WO2017133378A1 - 一种数据传输方法、相关设备及系统 - Google Patents
一种数据传输方法、相关设备及系统 Download PDFInfo
- Publication number
- WO2017133378A1 WO2017133378A1 PCT/CN2017/070514 CN2017070514W WO2017133378A1 WO 2017133378 A1 WO2017133378 A1 WO 2017133378A1 CN 2017070514 W CN2017070514 W CN 2017070514W WO 2017133378 A1 WO2017133378 A1 WO 2017133378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resource
- reference signal
- terminal
- indication information
- low
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 84
- 238000004891 communication Methods 0.000 claims description 36
- 239000002245 particle Substances 0.000 description 164
- 238000010586 diagram Methods 0.000 description 15
- 238000010295 mobile communication Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000007726 management method Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0064—Rate requirement of the data, e.g. scalable bandwidth, data priority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
- H04L5/0082—Timing of allocation at predetermined intervals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/543—Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/26—Resource reservation
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a data transmission method, related device, and system.
- Low-latency service transmission for example, the Ultra-reliable Machine Type Communication (uMTC) service defined by the International Telecommunications Union (ITU) in the 5G communication standard is the future of massively connected Internet of Things.
- ITU International Telecommunications Union
- the low-latency service has a small amount of data to transmit each time, but it must be quickly transmitted. Short transmission delays are an important feature of low latency services.
- the low-latency service can be a service with a Round Trip Time (RTT) not higher than a certain threshold.
- RTT Round Trip Time
- the loopback delay indicates the delay from the start of the transmission of data from the sender to the receipt of the acknowledgement from the receiver (the acknowledgement is sent immediately after the receiver receives the data).
- one Transmission Time Interval refers to the length of an independent decoded transmission in a wireless link.
- the duration of one TTI is related to the size of the data block from the higher network layer to the radio link layer.
- 1TTI is 1 ms, that is, the size of one subframe (corresponding to two slots).
- the transmission interval is the basic unit of time governed by radio resource management (scheduling, etc.).
- the transmission interval of low-latency services is not higher than one transmission interval.
- the specific value of the delay threshold of the low-latency service can be set according to actual standards or application scenarios. For example, considering the application requirements of the 5th generation mobile communication system and the future mobile communication system, a service with a loopback delay of no more than 1 millisecond can be specifically defined as a low latency service.
- the base station is a low-latency service, such as a uMTC service, and reserves a fixed time-frequency resource, that is, a resource indicated by a diagonal line in the figure, to ensure that when a low-latency service arrives.
- the base station can quickly transmit the low latency service directly on the reserved resource.
- low-latency services are generally bursty, and the amount of data is generally small. Therefore, the method of reserving resources for low-latency services adopted by the prior art may result in waste of resources.
- Embodiments of the present invention provide a data transmission method, related device, and system.
- the first aspect provides a low-latency service transmission method, which is applied to a base station side, and includes: when receiving a transmission instruction of a low-latency service, the base station is in a time-frequency resource that meets a preset condition corresponding to a current transmission interval. And selecting the resource particle for transmitting the low-latency service, sending the low-latency service on the selected resource particle, and sending the first indication information to the terminal, to indicate that the terminal is in the The low latency service is received on the resource particle indicated by the first indication information.
- the first indication information is used to indicate the selected resource particles.
- the time-frequency resource that meets the preset condition includes: a scheduled time-frequency resource. Further, the time-frequency resource that meets the preset condition does not include: the reserved resource particle for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal. In the embodiment of the present invention, the time-frequency resource that meets the preset condition may be referred to as a first resource.
- the resource utilization rate can be improved while the low-latency service is transmitted in time, and the cell control signal, the synchronization signal, and the reference signal are not affected by the transmission of the low-latency service, and can be normally transmitted. .
- the second aspect provides a low-latency service transmission method, which is applied to the terminal side, and includes: the terminal receiving the first indication information sent by the base station, and according to the first indication information, the resource indicated by the first information The low latency service is received on the particle.
- the first indication information is used to indicate that the base station selects resource particles for transmitting the low-latency service from the time-frequency resources that meet the preset condition corresponding to the current transmission interval.
- the time-frequency resource that meets the preset condition includes: a scheduled time-frequency resource. Further, the time-frequency resource that meets the preset condition does not include: the reserved resource particle for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal.
- the terminal only needs to monitor on the selected resource because the terminal has already obtained the indication information of the selected resource, that is, the first indication information. Whether there is a low-latency service sent to oneself, and it is not necessary to search for the low-latency service sent to itself on the entire system resource, and the low-latency service can be avoided by the full-band search, and the terminal reception is reduced. The design difficulty of the low latency service.
- the low-latency service may be a low-latency service defined in the LTE, or may be a uMTC service defined in the 5G communication standard, and may have a millisecond delay requirement in a new air interface (NR) in the future.
- NR new air interface
- the low latency service may be referred to as a first service. It can be understood that the delay requirement of the first service is high, and needs to be sent immediately after arrival.
- a service whose transmission delay is less than a preset delay, for example, 1 millisecond, may be defined as the first service.
- the first service may be configured to allow occupation of scheduled resources.
- the non-low latency service may be referred to as a non-first service.
- the scheduled time-frequency resource may include: a time-frequency resource allocated by the base station to each terminal for transmitting a data service by using resource scheduling, and the base station is allocated to each terminal for transmitting other data through resource scheduling.
- Time-frequency resources (such as control information).
- the scheduled resource may be a symbol (such as OFDM or SC-FDMA symbol) as a basic scheduling unit, and the scheduled resource may also be a resource block (RB) as a basic scheduling unit, and the scheduled resource. It is also possible to use a time slot or a mini-slot as a basic scheduling unit.
- the resource used for transmitting the low-latency service may include a scheduled symbol of a current transmission interval, or a scheduled resource block (RB) of a current transmission interval, or a current transmission interval. A scheduled time slot or minislot.
- the time-frequency resource that meets the preset condition does not include: the reserved resource for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal.
- the resource reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal refers to a resource reserved by the base station according to the protocol.
- the cell downlink control signal may include one or more of the following: downlink scheduling information, control format indication information, and ARQ information.
- the downlink synchronization signal may include one or more of the following: a primary synchronization signal and a secondary synchronization signal.
- the cell-level downlink reference signal may include one or more of the following: a cell-specific reference signal, a positioning reference signal, a channel state information reference signal, and a multicast single-frequency network parameter. Test signal.
- the time-frequency resource that meets the preset condition may further include: resource particles reserved for the physical multicast channel and the physical broadcast channel.
- the time-frequency resource that meets the preset condition may specifically include: a time-frequency resource that has been scheduled for the non-low-latency service.
- the base station may send only the low-latency service on the selected resource particle, instead of The non-low latency service is sent to avoid signal overlap and form interference.
- a non-low latency service may be added as a non-first service.
- the base station may further send the second indication information to the terminal that receives the non-low-latency service,
- the resource particle indicated by the second indication information of the terminal that receives the non-low latency service is occupied, and the data transmitted on the occupied resource is not the non-low latency service, so that the terminal ignores the Occupy data on resources.
- the second indication information is used to indicate resource particles selected from the time-frequency resources scheduled for the non-low-latency service for transmitting the low-latency service.
- the terminal may request the base station to retransmit the non-low latency service, to implement the non-low latency. Correct reception of business.
- the time-frequency resource that meets the preset condition may further include: A resource that is referenced but not occupied by the terminal-level downlink reference signal.
- the terminal-level downlink reference signal may include: a terminal-specific reference signal and a terminal-level PDSCH reference signal.
- the base station may further receive the terminal level.
- the terminal of the downlink reference signal sends the third indication information, which is used to notify that the resource particle indicated by the third indication information of the terminal that receives the terminal-level downlink reference signal is occupied, and the data transmitted on the occupied resource is not the terminal-level downlink reference signal.
- the third indication information may be used to indicate that the downlink reference signal is reserved for the terminal level but is not occupied by the terminal level downlink reference signal. Resource particles selected from the resource particles for transmitting the low latency service.
- the resource that meets the preset condition may further include: used to carry the additional terminal-specific reference signal. Resources are also available.
- the base station may receive the The terminal of the additional terminal-specific reference signal sends fourth indication information to inform the terminal that receives the additional terminal-specific reference signal that the resource indicated by the fourth indication information is occupied.
- the fourth indication information may be used to indicate a resource that meets a preset condition selected from the resources for carrying the terminal-specific reference signal.
- the fourth indication information may be sent together with the foregoing second indication information, for example, included in the same indication information sent to the terminal.
- the implementation fourth indication information may also be sent together with the foregoing and the third indication information.
- the resource that meets the preset condition may further include: an unscheduled resource.
- the base station may also select a resource for transmitting the low-latency service from an unscheduled resource, that is, an idle resource, and send the low-latency service on the selected unscheduled resource, thereby improving the system. Utilization of resources.
- the resource that meets the preset condition in the embodiment of the present invention may not include: Resources for control information (such as eMBB services).
- Resources for control information such as eMBB services.
- control information of the non-low latency service may include: control information about the non-low latency service transmitted in the PDCCH, and other non-data information or indication information about the non-low latency service. Wait.
- the resource that meets the preset condition may further include: a resource used to carry one or more of the first indication information, the second indication information, or the third indication information.
- the time-frequency resource according to the preset condition may not include: the first indication information, the second indication information, or the third A time-frequency resource that indicates control information for one or more of the information.
- the control information of the foregoing indication information may be used to implement correct reception of the indication information, such as a DMRS for correctly demodulating the indication information.
- a wireless network device comprising a plurality of functional modules for performing the method provided by any one of the first aspect or the possible embodiments of the first aspect.
- a wireless network device comprising a plurality of functional modules for performing the method provided by any one of the second aspect or the possible embodiments of the second aspect.
- a wireless network device for performing the data transmission method described in the first aspect.
- the wireless network device can include a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a mobile communication signal to another wireless network device, the receiver for receiving a mobile communication signal sent by the other wireless network device, the memory is used to store an implementation code of the data transmission method described in the first aspect, and the processor is configured to execute the program code stored in the memory, that is, perform the first Aspect or data transmission method as described in any of the possible implementations of the first aspect.
- a wireless network device for performing the data transmission method described in the second aspect.
- the wireless network device includes a memory and a processor, a transmitter, and a receiver coupled to the memory, wherein: the transmitter is configured to transmit a mobile communication signal to another wireless network device, the receiver for receiving the a mobile communication signal transmitted by another wireless network device, the memory being used to store implementation code of the data transmission method described in the second aspect, the processor is configured to execute program code stored in the memory, that is, perform the second aspect or A data transmission method as described in any one of the possible embodiments of the second aspect.
- the seventh aspect provides a communication system, comprising: the wireless network device according to the third aspect, and the wireless network device according to the fourth aspect; or the wireless network device and the fifth aspect The wireless network device described in the six aspects.
- a computer readable storage medium stored on the readable storage medium There is program code for implementing the data transfer method described in the first aspect, the program code comprising execution instructions for executing the data transfer method described in the first aspect.
- a ninth aspect a computer readable storage medium storing program code for implementing the data transmission method described in the second aspect, the program code comprising the data transmission method described in the second aspect Execute the instruction.
- the base station may select a resource for transmitting the low-latency service from the resource that meets the preset condition corresponding to the current transmission interval, and send the low to the terminal on the selected resource.
- the time delay service wherein the resources that meet the preset condition include: the scheduled resource.
- the resource that meets the preset condition does not include: a reserved resource for carrying a cell downlink control signal, a downlink synchronization signal, and a cell-level downlink reference signal. This ensures that the cell control signal, the synchronization signal, and the reference signal are not affected by the transmission of the low-latency service, and can be normally transmitted.
- FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
- FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
- 4A is a schematic diagram of determining resources for transmitting low-latency services according to an embodiment of the present invention.
- FIG. 4B is another schematic diagram of determining resources for transmitting low-latency services according to an embodiment of the present invention.
- 4C is a schematic diagram of determining another resource for transmitting a low-latency service according to an embodiment of the present invention.
- 4D is a schematic diagram of determining another resource for transmitting a low-latency service according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a wireless network device according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of another wireless network device according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a wireless network device according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of another wireless network device according to an embodiment of the present invention.
- LTE Long Term Evolution
- MIMO multi-cell cooperative based multiple-input multiple-output
- System or Massive MIMO system based on large-scale antenna group, future evolution of the 5th Generation (5G) system, Machine to Machine (M2M) system, equipment and equipment A Device to Device (D2D) system, or a system in which a plurality of base stations cooperate.
- 5G 5th Generation
- M2M Machine to Machine
- D2D Device to Device
- D2D Device to Device
- FIG. 1 is a simplified application scenario diagram of various embodiments of the present invention.
- the figure includes at least a base station and a plurality of user equipments (User Equipments, UEs) in the same cell, where the user equipment sends the user equipment to the base station.
- the message is called uplink transmission
- the base station sends a message to the user equipment, which is called downlink transmission.
- the transmission channel between the user equipment and the base station is called a channel, and includes an uplink channel and a downlink channel.
- Embodiments of the present invention describe various aspects in connection with a wireless network device, which may be a base station, which may be used for communicating with one or more user equipments, or for one or more functions with partial user equipment.
- the base station performs communication (such as communication between a macro base station and a micro base station, such as an access point).
- the base station may be a BTS (Base Transceiver Station) in TD-SCDMA (Time Division Synchronous Code Division Multiple Access), or may be an eNB (Evolutional Node B, evolved base station) in LTE. It can also be a base station in a future network.
- the wireless network device can also be a user equipment, and the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
- User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
- the user equipment can be a cellular phone, a cordless phone, SIP (Session Initiation Protocol, telephone, smart phone, WLL (wireless local loop) station, PDA (Personal Digital Assistant), laptop computer, handheld communication device, handheld computing device Satellite wireless devices, wireless modem cards, and/or other processing devices for communicating over wireless systems.
- a base station may also be referred to as an access point, a node, or some other network entity, and may include some or all of the functionality of the above network entities.
- the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
- the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
- the embodiment of the present invention is described by taking the communication between the base station and the user equipment as an example. It can be understood that the embodiment of the present invention can be applied to communication between the first wireless network device and the second wireless network device, for example, a base station and Communication between user equipments, or communication between a base station and another base station, or communication between a user equipment and another user equipment. The following describes the communication between the base station and the user equipment as an example.
- module or the like as used in the embodiments of the present invention is intended to refer to a computer-related entity, which may be hardware, firmware, a combination of hardware and software, software, or software in operation.
- components can include, but are not limited to, processes running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
- an application running on a computing device and the computing device can be a component.
- One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers.
- these components can execute from various computer readable media having various data structures thereon.
- These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
- the network interacts with other systems to communicate in a local and/or remote process.
- Embodiments of the invention present various aspects, embodiments or features in a system that can include a plurality of devices, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
- information, signal, message, and channel may sometimes be mixed. It should be noted that when the difference is not emphasized, The meaning to be expressed is the same. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
- the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
- the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
- the resources involved in the embodiments of the present invention are usually represented by resource elements (RE elements) or resource blocks (RBs).
- the resource corresponding to one transmission interval may be as shown in FIG. 2: one grid represents one RE, and one RE is composed of one subcarrier in frequency and one symbol in time domain, where the symbol may be orthogonal frequency division.
- the Orthogonal Frequency Division Multiplexing (OFDM) symbol or the Single-Carrier Frequency-Division Multiple Access (SC-FDMA) symbol may be other symbols.
- a continuous M (M is a positive integer) subcarriers in one transmission interval may be combined to form one RB.
- one RB may be composed of 180 kHz consecutive in frequency and one time slot in the time domain.
- 1 RB can correspond to 12 subcarriers in the frequency domain; 1 slot is 0.5 ms, generally 7 OFDM or SC-FDMA symbols, and 1 RB can correspond to 7 in the time domain. OFDM or SC-FDMA symbols.
