[go: up one dir, main page]

WO2017107604A1 - 天线组件及电子设备 - Google Patents

天线组件及电子设备 Download PDF

Info

Publication number
WO2017107604A1
WO2017107604A1 PCT/CN2016/100080 CN2016100080W WO2017107604A1 WO 2017107604 A1 WO2017107604 A1 WO 2017107604A1 CN 2016100080 W CN2016100080 W CN 2016100080W WO 2017107604 A1 WO2017107604 A1 WO 2017107604A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit
low frequency
frequency band
grounding
Prior art date
Application number
PCT/CN2016/100080
Other languages
English (en)
French (fr)
Inventor
匡巍
苏囿铨
刘文冬
Original Assignee
小米科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小米科技有限责任公司 filed Critical 小米科技有限责任公司
Publication of WO2017107604A1 publication Critical patent/WO2017107604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect

Definitions

  • the present disclosure relates to the field of antennas, and in particular to an antenna assembly and an electronic device.
  • the related art forms a segmented metal back cover by slitting the metal back cover, and radiates the signal by using the segmented bottom metal back cover as an antenna.
  • the bottom metal back cover is designed as a single antenna to cover the entire frequency band, resulting in poor antenna performance and disadvantageous to carrier aggregation.
  • the bottom metal back cover is designed as a single antenna to cover the entire frequency band, resulting in poor antenna performance and disadvantageous to carrier aggregation.
  • the present disclosure provides an antenna assembly and an electronic device. The technical solution is as follows:
  • an antenna assembly comprising:
  • An antenna body two feeding circuits and at least one grounding circuit
  • the two feeding circuits are connected to the antenna body through respective corresponding feeding points;
  • At least one grounding circuit is connected to the antenna body through respective corresponding grounding points, and at least one of the grounding points is located between the two feeding points.
  • the antenna component includes a first feeding circuit, a second feeding circuit and a first grounding circuit, the first feeding circuit is connected to the antenna body through the first feeding point, and the second feeding circuit is passed through the second feeding
  • the electrical point is connected to the antenna body, and the first grounding circuit is connected to the antenna body through the first grounding point, and the first grounding The point is located between the first feed point and the second feed point;
  • the first grounding point divides the antenna body into a left antenna body and a right antenna body, and the first feeding point is located on the left antenna body, and the second feeding point is located in the right antenna body;
  • the first feeding circuit forms a first antenna with the first grounding circuit and the left antenna body;
  • the second feed circuit forms a second antenna with the first ground circuit and the right antenna body.
  • a distance between the first feeding point and the first grounding point is greater than a distance between the second feeding point and the first grounding point
  • the first antenna is used to cover the low frequency band and the middle frequency band, and the second antenna is used to cover the high frequency band;
  • the first antenna is used to cover the low frequency band and the high frequency band, and the second antenna is used to cover the middle frequency band;
  • the frequency range of the low frequency band is 700MHz to 960MHz
  • the frequency range of the middle frequency band is 1710MHZ to 2170MHz
  • the frequency range of the high frequency band is 2300MHz to 2700MHz.
  • a first matching circuit for impedance matching is included in the first ground circuit
  • a second matching circuit for impedance matching is included in the second ground circuit.
  • the first matching circuit is further configured to provide at least two low frequency states, and at least two low frequency states are used to cover the low frequency band;
  • the first matching circuit includes an inductor that provides at least two inductance values, and the first matching circuit is configured to switch different low frequency states by adjusting an inductance value of the inductor;
  • the frequency corresponding to the low frequency state is inversely proportional to the inductance value.
  • the first matching circuit is further configured to provide at least two low frequency states, and at least two low frequency states are used to cover the low frequency band;
  • the first matching circuit includes a capacitor that provides at least two capacitance values, and the first matching circuit is configured to switch different low frequency states by adjusting a capacitance value of the capacitor;
  • the frequency corresponding to the low frequency state is inversely proportional to the capacitance value.
  • the antenna component further includes a second ground circuit, and the second ground circuit is connected to the antenna body through the second ground point;
  • the second grounding point is located on the left antenna body, and the second grounding circuit is used to improve the antenna isolation of the first antenna and the second antenna.
  • an electronic device comprising the antenna assembly of the first aspect.
  • the back cover of the electronic device is a segmented metal back cover
  • the antenna body is a bottom metal back cover of the segmented metal back cover.
  • the cover is designed as a single antenna to cover the entire frequency band, resulting in poor antenna performance and disadvantageous to carrier aggregation. It is achieved that two antennas are formed by using the same antenna body, and two antennas are used to achieve full-band coverage. The antenna performance of each antenna is guaranteed, and the structure of the dual antenna is advantageous for carrier aggregation of broadband.
  • FIG. 1 is a schematic structural diagram of an antenna assembly according to an exemplary embodiment of the present disclosure
  • FIG. 2A is a schematic structural diagram of an antenna assembly according to another exemplary embodiment of the present disclosure.
  • FIG. 2B is a schematic structural view of a first matching circuit in the antenna assembly shown in FIG. 2A;
  • FIG. 2C is a schematic structural view of a first matching circuit in the antenna assembly shown in FIG. 2A;
  • 2D is a schematic structural diagram of an antenna assembly according to still another exemplary embodiment of the present disclosure.
  • 3A is an S11 curve of the first antenna and the second antenna in the antenna assembly shown in FIG. 2A;
  • 3B is an antenna isolation curve of the first antenna and the second antenna in the antenna assembly shown in FIG. 2A;
  • 3C is an efficiency curve of the first antenna and the second antenna in the antenna assembly shown in FIG. 2A;
  • FIG. 4 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present disclosure.
  • FIG. 1 shows a schematic structural diagram of an antenna assembly 100 according to an exemplary embodiment of the present disclosure.
  • the antenna assembly includes an antenna body, two feed circuits, and at least one ground circuit.
  • the antenna assembly 100 includes an antenna body 110 , a first feed circuit 121 , a second feed circuit 122 , and a first ground circuit 130 .
  • the antenna body 110 is provided with a first feeding point 111 and a second feeding point 112.
  • the first feeding circuit 121 is electrically connected to the antenna body 110 through the first feeding point 111.
  • the second feeding circuit 122 is electrically connected.
  • the antenna body 110 is electrically connected to the second feed point 112.
  • the antenna body 110 is further provided with a first grounding point 113, and the first grounding point 113 is located between the first feeding point 111 and the second feeding point 112.
  • the first grounding circuit 130 is electrically connected to the antenna body 110 through the first grounding point 113.
  • the antenna body 110 is divided into a left antenna body 114 and a right antenna body 115, wherein the left antenna body 114 forms a first feeding point 121 and a first grounding circuit 130.
  • the first antenna 140, the right antenna body 115 and the second feeding point 122, and the first ground circuit 130 form a second antenna 150, and the first antenna 140 and the second antenna 150 are used to cover the entire frequency band (700 MHz to 2700 MHz). And the working frequency bands of the first antenna 140 and the second antenna 150 are isolated from each other.
