub 200 or continuously formed.
- the super water-repellent fine protrusion 3130 illustrated in FIG. 26B is spaced apart from the circumferential direction of the tub 200 or the width direction of the sump 2110.
- the remaining water inside the washing machine can be removed by using the lotus leaf effect of the super water-repellent micro-projections to keep the inside of the washing machine clean. For example, it is possible to remove the smell of the mold caused by the residual water.
- the super water-repellent fine protrusion is formed to have a directional direction in a predetermined direction, that is, the separation direction of the mold can be prevented the occurrence of undercut during separation of the mold after injection molding.
- the residual water in the tub may flow down the circumferential surface toward the drain hole.
- washing machine described above is not limited to the configuration and method of the above-described embodiments, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications can be made.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
- Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
Abstract
본 발명은 캐비닛의 내부에 구비되고, 내부에 세탁수를 저장하는 터브; 및 상기 터브 내의 잔수를 제거하기 위해 상기 터브의 내표면에 형성되는 복수의 초발수 미세돌기를 포함하는 세탁기에 관한 것이다. 이에 의하면, 터브의 내표면에 다수의 초발수 미세돌기가 형성됨으로, 연잎 효과를 이용하여 터브의 내부에 잔류하는 잔수를 깨끗이 제거하여 세탁기의 청결상태를 유지할 수 있다.
Description
본 발명은 배수성능을 향상시킨 세탁기에 관한 것이다.
일반적으로 세탁기는 물과 세제의 작용을 이용하여 드럼 내에 수용된 의류 등(이하, 세탁대상물이라 칭함)에 묻은 오염물질을 떼어내도록 세탁, 헹굼, 탈수, 건조 등의 과정을 통해 세탁대상물을 세정하는 장치이다.
세탁기는 펄세이터(pulsator)의 동작에 따른 수류에 의해 세탁이 이루어지는 펄세이터형 세탁기와, 드럼(drum) 자체의 회전에 의한 세탁대상물의 낙하를 이용하는 드럼형 세탁기로 분류될 수 있다.
드럼형 세탁기는 캐비닛의 내부에 구비되고 세탁수가 내부에 저장되는 터브와, 터브의 내부에 회전가능하게 설치되는 드럼과, 터브에 세탁수를 공급하는 급수장치와, 세탁이 종료된 후에 터브의 세탁수를 캐비닛의 외부로 배출시키는 배수장치를 포함한다.
상기 배수장치는 배수호스와 배수펌프를 포함할 수 있다.
배수호스는 터브의 세탁수를 캐비닛의 외부로 안내하고, 배수펌프는 상기 배수호스를 따라 흐르는 세탁수를 배출시킨다.
그러나, 상기 터브 내부의 오염된 세탁수가 캐비닛 외부로 배출되지 않고 터브의 내부에 잔존하는 경우에 다음과 같은 문제점이 발생한다.
첫째, 세탁수를 헹구기 위해 공급되는 깨끗한 세탁수가 터브의 내부에 잔존하는 오염된 세탁수와 섞이게 될 경우에 헹굼행정의 효율이 떨어지고 적절한 헹굼에 요구되는 세탁수의 양 및 세탁시간이 증가한다.
둘째, 터브의 내부는 배수펌프의 동작이 완료된 후에도 습도가 매우 높고, 터브의 오염된 세탁수는 배수호스를 통해 배수되지 않고 터브의 내부면에 물방울 형태로 붙어서 잔존하게 된다. 이때, 터브의 내부면에 남은 잔수는 곰팡이 등 세균의 발생으로 악취를 유발시키고, 이후의 세탁기 사용시 새롭게 급수되는 물을 오염시킨다.
따라서, 본 발명의 첫번째 목적은, 터브 내부면에 잔존하는 세탁수를 남김없이 외부로 배출시킬 수 있는 세탁기를 제공하기 위한 것이다.
또한, 본 발명의 두번째 목적은, 터브의 내부면(전후방면, 원주면, 섬프)에 잔존하는 잔수의 흐름에 방향성을 줄 수 있는 세탁기를 제공하기 위한 것이다.
또한, 본 발명의 세번째 목적은, 터브를 사출 금형에 의해 사출 성형 후 사출 금형의 언더컷을 방지할 수 있는 세탁기를 제공하기 위한 것이다.
이와 같은 본 발명의 첫번째 목적은 세탁기 내부에 물이 닿을 수 있는 곳에 초발수 미세돌기를 구비하고, 초발수 미세돌기의 연잎효과를 이용하여 세탁기 내부의 잔수를 제거함으로 달성될 수 있다.
본 발명의 두번째 목적은 초발수 미세돌기의 양측 경사면에 비대칭적인 구배를 형성하여 물이 배수구를 향해 흐를 수 있도록 함으로써 달성될 수 있다.
본 발명의 세번째 목적은 사출금형이 분리되는 방향으로 초발수 미세돌기에 방향성을 부여하여 사출 금형의 언더컷을 방지함으로 달성될 수 있다.
본 발명과 관련된 일 예에 따르면, 캐비닛의 내부에 구비되고, 내부에 세탁수를 저장하는 터브; 및 상기 터브 내의 잔수를 제거하기 위해 상기 터브의 내표면에 형성되는 복수의 초발수 미세돌기를 포함한다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 초발수 미세돌기는, 상기 터브와 함께 사출 금형에 의해 사출 성형되어, 상기 터브의 내표면에 일체형으로 이루어질 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 터브는, 세탁대상물의 투입을 위한 투입구가 전방면에 형성되고, 상기 터브가 원주면을 따라 전방부와 후방부로 분할될 때 상기 터브의 전방부를 형성하는 터브커버; 및 상기 터브커버의 후단과 결합되고, 상기 터브의 후방부를 형성하는 터브본체를 포함할 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 초발수 미세돌기는, 상기 터브커버 내의 전방면과 상기 터브본체 내의 후방면에 형성될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 초발수 미세돌기각각은 상부 폭이 하부 폭과 대비하여 작거나 같을 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 초발수 미세돌기 각각은 둥근 형태, 삼각형 및 사각형 중 어느 한 형태로 이루어질 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 초발수 미세돌기는 상기 터브의 내표면을 따라 서로 평행하게 이격되는 일 방향 중심선을 기준으로 양측이 대칭되게 형성될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 복수의 초발수 미세돌기는 상기 터브의 내표면을 따라 서로 평행하게 이격되는 제1방향 중심선과 상기 제1방향 중심선과 교차하는 방향으로 서로 평행하게 이격되는 제2방향 중심선을 기준으로 양측이 대칭되게 형성될 수 있다.
본 발명과 관련된 일 예에 따르면, 상기 제1방향 중심선과 제2방향 중심선은 격자형으로 이루어질 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 복수의 초발수 미세돌기는 상기 터브 내의 원주면에 형성될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 복수의 초발수 미세돌기는 사출 성형 후 사출 금형의 언더컷을 방지하기 위해 상기 사출 금형이 분리되는 방향으로 터브 내의 길이방향을 따라 돌출 형성될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 복수의 초발수 미세돌기는 터브의 원주방향으로 서로 이격되게 배치될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 복수의 초발수 미세돌기는, 상기 터브의 원주면을 따라 서로 평행하게 이격되는 상기 원주면의 길이방향 중심선을 기준으로 양측이 대칭되게 형성될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 복수의 초발수 미세돌기는, 상기 터브 내의 잔수가 원주방향으로 흐르도록, 상기 터브의 원주면을 따라 서로 평행하게 이격되는 상기 원주면의 길이방향 중심선을 기준으로 양측이 비대칭되게 형성될 수 있다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 터브 내의 저면에 형성되고, 상기 터브 내의 세탁수를 외부로 배출시키기 위한 배수구를 구비하는 섬프를 더 포함하고, 상기 복수의 초발수 미세돌기는 상기 섬프의 표면에 형성될 수 있다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 섬프는 상기 터브의 후방면 하단부에서 터브의 전방면을 향해 터브의 길이방향을 따라 오목하게 형성되고, 상기 복수의 초발수 미세돌기는 사출 성형 후 사출 금형의 언더컷을 방지하기 위해 상기 사출 금형이 분리되는 방향으로 상기 섬프의 길이방향을 따라 돌출 형성될 수 있다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 섬프는 상기 터브의 원주면보다 낮은 위치에 형성되고, 상기 터브의 전방면을 향해 갈수록 하향 경사지게 이루어질 수 있다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 배수구는 상기 섬프의 길이방향 중심선에서 일방향으로 이격되게 형성되고, 상기 섬프는, 일측이 상기 배수구와 연통되고, 상기 섬프 내의 잔수를 상기 배수구로 안내하도록 상기 섬프의 길이방향 중심선에서 이격되게 형성되는 잔수안내유로부를 더 포함할 수 있다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 복수의 초발수 미세돌기는, 상기 섬프 내의 잔수가 상기 잔수안내유로부로 향해 흐르도록, 상기 섬프의 저면을 따라 서로 평행하게 이격되는 섬프의 길이방향 중심선을 기준으로 양측이 비대칭되게 형성되되, 상기 잔수안내유로부로 향하는 일측에 기울기가 작은 제1경사면부와 상기 잔수안내유로부와 반대방향으로 향하는 다른 일측에 기울기가 상대적으로 큰 제2경사면부를 구비할 수 있다.
상기와 같이 구성된 본 발명에 의하면, 다음과 같은 효과가 있다.
첫째, 터브의 내표면에 다수의 초발수 미세돌기가 형성됨으로, 연잎 효과를 이용하여 터브의 내부에 잔류하는 잔수를 깨끗이 제거하여 세탁기의 청결상태를 유지할 수 있다.
둘째, 초발수 미세돌기가 방향성을 가지도록 형성됨에 따라 사출 성형 완료 후 금형이 분리될 때 언더컷(금형의 미세성형돌기과 터브의 미세돌기가 서로 간섭되는 것을 말함)이 발생하는 것을 방지할 수 있다.
셋째, 초발수 미세돌기에 구배(SLOPE)를 형성하여, 미세돌기를 따라 흐르는 물이 일정한 방향, 예를 들어 배수구를 향해 흐를 수 있도록 할 수 있다.
넷째, 오염물질이 포함된 세탁수가 터브의 내부에 잔류하지 않도록 초발수 미세돌기에 의해 굴려서 배수구로 흘려보냄에 따라 새로 급수되는 깨끗한 헹굼수가 오염된 세탁수와 섞이는 것을 방지할 수 있다.
다섯째, 터브 내의 잔수로 인해 발생하는 악취를 제거할 수 있고, 터브 내부의 이물질이 구 형상의 물방울과 함께 미세돌기를 따라 배수구로 이동함으로써 터브 내부의 자기세정에 의한 터브 내부의 위생을 청결하게 유지할 수 있다.
