WO2017148985A1 - Pourable detergent composition - Google Patents
Pourable detergent composition Download PDFInfo
- Publication number
- WO2017148985A1 WO2017148985A1 PCT/EP2017/054718 EP2017054718W WO2017148985A1 WO 2017148985 A1 WO2017148985 A1 WO 2017148985A1 EP 2017054718 W EP2017054718 W EP 2017054718W WO 2017148985 A1 WO2017148985 A1 WO 2017148985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detergent composition
- water
- composition according
- glycerol
- detergent
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 155
- 239000003599 detergent Substances 0.000 title claims abstract description 90
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000004094 surface-active agent Substances 0.000 claims abstract description 23
- 230000000694 effects Effects 0.000 claims abstract description 14
- 239000013522 chelant Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 23
- 239000007844 bleaching agent Substances 0.000 claims description 22
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 230000009974 thixotropic effect Effects 0.000 claims description 13
- 229920001222 biopolymer Polymers 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 10
- 229920001285 xanthan gum Polymers 0.000 claims description 7
- 235000010493 xanthan gum Nutrition 0.000 claims description 6
- 239000000230 xanthan gum Substances 0.000 claims description 6
- 229940082509 xanthan gum Drugs 0.000 claims description 6
- 230000003534 oscillatory effect Effects 0.000 claims description 5
- 229920002907 Guar gum Polymers 0.000 claims description 4
- 235000010417 guar gum Nutrition 0.000 claims description 4
- 239000000665 guar gum Substances 0.000 claims description 4
- 229960002154 guar gum Drugs 0.000 claims description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 235000010980 cellulose Nutrition 0.000 claims description 3
- 244000215068 Acacia senegal Species 0.000 claims description 2
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 claims description 2
- 229920002148 Gellan gum Polymers 0.000 claims description 2
- 229920000084 Gum arabic Polymers 0.000 claims description 2
- 229920000161 Locust bean gum Polymers 0.000 claims description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 2
- 235000010489 acacia gum Nutrition 0.000 claims description 2
- 239000000205 acacia gum Substances 0.000 claims description 2
- 235000010418 carrageenan Nutrition 0.000 claims description 2
- 239000000679 carrageenan Substances 0.000 claims description 2
- 229920001525 carrageenan Polymers 0.000 claims description 2
- 229940113118 carrageenan Drugs 0.000 claims description 2
- 235000010492 gellan gum Nutrition 0.000 claims description 2
- 239000000216 gellan gum Substances 0.000 claims description 2
- 235000010420 locust bean gum Nutrition 0.000 claims description 2
- 239000000711 locust bean gum Substances 0.000 claims description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 2
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 2
- UZVUJVFQFNHRSY-OUTKXMMCSA-J tetrasodium;(2s)-2-[bis(carboxylatomethyl)amino]pentanedioate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CC[C@@H](C([O-])=O)N(CC([O-])=O)CC([O-])=O UZVUJVFQFNHRSY-OUTKXMMCSA-J 0.000 claims 2
- COJBCAMFZDFGFK-VCSGLWQLSA-N 2-O-sulfo-alpha-L-idopyranuronic acid Chemical compound O[C@@H]1O[C@@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1OS(O)(=O)=O COJBCAMFZDFGFK-VCSGLWQLSA-N 0.000 claims 1
- 101100345345 Arabidopsis thaliana MGD1 gene Proteins 0.000 claims 1
- OHOTVSOGTVKXEL-UHFFFAOYSA-K trisodium;2-[bis(carboxylatomethyl)amino]propanoate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C(C)N(CC([O-])=O)CC([O-])=O OHOTVSOGTVKXEL-UHFFFAOYSA-K 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 102000004190 Enzymes Human genes 0.000 description 23
- 108090000790 Enzymes Proteins 0.000 description 23
- 229940088598 enzyme Drugs 0.000 description 23
- -1 GLDA Substances 0.000 description 22
- 239000000047 product Substances 0.000 description 21
- 239000002253 acid Substances 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 15
- 238000009472 formulation Methods 0.000 description 15
- 239000002736 nonionic surfactant Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 108091005804 Peptidases Proteins 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 102000035195 Peptidases Human genes 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- CIEZZGWIJBXOTE-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)C(C)N(CC(O)=O)CC(O)=O CIEZZGWIJBXOTE-UHFFFAOYSA-N 0.000 description 5
- 102000013142 Amylases Human genes 0.000 description 5
- 108010065511 Amylases Proteins 0.000 description 5
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 5
- 230000003938 response to stress Effects 0.000 description 5
- 150000004760 silicates Chemical class 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000003625 amylolytic effect Effects 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 4
- 238000005494 tarnishing Methods 0.000 description 4
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 3
- VCVKIIDXVWEWSZ-YFKPBYRVSA-N (2s)-2-[bis(carboxymethyl)amino]pentanedioic acid Chemical compound OC(=O)CC[C@@H](C(O)=O)N(CC(O)=O)CC(O)=O VCVKIIDXVWEWSZ-YFKPBYRVSA-N 0.000 description 3
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000004851 dishwashing Methods 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 150000004967 organic peroxy acids Chemical class 0.000 description 3
- 150000002978 peroxides Chemical group 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000036962 time dependent Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 2
- AURFNYPOUVLIAV-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]-2-hydroxyacetic acid Chemical compound OC(=O)C(O)N(CC(O)=O)CCN(CC(O)=O)CC(O)=O AURFNYPOUVLIAV-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241001328119 Bacillus gibsonii Species 0.000 description 2
- 241000193422 Bacillus lentus Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical class [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 229940025131 amylases Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical class [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000012459 cleaning agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- JHUXOSATQXGREM-UHFFFAOYSA-N dodecanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCCCC(=O)OO JHUXOSATQXGREM-UHFFFAOYSA-N 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical class [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Chemical class 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical group [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- 239000003190 viscoelastic substance Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- VXWBQOJISHAKKM-UHFFFAOYSA-N (4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=O)C=C1 VXWBQOJISHAKKM-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical class CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- ZWVKLVQFUVAASH-ZPUQHVIOSA-N (e)-2-[[(e)-1,2-dicarboxyethenyl]amino]but-2-enedioic acid Chemical compound OC(=O)\C=C(C(O)=O)\N\C(C(O)=O)=C\C(O)=O ZWVKLVQFUVAASH-ZPUQHVIOSA-N 0.000 description 1
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- MYNIJFMVMJFIPZ-UHFFFAOYSA-N 10-(2-hydroxyethyl)-7,8-dimethylbenzo[g]pteridine-2,4-dione Chemical compound OCCN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O MYNIJFMVMJFIPZ-UHFFFAOYSA-N 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical class CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- AMSHPZWQWXOVTH-UHFFFAOYSA-N 2,3-diethoxybutanedioic acid Chemical compound CCOC(C(O)=O)C(C(O)=O)OCC AMSHPZWQWXOVTH-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- ARHHHLXAKOLHIS-UHFFFAOYSA-N 2-[(1,2-dicarboxy-1-hydroxyethyl)amino]-2-hydroxybutanedioic acid Chemical compound OC(=O)CC(O)(C(O)=O)NC(O)(C(O)=O)CC(O)=O ARHHHLXAKOLHIS-UHFFFAOYSA-N 0.000 description 1
- WREFNFTVBQKRGZ-UHFFFAOYSA-N 2-decylbutanediperoxoic acid Chemical compound CCCCCCCCCCC(C(=O)OO)CC(=O)OO WREFNFTVBQKRGZ-UHFFFAOYSA-N 0.000 description 1
- IULJSGIJJZZUMF-UHFFFAOYSA-N 2-hydroxybenzenesulfonic acid Chemical compound OC1=CC=CC=C1S(O)(=O)=O IULJSGIJJZZUMF-UHFFFAOYSA-N 0.000 description 1
- XMHDLKFMJMNOAX-UHFFFAOYSA-N 2-methyl-3-(2-methylprop-2-enoxy)prop-1-ene Chemical compound CC(=C)COCC(C)=C XMHDLKFMJMNOAX-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 241000194103 Bacillus pumilus Species 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- VDGFDTXXOJHDPC-UHFFFAOYSA-N C=C(OP(O)=O)OP(O)=O Chemical compound C=C(OP(O)=O)OP(O)=O VDGFDTXXOJHDPC-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- SHBUUTHKGIVMJT-UHFFFAOYSA-N Hydroxystearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OO SHBUUTHKGIVMJT-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZJTJUVIJVLLGSP-UHFFFAOYSA-N Lumichrome Natural products N1C(=O)NC(=O)C2=C1N=C1C=C(C)C(C)=CC1=N2 ZJTJUVIJVLLGSP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- UJHYZJSRAHZNFM-UHFFFAOYSA-N O=P1OCCOP(=O)O1 Chemical compound O=P1OCCOP(=O)O1 UJHYZJSRAHZNFM-UHFFFAOYSA-N 0.000 description 1
- IAFYJQKMJLWKKI-UHFFFAOYSA-N OC(=O)C(O)C(O)(C(O)=O)NC(O)(C(O)=O)C(O)C(O)=O Chemical compound OC(=O)C(O)C(O)(C(O)=O)NC(O)(C(O)=O)C(O)C(O)=O IAFYJQKMJLWKKI-UHFFFAOYSA-N 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 108010055059 beta-Mannosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- DLEPCXYNAPUMDZ-UHFFFAOYSA-N butan-2-ylphosphonic acid Chemical compound CCC(C)P(O)(O)=O DLEPCXYNAPUMDZ-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- UNWDCFHEVIWFCW-UHFFFAOYSA-N decanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCC(=O)OO UNWDCFHEVIWFCW-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical class CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- BRDYCNFHFWUBCZ-UHFFFAOYSA-N dodecaneperoxoic acid Chemical compound CCCCCCCCCCCC(=O)OO BRDYCNFHFWUBCZ-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- DDSRCCOGHFIQDX-UHFFFAOYSA-N furan-2,5-dione;methoxymethane Chemical compound COC.O=C1OC(=O)C=C1 DDSRCCOGHFIQDX-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical class CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- SXLLDUPXUVRMEE-UHFFFAOYSA-N nonanediperoxoic acid Chemical compound OOC(=O)CCCCCCCC(=O)OO SXLLDUPXUVRMEE-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- XCRBXWCUXJNEFX-UHFFFAOYSA-N peroxybenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1 XCRBXWCUXJNEFX-UHFFFAOYSA-N 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 229920000141 poly(maleic anhydride) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 235000020095 red wine Nutrition 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- MIKSWWHQLZYKGU-UHFFFAOYSA-M sodium;2-benzoyloxybenzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC=C1OC(=O)C1=CC=CC=C1 MIKSWWHQLZYKGU-UHFFFAOYSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical class [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000011135 tin Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/003—Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2003—Alcohols; Phenols
- C11D3/2065—Polyhydric alcohols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/33—Amino carboxylic acids
Definitions
- the present invention relates to a pourable detergent composition. More particularly, the invention relates to a pourable detergent composition comprising glycerol, water, one or more aminocarboxylate chelants and one or more surfactants, wherein the combination of glycerol, water and aminocarboxylate chelant represents at least 60 wt.% of the composition.