- the transmission time interval involved in the embodiment of the present invention may be a TTI defined in LTE, or may be a scheduling time interval defined in 5G or a new Radio (NR).
- the scheduling time interval is a length of time during which one scheduling is performed. Generally, during this interval, only one scheduling operation, such as resource allocation and data transmission, is performed.
- the scheduling time interval may be one time slot or mini-slot, or aggregation of multiple time slots, or multiple mini-slot aggregation, or n mini-slots and m time slots The aggregation of the gap, n and m are positive integers greater than or equal to 1.
- the data transmission method provided by the present invention will be described with reference to FIG. As shown in Figure 3, the data transmission The input methods include:
- the base station When receiving the sending instruction of the low-latency service, the base station selects resource particles used for transmitting the low-latency service from the time-frequency resources that meet the preset condition corresponding to the current transmission interval.
- the time-frequency resource that meets the preset condition may include: a scheduled time-frequency resource. Further, the time-frequency resource that meets the preset condition does not include: the reserved resource particle for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal. In the embodiment of the present invention, the time-frequency resource that meets the preset condition may be referred to as a first resource.
- the scheduled time-frequency resource may include: a time-frequency resource allocated by the base station to each terminal for transmitting a data service by using resource scheduling, and the base station is allocated to each terminal for transmitting other data through resource scheduling.
- Time-frequency resources (such as control information).
- the resource particles reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal refer to resource particles reserved by the base station according to the protocol.
- the scheduled time-frequency resource may be a symbol (such as OFDM or SC-FDMA symbol) as a basic scheduling unit, and the scheduled time-frequency resource may also be a resource block (RB) as a basic scheduling unit.
- the scheduled time-frequency resources may also be time slots or mini-slots as basic scheduling units.
- the time-frequency resource used for transmitting the low-latency service may include a scheduled symbol of a current TTI, or a scheduled resource of a current TTI.
- Block (RB) or a scheduled time slot or minislot of the current TTI.
- the time-frequency resource that meets the preset condition does not include: the reserved resource for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal.
- the resource reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal refers to a resource reserved by the base station according to the protocol.
- the current transmission interval may be configured to transmit one of the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, or two or three.
- the base station may reserve one of the downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, or two, according to the configuration, in the current transmission interval.
- the configuration information of the current transmission interval may be acquired first, and then the current transmission interval is configured to be used for transmitting the downlink of the cell according to the configuration information. Which one or which of the control signal, the downlink synchronization signal, and the cell-level downlink reference signal, and finally determines which time-frequency resources corresponding to the preset condition corresponding to the current transmission interval do not include Resources.
- the current transmission interval is configured to reserve only time-frequency resources for transmitting the cell downlink control signal
- the time-frequency resource corresponding to the preset condition corresponding to the current transmission interval may only include: reserved for resource particles used to carry the downlink control signal of the cell; if the current transmission interval is configured as The time-frequency resource for transmitting the downlink synchronization signal is reserved, and the time-frequency resource corresponding to the preset condition corresponding to the current transmission interval may only include: reserved for carrying the downlink synchronization a resource particle of the signal; if the current transmission interval is configured to reserve only a time-frequency resource for transmitting the cell-level downlink reference signal, the time-frequency corresponding to the preset condition corresponding to the current transmission interval
- the resource may only include: reserved for resource particles for carrying the cell-level downlink reference signal.
- the time-frequency resource corresponding to the preset condition corresponding to the current transmission interval may only include: reserved for resource particles for carrying the two signals.
- the current transmission interval is configured to reserve time-frequency resources for transmitting the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, the current transmission interval.
- the corresponding time-frequency resource that meets the preset condition may not include: the resource particle reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal.
- the time-frequency resource corresponding to the preset condition corresponding to the current transmission interval does not include: the premise of the reserved resource particles for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal may be It is that the current transmission interval is corresponding to the resource particles reserved for carrying the corresponding signals.
- the S101 may be triggered by the sending instruction of the low-latency service, where the sending command may be external to the base station, for example, another network device or an administrator, triggering the generated sending instruction, or may be internal to the base station, such as a timer. , automatically triggers the generated send command.
- the sending command may be external to the base station, for example, another network device or an administrator, triggering the generated sending instruction, or may be internal to the base station, such as a timer. , automatically triggers the generated send command.
- the base station sends the first indication information to the terminal, to indicate that the terminal receives the low-latency service on the resource particle indicated by the first indication information.
- the first indication information may be used to indicate the selected resource particles.
- the terminal receives the first indication information sent by the base station, and may receive the low-latency service sent by the base station on the resource indicated by the first indication information according to the first indication information.
- the first indication information belongs to control information, and the amount of data is small, and the base station may send the first indication information by using a resource specified in advance.
- the base station may send the first indication information in a manner of diversity transmission on multiple fixed REs in a physical downlink control channel (PDCCH) to reduce channel interference.
- PDCCH physical downlink control channel
- the terminal may learn the resource used for transmitting the low-latency service, and may only need to indicate the first indication information. It is possible to monitor whether there is a low-latency service sent to itself, without searching for the low-latency service sent to itself on the entire system resource, and avoiding the terminal acquiring the low-latency service through the full-band search. The design difficulty of receiving the low latency service by the terminal is reduced.
- the resource specified for transmitting the first indication information does not conflict with the resource reserved for the downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal.
- the base station sends the low latency service on the selected resource particle.
- the terminal may receive, according to the first indication information, the low-latency service sent by the base station, on the resource particle indicated by the first indication information, that is, the selected resource particle.
- the low-latency service may be a low-latency service defined in the LTE, or may be a uMTC service defined in the 5G communication standard, and may have a millisecond delay requirement in a new air interface (NR) in the future.
- NR new air interface
- the low latency service may be referred to as a first service. It can be understood that the delay requirement of the first service is high, and needs to be sent immediately after arrival.
- a service whose transmission delay is less than a preset delay, for example, 1 millisecond, may be defined as the first service.
- the first service may be configured to allow occupation of scheduled resources.
- the non-low latency service may be referred to as a non-first service.
- the time-frequency resource according to the preset condition may not include: the reserved downlink control signal for carrying the cell, in order to avoid the impact of the transmission of the low-latency service on the downlink control signal of the cell. Resource particles.
- the cell downlink control signal may include: downlink scheduling information, control format indication information, and ARQ information.
- the downlink scheduling information is mainly carried in a physical downlink control channel (PDCCH); the control format indication information may be used to indicate how many symbols in a subframe are used as
- the PDCCH is mainly carried in a Physical Control Format Indicator Channel (PCFICH); the ARQ information is mainly carried in a Physical Hybrid ARQ Indicator Channel (PHICH). That is to say, in the LTE communication system, the time-frequency resources that meet the preset conditions may not include resource particles reserved for the PDCCH, the PCFICH, and the PHICH.
- the time-frequency resource according to the preset condition may not include: the resource particle reserved for the downlink synchronization signal. That is to say, the base station cannot occupy the resource particles reserved for the downlink synchronization signal to transmit the low-latency service.
- the downlink synchronization signal is used to ensure that the terminal in the cell obtains downlink synchronization.
- the downlink synchronization signal may include: a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- the time-frequency resource according to the preset condition may not include: the resource particle reserved for the cell-level downlink reference signal, in order to avoid the impact of the transmission of the low-latency service on the cell-level downlink reference signal. .
- the cell-level downlink reference signal may include: a cell-specific reference signal (CRS), a positioning reference signal (PRS), and a channel state information reference signal (CSI Reference Signal). , CSI-RS) and multicast single frequency network reference signal (MBSFN Reference Signal, MBSFN-RS).
- CRS corresponds to an antenna port of the base station, and is used for channel estimation and correlation demodulation of other downlink transmission technologies other than the beamforming technology
- PRS is used to assist the terminal location positioning application
- the CSI-RS is used for channel estimation
- the MBSFN-RS is used for Channel estimation and correlation demodulation of MBSFN.
- the base station may reserve resource particles for carrying the terminal-level downlink reference signal according to the protocol.
- the terminal-level downlink reference signal is configured to be occupied, if the resource particles reserved for carrying the terminal-level downlink reference signal are not actually used by the terminal-level downlink reference signal, the base station may occupy the reserved The resource particles for carrying the terminal-level downlink reference signal are used to transmit the low-latency service.
- the terminal-level downlink reference signal may include: a UE-specific reference signal (UE-RS) and a UE-specific reference signal associated with a PDSCH.
- UE-RS UE-specific reference signal
- UE-specific reference signal UE-specific reference signal associated with a PDSCH.
- the UE-RS corresponds to a specific terminal, and is used for channel estimation and correlation demodulation of the beamforming technology;
- the terminal-level PDSCH reference signal corresponds to a specific terminal, and is used for channel estimation and correlation demodulation of the PDSCH.
- the base station if the reserved resource particles for carrying the terminal-level downlink reference signal are actually occupied by the terminal-level downlink reference signal, the base station cannot use the resource particles actually occupied by the terminal-level downlink reference signal to transmit the resource. Low latency business.
- the time-frequency resource according to the preset condition may not further include: reserved for the physical Resource Particles of the Physical Multicast Channel (PMCH) and the Physical Broadcast Channel (PBCH).
- the PBCH is used for the basic attribute information of the broadcast cell, for example, the Cell ID, for the terminal access, the PBCH is used for the broadcast information, and the PMCH is used for supporting the Multimedia Broadcast Multicast Service (MBMS) service. Carrying broadcast information of multiple cells.
- MBMS Multimedia Broadcast Multicast Service
- FIG. 4A For the resource particles reserved by the base station for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, reference may be made to the resource configuration example shown in FIG. 4A.
- OFDM symbols, and the remaining OFDM symbols are allocated to a Physical Downlink Shared Channel (PDSCH).
- FIG. 4A also shows a reserved PCFICH for carrying control format indication information, a PHICH for carrying ARQ information, and resource particles for carrying a downlink synchronization signal and a downlink reference signal.
- the drawings are only used to explain the embodiments of the present invention, and are not limited.
- the resource configuration of the downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal refer to 3GPP TS. 36.211 standard.
- the time-frequency resource that meets the preset condition may specifically include: a time-frequency resource that has been scheduled for the non-low-latency service.
- the time-frequency resource that has been scheduled for the non-low-latency service may include the time-frequency resource that the base station schedules for other terminals to transmit the non-low-latency service, and may also include the base station scheduling to receive the low-time time.
- the terminal of the extended service is used to transmit part of the time-frequency resource of the non-low latency service.
- the other terminal is relative to the terminal receiving the low latency service in the solution of the present invention.
- the base station when the low-latency service needs to be sent to the terminal A, the base station can directly occupy the time-frequency resources that are scheduled for other terminals to transmit the non-low-latency service, and can also occupy the scheduled time to the terminal A.
- the time-frequency resource for transmitting the non-low latency service is used to send the low latency service.
- the base station may send only the low-latency service, and not send Non-low latency services to avoid signal overlap and interference. In this way, the timely transmission of the low-latency service can be realized through the sharing of resources (that is, the time-frequency resources scheduled to the non-low-latency service), and the resource utilization is improved.
- FIG. 4A illustrates time-frequency resources that are scheduled by a base station within a single TTI to non-low latency services, such as eMBB services.
- the base station may occupy part of the resources (the resources in the dotted circle in the figure) in the time-frequency resources that have been scheduled for the eMBB service to transmit the low-latency service.
- the examples are only used to explain the embodiments of the present invention and should not be construed as limiting.
- the time-frequency resource that meets the preset condition may be specific in a scenario in which the reserved resource element for carrying the terminal-level downlink reference signal is configured to be allowed to be occupied.
- FIG. 4B shows resources reserved for the reference signals respectively corresponding to the terminal 1, the terminal 2, and the terminal 3, but does not mean that the three resources shown in the figure are necessarily occupied by the reference signal.
- the base station does not send the data service to the terminal 1
- the reference signal corresponding to the terminal 1 is not sent by the base station, that is, the reserved resource particles for carrying the reference signal corresponding to the terminal 1 are not actually occupied by the reference signal. .
- the administrator can configure the base station by using the high-level configuration signaling, such as the radio resource control (RRC) signaling, to specify whether the resources reserved for the reference signals corresponding to the respective terminals can be occupied.
- the high-level configuration signaling such as the radio resource control (RRC) signaling
- the time-frequency resource that meets the preset condition may further include: Additional terminal-specific reference signal resources are also available.
- the additional terminal-specific reference signal is relative to a front-loaded terminal-specific reference signal in the current transmission interval. That is to say, one transmission interval can be configured with two terminal-specific reference signals, such as DM-RS.
- the additional terminal-specific reference signal is optional, and the base station may not actually transmit the additional terminal-specific reference signal.
- one transmission interval is configured with the pre-loaded DM-RS and the additional DM-RS shown in FIG. 4C, and the additional DM-RS can be preempted by the low-latency service.
- the examples are merely illustrative of the embodiments of the invention and should not be construed as limiting.
- the base station can The terminal that describes the additional terminal-specific reference signal sends the fourth indication information to notify the terminal that receives the additional terminal-specific reference signal that the resource particle indicated by the fourth indication information is occupied.
- the fourth indication information may be used to indicate a resource selected from the resource particles used to carry the terminal-specific reference signal.
- the fourth indication information may be sent together with the foregoing second indication information, for example, included in the same indication information sent to the terminal.
- the implementation fourth indication information may also be sent together with the foregoing and the third indication information.
- the time-frequency resource that meets the preset condition may further include: an unscheduled resource particle.
- the base station may further select resource particles for transmitting the low-latency service from unscheduled resource particles, that is, idle resource particles, and send the selected resource on the unscheduled resource.
- Low latency services can increase the utilization of system resources.
- the time-frequency resource that meets the preset condition may include: the time-frequency resource that is scheduled for the non-low-latency service, and the possible transmission terminal-level downlink parameter. At least one of a resource particle of the signal and the unscheduled resource particle. That is, the base station can simultaneously occupy the three types of resources to transmit the low-latency service, or can simultaneously occupy any two of the resources to transmit the low-latency service, and can also occupy any one of the resources to transmit the low-rate Delay business, there is no limit here.
- the resource particles selected by the S101 for transmitting the low-latency service include resource particles that have been scheduled for the non-low-latency service, that is, the base station occupies the resources that have been scheduled for the non-low-latency service.
- the low-latency service is sent, and the base station may also use the occupied resource (that is, the time-frequency resource that is scheduled to be sent to the non-low-latency service to transmit the low-latency service resource particle.
- the indication information is sent to the terminal that originally received the non-low latency service, to inform the terminal that the resource indicated by the second indication information is occupied, and the data transmitted on the occupied resource is not the non-low latency service. So that the terminal ignores the data on the occupied resource.
- the indication information is referred to as the second indication information, and the second indication information is used to indicate that the low-time time is selected from the time-frequency resources scheduled to be sent to the non-low-latency service.
- the resource particles of the extended service that is, the occupied resource particles.
- the terminal may request the base station to retransmit the non-low latency service, to implement the non-low The correct reception of the delay service.
- the terminal that originally received the non-low latency service may also automatically request after waiting for the timeout. The base station retransmits the non-low latency service to implement correct reception of the non-low latency service.
- the time-frequency resource that meets the preset condition may not include: used to carry the non-low-latency service (such as eMBB service), in order to avoid the impact of the transmission of the low-latency service on all non-low-latency services. Resource particles of control information. In this way, the control information of the non-low-latency service can be normally transmitted, and the non-low-latency service that is not preempted by the low-latency service can be normally received.
- the non-low-latency service such as eMBB service
- control information of the non-low latency service may include: control information about the non-low latency service transmitted in the PDCCH, and other non-data information or indication information about the non-low latency service. Wait.
- the resource particle selected by the S101 for transmitting the low-latency service includes the resource particle that may transmit the downlink reference signal of the terminal level, that is, the base station occupies the The resource particles of the terminal-level downlink reference signal may be transmitted to transmit the low-latency service. Then, the base station may further select the occupied resource particle (that is, the resource particle selected from the downlink reference signal of the possible transmission terminal level).