도 1은 본원발명에 따른 터브를 정면에서 본 정면도이다.
도 2는 도 1의 A-A 단면도이다.
도 3a는 연잎에서 물방울이 굴러 떨어지는 모습을 보여주는 그림이다.
도 3b는 본 발명에 따른 세탁기 내부에 적용되는 초발수 미세돌기의 연잎효과를 설명하기 위한 개념도이다.
도 3c는 물과 표면의 접촉각과 발수 특성의 상관관계를 설명하기 위한 개념도이다.
도 4는 본 발명에 따른 초발수 미세돌기가 터브커버에 적용된 예를 보여주는 도면이다.
도 5는 본 발명에 따른 초발수 미세돌기가 터브본체에 적용된 예를 보여주는 도면이다.
도 6a 및 도 6b는 본 발명에 따른 플라스틱 사출금형에 의해 터브의 제작방법을 설명하기 위한 개략도로서, 도 6a는 사출금형이 닫힘상태인 경우이고 도 6b는 사출금형이 열림상태인 경우를 보여준다.
도 7a은 본 발명에 따른 초발수 미세돌기의 제1실시예를 보여주는 개략도이다.
도 7b는 도 7a의 초발수 미세돌기를 위에서 본 평면도이다.
도 8a는 본 발명에 따른 초발수 미세돌기의 제2실시예를 보여주는 개략도이다.
도 8b는 도 8a의 초발수 미세돌기를 위에서 본 평면도이다.
도 9a는 본 발명에 따른 초발수 미세돌기의 제3실시예를 보여주는 개략도이다.
도 9b는 도 9a의 초발수 미세돌기를 위에서 본 평면도이다.
도 10a는 본 발명에 따른 초발수 미세돌기의 제4실시예를 보여주는 개략도이다.
도 10b는 도 10a의 초발수 미세돌기를 위에서 본 평면도이다.
도 11a는 본 발명에 따른 초발수 미세돌기의 제5실시예를 보여주는 개략도이다.
도 11b는 도 11a의 초발수 미세돌기를 위에서 본 평면도이다.
도 12a는 본 발명에 따른 초발수 미세돌기의 제6실시예를 보여주는 개략도이도 12b는 도 12a의 초발수 미세돌기를 위에서 본 평면도이다.
도 13a는 본 발명에 따른 초발수 미세돌기의 제7실시예를 보여주는 개략도이다.
도 13b는 도 13a의 초발수 미세돌기를 위에서 본 평면도이다.
도 14는 본 발명에 따른 초발수 미세돌기가 터브커버의 원주면에에 적용된 예를 보여주는 사시도이다.
도 15는 본 발명에 따른 초발수 미세돌기가 터브본체의 원주면에 적용된 예를 보여주는 사시도이다.
도 16은 본 발명에 따른 초발수 미세돌기가 비대칭 경사면을 갖는 구조를 보여주는 개략도이다.
도 17a 및 도 17b는 본 발명에 따른 플라스틱 사출금형에 의해 터브의 제작방법을 설명하기 위한 개략도로서, 도 17a는 사출금형이 닫힘상태인 경우이고 도 17b는 사출금형이 열림상태인 경우이고, 도 17c는 도 17b의 D-D 방향에서 본 모습을 보여주는 측면도이다.
도 18a는 도 14에서 "C"의 부분확대도로서, 방향성을 갖는 초발수 미세돌기의 일 예를 보여주는 평면도이다.
도 18b는 도 18a의 E-E 방향에서 본 초발수 미세돌기의 단면형상을 보여주는 단면도이다.
도 19a는 본 발명에 따른 방향성을 갖는 초발수 미세돌기의 다른 일 예를 보여주는 평면도이다.
도 19b는 도 19a의 초발수 미세돌기의 단면형상을 보여주는 단면도이다.
도 20는 본원발명에 따른 터브를 정면에서 본 정면도이다.
도 21는 도 20의 I-I 단면도이다.
도 22a는 도 21에서 섬프의 일 예를 보여주는 G-G 단면도이다.
도 22b는 도 22a의 섬프에 초발수 미세돌기가 적용된 모습을 보여주는 사시도이다.
도 23a는 도 21에서 섬프의 다른 예를 보여주는 사시도이다.
도 23b는 도 23a의 섬프를 위에서 본 평면도이다.
도 23c는 도 23a에서 잔수의 H-H 단면도이다.
도 24a 및 도 24b는 본 발명에 따른 플라스틱 사출금형에 의해 터브의 제작방법을 설명하기 위한 개략도로서, 도 24a는 사출금형이 닫힘상태인 경우이고, 도 24b는 사출금형이 열림상태인 경우이고, 도 24c는 도 24b의 I-I방향에서 본 측면도이다.
도 25a는 도 22b의 "X" 부분의 확대도로서, 방향성을 갖는 초발수 미세돌기의 일 예를 보여주는 평면도이다.
도 25b는 도 25a의 J-J 방향으로 본 초발수 미세돌기의 단면 형상을 보여주는 단면도이다.
도 26a는 본 발명에 따른 방향성을 갖는 초발수 미세돌기의 다른 일 예를 보여주는 평면도이다.
도 26b는 도 26a의 K-K 방향으로 본 초발수 미세돌기의 단면 형상을 보여주는 단면도이다.
이하, 본 발명에 관련된 세탁기에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
도 1은 본원발명에 따른 터브(10)를 정면에서 본 정면도이고, 도 2는 도 1의 A-A 단면도이다.
터브(10)는 세탁수를 내부에 저장할 수 있는 저장공간을 제공한다. 터브(10)는 캐비닛의 내부에 구비된다. 터브(10)는 댐퍼 및 스프링 등 지지부재에 의해 캐비닛의 내부에 고정되게 지지된다.
터브(10)는 원통형으로 이루어지고, 터브(10)의 전방면(10a')에 세탁대상물의 투입을 위한 투입구가 형성될 수 있다.
터브(10) 내의 세탁수가 터브(10)의 외부로 누수되는 것을 방지하기 위해 터브(10)의 투입구의 둘레를 따라 원주방향으로 고무재질의 가스켓(11)이 형성될 수 있다.
드럼을 회전시키기 위한 구동부가 터브(10)의 후방면(10b')에 구비될 수 있다. 구동모터는 드럼을 회전시키기 위해 고정자 및 회전자를 구비할 수 있다. 회전자는 고정자와의 전자기적인 상호작용에 의해 회전력을 발생시킨다. 회전자는 회전축을 통해 드럼의 후방면(10b')과 연결되어 드럼을 구동시킬 수 있다. 회전축이 관통될 수 있도록 터브(10)의 후방면(10b')에 회전축 지지부(10b1)가 형성될 수 있다.
캐비닛은 세탁기의 외형 및 골격을 이룬다. 캐비닛의 전방면(10a')에 세탁대상물의 투입을 위한 개구부가 형성된다. 또한, 개구부를 개폐하기 위한 도어가 회전가능하게 설치될 수 있다.
캐비닛의 내부에 급수호스가 구비된다. 급수호스는 일측이 외부급수호스를 통해 외부의 수도관과 연결되고 타측이 터브(10)에 연결되어, 세탁수가 급수호스를 따라 터브(10)의 내부에 공급될 수 있다.
터브(10)의 내부에 드럼이 회전가능하게 구비될 수 있다.
드럼은 세탁대상물을 투입하기 위한 수용공간을 내부에 구비한다. 드럼에 다수의 관통공이 형성되고, 관통공을 통해 터브(10)의 세탁수가 드럼 내부로 유입될 수 있다.
드럼의 내부에 복수의 리프터가 구비될 수 있다. 리프터는 드럼과 함께 회전하면서 드럼 내부에 투입된 세탁대상물을 드럼의 상부로 들어올리고, 중력에 의한 낙차를 이용하여 세탁대상물을 두드려 빠는 효과를 얻을 수 있다.
캐비닛의 내부에 세제투입부가 구비되고, 세제투입부의 내부에 세제가 저장될 수 있다. 세제투입부는 급수호스와 연결되고, 외부로부터 세탁수를 공급받아 세탁수와 세제를 혼합시킨 후 세탁수와 함께 세제를 터브(10)의 내부로 공급할 수 있다.
오염된 세탁수가 캐비닛의 외부로 배출되도록, 터브(10)의 저면에 배수구(10b2)가 형성된다. 세탁수를 캐비닛의 외부로 배출시키도록 배수호스는 일측이 배수구(10b2)와 연통되게 연결되고 타측이 캐비닛의 외부와 연통되게 형성된다.
터브(10)의 하부에 펌프케이싱 및 배수펌프가 구비될 수 있다. 펌프케이싱은 일측이 배수호스를 통해 배수구(10b2)와 연결되고 타측이 배수펌프와 연결될 수 있다. 터브(10)에서 배출된 세탁수는 배수펌프에 의해 펌핑되어 배수호스를 통해 캐비닛의 외부로 배출될 수 있다.
터브(10)는 전방면(10a')이 후방면(10b')보다 더 높게 위치하도록 캐비닛의 전방을 향해 상향 경사지게 형성될 수 있다. 터브(10)의 길이방향 중심을 관통하는 드럼의 회전중심선이 수평면에 대하여 일정 각도로 기울어지게 형성될 수 있다.
터브(10)는 폴리머 수지를 이용하여 사출 금형(20)에 의해 사출 성형될 수 있다.
터브(10)는 사출 성형을 위해 원주면을 따라 2 파트(TWO PARTS)로 분할될 수 있다. 예를 들면, 터브(10)는 드럼의 회전축방향으로 전방에 배치되는 터브커버(10a)와, 그 후방에 배치되는 터브본체(10b)로 구성될 수 있다. 여기서, 전방(앞쪽 방향)이라함은 세탁대상물의 투입구가 형성되는 캐비닛의 전방면(10a')과 마주보는 방향을 의미한다. 후방이라함은 상기 투입구와 반대방향인 캐비닛의 후방면(10b')과 마주보는 방향을 의미한다.
터브커버(10a)는 터브(10)의 전방부를 형성하고, 터브본체(10b)는 터브(10)의 후방부를 형성할 수 있다. 터브커버(10a)는 터브(10)의 전방면(10a')과 원주면의 일부, 즉 터브(10)의 길이방향으로 앞쪽의 원주면을 형성한다. 터브본체(10b)는 터브(10)의 후방면(10b')과 원주면의 일부, 즉 터브(10)의 길이방향으로 뒤쪽의 원주면을 형성한다.