- the detergent composition of the present invention combines pourability with a very low water activity, despite the presence of a substantial amount of water.
- Detergent formulations typically contain a number of different active components, including surfactants, builders, enzymes and bleaching agents.
- Surfactants are employed to release stains and soil and to disperse the released components into the cleaning liquid. Enzymes help to remove stubborn stains of proteins, starch and lipids by hydrolyzing these components.
- Bleaching agents are employed in detergent compositions to remove bleachable stains, such as those associated with tea, coffee, red wine, and various fruit and vegetable products, by oxidizing the components that make up these stains.
- Typical bleaching agents for use in detergent formulations are chlorine- and peroxygen-based compounds, such as hypochlorite and percarbonate bleach, respectively.
- Builders are incorporated in detergent formulations to complex magnesium and calcium ions as well as to maintain alkaline pH conditions.
- Phosphorous based builders such as phosphates
- Phosphorous based builders have been used for many years in a wide variety of detergent compositions.
- alternative building agents have been developed and these alternative builders have found their way into commercial detergent products.
- the aminocarboxylate chelant L- glutamic-N,N-diacetate is an example of an environmentally friendly builder that is used in commercial detergent products.
- aminocarboxylate chelants are present in detergent formulations in the form of their (fully deprotonated) sodium salts.
- Aqueous solutions of aminocarboxylate salts are alkaline.
- Liquid detergent formulations have been developed as these products offer the advantage over powdered formulations that they are easy to dose, may contain higher concentrations of active ingredients, suffer less from moisture spoilage during storage and/or are more easily dispersed into aqueous cleaning liquid.
- liquid detergent compositions that deliver cleaning, spotting and filming performance similar to that of a powdered formulation it is necessary to include components that remain undissolved in the liquid product matrix. These undissolved components need to be homogeneously suspended throughout the product to guarantee a constant, optimum cleaning result. Although this may be achieved by instructing the user to shake the product before use, it is clearly preferable to provide the liquid detergent formulation in the form of a suspension that remains stable during the lifecycle of the product. This objective, however, is very difficult to achieve as suspensions demix over time because suspended particles are subject to sedimentation and
- Bleaching agents and enzymes are moisture-sensitive detergent ingredients that lose their activity over time if the water activity of a detergent composition is too high.
- EP-A 1 129 160 describes liquid aqueous cleaning compositions containing water, glycerol, builder, enzyme and thickener.
- WO 2007/141537 describes a liquid dishwashing formulation that contains water, GLDA, citric acid, nonionic surfactant and enzymes.
- WO 2013/092276 describes detergent formulations containing GLDA, water, citric acid, nonionic surfactant, coated spray-dried percarbonate, enzymes and other ingredients.
- WO 2014/107578 describes detergent compositions containing water, glycerol,
- polyaminocarboxylic acid chelating agent
- nonionic surfactant nonionic surfactant
- enzymes enzymes
- WO 2014/198547 describes a pourable thixotropic detergent composition
- a pourable thixotropic detergent composition comprising a continuous phase and at least 0.3 wt . % of suspended particles comprising water-soluble surfactant, said continuous phase containing at least 10 wt .% of an aminocarboxylate chelant and at least 10 wt . % of water and said water-soluble surfactant being selected from aryl sulfonate surfactant, alkyl sulfate surfactant and combinations thereof.
- Example 2 describes a liquid detergent formulation consisting of 96 wt.% of a premix and 4 wt.% of enzyme granulate.
- the premix is comprises glycerol, water, aminocarboxylate chelant and surfactant.
- US 2015/267153 describes a process for producing liquid low-water detergents or cleaning agents wherein at least one sulfo polymer and at least one builder component, are mixed together, wherein the at least one sulfo polymer is used in the form of an aqueous solution and the at least one builder component is used in solid form, wherein the builder component in solid form is selected from tripolyphosphate, MGDA, GLDA and combinations thereof.
- the examples describe cleaning agents containing tripolyphosphate, glycerol and water.
- the present inventors have developed a pourable detergent composition that offers the advantages of a liquid detergent composition, that has an exceptionally low water activity despite a considerable water content, and that is easy to manufacture.
- the pourable detergent composition of the present invention comprises:
- the combination glycerol, and aminocarboxylate chelant is capable or reducing the water activity of the detergent composition to very low levels, despite the presence of at least 8 wt.% water.
- the combination of glycerol and water enables the preparation of a detergent composition that is pourable and homogeneous.
- the detergent compositions of the present invention further offer the advantage that a wide range of detergent ingredients can be incorporated therein in either dispersed or dissolved form.
- the invention also provides a process of preparing the aforementioned pourable detergent composition, said method comprising the steps of:
- a first aspect of the present invention relates to a pourable detergent composition
- a pourable detergent composition comprising: ⁇ 30-75 wt.% glycerol;
- pourable refers to a composition that is able to flow under ambient conditions.
- Thixotropic compositions that can be rendered pourable by shear thinning are also regarded as pourable.
- thixotropic refers to compositions (e.g. gels or fluids) that are viscous under quiescent conditions and that become less viscous when shaken, agitated, or otherwise stressed. In thixotropic compositions, this so called “shear thinning effect" is reversible, i.e. the composition will return to a more viscous state once it is no longer subjected to shear stress.
- particles refers to a particulate matter in liquid or solid form, preferably solid form.
- aminocarboxylate chelant refers to compounds containing one or more nitrogen atoms connected through carbon atoms to one or more carboxyl groups, which form strong complexes with metal ions by donation of electron pairs from the nitrogen and oxygen atoms to the metal ion to form multiple chelate rings.
- water content Whenever reference is made herein to water content, unless indicated otherwise, said water content includes unbound (free) as well as bound water.
- a parameter such as a concentration or a ratio
- a certain upper limit it should be understood that in the absence of a specified lower limit the lower limit for said parameter is 0.
- the quantified amount or quantified concentration relates to said component per se, even though it may be common practice to add such a component in the form of a solution or of a blend with one or more other ingredients.
- the detergent composition of the present invention preferably contains water and the one or more aminocarboxylate chelants in a weight ratio of not more than 2:1 , preferably of not more than 1 .5:1 , most preferably of not more than 1 .2:1 .
- Water and the one or more aminocarboxylate chelants in a weight ratio of not more than 2:1 , preferably of not more than 1 .5:1 , most preferably of not more than 1 .2:1 . Water and the one or more
- aminocarboxylate chelants are typically contained in the detergent composition in a weight ratio of at least 1 :3, more preferably of at least 1 :2 and most preferably of at least 1 : 1 .8.
- Glycerol and water are preferably contained in the pourable detergent composition in a weight ratio that lies within the range of 2:3 to 1 :6, more preferably within the range of 1 :2 to 1 :5, most preferably within the range of 1 :2.2 to 1 :4.
- the pourable detergent composition preferably contains up to 60 wt.%, more preferably 33-55 wt.% and most preferably 35-48 wt.% glycerol.
- the water content of the detergent composition preferably is in the range of 10-22 wt.%, more preferably in the range of 1 1 -20 wt.% and most preferably in the range of 12-18 wt.%.
- the detergent composition typically has a water activity of 0.2 to 0.6 at 20°C. More preferably, the water activity of the detergent composition at 20°C is in the range of 0.3 to 0.5, most preferably of 0.35 to 0.45
- the pourable detergent composition preferably contains at least 10 wt.%, more preferably 12- 30 wt.% and most preferably 13-25 wt.% of the one or more aminocarboxylate chelants.
- the one or more aminocarboxylate chelants are selected from glutamic acid N,N- diacetic acid (GLDA), methylglycinediacetic acid (MGDA), iminodisuccinic acid (IDS), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethyliminodiacetic acid (HEI DA), Nitrilotriacetic acid (NTA), aspartic acid
- AES diethoxysuccinic acid
- ASDA -diacetic acid
- HEDTA hydroxyethylenediaminetetraacetic acid
- HEEDTA hydroxyethylethylenediaminetriacetic acid
- I DF iminodifumaric
- I DT iminoditartaric acid
- I DMAL iminodimalic acid
- EDDF ethylenediaminedifumanc acid
- EDDM ethylenediaminedimalic acid
- EDDT ethylenediamineditartaric acid
- EDDS ethylenediaminedisuccinic acid
- EDDMAL dipicolinic acid, and their salts.
- the one or more aminocarboxylate chelants are selected from GLDA, MGDA, IDS, HEI DA, EDDS and NTA, and their salts. In an even more preferred embodiment, the one or more aminocarboxylate chelants are selected from GLDA, MGDA, I DS and their salts. Most preferably, the the one or more aminocarboxylate chelants are selected from GLDA and salts thereof.
- the GLDA employed in the present composition preferably is an alkali metal salt of glutamic- ⁇ , ⁇ -diacetic acid. More preferably, the GLDA employed is a sodium salt of glutamic-N,N- diacetic acid. Most preferably, the GLDA employed is a tetra sodium salt of glutamic-N,N- diacetic acid.
- the combination of glycerol, water and the one or more amincarboxylate chelants typically represent at least 63 wt.%, preferably at least 65 wt.% of the detergent composition.
- the present detergent composition contains one or more surfactants.
- Surfactants within the invention, are components within the classification as described in "Surfactant Science Series", Vol.82, Handbook of detergents, part A: Properties, chapter 2 (Surfactants, classification), G. Broze (ed.).
- the detergent composition contains 0.5-30 wt.%, preferably 1 -20 wt.%, more preferably 1 .3-10 wt.% of one or more surfactants.
- the surfactants are selected from one or more non-ionic surfactants.
- the composition contains 0.1 -15 wt.%, more preferably 0.5-10 wt.% and most preferably 1 -5 wt.% of a nonionic surfactant or a mixture of two or more non-ionic surfactants.
- nonionic surfactants that may be employed in the present composition include the condensation products of hydrophobic alkyl, alkenyl, or alkyl aromatic compounds bearing functional groups having free reactive hydrogen available for condensation with hydrophilic alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, polyethylene oxide or polyethylene glycol to form nonionic surfactants.
- functional groups include hydroxy, carboxy, mercapto, amino or amido groups.
- Examples of useful hydrophobes of commercial nonionic surfactants include C8-C18 alkyl fatty alcohols, C8-C14 alkyl phenols, C8-C18 alkyl fatty acids, C8-C18 alkyl mercaptans, C8- C18 alkyl fatty amines, C8-C18 alkyl amides and C8-C18 alkyl fatty alkanolamides.
- suitable ethoxylated fatty alcohols may be chosen from ethoxylated cetyl alcohol, ethoxylated ketostearyl alcohol, ethoxylated isotridecyl alcohol, ethoxylated lauric alcohol, ethoxylated oleyl alcohol and mixtures thereof.
- suitable nonionic surfactants for use in the invention are found in the low- to non-foaming ethoxylated/ propoxylated straight- chain alcohols of the PlurafacTM LF series, supplied by the BASF and the SynperonicTM NCA series supplied by Croda.
- end-capped ethoxylated alcohols available as the SLF 18 series from BASF and the alkylpolyethylene glycol ethers made from a linear, saturated C16-C18 fatty alcohol of the LutensolTM AT series, supplied by BASF.