  • the first matching circuit 121 further includes a first matching circuit 121A
  • the second feeding circuit 122 further includes a second matching circuit 122A.
  • the first matching circuit 121A and the second matching circuit 122A are used for antenna impedance. Matching is performed to increase the radiation efficiency of the first antenna 140 and the second antenna 150.
  • the antenna assembly provided in this embodiment has two grounding circuits disposed on the antenna body, and one feeding circuit is respectively disposed on two sides of the grounding circuit, thereby forming two coverings on the same antenna body.
  • the full-band antenna solves the problem that the bottom metal back cover is designed as a single antenna to cover the entire frequency band, which results in poor antenna performance and is not conducive to carrier aggregation; it is achieved that two antennas are formed by using the same antenna body. Two antennas are used to achieve coverage of the entire frequency band, thereby ensuring antenna performance of each antenna, and the structure of the dual antenna is advantageous for carrier aggregation of broadband.
  • FIG. 2A shows a schematic structural diagram of an antenna assembly 200 according to another exemplary embodiment of the present disclosure.
  • the antenna assembly 200 includes an antenna body 210, a first feed circuit 221, a second feed circuit 222, and a first ground circuit 231.
  • the antenna body 210 is provided with a first feeding point 211 and a second feeding point 212.
  • the first feeding circuit 221 is electrically connected to the antenna body 210 through the first feeding point 211.
  • the second feeding circuit 222 is electrically connected.
  • the antenna body 210 is electrically connected to the second feed point 212.
  • the first feeding circuit 221 transmits the feeding current to the antenna body 210 through the first feeding point 211
  • the second feeding circuit 222 transmits the feeding to the antenna body 210 through the second feeding point 212. Electric current.
  • the antenna body 210 is further provided with a first grounding point 213, and the first grounding point 213 is located between the first feeding point 211 and the second feeding point 212.
  • the first grounding circuit 231 is electrically connected to the antenna body 210 through the first grounding point 213.
  • the antenna body 210 is divided into a left antenna body 214 and a right antenna body 215, and the first feeding point 211 is located at the left antenna body 214, and second.
  • the feed point 212 is located on the right antenna body 215.
  • the left antenna body 214 forms a first antenna 240 with the first feeding point 221 and the first ground circuit 231
  • the right antenna body 215 and the second feeding point 222 and the first ground circuit 231 form a second antenna 250 .
  • the first antenna 240 and the second antenna 250 are both inverted F-type antennas.
  • the first antenna 240 and the second antenna 250 may also adopt other antenna types, such as a loopback antenna (when both the first feed circuit 211 and the second feed circuit 222 are located at the edge position of the antenna body 210). And so on, the embodiments of the present disclosure do not define the antenna types of the first antenna and the second antenna.
  • the first antenna 240 and second antenna 250 are designed to each cover a different frequency band.
  • the distance between the first feed point 211 and the first ground point 213 is greater than the distance between the second feed point 212 and the first ground point 213.
  • the length of the antenna component 210 participating in the radiation in the first antenna 240 is greater than the length of the antenna component 210 participating in the radiation in the second antenna 250, so the first antenna 240 can be covered more than the second antenna 250. Low frequency band.
  • the first antenna 240 can be designed to cover the low frequency band and the middle frequency band, and maintain good radiation performance and radiation efficiency in the low frequency band and the middle frequency band; correspondingly, the second antenna 250 can be Designed to cover high frequency bands and maintain good radiation performance and radiation efficiency at high frequencies.
  • the first antenna component 240 can be designed to be used for low coverage. The frequency band and the high frequency band maintain good radiation performance and radiation efficiency in the low frequency band and the high frequency band; accordingly, the second antenna component 250 can be designed to cover the middle frequency band and maintain good radiation performance and radiation efficiency in the middle frequency band.
  • the frequency range of the low frequency band may be 700 MHz to 960 MHz
  • the frequency range of the middle frequency band may be 1710 MHz to 2170 MHz
  • the frequency range of the high frequency band may be 2300 MHz to 2700 MHz, that is, the frequency corresponding to the low frequency band ⁇ the frequency corresponding to the middle frequency band ⁇ the high frequency band Corresponding frequency.
  • the first antenna 240 and the second antenna 250 are respectively operating in different frequency bands and the isolation between different frequency bands is high, the first antenna 240 and the second antenna 250 can simultaneously Work to cover the entire frequency band together.
  • the first antenna 240 and the second antenna 250 can maintain better radiation performance and radiation efficiency in the respective covered frequency bands, and the supported broadband is wider, which is beneficial to the antenna assembly 200 to implement various combinations of carrier aggregation (low frequency band + Medium frequency band, low frequency band + high frequency band, medium frequency band + high frequency band, low frequency band + medium frequency band + high frequency band).
  • the antenna assembly provided in this embodiment has two grounding circuits disposed on the antenna body, and one feeding circuit is respectively disposed on two sides of the grounding circuit, thereby forming two coverings on the same antenna body.
  • the full-band antenna solves the problem that the bottom metal back cover is designed as a single antenna to cover the entire frequency band, which results in poor antenna performance and is not conducive to carrier aggregation; it is achieved that two antennas are formed by using the same antenna body. Two antennas are used to achieve coverage of the entire frequency band, thereby ensuring antenna performance of each antenna, and the structure of the dual antenna is advantageous for carrier aggregation of broadband.
  • the interference between the antennas when the dual antennas work together is small; at the same time, each antenna can be maintained in the corresponding frequency band.
  • High radiation performance and radiation efficiency, and wide bandwidth support, is beneficial to the dual-antenna structure to achieve various combinations of carrier aggregation.
  • the first feeding circuit 221 further includes a first matching circuit 221A
  • the second feeding circuit 222 further includes a second matching circuit 222A.
  • the first matching circuit 221A and the second matching circuit 222A respectively match the antenna impedances, so that both the first antenna 240 and the second antenna 250 can maintain high radiation efficiency.
  • the first matching circuit 221A is an adjustable matching circuit for providing at least two low frequency states, and at least two low frequency states are used for covering the low frequency band.
  • the first matching circuit 221A may include a capacitor 221Aa, and the capacitor 221Aa provides at least two capacitance values, that is, the capacitor 221Aa is a tunable capacitor.
  • a matching circuit 221A switches between different low frequency states by adjusting the capacitance value of the capacitor 221Aa.
  • the capacitor 221Aa provides two capacitance values, which are a first capacitance value and a second capacitance value, respectively.
  • the first matching circuit 221A adjusts the capacitance 221Aa to the first capacitance value
  • the first antenna 240 operates in the first low frequency state, and the frequency corresponding to the first low frequency state may be 700 MHz
  • the first matching circuit 221A adjusts the capacitance 221Aa to In the second capacitance value
  • the first antenna 240 operates in the second low frequency state, and the frequency corresponding to the second low frequency state may be 900 MHz.