터브커버(10a)의 후방면(10b')은 터브본체(10b)를 향하여 개방되고, 터브본체(10b)의 전방면(10a')은 터브커버(10a)를 향하여 개방되어, 터브커버(10a)와 터브본체(10b)는 서로 연통될 수 있다. 터브커버(10a)의 후단부와 터브본체(10b)의 전단부의 둘레면을 따라 플랜지 형태의 결합부가 각각 서로 마주보게 돌출 형성되고, 상기 결합부는 볼트 등과 같은 체결부재에 의해 체결될 수 있다. 또한, 터브커버(10a)의 후방면(10b')과 터브본체(10b)의 전방면(10a') 사이에 실링부재가 결합되어, 터브커버(10a)와 터브본체(10b) 사이의 기밀을 유지할 수 있다.
터브커버(10a)의 전방면(10a')에 투입구가 형성된다. 투입구를 통해 세탁대상물이 드럼의 내부로 투입된다. 드럼은 터브커버(10a)의 투입구와 연통되도록 전방면(10a')에 개구부를 구비한다. 터브커버(10a)의 투입구는 터브커버(10a)의 직경보다 작게 형성될 수 있다.
터브본체(10b)의 저면에 섬프(12)가 오목하게 형성될 수 있다. 섬프(12)는 터브본체(10b) 내의 원주면의 최하단보다 낮게 위치한다. 이에 의해 터브(10) 내의 세탁수가 중력에 의해 섬프(12)로 유입될 수 있다.
섬프(12)는 세탁수를 외부로 배수하기 위해 일측에 배수구(10b2)를 구비한다. 배수구(10b2)는 전술한 배수호스와 연결되어, 세탁수를 외부로 배수시킬 수 있다.
도 3a는 연잎(1)에서 물방울(3)이 굴러 떨어지는 모습을 보여주는 그림이고, 도 3b는 본 발명에 따른 세탁기 내부에 적용되는 초발수 미세돌기(13)의 연잎효과를 설명하기 위한 개념도이고, 도 3c는 물과 표면의 접촉각과 발수 특성의 상관관계를 설명하기 위한 개념도이다.
도 3a에 도시된 바와 같이 연잎(1)의 표면에는 소수성을 지닌 나노돌기(2)(돌기 하나의 지름이 1나노미터 정도임)가 무수히 많이 있어서 비가 내려도 물이 스며들지 않고, 물방울(3)이 맺혀 있다가 표면을 따라 흘러내리게 된다. 이와 같이 소수성을 지닌 돌기들 때문에 연잎(1)에는 물방울(3)이 붙어 있지 못하고 굴러 떨어지게 된다. 이 때 미세 돌기 위에 붙어 있던 먼지나 티끌도 함께 떨어져서 연잎(1)은 늘 깨끗한 상태를 유지할 수 있다. 이와 같이 연잎효과는 물에 젖지 않고 물방울(3)이 굴러 튕겨나가는 효과뿐만 아니라 연잎(1)이 가지는 자기세정(스스로 깨끗함을 유지함) 효과를 포함한다.
도 3b에 도시된 물방울(3)은 자기보다 작은 크기의 나노돌기(2)와 닿을 때 그 닿는 면적이 작게 되고 접촉각이 100°보다 커서 연잎(1)은 소수성을 갖는다. 이로 인해, 물방울(3)은 미세돌기 사이로 스며들지 못하고 미세돌기 위로 뜬 상태로 다른 물방울(3)과 만나서 더욱 큰 물방울(3)로 만들어지고 커진 물방울(3)은 흘러서 더욱 무거워지면서 굴러서 아래로 떨어진다.
도 3c에 도시된 물이 접촉대상물의 표면과 접촉하는 각도를 접촉각이라 하고, 물과 표면 사이의 접촉각이 90°미만인 경우에 친수성을 띄고, 상기 접촉각이 90°이상 150°미만일 경우 발수성(소수성)을 띄며, 상기 접촉각이 150°이상일 경우에 초발수성을 띄게 된다.
본 발명에서는 세탁기 내부에 물이 닿는 곳에 초발수 미세돌기(13)를 적용함으로, 연잎(1) 효과를 이용하여 세탁기 내부의 배수성을 향상시키고 세탁기 내부의 잔수를 제거할 수 있다.
도 4는 본 발명에 따른 초발수 미세돌기(13)가 터브커버(10a)에 적용된 예를 보여주는 도면이고, 도 5는 본 발명에 따른 초발수 미세돌기(13)가 터브본체(10b)에 적용된 예를 보여주는 도면이다.
초발수 미세돌기(13)는 터브(10)의 내부면에 적용될 수 있다.
초발수 미세돌기(13)는 터브커버(10a) 또는 터브본체(10b)의 내부면에 적용될 수 있다.
도 4는 터브커버(10a) 내의 전방면(10a')을 바라본 모습을 보여준다. 도 4에 도시된 터브커버(10a)의 전방면(10a')에 초발수 미세돌기(13)가 일정한 패턴에 의해 덮여지도록 일체형으로 형성될 수 있다. 도시하지는 않았지만, 터브커버(10a)의 내부 원주면에 초발수 미세돌기(13)가 형성될 수 있다.
도 5는 터브본체(10b) 내의 후방면(10b')을 바라본 모습을 보여준다. 도 5에 도시된 터브본체(10b)의 후방면(10b')에 초발수 미세돌기(13)가 일정한 패턴에 의해 덮여지도록 일체형으로 형성될 수 있다. 도시하지는 않았지만, 터브본체(10b)의 내부 원주면에 초발수 미세돌기(13)가 형성될 수 있다.
초발수 미세돌기(13)는 물과 표면 사이의 접촉각이 150°이상으로 초발수 성능을 발휘하기 위해 0.2mm 내지 0.4mm 범위의 크기를 갖는다. 또한, 초발수 미세돌기(13)는 0.2mm이하(또는 0.25mm 이하)의 크기를 갖는 것이 바람직하다. 왜냐하면, 미세돌기의 크기가 상한값 0.25mm보다 클 경우에 미세돌기 사이에 이물질이 끼일 수 있기 때문에, 이물질이 끼는 것을 방지하기 위해 미세돌기는 상한값 이하의 크기를 가지는 것이 바람직하다.
이러한 초발수 미세돌기(13)가 터브(10) 내표면을 덮는 경우에 터브(10) 내의 표면에 물방울(3)이 맺힐 때 물방울(3)은 터브(10)의 표면에 젖지않고 동그란 공 또는 구 모양을 유지하며 미세돌기를 따라 굴러간다. 상기 물방울(3)은 중력에 의해 터브(10) 내의 섬프(12)로 향해 미끄러지며 굴러간다. 여기서, 공 모양의 물방울(3)은 초발수 미세돌기(13)에 의해 터브(10)의 내표면에 닿지 않지 않고, 초발수 미세돌기(13)가 물방울(3)을 지탱한다. 또한, 물방울(3)은 터브(10) 내의 표면을 따라 이동하면서 다른 물방울(3)과 합쳐져서 더 큰 물방울(3)을 만들고 중력에 의해 섬프(12) 및 배수구(10b2)로 이동하여 외부로 배출되게 된다.
이에 의해, 잔수가 터브(10) 내에서 잔류하지 않고 배수되므로 터브(10) 내부의 청결상태를 깨끗하게 유지할 수 있다.
또한, 상기 물방울(3)은 터브(10)의 내부에 붙어 있던 이물질과 함께 굴러서 배수되므로, 자기세정 효과도 얻을 수 있다.
도 6a 및 도 6b는 본 발명에 따른 플라스틱 사출금형에 의해 터브(10)의 제작방법을 설명하기 위한 개략도로서, 도 6a는 사출금형이 닫힘상태인 경우이고 도 6b는 사출금형이 열림상태인 경우를 보여준다.
도 6a를 참고하면, 사출금형은 고정부와 이동부로 나뉘어진다. 고정부의 내측에 터브커버(10a) 또는 터브본체(10b)의 외측면의 형상과 동일한 형상으로 이루어지는 제1성형부(211)가 구비된다. 이동부는 외부 일측에 터브커버(10a) 또는 터브본체(10b)의 내측면의 형상과 동일한 형성으로 이루어지는 제2성형부(221)가 구비된다.
제1성형부(211)와 제2성형부(221)는 서로 마주보게 형성되고, 제2성형부(221)는 제1성형부(211)를 향해 고정부의 내부에 삽입될 수 있다. 고정부의 일측에 사출기가 구비되고, 사출기로부터 제1성형부(211)와 제2성형부(221) 사이의 공간으로 플라스틱의 용융수지가 사출된다.
제2성형부(221)의 표면에 미세성형돌기(23)가 형성되고, 이 미세성형돌기(23)에 의해 초발수 미세돌기(13)가 터브(10)와 함께 일체형으로 사출 성형된다.
도 6b를 참고하면, 이동부의 오른쪽 측면에 미세성형돌기(23)가 형성되어 있지만, 터브커버(10a) 또는 터브본체(10b)의 원주면에 초발수 미세돌기(13)를 형성하기 위해 제2성형부(221)의 외주면에 미세성형돌기(23)가 형성될 수 있다.
상기 사출 성형이 완료된 후 이동부는 사출물의 취출을 위해 고정부로부터 분리된다. 이동부는 터브커버(10a) 또는 터브본체(10b)의 길이방향으로 분리될 수 있다. 터브커버(10a) 또는 터브본체(10b)의 길이방향이라 함은 터브커버(10a)의 터브본체(10b)의 원주면과 평행한 방향을 의미한다.
이하, 본 발명에 따른 초발수 미세돌기(13)의 다양한 실시예를 설명하기로 한다.
도 7a은 본 발명에 따른 초발수 미세돌기(13)의 제1실시예를 보여주는 개략도이고, 도 7b는 도 7a의 초발수 미세돌기(13)를 위에서 본 평면도이다.
제1실시예에 따른 초발수 미세돌기(13)는 벽돌(사각형) 형태로 이루어진다. 미세돌기의 상부 폭과 하부 폭은 동일하고, 미세돌기의 높이는 미세돌기의 가로 및 세로 길이 4/10에 비해 절반 2/10 크기일 수 있다.
또한, 초발수 미세돌기(13)는 1/10 크기만큼 서로 이격 배치될 수 있다. 초발수 미세돌기(13)는 이방향(2개의 방향, 횡방향과 종방향)으로 이격 형성될 수 있다.
도 8a는 본 발명에 따른 초발수 미세돌기(113)의 제2실시예를 보여주는 개략도이고, 도 8b는 도 8a의 초발수 미세돌기(113)를 위에서 본 평면도이다.
제2실시예에 따른 초발수 미세돌기(113)는 벽돌(사각형) 형태로 이루어진다. 미세돌기의 상부 폭과 하부 폭은 동일하고, 미세돌기의 가로, 세로 및 높이는 2/10로 모두 동일하고, 미세돌기는 5/100 크기만큼 서로 이격되게 형성될 수 잇다.
