[go: up one dir, main page]

WO2017146023A1 - ポリカーボネート樹脂、成形体、光学部材及びレンズ - Google Patents

ポリカーボネート樹脂、成形体、光学部材及びレンズ Download PDF

Info

Publication number
WO2017146023A1
WO2017146023A1 PCT/JP2017/006299 JP2017006299W WO2017146023A1 WO 2017146023 A1 WO2017146023 A1 WO 2017146023A1 JP 2017006299 W JP2017006299 W JP 2017006299W WO 2017146023 A1 WO2017146023 A1 WO 2017146023A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polycarbonate resin
general formula
broken line
carbon atoms
Prior art date
Application number
PCT/JP2017/006299
Other languages
English (en)
French (fr)
Inventor
直之 師岡
上平 茂生
貴文 中山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018501693A priority Critical patent/JP6670923B2/ja
Publication of WO2017146023A1 publication Critical patent/WO2017146023A1/ja
Priority to US16/107,460 priority patent/US10604623B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/24General preparatory processes using carbonyl halides and phenols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polycarbonate resin, a molded body, an optical member, and a lens.
  • glass materials have been used for optical members of imaging modules such as cameras, video cameras, camera-equipped mobile phones, videophones, and camera doorphones. Glass materials have been used preferably because they have various optical properties and are excellent in environmental resistance. However, they have the disadvantages that weight reduction and size reduction are not easy, and workability and productivity are poor. On the other hand, an optical member using a thermoplastic resin can be mass-produced and has excellent workability, and has recently been used for various optical members.
  • thermoplastic resin In an optical member using a thermoplastic resin, it has been studied to exhibit various optical characteristics and enhance durability by using a resin containing a structural unit having a specific structure.
  • Patent Documents 1 to 3 disclose resins containing a structural unit having a fluorene skeleton.
  • Patent Document 1 discloses a polycarbonate resin composed of 9,9-bis (4-hydroxy-3-methylphenyl) fluorene and bis (4-hydroxy-3-methylphenyl) sulfide.
  • Patent Document 2 discloses a diol containing a dicarboxylic acid component containing a monocyclic aromatic dicarboxylic acid component and a dicarboxylic acid component having a fluorene skeleton, and a compound having a 9,9-bis (hydroxy (poly) alkoxyaryl) fluorene skeleton.
  • a polyester resin having a component as a polymerization component is disclosed.
  • Patent Document 3 discloses a polycarbonate resin having a fluorene skeleton, which includes a structural unit having negative refractive index anisotropy and a structural unit having positive refractive index anisotropy. .
  • the present inventors molded a molded body of a thermoplastic resin having a sufficiently small Abbe number and excellent in high temperature and high humidity durability. The study was conducted for the purpose of providing a resin that can be used.
  • the present inventors have obtained a molded article of a thermoplastic resin having a sufficiently small Abbe number by using a polycarbonate resin containing a structural unit having a specific structure. It was found (hereinafter also referred to as a molded body) that a molded body excellent in high temperature and high humidity durability can be obtained.
  • the present invention has the following configuration.
  • R 1 to R 4 are each independently a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and includes an aryl group, a heteroaryl group, and R 1 to R 4 are substituents excluding a substituent having a reactive group, and R 1 to R 4 are not bonded to each other by mutually adjacent substituents to form a condensed ring;
  • R 5 to R 7 each independently represents a substituent;
  • a to c each independently represents 0 or more and represent an integer of the maximum number or less that can be substituted for each ring;
  • Ar 11 and Ar 12 each independently represents an aryl group including a benzene ring surrounded by a broken line or a heteroaryl group including a benzene ring surrounded by a broken line as one of condensed rings, and Ar 13 is surrounded by a broken line
  • n1 and n2 each independently represents an integer of 0 to 10;
  • Ar 11 and Ar 12 are each independently an aromatic condensed ring group containing a benzene ring surrounded by a broken line
  • R 5 , R 6 , —O— [L 1 —O] n1 — and —O— [L 2 —O] n2 — may be independently substituted with a benzene ring surrounded by a broken line or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line
  • R 7 may be substituted with a benzene ring surrounded by a broken line, or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line.
  • R 1 to R 4 are each independently a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and includes an aryl group, a heteroaryl group, and R 1 to R 4 are substituents excluding a substituent having a reactive group, and R 1 to R 4 are not bonded to each other by mutually adjacent substituents to form a condensed ring;
  • R 5 to R 7 each independently represents a substituent;
  • a to c each independently represents 0 or more and represent an integer of the maximum number or less that can be substituted for each ring;
  • Ar 11 and Ar 12 each independently represent an aryl group containing a benzene ring surrounded by a broken line or a heteroaryl group containing a benzene ring surrounded by a broken line as one of condensed rings;
  • n1 and n2 each independently represents an integer of 0 to 10;
  • Ar 11 and Ar 12 are each independently an aromatic condensed ring group containing a benzene ring surrounded by a broken line, R 5 , R 6 , —O— [L 1 —O] n1 — and —O— [L 2 —O] n2 — may be independently substituted with a benzene ring surrounded by a broken line or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line.
  • At least one of R 1 to R 4 is a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, and having a substituent having an aryl group, a heteroaryl group and a reactive group
  • R 2 and R 3 are substituents having Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, excluding substituents having an aryl group, a heteroaryl group and a reactive group.
  • the polycarbonate resin according to any one of [1] to [3].
  • R 11 represents an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 40 carbon atoms, and a hetero group having 6 to 40 carbon atoms. It is a group containing at least one selected from an arylene group.
  • the total amount of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (11) is 90 mol% or more with respect to all the structural units of the polycarbonate resin.
  • the polycarbonate resin according to [6] or [7], wherein the molar ratio of the structural unit represented by formula (11) to the structural unit represented by the general formula (11) is 40:60 to 90:10.
  • An optical member comprising the molded article according to [9] or [10].
  • the present invention it is possible to obtain a molded body having a sufficiently small Abbe number and excellent in high temperature and high humidity durability. Since the molded body molded from the resin of the present invention has the above characteristics, it is preferably used for optical members, lenses and the like.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the notation that does not indicate substitution and non-substitution includes not only those having no substituent but also those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • Polycarbonate resin The present invention relates to a polycarbonate resin containing a structural unit represented by the following general formula (1).
  • R 1 to R 4 are each independently a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and includes an aryl group, a heteroaryl group, and R 1 to R 4 are substituents excluding a substituent having a reactive group, and R 1 to R 4 are not bonded to each other by mutually adjacent substituents to form a condensed ring.
  • R 5 to R 7 each independently represents a substituent.
  • a to c are each independently 0 or more and represent an integer of the maximum number or less that can be substituted for each ring.
  • Ar 11 and Ar 12 each independently represents an aryl group including a benzene ring surrounded by a broken line or a heteroaryl group including a benzene ring surrounded by a broken line as one of condensed rings, and Ar 13 is surrounded by a broken line An aromatic condensed ring group containing a benzene ring as one of the condensed rings.
  • L 1 and L 2 are each independently an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a hetero group having 6 to 20 carbon atoms. Represents an arylene group.
  • n1 and n2 each independently represents an integer of 0 to 10.
  • R 5 , R 6 , —O— [L 1 —O] n1 — And —O— [L 2 —O] n2 — may be independently substituted with a benzene ring surrounded by a broken line or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line.
  • R 7 may be substituted with a benzene ring surrounded by a broken line, or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line.
  • the polycarbonate resin of the present invention is a polycarbonate resin containing the above-described structural unit, a molded body having a sufficiently small Abbe number can be formed. Moreover, the polycarbonate resin of the present invention can form a molded article excellent in high temperature and high humidity durability. Furthermore, since the polycarbonate resin of the present invention is a resin containing the above structural unit, it has excellent fluidity and good moldability, and can suppress the occurrence of optical distortion of the molded body when the molded body is molded. Thus, the molded object shape
  • R 1 to R 4 are each independently a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and includes an aryl group, a heteroaryl group, and It is a substituent except a substituent having a reactive group.
  • R 1 to R 4 are not bonded to each other by mutually adjacent substituents to form a condensed ring.
  • the reactive group is a (meth) acryloyl group.
  • At least one of R 1 to R 4 is a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, excluding a substituent having an aryl group, a heteroaryl group and a reactive group A substituent is preferred.
  • R 1 to R 4 is an electron donating group having a Hammett's substituent constant ⁇ p in the above range, the Abbe number of the molded product can be further reduced. This is considered to be due to the fact that the ultraviolet absorption of the structural unit is shifted to the longer wavelength side by the electron donating group, and the wavelength dependency of the refractive index in the visible light region becomes stronger, so that the Abbe number can be lowered.
  • the Hammett's substituent constant ⁇ p value is more preferably ⁇ 0.20 or less, and further preferably ⁇ 0.25 or less.
  • the lower limit of Hammett's substituent constant ⁇ p value is preferably ⁇ 0.7.
  • Ka is the acid dissociation constant of para-substituted benzoic acid at 25 ° C. in water.
  • substituents having Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15 include cyclopropyl group (—cycloC 3 H 5 , ⁇ p value is ⁇ 0.21), amino group (—NH 2, ⁇ p value is ⁇ 0.57), dimethylamino group (—N (CH 3 ) 2, ⁇ p value is ⁇ 0.63), benzoylamino group (—NHCOC 6 H5, ⁇ p value is ⁇ 0.19), Hydroxy group (—OH, ⁇ p value is ⁇ 0.38), methoxy group (—OCH 3, ⁇ p value is ⁇ 0.28), ethoxy group (—OC 2 H 5, ⁇ p value is ⁇ 0.21), A propoxy group (—OC 3 H7, ⁇ p value is ⁇ 0.25), and the like.
  • substituents among R 1 to R 4 are substituents whose Hammett's substituent constant ⁇ p value is smaller than ⁇ 0.15, these substituents may benzoylamin
  • R 2 and R 3 is a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and includes an aryl group, a heteroaryl group, and reactivity.
  • R 2 and R 3 are preferably substituents having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and are aryl groups, heteroaryl groups and
  • the substituent is preferably a substituent other than a substituent having a reactive group.
  • the substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15 is preferably an alkyl group, an alkoxy group, or a dialkylamino group, and more preferably an alkoxy group.
  • the alkoxy group is preferably a methoxy group, an ethoxy group or a propoxy group, and more preferably a methoxy group.
  • R 2 and R 3 are preferably an alkoxy group, more preferably R 2 and R 3 is an alkoxy group. Furthermore, R 2 and R 3 are preferably a methoxy group, an ethoxy group or a propoxy group, and more preferably a methoxy group.
  • R 5 to R 7 each independently represents a substituent.
  • the substituent represented by R 5 to R 7 is not particularly limited, and examples thereof include halogen atoms, halogenated alkyl groups, alkyl groups, alkenyl groups, acyl groups, hydroxyl groups, hydroxyalkyl groups, alkoxy groups, aryl groups, hetero groups An aryl group, an alicyclic group, etc. can be mentioned.
  • the substituent represented by R 5 to R 7 is preferably an alkyl group, an alkoxy group or an aryl group, more preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a phenyl group. And particularly preferably a methyl group, a methoxy group or a phenyl group.
  • Ar 11 and Ar 12 each independently represent an aryl group including a benzene ring surrounded by a broken line or a heteroaryl group including a benzene ring surrounded by a broken line as one of condensed rings.
  • Ar 11 and Ar 12 are preferably each independently an aryl group containing a benzene ring surrounded by a broken line.
  • the aryl group is preferably an aryl group having 6 to 18 carbon atoms, and more preferably an aryl group having 6 to 14 carbon atoms.
  • An aryl group having 6 to 10 carbon atoms is particularly preferable.