- the indication information of the resource segment of the low-latency service is sent to the terminal that receives the terminal-level downlink reference signal, and is used to notify the terminal that receives the terminal-level downlink reference signal, the resource particle indicated by the third indication information.
- the data transmitted on the occupied resource is not the terminal-level downlink reference signal.
- the indication information is referred to as the third indication information, where the third indication information is used to indicate that the low-latency service selected from the resource particles of the downlink reference signal of the possible transmission terminal level is used for transmitting.
- Resource particles that is, the occupied resource particles.
- the terminal that receives the terminal-level downlink reference signal may ignore the data transmitted on the occupied resource according to the third indication information, and may perform other operations, which is not limited herein.
- the base station may also send the second indication information and the third indication information by using a time-frequency resource specified in advance.
- the transmission of the low-latency service is avoided, and the time-frequency resource meeting the preset condition is further
- the resource particles for carrying one or more of the first indication information, the second indication information, or the third indication information may be not included.
- the time-frequency resource that meets the preset condition may not include: one of the first indication information, the second indication information, or the third indication information. Or multiple resources for control information.
- the control information of the indication information may be used to implement correct reception of the indication information.
- the base station may traverse all resources (such as RE/RB/symbol/mini-slot) corresponding to the current TTI, and exclude resources that cannot be occupied, such as the foregoing. Reserved resources for transmitting CRS, and selecting resources that can be occupied. Of course Afterwards, the base station may transmit the low-latency service by using the resource that can be occupied.
- resources such as RE/RB/symbol/mini-slot
- the base station can exclude the symbols that cannot be occupied, select the symbols that can be occupied, and then transmit the low-latency service on the symbols that can be occupied.
- the examples are only one implementation of the embodiments of the present invention and should not be construed as limiting.
- the base station first directly maps the low-latency service to the time-frequency corresponding to the current TTI, whether the time-frequency resource corresponding to the current TTI includes a time-frequency resource that cannot be preempted (such as a resource reserved for the CRS). Resources. It can be understood that directly performing resource mapping may cause partial data of the low-latency service to be mapped on time-frequency resources that cannot be preempted. Then, the base station can process the data of the low-latency service that has been resource mapped, and remove the data mapped on the time-frequency resource that cannot be preempted. Finally, the base station may use the time-frequency resources to which the data of the low-latency service that is not culled is mapped to transmit the data of the low-latency service that is not culled.
- a time-frequency resource that cannot be preempted such as a resource reserved for the CRS.
- redundant data generated by data coding can help data recovery. Therefore, part of the service data that is rejected (the amount of data is not too large) does not cause data distortion.
- the base station may select a resource for transmitting the low-latency service from the resource that meets the preset condition corresponding to the current transmission interval, and send the resource to the terminal on the selected resource.
- the low-latency service includes: the scheduled resource includes: the scheduled resource, but does not include: the reserved signal for carrying the downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal. resource of.
- FIG. 5 is a schematic structural diagram of a wireless network device according to an embodiment of the present invention.
- the wireless network device 50 can include: a selecting unit 501 and a sending unit 503, where:
- the selecting unit 501 is configured to: when receiving the sending instruction of the low-latency service, select, from the time-frequency resources corresponding to the preset condition corresponding to the current transmission interval, resource particles for transmitting the low-latency service;
- the sending unit 503 is configured to send the low-latency service on the selected resource particle, and send the first indication information to another wireless network device, where the first indication information is used to indicate the selected Resource particle
- the time-frequency resource that meets the preset condition may include: the scheduled time-frequency resource, but the time-frequency resource that meets the preset condition may not include: the reserved downlink control signal for carrying the cell, and the downlink synchronization Resource particles for signal and cell level downlink reference signals.
- the wireless network device 50 may be the base station in the foregoing method embodiment, and the other network device may be the terminal in the foregoing method embodiment.
- the scheduled time-frequency resource may include: a time-frequency resource allocated by the wireless network device 50 to other wireless network devices for transmitting data services by using resource scheduling, and may also include a wireless network device 50 to pass resources.
- a time-frequency resource allocated to the respective wireless network device for transmitting other data (such as control information) is scheduled.
- the resource particles reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal may refer to resource particles reserved by the wireless network device 50 according to the protocol.
- the time-frequency resource that meets the preset condition does not include: the reserved resource particles for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, which can be avoided by the wireless network device 50.
- the effect of the reserved resources on the cell control information, the synchronization signal, and the reference signal are not described herein again.
- the time-frequency resource according to the preset condition may not further include: reserved for the PMCH and Resource particles of PBCH.
- the time-frequency resource that meets the preset condition may not include: Resource particles of control information for eMBB services).
- the control information of the non-low-latency service can be normally transmitted, and the non-low-latency service that is not preempted by the low-latency service can be normally received.
- control information of the non-low latency service may include: control information about the non-low latency service transmitted in the PDCCH, and other non-data information or indication information about the non-low latency service. Wait.
- the time-frequency resource that meets a preset condition may be included. Includes: Time-frequency resources that have been scheduled for non-low latency services. That is to say, when the low-latency service arrives, in order to ensure the timely transmission of the low-latency service, the selecting unit 501 can be used to select from the time-frequency resources that have been scheduled for the non-low-latency service. Transmitting resource particles of the low latency service.
- the sending unit 503 may be specifically configured to send only the low-latency service without transmitting the non-low-latency service to avoid signal overlap and form interference on the resource particle selected by the selecting unit 501.
- the sending unit 503 may be further configured to receive another non-low latency service.
- the wireless network device sends the second indication information to notify the another wireless network device that the resource indicated by the second indication information is occupied, and the data transmitted on the occupied resource is not the non-low latency service, so that the Another wireless network device ignores the data on the occupied resources.
- the second indication information may be used to indicate resource particles, that is, the occupied resource particles, that are selected from the time-frequency resources that are scheduled to be sent to the non-low-latency service, for transmitting the low-latency service.
- the time-frequency resource that meets the preset condition may include: the reserved downlink reference signal for carrying the terminal level but not occupied by the terminal-level downlink reference signal.
- a resource particle referred to herein as a resource particle, is a resource particle that may transmit a terminal-level downlink reference signal.
- the sending unit 503 may also be used to receive the terminal-level downlink reference signal. Transmitting, by the wireless network device, third indication information, to notify another wireless network device that receives the terminal-level downlink reference signal, that the resource particle indicated by the third indication information is occupied, and the data transmitted on the occupied resource is not the terminal Level downlink reference signal.
- the third indication information may be used to indicate resource particles selected from resource particles that may transmit the terminal-level downlink reference signal for transmitting the low-latency service, that is, the occupied resource particles.
- the resource that meets the preset condition may further include: the resource used to carry the additional terminal-specific reference signal may also be .
- the wireless network device 50 may send fourth indication information to the terminal that receives the additional terminal-specific reference signal, to inform the terminal that receives the additional terminal-specific reference signal that the resource indicated by the fourth indication information is occupied.
- the fourth indication information may be used to indicate a resource that meets a preset condition selected from the resources for carrying the terminal-specific reference signal.
- the fourth indication information may be sent together with the foregoing second indication information, for example, included in the same indication information sent to the terminal.
- the implementation fourth indication information may also be sent together with the foregoing and the third indication information.
- the resource of the condition may further include: a resource for carrying one or more of the first indication information, the second indication information, or the third indication information.
- the resource that meets the preset condition may not include: the first indication information, the second indication information, or the third indication information.
- the control information of the foregoing indication information may be used to implement correct reception of the indication information, such as a DMRS for correctly demodulating the indication information.
- the time-frequency resource that meets the preset condition may further include: an unscheduled resource particle. That is, the selecting unit 501 is further configured to select resource particles for transmitting the low-latency service from the unscheduled resource particles, that is, the idle resource particles, and the sending unit 503 is further configured to use the selected unscheduled resource particles. Sending the low latency service can improve the utilization of system resources.
- FIG. 6 is a schematic structural diagram of a wireless network device 60 according to an embodiment of the present invention.
- the wireless network device 60 can include: a first receiving unit 601 and a second receiving unit 605, where:
- the first receiving unit 601 is configured to receive first indication information that is sent by another wireless network device, where the first indication information is used to indicate that the another wireless network device meets a preset time-frequency corresponding to the current transmission interval. Resource particles selected from the resources for transmitting the low latency service;
- the second receiving unit 605 is configured to receive, according to the first indication information, the low-latency service on the resource particle indicated by the first information;
- the time-frequency resource that meets the preset condition may include: a scheduled time-frequency resource. Further, the time-frequency resource that meets the preset condition may not include: the reserved resource particle for carrying the cell downlink control signal, the downlink synchronization signal, and the downlink reference signal.
- the wireless network device 60 may be the terminal in the foregoing method embodiment, and the another network device may be the base station in the foregoing method embodiment.
- the scheduled time-frequency resource may include: the time-frequency resource allocated by the another wireless network device to the other wireless network device for transmitting the data service by using the resource scheduling, and the other The wireless network device allocates to the time-frequency resources of the respective wireless network devices for transmitting other data (such as control information) through resource scheduling.
- the resource particles reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal may refer to the resource particles reserved by the other wireless network device according to the protocol.
- the time-frequency resource that meets the preset condition may not include: the reserved resource particles for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, which may be avoided due to the another wireless.
- the network device occupies the influence of the reserved resources on the cell control information, the synchronization signal, and the reference signal.
- the time-frequency resource according to the preset condition may not further include: reserved for the PMCH and Resource particles of PBCH.
- the resource that meets the preset condition may not include: A resource that controls information such as eMBB services.
- a resource that controls information such as eMBB services.
- control information of the non-low latency service may include: control information about the non-low latency service transmitted in the PDCCH, and other non-data messages about the non-low latency service. Information or instructions, etc.
- the time-frequency resource that meets the preset condition may specifically include: a time-frequency resource that has been scheduled for the non-low-latency service.
- the another wireless network device may directly occupy time-frequency resources that have been scheduled for non-low-latency services.
- the low latency service is sent to the wireless network device 60.
- the time-frequency resource that meets the preset condition may further include: the reserved downlink reference signal for carrying the terminal level but not occupied by the downlink reference signal of the terminal level.
- the resource particle referred to herein as the resource particle, is a resource particle that may transmit the terminal-level downlink reference signal. That is, the another wireless network device may directly occupy the resource particles that may transmit the terminal-level downlink reference signal to send the low-latency service to the wireless network device 60.
- the resource that meets the preset condition may further include: the resource used to carry the additional terminal-specific reference signal may also be .
- the wireless network device 50 can The terminal that describes the additional terminal-specific reference signal sends the fourth indication information to notify the terminal that receives the additional terminal-specific reference signal that the resource indicated by the fourth indication information is occupied.
- the fourth indication information may be used to indicate a resource that meets a preset condition selected from the resources for carrying the terminal-specific reference signal.
- the fourth indication information may be sent together with the foregoing second indication information, for example, included in the same indication information sent to the terminal.
- the implementation fourth indication information may also be sent together with the foregoing and the third indication information.
- the resource of the condition may further include: a resource for carrying one or more of the first indication information, the second indication information, or the third indication information.
- the resource that meets the preset condition may not include: the first indication information and the second finger A resource of control information indicating one or more of the information or the third indication information.
- the control information of the foregoing indication information may be used to implement correct reception of the indication information, such as a DMRS for correctly demodulating the indication information.
- the time-frequency resource that meets the preset condition may further include: an unscheduled resource particle. That is, the another wireless network device may directly occupy the unscheduled resource particles, that is, the idle resource particles, to send the low-latency service to the wireless network device 60, thereby improving the utilization of system resources.
- each functional unit included in the wireless network device 60 may be referred to the specific content of the terminal in the foregoing method embodiment, and details are not described herein again.
- the present invention provides a schematic structural diagram of a wireless network device, which is used to implement the functions of the base station in the foregoing method embodiments.
- the wireless network device 1100 can include a processor 1102, a transmitter 1104, a receiver 1106, a coupler 1108, an antenna 1110, and a memory 1112.
- these components may be connected by a bus or other means, wherein the connection by bus is exemplified in FIG.
- the antenna 1110 is configured to convert electromagnetic energy in the transmission line into electromagnetic waves in free space, or convert electromagnetic waves in free space into electromagnetic energy in the transmission line;
- the coupler 1108 is configured to divide the mobile communication signal received by the antenna 1110 into multiple The road is assigned to a plurality of receivers 1106.
- the transmitter 1104 is configured to perform a transmission process (eg, modulation) on the mobile communication signal generated by the processor 1102, and the receiver 1106 is configured to perform a reception process (eg, demodulation) on the mobile communication signal received by the antenna 1110, which may be regarded as one Wireless modem.
- the number of transmitters 1104 or receivers 1106 may be one or more.
- the memory 1112 is configured to store program code.
- the memory 1112 may be a read only memory (ROM), and may be used to store program code.
- the processor 1102 can be configured to be responsible for all functions related to the air interface: (1) a wireless link maintenance function, maintaining a wireless link with the terminal, and being responsible for an agreement between the wireless link data and the IP data. (2) Radio resource management functions, including establishment and release of radio links, scheduling and allocation of radio resources, etc.; (3) Part of mobility management functions, including configuring terminals for measurement, evaluating radio link quality of terminals, and making decisions One or more of the handover of the terminal between cells, and the like.
- the processor 1102 is further configured to invoke the program code stored in the memory 1112 to perform the following steps:
- the time-frequency resource that meets the preset condition may include: a scheduled time-frequency resource.
- the time-frequency resource that meets the preset condition may not include: the reserved resource particles for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal.
- the wireless network device 1100 may be the base station in the foregoing method embodiment, and the another network device may be the terminal in the foregoing method embodiment.
- the scheduled time-frequency resource may include: a time-frequency resource allocated by the wireless network device 1100 to other wireless network devices for transmitting data services by using resource scheduling, and may also include a resource of the wireless network device 1100.
- a time-frequency resource allocated to the respective wireless network device for transmitting other data (such as control information) is scheduled.
- the resource particles reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal may refer to resource particles reserved by the wireless network device 1100 according to the protocol.
- the time-frequency resource that meets the preset condition does not include: the reserved resource particles for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, which can be avoided by the wireless network device 1100.
- the effect of the reserved resources on the cell control information, the synchronization signal, and the reference signal are not described herein again.
- the time-frequency resource according to the preset condition may not further include: reserved for the PMCH and Resource particles of PBCH.
- the resource that meets the preset condition in the embodiment of the present invention may not include: Resource particles of control information for non-low latency services (eg, eMBB services).
- eMBB services Resource particles of control information for non-low latency services
- control information of the non-low latency service may include: control information about the non-low latency service transmitted in the PDCCH, and other non-data information or indication information about the non-low latency service. Wait.
- the scheduled time-frequency resource may specifically include: a time-frequency resource that has been scheduled for a non-low-latency service. That is to say, when the low-latency service arrives, in order to ensure timely transmission of the low-latency service, the processor 1102 can select from the time-frequency resources that have been scheduled for the non-low-latency service for transmission. Resource particles of the low latency service. Moreover, on the selected resource particles, the processor 1102 can use the transmitter 1104 to transmit only the low-latency service without transmitting the non-low-latency service to avoid signal overlap and form interference.
- the processor 1102 may further use the transmitter 1104 to receive the non-low-latency service. Transmitting, by the wireless network device, the second indication information, to notify the another wireless network device that the resource indicated by the second indication information is occupied, and the data transmitted on the occupied resource is not the non-low delay service, so that The other wireless network device ignores the data on the occupied resource.
- the second indication information may be used to indicate resource particles selected from the time-frequency resources scheduled for the non-low-latency service for transmitting the low-latency service, that is, the occupied resources. particle.
