[go: up one dir, main page]

WO2017092066A1 - 一种橡胶改性的相变导热界面材料及制备方法 - Google Patents

一种橡胶改性的相变导热界面材料及制备方法 Download PDF

Info

Publication number
WO2017092066A1
WO2017092066A1 PCT/CN2015/096969 CN2015096969W WO2017092066A1 WO 2017092066 A1 WO2017092066 A1 WO 2017092066A1 CN 2015096969 W CN2015096969 W CN 2015096969W WO 2017092066 A1 WO2017092066 A1 WO 2017092066A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
rubber
coupling agent
resin
interface material
Prior art date
Application number
PCT/CN2015/096969
Other languages
English (en)
French (fr)
Inventor
邓志军
万炜涛
陈田安
Original Assignee
深圳德邦界面材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳德邦界面材料有限公司 filed Critical 深圳德邦界面材料有限公司
Priority to JP2018527812A priority Critical patent/JP2018538690A/ja
Publication of WO2017092066A1 publication Critical patent/WO2017092066A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the invention relates to a rubber modified phase change thermal interface material and a preparation method thereof, and belongs to the technical field of thermal interface materials.
  • the application principle of the thermal interface material is mainly: the heat is generated under the application condition of the power component in the integrated circuit, and the excessive release of the excessive heat to the external environment is the most critical problem in the semiconductor and electronic packaging industry, and also limits the integrated circuit design.
  • the thermally conductive interface material is applied between the heat sink and the interface of the power component to allow excess heat to be efficiently conducted through the heat sink to the atmosphere.
  • the current thermal interface materials mainly include thermal gel, thermal grease, thermal pad, thermal adhesive and phase change thermal interface materials.
  • the characteristics of each type of material are briefly described below:
  • Thermally conductive gels typically include crosslinkable silicone polymers such as vinyl silicone polymers, coupling agents, and thermally conductive filler particles. These materials have properties similar to grease prior to curing; they have high thermal conductivity, low surface energy, and contribute to minimizing thermal contact resistance during the dispensing process. After curing, the thermally conductive gel undergoes a cross-linking reaction of the filled polymer, providing a suitable cohesive strength to avoid the problem of silicone oil precipitation under long-term use of the thermally conductive silicone grease.
  • crosslinkable silicone polymers such as vinyl silicone polymers, coupling agents, and thermally conductive filler particles.
  • Thermal grease exhibits good interfacial wetting ability with high thermal conductivity and very low interface thermal resistance.
  • thermal grease is used under long-term conditions, especially In an external environment where the temperature changes relatively, the silicone oil is likely to precipitate, the interface thermal resistance becomes large, and the heat transfer performance deteriorates.
  • Thermal pad usually refers to a kind of soft sheet-like thermal interface material, mainly including silicone rubber and thermally conductive filler particles, which tend to have low contact thermal resistance; more importantly, the low modulus design of the thermal pad can Reduce the stress during the work process due to the electronic components; these stresses are caused by the difference in thermal expansion coefficient between different materials.
  • Thermally conductive glue is an adhesive used between electronic components and heat sinks; it is used to transfer heat from one surface to another. In addition to providing heat transfer, this type of thermal interface material provides excellent bonding properties and, in some applications, reduces the use of fixtures or screw fasteners.
  • Phase change thermal interface materials are a class of materials that undergo a transition from solid phase to hot phase as the applied temperature increases. These materials exhibit a solid state at room temperature and exhibit a liquid state at the operating temperature of the thermal component. A phase change material in a liquid state that readily wets the surface of the material and provides low interfacial thermal resistance. The thing of the phase change thermal interface material is that it can provide a lot of thermal resistance than the thermal pad, and at the same time it can completely solve the problem of poor oil separation and poor reliability of the thermal grease.
  • phase change thermal interface materials have extremely low thermal resistance and excellent heat transfer performance.
  • the conventional phase change thermal interface material is relatively difficult to use, and it is likely to cause breakage when peeling off the release film, and the high-speed production efficiency of the user cannot be satisfied.
  • the object of the present invention is to solve the deficiencies of the prior art, and provide a rubber modified phase change thermal interface material and a preparation method thereof.
  • the invention can improve the peeling performance of the phase change thermal interface material by adding the modified synthetic rubber, and is easy to apply and operate.
  • a rubber modified phase change thermal interface material comprising the following weight percentage raw materials: 3-10% of basic phase change resin, 1 to 5% of synthetic rubber, and tackifying resin 5 ⁇ 10%, 0 to 1% of antioxidant, 0 to 5% of coupling agent, and 69 to 85% of thermally conductive particles.