또한, 초발수 미세돌기(113)는 이방향으로 이격 배치될 수 있다.
도 9a는 본 발명에 따른 초발수 미세돌기(213)의 제3실시예를 보여주는 개략도이고, 도 9b는 도 9a의 초발수 미세돌기(213)를 위에서 본 평면도이다.
제3실시예에 따른 초발수 미세돌기(213)는 위로 볼록하게 둥근 형태로 이루어진다. 둥근 형태의 미세돌기는 이격되지 않고 이방향으로 연속해서 이격되지 않고 형성될 수 있다. 이때, 미세돌기 사이의 피치(pitch)는 가로 및 세로방향으로 각각 동일한 비율(5/100)로 이루어질 수 있다. 미세돌기 사이에 움푹 패어 들어간 곳(골짜기)의 간격이 가로 및 세로방향으로 동일한 비율로 형성될 수 있다.
도 10a는 본 발명에 따른 초발수 미세돌기(313)의 제4실시예를 보여주는 개략도이고, 도 10b는 도 10a의 초발수 미세돌기(313)를 위에서 본 평면도이다.
제4실시예에 따른 초발수 미세돌기(313)는 끝이 뾰족한 돌기 형태로 이루어진다. 뾰족한 돌기 사이에 움푹 패어 들어간 곳은 아래로 둥근 형태로 이루어질 수 있다. 뾰족한 돌기와 움푹 패어 들어간 곳이 교번되게 연속해서 형성될 수 있다.
이때, 뾰족한 돌기 사이의 피치(pitch)는 가로 및 세로방향으로 각각 동일한 비율(5/100)로 이루어질 수 있다.
도 11a는 본 발명에 따른 초발수 미세돌기(413)의 제5실시예를 보여주는 개략도이고, 도 11b는 도 11a의 초발수 미세돌기(413)를 위에서 본 평면도이다.
제5실시예에 따른 초발수 미세돌기(413)는 사다리꼴 형태로 이루어질 수 있다. 사다리꼴 형태의 미세돌기는 상부 폭이 하부 폭에 비해 좁다. 예를 들면 미세돌기의 상부 폭이 1/10이고 하부 폭이 3/10일 수 있다. 그리고, 미세돌기의 높이가 상부 폭에 비해 더 길 수 있다. 예를 들면 미세돌기의 높이가 2/10이고 상부 폭이 1/10일 수 있다.
또한, 사다리꼴 형태의 미세돌기(413)는 일방향으로 이격되게 형성될 수 있다.
도 12a는 본 발명에 따른 초발수 미세돌기(513)의 제6실시예를 보여주는 개략도이고, 도 12b는 도 12a의 초발수 미세돌기(513)를 위에서 본 평면도이다.
제6실시예에 따른 초발수 미세돌기(513)는 삼각형 또는 사각뿔 형태로 이루어질 수 있다. 사각뿔 형태의 미세돌기(513)는 끝이 뾰족하고 둘레면을 따라 4개의 삼각형 면을 형성한다. 미세돌기(513)의 높이는 2/10이고 밑면 사각형의 가로 및 세로 길이는 각각 4/10일 수 있다.
도 13a는 본 발명에 따른 초발수 미세돌기(613)의 제7실시예를 보여주는 개략도이고, 도 13b는 도 13a의 초발수 미세돌기(613)를 위에서 본 평면도이다.
제7실시예에 따른 초발수 미세돌기(613)는 삼각형 또는 사각뿔 형태로 이루어질 수 있다. 다만, 제7실시예에 따른 미세돌기(613)의 높이, 밑면 사각형의 가로 및 세로길이는 모두 2/10의 비율로 동일할 수 있다.
상기한 실시예와 같이 초발수 미세돌기(613)는 일방향성을 갖거나 이방향성을 가질 수 있다.
도 11a 및 도 11b를 제외한 나머지 도 7a, 도 7b, 도 8a, 도 8b, 도 9a, 도 9b, 도 10a, 도 10b, 도 12a, 도 12b, 도 13a 및 도 13b의 미세돌기(13,113,213,313,513,613)는 이방향성을 갖는다.
도 11a 및 도 11b의 미세돌기(413)는 일방향성을 갖는다.
여기서, 미세돌기가 방향성을 갖는다라고 함은 미세돌기가 어떠한 방향으로 일정한 패턴을 형성한다는 것을 의미한다.
예를 들어, 도 11a 및 도 11b의 미세돌기(413)는 일 방향(one direction)을 따라 사다리꼴 형상으로 돌출 형성된다. 사다리꼴 형태의 미세돌기(413)들은 상기 일 방향과 교차하는 방향으로 일정한 간격을 두고 이격되게 형성될 수 있다.
또한, 일방향성을 갖는 미세돌기(413)는 일 방향과 교차하는 방향으로 서로 이격되고, 일방향성을 갖는 미세돌기(413)는 서로 평행하게 이격 배치되는 상기 일 방향의 중심선을 기준으로 좌우 대칭되게 형성될 수 있다. 상기 일 방향의 중심선은 사다리꼴 형태의 돌기(413)의 경우 상부 폭의 중심을 잇는 선을 의미한다. 또한 미세돌기(413)의 일방향 중심선을 기준으로 양쪽 측면에 제1경사면(413a)과 제2경사면(413b)이 서로 대칭되게 형성될 수 있다. 그리고, 일방향성을 갖는 미세돌기(413)가 삼각형인 경우에 일 방향의 중심선은 상부 꼭지점을 잇는 선을 의미한다.
도 11a 및 도 11b를 제외한 나머지 도 7a 내지 도 10b, 도 12a 내지 도 13b의 미세돌기(13,113,213,313,513,613)는 이방향성을 갖는다. 예를 들면 나머지 도면의 미세돌기(13,113,213,313,513,613)는 두 방향(two direction), 즉 횡방향과 종방향을 따라 일정한 패턴으로 형성될 수 있다.
또한, 이방향성을 갖는 미세돌기(13,113,213,313,513,613)는 두 방향, 즉 서로 교차하는 횡방향과 종방향으로 일정한 패턴으로 형성되고, 이방향성을 갖는 미세돌기(13,113,213,313,513,613)는 서로 평행하게 이격 배치되는 상기 횡방향과 종방향의 중심선을 기준으로 대칭되게 형성될 수 있다. 상기 횡방향 중심선과 종방향 중심선은 격자형으로 이루어질 수 있다.
이방향성을 갖는 미세돌기(13,113,213,313,513,613)는 일방향성을 갖는 미세돌기(413)에 비해 초발수 성능이 더욱 향상될 수 있다.
도 14는 본 발명에 따른 초발수 미세돌기(130)가 터브커버(100a)의 원주면(100a')에에 적용된 예를 보여주는 사시도이고, 도 15는 본 발명에 따른 초발수 미세돌기(130)가 터브본체(100b)의 원주면(100b')에 적용된 예를 보여주는 사시도이다.
초발수 미세돌기(130)는 세탁수의 배수성을 향상시키기 위해 터브(100)의 내부면에 적용될 수 있다.
초발수 미세돌기(130)는 터브커버(100a) 또는 터브본체(100b)의 내부면에 적용될 수 있다.
도 14는 터브커버(100a)를 후방에서 바라본 모습을 보여준다. 도 14에 도시된 터브커버(100a) 내의 원주면(100a')에 초발수 미세돌기(130)가 일정한 패턴에 의해 덮여지도록 일체형으로 형성된다.
도 15는 터브본체(100b)를 전방에서 바라본 모습을 보여준다. 도 15에 도시된 터브본체(100b) 내의 원주면(100b')에 초발수 미세돌기(130)가 일정한 패턴에 의해 덮여지도록 일체형으로 형성된다.
초발수 미세돌기(130)는 물과 표면 사이의 접촉각(θ)이 150°이상으로 초발수 성능을 발휘하기 위해 0.2mm 내지 0.4mm 범위의 크기를 갖는다. 또한, 초발수 미세돌기(130)는 0.2mm이하(또는 0.25mm 이하)의 크기를 갖는 것이 바람직하다. 왜냐하면, 미세돌기의 크기가 상한값 0.25mm보다 클 경우에 미세돌기 사이에 이물질이 끼일 수 있기 때문에, 이물질이 끼는 것을 방지하기 위해 미세돌기는 상한값 이하의 크기를 가지는 것이 바람직하다.
이러한 초발수 미세돌기(130)가 터브(100) 내표면을 덮는 경우에 터브(100) 내의 표면에 물방울(2)이 맺힐 때 물방울(2)은 터브(10)의 표면에 젖지않고 동그란 공 또는 구 모양을 유지하며 미세돌기를 따라 굴러간다. 상기 물방울(2)은 중력에 의해 터브(100) 내의 섬프(120)로 향해 미끄러지며 굴러간다. 여기서, 공 모양의 물방울(2)은 초발수 미세돌기(13)에 의해 터브(100)의 내표면에 닿지 않지 않고, 초발수 미세돌기(130)가 물방울(2)을 지탱한다. 또한, 물방울(2)은 터브(100) 내의 표면을 따라 이동하면서 다른 물방울(2)과 합쳐져서 더 큰 물방울(2)을 만들고 중력에 의해 섬프(120) 및 배수구(100b2)로 이동하여 배수호스를 통해 외부로 배출되게 된다.
이에 의해, 잔수가 터브(100) 내에서 잔류하지 않고 배수되므로 터브(100) 내부의 청결상태를 깨끗하게 유지할 수 있다.
또한, 상기 물방울(2)은 터브(100)의 내표면에 묻은 이물질과 함께 굴러 떨어지므로, 자기세정 효과도 얻을 수 있다.
여기서, 터브(100)의 내표면에 형성되는 초발수 미세돌기(13)는 사출성형에 의해 터브(100)와 일체로 형성될 수 있다.
터브(100)의 원주면(100a',100b')에 형성되는 초발수 미세돌기(130)는 사출금형의 원활한 분리를 위해 방향성을 가질 수 있다. 즉, 터브(100)의 원주면(100a',100b')에 형성되는 초발수 미세돌기(130)는 사출 금형(200)이 성형 후 분리되는 방향으로 방향성을 갖는다. 초발수 미세돌기(130)가 특정방향으로 방향성을 갖게 됨에 따라 원활한 금형의 분리를 방해하는 요소가 되는 것, 즉 사출금형의 언더컷을 제거할 수 있다. 사출금형의 언더컷을 제거하기 위해 별도의 코어를 구비할 수 있지만, 이 경우에 제조원가가 상승하게 되는 문제가 있다.