  • both the radiation efficiency and the radiation performance at 700 MHz are superior to the radiation efficiency and radiation performance at 700 MHz when the first antenna 240 operates in the second low frequency state (900 MHz state).
  • both the radiation efficiency and the radiation performance at 900 MHz are superior to the radiation efficiency and radiation performance at 900 MHz when the first antenna 240 operates in the first low frequency state.
  • the first matching circuit 221A adjusts the capacitance 221Aa to a first capacitance value, so that the first antenna 240 operates in the first low frequency state, thereby ensuring efficient radiation of the first antenna 240 at 700 MHz.
  • the first matching circuit 221A adjusts the capacitance 221Aa to a second capacitance value, so that the first antenna 240 operates in the second low frequency state, thereby ensuring efficient radiation of the first antenna 240 at 900 MHz.
  • the frequency corresponding to each low frequency state is inversely proportional to the capacitance value of the capacitor 221Aa, that is, the larger the capacitance value of the capacitor 221Aa, the frequency corresponding to the low frequency state provided by the first antenna 240.
  • the first matching circuit 221A may also include an inductor 221Ab, which provides at least two inductance values, that is, the inductor 221Ab is a tunable inductor, and the first matching The circuit 221A switches the different low frequency states by adjusting the inductance value of the inductor 221Ab.
  • the frequency corresponding to each low frequency state is inversely proportional to the inductance value of the inductor 221Ab, that is, the larger the inductance value of the inductor 221Ab, the frequency corresponding to the low frequency state provided by the first antenna 240.
  • the present embodiment only includes the adjustable capacitor (or adjustable inductor) in the first matching circuit 221A, and switches the first by changing the capacitance value (or the inductance value) of the adjustable capacitor (or the adjustable inductor).
  • the low frequency state of the antenna 240 is schematically illustrated as an example. In other possible implementations, the first match In the circuit 221A, switching of different low frequency states can also be realized by other electronic components, which is not limited in this embodiment.
  • a different low frequency is obtained by setting a tunable capacitor (or a tunable inductor) in the first matching circuit and adjusting a capacitance value (or an inductance value) of the tunable capacitor (or a tunable inductor).
  • the state realizes that the lower frequency band can be covered by using less states, and the bandwidth corresponding to each state is wider, which is advantageous for carrier aggregation of broadband.
  • a second ground circuit 232 can also be included in the antenna assembly 200.
  • the second grounding circuit 232 is electrically connected to the antenna body 210 through a second grounding point 216 , and the second grounding point 216 is located in the left antenna body 214 .
  • the second ground circuit 232 is used to increase the antenna isolation of both when the first antenna 240 and the second antenna 250 are operated together.
  • the grounding manner of the first ground circuit 231 and the second ground circuit 232 includes However, it is not limited to the top metal back cover through the top of the pogo pin, the metal back cover through the top of the shrapnel, and the metal back cover at the seam.
  • the antenna isolation of the first antenna and the second antenna is improved, thereby reducing antenna interference when the first antenna and the second antenna work simultaneously, and further improving.
  • the stability of the antenna assembly work.
  • FIG. 3A is an S11 curve of the first antenna and the second antenna in the antenna assembly shown in FIG. 2A
  • FIG. 3B is an antenna isolation curve of the first antenna and the second antenna in the antenna assembly shown in FIG. 2A
  • FIG. 3C is the FIG. An efficiency curve of the first antenna and the second antenna in the antenna assembly, wherein the first antenna is used to cover the low frequency band and the middle frequency band, the second antenna is used to cover the high frequency band, and the first antenna uses the first low frequency state and the second antenna
  • the low frequency state has two states to cover the low frequency band.
  • the first antenna and the second antenna can cover the full frequency band (700 MHz to 2700 MHz), and the first antenna can be in a low frequency state (two in this embodiment). Covers the entire low frequency range (700MHz-960MHz).
  • the antenna component 200 since the bandwidth corresponding to each low frequency state of the first antenna is large, it is advantageous for the antenna component 200 to perform various carrier aggregation combinations (low frequency Segment + medium frequency band, low frequency band + high frequency band, medium frequency band + high frequency band, low frequency band + medium frequency band + high frequency band).
  • the S11 value corresponding to the first low frequency state is superior to the S11 value corresponding to the second low frequency state, and the efficiency value corresponding to the first low frequency state is higher than the second low frequency state.
  • the efficiency value that is, at a frequency of 700 MHz, the radiation performance and the radiation efficiency corresponding to the first low frequency state are better than the second low frequency state; at the frequency of 900 MHz, the S11 value corresponding to the second low frequency state
  • the efficiency value corresponding to the second low frequency state is higher than the efficiency value corresponding to the first low frequency state, that is, the radiation performance and the radiation efficiency corresponding to the second low frequency state at a frequency of 900 MHz.
  • Both can be better than the first low frequency state. Therefore, the electronic device provided with the antenna assembly 200 shown in FIG. 2A can control the switching to the appropriate low frequency state in the first matching circuit according to the current operating frequency point, thereby improving the radiation performance and radiation efficiency of the antenna assembly 200 in the low frequency band.
  • the antenna isolation of the first antenna and the second antenna is greater than 16 dB, thereby ensuring that the mutual interference between the first antenna and the second antenna is small, and the first antenna and the second antenna are simultaneously operated. Stability.
  • the antenna assembly 200 shown in FIG. 2A has good performance and is simple to manufacture (using a single-antenna radiator, a two-way feeding circuit, and a grounding circuit) and is low in cost and can cover the entire state in a small state.
  • the low frequency band facilitates carrier aggregation of broadband.
  • FIG. 4 shows a schematic structural diagram of an electronic device shown by an exemplary embodiment of the present disclosure.
  • the metal back cover of the electronic device includes the antenna assembly shown in any of the above embodiments as an example.
  • the back cover of the electronic device is a segmented metal back cover, and the segmented metal back cover includes two segments, a top metal back cover 410 and a bottom metal back cover 420.
  • the antenna body included in the antenna assembly provided by the above embodiment is the bottom metal back cover 420.
  • a first feeding point 421, a second feeding point 422, and a first grounding point 423 are disposed on the bottom metal back cover 420.
  • the first feeding point 421 is connected to the first feeding end of the PCB (Printed Circuit Board) of the electronic device through the feeding line.
  • the second feeding point 422 passes through the second feeding of the feeding line and the internal PCB of the electronic device. The terminals are connected.
  • the first grounding point 423 may be connected to the grounding end of the internal PCB of the electronic device, or may be connected to the top metal back cover 410 (corresponding to grounding), which is not limited by the disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本公开揭示了一种天线组件及电子设备,属于天线领域。所述天线组件包括:天线本体、两路馈电电路和至少一路接地电路,两路馈电电路通过各自对应的馈电点与天线本体相连;至少一路接地电路通过各自对应的接地点与天线本体相连,且接地点中的至少一个接地点位于两个馈电点之间。本公开解决了相关技术中底部金属背盖被设计成单一的天线来覆盖整个频段,导致天线性能不佳,且不利于载波聚合的问题;达到了利用同一天线本体形成两个天线,并使用两个天线实现对全频段的覆盖,从而保证各个天线的天线性能,且双天线的结构有利于宽带的载波聚合。