- suitable nonionics to apply in the composition of the invention are modified fatty alcohol polyglycolethers available as DehyponTM 3697 GRA or DehyponTM Wet from BASF/Cognis.
- nonionics from the LutensolTM TO series of BASF which are alkylpolyethylene glycol ethers made from a saturated iso-C13 alcohol.
- Amineoxide surfactants may also be used in the present invention as anti- redeposition surfactant.
- Suitable amineoxide surfactants are C10-C15 alkyl dimethylamine oxide and C10-C15 acylamido alkyl dimethylamine oxide.
- the inventors have found that, a detergent composition that is not only chemically but also physically very stable can be produced if the nonionic surfactant employed is solid at ambient temperature.
- the present composition contains 0.1 -30 wt.%, more preferably 0.5-20 wt.%, further preferred 1 - 10 wt.%, and most preferably 1 -5 wt.% of nonionic surfactant that is solid at 25°C.
- the total amount present preferably is less than 5 wt.%, and more preferably not more than 2 wt.%. Furthermore, if an anionic surfactant is present, it is preferred that an antifoam agent to suppress foaming is present.
- suitable anionic surfactants are methylester sulphonates or sodium lauryl sulphate. It is preferred that no anionic surfactant is present in the composition of the current invention. Structuring biopolymer
- the detergent composition of the present invention contains a structuring biopolymer.
- biopolymer that is capable of structuring water (e.g. through gelation) makes it possible to prepare a fluid product with excellent rheological properties.
- the fluid product contains at least 0.1 % of structuring biopolymer by weight of water. Even more preferably, the product contains 0.2-3%, most preferably 0.3-2% of structuring biopolymer by weight of water.
- structuring biopolymers that can be employed include xanthan gum, locust bean gum, guar gum, gum Arabic, gellan gum, carrageenan, carboxmethyl cellulose, microcrystalline cellulose, microfibrous cellulose and combinations thereof. More preferably, the structuring biopolymer is selected from xanthan gum, guar gum, carboxymethyl cellulose, microfibrous cellulose and combinations thereof. Most preferably, the structuring biopolymer is xanthan gum.
- the pourable detergent composition may contain additional water-softening builders.
- phosphorous based builders such as phosphates have been used as builders, but due to environmental pressures other builders are preferred.
- organic builders such as citrate and inorganic builders such as carbonates, in particular sodium carbonate.
- Citrate is preferably contained in the pourable detergent composition in a concentration of 0.1 -4 wt.%, more preferably of 0.2-2 wt.%, most preferably of 0.25-1 .2 wt.% citric acid equivalent.
- the detergent composition contains 3-30 wt.%, more preferably 5-25 wt.%, most preferably 7-20 wt.% of sodium carbonate.
- Silicates may be added to the formulation.
- Silicates can act as builder, buffering agent or article care agent.
- Preferred silicates are sodium silicate such as sodium disillicate, sodium metasilicate and crystalline phyllosilicates and mixtures thereof.
- Silicates are preferably used in the detergent composition in a concentration of 0.5 to 8%, more preferably of 0.8 to 6% by weight of the composition.
- enzymes suitable for use in the cleaning compositions of this invention include lipases, cellulases, peroxidases, proteases (proteolytic enzymes), amylases (amylolytic enzymes) and others which degrade, alter or facilitate the degradation or alteration of biochemical soils and stains encountered in cleansing situations so as to remove more easily the soil or stain from the object being washed to make the soil or stain more removable in a subsequent cleansing step. Both degradation and alteration can improve soil removal.
- the one or more active enzymes contained in the present composition are selected from protease, amylase, cellulase, peroxidase, mannanase, pectate lyase and lipase.
- the active enzyme is selected from protease, amylase and
- the composition of the present invention typically contains at least 10 mg/kg, more preferably at least 20 mg/kg, even more preferably at least 50 mg/kg and most preferably at least 100 mg/kg of active enzyme.
- the concentration of active enzyme preferably does not exceed 50 g/kg, more preferably it does not exceed 40 g/kg and most preferably it does not exceed 30 g/kg.
- the composition contains at least 10 mg/kg, more preferably at least 20 mg/kg and most preferably at least 50 mg/kg of active amylase.
- the composition contains at least 100 mg/kg, more preferably at least 200 mg/kg and most preferably at least 400 mg/kg of active protease.
- Enzymes may be added in liquid or in encapsulated form.
- encapsulated enzymes are enzyme granule types D, E and HS by Genencor and granule types, T, GT, TXT and EvityTM of Novozymes.
- the proteolytic enzymes in this invention include metal loproteases and serine proteases, including neutral or alkaline microbial serine protease, such as subtilisins (EC 3.4.21 .62).
- the proteolytic enzymes for use in the present invention can be those derived from bacteria of fungi. Chemically or genetically modified mutants (variants) are included.
- Preferred proteolytic enzymes are those derived from Bacillus, such as B. lentus, B. gibsonii, B. subtilis, B. licheniformis, B. alkalophilus, B.
- amyloliquefaciens and Bacillus pumilus of which B. lentus and B. gibsonii are most preferred.
- proteolytic enzymes are ExcellaseTM, ProperaseTM, PurafectTM, PurafectTM Prime, PurafectTM Ox by Genencor; and those sold under the trade names BlazeTM,
- OvozymeTM SavinaseTM, AlcalaseTM, EverlaseTM, EsperaseTM, RelaseTM, PolarzymeTM, LiquinaseTM and CoronaseTM by Novozymes.
- amylolytic enzymes for use in the present invention can be those derived from bacteria or fungi. Chemically or genetically modified mutants (variants) are included.
- Preferred amylolytic enzyme is an alpha-amylase derived from a strain of Bacillus, such as B. subtilis, B.
- amylolytic enzymes are produced and distributed under the trade name of StainzymeTM, StainzymeTM Plus, TermamylTM, NatalaseTM and DuramylTM by Novozymes; as well as PoweraseTM, PurastarTM, PurastarTM Oxam by Genencor. StainzymeTM, StainzymeTM Plus and PoweraseTM are the preferred amylases.
- the composition contains active protease and the protease activity of the freshly prepared composition decreases by not more than 70%, more preferably by not more than 50% and most preferably by not more than 20% when the composition is stored in a closed container for 8 weeks at 20 °C.
- Well known enzyme stabilizers such as polyalcohols/borax, calcium, formate or protease inhibitors like 4-formylphenyl boronic acid may also be present in the composition.
- the present detergent composition preferably contains at least 0.3 wt.%, more preferably 1 - 15 wt.% and most preferably 2-12 wt.% of bleaching agent.
- the bleaching agent may suitably comprise a chlorine-, or bromine-releasing agent or a peroxygen compound.
- the bleaching agent is selected from peroxides (including peroxide salts such as sodium percarbonate), organic peracids, salts of organic peracids and combinations thereof. More preferably, the bleaching agent is a peroxide. Most preferably, the bleaching agent is a percarbonate.
- peroxides are acids and corresponding salts of monopersulphate, perborate monohydrate, perborate tetrahydrate, and percarbonate.
- Organic peracids useful herein include alkyl peroxy acids and aryl peroxyacids such as peroxybenzoic acid and ring substituted peroxybenzoic acids (e.g. peroxy-alpha- naphthoic acid), aliphatic and substituted aliphatic monoperoxy acids (e.g. peroxylauric acid and peroxystearic acid), and phthaloyl amido peroxy caproic acid (PAP).
- peroxybenzoic acid and ring substituted peroxybenzoic acids e.g. peroxy-alpha- naphthoic acid
- aliphatic and substituted aliphatic monoperoxy acids e.g. peroxylauric acid and peroxystearic acid
- PAP phthaloyl amido peroxy caproic acid
- diperoxy acids useful herein include alkyl diperoxy acids and aryldiperoxy acids, such as 1 , 12 di-peroxy-dodecanedioic acid (DPDA), 1 ,9 diperoxyazelaic acid, diperoxybrassylic acid, diperoxysebacic acid and diperoxy-isophthalic acid, and 2 decyldiperoxybutane 1 ,4 dioic acid.
- DPDA di-peroxy-dodecanedioic acid
- the detergent composition of the present invention preferably contains bleaching agent in the form of particles. More preferably, the composition contains 0.3-15 wt.%, more preferably 0.5- 10 wt.% of particles of bleaching agent.
- the particles of bleaching agent are coated particles comprising one or more core particles that contain the bleaching agent, which one or more core particles are enclosed by a water-soluble coating.
- a coating agent selected from alkali sulphate, alkali carbonate or alkali chloride and combinations thereof.
- the detergent composition may contain one or more bleach activators such as peroxyacid bleach precursors.
- Peroxyacid bleach precursors are well known in the art. As non-limiting examples can be named ⁇ , ⁇ , ⁇ ', ⁇ '-tetraacetyl ethylene diamine (TAED), sodium
- SNOBS nonanoyloxybenzene sulphonate
- a bleach catalyst such as the manganese complex, e.g. Mn-Me TACN, as described in EP-A-0458397, or the sulphonimines of US-A-5,041 ,232 and US-A- 5,047, 163, can be incorporated.
- Cobalt or iron catalysts can also be used.
- the detergent composition may suitably contain one or more dispersing polymers.
- Dispersing polymers as referred to in this invention are chosen from the group of anti-spotting agents and/or anti-scaling agents.
- Suitable anti-spotting polymeric agents include hydrophobically modified polycarboxylic acids such as AcusolTM 460 ND (ex Dow) and AlcosperseTM 747 by
- AkzoNobel whereas also synthetic clays, and preferably those synthetic clays which have a high surface area are very useful to prevent spots, in particular those formed where soil and dispersed remnants are present at places where the water collects on the glass and spots formed when the water subsequently evaporates.
- suitable anti-scaling agents include organic phosphonates, amino carboxylates, polyfunctionally-substituted compounds, and mixtures thereof.
- Particularly preferred anti-scaling agents are organic phosphonates such as alpha-hydroxy-2 phenyl ethyl diphosphonate, ethylene diphosphonate, hydroxy 1 , 1 - hexylidene, vinylidene 1 , 1 -diphosphonate, 1 ,2-dihydroxyethane 1 ,1 -diphosphonate and hydroxy-ethylene 1 , 1 - diphosphonate.
- organic phosphonates such as alpha-hydroxy-2 phenyl ethyl diphosphonate, ethylene diphosphonate, hydroxy 1 , 1 - hexylidene, vinylidene 1 , 1 -diphosphonate, 1 ,2-dihydroxyethane 1 ,1 -diphosphonate and hydroxy-ethylene 1 , 1 - diphosphonate.
- EDHP hydroxy-ethylene 1 , 1 - diphosphonate
- 2- phosphono-butane 1 ,2,4-tricar
- Suitable anti-scaling agents are water soluble dispersing polymers prepared from an allyloxybenzenesulfonic acid monomer, a methallyl sulfonic acid monomer, a copolymerizable nonionic monomer and a copolymerizable olefinically unsaturated carboxylic acid monomer as described in US 5 547 612 or known as acrylic sulphonated polymers as described in EP 851 022.
- Polymers of this type include polyacrylate with methyl methacrylate, sodium methallyl sulphonate and sulphophenol methallyl ether such as AlcosperseTM 240 supplied (AkzoNobel).