  • a heteroaryl group containing a benzene ring surrounded by a broken line represented by Ar 11 and Ar 12 as one of the condensed rings it is preferably a heteroaryl group having 9 to 14 ring members, More preferably, it is 10 heteroaryl groups.
  • the hetero atom constituting the heteroaryl group that may have a substituent represented by Ar 11 and Ar 12 include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Ar 11 and Ar 12 may each independently be an aryl group composed of only a benzene ring surrounded by a broken line, or an aromatic condensed ring group including a benzene ring surrounded by a broken line as one of the condensed rings. There may be.
  • the condensed ring of the aromatic condensed ring group has aromaticity as the whole condensed ring.
  • Ar 13 is an aromatic condensed ring group containing a benzene ring surrounded by a broken line as one of the condensed rings.
  • the aromatic fused ring group represented by Ar 13 is preferably an aryl group having 9 to 12 carbon atoms or a heteroaryl group having 9 to 14 ring members, and is an aryl group having 9 to 10 carbon atoms or 9 to 10 ring members. More preferably, it is a heteroaryl group.
  • the aromatic condensed ring group represented by Ar 13 is preferably an aryl group having 9 to 10 carbon atoms, and more preferably a naphthyl group.
  • L 1 and L 2 are each independently an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 20 carbon atoms, or carbon It represents a heteroarylene group having a number of 6 to 20.
  • L 1 and L 2 are each independently preferably an alkylene group having 2 to 8 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and still more preferably an ethylene group.
  • a to c are each independently 0 or more and may be any integer up to the maximum number that can be substituted on each ring, and preferably an integer of 0 to 4, Is more preferably an integer of 0 to 2, even more preferably 0 or 1, and particularly preferably 0.
  • n1 and n2 may each independently be an integer of 0 to 10, preferably an integer of 0 to 4, more preferably an integer of 0 to 2, 0 or 1 More preferably, it is particularly preferably 0.
  • R 5 , R 6 , —O— [L 1 — O] n1 — and —O— [L 2 —O] n2 — are each independently substituted with a condensed ring other than the benzene ring surrounded by a broken line, even if substituted with a benzene ring surrounded by a broken line May be.
  • R 7 may be substituted with a benzene ring surrounded by a broken line or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line.
  • the structural unit is preferably a structural unit represented by the general formula (2).
  • R 1 to R 4 are each independently a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and includes an aryl group, a heteroaryl group, and R 1 to R 4 are substituents excluding a substituent having a reactive group, and R 1 to R 4 are not bonded to each other by mutually adjacent substituents to form a condensed ring.
  • R 5 to R 7 each independently represents a substituent.
  • a to c are each independently 0 or more and represent an integer of the maximum number or less that can be substituted for each ring.
  • Ar 11 and Ar 12 each independently represent an aryl group including a benzene ring surrounded by a broken line or a heteroaryl group including a benzene ring surrounded by a broken line as one of condensed rings.
  • L 1 and L 2 are each independently an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a hetero group having 6 to 20 carbon atoms. Represents an arylene group.
  • n1 and n2 each independently represents an integer of 0 to 10.
  • R 5 , R 6 , —O— [L 1 —O] n1 — and —O— [L 2 —O] n2 — may be independently substituted with a benzene ring surrounded by a broken line or may be substituted with a condensed ring other than the benzene ring surrounded by a broken line.
  • a preferred range of R 1 ⁇ R 4 in the general formula (2) are the same as the preferred ranges of R 1 ⁇ R 4 in the general formula (1).
  • a preferred range of R 5 ⁇ R 7 in the general formula (2) are the same as the preferred ranges of R 5 ⁇ R 7 in the general formula (1).
  • the preferred range of Ar 11 and Ar 12 in the general formula (2) is the same as the preferred ranges of Ar 11 and Ar 12 in the general formula (1).
  • the preferred range of L 1 and L 2 in the general formula (2) is the same as the preferred range of L 1 and L 2 in the general formula (1).
  • the preferable range of n1 and n2 in General formula (2) is the same as the preferable range of n1 and n2 in General formula (1).
  • the preferable ranges of a and b in the general formula (2) are the same as the preferable ranges of a and b in the general formula (1).
  • C in the general formula (2) is preferably an integer of 0 to 6, more preferably an integer of 0 to 4, more preferably an integer of 0 to 3, and an integer of 0 to 2. It is still more preferable that it is 0, or 1 is particularly preferable.
  • the method for obtaining the structural unit represented by the general formula (1) is not particularly limited, and the precursor compound may be obtained commercially or may be produced by synthesis.
  • the compound to be the precursor is produced by synthesis, it can be synthesized by a known method and a method described in Examples.
  • the polycarbonate resin of the present invention preferably further contains a structural unit represented by the general formula (11).
  • the polycarbonate resin further contains the structural unit represented by the general formula (11)
  • the moldability at the time of molding the polycarbonate resin can be further improved, and the optical distortion is effectively generated in the molded body. Can be suppressed.
  • R 11 represents an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 40 carbon atoms, and a hetero group having 6 to 40 carbon atoms. It is a group containing at least one selected from an arylene group.
  • the alkylene group, cycloalkylene group, arylene group, and heteroarylene group described above preferably have a substituent, and the above-described alkylene group and cycloalkylene group may be substituted with an O atom or an S atom. Good.
  • R 11 may be a linking group containing the above group, may be a linking group comprising the above group, or may be a linking group having a structure in which two or more of the above groups are combined.
  • R 11 may be a linking group containing at least one selected from an ether bond and a thioether bond between the above groups. In this case, at least one selected from an ether bond and a thioether bond may be present between the same type of groups, or may be present between different types of groups.
  • R 11 is a group not containing —O—C ( ⁇ O) —O—.
  • R 11 is preferably a group containing at least one selected from an alkylene group having 2 to 8 carbon atoms and an arylene group having 6 to 40 carbon atoms, and an alkylene group having 2 to 8 carbon atoms. Or a group having a structure in which an alkylene group having 2 to 8 carbon atoms and an arylene group having 6 to 40 carbon atoms are combined.
  • R 11 of the structural unit represented by the general formula (11) are listed below, but the structure of R 11 is not limited to the following structure.
  • * represents a connecting site in the main chain of the structural unit represented by the general formula (11).
  • R 11 in the structural unit represented by the general formula (11) is preferably a group represented by the following structure (12) and the following structure (13).
  • the method for obtaining the structural unit represented by the general formula (11) is not particularly limited, and a precursor compound may be obtained commercially or may be produced by synthesis.
  • a precursor compound may be obtained commercially or may be produced by synthesis.
  • the compound to be the precursor is produced by synthesis, it can be synthesized by a known method and a method described in Examples.
  • the structural unit represented by the general formula (1) is preferably contained in an amount of 40 mol% or more, more preferably 50 mol% or more, based on all the structural units of the polycarbonate resin. 70 mol% or more is more preferable.
  • the polycarbonate resin contains a structural unit represented by the general formula (11)
  • the structural unit represented by the general formula (11) is contained in an amount of 65 mol% or less with respect to all the structural units of the polycarbonate resin.
  • it is contained in an amount of 50 mol% or less, more preferably 45 mol% or less, and particularly preferably 40 mol% or less.
  • the polycarbonate resin includes a structural unit represented by the general formula (11), it is represented by the structural unit represented by the general formula (1) and the general formula (11) with respect to all the structural units of the polycarbonate resin. More preferably, the total amount of structural units is 90 mol% or more.
  • the molar ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (11) is preferably 40:60 to 90:10.
  • the viscosity average molecular weight of the polycarbonate resin of the present invention is preferably 10,000 or more, more preferably 12,000 or more, and further preferably 13,000 or more. Further, the viscosity average molecular weight of the polycarbonate resin is preferably 25000 or less, and more preferably 20000 or less.
  • the viscosity average molecular weight of the polycarbonate resin is calculated by dissolving the polycarbonate resin in 100 ml of methylene chloride and using the following formula from the specific viscosity ( ⁇ sp) at 20 ° C. of the solution.
  • the polycarbonate resin of the present invention can be polymerized using a known reaction means.
  • a condensation method in which phosgene is reacted with at least one selected from dihydric phenols and dihydric phenol derivatives, and (b) at least one selected from dihydric phenols and dihydric phenol derivatives.
  • Examples thereof include a method of transesterification using a carbonate precursor such as a carbonic acid diester.
  • at least one selected from dihydric phenols and dihydric phenol derivatives may be simply referred to as dihydric phenols.
  • the dihydric phenol it is preferable to use a compound that can be a structural unit represented by the general formula (1).
  • the dihydric phenol derivative it is preferable to use a chlorocarbonic acid compound or the like that can be a structural unit represented by the general formula (1).
  • the structural unit represented by General formula (11) is contained as a structural unit of polycarbonate resin, the compound which can become a structural unit represented by General formula (11) as a dihydric phenol or a derivative of a dihydric phenol.
  • a chlorocarbonic acid compound that can be a structural unit represented by the general formula (11) can be used.
  • a catalyst In the case where the polycarbonate resin is polymerized, a catalyst, a terminal terminator, a dihydric phenol antioxidant, a heat stabilizer and the like may be used as necessary.
  • the reaction using the condensation method in which phosgene is reacted is a reaction between a dihydric phenol and phosgene, and is performed in the presence of an acid binder and an organic solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • an organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide, tetra-n-butylphosphonium bromide, a quaternary ammonium compound or a quaternary phosphonium compound may be used.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is preferably about 10 minutes to 5 hours
  • the pH during the reaction is preferably maintained at 9 or more.
  • the reaction using the method of transesterifying in (b) is a transesterification reaction between a dihydric phenol and a carbonate ester, and the dihydric phenol and the carbonate ester are mixed with heating in the presence of an inert gas, It is carried out by a method of distilling the alcohol or phenol produced.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C. In the latter stage of the reaction, the system is evacuated to about 1.3 ⁇ 10 3 to 1.3 ⁇ 10 Pa to facilitate the distillation of the alcohol or phenol produced.
  • the reaction time is usually about 1 to 4 hours.
  • Examples of the carbonate ester include esters such as an aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • Specific examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. preferable.
  • a polymerization catalyst can be used to increase the polymerization rate.
  • a polymerization catalyst include sodium hydroxide, potassium hydroxide, sodium dihydric phenol.
  • Alkali metal compounds such as salts and potassium salts, alkaline earth metal compounds such as calcium hydroxide, barium hydroxide and magnesium hydroxide, nitrogen-containing basic compounds such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylamine and triethylamine
  • polycarbonate resin monofunctional phenols which are usually used as a terminal terminator in the polymerization reaction can be used.
  • monofunctional phenols are used as a terminator for molecular weight control, and the obtained polycarbonate resin is capped with a group based on monofunctional phenols. So it has excellent thermal stability.
  • a molded object can be manufactured from the resin composition containing the polycarbonate resin mentioned above.
  • the molding method of the molded body include heat and pressure molding.
  • compression molding, injection molding, extrusion molding, blow molding, emboss molding and the like can be employed. Among them, it is preferable to employ injection molding when molding the molded article of the present invention.
  • an antioxidant such as triphenyl phosphite or tris (2,4-di-tert-butylphenyl) phosphite to the resin composition containing a polycarbonate resin.