Description

天线组件及电子设备
本申请基于申请号为2015109977967、申请日为2015年12月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及天线领域,特别涉及一种天线组件及电子设备。
背景技术
随着电子设备制作工艺的不断发展,越来越多的电子设备使用上了金属背盖,相较于传统的塑料背盖,金属背盖更加美观且触感更佳。
为了减小金属背盖对天线信号的影响,相关技术通过对金属背盖进行开缝处理,形成分段式金属背盖,并将分段后的底部金属背盖作为天线进行信号的辐射。但是相关技术中,底部金属背盖被设计成单一的天线来覆盖整个频段,导致天线性能不佳,且不利于载波聚合。
发明内容
相关技术中底部金属背盖被设计成单一的天线来覆盖整个频段,导致天线性能不佳,且不利于载波聚合的问题,本公开提供一种天线组件及电子设备。所述技术方案如下:
根据本公开实施例的第一方面,提供一种天线组件,该天线组件包括:
天线本体、两路馈电电路和至少一路接地电路;
两路馈电电路通过各自对应的馈电点与天线本体相连;
至少一路接地电路通过各自对应的接地点与天线本体相连,且接地点中的至少一个接地点位于两个馈电点之间。
可选地,天线组件中包括第一馈电电路、第二馈电电路和第一接地电路,第一馈电电路通过第一馈电点与天线本体相连,第二馈电电路通过第二馈电点与天线本体相连,第一接地电路通过第一接地点与天线本体相连,且第一接地 点位于第一馈电点和第二馈电点之间;
第一接地点将天线本体分割为左侧天线本体和右侧天线本体,且第一馈电点位于左侧天线本体,第二馈电点位于右侧天线本体;
第一馈电电路与第一接地电路以及左侧天线本体形成第一天线;
第二馈电电路与第一接地电路以及右侧天线本体形成第二天线。
可选地,第一馈电点与第一接地点之间的距离大于第二馈电点与第一接地点之间的距离;
第一天线用于覆盖低频段和中频段,且第二天线用于覆盖高频段;
或,
第一天线用于覆盖低频段和高频段,且第二天线用于覆盖中频段;
其中,低频段的频率范围为700MHz至960MHz,中频段的频率范围为1710MHZ至2170MHz,高频段的频率范围为2300MHz至2700MHz。
可选地,第一接地电路中包括用于阻抗匹配的第一匹配电路;
第二接地电路中包括用于阻抗匹配的第二匹配电路。
可选地,第一匹配电路还用于提供至少两种低频状态,至少两种低频状态用于覆盖低频段;
第一匹配电路中包括一个提供至少两种电感值的电感,第一匹配电路用于通过调节电感的电感值来切换不同的低频状态;
其中,低频状态对应的频率与电感值之间呈反比例关系。
可选地,第一匹配电路还用于提供至少两种低频状态,至少两种低频状态用于覆盖低频段;
第一匹配电路中包括一个提供至少两种电容值的电容,第一匹配电路用于通过调节电容的电容值来切换不同的低频状态;
其中,低频状态对应的频率与电容值之间呈反比例关系。
可选地,天线组件中还包括第二接地电路,第二接地电路通过第二接地点与天线本体相连;
第二接地点位于左侧天线本体,第二接地电路用于提高第一天线和第二天线的天线隔离度。
根据本公开实施例的第二方面,提供一种电子设备,该电子设备包括如第一方面所述的天线组件。
可选地,该电子设备的背盖为分段式金属背盖,天线本体是分段式金属背盖的底部金属背盖。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过在天线本体上设置一路接地电路,并在该接地电路的两侧分别设置一路馈电电路,从而在同一天线本体上形成两个用于覆盖全频段的天线;解决了相关技术中底部金属背盖被设计成单一的天线来覆盖整个频段,导致天线性能不佳,且不利于载波聚合的问题;达到了利用同一天线本体形成两个天线,并使用两个天线实现对全频段的覆盖,从而保证各个天线的天线性能,且双天线的结构有利于宽带的载波聚合。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是本公开一个示例性实施例示出的天线组件的结构示意图;
图2A是本公开另一个示例性实施例示出的天线组件的结构示意图;
图2B是图2A所示天线组件中第一匹配电路的结构示意图;
图2C是图2A所示天线组件中第一匹配电路的结构示意图;
图2D是本公开再一个示例性实施例示出的天线组件的结构示意图;
图3A是图2A所示天线组件中第一天线和第二天线的S11曲线;
图3B是图2A所示天线组件中第一天线和第二天线的天线隔离度曲线;
图3C是图2A所示天线组件中第一天线和第二天线的效率曲线;
图4是本公开一个示例性实施例提供的电子设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一 致的例子。
请参考图1,其示出了本公开一个示例性实施例示出的天线组件100的结构示意图。该天线组件包括:天线本体、两路馈电电路和至少一路接地电路。
如图1所示,该天线组件100中包括天线本体110、第一馈电电路121、第二馈电电路122和第一接地电路130。
该天线本体110上设置有第一馈电点111和第二馈电点112,其中,第一馈电电路121通过第一馈电点111与天线本体110电性相连,第二馈电电路122通过第二馈电点112与天线本体110电性相连。
该天线本体110上还设置有第一接地点113,该第一接地点113位于第一馈电点111与第二馈电点112之间。第一接地电路130即通过该第一接地点113与天线本体110电性相连。
在第一接地点113的分割下,天线本体110被分割为左侧天线本体114和右侧天线本体115,其中,左侧天线本体114与第一馈电点路121以及第一接地电路130形成第一天线140,右侧天线本体115与第二馈电点路122以及第一接地电路130形成第二天线150,第一天线140和第二天线150用于覆盖整个频段(700MHz至2700MHz),且第一天线140和第二天线150的工作频段相互隔离。
图1中,第一馈电电路121中还包括第一匹配电路121A,第二馈电电路122中还包括第二匹配电路122A,第一匹配电路121A和第二匹配电路122A用于对天线阻抗进行匹配,从而提高第一天线140和第二天线150的辐射效率。