  • the present invention can also be improved as follows.
  • the weight percentage of the raw material is 5% of the basic phase change resin, 3% of the synthetic rubber, 8% of the tackifier resin, 0.1% of the antioxidant, 3.4% of the coupling agent, and 80.5% of the heat conductive particles.
  • the basic phase change resin is one or more of paraffin wax, microcrystalline wax and beeswax
  • the synthetic rubber is one or two of SEBS and SBS
  • the tackifying resin is C5 petroleum resin, C9.
  • the antioxidant is 2,2'-methylene-bis-(4-methyl, 6-tert-butylphenol), antioxidant 1076, and antioxidant
  • the agents 1010 is one or two of a silane coupling agent and a titanate coupling agent
  • the thermally conductive particles are aluminum powder, alumina powder, and nitriding One or more of boron, aluminum nitride, and zinc oxide.
  • the silane coupling agent is ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, One or more of N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, vinyltrimethoxysilane, the titanate coupling agent is bis(dioctyloxy) One or more of a pyrophosphate group) an ethylene titanate, a phosphate di-tanoate, and an isopropyl trioleate acyl titanate.
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (1) (4) taking the heat-conductive particles weighed in step (1), slowly adding to the mixture A obtained in the step (3), stirring for 60 to 90 minutes, after being uniformly mixed, vacuum defoaming for 30 to 45 minutes, that is, the rubber is obtained.
  • Modified phase change thermal interface material
  • the present invention can also be improved as follows.
  • the weight percentage of the raw material in the step (1) is 5% of the basic phase change resin, 3% of the synthetic rubber, 8% of the tackifying resin, 0.1% of the antioxidant, 3.4% of the coupling agent, and 80.5% of the heat conductive particles.
  • the basic phase change resin is one or more of paraffin wax, microcrystalline wax and beeswax
  • the synthetic rubber is one or two of SEBS and SBS
  • the tackifying resin is C5 petroleum resin, C9.
  • the antioxidant is 2,2'-methylene-bis-(4-methyl, 6-tert-butylphenol), antioxidant 1076, and antioxidant
  • the agents 1010 is one or two of a silane coupling agent and a titanate coupling agent
  • the thermally conductive particles are aluminum powder, alumina powder, and nitriding One or more of boron, aluminum nitride, and zinc oxide.
  • the silane coupling agent is ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, One or more of N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, vinyltrimethoxysilane, the titanate coupling agent is bis(dioctyloxy) One or more of a pyrophosphate group) an ethylene titanate, a phosphate di-tanoate, and an isopropyl trioleate acyl titanate.
  • phase change thermal conductive material of the present invention is specifically designed for applications requiring excellent thermal conductivity requirements and longer pot life requirements, and can satisfy both excellent heat conduction performance and satisfactory conditions through rational formulation optimization and raw material selection. Longer use effectiveness and reliability under special use conditions.
  • phase change thermal interface material of the invention has good storage stability, low thermal resistance, excellent wetting effect on many substrates, and meets the heat dissipation requirements of current semiconductor components/high power LEDs.
  • phase change thermal interface material of the invention has the characteristics of convenient and convenient use and various product modes.
  • the preparation method of the product is simple, and can be applied to mechanical processes and manual use, etc., and can meet the increasingly high heat demand of high-end electronic products, such as PCs, game machines, and high-power LEDs, and has a broad market prospect, suitable for scale. Production.
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a rubber modified phase change thermal interface material comprising the following steps:
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (4) Raise the temperature to 120 ° C, take the heat-conducting particles weighed in step (1), slowly add to the mixture A obtained in step (3), stir for 60 to 90 minutes, after mixing evenly, vacuum defoaming 30 to 45 In minutes, the rubber modified phase change thermal interface material is obtained.
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • microcrystalline wax 5788 basic phase change resin 55g LY9552U modified rubber 45g
  • C8010 tackifying resin 80g 1010 antioxidant 1g, bis(dioctyloxypyrophosphate) B
  • Supporting titanate coupling agent 20g spherical aluminum powder thermal conductive particles 799g;
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (4) Raise the temperature to 120 ° C, take the heat-conducting particles weighed in step (1), slowly add to the mixture A obtained in step (3), stir for 60 to 90 minutes, after mixing evenly, vacuum defoaming 30 to 45 In minutes, the rubber modified phase change thermal interface material is obtained.