- terpolymer containing polyacrylate with 2-acrylamido-2 methylpropane sulphonic acid such as Acumer 3100 supplied by Dow.
- polymers and co-polymers of acrylic acid having a molecular weight between 500 and 20,000 can also be used, such as homo-polymeric polycarboxylic acid compounds with acrylic acid as the monomeric unit.
- the average weight of such homo-polymers in the acid form preferably ranges from 1 ,000 to 100,000 particularly from 3,000 to 10,000 e.g. SokolanTM PA 25 from BASF or AcusolTM 425 from Dow.
- polycarboxylates co-polymers derived from monomers of acrylic acid and maleic acid such as CP 5 from BASF.
- the average molecular weight of these polymers in the acid form preferably ranges from 4,000 to 70,000.
- SokalanTMCP42 SokalanTM CP50 from BASF or AlcoguardTM 4160 from AkzoNobel may also be used.
- Anti-scaling agents may also be used. Particularly useful is a mixture of organic phosphonates and polymers of acrylic acid. It is preferable if the level of dispersing polymers ranges from 0.2 to 10 wt.% of the total composition, preferably from 0.5 to 8 wt.%, and further preferred from 1 to 6 wt.%.
- Other ingredients Glass corrosion inhibitors can prevent the irreversible corrosion and iridescence of glass surfaces in machine dishwash detergents.
- the claimed composition may suitably contain glass corrosion inhibitors.
- Suitable glass corrosion agents can be selected from the group the group consisting of salts of zinc, bismuth, aluminum, tin, magnesium, calcium, strontium, titanium, zirconium, manganese, lanthanum, mixtures thereof and precursors thereof. Most preferred are salts of bismuth, magnesium or zinc or combinations thereof. Preferred levels of glass corrosion inhibitors in the present composition are 0.01 -2 wt.%, more preferably 0.01 - 0.5 wt.%.
- Anti-tarnishing agents may prevent or reduce the tarnishing, corrosion or oxidation of metals such as silver, copper, aluminium and stainless steel.
- Anti-tarnishing agents such as benzotriazole or bis-benzotriazole and substituted or substituted derivatives thereof and those described in EP 723 577 (Unilever) may also be included in the composition.
- Other anti- tarnishing agents that may be included in the detergent composition are mentioned in WO 94/26860 and WO 94/26859.
- Suitable redox active agents are for example complexes chosen from the group of cerium, cobalt, hafnium, gallium, manganese, titanium, vanadium, zinc or zirconium, in which the metal are in the oxidation state of I I , I I , IV V or VI .
- other components may be added to the formulation such as perfume, colorant or preservatives.
- the desired viscosity profile of the detergent composition depends on the end use of the product. It may be a liquid, gel or a paste depending on the application.
- Another aspect of the present invention relates to a water-soluble sachet that is filled with a composition as defined herein before.
- the detergent composition is a thixotropic composition.
- thixotropic means that the product is viscous under quiescent conditions and become less viscous when shaken, agitated, or otherwise stressed. In thixotropic
- compositions this so called “shear thinning effect" is reversible, i.e. the composition will return to a more viscous state once it is no longer subjected to shear stress.
- This thixotropic behavior of the detergent composition can be demonstrated by measuring the storage modulus (G') and the loss modulus (G") of the product as a function of angular frequency ( ⁇ ) on a rheometer in oscillatory mode. Both G' and G" of the fluid product increase as a function of angular frequency ( ⁇ ), be it that G" increases at a faster rate than G'.
- angular frequency ( ⁇ ) G" of the fluid product is lower than G ⁇ but at an ⁇ in the range of 0.05-50 rad/s G" surpasses G'.
- Both the storage modulus (G') and the loss modulus (G") of the fluid product are determined at 20°C using Anton Paar® MCR 302 rheometer, using plate-plate geometry, spindle PP50/S (sandblasted) and a gap size of 3mm.
- the program settings applied are as follows:
- the setting in which the measuring points are gathered is the 'no time settings'. In this modus the apparatus waits for a steady state situation before it takes his measuring point.
- oscillatory rheology it is possible to quantify both the viscous-like and the elastic-like properties of a material at different time scales.
- the basic principle of an oscillatory rheometer is to induce a sinusoidal shear deformation in the sample and measure the resultant stress response; the time scale probed is determined by the frequency of oscillation, ⁇ , of the shear deformation.
- Viscoelastic materials show a response that contains both in-phase and out-of-phase contributions. These contributions reveal the extents of solid-like and liquid-like behavior. As a consequence, the total stress response shows a phase shift ⁇ with respect to the applied strain deformation that lies between that of solids and liquids, 0 ⁇ /2.
- the viscoelastic behaviour of the system at ⁇ is characterised by the storage modulus, G'(oo), and the loss modulus, ⁇ "( ⁇ ), which respectively characterise the solid-like and fluid-like contributions to the measured stress response.
- the fluid product of the present invention has a loss modulus that is lower than the storage modulus, indicating solid-like behavior, while at the highest frequencies accessed the loss modulus dominates the response, indicating viscous-like behavior.
- the detergent composition is a thixotropic composition having a storage modulus at 20°C (G'(oo)) and a loss modulus at 20°C (G" ( ⁇ )), both moduli measured as a function of angular frequency ( ⁇ ) on a rheometer in oscillatory mode operating at a strain of 0.1 %, wherein:
- a detergent composition having a storage modulus (G') and a loss modulus (G") that meet at least one of the following conditions:
- the pourable detergent composition typically has a storage modulus (G') at 0.2 rad/s in the range of 1 to 100 Pa, more preferably in the range of 8 to 30 Pa, most preferably in the range of 10 to 20 Pa.
- G' storage modulus
- the loss modulus (G) of the pourable detergent composition at 0.2 rad/s preferably is in the range of 1 to 100 Pa, more preferably in the range of 3 to 60 Pa, most preferably in the range of 8 to 30 Pa.
- Another aspect of the invention relates to a process of preparing a detergent composition as disclosed herein, which method comprises the steps of:
- the one or more aminocarboxylate chelants are added to the liquid under reduced pressure, e.g. a pressure of less than 900 mbar, to minimize formation of air bubbles.
- one or more particulate detergent ingredients are added to the homogenous fluid.
- particulate detergent ingredients that may be added at this stage include bleaching agent, bleach activator, enzymes and surfactants.
- the pourable detergent composition is in particular suitable to be packaged in a container comprising a container wall and an outlet, such as a bottle, to allow adaptation of the dose to the amount of soil on the dish ware.
- a container or bottle is suitable for multiple use.
- the container has at least one translucent outer wall.
- the pourable detergent composition can be packaged in a container suitable for single use.
- such a single use container holds one unit of the detergent formulation and is at least partly made from water-soluble material.
- Examples of containers that may be used in accordance with this embodiment are sachets (pouches) and capsules.
- the single use container is not only water-insoluble, but also water-permeable. More particularly, it is preferred that the container is made of a water-permeable and water-soluble polymer selected from polyvinyl alcohol, cellulose ethers, polyethylene oxide, starch, polyvinylpyrrolidone, polyacrylamide, polyvinyl methyl ether-maleic anhydride, polymaleic anhydride, styrene maleic anhydride, hydroxyethylcellulose, methylcellulose, polyethylene glycols, carboxymethylcelluloseose, polyacrylic acid salts, alginates, acrylamide copolymers, guar gum, casein, ethylene-maleic anhydride resin series, polyethylene imine, ethyl hydroxyethylcellulose, ethyl methylcellulose, hydroxyethyl methylcellulose and combinations thereof. Even more preferably, the single use container is made of polyvinyl alcohol, polyethelene oxide, polyvinylpyrrolidone
- the single use container is made of a water-permeable and water-insoluble polymer selected from butyral resin, polyvinyl acetal, polyvinyl butyral-co- vinyl alcohol-co-vinyl acetate), polyvinyl butyrate, polyvinyl acetate and combinations and co- monomers thereof.
- a water-permeable and water-insoluble polymer selected from butyral resin, polyvinyl acetal, polyvinyl butyral-co- vinyl alcohol-co-vinyl acetate), polyvinyl butyrate, polyvinyl acetate and combinations and co- monomers thereof.
- the single use container is made of polyvinyl alcohol, a copolymer of polyvinyl alcohol and combinations thereof.
- Polyvinyl alcohols preferred have a weight average molecular weight between 1 ,000 and 300,000, more preferably, between 2,000 and 150,000, and most preferably, between 3,000 and 100,000.
- the container comprises 5-40 ml, more preferably 8-30- ml and most preferably 10-20-ml of the detergent formulation.
- a thixotropic machine dishwashing product was prepared on the basis of the recipe that is shown in Table 1 .
- Table 1 A thixotropic machine dishwashing product was prepared on the basis of the recipe that is shown in Table 1 .
- the product was prepared as follows: a liquid premix was made by mixing glycerol and xanthan gum to a homogeneous suspension. Next, demi water was added under constant stirring. After that DissolvineTM GL 47-S and citric acid were dosed at ambient temperature. Next, DissolvineTM PD-S was mixed in. Finally, the nonionic surfactant was added to the mix under stirring. All ingredients were mixed in under vacuum to minimize formation of air bubbles.
- Thixotropic machine dishwashing compositions were prepared on the basis of the recipes shown in Table 3
- compositions were prepared in batches of 3 kg in a Unimix (ex Haagen & Rinau) mixer, that was operated under vacuum at 70 rpm, whilst keeping the temperature of the mixer contents at 20°C.
- the mixing procedure used was as follows:
- compositions so obtained were viscous, semi-transparent liquids. Both compositions could rapidly be dissolved in tap water of 40°C.
- Composition 1 had a water activity of 0.42 whereas composition 2 had a water activity of 0.54.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
The invention relates to a pourable detergent composition comprising: ∙ 30-75 wt.% glycerol; ∙ 8-25 wt.% water; ∙ 8-40 wt.% of one or more aminocarboxylate chelants; ∙ 0.5-30 wt.% of one or more surfactants; wherein the combination of glycerol, water and aminocarboxylate chelant represents at least 60 wt.% of the composition. This pourable detergent composition has an exceptionally low water activity despite a considerable water content and is easy to manufacture. The invention further provides a process for the manufacture of the aforementioned pourable detergent composition.
Description
POURABLE DETERGENT COMPOSITION
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pourable detergent composition. More particularly, the invention relates to a pourable detergent composition comprising glycerol, water, one or more aminocarboxylate chelants and one or more surfactants, wherein the combination of glycerol, water and aminocarboxylate chelant represents at least 60 wt.% of the composition.
The detergent composition of the present invention combines pourability with a very low water activity, despite the presence of a substantial amount of water.
BACKGROUND OF THE INVENTION
Detergent formulations typically contain a number of different active components, including surfactants, builders, enzymes and bleaching agents. Surfactants are employed to release stains and soil and to disperse the released components into the cleaning liquid. Enzymes help to remove stubborn stains of proteins, starch and lipids by hydrolyzing these components. Bleaching agents are employed in detergent compositions to remove bleachable stains, such as those associated with tea, coffee, red wine, and various fruit and vegetable products, by oxidizing the components that make up these stains. Typical bleaching agents for use in detergent formulations are chlorine- and peroxygen-based compounds, such as hypochlorite and percarbonate bleach, respectively.