본 발명에서는 초발수 미세돌기(130)가 금형이 분리되는 방향으로 방향성을 가짐으로 별도의 코어 없이도 사출금형의 언더컷(Undercut)을 제거할 수 있고, 발수 표면의 언더컷으로 인한 물리적 성능 저하를 방지할 수 있다.
또한, 터브(100)의 원주면(100a',100b')에 형성되는 초발수 미세돌기(130)는 잔수 흐름을 일정한 방향으로 유도하기 위해 일정한 구배(slope)의 경사면을 갖도록 형성될 수 있다.
도 16은 본 발명에 따른 초발수 미세돌기(130)가 비대칭 경사면을 갖는 구조를 보여주는 개략도이다.
초발수 미세돌기(130)는 예를 들어 단면형상이 직각삼각형으로 이루어질 수 있다. 하지만, 단면형상이 이에 한정되지 않는다.
도 16에 도시된 두 개의 초발수 미세돌기(130)는 서로 인접하게 형성되어 있다. 상기 초발수 미세돌기(130)는 상단 꼭지점에서 일방향으로 갈수록 하향 경사지게 형성되는 제1경사면(130a)과 상기 상단 꼭지점에서 반대방향으로 갈수록 하향 경사지게 형성되는 제2경사면(130b)으로 구성될 수 있다. 제1경사면(130a)(도 6에서 상단 꼭지점을 기준으로 오른쪽 경사면)의 기울기(구배)는 제2경사면(130b)의 기울기보다 더 작다(완만하다). 도면에서 상단 꼭지점을 지나는 수직선과 상단 꼭지점의 하부에 위치하는 수평선이 만나 교차하고, 수직선과 수평선의 교점에서 오른쪽 꼭지점으로 연장되는 수평연장선의 길이를 a라고 하고, 상기 교점에서 왼쪽 꼭지점으로 연장되는 수평연장선의 길이를 b라고 하고, 상단 꼭지점과 교점을 연결하는 수직연장선을 높이 h 라고 하면, h/a는 제1경사면(130a)의 기울기이고, h/b는 제2경사면(130b)의 기울기이다.
상기 초발수 미세돌기(130)는 상단 꼭지점을 기준으로 양 측의 제1 및 제2경사면(13b)이 서로 다른 기울기(h/a < h/b)로 형성되어 비대칭이다.
초발수 미세돌기(130)는 물방울(2)과 150도 이상의 접촉각(θ)을 이루며 초발수성을 갖는다. 또한, 물방울(2)은 비대칭 경사면을 갖는 초발수 미세돌기(130)의 표면구조의 특성으로 인해 초발수 미세돌기(130)에서 방향성을 가지며 일방향으로 이동할 수 있다. 즉, 물방울(2)의 흐름은 초발수 미세돌기(130)의 제2경사면(130b)에서 제1경사면(130a)을 향해 이루어지게 된다.
여기서, 터브(100)의 원주면(100a',100b')에 맺힌 잔수가 섬프(120)를 향해 흐르도록 초발수 미세돌기(130)의 제1경사면(130a)과 제2경사면(130b)은 터브(100)의 원주방향으로 서로 교번하며 배치될 수 있다. 제1경사면(130a)은 미세돌기의 상단 꼭지점에서 배수구(100b2) 또는 섬프(120)를 향하여 하향 경사지게 형성되고, 제2경사면(13b)은 미세돌기의 상단 꼭지점에서 배수구(100b2) 또는 섬프(120)와 반대방향으로 하향 경사지게 형성된다. 다만, 제1경사면(130a)과 제2경사면(130b)은 서로 다른 경사각을 가지고, 제1경사면(130a)의 기울기 h/a는 제2경사면(130b)의 기울기 h/b보다 더 작다.
물방울(2)의 방향성을 갖게하는 원동력 F는 다음 식으로 이루어진다.
rlv : 물 표면장력, θA : 물 전진각도, θB : 물 후진각도, w1 : 오른쪽 꼭지점의 내각, w2 : 왼쪽 꼭지점의 내각
도 17a 및 도 17b는 본 발명에 따른 플라스틱 사출금형에 의해 터브의 제작방법을 설명하기 위한 개략도로서, 도 17a는 사출금형이 닫힘상태인 경우이고 도 17b는 사출금형이 열림상태인 경우를 보여준다. 도 17c는 도 17b의 D-D 방향에서 본 모습을 보여주는 측면도이다.
도 17a를 참고하면, 사출금형은 고정부와 이동부로 나뉘어진다. 고정부의 내측에 터브커버(100a) 또는 터브본체(100b)의 외측면의 형상과 동일한 형상으로 이루어지는 제1성형부(211)가 구비된다. 이동부는 외부 일측에 터브커버(100a) 또는 터브본체(100b)의 내측면의 형상과 동일한 형상으로 이루어지는 제2성형부(2201)가 구비된다.
제1성형부(2101)와 제2성형부(2201)는 서로 마주보게 형성되고, 제2성형부(2201)는 제1성형부(2101)를 향해 고정부의 내부에 삽입될 수 있다. 고정부의 일측에 사출기가 구비되고, 사출기로부터 제1성형부(2101)와 제2성형부(2201) 사이의 공간으로 플라스틱의 용융수지가 사출된다.
제2성형부(2201)의 표면에 미세성형돌기(230)가 형성되고, 이 미세성형돌기(230)에 의해 초발수 미세돌기(130)가 터브(100)와 함께 일체형으로 사출 성형된다.
도 17b를 참고하면, 이동부의 원주면에 미세성형돌기(230)가 형성되어 있다. 이에 의해 터브커버(100a) 또는 터브본체(100b) 내의 원주면(10a',10b')에 초발수 미세돌기(130)가 사출 성형될 수 있다.
상기 사출 성형이 완료된 후 이동부는 사출물의 취출을 위해 고정부로부터 분리된다. 이동부는 터브커버(100a) 또는 터브본체(100b)의 길이방향으로 분리될 수 있다. 터브커버(100a) 또는 터브본체(100b)의 길이방향이라 함은 터브커버(100a)의 터브본체(100b)의 원주면(100b')과 평행한 방향을 의미한다.
상기 터브커버(100a) 또는 터브본체(100b)의 원주면(100a',100b')에 형성되는 초발수 미세돌기(130)는 사출 성형이 완료된 후 이동부 또는 이동금형(220)이 고정부로부터 분리되는 방향으로 방향성을 갖는다.
여기서, 초발수 미세돌기(130)가 방향성을 갖는다라고 함은 사출 금형(200)에 의해 성형이 완료된 후 금형이 분리될 때 초발수 미세돌기(130)가 이동금형(220)의 미세성형돌기(230)와 간섭되지 않도록 초발수 미세돌기(130)가 이동금형(220)의 분리방향을 따라 돌출 형성됨을 의미한다.
도 18a는 도 14에서 "C"의 부분확대도로서, 방향성을 갖는 초발수 미세돌기(130)의 일 예를 보여주는 평면도이고, 도 18b는 도 18a의 E-E 방향에서 본 초발수 미세돌기(1310)의 단면형상을 보여주는 단면도이다.
이동금형(220)의 분리방향은 터브(100)의 길이방향일 수 있다. 예를 들면, 이동금형(220)은 터브커버(100a)의 전방면에서 후방의 개방부를 향해 터브커버(100a)의 길이방향중심선을 따라 고정금형(210)에서 분리 또는 제거된다.
초발수 미세돌기(1310)는 터브(100)의 길이방향, 터브커버(100a)의 길이방향, 또는 터브본체(100b)의 길이방향으로 방향성을 가질 수 있다. 또한, 초발수 미세돌기(130)는 터브(100)의 원주면(100a',100b'), 터브커버(100a)의 원주면(100a'), 또는 터브본체(100b)의 원주면(100b')과 평행한 방향으로 방향성을 가질 수 있다.
초발수 미세돌기(1310)는 금형의 분리방향, 즉 터브(100)의 길이방향, 터브커버(100a) 또는 터브본체(100b)의 길이방향으로 방향성을 갖기 위해 터브커버(100a) 또는 터브본체(100b)의 길이방향을 따라 일정한 단면형상을 갖는다.
도 18a에 도시된 초발수 미세돌기(1310)는 삼각형의 단면형상으로 이루어진다. 초발수 미세돌기(1310)는 삼각형 단면형상이 터브커버(100a) 또는 터브본체(100b)의 길이방향을 따라 일정하게 유지되도록 형성된다. 특히, 초발수 미세돌기(130)는 삼각형의 꼭지점이 터브(100)의 길이방향을 따라 연속해서 이어져 일직선을 형성할 수 있다. 상기 삼각형의 꼭지점 또는 상기 꼭지점이 연장되는 일직선을 기준으로 양측이 동일한 길이 및 경사각을 갖는 대칭되게 형성될 수 있다. 초발수 미세돌기(1310)의 양 측면은 서로 대칭을 이루며 동일한 길이 및 경사면을 갖는다. 초발수 미세돌기(1310)는 이등변 삼각형의 단면형상을 가질 수 있다. 이때, 이등변 삼각형의 밑변(P)과 높이(h)는 동일한 길이로 이루어질 수 있다.
또한, 복수의 초발수 미세돌기(1310)는 삼각형의 단면형상이 터브(100)의 원주방향으로 연속해서 인접하게 형성되거나 일정한 간격을 두고 이격되게 형성될 수 있다. 도 18a에 도시된 복수의 초발수 미세돌기(1310)는 연속해서 인접하게 형성되어 있다. 연속해서 인접하게 형성된다고 함은 인접한 두 미세돌기의 서로 마주하는 경사면이 서로 맞닿아 일직선의 골짜기를 형성하는 것을 의미한다.
도 19a는 본 발명에 따른 방향성을 갖는 초발수 미세돌기(2310)의 다른 일 예를 보여주는 평면도이고, 도 19b는 도 19a의 초발수 미세돌기(2310)의 단면형상을 보여주는 단면도이다.
도 19a 및 도 19b에 도시된 초발수 미세돌기(2310)는 도 18a 및 도 18b의 초발수 미세돌기(1310) 대비하여 다음과 같은 차이점이 있고, 나머지 구성은 도 18a 및 도 18b의 초발수 미세돌기(1310)와 동일 내지 유사하므로, 상세한 설명은 생략하기로 한다.
도 19a 및 도 19b에 도시된 초발수 미세돌기(2310)는 사다리꼴 형상으로 이루어질 수 있다.