  • the addition amount of the antioxidant is preferably 0.00001 to 0.0001% by mass with respect to the total mass of the resin composition.
  • an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant, a surfactant mixture, etc. should be added as an antistatic agent to a resin composition containing a polycarbonate resin. Is preferred.
  • the antistatic agent include stearic acid monoglyceride.
  • the addition amount of the antistatic agent is preferably 0.01 to 0.1% by mass with respect to the total mass of the resin composition.
  • a resin composition containing a polycarbonate resin may be pelletized prior to injection molding.
  • a resin composition containing a polycarbonate resin may be pelletized.
  • the handling property of the resin during injection molding can be improved.
  • a vent type single screw extruder or the like can be used.
  • an injection molding machine (including an injection compression molding machine) is used.
  • polycarbonate molten resin is accumulated at the tip of a cylinder, and then the polycarbonate molten resin is injected into a mold and molded.
  • a generally used injection molding machine can be used.
  • the cylinder is preferably made of a material having low adhesion to the polycarbonate resin and exhibiting corrosion resistance and wear resistance.
  • Micro-1 manufactured by Meiho Co., Ltd. can be exemplified.
  • the cylinder temperature at the time of injection molding is preferably 200 to 450 ° C., more preferably 250 to 390 ° C.
  • the mold temperature is preferably 50 to 300 ° C, more preferably 100 to 250 ° C.
  • the environment for performing the molding process is as clean as possible.
  • the material used for molding is sufficiently dried to remove moisture, and molding is performed so as not to cause retention that causes decomposition of the molten resin.
  • the present invention also relates to a molded article of the polycarbonate resin described above.
  • the molded article of the polycarbonate resin may contain additives such as an antioxidant, an antistatic agent and a heat stabilizer in addition to the polycarbonate resin.
  • additives such as an antioxidant, an antistatic agent and a heat stabilizer in addition to the polycarbonate resin.
  • content of an additive is 5 mass% or less with respect to the total mass of a molded object.
  • the molded product of the present invention is preferably used for an optical member as described later, and more preferably used as a lens. From such a viewpoint, the refractive index of the molded body is preferably high.
  • the refractive index nD at a wavelength of 589 nm is preferably 1.45 or more, more preferably 1.58 or more, and particularly preferably 1.60 or more.
  • the molded product of the present invention preferably has a low Abbe number from the viewpoint of reducing chromatic aberration when used for a lens or the like among optical member applications.
  • the molded article of the present invention preferably has an Abbe number of 25 or less, more preferably 24.5 or less, further preferably 23 or less, still more preferably 21 or less, and 20 or less. It is particularly preferred that Moreover, it is preferable that the Abbe number of the molded object of this invention is 13 or more.
  • nD represents a refractive index at a wavelength of 589 nm
  • nF represents a refractive index at a wavelength of 486 nm
  • nC represents a refractive index at a wavelength of 656 nm.
  • the molded product of the present invention preferably has a maximum thickness of 0.1 to 10 mm.
  • the maximum thickness is more preferably 0.1 to 5 mm, and particularly preferably 0.15 to 3 mm.
  • the molded product of the present invention preferably has a maximum diameter of 1 to 1000 mm.
  • the maximum diameter is more preferably 2 to 200 mm, and particularly preferably 2.5 to 100 mm.
  • a molded body having such a size is particularly useful as an optical member having a high refractive index.
  • the present invention also relates to an optical member including the above-described molded body. Since the molded article of the present invention is a molded article excellent in optical characteristics, it is preferably used for an optical member.
  • the type of the optical member of the present invention is not particularly limited, but can be suitably used as an optical member utilizing the excellent optical characteristics of the molded body, particularly as an optical member that transmits light (so-called passive optical member).
  • Examples of the optical functional device including such an optical member include various display devices (liquid crystal display, plasma display, etc.), various projector devices (OHP (Overhead projector), liquid crystal projector, etc.), optical fiber communication devices (optical waveguide, An optical amplifier etc.), a photographing device such as a camera and a video, etc. are exemplified.
  • passive optical member used for an optical function apparatus, a lens, a prism, a prism sheet, a panel (plate-shaped molded object), a film, an optical waveguide (film shape, fiber shape, etc.), an optical disk, LED (Light emitting), for example. (diode) sealant and the like.
  • passive optical members include an optional coating layer, for example, a protective layer that prevents mechanical damage to the coated surface such as friction and wear, and an undesirable wavelength that causes deterioration of inorganic particles and substrates.
  • Light absorption layer that absorbs light
  • transmission shielding layer that suppresses or prevents transmission of reactive low molecules such as moisture and oxygen gas, antiglare layer, antireflection layer, low refractive index layer, etc.
  • the optional coating layer include a transparent conductive film and gas barrier film made of an inorganic oxide coating layer, and a gas barrier film and hard coat film made of an organic coating layer.
  • a known coating method such as a vacuum deposition method, a CVD (Chemical vapor deposition) method, a sputtering method, a dip coating method, a spin coating method, or the like can be used.
  • the optical member using the molded article of the present invention is particularly preferably used for a lens substrate.
  • the lens substrate manufactured using the polycarbonate resin of the present invention has a low Abbe number, and preferably has high refractive properties, light transmittance and light weight, and is excellent in optical characteristics.
  • the “lens substrate” means a single member that can exhibit a lens function.
  • a film or a member can be provided on the surface or the periphery of the lens substrate according to the use environment or application of the lens.
  • a protective film, an antireflection film, a hard coat film, or the like can be formed on the surface of the lens substrate.
  • stacked on the glass lens base material or the plastic lens base material can be set as the compound lens laminated
  • the periphery of the lens base material can be fitted and fixed to a base material holding frame or the like.
  • these films and frames are members added to the lens base material, and are distinguished from the lens base material itself in this specification.
  • the lens substrate When the lens substrate is used as a lens, the lens substrate itself may be used alone as a lens, or may be used as a lens by adding the above-described film, frame, or other lens substrate.
  • the type and shape of the lens using the lens substrate are not particularly limited. Since the lens substrate has a low Abbe number, it can be preferably used for a chromatic aberration correction lens.
  • the chromatic aberration correction lens include imaging lenses such as mobile phones and digital cameras, imaging lenses such as televisions and video cameras, and It is preferably used for in-vehicle and endoscope lenses.
  • Example 1 210 g of compound 1A was obtained using the synthesis method described in JP-A-2015-193809.
  • Example 2 290 g of 5,6-dimethoxy-1-indanone and 204 g of orthophthalaldehyde were dissolved in 1500 mL of methanol. While the reaction solution was heated and maintained at 60 ° C., 255 g of potassium hydroxide was dissolved in 1750 mL of methanol and added dropwise. After stirring for 5 hours, the reaction solution was returned to room temperature, and the precipitated crystals were collected by filtration to obtain 230 g of Compound 2a.
  • Polymerization was carried out in the same manner as in Example 1 except that 100 g of compound 2A and 127 g of compound 2B were used instead of compound 1A and compound 1B to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 15100.
  • Example 3 Polymerization was carried out in the same manner as in Example 1 except that 60 g of compound 2A, 127 g of compound 2B, and 5.4 g of ethylene glycol (EG) were used in place of compound 1A and compound 1B to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 17400.
  • Example 4 A polycarbonate resin was obtained in the same manner as in Example 1 except that 60 g of Compound 2A, 127 g of Compound 2B, and 19.8 g of bisphenol A (BPA) were used in place of Compound 1A and Compound 1B.
  • the viscosity average molecular weight of the polycarbonate resin was 13200.
  • Example 5 Example 1 except that 60 g of Compound 2A, 127 g of Compound 2B, and 38.1 g of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (BPEF) were used in place of Compound 1A and Compound 1B Polymerization was conducted in the same manner as above to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 18300.
  • Example 6 A polycarbonate resin was obtained by polymerization in the same manner as in Example 1 except that 10 g of Compound 2A, 127 g of Compound 2B, and 12.1 g of ethylene glycol (EG) were used in place of Compound 1A and Compound 1B.
  • the viscosity average molecular weight of the polycarbonate resin was 13300.
  • Example 7 Polymerization was carried out in the same manner as in Example 1 except that 127 g of compound 2B and 13.5 g of ethylene glycol (EG) were used in place of compound 1A and compound 1B to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 16700.
  • Example 8 Polymerization was carried out in the same manner as in Example 1 except that 127 g of compound 2B and 49.6 g of bisphenol A (BPA) were used in place of compound 1A and compound 1B to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 18500.
  • Example 9 Polymerization was carried out in the same manner as in Example 1, except that 127 g of compound 2B and 95.2 g of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (BPEF) were used in place of compound 1A and compound 1B. A polycarbonate resin was obtained. The viscosity average molecular weight of the polycarbonate resin was 13500.
  • Example 10 A reaction vessel was charged with 138.2 g of 48% by weight aqueous sodium hydroxide and 600 mL of ion-exchanged water. 120 g of compound 2A, 59.4 g of bisphenol A, and 0.30 g of hydrosulfite were dissolved therein, and then 340 mL of methylene chloride. Was added. While stirring, 64.0 g of phosgene was blown in over about 1 hour at 20 ° C., 8.6 g of 48 mass% sodium hydroxide aqueous solution and 1.41 g of p-tert-butylphenol were added, and the mixture was stirred again and emulsified to give triethylamine.
  • Example 1 A polycarbonate resin was obtained in the same manner as in Example 1 of JP 2010-254806 A. Of 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (BCF) and bis (4-hydroxy-3-methylphenyl) sulfide (HMPS) used in Example 1 of JP 2010-254806 A The structure is as follows.
  • Comparative Example 2 A polycarbonate resin was obtained in the same manner as in Comparative Example 3 of JP 2010-254806 A.
  • the structure of 9,9-bis (4-hydroxyphenyl) fluorene (BPFL) used in Comparative Example 3 of JP2010-254806A is as follows.
  • Polymerization was conducted in the same manner as in Example 1 except that 100 g of BPFL and 136 g of BPFL chlorocarbonic acid compound were used in place of Compound 1A and Compound 1B to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 16,900.
  • Example 4 Polymerization was carried out in the same manner as in Example 1 except that 60 g of BPFL, 136 g of BPFL chlorocarbonic acid compound, and 7.1 g of ethylene glycol (EG) were used in place of Compound 1A and Compound 1B to obtain a polycarbonate resin.
  • the viscosity average molecular weight of the polycarbonate resin was 17400.
  • ⁇ Refractive index and Abbe number The refractive index and Abbe number ( ⁇ D) of the molded article for evaluation were measured using an Abbe refractometer (manufactured by Kalnew Optical Industry Co., Ltd.).
  • ⁇ D (nD ⁇ 1) / (nF ⁇ nC)
  • nD represents a refractive index at a wavelength of 589 nm
  • nF represents a refractive index at a wavelength of 486 nm
  • nC represents a refractive index at a wavelength of 656 nm.
  • the refractive index column in Table 1 shows the refractive index at a wavelength of 589 nm.
  • the Abbe number of the molded body molded from the polycarbonate resin of the example is low and has high temperature and high humidity durability. Furthermore, the molded body molded from the polycarbonate resin of the example had good moldability and little optical distortion. On the other hand, the Abbe number of the molded body molded from the polycarbonate resin of the comparative example was high, and the high temperature and high humidity durability was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、十分に小さなアッベ数を有する成形体であって、高温高湿耐久性にも優れた成形体を成形し得る樹脂を提供することを課題とする。本発明は、下記一般式(1)で表される構成単位を含むポリカーボネート樹脂に関する。さらに本発明は、ポリカーボネート樹脂から成形される成形体、光学部材及びレンズに関する。R1~R4は、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であり、R5~R7は置換基を表し、Ar11及びAr12は破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表し、Ar13は破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である。