Builders are incorporated in detergent formulations to complex magnesium and calcium ions as well as to maintain alkaline pH conditions. Phosphorous based builders, such as phosphates, have been used for many years in a wide variety of detergent compositions. However, as part of an increasing trend towards environmentally friendly detergent compositions, alternative building agents have been developed and these alternative builders have found their way into commercial detergent products. The aminocarboxylate chelant L- glutamic-N,N-diacetate is an example of an environmentally friendly builder that is used in commercial detergent products. Generally, aminocarboxylate chelants are present in
detergent formulations in the form of their (fully deprotonated) sodium salts. Aqueous solutions of aminocarboxylate salts are alkaline.
Liquid detergent formulations have been developed as these products offer the advantage over powdered formulations that they are easy to dose, may contain higher concentrations of active ingredients, suffer less from moisture spoilage during storage and/or are more easily dispersed into aqueous cleaning liquid. In order to provide liquid detergent compositions that deliver cleaning, spotting and filming performance similar to that of a powdered formulation it is necessary to include components that remain undissolved in the liquid product matrix. These undissolved components need to be homogeneously suspended throughout the product to guarantee a constant, optimum cleaning result. Although this may be achieved by instructing the user to shake the product before use, it is clearly preferable to provide the liquid detergent formulation in the form of a suspension that remains stable during the lifecycle of the product. This objective, however, is very difficult to achieve as suspensions demix over time because suspended particles are subject to sedimentation and
creaming/floating phenomena.
Bleaching agents and enzymes are moisture-sensitive detergent ingredients that lose their activity over time if the water activity of a detergent composition is too high.
EP-A 1 129 160 describes liquid aqueous cleaning compositions containing water, glycerol, builder, enzyme and thickener.
WO 2007/141537 describes a liquid dishwashing formulation that contains water, GLDA, citric acid, nonionic surfactant and enzymes.
WO 2013/092276 describes detergent formulations containing GLDA, water, citric acid, nonionic surfactant, coated spray-dried percarbonate, enzymes and other ingredients. WO 2014/107578 describes detergent compositions containing water, glycerol,
polyaminocarboxylic acid (chelating agent), nonionic surfactant, enzymes.
WO 2014/198547 describes a pourable thixotropic detergent composition comprising a continuous phase and at least 0.3 wt . % of suspended particles comprising water-soluble surfactant, said continuous phase containing at least 10 wt .% of an aminocarboxylate chelant and at least 10 wt . % of water and said water-soluble surfactant being selected from aryl
sulfonate surfactant, alkyl sulfate surfactant and combinations thereof. Example 2 describes a liquid detergent formulation consisting of 96 wt.% of a premix and 4 wt.% of enzyme granulate. The premix is comprises glycerol, water, aminocarboxylate chelant and surfactant. US 2015/267153 describes a process for producing liquid low-water detergents or cleaning agents wherein at least one sulfo polymer and at least one builder component, are mixed together, wherein the at least one sulfo polymer is used in the form of an aqueous solution and the at least one builder component is used in solid form, wherein the builder component in solid form is selected from tripolyphosphate, MGDA, GLDA and combinations thereof. The examples describe cleaning agents containing tripolyphosphate, glycerol and water.
SUMMARY OF THE INVENTION The present inventors have developed a pourable detergent composition that offers the advantages of a liquid detergent composition, that has an exceptionally low water activity despite a considerable water content, and that is easy to manufacture.
The pourable detergent composition of the present invention comprises:
· 30-75 wt.% glycerol;
• 8-25 wt.% water;
• 8-40 wt.% of one or more aminocarboxylate chelants;
• 0.5-30 wt.% of one or more surfactants;
wherein the combination of glycerol, water and aminocarboxylate chelant represents at least 60 wt.% of the composition.
Although the inventors do not wish to be bound by theory, it is believed that the combination glycerol, and aminocarboxylate chelant is capable or reducing the water activity of the detergent composition to very low levels, despite the presence of at least 8 wt.% water. The combination of glycerol and water enables the preparation of a detergent composition that is pourable and homogeneous. The detergent compositions of the present invention further offer the advantage that a wide range of detergent ingredients can be incorporated therein in either dispersed or dissolved form.
The invention also provides a process of preparing the aforementioned pourable detergent composition, said method comprising the steps of:
• combining glycerol and water to prepare a liquid mixture; and
• adding the one or more aminocarboxylate chelants to the liquid mixture.
DETAILED DESCRIPTION OF THE INVENTION
A first aspect of the present invention relates to a pourable detergent composition comprising: · 30-75 wt.% glycerol;
• 8-25 wt.% water;
• 8-40 wt.% of one or more aminocarboxylate chelants;
• 0.5-30 wt.% of one or more surfactants;
wherein the combination of glycerol, water and aminocarboxylate chelant represents at least 60 wt.% of the composition.
The term "pourable" as used herein refers to a composition that is able to flow under ambient conditions. Thixotropic compositions that can be rendered pourable by shear thinning are also regarded as pourable.
The term "thixotropic" as used herein refers to compositions (e.g. gels or fluids) that are viscous under quiescent conditions and that become less viscous when shaken, agitated, or otherwise stressed. In thixotropic compositions, this so called "shear thinning effect" is reversible, i.e. the composition will return to a more viscous state once it is no longer subjected to shear stress.
The term "particles" as used herein, unless indicated otherwise, refers to a particulate matter in liquid or solid form, preferably solid form. The term "aminocarboxylate chelant" as used herein refers to compounds containing one or more nitrogen atoms connected through carbon atoms to one or more carboxyl groups, which form strong complexes with metal ions by donation of electron pairs from the nitrogen and oxygen atoms to the metal ion to form multiple chelate rings.
Whenever reference is made herein to water content, unless indicated otherwise, said water content includes unbound (free) as well as bound water.
Whenever a parameter, such as a concentration or a ratio, is said to be less than a certain upper limit it should be understood that in the absence of a specified lower limit the lower limit for said parameter is 0.
Whenever an amount or concentration of a component is quantified herein, unless indicated otherwise, the quantified amount or quantified concentration relates to said component per se, even though it may be common practice to add such a component in the form of a solution or of a blend with one or more other ingredients.
The detergent composition of the present invention preferably contains water and the one or more aminocarboxylate chelants in a weight ratio of not more than 2:1 , preferably of not more than 1 .5:1 , most preferably of not more than 1 .2:1 . Water and the one or more
aminocarboxylate chelants are typically contained in the detergent composition in a weight ratio of at least 1 :3, more preferably of at least 1 :2 and most preferably of at least 1 : 1 .8.
Glycerol and water are preferably contained in the pourable detergent composition in a weight ratio that lies within the range of 2:3 to 1 :6, more preferably within the range of 1 :2 to 1 :5, most preferably within the range of 1 :2.2 to 1 :4.
The pourable detergent composition preferably contains up to 60 wt.%, more preferably 33-55 wt.% and most preferably 35-48 wt.% glycerol.
The water content of the detergent composition preferably is in the range of 10-22 wt.%, more preferably in the range of 1 1 -20 wt.% and most preferably in the range of 12-18 wt.%.
The detergent composition typically has a water activity of 0.2 to 0.6 at 20°C. More preferably, the water activity of the detergent composition at 20°C is in the range of 0.3 to 0.5, most preferably of 0.35 to 0.45
The pourable detergent composition preferably contains at least 10 wt.%, more preferably 12- 30 wt.% and most preferably 13-25 wt.% of the one or more aminocarboxylate chelants.
Preferably the one or more aminocarboxylate chelants are selected from glutamic acid N,N- diacetic acid (GLDA), methylglycinediacetic acid (MGDA), iminodisuccinic acid (IDS), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethyliminodiacetic acid (HEI DA), Nitrilotriacetic acid (NTA), aspartic acid
diethoxysuccinic acid (AES), aspartic acid-N, -diacetic acid (ASDA),
hydroxyethylenediaminetetraacetic acid (HEDTA), hydroxyethylethylenediaminetriacetic acid (HEEDTA), iminodifumaric (I DF), iminoditartaric acid (I DT), iminodimaleic acid (I DMAL), iminodimalic acid (I DM), ethylenediaminedifumanc acid (EDDF), ethylenediaminedimalic acid (EDDM), ethylenediamineditartaric acid (EDDT), ethylenediaminedisuccinic acid (EDDS), ethylenediaminedimaleic acid and (EDDMAL), dipicolinic acid, and their salts.
More preferably, the one or more aminocarboxylate chelants are selected from GLDA, MGDA, IDS, HEI DA, EDDS and NTA, and their salts. In an even more preferred embodiment, the one or more aminocarboxylate chelants are selected from GLDA, MGDA, I DS and their salts. Most preferably, the the one or more aminocarboxylate chelants are selected from GLDA and salts thereof.
The GLDA employed in the present composition preferably is an alkali metal salt of glutamic- Ν,Ν-diacetic acid. More preferably, the GLDA employed is a sodium salt of glutamic-N,N- diacetic acid. Most preferably, the GLDA employed is a tetra sodium salt of glutamic-N,N- diacetic acid.
The combination of glycerol, water and the one or more amincarboxylate chelants typically represent at least 63 wt.%, preferably at least 65 wt.% of the detergent composition. Surfactants
The present detergent composition contains one or more surfactants. Surfactants, within the invention, are components within the classification as described in "Surfactant Science Series", Vol.82, Handbook of detergents, part A: Properties, chapter 2 (Surfactants, classification), G. Broze (ed.). Typically, the detergent composition contains 0.5-30 wt.%, preferably 1 -20 wt.%, more preferably 1 .3-10 wt.% of one or more surfactants. In a preferred embodiment, the surfactants are selected from one or more non-ionic surfactants.
According to a particularly preferred embodiment, the composition contains 0.1 -15 wt.%, more preferably 0.5-10 wt.% and most preferably 1 -5 wt.% of a nonionic surfactant or a mixture of two or more non-ionic surfactants. Examples of nonionic surfactants that may be employed in the present composition include the condensation products of hydrophobic alkyl,
alkenyl, or alkyl aromatic compounds bearing functional groups having free reactive hydrogen available for condensation with hydrophilic alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, polyethylene oxide or polyethylene glycol to form nonionic surfactants. Examples of such functional groups include hydroxy, carboxy, mercapto, amino or amido groups.
Examples of useful hydrophobes of commercial nonionic surfactants include C8-C18 alkyl fatty alcohols, C8-C14 alkyl phenols, C8-C18 alkyl fatty acids, C8-C18 alkyl mercaptans, C8- C18 alkyl fatty amines, C8-C18 alkyl amides and C8-C18 alkyl fatty alkanolamides.