- the scheduled time-frequency resource may include: resource particles reserved for the terminal-level downlink reference signal but not occupied by the terminal-level downlink reference signal, where The resource particle is a resource particle that may transmit a terminal-level downlink reference signal.
- the resource that meets the preset condition may further include: the resource used to carry the additional terminal-specific reference signal may also be .
- the processor 1102 may further use the transmitter 1104 to receive the terminal-level downlink.
- the other wireless network device of the reference signal sends the third indication information,
- the resource particle indicated by the third indication information is used to notify another wireless network device that receives the terminal-level downlink reference signal, and the data transmitted on the occupied resource is not the downlink reference signal.
- the third indication information is used to indicate resource particles selected from the resource particles that may transmit the terminal-level downlink reference signal for transmitting the low-latency service, that is, the occupied resource particles. .
- the resource of the condition may further include: a resource particle used to carry one or more of the first indication information, the second indication information, or the third indication information.
- the resource that meets the preset condition may not include: the first indication information, the second indication information, or the third indication information.
- Resource particles of one or more of the control information may be used to implement correct reception of the indication information, such as a DMRS for correctly demodulating the indication information.
- the time-frequency resource that meets the preset condition may further include: an unscheduled resource particle. That is, the processor 1102 may also select resource particles for transmitting the low-latency service from unscheduled resource particles, that is, idle resource particles, and send the unscheduled resource particles on the selected unscheduled resource by using the transmitter 1104.
- the low latency service can improve the utilization of system resources.
- the wireless network device 1200 can include: an input and output module (including an audio input and output module 1218, a key input module 1216, and a display 1220, etc.), an input and output interface 1202, a processor 1204, a transmitter 1206, a receiver 1208, and a coupling.
- these components may be connected by a bus or other means, wherein the connection by bus is exemplified in FIG. among them:
- the antenna 1214 is configured to convert electromagnetic energy in the transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in the transmission line;
- the coupler 1210 is configured to divide the mobile communication signal received by the antenna 1214 into multiple channels, Assigned to multiple receivers 1208.
- the transmitter 1206 is configured to perform a transmission process (eg, modulation) on the mobile communication signal generated by the processor 1204, and the receiver 1208 is configured to perform a receiving process (eg, demodulation) on the mobile communication signal received by the antenna 1214, which may be regarded as one Wireless modem.
- the number of the transmitters 1206 or the receivers 1208 may be one or more.
- the input and output module is mainly used to implement the interaction function between the wireless network device 1200 and the user/external environment, and mainly includes an audio input and output module 1218, a key input module 1216, and a display 1220.
- the input and output module may further include one or more of a camera, a touch screen, a sensor, and the like.
- the input and output modules communicate with the processor 1204 through the user interface 1202.
- the input/output interface 1202 is a connection circuit for exchanging information between the processor 1204 and the input/output module, and is connected to the processor 1204 through a bus, and may be simply referred to as an I/O interface.
- Memory 1212 is coupled to processor 1204 for storing various software programs and/or sets of instructions.
- memory 1212 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
- the processor 1204 is mainly used to call a program stored in the memory 1212, and performs the following steps:
- the time-frequency resource that meets the preset condition may include: the scheduled time-frequency resource, but the time-frequency resource that meets the preset condition may not include: the reserved downlink control signal for carrying the cell, and the downlink synchronization Resource particles for signal and cell level downlink reference signals.
- the wireless network device 1200 may be the terminal in the foregoing method embodiment, and the another network device may be the base station in the foregoing method embodiment.
- the scheduled time-frequency resource may include: the time-frequency resource allocated by the another network device to the other wireless network device for transmitting the data service by using the resource scheduling, and may also include the other The network device allocates to the time-frequency resources of the other wireless network devices for transmitting other data (such as control information) through resource scheduling.
- the resource particles reserved for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal may refer to the resource particles reserved by the another network device according to the protocol.
- the time-frequency resource that meets the preset condition does not include: the reserved resource particles for carrying the cell downlink control signal, the downlink synchronization signal, and the cell-level downlink reference signal, which may be avoided due to the another network.
- the impact of the reserved control resources on the cell control information, the synchronization signal, and the reference signal caused by the device is not described herein again.
- the time-frequency resource according to the preset condition may not further include: reserved for the PMCH and Resource particles of PBCH.
- the resource that meets the preset condition may not include: A resource that controls information such as eMBB services.
- a resource that controls information such as eMBB services.
- control information of the non-low latency service may include: control information about the non-low latency service transmitted in the PDCCH, and other non-data information or indication information about the non-low latency service. Wait.
- the time-frequency resource that meets the preset condition may specifically include: a time-frequency resource that has been scheduled for the non-low-latency service.
- the another wireless network device may directly occupy time-frequency resources that have been scheduled for non-low-latency services. Transmitting the low latency service.
- the time-frequency resource that meets the preset condition may include: reserved for the terminal-level downlink reference signal but not occupied by the terminal-level downlink reference signal.
- the resource particle referred to herein as the resource particle, is a resource particle that may transmit the terminal-level downlink reference signal. That is, the another wireless network device may directly occupy the resource particles that may transmit the terminal-level downlink reference signal to transmit the low-latency service.
- the resource that meets the preset condition may further include: the resource used to carry the additional terminal-specific reference signal may also be .
- the resource of the condition may further include: a resource for carrying one or more of the first indication information, the second indication information, or the third indication information.
- the resource that meets the preset condition may not include: the first indication information, the second indication information, or the third indication information.
- the control information of the foregoing indication information may be used to implement correct reception of the indication information, such as a DMRS for correctly demodulating the indication information.
- the time-frequency resource that meets the preset condition may further include: an unscheduled resource particle. That is, the another wireless network device may directly occupy the unscheduled resource particles, that is, the idle resource particles, to transmit the low-latency service, thereby improving the utilization of system resources.
- the wireless network device 1200 may be a 4G communication system (LTE), and a terminal in the future 4.5G, 5G.
- LTE 4G communication system
- 5G 5th Generation
- processor 1204 may refer to the functions of the terminal in the foregoing method embodiment, and details are not described herein again.
- an embodiment of the present invention further provides a communication system (shown in FIG. 1), where the communication system includes: a first wireless network device and a second wireless network device.
- the first wireless network device may be the base station in the foregoing method embodiment
- the second wireless network device may be the terminal in the foregoing method embodiment (corresponding to the user equipment in FIG. 1 , ie, the UE).