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • microcrystalline wax 5788 basic phase change resin 50g LY9552U modified rubber 30g
  • C8010 tackifying resin 80g 1010 antioxidant 1g, bis(dioctyloxypyrophosphate) B
  • Supporting titanate coupling agent 34g spherical aluminum powder thermal conductive particles 805g;
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (4) Raise the temperature to 120 ° C, take the heat-conducting particles weighed in step (1), slowly add to the mixture A obtained in step (3), stir for 60 to 90 minutes, after mixing evenly, vacuum defoaming 30 to 45 In minutes, the rubber modified phase change thermal interface material is obtained.
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • microcrystalline wax 5788 basic phase change resin 50g LY9552U modified rubber 30g
  • C8010 tackifying resin 80g 1010 antioxidant 1g, bis(dioctyloxypyrophosphate) B
  • Supporting titanate coupling agent 34g spherical alumina heat conducting particles 805g;
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (4) Raise the temperature to 120 ° C, take the heat-conducting particles weighed in step (1), slowly add to the mixture A obtained in step (3), stir for 60 to 90 minutes, after mixing evenly, vacuum defoaming 30 to 45 In minutes, the rubber modified phase change thermal interface material is obtained.
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (4) Raise the temperature to 120 ° C, take the heat-conducting particles weighed in step (1), slowly add to the mixture A obtained in step (3), stir for 60 to 90 minutes, after mixing evenly, vacuum defoaming 30 to 45 In minutes, the rubber modified phase change thermal interface material is obtained.
  • a rubber modified phase change thermal interface material comprising the following materials:
  • a method for preparing a rubber modified phase change thermal interface material comprises the following steps:
  • step (3) The coupling agent weighed in step (1), added to the paste obtained in step (2), stirred for ⁇ 10 minutes, until the coupling agent is completely dissolved, to obtain a mixture A;
  • step (4) Raise the temperature to 120 ° C, take the heat-conducting particles weighed in step (1), slowly add to the mixture A obtained in step (3), stir for 60 to 90 minutes, after mixing evenly, vacuum defoaming 30 to 45 In minutes, the rubber modified phase change thermal interface material is obtained.
  • Example 1-7 The thermal resistance and thermal conductivity test data of the phase change thermal interface material sample are shown in Table 1.
  • phase change thermal interface material provided by the present invention exhibits excellent heat transfer performance; the following formula is used by using the adjustment formula: 3 to 10% of the basic phase change resin, 1 to 5% of the synthetic rubber, and 5 to 10 of the tackifying resin. %, antioxidant 0 to 1%, coupling agent 0 to 5%, and heat conductive particles 69 to 85%.