사다리꼴의 상부변(w)과 하부변(P)은 서로 평행하게 이루어질 수 있다. 또한, 상기 상부변(w)은 하부변(P)의 1/3 정도의 길이로 이루어질 수 있다. 사다리꼴의 상부변(w)의 중심선을 기준으로 양 측면에 서로 대칭을 이루는 경사면이 형성될 수 있다. 사다리꼴을 위에서 봤을 때 사다리꼴(상부면과 양측 경사면 포함)의 폭(P)은 사다리꼴 단면의 높이(h)의 3/2 비율로 이루어질 수 있다.
초발수 미세돌기(2310)는 사다리꼴의 단면 형상이 금형의 분리방향, 즉 터브(100)의 길이방향으로 일정한 방향성을 갖도록 터브(100)의 길이방향을 따라 일정하게 유지될 수 있다.
또한, 초발수 미세돌기(2310)는 사다리꼴의 단면 형상이 터브(100)의 원주방향으로 이격되게 형성되거나 연속해서 형성될 수 있다. 도 9b에 도시된 초발수 미세돌기(2310)는 터브(100)의 원주방향으로 이격되게 형성된다.
도 20는 본원발명에 따른 터브(200)를 정면에서 본 정면도이고, 도 21는 도 20의 I-I 단면도이다.
섬프(210)의 상부는 터브본체(200b)의 내부와 연통되도록 개방되어, 터브본체(200b) 내의 세탁수가 흘러내려 섬프(210) 내부로 모인다.
섬프(210)의 상부 측면 모서리부에 오버플로우방지부재(210a)가 구비될 수 있다. 오버플로우방지부재(210a)는 터브본체(200b)의 일측 원주면을 따라 흘러내려오는 세탁수의 가속력으로 인해 세탁수가 섬프(210)의 내부로 유입됨과 동시에 섬프(210) 내부의 세탁수의 일부가 섬프(210)를 지나 터브(200)의 반대쪽 원주면 위로 흘러넘치는 것을 막기 위한 것이다. 이를 위해 오버플로우방지부재(210a)는 섬프(210)의 측면 모서리부에 섬프(210)의 길이방향을 따라 돌출되게 형성될 수 있다.
오버플로우방지부재(210a)는 섬프(210)의 양쪽 측면 상단에서 서로를 향해 마주보는 방향으로 돌출 형성될 수 있다.
섬프(210)는 터브본체(200b)의 후방면에서 전방으로 갈수록 폭이 넓어지게 형성될 수 있다. 또한, 오버플로우방지부재(210a)는 터브본체(200b)의 후방면에서 전방으로 갈수록 폭이 넓어지게 형성될 수 있다. 다만, 두 개의 오버플로우방지부재(210a) 중 배수구(10b2)의 상부에 위치하는 오버플루우방지부재는 배수구(200b2)의 상부를 덮지 않도록 일부면이 절개될 수 있다.
섬프(210)는 터브(200) 내부에 저장된 세탁수를 외부로 배수하기 위해 일측에 배수구(200b2)를 구비한다. 배수구(200b2)는 전술한 배수호스와 연결되어, 세탁수를 외부로 배수시킬 수 있다.
배수구(200b2)는 섬프(210)에서 터브(200)의 길이방향중심선(G-G) 또는 드럼의 회전중심선에서 일 측방향, 예를 들면 캐비닛의 오른쪽 사이드패널을 향해 이격되게 형성될 수 있다.
섬프(210)는 터브본체(200b)의 하부에서 터브(200)의 길이방향중심선(G-G) 또는 드럼의 회전중심선으로부터 일측방향, 예를 들면 캐비닛의 오른쪽 사이드패널을 향해 치우치게 형성될 수 있다. 즉, 섬프(210)의 길이방향 중심선이 터브본체(200b)의 길이방향중심선(G-G)과 일치하지 않고 일측방향으로 이격되게 형성된다.
상기 배수구(200b2)는 일측방향으로 섬프(210)의 길이방향 중심선보다 더 이격되게 형성된다.
도 22a는 도 21에서 섬프(210)의 일 예를 보여주는 G-G 단면도이고, 도 22b는 도 22a의 섬프(210)에 초발수 미세돌기(2130)가 적용된 모습을 보여주는 사시도이다.
도 22a에 도시된 터브커버(200a)는 터브(200)의 길이방향으로 전방에 배치되고, 터브본체(200b)는 터브(200)의 후방에 배치되고, 터브커버(200a)와 터브본체(200b)는 서로 결합된다. 터브커버(200a)의 전방면이 터브본체(200b)의 후방면보다 더 높게 위치한다. 터브커버(200a)의 전방면에 세탁대상물의 투입구가 형성된다.
터브커버(200a)는 전방면에서 후방으로 갈수록 예를 들면 5~15°각도 범위(β) 내에서 하향 경사지게 형성될 수 있다. 즉, 터브커버(200a)의 후방면이 그 전방면보다 더 낮게 위치할 수 있다.
터브본체(200b)는 후방면에서 전방으로 갈수록 상향 경사지게 형성될 수 있다. 즉, 터브본체(200b)의 전방면이 그 후방면보다 더 높게 위치한다.
하지만, 섬프(210)는 터브본체(200b)의 후방면에서 전방으로 갈수록 하향 경사지게 형성될 수 있다. 섬프(210)의 전방부 저면이 그 후방부 저면보다 더 낮게 위치한다. 그 이유는 배수구(200b2)가 터브본체(200b)의 후방면에서 전방으로 이격되게 형성되어 있고, 섬프(210) 내의 세탁수가 배수구(200b2)로 흐르도록 하기 위함이다.
예를 들면, 섬프(210)의 저면은 수평면에 대하여 0.5~1°각도범위(α)에서 경사지게 형성될 수 있다.
터브(200)의 내표면에 터브(200) 내부의 잔수를 제거하기 위해 다수의 초발수 미세돌기(2130)가 일체로 형성된다.
초발수 미세돌기(2130)는 물과 표면 사이의 접촉각이 150°이상으로 초발수 성능을 발휘하기 위해 0.2mm 내지 0.4mm 범위의 크기를 갖는다. 또한, 초발수 미세돌기(2130)는 0.2mm이하(또는 0.25mm 이하)의 크기를 갖는 것이 바람직하다. 왜냐하면, 미세돌기의 크기가 상한값 0.25mm보다 클 경우에 미세돌기 사이에 이물질이 끼일 수 있기 때문에, 이물질이 끼는 것을 방지하기 위해 미세돌기는 상한값 이하의 크기를 가지는 것이 바람직하다.
이러한 초발수 미세돌기(2130)가 터브(200) 내표면을 덮는 경우에 터브(200) 내의 표면에 물방울(3)이 맺힐 때 물방울(3)은 터브(200)의 표면에 젖지않고 동그란 공 또는 구 모양을 유지하며 미세돌기를 따라 굴러간다. 상기 물방울(3)은 중력에 의해 터브(200) 내의 섬프(210)로 향해 미끄러지며 굴러간다. 여기서, 공 모양의 물방울(3)은 초발수 미세돌기(2130)에 의해 터브(200)의 내표면에 닿지 않지 않고, 초발수 미세돌기(2130)가 물방울(3)을 지탱한다. 또한, 물방울(3)은 터브(200) 내의 표면을 따라 이동하면서 다른 물방울(3)과 합쳐져서 더 큰 물방울(3)을 만들고 중력에 의해 섬프(210) 및 배수구(200b2)로 이동하여 배수호스를 통해 외부로 배출되게 된다.
이에 의해, 잔수가 터브(200) 내에서 잔류하지 않고 배수되므로 터브(200) 내부의 청결상태를 깨끗하게 유지할 수 있다.
특히, 다수의 초발수 미세돌기(2130)는 섬프(210)의 내표면에 형성될 수 있다.
이에 의해, 섬프(210) 내의 작은 물방울(3)들은 초발수 미세돌기(2130)를 따라 굴러 떨어지며 큰 물방울(3)을 형성하고 배수구(200b2)로 이동하게 된다.
또한, 상기 물방울(3)들은 섬프(210)의 내표면에 묻은 이물질과 함께 굴러 떨어지므로, 자기세정 효과도 얻을 수 있다.
도 23a는 도 21에서 섬프(2110)의 다른 예를 보여주는 사시도이고, 도 23b는 도 23a의 섬프(2110)를 위에서 본 평면도이고, 도 23c는 도 23a에서 잔수의 H-H 단면도이다.
도 23a 내지 도 23c에 도시된 섬프(2110)는 도 22a 및 도 22b의 섬프(210)와 다음과 같은 차이점이 있습니다. 나머지 구성은 도 22a 및 도 22b와 동일 내지 유사하므로, 자세한 설명은 생략하기로 한다.
도 23a 내지 도 23c에 도시된 섬프(2110)는 잔수안내유로부(220)를 더 포함한다.
잔수안내유로부(220)는 섬프(2110) 내의 잔수를 배수구(200b2)로 안내하기 위해 구비된다. 잔수안내유로부(220)는 섬프(2110)의 길이방향중심선에서 일측 방향으로 이격되게 형성된다. 잔수안내유로부(220)는 유로폭이 좁고 섬프(2110)의 길이방향으로 길게 형성된다.
또한, 잔수안내유로부(220)는 섬프(2110)의 후방부에서 전방부로 갈수록 하향 경사지게 형성되는다. 왜냐하면 배수구(200b2)가 잔수안내유로부(220)의 전단부에 형성되기 때문에, 잔수가 중력의 영향을 받아 배수구(200b2)로 흐르도록 잔수안내유로부(220)의 전단부가 그 후단부보다 낮게 위치하는 것이 바람직하다. 여기서, 잔수안내유로부(220)는 섬프(210)의 저면에 비해 경사도가 크게 형성된다. 예를 들어, 섬프(2110)의 저면의 경사각도는 0.5° 내지 1°인 반면에 잔수안내유로부(220)의 경사각도는 2° 내지 °도 범위 내로 형성될 수 있다.
이에 의해, 잔수안내유로부(220)는 배수구(200b2)로 잔수의 배수성을 섬프(2110) 내의 잔수보다 더욱 향상시킬 수 있다.
섬프(2110) 내의 잔수를 더욱 효과적으로 제거하기 위해 섬프(2110)에 형성되는 초발수 미세돌기(2130)는 잔수 흐름을 일정한 방향으로 유도하기 위해 일정한 구배(slope)의 경사면을 갖도록 형성될 수 있다.
예를 들어, 섬프(2110)의 초발수 미세돌기(2130)는 잔수가 잔수안내유로부(220)를 향해 흐르도록 유도할 수 있다.