- the first wireless network device may also be the wireless network device 50 described in the embodiment of FIG. 5, and the second wireless network device may also be the wireless network device 60 described in FIG.
- the first wireless network device may also be the wireless network device 1100 described in FIG. 7
- the second wireless network device may also be the wireless network device 1200 described in FIG. 8 .
- the base station may select, from the resources that meet the preset conditions corresponding to the current transmission interval, resources for transmitting the low-latency service, and on the selected resources.
- the terminal sends the low-latency service; where the resource that meets the preset condition includes: the scheduled resource.
- the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开一种数据传输方法、相关设备及系统。所述方法包括:基站从当前传输间隔对应的第一资源中确定用于传输第一业务的资源;所述基站在确定出的资源上发送所述第一业务,并向终端发送第一指示信息;所述第一指示信息用于指示所述用于传输所述第一业务的资源;其中,所述第一资源包括已调度的资源。上述方案可实现在及时传输第一业务的同时提高资源利用率。进一步的所述第一资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源。这样可以保证小区控制信号、同步信号和参考信号不被第一业务的传输所影响,能够正常传输。
Description
本发明涉及通信技术领域,尤其涉及一种数据传输方法、相关设备及系统。
低时延业务传输,例如,国际电信联盟(International Telecommunications Union,ITU)在5G通信标准中定义的高可靠的机器通信(Ultra-reliable Machine Type Communication,uMTC)业务,是未来海量联接的物联网中的一个应用场景。低时延业务每次所要传输的数据量小,但是必须快速传完。传输时延短是低时延业务的一个重要特征。
物联网的一个重要特点就是要求高可靠、低时延。在保证联接的可靠性达到电信级的99.999%时,5G技术将使端到端时延缩短到1毫秒,实现实时远程机械控制、自动驾驶汽车、智能电网、远程医疗手术等应用场景。可以理解的是,低时延业务可以为回环时延(Round Trip Time,RTT)不高于某一门限的业务。回环时延表示从发送端发送数据开始,到发送端收到来自接收端的确认(接收端收到数据后便立即发送确认),总共经历的时延。
通常,1个传输间隔(Transmission Time Interval,TTI)是指在无线链路中的一个独立解码传输的长度。1个TTI的时长与从更高网络层到无线链路层的数据块的大小有关。例如,在3GPP LTE与LTE-A的标准中,一般认为1TTI=1ms,即一个子帧(subframe)(相当于2个时隙)的大小。传输间隔是无线资源管理(调度等)所管辖时间的基本单位。
为了确保低时延业务的及时传输,通常要求低时延业务的传输间隔不高于1个传输间隔。实际应用中,低时延业务的时延门限的具体值可以依据实际标准或应用场景需要而设定。比如,考虑到第5代移动通信系统以及未来移动通信系统的应用需求,可以具体将回环时延不高于1毫秒的业务定义为低时延业务。
现有技术中,如图2所示,基站为低时延业务,如uMTC业务,预留固定的时频资源,即图中斜划线部分指示的资源,用以保证当低时延业务到达
时基站能够直接在该预留资源上快速传输所述低时延业务。但是,低时延业务一般是突发的,而且数据量一般较小,因此,现有技术采取的这种为低时延业务预留资源的方法会造成资源浪费。
发明内容
本发明实施例提供了一种数据传输方法、相关设备及系统。
第一方面,提供了一种低时延业务传输方法,应用于基站侧,包括:当接收到低时延业务的发送指令时,基站从当前传输间隔对应的符合预设条件的时频资源中选取出用于传输所述低时延业务的资源粒子,在所述选取出的资源粒子上发送所述低时延业务,并向终端发送第一指示信息,用以指示所述终端在所述第一指示信息指示的资源粒子上接收所述低时延业务。
这里,所述第一指示信息用于指示所述选取出的资源粒子。所述符合预设条件的时频资源包括:已调度的时频资源。进一步的,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子。本发明实施例中,可以将所述符合预设条件的时频资源称为第一资源。
实施第一方面描述的方法,可实现在及时传输低时延业务的同时提高资源利用率,并且保证了小区控制信号、同步信号和参考信号不被低时延业务的传输所影响,能够正常传输。
第二方面,提供了一种低时延业务传输方法,应用于终端侧,包括:终端接收基站发送的第一指示信息,并根据所述第一指示信息,在所述第一信息指示的资源粒子上接收所述低时延业务。
这里,所述第一指示信息用于指示所述基站从当前传输间隔对应的符合预设条件的时频资源中选取出的用于传输所述低时延业务的资源粒子。所述符合预设条件的时频资源包括:已调度的时频资源。进一步的,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子。
实施第二方面描述的方法,由于终端已经获知所述选取出的资源的指示信息,即所述第一指示信息,所述终端只需要在所述选取出的资源上监测是
否有发向自己的低时延业务即可,而不需要在整个系统资源上搜索发向自己的低时延业务,可以避免通过全频段搜索来获取所述低时延业务,降低了终端接收所述低时延业务的设计难度。
本发明实施例中,所述低时延业务可以是LTE中定义的低时延业务,也可以是5G通信标准中定义的uMTC业务,还可以未来新空口(NR)中具有毫秒级时延需求的任何业务,例如低时延、高可靠通信(uRLLC,Ultra Reliable&Low Latency Communication)业务,这里不作限制。
本发明实施例中,所述低时延业务可称为第一业务。可以理解的,所述第一业务的时延要求较高,到达后需要立即发送。具体实现中,可以将传输时延小于预设时延,例如1毫秒,的业务定义为所述第一业务。为了确保所述第一业务的及时发送,所述第一业务可以被配置为允许占用已调度的资源。本发明实施例中,可以将非低时延业务称为非第一业务。
本发明实施例中,所述已调度的时频资源可包括:基站通过资源调度分配给各个终端用于传输数据业务的时频资源,也包括基站通过资源调度分配给各个终端用于传输其他数据(如控制信息)的时频资源。
具体实现中,所述已调度的资源可以符号(如OFDM或SC-FDMA符号)为基本调度单位,所述已调度的资源也可以资源块(RB)为基本调度单位,所述已调度的资源还可以时隙或微时隙(mini-slot)为基本调度单位。具体实现中,所述用于传输所述低时延业务的资源可包括当前传输间隔的已调度的符号(symbol),或者当前传输间隔的已调度的资源块(RB),或者当前传输间隔的已调度的时隙或微时隙。
为了确保小区正常通信,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源。这里,所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源是指基站按照协议规定预留出的资源。
具体的,所述小区下行控制信号可包括以下一项或多项:下行调度信息、控制格式指示信息,和ARQ信息。所述下行同步信号可包括以下一项或多项:主同步信号和辅同步信号。所述小区级下行参考信号可包括以下一项或多项:小区专用参考信号、定位参考信号、信道状态信息参考信号和多播单频网参
考信号。
本发明实施例中,所述符合预设条件的时频资源还可进一步的不包括:预留给物理多播信道以及物理广播信道的资源粒子。
在一种实现方式中,所述符合预设条件的时频资源可具体包括:已调度给非低时延业务的时频资源。并且,如果所述选取出的资源粒子包括所述已调度给非低时延业务的时频资源,那么,在选取出的该资源粒子上,基站可以仅发送所述低时延业务,而不发送所述非低时延业务,避免信号重叠,形成干扰。本发明实施例中,可以加个非低时延业务称为非第一业务。
进一步的,如果所述选取出的资源粒子包括所述已调度给非低时延业务的时频资源,那么,基站还可以向接收所述非低时延业务的终端发送第二指示信息,用以告知接收所述非低时延业务的终端所述第二指示信息指示的资源粒子被占用,被占用的资源上传输的数据不是所述非低时延业务,以使该终端忽略所述被占用资源上的数据。所述第二指示信息用于指示从所述已调度给非低时延业务的时频资源中选取出的用于传输所述低时延业务的资源粒子。
具体实现中,在原来接收所述非低时延业务的终端接收到所述第二指示信息之后,该终端可以请求基站重传所述非低时延业务,用以实现所述非低时延业务的正确接收。
在一种实现方式中,如果预留给终端级下行参考信号的资源粒子被配置为允许占用,则所述符合预设条件的时频资源还可包括:预留出的用于承载终端级下行参考信号但未被所述终端级下行参考信号占用的资源。
具体实现中,所述终端级下行参考信号可包括:终端专用参考信号和终端级PDSCH参考信号。
进一步的,如果所述选取出的资源粒子包括预留出的用于承载终端级下行参考信号但未被所述终端级下行参考信号占用的资源粒子,则所述基站还可以向接收该终端级下行参考信号的终端发送第三指示信息,用以告知接收该终端级下行参考信号的终端所述第三指示信息指示的资源粒子被占用,被占用资源上传输的数据不是该终端级下行参考信号。所述第三指示信息可用于指示从预留给该终端级下行参考信号但未被该终端级下行参考信号占用的
资源粒子中选取出的用于传输所述低时延业务的资源粒子。
在一种实现方式中,如果所述当前传输间隔配置有额外的(additional)终端专用参考信号,则所述符合预设条件的资源还可以包括:用于承载所述额外的终端专用参考信号的资源也可以。
为了确保所述额外的终端专用参考信号相关的信道估计能够正确实施,如果用于承载所述额外的终端专用参考信号的资源被所述低时延业务抢占,则所述基站可以向接收所述额外的终端专用参考信号的终端发送第四指示信息,用以告知接收所述额外的终端专用参考信号的终端所述第四指示信息指示的资源被占用。这里,所述第四指示信息可用于指示从所述用于承载所述终端专用参考信号的资源中选取出的符合预设条件的资源。
可选的,所述第四指示信息可以和前述第二指示信息一同发送,例如包含在同一个发送给终端的指示信息中。可选的,实施第四指示信息还可以和前述和第三指示信息一同发送。
本发明实施例中,除了所述已调度的资源,所述符合预设条件的资源还可包括:未调度的资源。例如,基站还可以从未调度的资源,即空闲资源,中选取出用于传输所述低时延业务的资源,并在选取出的未调度资源上发送所述低时延业务,可提高系统资源的利用率。
为了避免所述低时延业务的传输对全部的非低时延业务的影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述非低时延业务(如eMBB业务)的控制信息的资源。这样,所述非低时延业务的控制信息能够正常传输,可实现正常接收未被所述低时延业务抢占资源的非低时延业务。
具体的,所述非低时延业务的控制信息可包括:传输在PDCCH中的关于所述非低时延业务的控制信息,以及其他关于所述非低时延业务的非数据信息或指示信息等。
为了确保本发明实施例中的指示信息(本发明实施例涉及的所述第一、第二或者第三指示信息)的正常传输,避免所述低时延业务的传输影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的资源。
进一步的,为了实现上述指示信息的正确接收,本发明实施例涉及的所述符合预设条件的时频资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的控制信息的时频资源。上述指示信息的控制信息可用于实现上述指示信息的正确接收,例如用于正确解调上述指示信息的DMRS。
第三方面,提供了一种无线网络设备,所述无线网络设备包括多个功能模块,用于相应的执行第一方面或第一方面可能的实施方式中的任意一种所提供的方法。
第四方面,提供了一种无线网络设备,所述无线网络设备包括多个功能模块,用于相应的执行第二方面或第二方面可能的实施方式中的任意一种所提供的方法。
第五方面,提供了一种无线网络设备,用于执行第一方面描述的数据传输方法。所述无线网络设备可包括:存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备发送移动通信信号,所述接收器用于接收所述另一无线网络设备发送的移动通信信号,所述存储器用于存储第一方面描述的数据传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面或第一方面可能的实施方式中的任意一种所描述的数据传输方法。
第六方面,提供了一种无线网络设备,用于执行第二方面描述的数据传输方法。所述无线网络设备包括存储器以及与所述存储器耦合的处理器、发射器和接收器,其中:所述发射器用于与向另一无线网络设备发送移动通信信号,所述接收器用于接收所述另一无线网络设备发送的移动通信信号,所述存储器用于存储第二方面描述的数据传输方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第二方面或第二方面可能的实施方式中的任意一种所描述的数据传输方法。
第七方面,提供了一种通信系统,所述通信系统包括:第三方面所述的无线网络设备和第四方面所述的无线网络设备;或者,第五方面所述的无线网络设备和第六方面所述的无线网络设备。
第八方面,提供了一种计算机可读存储介质,所述可读存储介质上存储
有实现第一方面描述的数据传输方法的程序代码,该程序代码包含运行第一方面描述的数据传输方法的执行指令。
第九方面,提供了一种计算机可读存储介质,所述可读存储介质上存储有实现第二方面描述的数据传输方法的程序代码,该程序代码包含运行第二方面描述的数据传输方法的执行指令。
实施本发明实施例,基站可以从当前传输间隔对应的符合预设条件的资源中选取出用于传输所述低时延业务的资源,并在所述选取出的资源上向终端发送所述低时延业务;其中,所述符合预设条件的资源包括:已调度的资源。上述方案可实现在及时传输低时延业务的同时提高资源利用率。进一步的,所述符合预设条件的资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源。这样可以保证小区控制信号、同步信号和参考信号不被低时延业务的传输所影响,能够正常传输。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本发明实施例涉及的通信系统的示意图;
图2是现有技术中为低时延业务预留资源的示意图;
图3是本发明实施例提供的一种数据传输方法的流程示意图;
图4A是本发明实施例提供的一种确定用于传输低时延业务的资源的示意图;
图4B是本发明实施例提供的另一种确定用于传输低时延业务的资源的示意图;
图4C是本发明实施例提供的再一种确定用于传输低时延业务的资源的示意图;
图4D是本发明实施例提供的再一种确定用于传输低时延业务的资源的示意图;
图5是本发明实施例提供的一种无线网络设备的结构示意图;
图6是本发明实施例提供的另一种无线网络设备的结构示意图;
图7是本发明实施例提供的一种无线网络设备的结构示意图;
图8是本发明实施例涉及的另一种无线网络设备的结构示意图。
本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
本发明实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)的TDD系统、基于多小区协作的分布式多输入多输出(Multiple-Input Multiple-Output,MIMO)系统或基于大规模天线群的大规模(Massive)MIMO系统,未来演进的第五代移动通信(the 5th Generation,5G)系统,机器与机器通信(Machine to Machine,M2M)系统,设备与设备通信(Device to Device,D2D)系统,或多个基站协同的系统等。
图1是本发明实施例针对各种通信系统简化后的应用场景图,如图所示至少包括基站和处于同一小区内的多个用户设备(User Equipment,UE),其中,用户设备向基站发送消息称为上行传输,基站向用户设备发送消息称为下行传输。用户设备与基站之间的传输通道称为信道,包括上行信道和下行信道。
本发明实施例结合无线网络设备来描述各个方面,该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是TD-SCDMA(Time Division Synchronous Code Division Multiple Access,时分同步码分多址)中的BTS(Base Transceiver Station,基站),也可以是LTE中的eNB(Evolutional Node B,演进型基站),还可以是未来网络中的基站。该无线网络设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、SIP(Session
Initiation Protocol,会话初始协议)电话、智能电话、WLL(wireless local loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字助理)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。另外,基站还可以称为接入点、节点或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。本发明实施例以基站和用户设备之间的通信为例进行描述,可以理解的是,本发明实施例可以应用于第一无线网络设备和第二无线网络设备之间的通信,比如,基站和用户设备之间的通信,或是,基站和另一基站之间的通信,或是,用户设备和另一用户设备之间的通信。以下以基站和用户设备之间的通信为例进行描述。
如本发明实施例所使用的术语“模块”等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以包括但不限于:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
本发明实施例将围绕可包括多个设备、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所
要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例涉及的资源通常以资源粒子(Resource Element,RE),或资源块(Resource Block,RB)表示。其中,1个传输间隔对应的资源可如图2所示:1个格子表示1个RE,1个RE由频率上一个子载波,时域上一个符号构成,这里,符号可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号,也可以是其他符号。1个传输间隔中的连续M(M为正整数)个子载波可以合起来构成一个RB。例如,1个RB可由频率上连续的180kHz,时域上的1个时隙构成。当子载波间隔为15kHz时,1个RB在频域上可对应12个子载波;1个时隙是0.5ms,一般是7个OFDM或SC-FDMA符号,1个RB在时域上可对应7个OFDM或SC-FDMA符号。
需要说明的,本发明实施例涉及的所述传输时间间隔可以是LTE中定义的TTI,也可以是5G或未来新空口(New Radio,NR)中定义的调度时间间隔。所述调度时间间隔是进行一个调度的时间长度。一般来说,在这个间隔内,只进行一次调度操作,比如资源分配,数据发送。在NR中,所述调度时间间隔可以是一个时隙或微时隙(mini-slot),或者多个时隙的聚合,或者多个微时隙聚合,或者n个微时隙和m个时隙的聚合,n和m是大于等于1的正整数。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述。
首先结合图3说明本发明提供的数据传输方法。如图3所示,所述数据传
输方法包括:
S101,当接收到低时延业务的发送指令时,基站从当前传输间隔对应的符合预设条件的时频资源中选取出用于传输所述低时延业务的资源粒子。
这里,所述符合预设条件的时频资源可包括:已调度的时频资源。进一步的,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子。本发明实施例中,可以将所述符合预设条件的时频资源称为第一资源。