Accordingly, suitable ethoxylated fatty alcohols may be chosen from ethoxylated cetyl alcohol, ethoxylated ketostearyl alcohol, ethoxylated isotridecyl alcohol, ethoxylated lauric alcohol, ethoxylated oleyl alcohol and mixtures thereof. Examples of suitable nonionic surfactants for use in the invention are found in the low- to non-foaming ethoxylated/ propoxylated straight- chain alcohols of the Plurafac™ LF series, supplied by the BASF and the Synperonic™ NCA series supplied by Croda. Also of interest are the end-capped ethoxylated alcohols available as the SLF 18 series from BASF and the alkylpolyethylene glycol ethers made from a linear, saturated C16-C18 fatty alcohol of the Lutensol™ AT series, supplied by BASF. Other suitable nonionics to apply in the composition of the invention are modified fatty alcohol polyglycolethers available as Dehypon™ 3697 GRA or Dehypon™ Wet from BASF/Cognis. Also suitable for use herein are nonionics from the Lutensol™ TO series of BASF, which are alkylpolyethylene glycol ethers made from a saturated iso-C13 alcohol. Amineoxide surfactants may also be used in the present invention as anti- redeposition surfactant.
Examples of suitable amineoxide surfactants are C10-C15 alkyl dimethylamine oxide and C10-C15 acylamido alkyl dimethylamine oxide. The inventors have found that, a detergent composition that is not only chemically but also physically very stable can be produced if the nonionic surfactant employed is solid at ambient temperature. Thus, advantageously, the present composition contains 0.1 -30 wt.%, more preferably 0.5-20 wt.%, further preferred 1 - 10 wt.%, and most preferably 1 -5 wt.% of nonionic surfactant that is solid at 25°C. If an anionic surfactant is used, the total amount present preferably is less than 5 wt.%, and more preferably not more than 2 wt.%. Furthermore, if an anionic surfactant is present, it is preferred that an antifoam agent to suppress foaming is present. Examples of suitable anionic surfactants are methylester sulphonates or sodium lauryl sulphate. It is preferred that no anionic surfactant is present in the composition of the current invention.
Structuring biopolymer
In accordance with a particularly advantageous embodiment, the detergent composition of the present invention contains a structuring biopolymer. The inventors have found that the use of biopolymer that is capable of structuring water (e.g. through gelation) makes it possible to prepare a fluid product with excellent rheological properties.
Preferably, the fluid product contains at least 0.1 % of structuring biopolymer by weight of water. Even more preferably, the product contains 0.2-3%, most preferably 0.3-2% of structuring biopolymer by weight of water. Examples of structuring biopolymers that can be employed include xanthan gum, locust bean gum, guar gum, gum Arabic, gellan gum, carrageenan, carboxmethyl cellulose, microcrystalline cellulose, microfibrous cellulose and combinations thereof. More preferably, the structuring biopolymer is selected from xanthan gum, guar gum, carboxymethyl cellulose, microfibrous cellulose and combinations thereof. Most preferably, the structuring biopolymer is xanthan gum.
Builders
In addition to the one or more aminocarboxylate chelants, the pourable detergent composition may contain additional water-softening builders. Traditionally phosphorous based builders, such as phosphates have been used as builders, but due to environmental pressures other builders are preferred. These include organic builders such as citrate and inorganic builders such as carbonates, in particular sodium carbonate.
Citrate is preferably contained in the pourable detergent composition in a concentration of 0.1 -4 wt.%, more preferably of 0.2-2 wt.%, most preferably of 0.25-1 .2 wt.% citric acid equivalent.
According to a particularly preferred embodiment, the detergent composition contains 3-30 wt.%, more preferably 5-25 wt.%, most preferably 7-20 wt.% of sodium carbonate. Silicates
Silicates may be added to the formulation. Silicates can act as builder, buffering agent or article care agent. Preferred silicates are sodium silicate such as sodium disillicate, sodium metasilicate and crystalline phyllosilicates and mixtures thereof. Silicates are preferably used in the detergent composition in a concentration of 0.5 to 8%, more preferably of 0.8 to 6% by weight of the composition.
Enzymes
Examples of enzymes suitable for use in the cleaning compositions of this invention include lipases, cellulases, peroxidases, proteases (proteolytic enzymes), amylases (amylolytic enzymes) and others which degrade, alter or facilitate the degradation or alteration of biochemical soils and stains encountered in cleansing situations so as to remove more easily the soil or stain from the object being washed to make the soil or stain more removable in a subsequent cleansing step. Both degradation and alteration can improve soil removal.
Preferably, the one or more active enzymes contained in the present composition are selected from protease, amylase, cellulase, peroxidase, mannanase, pectate lyase and lipase. Most preferably, the active enzyme is selected from protease, amylase and
combinations thereof.
The composition of the present invention typically contains at least 10 mg/kg, more preferably at least 20 mg/kg, even more preferably at least 50 mg/kg and most preferably at least 100 mg/kg of active enzyme. The concentration of active enzyme preferably does not exceed 50 g/kg, more preferably it does not exceed 40 g/kg and most preferably it does not exceed 30 g/kg. According to a particularly preferred embodiment, the composition contains at least 10 mg/kg, more preferably at least 20 mg/kg and most preferably at least 50 mg/kg of active amylase.
According to another especially preferred embodiment, the composition contains at least 100 mg/kg, more preferably at least 200 mg/kg and most preferably at least 400 mg/kg of active protease.
Enzymes may be added in liquid or in encapsulated form. Examples of encapsulated enzymes are enzyme granule types D, E and HS by Genencor and granule types, T, GT, TXT and Evity™ of Novozymes.
The proteolytic enzymes in this invention include metal loproteases and serine proteases, including neutral or alkaline microbial serine protease, such as subtilisins (EC 3.4.21 .62). The proteolytic enzymes for use in the present invention can be those derived from bacteria of fungi. Chemically or genetically modified mutants (variants) are included. Preferred proteolytic enzymes are those derived from
Bacillus, such as B. lentus, B. gibsonii, B. subtilis, B. licheniformis, B. alkalophilus, B.
amyloliquefaciens and Bacillus pumilus, of which B. lentus and B. gibsonii are most preferred. Examples of such proteolytic enzymes are Excellase™, Properase™, Purafect™, Purafect™ Prime, Purafect™ Ox by Genencor; and those sold under the trade names Blaze™,
Ovozyme™, Savinase™, Alcalase™, Everlase™, Esperase™, Relase™, Polarzyme™, Liquinase™ and Coronase™ by Novozymes.
The amylolytic enzymes for use in the present invention can be those derived from bacteria or fungi. Chemically or genetically modified mutants (variants) are included. Preferred amylolytic enzyme is an alpha-amylase derived from a strain of Bacillus, such as B. subtilis, B.
licheniformis, B. amyloliquefaciens or B. stearothermophilus. Examples of such amylolytic enzymes are produced and distributed under the trade name of Stainzyme™, Stainzyme™ Plus, Termamyl™, Natalase™ and Duramyl™ by Novozymes; as well as Powerase™, Purastar™, Purastar™ Oxam by Genencor. Stainzyme™, Stainzyme™ Plus and Powerase™ are the preferred amylases.
In accordance with a particularly preferred embodiment of the invention, the composition contains active protease and the protease activity of the freshly prepared composition decreases by not more than 70%, more preferably by not more than 50% and most preferably by not more than 20% when the composition is stored in a closed container for 8 weeks at 20 °C. Well known enzyme stabilizers such as polyalcohols/borax, calcium, formate or protease inhibitors like 4-formylphenyl boronic acid may also be present in the composition.
Bleach
The present detergent composition preferably contains at least 0.3 wt.%, more preferably 1 - 15 wt.% and most preferably 2-12 wt.% of bleaching agent.
The bleaching agent may suitably comprise a chlorine-, or bromine-releasing agent or a peroxygen compound. Preferably, the bleaching agent is selected from peroxides (including peroxide salts such as sodium percarbonate), organic peracids, salts of organic peracids and combinations thereof. More preferably, the bleaching agent is a peroxide. Most preferably, the bleaching agent is a percarbonate.
Examples of peroxides are acids and corresponding salts of monopersulphate, perborate monohydrate, perborate tetrahydrate, and percarbonate. Organic peracids useful herein include alkyl peroxy acids and aryl peroxyacids such as peroxybenzoic acid and ring substituted peroxybenzoic acids (e.g. peroxy-alpha- naphthoic acid), aliphatic and substituted
aliphatic monoperoxy acids (e.g. peroxylauric acid and peroxystearic acid), and phthaloyl amido peroxy caproic acid (PAP).
Typical diperoxy acids useful herein include alkyl diperoxy acids and aryldiperoxy acids, such as 1 , 12 di-peroxy-dodecanedioic acid (DPDA), 1 ,9 diperoxyazelaic acid, diperoxybrassylic acid, diperoxysebacic acid and diperoxy-isophthalic acid, and 2 decyldiperoxybutane 1 ,4 dioic acid.
The detergent composition of the present invention preferably contains bleaching agent in the form of particles. More preferably, the composition contains 0.3-15 wt.%, more preferably 0.5- 10 wt.% of particles of bleaching agent.
According to a preferred embodiment, the particles of bleaching agent are coated particles comprising one or more core particles that contain the bleaching agent, which one or more core particles are enclosed by a water-soluble coating. The water-soluble coating
advantageously comprises a coating agent selected from alkali sulphate, alkali carbonate or alkali chloride and combinations thereof.
The detergent composition may contain one or more bleach activators such as peroxyacid bleach precursors. Peroxyacid bleach precursors are well known in the art. As non-limiting examples can be named Ν,Ν,Ν',Ν'-tetraacetyl ethylene diamine (TAED), sodium
nonanoyloxybenzene sulphonate (SNOBS), sodium benzoyloxybenzene sulphonate
(SBOBS) and the cationic peroxyacid precursor (SPCC) as described in US-A-4,751 ,015. If desirable, a bleach catalyst, such as the manganese complex, e.g. Mn-Me TACN, as described in EP-A-0458397, or the sulphonimines of US-A-5,041 ,232 and US-A- 5,047, 163, can be incorporated. Cobalt or iron catalysts can also be used.
Dispersing polymers
The detergent composition may suitably contain one or more dispersing polymers. Dispersing polymers as referred to in this invention are chosen from the group of anti-spotting agents and/or anti-scaling agents.
Examples of suitable anti-spotting polymeric agents include hydrophobically modified polycarboxylic acids such as Acusol™ 460 ND (ex Dow) and Alcosperse™ 747 by
AkzoNobel, whereas also synthetic clays, and preferably those synthetic clays which have a
high surface area are very useful to prevent spots, in particular those formed where soil and dispersed remnants are present at places where the water collects on the glass and spots formed when the water subsequently evaporates. Examples of suitable anti-scaling agents include organic phosphonates, amino carboxylates, polyfunctionally-substituted compounds, and mixtures thereof.