여기서, 섬프(2110) 내의 잔수가 잔수안내유로부(220) 또는 배수구(200b2)를 향해 흐르도록 초발수 미세돌기(2130)의 제1경사면과 제2경사면은 섬프(2110)의 폭방향, 배수구(200b2) 또는 잔수안내유로부(220)를 향해 서로 교번하며 배치될 수 있다. 제1경사면은 미세돌기의 상단 꼭지점에서 배수구(200b2) 또는 잔수안내유로부(220)를 향하여 하향 경사지게 형성되고, 제2경사면은 미세돌기(2130)의 상단 지점에서 배수구(200b2) 또는 잔수안내유로부(220)와 반대방향으로 하향 경사지게 형성된다. 다만, 제1경사면과 제2경사면은 서로 다른 경사각을 가지고, 제1경사면의 기울기 h/a는 제2경사면의 기울기 h/b보다 더 작다.
도 24a 및 도 24b는 본 발명에 따른 플라스틱 사출금형에 의해 터브(200)의 제작방법을 설명하기 위한 개략도로서, 도 24a는 사출금형이 닫힘상태인 경우이고 도 24b는 사출금형이 열림상태인 경우를 보여준다. 도 24c는 도 24b의 I-I방향에서 본 측면도이다.
도 24a를 참고하면, 사출금형은 고정부와 이동부로 나뉘어진다. 고정부의 내측에 터브커버(200a) 또는 터브본체(200b)의 외측면의 형상과 동일한 형상으로 이루어지는 제1성형부(3110)가 구비된다. 이동부는 외부 일측에 터브커버(200a) 또는 터브본체(200b)의 내측면의 형상과 동일한 형상으로 이루어지는 제2성형부(3210)가 구비된다.
제1성형부(3110)와 제2성형부(3210)는 서로 마주보게 형성되고, 제2성형부(3210)는 제1성형부(3110)를 향해 고정부의 내부에 삽입될 수 있다. 고정부의 일측에 사출기가 구비되고, 사출기로부터 제1성형부(3110)와 제2성형부(3210) 사이의 공간으로 플라스틱의 용융수지가 사출된다.
제2성형부(3210)의 표면에 미세성형돌기(330)가 형성되고, 이 미세성형돌기(330)에 의해 초발수 미세돌기(2130)가 터브(200)와 함께 일체형으로 사출 성형된다.
도 24c를 참고하면, 이동부의 원주면 하부(섬프(2110)와 마주보는 부분)에 미세성형돌기(330)가 형성되어 있다. 이에 의해 터브본체(200b) 내의 섬프(2110)에 초발수 미세돌기(2130)가 사출 성형될 수 있다.
상기 사출 성형이 완료된 후 이동부는 사출물의 취출을 위해 고정부로부터 분리된다. 이동부는 터브커버(200a) 또는 터브본체(200b)의 길이방향으로 분리될 수 있다. 터브커버(200a) 또는 터브본체(200b)의 길이방향이라 함은 터브커버(200a)의 터브본체(200b)의 원주면과 평행한 방향을 의미한다.
상기 터브본체(200b)의 섬프(2110)의 내표면에 형성되는 초발수 미세돌기(2130)는 사출 성형이 완료된 후 이동부 또는 이동금형(320)이 고정부로부터 분리되는 방향으로 방향성을 갖는다.
여기서, 초발수 미세돌기(2130)가 방향성을 갖는다라고 함은 사출 금형(300)에 의해 성형이 완료된 후 금형이 분리될 때 초발수 미세돌기(2130)가 이동금형(320)의 미세성형돌기(330)와 간섭되지 않도록 초발수 미세돌기(2130)가 이동금형(320)의 분리방향을 따라 돌출 형성됨을 의미한다(도 22b 및 도 23b 참조).
도 25a는 도 22b의 "X" 부분의 확대도로서, 방향성을 갖는 초발수 미세돌기(2130)의 일 예를 보여주는 평면도이고, 도 25b는 도 25a의 J-J 방향으로 본 초발수 미세돌기(2130)의 단면형상을 보여주는 단면도이다.
이동금형(320)의 분리방향은 터브(200)의 길이방향일 수 있다. 예를 들면, 이동금형(320)은 터브커버(200a)의 전방면에서 후방의 개방부를 향해 터브커버(200a)의 길이방향중심선을 따라 고정금형(310)에서 분리 또는 제거된다.
초발수 미세돌기(2130)는 터브(200)의 길이방향, 터브커버(200a)의 길이방향, 터브본체(200b)의 길이방향 또는 섬프(2110)의 길이방향으로 방향성을 가질 수 있다. 또한, 초발수 미세돌기(2130)는 터브(200)의 원주면, 터브커버(200a)의 원주면, 터브본체(200b)의 원주면, 또는 섬프(2110)의 내표면과 평행한 방향으로 방향성을 가질 수 있다.
초발수 미세돌기(2130)는 금형의 분리방향, 즉 터브(200)의 길이방향, 터브커버(200a) 및 터브본체(200b)의 길이방향 또는 섬프(2110)의 길이방향으로 방향성을 갖기 위해 터브커버(200a) 또는 터브본체(200b)의 길이방향, 또는 섬프(2110)의 길이방향을 따라 일정한 단면형상을 갖는다.
도 25a에 도시된 초발수 미세돌기(2130)는 삼각형의 단면형상으로 이루어진다. 초발수 미세돌기(2130)는 삼각형 단면형상이 터브커버(200a) 또는 터브본체(200b)의 길이방향 또는 섬프(2110)의 길이방향을 따라 일정하게 유지되도록 형성된다. 특히, 초발수 미세돌기(2130)는 삼각형의 꼭지점이 터브(200)의 길이방향 또는 섬프(2110)의 길이방향을 따라 연속해서 이어져 일직선을 형성할 수 있다. 상기 삼각형의 꼭지점 또는 상기 꼭지점이 연장되는 일직선을 기준으로 양측이 동일한 길이 및 경사각을 갖는 대칭되게 형성될 수 있다. 초발수 미세돌기(2130)의 양 측면은 서로 대칭을 이루며 동일한 길이 및 경사면을 갖는다. 초발수 미세돌기(2130)는 이등변 삼각형의 단면형상을 가질 수 있다. 이때, 이등변 삼각형의 밑변(p)과 높이(h)는 동일한 길이로 이루어질 수 있다.
또한, 복수의 초발수 미세돌기(2130)는 삼각형의 단면형상이 터브(200)의 원주방향 또는 섬프(2110)의 폭방향으로 연속해서 인접하게 형성되거나 일정한 간격을 두고 이격되게 형성될 수 있다. 도 25a에 도시된 복수의 초발수 미세돌기(2130)는 연속해서 인접하게 형성되어 있다. 연속해서 인접하게 형성된다고 함은 인접한 두 미세돌기의 서로 마주하는 경사면이 서로 맞닿아 일직선의 골짜기를 형성하는 것을 의미한다.
도 26a는 본 발명에 따른 방향성을 갖는 초발수 미세돌기(3130)의 다른 일 예를 보여주는 평면도이고, 도 26b는 도 26a의 K-K 방향으로 본 초발수 미세돌기(3130)의 단면형상을 보여주는 단면도이다.
도 26a 및 도 26b에 도시된 초발수 미세돌기(3130)는 다음과 같은 차이점이 있고, 나머지 구성은 도 25a 및 도 25b의 초발수 미세돌기(3130)와 동일 내지 유사하므로, 상세한 설명은 생략하기로 한다.
도 26a 및 도 26b에 도시된 초발수 미세돌기(3130)는 사다리꼴 형상으로 이루어질 수 있다.
사다리꼴의 상부변(w)과 하부변(p)은 서로 평행하게 이루어질 수 있다. 또한, 상기 상부변(w)은 하부변(p)의 1/3 정도의 길이로 이루어질 수 있다. 사다리꼴의 상부변(w)의 중심선을 기준으로 양 측면에 서로 대칭을 이루는 경사면이 형성될 수 있다. 사다리꼴을 위에서 봤을 때 사다리꼴(상부면과 양측 경사면 포함)의 폭은 사다리꼴 단면의 높이(h)의 3/2 비율로 이루어질 수 있다.
초발수 미세돌기(3130)는 사다리꼴의 단면 형상이 금형의 분리방향, 즉 터브(200)의 길이방향으로 방향성을 갖도록 터브(200)의 길이방향을 따라 일정하게 유지될 수 있다.
또한, 초발수 미세돌기(3130)는 사다리꼴의 단면 형상이 터브(200)의 원주방향으로 이격되게 형성되거나 연속해서 형성될 수 있다. 도 26b에 도시된 초발수 미세돌기(3130)는 터브(200)의 원주방향 또는 섬프(2110)의 폭방향으로 이격되게 형성된다.
따라서, 본 발명에 의하면 초발수 미세돌기의 연잎효과를 이용하여 세탁기 내부의 잔수를 제거하여 세탁기 내부의 청결 상태를 깨끗하게 유지할 수 있다. 예를 들면, 잔수로 인해 발생하는 곰팡이 냄새 등을 제거할 수 있다.
또한, 초발수 미세돌기가 일정한 방향, 즉 금형의 분리방향으로 방향성을 갖도록 형성되어 사출 성형 후 금형의 분리 시 언더컷(undercut)의 발생을 방지할 수 있다.
또한, 초발수 미세돌기를 따라 굴러 떨어지는 물이 일정한 방향으로 흐르도록 초발수 미세돌기의 양측 경사면에 비대칭적인 구배를 형성하여 터브 내의 잔수가 배수구를 향하여 원주면을 따라 아래로 흐르게 할 수 있다.
이상에서 설명된 세탁기는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
Claims (20)
- 캐비닛의 내부에 구비되고, 내부에 세탁수를 저장하는 터브; 및상기 터브 내의 잔수를 제거하기 위해 상기 터브의 내표면에 형성되는 복수의 초발수 미세돌기;를 포함하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기는,상기 터브와 함께 사출 금형에 의해 사출 성형되어, 상기 터브의 내표면에 일체형으로 이루어지는 것을 특징으로 하는 세탁기.
- 제2항에 있어서,상기 터브는,세탁대상물의 투입을 위한 투입구가 전방면에 형성되고, 상기 터브가 원주면을 따라 전방부와 후방부로 분할될 때 상기 터브의 전방부를 형성하는 터브커버; 및상기 터브커버의 후단과 결합되고, 상기 터브의 후방부를 형성하는 터브본체;를 포함하는 것을 특징으로 하는 세탁기.
- 제3항에 있어서,상기 복수의 초발수 미세돌기는,상기 터브커버 내의 전방면과 상기 터브본체 내의 후방면에 형성되는 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기 각각은 상부 폭이 하부 폭과 대비하여 작거나 같은 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기 각각은 둥근 형태, 삼각형 및 사각형 중 어느 한 형태로 이루어지는 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기는 상기 터브의 내표면을 따라 서로 평행하게 이격되는 일 방향 중심선을 기준으로 양측이 대칭되게 형성되는 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기는 상기 터브의 내표면을 따라 서로 평행하게 이격되는 제1방향 중심선과 상기 제1방향 중심선과 교차하는 방향으로 서로 평행하게 이격되는 제2방향 중심선을 기준으로 양측이 대칭되게 형성되는 것을 특징으로 하는 세탁기.