综上所述,本实施例提供的天线组件,通过在天线本体上设置一路接地电路,并在该接地电路的两侧分别设置一路馈电电路,从而在同一天线本体上形成两个用于覆盖全频段的天线;解决了相关技术中底部金属背盖被设计成单一的天线来覆盖整个频段,导致天线性能不佳,且不利于载波聚合的问题;达到了利用同一天线本体形成两个天线,并使用两个天线实现对全频段的覆盖,从而保证各个天线的天线性能,且双天线的结构有利于宽带的载波聚合。
请参考图2A,其示出了本公开另一个示例性实施例示出的天线组件200的结构示意图。该天线组件200包括:天线本体210、第一馈电电路221、第二馈电电路222和第一接地电路231。
该天线本体210上设置有第一馈电点211和第二馈电点212,其中,第一馈电电路221通过第一馈电点211与天线本体210电性相连,第二馈电电路222通过第二馈电点212与天线本体210电性相连。
当天线组件200工作时,第一馈电电路221即通过第一馈电点211向天线本体210传输馈电电流,第二馈电电路222即通过第二馈电点212向天线本体210传输馈电电流。
该天线本体210上还设置有第一接地点213,该第一接地点213位于第一馈电点211和第二馈电点212之间。第一接地电路231即通过该第一接地点213与天线本体210电性相连。
如图2A所示,在第一接地点213的分割下,天线本体210被分割为左侧天线本体214和右侧天线本体215,且第一馈电点211位于左侧天线本体214,第二馈电点212位于右侧天线本体215。
左侧天线本体214与第一馈电点路221以及第一接地电路231形成第一天线240,右侧天线本体215与第二馈电点路222以及第一接地电路231形成第二天线250。如图2A所示,天线组件200中,第一天线240和第二天线250均为倒F型天线。需要说明的是,第一天线240和第二天线250还可以采用其他的天线类型,比如环回天线(当第一馈电电路211和第二馈电电路222均位于天线本体210的边缘位置时)等等,本公开实施例并不对第一天线和第二天线的天线类型进行限定。
为了使形成的第一天线240和第二天线250能够共同覆盖全频段(700MHz至2700MHz),并避免第一天线240和第二天线250同时工作时两者之间产生干扰,第一天线240和第二天线250被设计成各自覆盖不同的频段。
如图2A所示,第一馈电点211与第一接地点213之间的距离大于第二馈电点212与第一接地点213之间的距离。当天线组件200工作时,第一天线240中参与辐射的天线组件210的长度大于第二天线250中参与辐射的天线组件210的长度,因此第一天线240相较于第二天线250能够覆盖更低频率的频段。
在一种可能的实施方式中,第一天线240可以被设计成用于覆盖低频段和中频段,在低频段和中频段保持良好的辐射性能和辐射效率;相应的,第二天线250可以被设计成用于覆盖高频段,在高频段保持良好的辐射性能和辐射效率。在另一种可能的实施方式中,第一天线组件240可以被设计成用于覆盖低 频段和高频段,在低频段和高频段保持良好的辐射性能和辐射效率;相应的,第二天线组件250可以被设计成用于覆盖中频段,在中频段保持良好的辐射性能和辐射效率。其中,低频段的频率范围可以为700MHz至960MHz,中频段的频率范围可以为1710MHZ至2170MHz,高频段的频率范围可以为2300MHz至2700MHz,即低频段对应的频率<中频段对应的频率<高频段对应的频率。
采用图2A所示的天线结构,由于第一天线240和第二天线250分别在工作在不同的频段,且不同频段之间的隔离度较高,因此第一天线240和第二天线250可以同时工作,从而共同覆盖全频段。同时,第一天线240和第二天线250在各自覆盖的频段能够保持较好的辐射性能和辐射效率,且支持的宽带较宽,有利于天线组件200实现各种组合的载波聚合(低频段+中频段、低频段+高频段、中频段+高频段、低频段+中频段+高频段)。
综上所述,本实施例提供的天线组件,通过在天线本体上设置一路接地电路,并在该接地电路的两侧分别设置一路馈电电路,从而在同一天线本体上形成两个用于覆盖全频段的天线;解决了相关技术中底部金属背盖被设计成单一的天线来覆盖整个频段,导致天线性能不佳,且不利于载波聚合的问题;达到了利用同一天线本体形成两个天线,并使用两个天线实现对全频段的覆盖,从而保证各个天线的天线性能,且双天线的结构有利于宽带的载波聚合。
本实施例中,通过在同一天线本体上实现双天线结构,且双天线各自覆盖不同的频段,使得双天线共同工作时天线之间的干扰较小;同时,各个天线在各自对应的频段能够保持较高的辐射性能和辐射效率,且支持的宽带较宽,有利于双天线结构实现各种组合的载波聚合。
如图2A所示,第一馈电电路221中还包括第一匹配电路221A,第二馈电电路222中还包括第二匹配电路222A。天线组件200在工作时,第一匹配电路221A和第二匹配电路222A分别对天线阻抗进行匹配,使得第一天线240和第二天线250均能够保持较高的辐射效率。
其中,第一匹配电路221A为可调匹配电路,该可调匹配电路用于提供至少两种低频状态,且至少两种低频状态用于覆盖低频段。
在图2A的基础上,如图2B所示,第一匹配电路221A中可以包括一个电容221Aa,该电容221Aa提供至少两种电容值,即电容221Aa为可调电容,第 一匹配电路221A通过调节电容221Aa的电容值来切换不同的低频状态。