Description

ポリカーボネート樹脂、成形体、光学部材及びレンズ
 本発明は、ポリカーボネート樹脂、成形体、光学部材及びレンズに関する。
 従来、カメラ、ビデオカメラあるいはカメラ付携帯電話、テレビ電話あるいはカメラ付ドアホンなどの撮像モジュールの光学部材にはガラス材料が用いられていた。ガラス材料は様々な光学特性を備えており、環境耐性に優れるため好ましく用いられてきたが、軽量化や小型化が容易ではなく、加工性や生産性が悪いという欠点を有していた。これに対し熱可塑性樹脂を用いた光学部材は、大量生産が可能であり、加工性にも優れているため、近年、様々な光学部材に用いられるようになってきている。
 熱可塑性樹脂を用いた光学部材においては、特定構造を有する構成単位を含む樹脂を用いることにより、様々な光学特性を発揮させることや、耐久性を高めることが検討されている。
 例えば、特許文献1~3には、フルオレン骨格を有する構成単位を含む樹脂が開示されている。特許文献1には、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンとビス(4-ヒドロキシ-3-メチルフェニル)スルフィドで構成されたポリカーボネート樹脂が開示されている。特許文献2には、単環式芳香族ジカルボン酸成分及びフルオレン骨格を有するジカルボン酸成分を含むジカルボン酸成分と、9,9-ビス(ヒドロキシ(ポリ)アルコキシアリール)フルオレン骨格を有する化合物を含むジオール成分とを重合成分とするポリエステル樹脂が開示されている。また、特許文献3には、フルオレン骨格を有するポリカーボネート樹脂であって、負の屈折率異方性を有する構成単位と、正の屈折率異方性を有する構成単位を含む樹脂が開示されている。
特開2010-254806号公報 特開2013-64117号公報 特許第4010810号公報
 近年、撮像モジュールの小型化に伴い、撮像モジュールに用いられる光学部材を小型化することが求められている。光学部材を小型化していくと、色収差の問題が生じるため、アッベ数を小さくして色収差の補正を行うことが検討されている。しかしながら、本発明者らが、上述したフルオレン骨格を有する構成単位を含む樹脂の成形体を光学部材として用いることを検討してみたところ、従来の熱可塑性樹脂の成形体においては、低アッベ数化が十分ではないことが明らかとなった。また、従来の熱可塑性樹脂の成形体においては、高温高湿耐久性も十分ではなく、改善の余地が残されていた。
 そこで本発明者らは、このような従来技術の課題を解決するために、十分に小さなアッベ数を有する熱可塑性樹脂の成形体であって、高温高湿耐久性にも優れた成形体を成形し得る樹脂を提供することを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、特定の構造を有する構成単位を含むポリカーボネート樹脂を用いることにより、十分に小さなアッベ数を有する熱可塑性樹脂の成形体(以下、成形体ともいう)であって、高温高湿耐久性にも優れた成形体が得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
[1] 下記一般式(1)で表される構成単位を含むポリカーボネート樹脂;
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
 R5~R7はそれぞれ独立に置換基を表す;
 a~cはそれぞれ独立に0以上であり、各環に置換可能な最大数以下の整数を表す;
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表し、Ar13は破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である;
 L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
 n1及びn2はそれぞれ独立に0~10の整数を表す;
 Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい;
 R7は破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
[2] 構成単位は、下記一般式(2)で表される構成単位である[1]に記載のポリカーボネート樹脂;
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
 R5~R7はそれぞれ独立に置換基を表す;
 a~cはそれぞれ独立に0以上であり、各環に置換可能な最大数以下の整数を表す;
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す;
 L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
 n1及びn2はそれぞれ独立に0~10の整数を表す;
Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
[3] R1~R4のうち少なくとも1つがハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基である[1]又は[2]に記載のポリカーボネート樹脂。
[4] R2及びR3がハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基である[1]~[3]のいずれかに記載のポリカーボネート樹脂。
[5] R2及びR3がメトキシ基である[1]~[4]のいずれかに記載のポリカーボネート樹脂。
[6] 下記一般式(11)で表される構成単位をさらに含む[1]~[5]のいずれかに記載のポリカーボネート樹脂;
Figure JPOXMLDOC01-appb-C000007
 一般式(11)中、R11は炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~40のアリーレン基、及び炭素数が6~40のヘテロアリーレン基から選択される少なくとも1種を含む基である。
[7] 一般式(11)で表される構成単位中のR11が、下記構造(12)及び下記構造(13)で表される基を含む[6]に記載のポリカーボネート樹脂;
Figure JPOXMLDOC01-appb-C000008
 構造(12)及び(13)中、*は、一般式(11)で表される構成単位の主鎖中の連結部位を表す。
[8] ポリカーボネート樹脂の全構成単位に対して、一般式(1)で表される構成単位と一般式(11)で表される構成単位の総量が90モル%以上であり、一般式(1)で表される構成単位と一般式(11)で表される構成単位のモル比が40:60~90:10である[6]又は[7]に記載のポリカーボネート樹脂。
[9] [1]~[8]のいずれかに記載のポリカーボネート樹脂の成形体。
[10] アッベ数が13~25である[9]に記載の成形体。
[11] [9]又は[10]に記載の成形体を含む光学部材。
[12] [9]又は[10]に記載の成形体を含むレンズ。
 本発明によれば、十分に小さなアッベ数を有する成形体であって、高温高湿耐久性にも優れた成形体を得ることができる。本発明の樹脂から成形された成形体は上記特性を有しているため、光学部材やレンズ等に好ましく用いられる。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
(ポリカーボネート樹脂)
 本発明は、下記一般式(1)で表される構成単位を含むポリカーボネート樹脂に関する。
Figure JPOXMLDOC01-appb-C000009
 一般式(1)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない。
 R5~R7はそれぞれ独立に置換基を表す。
 a~cはそれぞれ独立に0以上であり、各環に置換可能な最大数以下の整数を表す。
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表し、Ar13は破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である。
 L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。
 n1及びn2はそれぞれ独立に0~10の整数を表す。
 Ar11及びAr12がそれぞれ独立に破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
 R7は破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
 本発明のポリカーボネート樹脂は上述した構成単位を含むポリカーボネート樹脂であるため、十分に小さなアッベ数を有する成形体を形成することができる。また、本発明のポリカーボネート樹脂は、高温高湿耐久性に優れた成形体を形成することができる。
 さらに、本発明のポリカーボネート樹脂は上記構成単位を含む樹脂であるため、流動性に優れており、成形性が良好であり、成形体を成形する際、成形体の光学歪の発生を抑制できる。
 このように、本発明のポリカーボネート樹脂から成形される成形体は優れた光学特性と耐久性を兼ね備えたものであり、光学部材としての品質も高い。また、樹脂の流動性にも優れているため成形性が良好である。
 一般式(1)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基である。R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない。なお、反応性基とは、(メタ)アクリロイル基である。
 R1~R4のうち少なくとも1つは、ハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であることが好ましい。R1~R4のうち少なくとも1つが、上記範囲のハメットの置換基定数σpを有する電子供与性基であることにより、成形体のアッベ数をより低くすることが可能となる。これは、電子供与性基により構成単位の紫外線吸収が長波長側にシフトし、可視光域の屈折率の波長依存性が強くなることにより、低アッベ数化が可能になるものと考えられる。
 なお、ハメットの置換基定数σp値は、-0.20以下であることがより好ましく、-0.25以下であることがさらに好ましい。なお、ハメットの置換基定数σp値の下限値は-0.7であることが好ましい。
 ハメットの置換基定数σp値は、Correlation  Analysis in Chemistry, Ed. By N.B.Chapman,  J.Shorter, p.439~540, Plenum Press(1978)及びこれに引用されている参考文献に記載されている。ここでは、σpは、下記のように定義される。
 σp=Log(Ka/Ka0)=pKa0-pKa
 Ka0は、水中25℃における安息香酸の酸解離定数である。Kaは、水中25℃におけるパラ位置換安息香酸の酸解離定数である。なお、上記文献に記載されていないものについては、同文献記載の方法によって求めることが可能である。
 ハメットの置換基定数σp値が-0.15よりも小さい置換基としては、例えば、シクロプロピル基(-cycloC35、σp値は-0.21)、アミノ基(-NH2、σp値は-0.57)、ジメチルアミノ基(-N(CH3)2、σp値は-0.63)、ベンゾイルアミノ基(-NHCOC6H5、σp値は-0.19)、ヒドロキシ基(-OH、σp値は-0.38)、メトキシ基(-OCH3、σp値は-0.28)、エトキシ基(-OC2H5、σp値は-0.21)、プロポキシ基(-OC3H7、σp値は-0.25)等を挙げることができる。なお、R1~R4のうち複数の置換基が、ハメットの置換基定数σp値が-0.15よりも小さい置換基である場合、これらの置換基は同じであっても異なっていてもよい。
 一般式(1)において、R2及びR3のうち少なくとも1つは、ハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であることが好ましく、R2及びR3がハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であることが好ましい。上記のように特定位置に配される置換基のハメットの置換基定数σp値を-0.15よりも小さくすることにより、より効果的に成形体のアッベ数を低下させることができる。
 ハメットの置換基定数σp値が-0.15よりも小さい置換基は、アルキル基、アルコキシ基、又はジアルキルアミノ基であることが好ましく、アルコキシ基であることがより好ましい。アルコキシ基は、メトキシ基、エトキシ基又はプロポキシ基であることが好ましく、メトキシ基であることがより好ましい。
 R1~R4のうち少なくとも1つを上記のようなアルコキシ基とすることにより、一般式(1)で表される構成単位の構造がコンパクトになり、且つ構成単位の紫外線吸収を長波長側にシフトさせるができる。これにより、成形体のアッベ数を効果的に低下させることができる。さらに、R1~R4のうち少なくとも1つを上記のようなアルコキシ基とすることにより、成形体の着色を抑制することができる。
 本発明においては、R2及びR3のうち少なくとも1つが、アルコキシ基であることが好ましく、R2及びR3がアルコキシ基であることがより好ましい。さらに、R2及びR3はメトキシ基、エトキシ基又はプロポキシ基であることが好ましく、メトキシ基であることがより好ましい。
 一般式(1)中、R5~R7はそれぞれ独立に置換基を表す。R5~R7が表す置換基としては特に制限はないが、例えば、ハロゲン原子、ハロゲン化アルキル基、アルキル基、アルケニル基、アシル基、ヒドロキシル基、ヒドロキシアルキル基、アルコキシ基、アリール基、ヘテロアリール基、脂環基などを挙げることができる。R5~R7が表す置換基はアルキル基、アルコキシ基またはアリール基であることが好ましく、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基またはフェニル基であることがより好ましく、メチル基、メトキシ基またはフェニル基であることが特に好ましい。
 一般式(1)において、Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す。中でも、Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基であることが好ましい。Ar11及びAr12が表す破線で囲まれたベンゼン環を含むアリール基である場合は、炭素数6~18のアリール基であることが好ましく、炭素数6~14のアリール基であることがより好ましく、炭素数6~10のアリール基であることが特に好ましい。また、Ar11及びAr12が表す破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基である場合は、環員数9~14のヘテロアリール基であることが好ましく、環員数9~10のヘテロアリール基であることがより好ましい。Ar11及びAr12が表す置換基を有していてもよいヘテロアリール基を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子を挙げることができる。
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環のみから構成されるアリール基であってもよく、破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基であってもよい。なお、本明細書において、芳香族縮合環基の縮合環は縮合環全体として芳香族性を有するものである。
 一般式(1)において、Ar13は破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である。Ar13が表す芳香族縮合環基は、炭素数9~12のアリール基又は環員数9~14のヘテロアリール基であることが好ましく、炭素数9~10のアリール基または環員数9~10のヘテロアリール基であることがより好ましい。中でも、Ar13が表す芳香族縮合環基は炭素数9~10のアリール基であることが好ましく、ナフチル基であることがより好ましい。