- 제8항에 있어서,상기 제1방향 중심선과 제2방향 중심선은 격자형으로 이루어지는 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기는 상기 터브 내의 원주면에 형성되는 것을 특징으로 하는 세탁기.
- 제10항에 있어서,상기 복수의 초발수 미세돌기는 사출 성형 후 사출 금형의 언더컷을 방지하기 위해 상기 사출 금형이 분리되는 방향으로 터브의 길이방향을 따라 돌출 형성되는 것을 특징으로 하는 세탁기.
- 제10항에 있어서,상기 복수의 초발수 미세돌기는 터브의 원주방향으로 서로 이격되게 배치되는 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 복수의 초발수 미세돌기는,상기 터브의 원주면을 따라 서로 평행하게 이격되는 상기 원주면의 길이방향 중심선을 기준으로 양측이 대칭되게 형성되는 것을 특징으로 하는 세탁기.
- 제10항에 있어서,상기 복수의 초발수 미세돌기는,상기 터브 내의 잔수가 원주방향으로 흐르도록, 상기 터브의 원주면을 따라 서로 평행하게 이격되는 상기 원주면의 길이방향 중심선을 기준으로 양측이 비대칭되게 형성되는 것을 특징으로 하는 세탁기.
- 제1항에 있어서,상기 터브 내의 저면에 형성되고, 상기 터브 내의 세탁수를 외부로 배출시키기 위한 배수구를 구비하는 섬프를 더 포함하고,상기 복수의 초발수 미세돌기는 상기 섬프의 표면에 형성되는 것을 특징으로 하는 세탁기.
- 제15항에 있어서,상기 섬프는 상기 터브의 후방면 하단부에서 터브의 전방면을 향해 터브의 길이방향을 따라 오목하게 형성되고,상기 복수의 초발수 미세돌기는 사출 성형 후 사출 금형의 언더컷을 방지하기 위해 상기 사출 금형이 분리되는 방향으로 상기 섬프의 길이방향을 따라 돌출 형성되는 것을 특징으로 하는 세탁기.
- 제15항에 있어서,상기 섬프는 상기 터브의 원주면보다 낮은 위치에 형성되고, 상기 터브의 전방면을 향해 갈수록 하향 경사지게 이루어지는 것을 특징으로 하는 세탁기.
- 제15항에 있어서,상기 배수구는 상기 섬프의 길이방향 중심선에서 일방향으로 이격되게 형성되는 것을 특징으로 하는 세탁기.
- 제15항에 있어서,상기 섬프는,일측이 상기 배수구와 연통되고, 상기 섬프 내의 잔수를 상기 배수구로 안내하도록 상기 섬프의 길이방향 중심선에서 이격되게 형성되는 잔수안내유로부를 더 포함하는 것을 특징으로 하는 세탁기.
- 제19항에 있어서,상기 복수의 초발수 미세돌기는,상기 섬프 내의 잔수가 상기 잔수안내유로부로 향해 흐르도록, 상기 섬프의 저면을 따라 서로 평행하게 이격되는 섬프의 길이방향 중심선을 기준으로 양측이 비대칭되게 형성되되, 상기 잔수안내유로부로 향하는 일측에 기울기가 작은 제1경사면부와 상기 잔수안내유로부와 반대방향으로 향하는 다른 일측에 기울기가 상대적으로 큰 제2경사면부를 구비하는 것을 특징으로 하는 세탁기.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17782685.6A EP3444393B1 (en) | 2016-04-15 | 2017-04-13 | Washing machine |
US16/093,737 US20190264368A1 (en) | 2016-04-15 | 2017-04-13 | Washing machine |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0046398 | 2016-04-15 | ||
KR1020160046401A KR20170118517A (ko) | 2016-04-15 | 2016-04-15 | 세탁기 |
KR1020160046398A KR20170118515A (ko) | 2016-04-15 | 2016-04-15 | 세탁기 |
KR10-2016-0046399 | 2016-04-15 | ||
KR10-2016-0046401 | 2016-04-15 | ||
KR1020160046399A KR20170118516A (ko) | 2016-04-15 | 2016-04-15 | 세탁기 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2017179930A2 true WO2017179930A2 (ko) | 2017-10-19 |
WO2017179930A3 WO2017179930A3 (ko) | 2018-08-02 |
Family
ID=60041769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/004030 WO2017179930A2 (ko) | 2016-04-15 | 2017-04-13 | 세탁기 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190264368A1 (ko) |
EP (1) | EP3444393B1 (ko) |
WO (1) | WO2017179930A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020040490A1 (en) * | 2018-08-23 | 2020-02-27 | Lg Electronics Inc. | Laundry apparatus |
CN110915689A (zh) * | 2018-09-19 | 2020-03-27 | Lg电子株式会社 | 用于动物的液体分配器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11225747B2 (en) * | 2019-02-12 | 2022-01-18 | Whirlpool Corporation | Appliance and coating for same |
KR20210093688A (ko) * | 2020-01-20 | 2021-07-28 | 엘지전자 주식회사 | 의류처리장치 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10124974A1 (de) * | 2001-05-21 | 2002-12-12 | Kannegiesser H Gmbh Co | Verfahren zur Reinhaltung von Wäschereimaschinen und Vorrichtungen zum Entwässern, Nassbehandeln und Glätten von Wäschestücken |
DE10206481C1 (de) * | 2002-02-14 | 2003-07-03 | Inst Polymerforschung Dresden | Oberflächen mit schaltbarer Ultrahydrophobie und Verfahren zur Realisierung |
KR20050108616A (ko) * | 2004-05-12 | 2005-11-17 | 주식회사 대우일렉트로닉스 | 항균 및 탈취 기능을 갖는 세탁기 |
KR100635669B1 (ko) * | 2004-10-07 | 2006-10-17 | 엘지전자 주식회사 | 건조 겸용 세탁기의 터브 구조 |
KR100802472B1 (ko) * | 2007-02-15 | 2008-02-13 | 삼성전자주식회사 | 세탁기 |
ITTO20070271A1 (it) * | 2007-04-17 | 2008-10-18 | Indesit Co Spa | Macchina per il lavaggio di biancheria |
KR20080098952A (ko) * | 2007-05-08 | 2008-11-12 | 삼성전자주식회사 | 세탁기용 터브 및 이를 구비한 드럼 세탁기 |
CN101765489B (zh) * | 2007-08-28 | 2013-05-08 | Lg电子株式会社 | 注射模制件、注射模制装置及其方法 |
AU2011209612A1 (en) * | 2010-01-28 | 2012-08-16 | President And Fellows Of Harvard College | Structures for preventing microorganism attachment |
WO2012023824A2 (ko) * | 2010-08-19 | 2012-02-23 | 엘지전자 주식회사 | 건조기능을 갖는 의류장치 및 그 제어방법 |
DE102012223682A1 (de) * | 2012-12-19 | 2014-06-26 | BSH Bosch und Siemens Hausgeräte GmbH | Wasserführendes Haushaltsgerät mit inneren Oberfläche sowie Verfahren zu seinem Betrieb |
CN103101147B (zh) * | 2012-12-20 | 2015-10-28 | 华南理工大学 | 一种具有复合微结构的超疏水表面的制备方法及其应用 |
CN203729109U (zh) * | 2013-10-31 | 2014-07-23 | 博西华电器(江苏)有限公司 | 洗衣机 |
KR101577872B1 (ko) * | 2013-12-19 | 2015-12-15 | 동부대우전자 주식회사 | 세탁기 |
CN104002474B (zh) * | 2014-05-12 | 2016-04-13 | 华南理工大学 | 具有微纳复合结构的超疏水且粘附可调表面的制备方法及其应用 |
-
2017
- 2017-04-13 EP EP17782685.6A patent/EP3444393B1/en active Active
- 2017-04-13 WO PCT/KR2017/004030 patent/WO2017179930A2/ko active Application Filing
- 2017-04-13 US US16/093,737 patent/US20190264368A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020040490A1 (en) * | 2018-08-23 | 2020-02-27 | Lg Electronics Inc. | Laundry apparatus |
CN110915689A (zh) * | 2018-09-19 | 2020-03-27 | Lg电子株式会社 | 用于动物的液体分配器 |
Also Published As
Publication number | Publication date |
---|---|
US20190264368A1 (en) | 2019-08-29 |
EP3444393B1 (en) | 2022-08-03 |
WO2017179930A3 (ko) | 2018-08-02 |
EP3444393A4 (en) | 2020-01-15 |
EP3444393A2 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017179930A2 (ko) | 세탁기 | |
WO2021029712A1 (en) | Cleaner head and vacuum cleaner having the same | |
WO2012141408A2 (ko) | 세탁기 | |
WO2018074852A1 (ko) | 로봇 청소기 | |
WO2013165203A1 (ko) | 세탁기의 필터장치 | |
WO2017119593A1 (ko) | 세탁제펌프 및 이를 구비한 세탁물처리장치 | |
WO2019031810A1 (en) | CLEANING APPARATUS | |
WO2015130046A1 (ko) | 세탁기 | |
AU2018281250B2 (en) | Drum of laundry machine | |
WO2020040501A1 (en) | Apparatus for treating laundry | |
WO2016204454A1 (ko) | 식기세척기 및 그 제어방법 | |
WO2014163408A1 (en) | Dish washing machine | |
WO2020004908A1 (en) | Washing machine | |
WO2017188755A1 (ko) | 의류처리장치 | |
WO2011122804A2 (ko) | 식기 세척기 및 그 제어 방법 | |
WO2011059208A2 (ko) | 세탁기 세척볼의 유도 장치 및 세척볼을 위한 배수구 덮개 | |
WO2020046076A1 (ko) | 세탁기 및 세탁기의 제어방법 | |
WO2021162407A1 (en) | Dishwasher | |
WO2020218878A1 (en) | Dishwasher | |
WO2021141232A1 (ko) | 진공 청소기 | |
WO2017188754A1 (ko) | 의류처리장치 | |
WO2022015023A1 (ko) | 로봇 청소기 | |
WO2021201563A1 (ko) | 청소기의 물걸레 모듈 | |
WO2017119688A1 (en) | Dishwasher | |
WO2021107430A1 (ko) | 로봇 청소기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017782685 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017782685 Country of ref document: EP Effective date: 20181115 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17782685 Country of ref document: EP Kind code of ref document: A2 |