本发明实施例中,所述已调度的时频资源可包括:基站通过资源调度分配给各个终端用于传输数据业务的时频资源,也包括基站通过资源调度分配给各个终端用于传输其他数据(如控制信息)的时频资源。所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子是指基站按照协议规定预留出的资源粒子。
具体实现中,所述已调度的时频资源可以符号(如OFDM或SC-FDMA符号)为基本调度单位,所述已调度的时频资源也可以资源块(RB)为基本调度单位,所述已调度的时频资源还可以时隙或微时隙(mini-slot)为基本调度单位。具体实现中,当所述低时延业务到来时,所述用于传输所述低时延业务的时频资源可包括当前TTI的已调度的符号(symbol),或者当前TTI的已调度的资源块(RB),或者当前TTI的已调度的时隙或微时隙。
为了确保小区正常通信,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源。这里,所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源是指基站按照协议规定预留出的资源。
实际应用中,所述当前传输间隔可以被配置为用于传输所述小区下行控制信号、所述下行同步信号和所述小区级下行参考信号中的一种,或者两种,或者三种。也即是说,基站可在所述当前传输间隔中根据该配置预留出用于承载所述小区下行控制信号、所述下行同步信号和所述小区级下行参考信号中的一种,或者两种,或者三种信号的资源。
在实施本发明方案时,可以先获取所述当前传输间隔的配置信息,然后根据所述配置信息分析出所述当前传输间隔被配置为用于传输所述小区下行
控制信号、所述下行同步信号和所述小区级下行参考信号中的哪一种,或者哪几种,最后确定出所述当前传输间隔对应的所述符合预设条件的时频资源不包括哪些资源。
具体的,对于所述小区下行控制信号、所述下行同步信号和所述小区级下行参考信号,如果所述当前传输间隔被配置为仅预留用于传输所述小区下行控制信号的时频资源,那么,所述当前传输间隔对应的所述符合预设条件的时频资源可以仅仅不包括:预留给用于承载所述小区下行控制信号的资源粒子;如果所述当前传输间隔被配置为仅预留用于传输所述下行同步信号的时频资源,那么,所述当前传输间隔对应的所述符合预设条件的时频资源可以仅仅不包括:预留给用于承载所述下行同步信号的资源粒子;如果所述当前传输间隔被配置为仅预留用于传输所述小区级下行参考信号的时频资源,那么,所述当前传输间隔对应的所述符合预设条件的时频资源可以仅仅不包括:预留给用于承载所述小区级下行参考信号的资源粒子。
同样的,对于所述小区下行控制信号、所述下行同步信号和所述小区级下行参考信号,如果所述当前传输间隔被配置为仅预留用于传输其中两种信号的时频资源,那么,所述当前传输间隔对应的所述符合预设条件的时频资源可以仅仅不包括:预留给用于承载该两种信号的资源粒子。
可以理解的,如果所述当前传输间隔被配置为预留用于传输所述小区下行控制信号、所述下行同步信号和所述小区级下行参考信号的时频资源,那么,所述当前传输间隔对应的所述符合预设条件的时频资源可以不包括:所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子。
也即是说,当前传输间隔对应的所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子的前提可以是当前传输间隔对应预留有用于承载相应信号的资源粒子。
具体的,S101可以由所述低时延业务的发送指令所触发,所述发送指令可以是基站外部,例如其他网络设备或管理员,触发产生的发送指令,也可以是基站内部,例如定时器,自动触发产生的发送指令。
S103,基站向终端发送第一指示信息,用以指示所述终端在所述第一指示信息指示的资源粒子上接收所述低时延业务。这里,所述第一指示信息可用于指示所述选取出的资源粒子。相应的,所述终端接收到基站发送的所述第一指示信息,并可以根据所述第一指示信息,在所述第一指示信息指示的资源上接收基站发送的所述低时延业务。
这里,所述第一指示信息属于控制信息,其数据量较小,基站可以通过预先指定的资源发送所述第一指示信息。例如基站可以在物理下行控制信道(PDCCH)中的多个固定的RE上采取分集发送的方式发送所述第一指示信息,用以降低信道干扰。
可以理解的,由于基站向所述终端发送所述第一指示信息,因此,所述终端可以获知用于传输所述低时延业务的资源,并且,可只需要在所述第一指示信息指示的资源上监测是否有发向自己的低时延业务即可,而不需要在整个系统资源上搜索发向自己的低时延业务,避免了终端通过全频段搜索来获取所述低时延业务,降低了所述终端接收所述低时延业务的设计难度。
需要说明的,预先指定的用于传输所述第一指示信息的资源与所述预留给用于承载小区下行控制信号、下行同步信号、小区级下行参考信号的资源是不冲突的。
S105,基站在所述选取出的资源粒子上发送所述低时延业务。
S107,相应的,所述终端可以根据所述第一指示信息,在所述第一指示信息指示的资源粒子,即所述选取出的资源粒子,上接收基站发送的所述低时延业务。
本发明实施例中,所述低时延业务可以是LTE中定义的低时延业务,也可以是5G通信标准中定义的uMTC业务,还可以未来新空口(NR)中具有毫秒级时延需求的任何业务,例如低时延、高可靠通信(uRLLC,Ultra Reliable&Low Latency Communication)业务,这里不作限制。
本发明实施例中,所述低时延业务可称为第一业务。可以理解的,所述第一业务的时延要求较高,到达后需要立即发送。具体实现中,可以将传输时延小于预设时延,例如1毫秒,的业务定义为所述第一业务。为了确保所述第一业务的及时发送,所述第一业务可以被配置为允许占用已调度的资源。
本发明实施例中,可以将非低时延业务称为非第一业务。
为了避免所述低时延业务的传输对小区下行控制信号的影响,本发明实施例涉及的所述符合预设条件的时频资源可不包括:预留出的用于承载所述小区下行控制信号的资源粒子。
本发明实施例中,所述小区下行控制信号可包括:下行调度信息、控制格式指示信息和ARQ信息。其中,在LTE通信系统中,所述下行调度信息主要承载在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中;所述控制格式指示信息可用于指示一个子帧中有多少个符号用来作为PDCCH,主要承载在物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH)中;所述ARQ信息主要承载在物理混合ARQ指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)中。也即是说,在LTE通信系统中,所述符合预设条件的时频资源可不包括预留给PDCCH、PCFICH和PHICH的资源粒子。
为了避免所述低时延业务的传输对小区同步信号的影响,本发明实施例涉及的所述符合预设条件的时频资源也可不包括:预留给下行同步信号的资源粒子。也即是说,基站不能占用预留给所述下行同步信号的资源粒子来传输所述低时延业务。所述下行同步信号用于确保小区内终端获得下行同步。这里,所述下行同步信号可包括:主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)。
为了避免所述低时延业务的传输对小区级下行参考信号的影响,本发明实施例涉及的所述符合预设条件的时频资源还可不包括:预留给小区级下行参考信号的资源粒子。
本发明实施例中,所述小区级下行参考信号可包括:小区专用参考信号(Cell-specific Reference Signal,CRS)、定位参考信号(Positioning Reference Signal,PRS)、信道状态信息参考信号(CSI Reference Signal,CSI-RS)和多播单频网参考信号(MBSFN Reference Signal,MBSFN-RS)。其中,CRS对应基站的天线端口,用于波束成型技术以外的其他下行传输技术的信道估计和相关解调;PRS用于协助终端位置定位应用;CSI-RS用于信道估计;MBSFN-RS用于MBSFN的信道估计和相关解调。
需要解释的,与小区级下行参考信号一样,基站也可以按照协议规定预留出用于承载终端级下行参考信号的资源粒子。但是,在终端级下行参考信号被配置为允许占用的场景下,如果预留出的用于承载终端级下行参考信号的资源粒子未被终端级下行参考信号实际使用,则基站可以占用预留出的用于承载终端级下行参考信号的资源粒子来传输所述低时延业务。
本发明实施例中,所述终端级下行参考信号可包括:终端专用参考信号(UE-specific Reference Signal,UE-RS)和终端级PDSCH参考信号(UE-specific Reference Signal associated with PDSCH)。其中,UE-RS对应特定的终端,用于波束成型技术的信道估计和相关解调;终端级PDSCH参考信号对应特定的终端,用于PDSCH的信道估计和相关解调。
本发明实施例中,如果预留出的用于承载终端级下行参考信号的资源粒子被终端级下行参考信号实际占用,那么,基站不能利用终端级下行参考信号实际占用的资源粒子来传输所述低时延业务。
另外,为了避免所述低时延业务的传输对广播信道和多播信道的影响,本发明实施例涉及的所述符合预设条件的时频资源还可进一步的不包括:预留给物理多播信道(Physical Multicast Channel,PMCH)以及物理广播信道(Physical Broadcast Channel,PBCH)的资源粒子。其中,PBCH用于广播小区的基本属性信息,例如Cell ID,用于终端接入;PBCH用于承载广播信息,PMCH用于在支持多媒体广播和组播(Multimedia Broadcast Multicast Service,MBMS)业务时,承载多小区的广播信息。
对于基站预留出的用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子,可参考图4A示出的资源配置示例。如图4A所示,在单个TTI内,前N(N在1-4之间)个OFDM符号分配给用于承载小区下行调度信息的PDCCH,图4A中的PDCCH占用3(即N=3)个OFDM符号,其余OFDM符号分配给物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。图4A也示出了预留出的用于承载控制格式指示信息的PCFICH、用于承载ARQ信息的PHICH,以及用于承载下行同步信号、下行参考信号的资源粒子。附图仅用于对本发明实施例进行解释,不构成限定,关于小区下行控制信号、下行同步信号以及小区级下行参考信号的资源配置情况具体可参考3GPP TS
36.211标准。
在本发明实施例的一种实现方式中,所述符合预设条件的时频资源可具体包括:已调度给非低时延业务的时频资源。
需要说明的,所述已调度给非低时延业务的时频资源既可以包括基站调度给其他终端用于传输非低时延业务的时频资源,也可以包括基站调度给接收所述低时延业务的所述终端用于传输非低时延业务的部分时频资源。这里,所述其他终端是相对于本发明方案中的接收所述低时延业务的终端而言的。
也即是说,当需要向终端A发送所述低时延业务时,基站既可以直接占用已调度给其他终端用于传输非低时延业务的时频资源,也可以占用已调度给终端A用于传输非低时延业务的时频资源,来发送所述低时延业务。
并且,在从所述已调度给非低时延业务的时频资源中选取出的用于传输所述低时延业务的资源粒子上,基站可以仅发送所述低时延业务,而不发送非低时延业务,避免信号重叠,形成干扰。这样,可实现通过资源(即所述已调度给非低时延业务的时频资源)共享来实现所述低时延业务的及时传输,提高了资源利用率。
举例说明,图4A示出了单个TTI内基站调度给非低时延业务(如eMBB业务)的时频资源。当所述低时延业务到来时,基站可以在已调度给eMBB业务的时频资源中占用部分资源(图中虚线圈中的资源)来传输所述低时延业务。示例仅仅用于对本发明实施例进行解释,不应构成限定。
在本发明实施例的另一种实现方式中,在预留出的用于承载终端级下行参考信号的资源粒子被配置为允许占用的场景下,所述符合预设条件的时频资源可具体包括:预留出的用于承载终端级下行参考信号但未被所述终端级下行参考信号占用的资源粒子,这里将该资源粒子称为可能传输终端级下行参考信号的资源粒子。
举例来说,图4B示出了分别预留给终端1、终端2和终端3各自对应的参考信号的资源,但并不表示图中所示的3块资源一定会被参考信号占用。例如,如果基站没有向终端1发送数据业务,则终端1对应的参考信号不会被基站发送,即预留出的用于承载终端1对应的参考信号的资源粒子实际不会被该参考信号占用。
具体实现中,管理员可以通过高层配置信令,如无线资源控制(Radio Resource Control,RRC)信令,来配置基站,用以规定预留给各个终端对应的参考信号的资源是否能够被占用。
在本发明实施例的一种实现方式中,如果所述当前传输间隔配置有额外的(additional)终端专用参考信号,则所述符合预设条件的时频资源还可以包括:用于承载所述额外的终端专用参考信号的资源也可以。
这里,所述额外的终端专用参考信号是相对于所述当前传输间隔中的在前加载的(front-loaded)终端专用参考信号而言的。也即是说,一个传输间隔可以配置有2种终端专用参考信号,例如DM-RS。所述额外的终端专用参考信号是可选的,基站实际可以不传输所述额外的终端专用参考信号。例如,一个传输间隔配置有图4C所示的在前加载的DM-RS和额外的DM-RS,该额外的DM-RS可以被所述低时延业务抢占。示例仅仅用于解释本发明实施例,不应构成限定。
为了确保所述额外的终端专用参考信号相关的信道估计能够正确实施,如果用于承载所述额外的终端专用参考信号的资源粒子被所述低时延业务抢占,则所述基站可以向接收所述额外的终端专用参考信号的终端发送第四指示信息,用以告知接收所述额外的终端专用参考信号的终端所述第四指示信息指示的资源粒子被占用。这里,所述第四指示信息可用于指示从所述用于承载所述终端专用参考信号的资源粒子中选取出的资源。
可选的,所述第四指示信息可以和前述第二指示信息一同发送,例如包含在同一个发送给终端的指示信息中。可选的,实施第四指示信息还可以和前述和第三指示信息一同发送。
本发明实施例中,除了所述已调度的时频资源,所述符合预设条件的时频资源还可包括:未调度的资源粒子。如图4D所示,基站还可以从未调度的资源粒子,即空闲资源粒子,中选取出用于传输所述低时延业务的资源粒子,并在选取出的未调度资源粒子上发送所述低时延业务,可提高系统资源的利用率。
需要说明的,在实施本发明方案时,所述符合预设条件的时频资源可以包括:所述已调度给非低时延业务的时频资源、所述可能传输终端级下行参
考信号的资源粒子、所述未调度的资源粒子这三种资源中的至少一种。即,基站可以同时占用其中三种资源来传输所述低时延业务,也可以同时占用其中任意两种资源来传输所述低时延业务,还可以占用其中任意一种资源来传输所述低时延业务,这里不作限制。
本发明实施例中,如果通过S101选取出的用于传输所述低时延业务的资源粒子包括已调度给非低时延业务的资源粒子,即基站占用已调度给非低时延业务的资源发送所述低时延业务,那么,基站还可以将该占用的资源(即从所述已调度给非低时延业务的时频资源中选取出的用于传输所述低时延业务资源粒子)的指示信息发送给原来接收该非低时延业务的终端,用以告知该终端所述第二指示信息指示的资源被占用,被占用的资源上传输的数据不是该非低时延业务,以使该终端忽略所述被占用资源上的数据。本发明实施例将该指示信息称为第二指示信息,所述第二指示信息可用于指示从所述已调度给非低时延业务的时频资源中选取出的用于传输所述低时延业务的资源粒子,即所述被占用的资源粒子。
在一种实现方式中,在原来接收该非低时延业务的终端接收到所述第二指示信息之后,该终端可以请求基站重传所述非低时延业务,用以实现所述非低时延业务的正确接收。在另一种实现方式中,如果基站占用已调度给非低时延业务的资源发送所述低时延业务,那么,原来接收该非低时延业务的终端也可以在等待超时之后,自动请求基站重传该非低时延业务,用以实现该非低时延业务的正确接收。
为了避免所述低时延业务的传输对全部的非低时延业务的影响,所述符合预设条件的时频资源还可以不包括:用于承载所述非低时延业务(如eMBB业务)的控制信息的资源粒子。这样,所述非低时延业务的控制信息能够正常传输,可实现正常接收未被所述低时延业务抢占资源的非低时延业务。
具体的,所述非低时延业务的控制信息可包括:传输在PDCCH中的关于所述非低时延业务的控制信息,以及其他关于所述非低时延业务的非数据信息或指示信息等。
本发明实施例中,如果通过S101选取出的用于传输所述低时延业务的资源粒子包括所述可能传输终端级下行参考信号的资源粒子,即基站占用所述
可能传输终端级下行参考信号的资源粒子来发送所述低时延业务,那么,基站还可以将该占用的资源粒子(即从所述可能传输终端级下行参考信号的资源粒子中选取出的用于传输所述低时延业务的资源粒子)的指示信息,发送给接收该终端级下行参考信号的终端,用以告知接收该终端级下行参考信号的终端所述第三指示信息指示的资源粒子被占用,被占用资源上传输的数据不是该终端级下行参考信号。本发明实施例将该指示信息称为第三指示信息,所述第三指示信息可用于指示从所述可能传输终端级下行参考信号的资源粒子中选取出的用于传输所述低时延业务的资源粒子,即所述被占用的资源粒子。
具体实现中,接收该终端级下行参考信号的终端可以根据所述第三指示信息忽略所述被占用资源上传输的数据,也可以执行其他操作,此处不作限制。
需要说明的,与所述第一指示信息类似,基站也可以通过预先指定的时频资源发送所述第二指示信息和所述第三指示信息。
为了确保指示信息(本发明实施例涉及的所述第一、第二或者第三指示信息)的正常传输,避免所述低时延业务的传输影响,所述符合预设条件的时频资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的资源粒子。
进一步的,为了实现上述指示信息的正确接收,所述符合预设条件的时频资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的控制信息的资源。上述指示信息的控制信息可用于实现上述指示信息的正确接收。
需要说明的,本发明方案提供的上述低时延业务传输方法可适用于图1所示通信系统运行中的任意一个下行传输间隔。
另外,关于如何占用已调度的资源来发送所述低时延业务,本发明实施例提供了下述两种实现方式。
第一种实现方式,在对所述低时延业务进行资源映射之前,基站可以遍历当前TTI对应的全部资源(如RE/RB/symbol/mini-slot),排除不能被占用的资源,例如前述预留的用于传输CRS的资源,选取出能够被占用的资源。然
后,基站可以利用所述能够被占用的资源传输所述低时延业务。
例如,如果资源的遍历单元是符号(symbol),那么,基站可以排除不能被占用的符号,选取出能够被占用的符号,然后在能够被占用的符号上传输所述低时延业务。示例仅仅是本发明实施例的一种实现方式,不应构成限定。
第二种实现方式,不论当前TTI对应的时频资源是否包括不能抢占的时频资源(如预留给CRS的资源),基站先将所述低时延业务直接映射到当前TTI对应的时频资源上。可以理解的,直接先进行资源映射可能会导致所述低时延业务的部分数据被映射在不能抢占的时频资源上。然后,基站可以对已进行资源映射的所述低时延业务的数据进行处理,剔除掉映射在不能抢占的时频资源上的数据。最后,基站可以利用未被剔除的所述低时延业务的数据所映射在的时频资源来传输所述未被剔除的所述低时延业务的数据。
对于上述第二种实现方式,由于数据编码(如Turbo编码)产生的冗余数据可以帮助进行数据恢复,因此,被剔除掉的部分业务数据(数据量不太大)并不会造成数据失真。
实施本发明实施例,基站可以从当前传输间隔对应的所述符合预设条件的资源中选取出用于传输所述低时延业务的资源,并在所述选取出的资源上向终端发送所述低时延业务;其中,所述符合预设条件的资源包括:已调度的资源,但不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号等信号的资源。上述方案可实现在及时传输低时延业务的同时提高资源利用率。
参见图5,图5是本发明实施例提供的一种无线网络设备的结构示意图。如图5所示,无线网络设备50可包括:选取单元501和发送单元503,其中:
选取单元501,用于当接收到低时延业务的发送指令时,从当前传输间隔对应的符合预设条件的时频资源中选取出用于传输所述低时延业务的资源粒子;
发送单元503,用于在所述选取出的资源粒子上发送所述低时延业务,并向另一无线网络设备发送第一指示信息;所述第一指示信息用于指示所述选取出的资源粒子;
其中,所述符合预设条件的时频资源可包括:已调度的时频资源,但所述符合预设条件的时频资源可不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子。
可选的,无线网络设备50可为前述方法实施例中的基站,所述另一网络设备可为前述方法实施例中的终端。
本发明实施例中,所述已调度的时频资源可包括:无线网络设备50通过资源调度分配给其他各个无线网络设备用于传输数据业务的时频资源,也可以包括无线网络设备50通过资源调度分配给所述各个无线网络设备用于传输其他数据(如控制信息)的时频资源。所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子可以是指无线网络设备50按照协议规定预留出的资源粒子。