 一般式(1)中、L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基であることが好ましく、炭素数が2~4のアルキレン基であることがより好ましく、エチレン基であることがさらに好ましい。
 一般式(1)中、a~cはそれぞれ独立に、0以上であり、各環に置換可能な最大数以下の整数であればよく、0~4の整数であることが好ましく、0~3の整数であることがより好ましく、0~2の整数であることがさらに好ましく、0又は1であることがよりさらに好ましく、0であることが特に好ましい。
 一般式(1)中、n1及びn2はそれぞれ独立に0~10の整数であればよく、0~4の整数であることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましく、0であることが特に好ましい。
 なお、一般式(1)において、Ar11及びAr12がそれぞれ独立に破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。同様に、R7は破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
 上記構成単位は、一般式(2)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(2)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない。
 R5~R7はそれぞれ独立に置換基を表す。
 a~cはそれぞれ独立に0以上であり、各環に置換可能な最大数以下の整数を表す。
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す。
 L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。
 n1及びn2はそれぞれ独立に0~10の整数を表す。
 Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
 一般式(2)におけるR1~R4の好ましい範囲は、一般式(1)におけるR1~R4の好ましい範囲と同様である。
 一般式(2)におけるR5~R7の好ましい範囲は、一般式(1)におけるR5~R7の好ましい範囲と同様である。
 一般式(2)におけるAr11及びAr12の好ましい範囲は、一般式(1)におけるAr11及びAr12の好ましい範囲と同様である。
 一般式(2)におけるL1及びL2の好ましい範囲は、一般式(1)におけるL1及びL2の好ましい範囲と同様である。
 一般式(2)におけるn1及びn2の好ましい範囲は、一般式(1)におけるn1及びn2の好ましい範囲と同様である。
 一般式(2)におけるa及びbの好ましい範囲は、一般式(1)におけるa及びbの好ましい範囲と同様である。一般式(2)におけるcは、0~6の整数であることが好ましく、0~4の整数であることがより好ましく、0~3の整数であることがさらに好ましく、0~2の整数であることがよりさらに好ましく、0又は1であることが特に好ましい。
 以下において、一般式(1)で表される構成単位の具体例を列挙するが、本発明は以下の構成単位に限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 一般式(1)で表される構成単位の入手方法については特に制限はなく、前駆体となる化合物を商業的に入手してもよく、合成により製造してもよい。前駆体となる化合物を合成により製造する場合は、公知の方法及び実施例に記載の方法で合成することができる。
 本発明のポリカーボネート樹脂は、一般式(11)で表される構成単位をさらに含むものであることが好ましい。ポリカーボネート樹脂が一般式(11)で表される構成単位をさらに含有することにより、ポリカーボネート樹脂を成形する際の成形性をより高めることができ、成形体に光学歪が発生することを効果的に抑制できる。
Figure JPOXMLDOC01-appb-C000014
 一般式(11)中、R11は炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~40のアリーレン基、及び炭素数が6~40のヘテロアリーレン基から選択される少なくとも1種を含む基である。上述したアルキレン基、シクロアルキレン基、アリーレン基、ヘテロアリーレン基は置換基を有するものであることが好ましく、上述したアルキレン基とシクロアルキレン基の炭素原子はO原子又はS原子で置換されていてもよい。
 R11は上記の基を含む連結基であればよく、上記の基からなる連結基であってもよく、上記の基を2種以上組み合わせた構造を有する連結基であってもよい。また、R11は、上記の基の間にエーテル結合及びチオエーテル結合から選択される少なくとも1種を含む連結基であってもよい。この場合、エーテル結合及びチオエーテル結合から選択される少なくとも1種は、同種の基の間に存在していてもよく、異種の基の間に存在していてもよい。
 なお、R11は-O-C(=O)-O-を含まない基である。
 中でも、R11は、炭素数が2~8のアルキレン基及び炭素数が6~40のアリーレン基から選択される少なくとも1種を含む基であることが好ましく、炭素数が2~8のアルキレン基、又は、炭素数が2~8のアルキレン基と炭素数が6~40のアリーレン基を組み合わせた構造を有する基であることがより好ましい。
 以下において、一般式(11)で表される構成単位のR11の具体例を列挙するが、R11の構造は下記構造に限定されるものではない。なお、下記具体例において、*は、一般式(11)で表される構成単位の主鎖中の連結部位を表す。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 中でも、一般式(11)で表される構成単位中のR11は、下記構造(12)及び下記構造(13)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 構造(12)及び(13)中、*は、一般式(11)で表される構成単位の主鎖中の連結部位を表す。
 一般式(11)で表される構成単位の入手方法については特に制限はなく、前駆体となる化合物を商業的に入手してもよく、合成により製造してもよい。前駆体となる化合物を合成により製造する場合は、公知の方法及び実施例に記載の方法で合成することができる。
 本発明では、ポリカーボネート樹脂の全構成単位に対して、一般式(1)で表される構成単位が40モル%以上含まれていることが好ましく、50モル%以上含まれていることがより好ましく、70モル%以上含まれていることがさらに好ましい。
 また、ポリカーボネート樹脂が一般式(11)で表される構成単位を含む場合は、ポリカーボネート樹脂の全構成単位に対して、一般式(11)で表される構成単位は65モル%以下含まれていることが好ましく、50モル%以下含まれていることがより好ましく、45モル%以下含まれていることがさらに好ましく、40モル%以下含まれていることが特に好ましい。ポリカーボネート樹脂に含まれる構成単位の割合を上記範囲内とすることにより、成形体のアッベ数をより効果的に低下させることができる。
 ポリカーボネート樹脂が一般式(11)で表される構成単位を含む場合は、ポリカーボネート樹脂の全構成単位に対して、一般式(1)で表される構成単位と一般式(11)で表される構成単位の総量が90モル%以上であることがさらに好ましい。中でも、一般式(1)で表される構成単位と一般式(11)で表される構成単位のモル比が40:60~90:10であることが好ましい。ポリカーボネート樹脂中の構成単位比を上記範囲内とすることにより、成形体を低アッベ数化することができ、かつ成形体の耐久性をより高めることができる。
 本発明のポリカーボネート樹脂の粘度平均分子量は、10000以上であることが好ましく、12000以上であることがより好ましく、13000以上であることがさらに好ましい。また、ポリカーボネート樹脂の粘度平均分子量は25000以下であることが好ましく、20000以下であることがより好ましい。
 ここで、ポリカーボネート樹脂の粘度平均分子量は、ポリカーボネート樹脂を塩化メチレン100mlに溶解し、その溶液の20℃における比粘度(ηsp)から下記式を用いて算出するものである。
 ηsp/c=[η]+0.45×[η]2c  (但し、[η]は極限粘度)
 [η]=1.23×10-4  0.83
 c=0.7
(ポリカーボネート樹脂の重合方法)
  本発明のポリカーボネート樹脂は、公知の反応手段を用いて重合することができる。例えば、(a)二価フェノール及び二価フェノールの誘導体から選択される少なくとも1種にホスゲンを反応させる縮合方法や、(b)二価フェノール及び二価フェノールの誘導体から選択される少なくとも1種を炭酸ジエステルなどのカーボネート前駆物質を用いてエステル交換する方法などが挙げられる。なお、以下では、二価フェノール及び二価フェノールの誘導体から選択される少なくとも1種を単に、二価フェノールということもある。
 二価フェノールとしては、上述した一般式(1)で表される構成単位となり得る化合物を用いることが好ましい。また、二価フェノールの誘導体としては、一般式(1)で表される構成単位となり得るクロロ炭酸化合物等を用いることが好ましい。
 また、ポリカーボネート樹脂の構成単位として一般式(11)で表される構成単位が含まれる場合は、二価フェノールや二価フェノールの誘導体として、一般式(11)で表される構成単位となり得る化合物や、一般式(11)で表される構成単位となり得るクロロ炭酸化合物を用いることができる。
 なお、ポリカーボネート樹脂を重合させる場合は、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤、熱安定化剤等を使用してもよい。
 (a)のホスゲンを反応させる縮合方法を用いた反応は、二価フェノールとホスゲンとの反応であり、酸結合剤及び有機溶媒の存在下で行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物又はピリジン等のアミン化合物が用いられる。有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また、反応促進のために例えばトリエチルアミン、テトラ-n-ブチルアンモニウムブロマイド、テトラ-n-ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。その際、反応温度は通常0~40℃ 、反応時間は10分~5時間程度、反応中のpHは9以上に保つのが好ましい。
 (b)のエステル交換する方法を用いた反応は、二価フェノールとカーボネートエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールとカーボネートエステルとを加熱しながら混合して、生成するアルコールまたはフェノールを留出させる方法により行われる。反応温度は生成するアルコールまたはフェノールの沸点等により異なるが、通常120~350℃ の範囲である。反応後期には系を1.3×103~1.3×10Pa程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる。反応時間は通常1~4時間程度である。
 カーボネートエステルとしては、置換基を有してもよい炭素数6~10のアリール基、アラルキル基あるいは炭素数1~4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられ、中でもジフェニルカーボネートが好ましい。
 また、(b)のエステル交換する方法を用いた反応においては重合速度を速めるために重合触媒を用いることができ、かかる重合触媒としては、例えば水酸化ナトリウム、水酸化カリウム、二価フェノールのナトリウム塩、カリウム塩等のアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物、アルカリ金属やアルカリ土類金属のアルコキシド類、アルカリ金属やアルカリ土類金属の有機酸塩類、亜鉛化合物類、ホウ素化合物類、アルミニウム化合物類、珪素化合物類、ゲルマニウム化合物類、有機スズ化合物類、鉛化合物類、オスミウム化合物類、アンチモン化合物類、マンガン化合物類、チタン化合物類、ジルコニウム化合物類などの通常エステル化反応、エステル交換反応に使用される触媒を用いることができる。触媒は単独で使用してもよいし、2種以上組み合わせて使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、1×10-8~1×10-3当量とすることが好ましい。
 ポリカーボネート樹脂は、その重合反応において、末端停止剤として通常使用される単官能フェノール類を使用することができる。例えば、ホスゲンを使用する反応の場合、単官能フェノール類は末端停止剤として分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が単官能フェノール類に基づく基によって封止されているので、熱安定性に優れる。
(成形体の製造方法)
 上述したポリカーボネート樹脂を含む樹脂組成物から成形体を製造することができる。成形体の成形方法としては、加熱加圧成形を挙げることができ、例えば、圧縮成形、射出成形、押出成形、ブロー成形、エンボス成形等を採用することができる。中でも、本発明の成形体を成形する際には、射出成形を採用することが好ましい。
 ポリカーボネート樹脂を含む樹脂組成物には、トリフェニルホスファイトや、トリス(2,4-di-tert-ブチルフェニル)ホスファイトといった酸化防止剤を添加することが好ましい。酸化防止剤の添加量は、樹脂組成物の全質量に対し、0.00001~0.0001質量%であることが好ましい。
 また、ポリカーボネート樹脂を含む樹脂組成物には、帯電防止剤として、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤、界面活性剤混合物等を添加することが好ましい。帯電防止剤としては、例えば、ステアリン酸モノグリセリドを挙げることができる。帯電防止剤の添加量は、樹脂組成物の全質量に対し、0.01~0.1質量%であることが好ましい。
 射出成形を行う前には、ポリカーボネート樹脂を含む樹脂組成物をペレット化してもよい。ポリカーボネート樹脂をペレット化することにより、射出成形をする際の樹脂のハンドリング性を高めることができる。樹脂組成物をペレット化する際には、例えば、ベント式単軸押出機等を用いることができる。
 射出成形を行う場合、射出成形機(射出圧縮成形機を含む)を用いる。射出成形機では、ポリカーボネート溶融樹脂をシリンダーの先端にため込み、その後、金型の中にポリカーボネート溶融樹脂を注入して成形する。射出成形機としては一般的に使用されているものを用いることができる。シリンダーはポリカーボネート樹脂の付着性が低く、かつ耐蝕性、耐摩耗性を示す材料から構成されたものであることが好ましい。射出成形機としては、例えば、株式会社メイホー社製のMicro-1を例示することができる。
 射出成形を行う際のシリンダー温度は200~450℃であることが好ましく、250~390℃であることがより好ましい。また、金型の温度は50~300℃であることが好ましく、100~250℃であることがより好ましい。
 成形工程を行う環境は、可能な限りクリーンであることが好ましい。また、成形に供する材料を十分乾燥して水分を除去することや、溶融樹脂の分解を招くような滞留を起こさないように成形することが好ましい。
(成形体)
 本発明は、上述したポリカーボネート樹脂の成形体に関するものでもある。ポリカーボネート樹脂の成形体には、ポリカーボネート樹脂に加えて、酸化防止剤や帯電防止剤、熱安定化剤等の添加剤が含まれていてもよい。なお、成形体が各種添加剤を含む場合は、成形体の全質量に対して、添加剤の含有量が5質量%以下であることが好ましい。
 本発明の成形体は、後述するように光学部材の用途に用いられることが好ましく、中でも、レンズとして用いられることが好ましい。このような観点から、成形体の屈折率は高いことが好ましい。本発明の成形体は、波長589nmにおける屈折率nDが1.45以上であることが好ましく、1.58以上であることがより好ましく、1.60以上であることがより特に好ましい。