Particularly preferred anti-scaling agents are organic phosphonates such as alpha-hydroxy-2 phenyl ethyl diphosphonate, ethylene diphosphonate, hydroxy 1 , 1 - hexylidene, vinylidene 1 , 1 -diphosphonate, 1 ,2-dihydroxyethane 1 ,1 -diphosphonate and hydroxy-ethylene 1 , 1 - diphosphonate. Most preferred is hydroxy-ethylene 1 , 1 - diphosphonate (EDHP) and 2- phosphono-butane, 1 ,2,4-tricarboxylic acid (Bayhibit ex Bayer). Suitable anti-scaling agents are water soluble dispersing polymers prepared from an allyloxybenzenesulfonic acid monomer, a methallyl sulfonic acid monomer, a copolymerizable nonionic monomer and a copolymerizable olefinically unsaturated carboxylic acid monomer as described in US 5 547 612 or known as acrylic sulphonated polymers as described in EP 851 022. Polymers of this type include polyacrylate with methyl methacrylate, sodium methallyl sulphonate and sulphophenol methallyl ether such as Alcosperse™ 240 supplied (AkzoNobel). Also suitable is a terpolymer containing polyacrylate with 2-acrylamido-2 methylpropane sulphonic acid such as Acumer 3100 supplied by Dow. As an alternative, polymers and co-polymers of acrylic acid having a molecular weight between 500 and 20,000 can also be used, such as homo-polymeric polycarboxylic acid compounds with acrylic acid as the monomeric unit. The average weight of such homo-polymers in the acid form preferably ranges from 1 ,000 to 100,000 particularly from 3,000 to 10,000 e.g. Sokolan™ PA 25 from BASF or Acusol™ 425 from Dow.
Also suitable are polycarboxylates co-polymers derived from monomers of acrylic acid and maleic acid, such as CP 5 from BASF. The average molecular weight of these polymers in the acid form preferably ranges from 4,000 to 70,000. Modified polycarboxylates like
Sokalan™CP42, Sokalan™ CP50 from BASF or Alcoguard™ 4160 from AkzoNobel may also be used.
Mixture of anti-scaling agents may also be used. Particularly useful is a mixture of organic phosphonates and polymers of acrylic acid. It is preferable if the level of dispersing polymers ranges from 0.2 to 10 wt.% of the total composition, preferably from 0.5 to 8 wt.%, and further preferred from 1 to 6 wt.%.
Other ingredients Glass corrosion inhibitors can prevent the irreversible corrosion and iridescence of glass surfaces in machine dishwash detergents. The claimed composition may suitably contain glass corrosion inhibitors. Suitable glass corrosion agents can be selected from the group the group consisting of salts of zinc, bismuth, aluminum, tin, magnesium, calcium, strontium, titanium, zirconium, manganese, lanthanum, mixtures thereof and precursors thereof. Most preferred are salts of bismuth, magnesium or zinc or combinations thereof. Preferred levels of glass corrosion inhibitors in the present composition are 0.01 -2 wt.%, more preferably 0.01 - 0.5 wt.%.
Anti-tarnishing agents may prevent or reduce the tarnishing, corrosion or oxidation of metals such as silver, copper, aluminium and stainless steel. Anti-tarnishing agents such as benzotriazole or bis-benzotriazole and substituted or substituted derivatives thereof and those described in EP 723 577 (Unilever) may also be included in the composition. Other anti- tarnishing agents that may be included in the detergent composition are mentioned in WO 94/26860 and WO 94/26859. Suitable redox active agents are for example complexes chosen from the group of cerium, cobalt, hafnium, gallium, manganese, titanium, vanadium, zinc or zirconium, in which the metal are in the oxidation state of I I , I I , IV V or VI . Optionally other components may be added to the formulation such as perfume, colorant or preservatives. The desired viscosity profile of the detergent composition depends on the end use of the product. It may be a liquid, gel or a paste depending on the application. Another aspect of the present invention relates to a water-soluble sachet that is filled with a composition as defined herein before.
Rheology
According to a particularly preferred embodiment of the present invention the detergent composition is a thixotropic composition. The term "thixotropic" means that the product is viscous under quiescent conditions and become less viscous when shaken, agitated, or otherwise stressed. In thixotropic
compositions, this so called "shear thinning effect" is reversible, i.e. the composition will return to a more viscous state once it is no longer subjected to shear stress. This thixotropic behavior of the detergent composition can be demonstrated by measuring the storage modulus (G') and the loss modulus (G") of the product as a function of angular frequency (ω) on a rheometer in oscillatory mode. Both G' and G" of the fluid product increase as a function
of angular frequency (ω), be it that G" increases at a faster rate than G'. At very low angular frequency (ω) G" of the fluid product is lower than G\ but at an ω in the range of 0.05-50 rad/s G" surpasses G'. Both the storage modulus (G') and the loss modulus (G") of the fluid product are determined at 20°C using Anton Paar® MCR 302 rheometer, using plate-plate geometry, spindle PP50/S (sandblasted) and a gap size of 3mm. The program settings applied are as follows:
• A Strain γ is chosen in the Lineair Visco-elastic range of the product (LVER is
determined by an Amplitude Sweep). The strain is kept constant on 0.1 %.
· An increasing ramp log of angular frequency ω is set on the sample from low to high frequency, starting at 0.01 rad/s. The end ω is 100 rad/s unless the sample is very stiff.
• The setting in which the measuring points are gathered is the 'no time settings'. In this modus the apparatus waits for a steady state situation before it takes his measuring point.
• Every decade six measuring points are taken.
Using oscillatory rheology, it is possible to quantify both the viscous-like and the elastic-like properties of a material at different time scales. The basic principle of an oscillatory rheometer is to induce a sinusoidal shear deformation in the sample and measure the resultant stress response; the time scale probed is determined by the frequency of oscillation, ω, of the shear deformation. A sample is placed between two plates. While the top plate remains stationary, a motor rotates the bottom plate, thereby imposing a time dependent strain γ(ί)=γ -sin(oot) on the sample. Simultaneously, the time dependent stress σ (t) is quantified by measuring the torque that the sample imposes on the top plate.
Measuring this time dependent stress response at a single frequency immediately reveals key differences between materials. If the material is an ideal elastic solid, then the sample stress is proportional to the strain deformation, and the proportionality constant is the shear modulus of the material. The stress is always exactly in phase with the applied sinusoidal strain deformation. In contrast, if the material is a purely viscous fluid, the stress in the sample is proportional to the rate of strain deformation, where the proportionality constant is the viscosity of the fluid. The applied strain and the measured stress are out of phase, with a phase angle δ=π/2.
Viscoelastic materials show a response that contains both in-phase and out-of-phase contributions. These contributions reveal the extents of solid-like and liquid-like behavior. As a
consequence, the total stress response shows a phase shift δ with respect to the applied strain deformation that lies between that of solids and liquids, 0<δ<π/2. The viscoelastic behaviour of the system at ω is characterised by the storage modulus, G'(oo), and the loss modulus, Θ"(ω), which respectively characterise the solid-like and fluid-like contributions to the measured stress response. For a sinusoidal strain deformation γ (t)=y 0 sin(oot), the stress response of a viscoelastic material is given by σ(ί)=Θ'(ω)γ 0sin(oot)+ Θ"(ω)γ0 cos(oot).
Whether the product behaves more solid-like or more liquid-like depends on the time scale at which it is deformed. At the lowest accessible frequencies the fluid product of the present invention has a loss modulus that is lower than the storage modulus, indicating solid-like behavior, while at the highest frequencies accessed the loss modulus dominates the response, indicating viscous-like behavior.
In accordance with a particularly advantageous embodiment of the present invention the detergent composition is a thixotropic composition having a storage modulus at 20°C (G'(oo)) and a loss modulus at 20°C (G" (ω)), both moduli measured as a function of angular frequency (ω) on a rheometer in oscillatory mode operating at a strain of 0.1 %, wherein:
• G"(oo) > G' (ω) at angular frequencies (ω) in the range of 50 to 100 rad/s, and
• G"(oo) < G' (ω) at angular frequencies (ω) in the range of 0.01 -0.05 rad/s.
Especially preferred is a detergent composition having a storage modulus (G') and a loss modulus (G") that meet at least one of the following conditions:
• G"(oo) > G' (ω) at angular frequencies (ω) in the range of 30 to 100 rad/s, more
preferably in the range of 10 to 100 rad/s;
· G"(oo) < G' (ω) at angular frequencies (ω) in the range of 0.01 to 0.2 rad/s, more
preferably in the range of 0.01 to 0.5 rad/s.
The pourable detergent composition typically has a storage modulus (G') at 0.2 rad/s in the range of 1 to 100 Pa, more preferably in the range of 8 to 30 Pa, most preferably in the range of 10 to 20 Pa.
The loss modulus (G") of the pourable detergent composition at 0.2 rad/s preferably is in the range of 1 to 100 Pa, more preferably in the range of 3 to 60 Pa, most preferably in the range of 8 to 30 Pa.
Manufacture
Another aspect of the invention relates to a process of preparing a detergent composition as disclosed herein, which method comprises the steps of:
• combining glycerol and water to prepare a liquid mixture; and
· mixing the one or more aminocarboxylate chelants with the liquid mixture to form a homogenous fluid.
In a preferred embodiment the one or more aminocarboxylate chelants are added to the liquid under reduced pressure, e.g. a pressure of less than 900 mbar, to minimize formation of air bubbles.
In accordance with another preferred embodiment one or more particulate detergent ingredients are added to the homogenous fluid. Examples of particulate detergent ingredients that may be added at this stage include bleaching agent, bleach activator, enzymes and surfactants.
Packaging
The pourable detergent composition is in particular suitable to be packaged in a container comprising a container wall and an outlet, such as a bottle, to allow adaptation of the dose to the amount of soil on the dish ware. Such a container or bottle is suitable for multiple use. In a preferred embodiment, the container has at least one translucent outer wall. In another embodiment, the pourable detergent composition can be packaged in a container suitable for single use.
In accordance with this embodiment, such a single use container holds one unit of the detergent formulation and is at least partly made from water-soluble material. Examples of containers that may be used in accordance with this embodiment are sachets (pouches) and capsules.
Suitably, the single use container is not only water-insoluble, but also water-permeable. More particularly, it is preferred that the container is made of a water-permeable and water-soluble polymer selected from polyvinyl alcohol, cellulose ethers, polyethylene oxide, starch, polyvinylpyrrolidone, polyacrylamide, polyvinyl methyl ether-maleic anhydride, polymaleic anhydride, styrene maleic anhydride, hydroxyethylcellulose, methylcellulose, polyethylene glycols, carboxymethylcelulose, polyacrylic acid salts, alginates, acrylamide copolymers, guar gum, casein, ethylene-maleic anhydride resin series, polyethylene imine, ethyl hydroxyethylcellulose, ethyl methylcellulose, hydroxyethyl methylcellulose and combinations
thereof. Even more preferably, the single use container is made of polyvinyl alcohol, polyethelene oxide, polyvinylpyrrolidone and combinations thereof.
In another preferred embodiment, the single use container is made of a water-permeable and water-insoluble polymer selected from butyral resin, polyvinyl acetal, polyvinyl butyral-co- vinyl alcohol-co-vinyl acetate), polyvinyl butyrate, polyvinyl acetate and combinations and co- monomers thereof.
Most preferably, the single use container is made of polyvinyl alcohol, a copolymer of polyvinyl alcohol and combinations thereof. Polyvinyl alcohols preferred have a weight average molecular weight between 1 ,000 and 300,000, more preferably, between 2,000 and 150,000, and most preferably, between 3,000 and 100,000.
According to a preferred embodiment, the container comprises 5-40 ml, more preferably 8-30- ml and most preferably 10-20-ml of the detergent formulation.
The invention is further illustrated by the following non-limiting examples.