可以理解的,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子,可以避免由于无线网络设备50占用该预留出资源而造成的对小区控制信息、同步信号以及参考信号的影响。关于所述区下行控制信号、所述下行同步信号以及小区级下行参考信号的相关说明,请参考前述方法实施例中的内容,这里不再赘述。
另外,为了避免所述低时延业务的传输对广播信道和多播信道的影响,本发明实施例涉及的所述符合预设条件的时频资源还可进一步的不包括:预留给PMCH和PBCH的资源粒子。
另外,为了避免所述低时延业务的传输对全部的非低时延业务的影响,所述符合预设条件的时频资源还可以不包括:用于承载所述非低时延业务(如eMBB业务)的控制信息的资源粒子。这样,所述非低时延业务的控制信息能够正常传输,可实现正常接收未被所述低时延业务抢占资源的非非低时延业务。
具体的,所述非低时延业务的控制信息可包括:传输在PDCCH中的关于所述非低时延业务的控制信息,以及其他关于所述非低时延业务的非数据信息或指示信息等。
在本发明实施例的一种实现方式中,所述符合预设条件的时频资源可包
括:已调度给非低时延业务的时频资源。也即是说,当所述低时延业务到来时,为了保证所述低时延业务的及时传输,选取单元501可用于从已调度给非低时延业务的时频资源中选取出用于传输所述低时延业务的资源粒子。并且,在选取单元501选取出的该资源粒子上,发送单元503可以具体用于仅发送所述低时延业务,而不发送所述非低时延业务,避免信号重叠,形成干扰。
具体实现中,如果选取单元501选取出的资源粒子包括所述已调度给非低时延业务的时频资源,那么,发送单元503还可用于向原来接收所述非低时延业务的另一无线网络设备发送第二指示信息,用以告知该另一无线网络设备所述第二指示信息指示的资源被占用,被占用的资源上传输的数据不是所述非低时延业务,以使该另一无线网络设备忽略所述被占用资源上的数据。所述第二指示信息可用于指示从所述已调度给非低时延业务的时频资源中选取出的用于传输所述低时延业务的资源粒子,即所述被占用的资源粒子。
在本发明实施例的另一种实现方式中,所述符合预设条件的时频资源可包括:预留出的用于承载终端级下行参考信号但未被所述终端级下行参考信号占用的资源粒子,这里简称该资源粒子为可能传输终端级下行参考信号的资源粒子。
如果选取单元501从可能传输终端级下行参考信号的资源粒子中选取出用于发送所述低时延业务的资源粒子,那么,发送单元503还可用于向原来接收该终端级下行参考信号的另一无线网络设备发送第三指示信息,用以告知接收该终端级下行参考信号的另一无线网络设备所述第三指示信息指示的资源粒子被占用,被占用资源上传输的数据不是所述终端级下行参考信号。这里,所述第三指示信息可用于指示从可能传输所述终端级下行参考信号的资源粒子中选取出的用于传输所述低时延业务的资源粒子,即所述被占用的资源粒子。
可选的,如果所述当前传输间隔配置有额外的(additional)终端专用参考信号,则所述符合预设条件的资源还可以包括:用于承载所述额外的终端专用参考信号的资源也可以。
为了确保所述额外的终端专用参考信号相关的信道估计能够正确实施,如果用于承载所述额外的终端专用参考信号的资源被所述低时延业务抢占,
则无线网络设备50可以向接收所述额外的终端专用参考信号的终端发送第四指示信息,用以告知接收所述额外的终端专用参考信号的终端所述第四指示信息指示的资源被占用。这里,所述第四指示信息可用于指示从所述用于承载所述终端专用参考信号的资源中选取出的符合预设条件的资源。
可选的,所述第四指示信息可以和前述第二指示信息一同发送,例如包含在同一个发送给终端的指示信息中。可选的,实施第四指示信息还可以和前述和第三指示信息一同发送。
为了确保指示信息(本发明实施例涉及的所述第一、第二或者第三指示信息)的正常传输,避免所述低时延业务的传输影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的资源。
进一步的,为了实现上述指示信息的正确接收,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的控制信息的资源。上述指示信息的控制信息可用于实现上述指示信息的正确接收,例如用于正确解调上述指示信息的DMRS。
本发明实施例中,所述符合预设条件的时频资源还可包括:未调度的资源粒子。即选取单元501还可用于从未调度的资源粒子,即空闲资源粒子,中选取出用于传输所述低时延业务的资源粒子,发送单元503还可用于在选取出的未调度资源粒子上发送所述低时延业务,可提高系统资源的利用率。
需要说明的,无线网络设备50包括的各个功能单元的实现方式可参考前述方法实施例中关于基站的具体内容,这里不再赘述。
参见图6,图6是本发明实施例提供的无线网络设备60的结构示意图。如图6所示,无线网络设备60可包括:第一接收单元601和第二接收单元605,其中:
第一接收单元601,用于接收另一无线网络设备发送的第一指示信息;所述第一指示信息用于指示所述另一无线网络设备从当前传输间隔对应的符合预设条件的时频资源中选取出的用于传输所述低时延业务的资源粒子;
第二接收单元605,用于根据所述第一指示信息,在所述第一信息指示的资源粒子上接收所述低时延业务;
其中,所述符合预设条件的时频资源可包括:已调度的时频资源。进一步的,所述符合预设条件的时频资源可不包括:预留出的用于承载小区下行控制信号、下行同步信号和下行参考信号的资源粒子。
可选的,无线网络设备60可为前述方法实施例中的终端,所述另一网络设备可为前述方法实施例中的基站。
本发明实施例中,所述已调度的时频资源可包括:所述另一无线网络设备通过资源调度分配给其他各个无线网络设备用于传输数据业务的时频资源,也包括所述另一无线网络设备通过资源调度分配给所述各个无线网络设备用于传输其他数据(如控制信息)的时频资源。所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子可以是指所述另一无线网络设备按照协议规定预留出的资源粒子。
可以理解的,所述符合预设条件的时频资源可不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子,可以避免由于所述另一无线网络设备占用该预留出资源而造成的对小区控制信息、同步信号以及参考信号的影响。关于所述小区下行控制信号、所述下行同步信号以及小区级下行参考信号的相关说明,请参考前述方法实施例中的内容,这里不再赘述。
另外,为了避免所述低时延业务的传输对广播信道和多播信道的影响,本发明实施例涉及的所述符合预设条件的时频资源还可进一步的不包括:预留给PMCH和PBCH的资源粒子。
另外,为了避免所述低时延业务的传输对全部的非低时延业务的影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述非低时延业务(如eMBB业务)的控制信息的资源。这样,所述非低时延业务的控制信息能够正常传输,可实现正常接收未被所述低时延业务抢占资源的非低时延业务。
具体的,所述非低时延业务的控制信息可包括:传输在PDCCH中的关于所述非低时延业务的控制信息,以及其他关于所述非低时延业务的非数据信
息或指示信息等。
在本发明实施例的一种实现方式中,所述符合预设条件的时频资源可具体包括:已调度给非低时延业务的时频资源。也即是说,当所述低时延业务到来时,为了保证所述低时延业务的及时传输,所述另一无线网络设备可以直接占用已调度给非低时延业务的时频资源来向无线网络设备60发送所述低时延业务。
在本发明实施例的另一种实现方式中,所述符合预设条件的时频资源还可包括:预留出的用于承载终端级下行参考信号但未被所述终端级下行参考信号占用的资源粒子,这里简称该资源粒子为可能传输所述终端级下行参考信号的资源粒子。即,所述另一无线网络设备可以直接占用可能传输该终端级下行参考信号的资源粒子来向无线网络设备60发送所述低时延业务。
可选的,如果所述当前传输间隔配置有额外的(additional)终端专用参考信号,则所述符合预设条件的资源还可以包括:用于承载所述额外的终端专用参考信号的资源也可以。
为了确保所述额外的终端专用参考信号相关的信道估计能够正确实施,如果用于承载所述额外的终端专用参考信号的资源被所述低时延业务抢占,则无线网络设备50可以向接收所述额外的终端专用参考信号的终端发送第四指示信息,用以告知接收所述额外的终端专用参考信号的终端所述第四指示信息指示的资源被占用。这里,所述第四指示信息可用于指示从所述用于承载所述终端专用参考信号的资源中选取出的符合预设条件的资源。
可选的,所述第四指示信息可以和前述第二指示信息一同发送,例如包含在同一个发送给终端的指示信息中。可选的,实施第四指示信息还可以和前述和第三指示信息一同发送。
为了确保指示信息(本发明实施例涉及的所述第一、第二或者第三指示信息)的正常传输,避免所述低时延业务的传输影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的资源。
进一步的,为了实现上述指示信息的正确接收,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指
示信息或者第三指示信息中的一项或多项的控制信息的资源。上述指示信息的控制信息可用于实现上述指示信息的正确接收,例如用于正确解调上述指示信息的DMRS。
本发明实施例中,所述符合预设条件的时频资源还可包括:未调度的资源粒子。即,所述另一无线网络设备还可以直接占用未调度的资源粒子,即空闲资源粒子,来向无线网络设备60发送所述低时延业务,可提高系统资源的利用率。
需要说明的,无线网络设备60包括的各个功能单元的实现方式可参考前述方法实施例中关于终端的具体内容,这里不再赘述。
为了便于实施本发明实施例,本发明提供了一种无线网络设备的结构示意图,用于实现前述方法实施例中所述基站的功能。参见图7,无线网络设备1100可包括:处理器1102、发射器1104、接收器1106、耦合器1108、天线1110和存储器1112。在本发明的一些实施例中,这些部件可通过总线或者其它方式连接,其中,图7中以通过总线连接为例。
其中,天线1110用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能;耦合器1108用于将天线1110接收的移动通信号分成多路,分配给多个的接收器1106。
发射器1104用于对处理器1102生成的移动通信信号进行发射处理(例如调制),接收器1106用于对天线1110接收的移动通信信号进行接收处理(例如解调),二者可看作一个无线调制解调器。具体实现中,发射器1104或接收器1106的数量可以是一个或多个。
存储器1112用于存储程序代码,具体实现中,存储器1112可以采用只读存储器(Read Only Memory,ROM),可用于存储程序代码。
可选的,处理器1102,可以用于负责空中接口相关的所有功能:(1)无线链路维护功能,保持与终端间的无线链路,同时负责无线链路数据和IP数据之间的协议转换;(2)无线资源管理功能,包括无线链路的建立和释放、无线资源的调度和分配等;(3)部分移动性管理功能,包括配置终端进行测量、评估终端无线链路质量、决策终端在小区间的切换等中的一项或多项。
本发明实施例中,处理器1102还可用于调用存储于存储器1112中程序代码执行如下步骤:
当接收到低时延业务的发送指令时,从当前传输间隔对应的符合预设条件的时频资源中选取出用于传输所述低时延业务的资源粒子;
利用发射器1104在所述选取出的资源粒子上发送所述低时延业务,并向另一无线网络设备发送第一指示信息,所述第一指示信息用于指示所述选取出的资源粒子;
其中,所述符合预设条件的时频资源可包括:已调度的时频资源。
进一步的,所述符合预设条件的时频资源可不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子。
可选的,无线网络设备1100可为前述方法实施例中的基站,所述另一网络设备可为前述方法实施例中的终端。
本发明实施例中,所述已调度的时频资源可包括:无线网络设备1100通过资源调度分配给其他各个无线网络设备用于传输数据业务的时频资源,也可包括无线网络设备1100通过资源调度分配给所述各个无线网络设备用于传输其他数据(如控制信息)的时频资源。所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子可以是指无线网络设备1100按照协议规定预留出的资源粒子。
可以理解的,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子,可以避免由于无线网络设备1100占用该预留出资源而造成的对小区控制信息、同步信号以及参考信号的影响。关于所述小区下行控制信号、所述下行同步信号以及下行参考信号的相关说明,请参考前述方法实施例中的内容,这里不再赘述。
另外,为了避免所述低时延业务的传输对广播信道和多播信道的影响,本发明实施例涉及的所述符合预设条件的时频资源还可进一步的不包括:预留给PMCH和PBCH的资源粒子。
另外,为了避免所述低时延业务的传输对全部的非低时延业务的影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述
非低时延业务(如eMBB业务)的控制信息的资源粒子。这样,所述非低时延业务的控制信息能够正常传输,可实现正常接收未被所述低时延业务抢占资源的非低时延业务。
具体的,所述非低时延业务的控制信息可包括:传输在PDCCH中的关于所述非低时延业务的控制信息,以及其他关于所述非低时延业务的非数据信息或指示信息等。
在本发明实施例的一种实现方式中,所述已调度的时频资源可具体包括:已调度给非低时延业务的时频资源。也即是说,当所述低时延业务到来时,为了保证所述低时延业务的及时传输,处理器1102可以从已调度给非低时延业务的时频资源中选取出用于传输所述低时延业务的资源粒子。并且,在选取出的该资源粒子上,处理器1102可利用发射器1104仅发送所述低时延业务,而不发送所述非低时延业务,避免信号重叠,形成干扰。
具体实现中,如果处理器1102占用已调度给非低时延业务的资源发送所述低时延业务,那么,处理器1102还可以利用发射器1104向原来接收所述非低时延业务的另一无线网络设备发送第二指示信息,用以告知该另一无线网络设备所述第二指示信息指示的资源被占用,被占用的资源上传输的数据不是所述非低时延业务,以使该另一无线网络设备忽略所述被占用资源上的数据。这里,所述第二指示信息可用于指示从所述已调度给非低时延业务的时频资源中选取出的用于传输所述低时延业务的资源粒子,即所述被占用的资源粒子。
在本发明实施例的另一种实现方式中,所述已调度的时频资源可具体包括:预留给终端级下行参考信号但未被所述终端级下行参考信号占用的资源粒子,这里简称该资源粒子为可能传输终端级下行参考信号的资源粒子。
可选的,如果所述当前传输间隔配置有额外的(additional)终端专用参考信号,则所述符合预设条件的资源还可以包括:用于承载所述额外的终端专用参考信号的资源也可以。
如果处理器1102从所述可能传输终端级下行参考信号的资源粒子中选取出用于发送所述低时延业务的资源粒子,那么,处理器1102还可以利用发射器1104向接收该终端级下行参考信号的另一无线网络设备发送第三指示信息,
用以告知接收该终端级下行参考信号的另一无线网络设备所述第三指示信息指示的资源粒子被占用,被占用资源上传输的数据不是所述下行参考信号。这里,所述第三指示信息用于指示从所述可能传输该终端级下行参考信号的资源粒子中选取出的用于传输所述低时延业务的资源粒子,即所述被占用的资源粒子。
为了确保指示信息(本发明实施例涉及的所述第一、第二或者第三指示信息)的正常传输,避免所述低时延业务的传输影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的资源粒子。
进一步的,为了实现上述指示信息的正确接收,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的控制信息的资源粒子。上述指示信息的控制信息可用于实现上述指示信息的正确接收,例如用于正确解调上述指示信息的DMRS。
本发明实施例中,除了所述已调度的时频资源,所述符合预设条件的时频资源还可包括:未调度的资源粒子。即,处理器1102还可以从未调度的资源粒子,即空闲资源粒子,中选取出用于传输所述低时延业务的资源粒子,并利用发射器1104在选取出的未调度资源粒子上发送所述低时延业务,可提高系统资源的利用率。
可理解的,处理器1102的具体执行步骤还可以参考前述方法实施例中基站的功能,此处不再赘述。
为了便于实施本发明实施例,本发明提供了一种无线网络设备的结构示意图,用于实现前述方法实施例中所述终端的功能。参见图8,无线网络设备1200可包括:输入输出模块(包括音频输入输出模块1218、按键输入模块1216以及显示器1220等)、输入输出接口1202、处理器1204、发射器1206、接收器1208、耦合器1210、天线1214以及存储器1212。在本发明的一些实施例中,这些部件可通过总线或者其它方式连接,其中,图8中以通过总线连接为例。其中:
天线1214用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能;耦合器1210用于将天线1214接收的移动通信信号分成多路,分配给多个的接收器1208。
发射器1206用于对处理器1204生成的移动通信信号进行发射处理(例如调制),接收器1208用于对天线1214接收的移动通信信号进行接收处理(例如解调),二者可看作一个无线调制解调器。具体实现中,发射器1206或接收器1208的数量可以是一个或多个。
所述输入输出模块主要用于实现无线网络设备1200和用户/外部环境之间的交互功能,主要包括音频输入输出模块1218、按键输入模块1216以及显示器1220等。具体实现中,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等中的一项或多项。其中,所述输入输出模块均通过用户接口1202与处理器1204进行通信。
输入输出接口1202是处理器1204与所述输入输出模块之间交换信息的连接电路,通过总线与处理器1204相连,可以简称为I/O接口。
存储器1212与处理器1204耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器1212可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。处理器1204主要用于调用存储于存储器1212中的程序,并执行如下步骤:
利用接收器1208接收另一无线网络设备发送的第一指示信息;所述第一指示信息用于指示所述另一无线网络设备从当前传输间隔对应的符合预设条件的时频资源中选取出的用于传输所述低时延业务的资源粒子;
根据所述第一指示信息,利用接收器1208在所述第一信息指示的资源粒子上接收所述低时延业务;
其中,所述符合预设条件的时频资源可包括:已调度的时频资源,但所述符合预设条件的时频资源可不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子。
可选的,无线网络设备1200可为前述方法实施例中的终端,所述另一网络设备可为前述方法实施例中的基站。
本发明实施例中,所述已调度的时频资源可包括:所述另一网络设备通过资源调度分配给其他各个无线网络设备用于传输数据业务的时频资源,也可包括所述另一网络设备通过资源调度分配给所述各个无线网络设备用于传输其他数据(如控制信息)的时频资源。所述预留给用于承载小区下行控制信号、下行同步信号以及小区级下行参考信号的资源粒子可以是指所述另一网络设备按照协议规定预留出的资源粒子。
可以理解的,所述符合预设条件的时频资源不包括:预留出的用于承载小区下行控制信号、下行同步信号和小区级下行参考信号的资源粒子,可以避免由于所述另一网络设备占用该预留出资源而造成的对小区控制信息、同步信号以及参考信号的影响。关于所述小区下行控制信号、所述下行同步信号以及下行参考信号的相关说明,请参考前述方法实施例中的内容,这里不再赘述。
另外,为了避免所述低时延业务的传输对广播信道和多播信道的影响,本发明实施例涉及的所述符合预设条件的时频资源还可进一步的不包括:预留给PMCH和PBCH的资源粒子。
另外,为了避免所述低时延业务的传输对全部的非低时延业务的影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述非低时延业务(如eMBB业务)的控制信息的资源。这样,所述非低时延业务的控制信息能够正常传输,可实现正常接收未被所述低时延业务抢占资源的非低时延业务。
具体的,所述非低时延业务的控制信息可包括:传输在PDCCH中的关于所述非低时延业务的控制信息,以及其他关于所述非低时延业务的非数据信息或指示信息等。
在本发明实施例的一种实现方式中,所述符合预设条件的时频资源可具体包括:已调度给非低时延业务的时频资源。也即是说,当所述低时延业务到来时,为了保证所述低时延业务的及时传输,所述另一个无线网络设备可以直接占用已调度给非低时延业务的时频资源来传输所述低时延业务。
在本发明实施例的另一种实现方式中,所述符合预设条件的时频资源可具体包括:预留给终端级下行参考信号但未被所述终端级下行参考信号占用
的资源粒子,这里简称该资源粒子为可能传输所述终端级下行参考信号的资源粒子。即,所述另一个无线网络设备可以直接占用所述可能传输所述终端级下行参考信号的资源粒子来传输所述低时延业务。
可选的,如果所述当前传输间隔配置有额外的(additional)终端专用参考信号,则所述符合预设条件的资源还可以包括:用于承载所述额外的终端专用参考信号的资源也可以。