 本発明の成形体は、光学部材用途の中でもレンズなどに用いるときに色収差を低減する観点から、アッベ数が低いことが好ましい。本発明の成形体は、アッベ数が25以下であることが好ましく、24.5以下であることがより好ましく、23以下であることがさらに好ましく、21以下であることがよりさらに好ましく、20以下であることが特に好ましい。また、本発明の成形体のアッベ数は13以上であることが好ましい。
 本明細書中、アッベ数(νD)は、アッベ屈折計(カルニュー光学工業株式会社製)を用いて、波長589nm、486nm、656nmにおけるそれぞれの屈折率nD、nF、nCを測定し、下記式により算出される。
 νD=(nD-1)/(nF-nC)
 ここで、nDは波長589nmにおける屈折率、nFは波長486nmにおける屈折率、nCは波長656nmにおける屈折率を表す。
 本発明の成形体は、最大厚みが0.1~10mmであることが好ましい。最大厚みは、より好ましくは0.1~5mmであり、特に好ましくは0.15~3mmである。本発明の成形体、最大直径が1~1000mmであることが好ましい。最大直径は、より好ましくは2~200mmであり、特に好ましくは2.5~100mmである。このようなサイズの成形体は、高屈折率の光学部材用途として特に有用である。
(光学部材)
 本発明は、上述した成形体を含む光学部材に関するものでもある。本発明の成形体は、光学特性に優れた成形体であるため、光学部材に好ましく用いられる。本発明の光学部材の種類は、特に制限されないが、成形体の優れた光学特性を利用した光学部材、特に光を透過する光学部材(いわゆるパッシブ光学部材)として好適に利用することができる。このような光学部材を備えた光学機能装置としては、例えば、各種ディスプレイ装置(液晶ディスプレイやプラズマディスプレイ等)、各種プロジェクタ装置(OHP(Overhead projector)、液晶プロジェクタ等)、光ファイバー通信装置(光導波路、光増幅器等)、カメラやビデオ等の撮影装置等が例示される。
 また、光学機能装置に用いられるパッシブ光学部材としては、例えば、レンズ、プリズム、プリズムシート、パネル(板状成形体)、フィルム、光導波路(フィルム状やファイバー状等)、光ディスク、LED(Light emitting diode)の封止剤等が例示される。このようなパッシブ光学部材には、必要に応じて任意の被覆層、例えば摩擦や摩耗といった塗布面の機械的損傷を防止する保護層、無機粒子や基材等の劣化原因となる望ましくない波長の光線を吸収する光線吸収層、水分や酸素ガス等の反応性低分子の透過を抑制あるいは防止する透過遮蔽層、防眩層、反射防止層、低屈折率層等や、任意の付加機能層が設けられてもよい。任意の被覆層の具体例としては、無機酸化物コーティング層からなる透明導電膜やガスバリア膜、有機物コーティング層からなるガスバリア膜やハードコート膜等が挙げられる。コーティング法としては真空蒸着法、CVD(Chemical vapor deposition)法、スパッタリング法、ディップコート法、スピンコート法等公知のコーティング法を用いることができる。
(応用例)
 本発明の成形体を用いた光学部材は、特にレンズ基材に好ましく用いられる。本発明のポリカーボネート樹脂を用いて製造されたレンズ基材は低アッベ数を有し、好ましくは、高屈折性、光線透過性、軽量性を併せ持ち、光学特性に優れている。
 なお、本明細書中において「レンズ基材」とは、レンズ機能を発揮することができる単一部材を意味する。レンズ基材の表面や周囲には、レンズの使用環境や用途に応じて膜や部材を設けることができる。例えば、レンズ基材の表面には、保護膜、反射防止膜、ハードコート膜等を形成することができる。また、ガラスレンズ基材や、プラスチックレンズ基材に積層させた複合レンズにすることができる。さらにレンズ基材の周囲を基材保持枠などに嵌入して固定することもできる。ただし、これらの膜や枠などは、レンズ基材に付加される部材であり、本明細書中でいうレンズ基材そのものとは区別される。
 レンズ基材をレンズとして利用するに際しては、レンズ基材そのものを単独でレンズとして用いてもよいし、上述した膜や枠、その他レンズ基材などを付加してレンズとして用いてもよい。レンズ基材を用いたレンズの種類や形状は、特に制限されない。
 レンズ基材は低アッベ数であることから色収差補正レンズに好ましく用いることができ、色収差補正レンズとしては例えば、携帯やデジタルカメラ等の撮像用レンズやテレビ、ビデオカメラ等の撮映レンズ、さらには車載、内視鏡レンズに使用されることが好ましい。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
 特開2015-193809号公報に記載の合成方法を用いて、化合物1Aを210g得た。
Figure JPOXMLDOC01-appb-C000018
 反応容器にトリホスゲン111g、酢酸エチル1L、及び化合物1A200gを入れ、攪拌しながら5℃以下に保ちつつ、ジメチルアニリン122gを2時間かけて滴下した。その後、15℃以下に保ちつつ、1時間攪拌することで反応させた。反応容器に0.1mol/L(0.1N)の塩酸水を500mL添加し、分液処理を行い、水層を除去した後、酢酸エチルを減圧留去することにより化合物1Bを275g得た。
Figure JPOXMLDOC01-appb-C000019
 反応容器に化合物1A 100g、化合物1B 131g、及び塩化メチレン1Lを入れ、攪拌しながら10℃以下に保ちつつ、ピリジン50mlを2時間かけて滴下した。その後、15℃以下に保ちつつ、1時間攪拌することで反応させた。反応容器に0.01mol/L(0.01N)の塩酸500mLを添加し、分液処理を行った。水層を除去した後、メタノールを4L添加することで、ポリカーボネート樹脂を析出させ、濾取することでポリカーボネート樹脂を215g得た。なお、ポリカーボネート樹脂の粘度平均分子量は14400であった。
(実施例2)
 5,6-ジメトキシ-1-インダノン290gと、オルトフタルアルデヒド204gを1500mLのメタノールに溶解させた。反応溶液を加温し、60℃に保ちつつ、水酸化カリウム255gをメタノール1750mLに溶解させ滴下した。5時間攪拌した後、反応溶液を室温に戻し、析出した結晶を濾取し、化合物2aを230g得た。
Figure JPOXMLDOC01-appb-C000020
 化合物2a 200gと、フェノール320gをメタンスルホン酸320mLに溶解させた。反応溶液を加温し、60℃に保ちつつ、3-メルカプトプロピオン酸3.2mLを滴下した。5時間攪拌後、反応溶液にメタノールを720mL滴下し、30分攪拌後、さらに1400mLのメタノールを滴下した。反応溶液を室温に戻し、析出した結晶を濾取し、化合物2Aを292g得た。
Figure JPOXMLDOC01-appb-C000021
 反応容器にトリホスゲン96g、酢酸エチル1L、及び化合物2A200gを入れ、攪拌しながら5℃以下に保ちつつ、ジメチルアニリン105gを2時間かけて滴下した。その後、15℃以下に保ちつつ、1時間攪拌することで反応させた。反応容器に0.1mol/L(0.1N)の塩酸水を500mL添加し、分液処理を行い、水層を除去した後、酢酸エチルを減圧留去することにより化合物2Bを268g得た。なお、化合物2Bにおける一般式(1)のR1~R4に相当する置換基(メトキシ基)のハメットの置換基定数σp値は-0.28である。
Figure JPOXMLDOC01-appb-C000022
 化合物1A、化合物1Bに代えて、化合物2A 100g、化合物2B 127gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は15100であった。
(実施例3)
 化合物1A、化合物1Bに代えて、化合物2A 60g、化合物2B 127g、及びエチレングリコール(EG)5.4gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は17400であった。
Figure JPOXMLDOC01-appb-C000023
(実施例4)
 化合物1A、化合物1Bに代えて、化合物2A 60g、化合物2B 127g、及びビスフェノールA(BPA)19.8gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は13200であった。
Figure JPOXMLDOC01-appb-C000024
(実施例5)
 化合物1A、化合物1Bに代えて、化合物2A 60g、化合物2B 127g、及び9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(BPEF)38.1gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は18300であった
Figure JPOXMLDOC01-appb-C000025
(実施例6)
 化合物1A、化合物1Bに代えて、化合物2A 10g、化合物2B 127g、及びエチレングリコール(EG)12.1gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は13300であった。
(実施例7)
 化合物1A、化合物1Bに代えて、化合物2B 127g、及びエチレングリコール(EG) 13.5gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は16700であった。
(実施例8)
 化合物1A、化合物1Bに代えて、化合物2B 127g、及びビスフェノールA(BPA)49.6gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は18500であった。
(実施例9)
 化合物1A、化合物1Bに代えて、化合物2B 127g、及び9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(BPEF) 95.2gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。なお、ポリカーボネート樹脂の粘度平均分子量は13500であった。
(実施例10)
 反応容器に、48質量%水酸化ナトリウム水溶液138.2g及びイオン交換水600mLを仕込み、これに化合物2A 120g、ビスフェノールA 59.4g、及びハイドロサルファイト0.30gを溶解させた後、塩化メチレン340mlを加えた。攪拌しながら、20℃でホスゲン64.0gを約1時間かけて吹き込み、48質量%水酸化ナトリウム水溶液8.6g及びp-tert-ブチルフェノール1.41gを加え、再度攪拌し、乳化した状態でトリエチルアミン0.07gを加え、30℃で1時間攪拌して反応を終了した。反応液を塩化メチレンで希釈した後、水洗を繰り返した。次いで、この溶液にメタノール2Lを1時間かけて滴下することで、ポリカーボネート樹脂を析出させ、濾取することでポリカーボネート樹脂を183g得た。なお、ポリカーボネート樹脂の粘度平均分子量は19300であった。
(比較例1)
 特開2010-254806号公報の実施例1と同様にして、ポリカーボネート樹脂を得た。特開2010-254806号公報の実施例1で用いた9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCF)及びビス(4-ヒドロキシ-3-メチルフェニル)スルフィド(HMPS)の構造は下記の通りである。
Figure JPOXMLDOC01-appb-C000026
(比較例2)
 特開2010-254806号公報の比較例3と同様にして、ポリカーボネート樹脂を得た。特開2010-254806号公報の比較例3で用いた9,9-ビス(4-ヒドロキシフェニル)フルオレン(BPFL)の構造は下記の通りである。
Figure JPOXMLDOC01-appb-C000027
(比較例3)
 反応容器にトリホスゲン145g、酢酸エチル1L、及びBPFLを200gを入れ、攪拌しながら5℃以下に保ちつつ、ジメチルアニリン159gを2時間かけて滴下した。その後、15℃以下に保ちつつ、1時間攪拌することで反応させた。反応容器に0.1mol/L(0.1N)の塩酸水を500mL添加し、分液処理を行い、水層を除去した後、酢酸エチルを減圧留去することによりBPFLクロロ炭酸化合物を256g得た。
 化合物1A、化合物1Bに代えて、BPFL 100g、BPFLクロロ炭酸化合物136gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。ポリカーボネート樹脂の粘度平均分子量は16900であった。
Figure JPOXMLDOC01-appb-C000028
(比較例4)
 化合物1A、化合物1Bに代えて、BPFL60g、BPFLクロロ炭酸化合物136g、及びエチレングリコール(EG)7.1gを用いた以外は、実施例1と同様に重合し、ポリカーボネート樹脂を得た。ポリカーボネート樹脂の粘度平均分子量は17400であった。
(ポリカーボネート樹脂の粘度平均分子の測定)
 実施例及び比較例で得たポリカーボネート樹脂の粘度平均分子量は、ポリカーボネート樹脂を塩化メチレン100mlに溶解し、その溶液の20℃における比粘度(ηsp)から下記式を用いて算出した。
 ηsp/c=[η]+0.45×[η]2c (但し、[η]は極限粘度)
 [η]=1.23×10-4  0.83
 c=0.7
(成形体の作製)
 実施例及び比較例で得たポリカーボネート樹脂を100℃で24時間乾燥した後、トリス(2,4-di-tert-ブチルフェニル)ホスファイトを0.0025質量%、ステアリン酸モノグリセリドを0.05質量%となるように添加し、均一に混合した。その後、ベント式単軸押出機を用いてペレット化した後、射出成形機((株)メイホー社製、Micro-1)を用いて射出成形した。射出成形では、シリンダー温度を360℃、金型温度を表1に示す温度として、厚さ1.0mm、幅10mm、長さ20mmの成形体を評価用成形体として成形した。
(評価)
<屈折率及びアッベ数>
 評価用成形体の屈折率及びアッベ数(νD)を、アッベ屈折計(カルニュー光学工業株式会社製)を用いて測定した。
 νD=(nD-1)/(nF-nC)
 ここで、nDは波長589nmにおける屈折率、nFは波長486nmにおける屈折率、nCは波長656nmにおける屈折率を表す。表1の屈折率の欄には波長589nmにおける屈折率を示した。
<成形性(光学歪)>
 評価用成形体を2枚の偏光板の間に挟み、直行ニコル法を用いて後ろからの光漏れを目視することで評価した。
 A:光漏れがない
 B:僅かに光漏れが認められる
 C:光漏れが顕著である
<湿熱試験(高温高湿耐久性)>
 評価用成形体を85℃、相対湿度85%に保たれた恒温恒湿槽に入れ、24時間保管した後、取り出した。次いで、25℃、相対湿度60%で1時間放置した後、評価用成形体の屈折率を評価した。
 A:湿熱試験前後で屈折率変化が0.0005以下
 B:湿熱試験前後で屈折率変化が0.0005より大きく、0.001以下
 C:湿熱試験前後で屈折率変化が0.001より大きい
Figure JPOXMLDOC01-appb-T000029
 表1より、実施例のポリカーボネート樹脂から成形された成形体のアッベ数は低く、高温高湿耐久性を有していることがわかる。さらに、実施例のポリカーボネート樹脂から成形された成形体は成形性も良好であり、光学歪の発生が少ないものであった。
 一方、比較例のポリカーボネート樹脂から成形された成形体のアッベ数は高く、高温高湿耐久性が劣っていた。
(複合レンズの作製)
 実施例で得たポリカーボネート樹脂を100℃で24時間乾燥した後、トリス(2,4-di-tert-ブチルフェニル)ホスファイトを0.0025質量%、ステアリン酸モノグリセリドを0.05質量%となるように添加し、均一に混合した。その後、ベント式単軸押出機を用いてペレット化した後、表面が窒化クロム処理された成形金型に実施例で得られたポリカーボネート樹脂を射出し、樹脂の成形金型と接していない側のすべての表面上を覆うように透明なガラスレンズ(硝材=BK7、直径33mm、中心厚み3mm、樹脂と接する面の曲率半径=44.3mm、樹脂と接しない面の曲率半径=330.9mmである凸レンズ)を被せて、樹脂の直径が30mmとなるように押し広げた。その後冷却した後、成形体と金型を引き離すことにより、複合レンズを作製した。