EXAMPLES
Example 1
A thixotropic machine dishwashing product was prepared on the basis of the recipe that is shown in Table 1 . Table 1
1 Contains appr. 48 wt.% GLDA and 45 wt.% water
2 Contains appr. 85 wt.% GLDA and 9 wt.% water
The product was prepared as follows: a liquid premix was made by mixing glycerol and xanthan gum to a homogeneous suspension. Next, demi water was added under constant
stirring. After that Dissolvine™ GL 47-S and citric acid were dosed at ambient temperature. Next, Dissolvine™ PD-S was mixed in. Finally, the nonionic surfactant was added to the mix under stirring. All ingredients were mixed in under vacuum to minimize formation of air bubbles.
The rheological properties of the thixotropic detergent composition, measured 7 hours from production, are summarized in Table 2.
Table 2
Example 2
Thixotropic machine dishwashing compositions were prepared on the basis of the recipes shown in Table 3
Table 3
The compositions were prepared in batches of 3 kg in a Unimix (ex Haagen & Rinau) mixer, that was operated under vacuum at 70 rpm, whilst keeping the temperature of the mixer contents at 20°C. The mixing procedure used was as follows:
• introduce glycerol and xanthan and mix for 20 minutes;
• add demi water and continue mixing for 20 minutes;
• add citric acid solution and Dissolvine™ GL 47-S and continue mixing for 5 minutes;
• add Dissolvine™ PD-S 2 and continue mixing for 40 minutes;
• add Lutensol™ AT80 and continue mixing for 65 minutes.
The compositions so obtained were viscous, semi-transparent liquids. Both compositions could rapidly be dissolved in tap water of 40°C. Composition 1 had a water activity of 0.42 whereas composition 2 had a water activity of 0.54.
Claims
1. A pourable detergent composition comprising:
• 30-75 wt.% glycerol;
• 8-25 wt.% water;
• 8-40 wt.% of one or more aminocarboxylate chelants;
• 0.5-30 wt.% of one or more surfactants;
wherein the combination of glycerol, water and aminocarboxylate chelant represents at least 60 wt.% of the composition.
2. Detergent composition according to claim 1 , wherein the composition contains water and the one or more aminocarboxylate chelants in a weight ratio of not more than 2:1.
3. Detergent composition according to claim 1 or 2, wherein the one or more aminocarboxylate chelants are selected from GLDA, MGDA, IDS and combinations thereof.
4. Detergent composition according to claim 3, wherein the aminocarboxylate chelant is GLDA.
5. Detergent composition according to any one of the preceding claims, wherein the composition contains water and glycerol in a weight ratio water to glycerol in the range of 2:3 to 1 :6.
6. Detergent composition according to any one of the preceding claims, wherein the composition contains at least 0.1 % of structuring biopolymer by weight of water.
7. Detergent composition according to claim 7, wherein the structuring biopolymer is selected from xanthan gum, locust bean gum, guar gum, gum Arabic, gellan gum, carrageenan, carboxmethyl cellulose, microcrystalline cellulose, microfibrous cellulose and combinations thereof.
8. Detergent composition according to claim 8, wherein the structuring biopolymer is xanthan gum.
9. Detergent composition according to any one of the preceding claims, wherein the composition contains citrate in a concentration of 0.1 -4 wt.% citric acid equivalent.
10. Detergent composition according to any one of the preceding claims, wherein the composition has a water activity of 0.2 to 0.6 at 20°C.
1 1 . Detergent composition according to any one of the preceding claims, wherein the composition is a thixotropic composition having a storage modulus at 20°C (G'(oo)) and a loss modulus at 20°C (G" (ω)), both moduli measured as a function of angular frequency (ω) on a rheometer in oscillatory mode operating at a strain of 0.1 %, wherein:
• G"(oo) > G' (ω) at angular frequencies (ω) in the range of 50 to 100 rad/s, and
• G"(oo) < G' (ω) at angular frequencies (ω) in the range of 0.01 to 0.05 rad/s.
12. Detergent composition according to any one of the preceding claims, wherein the composition has a storage modulus (G') at 0.2 rad/s and 20°C in the range of 1 to 100 Pa.
13. Detergent composition according to any one of the preceding claims, wherein the composition has a loss modulus (G") at 0.2 rad/s and 20°C in the range of 1 to 100 Pa.
14. Detergent composition according to any one of the preceding claims, wherein the composition contains at least 0.3 wt.% of bleaching agent.
15. A process of preparing a detergent composition according to any one of the preceding claims, said process comprising the steps of
• combining glycerol and water to prepare a liquid mixture; and
• adding the one or more aminocarboxylate chelants to the liquid mixture.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16158175.6 | 2016-03-02 | ||
EP16158175 | 2016-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017148985A1 true WO2017148985A1 (en) | 2017-09-08 |
Family
ID=55527767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/054718 WO2017148985A1 (en) | 2016-03-02 | 2017-03-01 | Pourable detergent composition |
Country Status (2)
Country | Link |
---|---|
AR (1) | AR107756A1 (en) |
WO (1) | WO2017148985A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113234544A (en) * | 2021-05-26 | 2021-08-10 | 广东水卫仕生物科技有限公司 | Detergent composition, detergent, preparation method and application thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751015A (en) | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US5041232A (en) | 1990-03-16 | 1991-08-20 | Lever Brothers Company, Division Of Conopco, Inc. | Sulfonimines as bleach catalysts |
US5047163A (en) | 1990-03-16 | 1991-09-10 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with sulfonimines |
EP0458397A2 (en) | 1990-05-21 | 1991-11-27 | Unilever N.V. | Bleach activation |
WO1994026859A1 (en) | 1993-05-08 | 1994-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Silver-corrosion protection agent (i) |
WO1994026860A1 (en) | 1993-05-08 | 1994-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Silver-corrosion protection agent (ii) |
EP0723577A1 (en) | 1993-10-14 | 1996-07-31 | Unilever N.V. | Detergent compositions containing silver anti-tarnishing agents |
US5547612A (en) | 1995-02-17 | 1996-08-20 | National Starch And Chemical Investment Holding Corporation | Compositions of water soluble polymers containing allyloxybenzenesulfonic acid monomer and methallyl sulfonic acid monomer and methods for use in aqueous systems |
EP0851022A2 (en) | 1996-12-23 | 1998-07-01 | Unilever N.V. | Rinse aid compositions containing scale inhibiting polymers |
EP1129160A1 (en) | 1998-11-12 | 2001-09-05 | Henkel Kommanditgesellschaft auf Aktien | Aqueous detergents for dishwasher |
WO2007141537A1 (en) | 2006-06-07 | 2007-12-13 | Apatech Limited | Biomedical materials |
WO2013092276A1 (en) | 2011-12-22 | 2013-06-27 | Unilever N.V. | Detergent composition comprising glutamic-n,n-diacetate, water and bleaching agent |
WO2014107578A1 (en) | 2013-01-03 | 2014-07-10 | Basf Corporation | Homogeneous detergent composition |
WO2014198547A2 (en) | 2013-06-12 | 2014-12-18 | Unilever N.V. | Pourable detergent composition comprising suspended particles |
US20150267153A1 (en) | 2012-12-05 | 2015-09-24 | Henkel Ag & Co. Kgaa | Process for producing low-in-water to water-free detergent or cleaning agents |
-
2017
- 2017-03-01 WO PCT/EP2017/054718 patent/WO2017148985A1/en active Application Filing
- 2017-03-01 AR ARP170100497A patent/AR107756A1/en unknown
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751015A (en) | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US5041232A (en) | 1990-03-16 | 1991-08-20 | Lever Brothers Company, Division Of Conopco, Inc. | Sulfonimines as bleach catalysts |
US5047163A (en) | 1990-03-16 | 1991-09-10 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with sulfonimines |
EP0458397A2 (en) | 1990-05-21 | 1991-11-27 | Unilever N.V. | Bleach activation |
WO1994026859A1 (en) | 1993-05-08 | 1994-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Silver-corrosion protection agent (i) |
WO1994026860A1 (en) | 1993-05-08 | 1994-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Silver-corrosion protection agent (ii) |
EP0723577A1 (en) | 1993-10-14 | 1996-07-31 | Unilever N.V. | Detergent compositions containing silver anti-tarnishing agents |
US5547612A (en) | 1995-02-17 | 1996-08-20 | National Starch And Chemical Investment Holding Corporation | Compositions of water soluble polymers containing allyloxybenzenesulfonic acid monomer and methallyl sulfonic acid monomer and methods for use in aqueous systems |
EP0851022A2 (en) | 1996-12-23 | 1998-07-01 | Unilever N.V. | Rinse aid compositions containing scale inhibiting polymers |
EP1129160A1 (en) | 1998-11-12 | 2001-09-05 | Henkel Kommanditgesellschaft auf Aktien | Aqueous detergents for dishwasher |
WO2007141537A1 (en) | 2006-06-07 | 2007-12-13 | Apatech Limited | Biomedical materials |
WO2013092276A1 (en) | 2011-12-22 | 2013-06-27 | Unilever N.V. | Detergent composition comprising glutamic-n,n-diacetate, water and bleaching agent |
US20150267153A1 (en) | 2012-12-05 | 2015-09-24 | Henkel Ag & Co. Kgaa | Process for producing low-in-water to water-free detergent or cleaning agents |
WO2014107578A1 (en) | 2013-01-03 | 2014-07-10 | Basf Corporation | Homogeneous detergent composition |
WO2014198547A2 (en) | 2013-06-12 | 2014-12-18 | Unilever N.V. | Pourable detergent composition comprising suspended particles |
Non-Patent Citations (1)
Title |
---|
G. BROZE: ""Surfactant Science Series", Vol.82, Handbook of detergents, part A: Properties", vol. 82, article "chapter 2 (Surfactants, classification)" |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113234544A (en) * | 2021-05-26 | 2021-08-10 | 广东水卫仕生物科技有限公司 | Detergent composition, detergent, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
AR107756A1 (en) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2794836B1 (en) | Detergent composition comprising glutamic-n,n-diacetate, water and bleaching agent | |
EP3013931B1 (en) | Composition comprising glutamic-n,n-diacetate (glda), water and enzyme | |
JP2019512575A (en) | Encapsulated laundry cleaning composition | |
EP2345599A1 (en) | Water-soluble pouch | |
US11492571B2 (en) | Automatic dishwashing detergent composition comprising a protease | |
EP2997121B1 (en) | Machine dishwash detergent composition | |
JP2017528569A (en) | Encapsulated cleaning composition | |
US20180362890A1 (en) | Automatic dishwashing cleaning composition | |
AU2014301405B2 (en) | Hygroscopic detergent formulation comprising water, aminocarboxylate chelant and moisture-sensitive ingredients | |
AU2017202232A1 (en) | Pourable detergent composition comprising suspended particles | |
EP3423558B1 (en) | Detergent composition in the form of a suspension | |
EP3426756B1 (en) | Pourable detergent suspension comprising bleach catalyst granules | |
WO2011071994A2 (en) | Detergent composition | |
EP2333041A1 (en) | Detergent composition | |
WO2017148985A1 (en) | Pourable detergent composition | |
US20190048290A1 (en) | Automatic dishwashing composition | |
WO2017148989A1 (en) | Pourable detergent suspension comprising a dyed fluid phase and suspended particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17707345 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17707345 Country of ref document: EP Kind code of ref document: A1 |