为了确保指示信息(本发明实施例涉及的所述第一、第二或者第三指示信息)的正常传输,避免所述低时延业务的传输影响,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的资源。
进一步的,为了实现上述指示信息的正确接收,本发明实施例涉及的所述符合预设条件的资源还可以不包括:用于承载所述第一指示信息、第二指示信息或者第三指示信息中的一项或多项的控制信息的资源。上述指示信息的控制信息可用于实现上述指示信息的正确接收,例如用于正确解调上述指示信息的DMRS。
本发明实施例中,除了所述已调度的时频资源,所述符合预设条件的时频资源还可包括:未调度的资源粒子。即,所述另一个无线网络设备还可以直接占用未调度的资源粒子,即空闲资源粒子,来传输所述低时延业务,可提高系统资源的利用率。
需要说明的,无线网络设备1200可以是4G通信系统(LTE)、以及未来的4.5G、5G中的终端。
可理解的,处理器1204的具体执行步骤可参考前述方法实施例中的终端的功能,此处不再赘述。
另外,本发明实施例还提供了一种通信系统(如图1所示),所述通信系统包括:第一无线网络设备和第二无线网络设备。其中,所述第一无线网络设备可以是前述方法实施例中的基站,所述第二无线网络设备可以是前述方法实施例中的终端(相当于图1中的用户设备,即UE)。
具体实现中,所述第一无线网络设备也可以是图5实施例描述的无线网络设备50,所述第二无线网络设备也可以是图6描述的无线网络设备60。
具体实现中,所述第一无线网络设备还可以是图7描述的无线网络设备1100,所述第二无线网络设备还可以是图8描述的无线网络设备1200。
综上所述,实施本发明实施例,基站可以从当前传输间隔对应的符合预设条件的资源中选取出用于传输所述低时延业务的资源,并在所述选取出的资源上向终端发送所述低时延业务;其中,所述符合预设条件的资源包括:已调度的资源。上述方案可实现在及时传输低时延业务的同时提高资源利用率。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
Claims (27)
- 一种数据传输方法,其特征在于,包括:基站从当前传输间隔对应的第一资源中确定用于传输第一业务的资源;所述基站在确定出的资源上发送所述第一业务,并向终端发送第一指示信息;所述第一指示信息用于指示所述用于传输所述第一业务的资源;其中,所述第一资源包括已调度的资源。
- 如权利要求1所述的方法,其特征在于,所述第一资源不包括:用于承载小区下行控制信号、下行同步信号和小区级下行参考信号中的一项或多项的资源。
- 如权利要求1或2所述的方法,其特征在于,所述已调度的资源包括:已调度给非第一业务的资源;所述基站在所述第一资源上发送所述第一业务,包括:如果所述第一资源包括所述已调度给非第一业务的资源,则在所述已调度给非第一业务的资源上,所述基站仅发送所述第一业务。
- 如权利要求3所述的方法,其特征在于,所述方法还包括:所述第一资源包括所述已调度给非第一业务的资源,所述基站向接收所述非第一业务的终端发送第二指示信息,用以告知接收所述非第一业务的终端所述第二指示信息指示的资源被占用;所述第二指示信息用于指示从所述已调度给非第一业务的资源中选取出的第一资源。
- 如权利要求1-4中任一项所述的方法,其特征在于,用于承载终端级下行参考信号的资源被配置为允许占用,所述第一资源包括:预留出的用于承载所述终端级下行参考信号但未被所述终端级下行参考信号占用的资源。
- 如权利要求5所述的方法,其特征在于,所述方法还包括:如果所述第一资源包括所述用于承载终端级下行参考信号但未被终端级下行参考信号占用的资源,则所述基站向接收所述下行参考信号的终端发送第三指示信息,用以告知接收所述终端级下行参考信号的终端所述第三指示信息指示的资源被占用;所述第三指示信息用于指示从用于承载所述终端级下行参考信号但未被所述终端级下行参考信号占用的资源中,选取出的所述第一资源。
- 如权利要求1-6中任一项所述的方法,其特征在于,所述第一资源还 包括:未调度的资源。
- 如权利要求2-7中任一项所述的方法,其特征在于,所述小区下行控制信号包括以下一项或多项:下行调度信息、控制格式指示信息和自动重传请求ARQ信息。
- 如权利要求2-8中任一项所述的方法,其特征在于,所述下行同步信号包括以下一项或多项:主同步信号和辅同步信号。
- 如权利要求2-9中任一项所述的方法,其特征在于,所述小区级下行参考信号包括以下一项或多项:小区专用参考信号、定位参考信号、信道状态信息参考信号和多播单频网参考信号。
- 如权利要求5或6所述的方法,其特征在于,所述终端级下行参考信号包括以下一项或多项:终端专用参考信号、终端级物理下行共享信道PDSCH参考信号、终端级物理下行控制信道PDCCH参考信号、所述第一指示信息的参考信号。
- 如权利要求11所述的方法,其特征在于,所述当前传输间隔配置有额外的终端专用参考信号,所述第一资源还包括:用于承载所述额外的终端专用参考信号的资源。
- 如权利要求12所述的方法,其特征在于,所述方法还包括:所述基站向接收所述额外的终端专用参考信号的终端发送第四指示信息,用以告知接收所述额外的终端专用参考信号的终端所述第四指示信息指示的资源被占用;所述第四指示信息用于指示从所述用于承载所述终端专用参考信号的资源中选取出的第一资源。
- 一种数据传输方法,其特征在于,包括:终端接收基站发送的第一指示信息;所述第一指示信息用于指示所述基站从当前传输间隔对应的第一资源中确定的用于传输所述第一业务的资源;所述终端根据所述第一指示信息,在所述第一信息指示的资源上接收所述第一业务;其中,所述第一资源包括已调度的资源。
- 如权利要求14所述的方法,其特征在于,所述第一资源不包括:用于承载小区下行控制信号、下行同步信号和小区级下行参考信号中的一项或 多项的资源。
- 如权利要求14或15所述的方法,其特征在于,所述已调度的资源包括:已调度给非第一业务的资源。
- 如权利要求14-16中任一项所述的方法,其特征在于,用于承载终端级下行参考信号的资源被配置为允许占用,所述第一资源还包括:预留出的用于承载所述终端级下行参考信号但未被所述终端级下行参考信号占用的资源。
- 如权利要求14-17中任一项所述的方法,其特征在于,所述第一资源还包括:未调度的资源。
- 如权利要求14-18中任一项所述的方法,其特征在于,所述小区下行控制信号包括以下一项或多项:下行调度信息、控制格式指示信息和自动重传请求ARQ信息。
- 如权利要求14-19中任一项所述的方法,其特征在于,下行同步信号包括以下一项或多项:主同步信号和辅同步信号。
- 如权利要求14-20中任一项所述的方法,其特征在于,所述小区级下行参考信号包括以下一项或多项:小区专用参考信号、定位参考信号、信道状态信息参考信号和多播单频网参考信号。
- 如权利要求17-21中任一项所述的方法,其特征在于,所述终端级下行参考信号包括以下一项或多项:终端专用参考信号、终端级物理下行共享信道PDSCH参考信号、终端级物理下行控制信道PDCCH参考信号、所述第一指示信息的参考信号。
- 如权利要求22所述的方法,其特征在于,所述当前传输间隔配置有额外的终端专用参考信号,所述第一资源还包括:用于承载所述额外的终端专用参考信号的资源。
- 如权利要求23所述的方法,其特征在于,所述方法还包括:所述基站向接收所述额外的终端专用参考信号的终端发送第四指示信息,用以告知接收所述额外的终端专用参考信号的终端所述第四指示信息指示的资源被占用;所述第四指示信息用于指示从所述用于承载所述终端专用参考信号的资源中选取出的第一资源。
- 一种无线网络设备,其特征在于,包括:存储器以及与所述存储器耦合的处理器、发射器,其中:所述处理器读取所述存储器中存储的指令,用于执行权利要求1-13中任意一项所述的方法。
- 一种无线网络设备,其特征在于,包括:存储器以及与所述存储器耦合的处理器、接收器,其中:所述处理器读取所述存储器中存储的指令,用于执行权利要求14-24中任意一项所述的方法。
- 一种通信系统,其特征在于,包括:第一无线网络设备和第二无线网络设备,其中:所述第一无线网络设备是权利要求25所述的无线网络设备,所述第二无线网络设备是权利要26所述的无线网络设备。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17746698.4A EP3404978B1 (en) | 2016-02-06 | 2017-01-06 | Data transmission methods and related wireless network devices |
US16/054,733 US20180343100A1 (en) | 2016-02-06 | 2018-08-03 | Data Transmission Method, Related Device, And System |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610084146.8 | 2016-02-06 | ||
CN201610084146.8A CN107046720B (zh) | 2016-02-06 | 2016-02-06 | 一种低时延业务传输方法、相关设备及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/054,733 Continuation US20180343100A1 (en) | 2016-02-06 | 2018-08-03 | Data Transmission Method, Related Device, And System |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017133378A1 true WO2017133378A1 (zh) | 2017-08-10 |
Family
ID=59500576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/070514 WO2017133378A1 (zh) | 2016-02-06 | 2017-01-06 | 一种数据传输方法、相关设备及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180343100A1 (zh) |
EP (1) | EP3404978B1 (zh) |
CN (1) | CN107046720B (zh) |
WO (1) | WO2017133378A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11388738B2 (en) | 2017-09-14 | 2022-07-12 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and device for determining time-domain resources, storage medium, and system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109923812B (zh) * | 2017-02-25 | 2021-09-24 | 上海朗帛通信技术有限公司 | 一种用户设备、基站中的用于动态调度的方法和装置 |
WO2018232755A1 (zh) * | 2017-06-23 | 2018-12-27 | 北京小米移动软件有限公司 | 抢占时频资源的确定方法及装置和用户设备 |
WO2020061950A1 (zh) * | 2018-09-27 | 2020-04-02 | Oppo广东移动通信有限公司 | 通信方法、终端设备和网络设备 |
CN113395083B (zh) * | 2021-06-24 | 2022-12-16 | 国网河北省电力公司信息通信分公司 | 一种基于5g网络的配网自动毫秒级低时延设备 |
CN118235466A (zh) * | 2022-10-20 | 2024-06-21 | 北京小米移动软件有限公司 | 通信方法、装置、设备以及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101523795A (zh) * | 2006-09-05 | 2009-09-02 | 高通股份有限公司 | 用于数据符号和控制符号复用的方法和装置 |
CN101924721A (zh) * | 2009-06-10 | 2010-12-22 | 清华大学 | 确定下行多址系统传输模式的方法及发射端、接收端装置 |
CN105025574A (zh) * | 2014-04-16 | 2015-11-04 | 中兴通讯股份有限公司 | 一种数据传输方法及装置 |
WO2015179135A1 (en) * | 2014-05-19 | 2015-11-26 | Qualcomm Incorporated | Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2681214C (en) * | 2007-03-19 | 2016-08-30 | Telefonaktiebolaget L M Ericsson (Publ) | (h)arq for semi-persistent scheduling |
US8204098B2 (en) * | 2009-06-19 | 2012-06-19 | Nokia Corporation | Control signaling for multiple carrier high speed uplink packet access in radio frequency communication systems |
US9444589B2 (en) * | 2009-10-05 | 2016-09-13 | Qualcomm Incorporated | Method and apparatus for puncturing data regions for signals to minimize data loss |
EP2635082A1 (en) * | 2012-02-29 | 2013-09-04 | Panasonic Corporation | Dynamic subframe bundling |
CN103687045A (zh) * | 2012-09-07 | 2014-03-26 | 电信科学技术研究院 | 一种业务发送方法及装置 |
-
2016
- 2016-02-06 CN CN201610084146.8A patent/CN107046720B/zh active Active
-
2017
- 2017-01-06 WO PCT/CN2017/070514 patent/WO2017133378A1/zh active Application Filing
- 2017-01-06 EP EP17746698.4A patent/EP3404978B1/en active Active
-
2018
- 2018-08-03 US US16/054,733 patent/US20180343100A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101523795A (zh) * | 2006-09-05 | 2009-09-02 | 高通股份有限公司 | 用于数据符号和控制符号复用的方法和装置 |
CN101924721A (zh) * | 2009-06-10 | 2010-12-22 | 清华大学 | 确定下行多址系统传输模式的方法及发射端、接收端装置 |
CN105025574A (zh) * | 2014-04-16 | 2015-11-04 | 中兴通讯股份有限公司 | 一种数据传输方法及装置 |
WO2015179135A1 (en) * | 2014-05-19 | 2015-11-26 | Qualcomm Incorporated | Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control |
Non-Patent Citations (1)
Title |
---|
See also references of EP3404978A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11388738B2 (en) | 2017-09-14 | 2022-07-12 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and device for determining time-domain resources, storage medium, and system |
TWI771494B (zh) * | 2017-09-14 | 2022-07-21 | 大陸商Oppo廣東移動通信有限公司 | 一種確定時域資源的方法、設備、儲存介質及系統 |
US11711836B2 (en) | 2017-09-14 | 2023-07-25 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method, device, storage medium, and system for determining time-domain resource |
Also Published As
Publication number | Publication date |
---|---|
EP3404978A4 (en) | 2019-01-09 |
CN107046720B (zh) | 2021-05-18 |
EP3404978B1 (en) | 2020-03-25 |
US20180343100A1 (en) | 2018-11-29 |
EP3404978A1 (en) | 2018-11-21 |
CN107046720A (zh) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10225744B2 (en) | Method and apparatus for sending information | |
CN113225164B (zh) | 动态tdd上行链路/下行链路配置方法 | |
EP3863347B1 (en) | Resource configuration method and device | |
RU2631671C2 (ru) | Временная шкала harq для tdd-fdd агрегирования несущих | |
WO2017133378A1 (zh) | 一种数据传输方法、相关设备及系统 | |
CN111345087B (zh) | 资源确定方法、装置、网元及系统 | |
JP2019525652A (ja) | 無線通信システムにおいて上りリンク送信のための方法及びそのための装置 | |
CN102938690B (zh) | 应答信息的发送、接收方法和设备 | |
JP2015523825A (ja) | 方法及び装置 | |
TW201739228A (zh) | 終端裝置、基地台裝置及通訊方法 | |
CN103238306A (zh) | 支持从/向多个设备数据传输的设备到设备簇增强 | |
EP3657887B1 (en) | Resource allocation method and device | |
WO2017113405A1 (zh) | 一种跨载波调度方法、反馈方法及装置 | |
WO2018202193A1 (zh) | 一种数据传输方法、装置和系统 | |
WO2017113077A1 (zh) | 一种上行紧急业务传输方法、基站、用户设备及系统 | |
WO2015024265A1 (zh) | Tdd系统中信息传输方法、信息确定方法、装置及系统 | |
CN110612766B (zh) | 上行控制信息传输方法、装置及系统 | |
WO2018059170A1 (zh) | 通信方法、基站以及终端 | |
WO2018120619A1 (zh) | 数据调度传输方法、调度实体、传输装置、基站及终端 | |
CN118235496A (zh) | 对于侧行链路通信的调度 | |
WO2018018461A1 (zh) | 一种上行数据传输方法及设备、系统 | |
CN117426131A (zh) | 通信方法及装置 | |
CN113905447A (zh) | 上行信号的发送方法、装置及系统 | |
US20240357583A1 (en) | Method and apparatus of controlling uplink transmission in wireless communication system | |
WO2018201969A1 (zh) | 下行信道传输、接收方法、装置、基站及终端 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17746698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017746698 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017746698 Country of ref document: EP Effective date: 20180813 |