Claims (12)

  1.  下記一般式(1)で表される構成単位を含むポリカーボネート樹脂;
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
     R5~R7はそれぞれ独立に置換基を表す;
     a~cはそれぞれ独立に0以上であり、各環に置換可能な最大数以下の整数を表す;
     Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表し、Ar13は破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である;
     L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
     n1及びn2はそれぞれ独立に0~10の整数を表す;
     Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい;
     R7は破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
  2.  前記構成単位は、下記一般式(2)で表される構成単位である請求項1に記載のポリカーボネート樹脂;
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、R1~R4はそれぞれ独立に、水素原子、又はハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R1~R4は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
     R5~R7はそれぞれ独立に置換基を表す;
     a~cはそれぞれ独立に0以上であり、各環に置換可能な最大数以下の整数を表す;
     Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す;
     L1及びL2はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
     n1及びn2はそれぞれ独立に0~10の整数を表す;
     Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基である場合は、R5、R6、-O-[L1-O]n1-及び-O-[L2-O]n2-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
  3.  前記R1~R4のうち少なくとも1つがハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基である請求項1又は2に記載のポリカーボネート樹脂。
  4.  前記R2及びR3がハメットの置換基定数σp値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基である請求項1~3のいずれか1項に記載のポリカーボネート樹脂。
  5.  前記R2及びR3がメトキシ基である請求項1~4のいずれか1項に記載のポリカーボネート樹脂。
  6.  下記一般式(11)で表される構成単位をさらに含む請求項1~5のいずれか1項に記載のポリカーボネート樹脂;
    Figure JPOXMLDOC01-appb-C000003
     一般式(11)中、R11は炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~40のアリーレン基、及び炭素数が6~40のヘテロアリーレン基から選択される少なくとも1種を含む基である。
  7.  前記一般式(11)で表される構成単位中のR11が、下記構造(12)及び下記構造(13)で表される基を含む請求項6に記載のポリカーボネート樹脂;
    Figure JPOXMLDOC01-appb-C000004
     構造(12)及び(13)中、*は、前記一般式(11)で表される構成単位の主鎖中の連結部位を表す。
  8.  前記ポリカーボネート樹脂の全構成単位に対して、一般式(1)で表される構成単位と一般式(11)で表される構成単位の総量が90モル%以上であり、
     一般式(1)で表される構成単位と一般式(11)で表される構成単位のモル比が40:60~90:10である請求項6又は7に記載のポリカーボネート樹脂。
  9.  請求項1~8のいずれか1項に記載のポリカーボネート樹脂の成形体。
  10.  アッベ数が13~25である請求項9に記載の成形体。
  11.  請求項9又は10に記載の成形体を含む光学部材。
  12.  請求項9又は10に記載の成形体を含むレンズ。
PCT/JP2017/006299 2016-02-24 2017-02-21 ポリカーボネート樹脂、成形体、光学部材及びレンズ WO2017146023A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018501693A JP6670923B2 (ja) 2016-02-24 2017-02-21 ポリカーボネート樹脂、成形体、光学部材及びレンズ
US16/107,460 US10604623B2 (en) 2016-02-24 2018-08-21 Polycarbonate resin, molded article, optical member, and lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-032842 2016-02-24
JP2016032842 2016-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/107,460 Continuation US10604623B2 (en) 2016-02-24 2018-08-21 Polycarbonate resin, molded article, optical member, and lens