  • the phase change thermal interface material prepared after mixing and mixing will exhibit excellent thermal conductivity, and the thermal resistance value is as low as 0.025 ° C ⁇ in 2 /W; at the same time, the phase transformation process is obvious in the temperature range of 50 to 70 ° C.
  • phase change thermal interface material provided by the present invention can be easily peeled off from the PET release film, and is convenient to use, and the phase change thermal conductive sheet has a flat appearance, and bubbles of less than 1% by volume appear.
  • phase change thermal conductive interface material provided by the present invention has a thermal conductivity of 1.50 to 3.00 W/m ⁇ K.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种橡胶改性的相变导热界面材料及制备方法,相变导热界面材料包括如下重量百分数的原料:基础相变树脂3~10%、合成橡胶1~5%、增粘树脂5~10%、抗氧剂0~1%、偶联剂0~5%和导热粒子69~85%。该橡胶改性的相变导热界面材料具有改进的热传导性能。

Description

一种橡胶改性的相变导热界面材料及制备方法 技术领域
本发明涉及一种橡胶改性的相变导热界面材料及制备方法,属于热界面材料技术领域。
背景技术
随着二十一世纪电子科技的蓬勃发展,各类电子元器件的热密度越来越高,散热问题也就成为电子产品设计中至关重要的考虑。
导热界面材料应用原理主要是:在集成电路中功率型元件应用条件下会产生热量,将过量的热有效地释放到外部环境中是半导体和电子封装行业中最关键的问题,也是限制集成电路设计小型化、多功能、多性能及可靠性的技术节点。导热界面材料应用于散热器与功率元器件的界面之间,以允许多余的热量有效通过散热器传导到大气中。
目前的导热界面材料主要有导热凝胶、导热脂、导热垫片、热胶及相变导热界面材料等等。以下分别简述各类材料的特性:
导热凝胶通常包括可交联的硅氧烷聚合物,如乙烯基有机硅聚合物,偶联剂和导热填料粒子。在固化前,这些材料具有类似于油脂的性质;它们具有高的热导率,具有低的表面能,在配装工艺时,有助于热接触阻力最小化。固化后,导热凝胶发生填充聚合物的交联反应,提供了合适的内聚强度,以避免导热硅脂长期使用下的硅油析出问题。
导热硅脂展现出良好的界面润湿能力,同时具有较高的导热系数,极低的界面热阻。然而,据长期观察分析,导热硅脂在长期使用条件下,尤其是 在温度变化比较大的外部环境下,容易出现硅油析出,界面热阻变大,传热性能变差。
导热垫片通常是指某一类柔软的片状导热界面材料,主要包括硅橡胶和导热填料粒子,它往往具有较低的接触热阻;更重要的是,导热垫片的低模量设计可以减少工作过程中,由于各电子元器件之间的应力;这些应力是由于不同材料之间的热膨胀系数差异引发的。
导热胶是一种用于电子元件和散热片之间的粘接剂;用于将热量从一个表面转移到另一个表面。该类导热界面材料除了提供传热的功能,还提供优秀的粘接性能,因而,在某些应用中,可以减少固定夹具或者螺丝紧固件的使用。
相变导热界面材料(PCTIM)是一类随着应用温度的提升,经历了一个从固相到热液相转变过程的材料。这些材料是在室温下呈现固体状态,在热组件的工作温度下,呈现出液体状态。处于液态的相变材料,容易润湿材料表面和提供低的界面热阻。相变导热界面材料的有事在于他能够提供比导热垫片的很多的热阻,同时又完全可以解决导热硅脂在长时间使用的析油及可靠性差的问题。
目前已经商业化的相变导热界面材料,具有极低的热阻和优秀的传热性能。但是,现有的相变导热界面材料比较难于使用,在离型膜上剥离时容易造成破损等,无法满足用户的高速生产效率高求。
发明内容
本发明的目的是解决现有技术的不足,提供一种橡胶改性的相变导热界面材料及制备方法。本发明通过添加改性后的合成橡胶,可以提高相变导热界面材料的剥离性能,易于应用操作。
本发明解决上述技术问题的技术方案如下:一种橡胶改性的相变导热界面材料,包括如下重量百分数的原料:基础相变树脂3~10%、合成橡胶1~5%、增粘树脂5~10%、抗氧剂0~1%、偶联剂0~5%和导热粒子69~85%。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述原料的重量百分数为:基础相变树脂5%、合成橡胶3%、增粘树脂8%、抗氧剂0.1%、偶联剂3.4%和导热粒子80.5%。
进一步,所述基础相变树脂为石蜡、微晶蜡、蜂蜡中的一种或多种;所述合成橡胶为SEBS、SBS的一种或两种,所述增粘树脂为C5石油树脂、C9石油树脂、松香中的一种或者多种;所述抗氧剂为2,2’-亚甲基-二-(4-甲基,6-叔丁基苯酚)、抗氧剂1076、抗氧剂1010中的一种或多种;所述偶联剂为硅烷类偶联剂、钛酸酯类偶联剂中一种或两种;所述导热粒子为铝粉、氧化铝粉、氮化硼、氮化铝、氧化锌中的一种或多种。
进一步,所述硅烷类偶联剂为γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、乙烯基三甲氧基硅烷中的一种或多种,所述钛酸酯类偶联剂为双(二辛氧基焦磷酸酯基)乙撑钛酸酯、磷酸酯双钛酸酯、异丙基三油酸酰氧基钛酸酯中的一种或多种。
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取如下重量百分数的原料:基础相变树脂3~10%、合成橡胶1~5%、增粘树脂5~10%、抗氧剂0~1%、偶联剂0~5%和导热粒子69~85%;
(2)将步骤(1)称取的基础相变树脂、合成橡胶、增粘树脂、抗氧剂,混合均匀后,升温至70℃,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,步骤(1)所述原料的重量百分数为:基础相变树脂5%、合成橡胶3%、增粘树脂8%、抗氧剂0.1%、偶联剂3.4%和导热粒子80.5%。