比如,电容221Aa提供两种电容值,分别为第一电容值和第二电容值。当第一匹配电路221A调节电容221Aa为第一电容值时,第一天线240即以第一低频状态进行工作,第一低频状态对应的频率可以为700MHz;当第一匹配电路221A调节电容221Aa为第二电容值时,第一天线240即以第二低频状态进行工作,第二低频状态对应的频率可以为900MHz。第一天线240以第一低频状态(700MHz状态)工作时,在700MHz的辐射效率和辐射性能均优于第一天线240以第二低频状态(900MHz状态)工作时在700MHz的辐射效率和辐射性能;相似的,第一天线240以第二低频状态工作时,在900MHz时的辐射效率和辐射性能均优于第一天线240以第一低频状态工作时在900MHz的辐射效率和辐射性能。因此,第一天线240当前需要工作在700MHz时,第一匹配电路221A调节电容221Aa为第一电容值,使得第一天线240以第一低频状态工作,从而保证第一天线240在700MHz的高效辐射;第一天线240当前需要工作在900MHz时,第一匹配电路221A调节电容221Aa为第二电容值,使得第一天线240以第二低频状态工作,从而保证第一天线240在900MHz的高效辐射
当第一匹配电路221A中包括电容221Aa时,各个低频状态对应的频率与电容221Aa的电容值之间呈反比例关系,即电容221Aa的电容值越大,第一天线240提供的低频状态对应的频率越低;电容221Aa的电容值越小,第一天线240提供的低频状态对应的频率越高。
在另一种可能的实施方式中,如图2C所示,第一匹配电路221A中也可以包括一个电感221Ab,该电感221Ab提供至少两种电感值,即电感221Ab为可调电感,第一匹配电路221A即通过调节电感221Ab的电感值来切换不同的低频状态。
当第一匹配电路221A中包括电感221Ab时,各个低频状态对应的频率与电感221Ab的电感值之间呈反比例关系,即电感221Ab的电感值越大,第一天线240提供的低频状态对应的频率越低;电感221Ab的电感值越小,第一天线240提供的低频状态对应的频率越高。
需要说明的是,本实施仅以第一匹配电路221A中包括可调电容(或可调电感),并通过改变可调电容(或可调电感)的电容值(或电感值)来切换第一天线240的低频状态为例进行示意性说明,在其他可能的实施方式中,第一匹配 电路221A中还可以通过其他电子元件来实现不同低频状态的切换,本实施并不对此构成限定。
本实施例中,通过在第一匹配电路中设置一个可调电容(或可调电感),并通过调节该可调电容(或可调电感)的电容值(或电感值)来获得不同的低频状态,实现了使用较少的状态即可覆盖整个低频段,且每种状态对应的带宽较宽,有利于宽带的载波聚合。
在图2A的基础上,为了进一步提高第一天线240和第二天线250的天线隔离度,从而减小第一天线240和第二天线250同时工作时的天线干扰,如图2D所示,该天线组件200中还可以包括第二接地电路232。
第二接地电路232通过第二接地点216与天线本体210电性相连,该第二接地点216位于左侧天线本体214。当天线组件200工作时,第二接地电路232用于在第一天线240和第二天线250共同工作时提高两者的天线隔离度。
需要说明的是,当天线组件200为分段式金属背盖(包括顶部金属背盖和底部金属背盖)的底部金属背盖时,第一接地电路231和第二接地电路232的接地方式包括但不限于通过pogo pin顶顶部金属背盖、通过弹片顶顶部金属背盖和在开缝处金属短接顶部金属背盖。
本实施例中,通过在左侧天线本体上增设额外的接地点来提高第一天线和第二天线的天线隔离度,从而减小第一天线和第二天线同时工作时的天线干扰,进一步提高了天线组件工作的稳定性。
图3A是图2A所示天线组件中第一天线和第二天线的S11曲线,图3B是图2A所示天线组件中第一天线和第二天线的天线隔离度曲线,图3C是图2A所示天线组件中第一天线和第二天线的效率曲线,其中,第一天线用于覆盖低频段和中频段,第二天线用于覆盖高频段,且第一天线使用第一低频状态和第二低频状态这两种状态来覆盖低频段。
显而易见的,采用图2A所示的天线组件200,第一天线和第二天线能够覆盖全频段(700MHz至2700MHz),且第一天线能够以较少的低频状态(本实施例中为两种)覆盖整个低频段(700MHz-960MHz)。同时,由于第一天线各个低频状态对应的带宽较大,有利于天线组件200进行各种载波聚合组合(低频 段+中频段、低频段+高频段、中频段+高频段、低频段+中频段+高频段)。
如图3A和图3C所示,在700MHz这一频点时,第一低频状态对应的S11值优于第二低频状态对应的S11值,第一低频状态对应的效率值高于第二低频状态对应的效率值,即在700MHz这一频点时,第一低频状态对应的辐射性能和辐射效率均能优于第二低频状态;在900MHz这一频点时,第二低频状态对应的S11值优于第一低频状态对应的S11值,第二低频状态对应的效率值高于第一低频状态对应的效率值,即在900MHz这一频点时,第二低频状态对应的辐射性能和辐射效率均能优于第一低频状态。因此,设置有图2A所示天线组件200的电子设备可以根据当前的工作频点,控制第一匹配电路中切换至合适的低频状态,从而提高天线组件200在低频段的辐射性能和辐射效率。
同时,如图3B所示,第一天线与第二天线的天线隔离度大于16dB,从而确保第一天线和第二天线同时工作时互相干扰较小,保证了第一天线和第二天线同时工作的稳定性。
综上,图2A所示的天线组件200的性能良好,制作简单(采用单天线辐射体、两路馈电电路和一路接地电路的结构)且成本较低,并能够以较少的状态覆盖整个低频段,有利于宽带的载波聚合。
如图4所示,其示出了本公开一个示例性实施例示出的电子设备的结构示意图。本实施例以该电子设备的金属背盖包括上述任一实施例示出的天线组件为例进行说明。
如图4所示,电子设备的背盖为分段式金属背盖,该分段式金属背盖包括两段,分别为顶部金属背盖410和底部金属背盖420。上述实施例提供的天线组件中包括的天线本体即为底部金属背盖420。底部金属背盖420上设置有第一馈电点421、第二馈电点422和第一接地点423。
第一馈电点421通过馈线与电子设备内部PCB(Printed Circuit Board,印刷电路板)的第一馈电端相连,相似的,第二馈电点422通过馈线与电子设备内部PCB的第二馈电端相连。
第一接地点423可以与电子设备内部PCB的接地端相连,也可以与顶部金属背盖410相连(相当于接地),本公开并不对此进行限定。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (9)