Publications (1)

Publication Number Publication Date
WO2017146023A1 true WO2017146023A1 (ja) 2017-08-31

Family

ID=59686664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006299 WO2017146023A1 (ja) 2016-02-24 2017-02-21 ポリカーボネート樹脂、成形体、光学部材及びレンズ

Country Status (3)

Country Link
US (1) US10604623B2 (ja)
JP (1) JP6670923B2 (ja)
WO (1) WO2017146023A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016140245A1 (ja) * 2015-03-02 2017-12-21 富士フイルム株式会社 硬化性組成物、硬化物、光学部材、レンズ及び化合物
WO2019004279A1 (ja) * 2017-06-28 2019-01-03 富士フイルム株式会社 位相差フィルム
US10604623B2 (en) 2016-02-24 2020-03-31 Fujifilm Corporation Polycarbonate resin, molded article, optical member, and lens
WO2024075643A1 (ja) * 2022-10-07 2024-04-11 帝人株式会社 熱可塑性樹脂組成物及びそれを含む光学部材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115703881B (zh) * 2021-08-06 2023-09-15 中国科学院过程工程研究所 一种聚碳酸酯光学树脂及其制备方法和应用
KR20230022700A (ko) * 2021-08-09 2023-02-16 주식회사 엘지화학 폴리카보네이트 공중합체
WO2023234584A1 (ko) * 2022-05-30 2023-12-07 주식회사 엘지화학 폴리카보네이트 공중합체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106761A (ja) * 1999-10-13 2001-04-17 Konica Corp 樹脂組成物、光学用素子、及び光学用非球面レンズ
JP2014080572A (ja) * 2012-09-26 2014-05-08 Fujifilm Corp 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物ならびに化合物
JP2014205829A (ja) * 2013-03-21 2014-10-30 三菱化学株式会社 樹脂組成物及びそれを用いたフィルム
WO2015170691A1 (ja) * 2014-05-07 2015-11-12 三菱瓦斯化学株式会社 重縮合で製造された樹脂および樹脂組成物
JP2015212389A (ja) * 2013-02-20 2015-11-26 帝人株式会社 ポリカーボネート共重合体

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228296A (ja) 1993-02-04 1994-08-16 Teijin Chem Ltd 芳香族ポリカーボネート樹脂の改質法
JPH06322087A (ja) 1993-05-13 1994-11-22 Showa Denko Kk フルオレン骨格を含むアリル系オリゴマー
JP3445009B2 (ja) 1994-03-10 2003-09-08 株式会社リコー インデノキノキサリン化合物及びそれを含有する電子写真感光体
JP4271312B2 (ja) 1998-09-08 2009-06-03 三井化学株式会社 含硫(チオ)エーテル(共)重合体およびその用途
US6320020B1 (en) 1998-09-08 2001-11-20 Mitsui Chemicals, Inc. Sulfur-containing (thio)ether (co)polymer and a use thereof
DE60008693T2 (de) 1999-07-29 2005-01-13 Teijin Ltd. Beschichtung zur phasenverschiebung und verwendung in flüssigkristallanzeige
KR100613810B1 (ko) 2004-12-17 2006-08-17 주식회사 두산 전계 발광 소자용 화합물 및 이를 포함하는 유기 전계발광소자
EP1947131A4 (en) 2005-11-10 2010-10-27 Teijin Chemicals Ltd OPTICAL DEVICE AND ACHROMATIC LENS
JP2008081418A (ja) 2006-09-26 2008-04-10 Air Water Inc 9,9−ビス(4−アミノフェニル)フルオレン化合物
JP2008094987A (ja) 2006-10-13 2008-04-24 Nippon Kayaku Co Ltd 光学材料用高屈折率樹脂組成物およびその硬化物
JP5249781B2 (ja) 2006-12-15 2013-07-31 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
KR100965189B1 (ko) 2007-10-11 2010-06-24 주식회사 엘지화학 우레탄기를 포함하는 플루오렌계 수지 중합체와 이의 제조방법, 및 이를 포함하는 네가티브형 감광성 수지 조성물
JP5061862B2 (ja) 2007-11-21 2012-10-31 コニカミノルタアドバンストレイヤー株式会社 光学装置の製造方法及び光学素子の製造方法
JP2009234999A (ja) 2008-03-27 2009-10-15 Osaka Gas Co Ltd ジアザフルオレン骨格を有する化合物
JP2009249307A (ja) 2008-04-03 2009-10-29 Kri Inc ビス(ヒドロキシフェニル)アントラセン化合物及びその製造方法
TWI383986B (zh) 2008-12-29 2013-02-01 Eternal Chemical Co Ltd 二聚茚噻吩衍生物及其用途
CN101475568B (zh) 2009-01-08 2011-06-01 长兴化学工业股份有限公司 二聚茚噻吩衍生物及其用途
JP5266599B2 (ja) 2009-04-24 2013-08-21 帝人株式会社 高屈折率ポリカーボネート共重合体
JP5513825B2 (ja) 2009-09-28 2014-06-04 大阪ガスケミカル株式会社 フルオレン骨格を有するアルコールの製造方法
KR101744608B1 (ko) 2011-03-28 2017-06-08 후지필름 가부시키가이샤 감활성 광선성 또는 감방사선성 수지 조성물, 및 이 조성물을 이용한 감활성 광선성 또는 감방사선성 막 및 패턴 형성 방법
CN103562271B (zh) 2011-04-28 2015-08-12 三菱瓦斯化学株式会社 固化性组合物及光学用粘接剂
JP5914259B2 (ja) 2011-08-29 2016-05-11 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
TWI425076B (zh) 2011-11-01 2014-02-01 Ind Tech Res Inst 咔唑衍生物及包含此衍生物之有機發光二極體
CN102659526B (zh) 2012-04-11 2014-08-20 哈尔滨工程大学 四酚羟基芴化合物及其制备方法
TWI465435B (zh) 2013-03-22 2014-12-21 Nat Univ Tsing Hua 6H-茚並[2,1-b]喹啉衍生物及其有機發光二極體
WO2015076601A1 (ko) 2013-11-20 2015-05-28 주식회사 동진쎄미켐 신규한 발광 화합물 및 이를 포함하는 유기발광소자
JP6059754B2 (ja) 2014-03-20 2017-01-11 富士フイルム株式会社 組成物、硬化性組成物、透明膜、固体撮像素子および表示装置
JP6546986B2 (ja) 2015-03-02 2019-07-17 富士フイルム株式会社 硬化性組成物、硬化物、光学部材、レンズ及び化合物
KR101774479B1 (ko) 2015-10-26 2017-09-04 삼성에스디아이 주식회사 중합체, 유기막 조성물, 및 패턴형성방법
CN108473436B (zh) 2015-12-28 2021-07-06 富士胶片株式会社 化合物、固化性组合物、固化物、光学部件及透镜
WO2017146022A1 (ja) 2016-02-23 2017-08-31 富士フイルム株式会社 ポリカーボネート樹脂、成形体、光学部材及びレンズ
WO2017146023A1 (ja) 2016-02-24 2017-08-31 富士フイルム株式会社 ポリカーボネート樹脂、成形体、光学部材及びレンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106761A (ja) * 1999-10-13 2001-04-17 Konica Corp 樹脂組成物、光学用素子、及び光学用非球面レンズ
JP2014080572A (ja) * 2012-09-26 2014-05-08 Fujifilm Corp 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物ならびに化合物
JP2015212389A (ja) * 2013-02-20 2015-11-26 帝人株式会社 ポリカーボネート共重合体
JP2014205829A (ja) * 2013-03-21 2014-10-30 三菱化学株式会社 樹脂組成物及びそれを用いたフィルム
WO2015170691A1 (ja) * 2014-05-07 2015-11-12 三菱瓦斯化学株式会社 重縮合で製造された樹脂および樹脂組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016140245A1 (ja) * 2015-03-02 2017-12-21 富士フイルム株式会社 硬化性組成物、硬化物、光学部材、レンズ及び化合物
US9994661B2 (en) * 2015-03-02 2018-06-12 Fujifilm Corporation Curable composition, cured product, optical component, lens, and compound
US10604623B2 (en) 2016-02-24 2020-03-31 Fujifilm Corporation Polycarbonate resin, molded article, optical member, and lens
WO2019004279A1 (ja) * 2017-06-28 2019-01-03 富士フイルム株式会社 位相差フィルム
JPWO2019004279A1 (ja) * 2017-06-28 2020-04-09 富士フイルム株式会社 位相差フィルム
US10899882B2 (en) 2017-06-28 2021-01-26 Fujifilm Corporation Phase difference film
WO2024075643A1 (ja) * 2022-10-07 2024-04-11 帝人株式会社 熱可塑性樹脂組成物及びそれを含む光学部材

Also Published As

Publication number Publication date
US20180355106A1 (en) 2018-12-13
US10604623B2 (en) 2020-03-31
JP6670923B2 (ja) 2020-03-25
JPWO2017146023A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6670923B2 (ja) ポリカーボネート樹脂、成形体、光学部材及びレンズ
US10597489B2 (en) Polycarbonate resin, molded article, optical member, and lens
JP5245824B2 (ja) 光学レンズ
JP6885852B2 (ja) ポリカーボネート樹脂、その製造方法および光学成形体
JP7204735B2 (ja) ポリエステル樹脂またはポリエステルカーボネート樹脂、および該樹脂を用いた光学部材
JP3830983B2 (ja) 芳香族ポリカーボネート組成物
JP7082872B2 (ja) 高耐熱性ポリカーボネート樹脂及び成形体
JP2010132782A (ja) ポリカーボネート共重合体、その製造方法、及びその用途
JP2017082038A (ja) ポリカーボネート樹脂及び光学部材
JP5722554B2 (ja) 高屈折率かつ耐熱性に優れたポリカーボネート樹脂および光学成形体
JP2011236336A (ja) 光弾性定数が低いポリカーボネート樹脂および光学成形体
TWI853891B (zh) 聚碳酸酯系樹脂組成物或共聚物及光學薄膜
TWI603988B (zh) Polyoxymethylene resin copolymer and its manufacturing method
JP6591858B2 (ja) 熱可塑性樹脂及び光学部材
JP4780919B2 (ja) 光学レンズ
JP5583987B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP3867930B2 (ja) 芳香族ポリカーボネート組成物
JP5808961B2 (ja) 光学レンズ用ポリカーボネート共重合体及び該ポリカーボネートからなる光学レンズ
JP5580017B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
CN110461904A (zh) 热塑性树脂的制造方法
JPH0834846A (ja) 芳香族ポリカーボネート共重合体
JP2015021055A (ja) ポリエステルカーボネート共重合体
JP2015218220A (ja) ポリカーボネート樹脂および光学フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501693

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756461

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756461

Country of ref document: EP

Kind code of ref document: A1