  1. 一种天线组件,其特征在于,所述天线组件包括:
    天线本体、两路馈电电路和至少一路接地电路;
    所述两路馈电电路通过各自对应的馈电点与所述天线本体相连;
    所述至少一路接地电路通过各自对应的接地点与所述天线本体相连,且所述接地点中的至少一个接地点位于两个所述馈电点之间。
  2. 根据权利要求1所述的天线组件,其特征在于,所述天线组件中包括第一馈电电路、第二馈电电路和第一接地电路,所述第一馈电电路通过第一馈电点与所述天线本体相连,所述第二馈电电路通过第二馈电点与所述天线本体相连,所述第一接地电路通过第一接地点与所述天线本体相连,且所述第一接地点位于所述第一馈电点和所述第二馈电点之间;
    所述第一接地点将所述天线本体分割为左侧天线本体和右侧天线本体,且所述第一馈电点位于所述左侧天线本体,所述第二馈电点位于所述右侧天线本体;
    所述第一馈电电路与所述第一接地电路以及所述左侧天线本体形成第一天线;
    所述第二馈电电路与所述第一接地电路以及所述右侧天线本体形成第二天线。
  3. 根据权利要求2所述的天线组件,其特征在于,所述第一馈电点与所述第一接地点之间的距离大于所述第二馈电点与所述第一接地点之间的距离;
    所述第一天线用于覆盖低频段和中频段,且所述第二天线用于覆盖高频段;
    或,
    所述第一天线用于覆盖所述低频段和所述高频段,且所述第二天线用于覆盖所述中频段;
    其中,所述低频段的频率范围为700MHz至960MHz,所述中频段的频率范围为1710MHZ至2170MHz,所述高频段的频率范围为2300MHz至2700MHz。
  4. 根据权利要求2或3所述的天线组件,其特征在于,
    所述第一接地电路中包括用于阻抗匹配的第一匹配电路;
    所述第二接地电路中包括用于阻抗匹配的第二匹配电路。
  5. 根据权利要求4所述的天线组件,其特征在于,所述第一匹配电路还用于提供至少两种低频状态,所述至少两种低频状态用于覆盖所述低频段;
    所述第一匹配电路中包括一个提供至少两种电感值的电感,所述第一匹配电路用于通过调节所述电感的电感值来切换不同的所述低频状态;
    其中,所述低频状态对应的频率与所述电感值之间呈反比例关系。
  6. 根据权利要求4所述的天线组件,其特征在于,所述第一匹配电路还用于提供至少两种低频状态,所述至少两种低频状态用于覆盖所述低频段;
    所述第一匹配电路中包括一个提供至少两种电容值的电容,所述第一匹配电路用于通过调节所述电容的电容值来切换不同的所述低频状态;
    其中,所述低频状态对应的频率与所述电容值之间呈反比例关系。
  7. 根据权利要求2至6任一所述的天线组件,其特征在于,所述天线组件中还包括第二接地电路,所述第二接地电路通过第二接地点与所述天线本体相连;
    所述第二接地点位于所述左侧天线本体,所述第二接地电路用于提高所述第一天线和所述第二天线的天线隔离度。
  8. 一种电子设备,其特征在于,所述电子设备包括如权利要求1至7任一所述的天线组件。
  9. 根据权利要求8所述的电子设备,其特征在于,所述电子设备的背盖为分段式金属背盖,所述天线本体是所述分段式金属背盖的底部金属背盖。
PCT/CN2016/100080 2015-12-26 2016-09-26 天线组件及电子设备 WO2017107604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510997796.7A CN106921034B (zh) 2015-12-26 2015-12-26 天线组件及电子设备
CN201510997796.7 2015-12-26

Publications (1)

Publication Number Publication Date
WO2017107604A1 true WO2017107604A1 (zh) 2017-06-29

Family

ID=57570707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100080 WO2017107604A1 (zh) 2015-12-26 2016-09-26 天线组件及电子设备

Country Status (4)

Country Link
US (1) US10498032B2 (zh)
EP (1) EP3185354A1 (zh)
CN (1) CN106921034B (zh)
WO (1) WO2017107604A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962329A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种天线及通信装置
CN108282214B (zh) * 2018-01-19 2020-09-08 Oppo广东移动通信有限公司 天线组件、电子设备及天线切换方法
CN108281766A (zh) * 2018-01-19 2018-07-13 广东欧珀移动通信有限公司 天线装置及电子设备
CN108232473B (zh) * 2018-01-19 2021-02-19 Oppo广东移动通信有限公司 天线组件、电子设备及天线切换方法
CN108336509B (zh) * 2018-02-07 2021-02-19 Oppo广东移动通信有限公司 天线组件、电子设备及天线控制方法
CN109039397B (zh) * 2018-08-01 2021-03-19 维沃移动通信有限公司 一种移动终端的天线电路、控制方法及装置
CN109462016A (zh) * 2018-09-29 2019-03-12 Oppo广东移动通信有限公司 天线装置及电子设备
CN110752855B (zh) * 2019-10-31 2021-09-14 Oppo广东移动通信有限公司 天线匹配电路、射频电路及电子设备
CN113078444B (zh) * 2020-01-06 2024-06-11 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN113764874B (zh) * 2021-09-27 2024-07-02 维沃移动通信有限公司 一种天线装置和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022349A (zh) * 2014-06-12 2014-09-03 电子科技大学 基于完整金属边框的多频段智能手机天线
US20150200463A1 (en) * 2014-01-14 2015-07-16 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus and methods
CN104795643A (zh) * 2015-04-29 2015-07-22 瑞声精密制造科技(常州)有限公司 全频段手机天线系统
CN105098369A (zh) * 2015-08-31 2015-11-25 努比亚技术有限公司 一种缝隙天线及终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400336B1 (en) 2001-05-23 2002-06-04 Sierra Wireless, Inc. Tunable dual band antenna system
FI20095844A7 (fi) * 2009-08-14 2011-02-15 Perlos Oyj Elektroniikkalaite
JP2013504260A (ja) * 2009-09-01 2013-02-04 スカイクロス, インク. 高分離アンテナシステム
WO2014064786A1 (ja) * 2012-10-24 2014-05-01 株式会社ソニー・コンピュータエンタテインメント アンテナ装置及び携帯情報端末
US9444141B2 (en) * 2013-08-19 2016-09-13 Google Technology Holdings LLC Antenna system for a smart portable device using a continuous metal band
US9236659B2 (en) * 2013-12-04 2016-01-12 Apple Inc. Electronic device with hybrid inverted-F slot antenna
US9774073B2 (en) * 2014-01-16 2017-09-26 Htc Corporation Mobile device and multi-band antenna structure therein
CN204720561U (zh) * 2015-05-29 2015-10-21 瑞声精密制造科技(常州)有限公司 手机天线系统
KR102306080B1 (ko) * 2015-08-13 2021-09-30 삼성전자주식회사 안테나 장치 및 안테나 장치를 포함하는 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200463A1 (en) * 2014-01-14 2015-07-16 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus and methods
CN104022349A (zh) * 2014-06-12 2014-09-03 电子科技大学 基于完整金属边框的多频段智能手机天线
CN104795643A (zh) * 2015-04-29 2015-07-22 瑞声精密制造科技(常州)有限公司 全频段手机天线系统
CN105098369A (zh) * 2015-08-31 2015-11-25 努比亚技术有限公司 一种缝隙天线及终端

Also Published As

Publication number Publication date
EP3185354A1 (en) 2017-06-28
CN106921034A (zh) 2017-07-04
CN106921034B (zh) 2019-03-08
US20170187112A1 (en) 2017-06-29
US10498032B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2017107604A1 (zh) 天线组件及电子设备
CN110741506B (zh) 一种移动终端的天线及移动终端
US9680222B2 (en) Antenna structure and wireless communication device using the same
US10892552B2 (en) Antenna structure
CN203674396U (zh) 一种全金属框的新型lte天线
TWI555272B (zh) 多頻天線
CN204596947U (zh) 移动终端天线和移动终端
CN103311641A (zh) 电子设备的内置天线
CN105655690B (zh) 一种频段开关天线
JP6456475B2 (ja) アンテナ放射シート、アンテナ、及び携帯端末
CN203398262U (zh) 一种超宽带的新型lte金属框天线
CN206271890U (zh) 天线装置及移动终端
CN104681977A (zh) 一种多频段闭合金属环天线及设备
CN104183926A (zh) 一种缝隙天线和智能终端
CN108879067A (zh) 全金属边框天线、mimo天线和终端设备
CN203367465U (zh) 一种超宽带的新型lte金属框天线
WO2017185493A1 (zh) 天线装置和移动终端
KR20140102098A (ko) 주파수 가변이 가능한 내장형 안테나
CN203521611U (zh) 一种耦合馈电多频天线
CN106898880B (zh) 天线组件及电子设备
CN108432048A (zh) 一种缝隙天线和终端
KR20190086183A (ko) 다중대역 슬롯 안테나
CN103117456B (zh) 一种增强带宽重构天线
CN103715497B (zh) 一种小型化lte/wwan天线
US20140354497A1 (en) Antenna structure and wireless communication device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877415

Country of ref document: EP

Kind code of ref document: A1