进一步,所述基础相变树脂为石蜡、微晶蜡、蜂蜡中的一种或多种;所述合成橡胶为SEBS、SBS的一种或两种,所述增粘树脂为C5石油树脂、C9石油树脂、松香中的一种或者多种;所述抗氧剂为2,2’-亚甲基-二-(4-甲基,6-叔丁基苯酚)、抗氧剂1076、抗氧剂1010中的一种或多种;所述偶联剂为硅烷类偶联剂、钛酸酯类偶联剂中一种或两种;所述导热粒子为铝粉、氧化铝粉、氮化硼、氮化铝、氧化锌中的一种或多种。
进一步,所述硅烷类偶联剂为γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、乙烯基三甲氧基硅烷中的一种或多种,所述钛酸酯类偶联剂为双(二辛氧基焦磷酸酯基)乙撑钛酸酯、磷酸酯双钛酸酯、异丙基三油酸酰氧基钛酸酯中的一种或多种。
本发明的有益效果是:
(1)本发明的相变导热材料是专门针对需要优异导热要求和有更长适用期要求的应用而设计的,通过合理的配方优化和原材料选择,既能满足优秀的热传导性能,又能满足更长时间的使用有效性及特殊使用条件下的可靠性。
(2)本发明的相变导热界面材料具有良好的储存稳定性能,热阻抗低,对众多基材的润湿效果优异,满足目前的半导体元器件/高功率LED的散热要求。
(3)本发明的相变导热界面材料具有使用方便便捷,产品方式多样的特点。
(4)本产品制备方法简单,可以适用于机械工艺及手工使用等等,可满足高端电子产品,譬如PC、游戏机等及高功率LED越来越高的散热需求,市场前景广阔,适合规模化生产。
具体实施方式
以下结合具体实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000001
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取65g的58号石蜡基础相变树脂、24g的LCY9552U合成SEBS橡胶、50g的C8010增粘树脂、1g的抗氧剂1076,混合均匀后,升温至70℃,搅拌30~45分钟,得到膏状物;
(2)称取30g的γ-甲基丙烯酰氧基丙基三甲氧基硅烷(偶联剂)偶联剂,加到步骤(1)所得膏状物中,搅拌15分钟,至所述偶联剂完全溶解,得到混合物A;
(3)升高温度至120℃,称取830g的D50=2~3μm的球形铝粉导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例2:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000002
一种橡胶改性的相变导热界面材料,包括如下步骤:
(1)称取如下重量的原料:58号的石蜡基础相变树脂35g、蜂蜡40g、LY9552U改性橡胶24g、C8010增粘树脂50g、E5400增粘树脂30g、1010抗氧剂1g、异丙基三油酸酰氧基钛酸酯偶联剂20g、球形铝粉导热粒子800g;
(2)将步骤(1)称取的基础相变树脂、改性橡胶、增粘树脂、抗氧剂,升温至70℃,混合均匀,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)升高温度至120℃,取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例3:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000003
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取如下重量的原料:微晶蜡5788基础相变树脂55g、LY9552U改性橡胶45g、C8010增粘树脂80g、1010抗氧剂1g、双(二辛氧基焦磷酸酯基)乙撑钛酸酯偶联剂20g、球形铝粉导热粒子799g;
(2)将步骤(1)称取的基础相变树脂、改性橡胶、增粘树脂、抗氧剂,升温至70℃,混合均匀,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)升高温度至120℃,取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例4:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000004
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取如下重量的原料:微晶蜡5788基础相变树脂50g、LY9552U改性橡胶30g、C8010增粘树脂80g、1010抗氧剂1g、双(二辛氧基焦磷酸酯基)乙撑钛酸酯偶联剂34g、球形铝粉导热粒子805g;
(2)将步骤(1)称取的基础相变树脂、改性橡胶、增粘树脂、抗氧剂,升温至70℃,混合均匀,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)升高温度至120℃,取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例5:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000005
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取如下重量的原料:微晶蜡5788基础相变树脂50g、LY9552U改性橡胶30g、C8010增粘树脂80g、1010抗氧剂1g、双(二辛氧基焦磷酸酯基)乙撑钛酸酯偶联剂34g、球形氧化铝导热粒子805g;
(2)将步骤(1)称取的基础相变树脂、改性橡胶、增粘树脂、抗氧剂,升温至70℃,混合均匀,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)升高温度至120℃,取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例6:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000006
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取如下重量的原料:58号石蜡35g、微晶蜡5788基础相变树脂50g、LY9552U改性橡胶50g、C8010增粘树脂80g、2,2’-亚甲基-二-(4-甲基,6-叔丁基苯酚)抗氧剂1g、双(二辛氧基焦磷酸酯基)乙撑钛酸酯偶联剂34g、球形氧化铝导热粒子630g、氮化铝粉100g、氧化锌粉200g;
(2)将步骤(1)称取的基础相变树脂、改性橡胶、增粘树脂、抗氧剂,升温至70℃,混合均匀,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)升高温度至120℃,取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例7:
一种橡胶改性的相变导热界面材料,包括如下重量的原料:
Figure PCTCN2015096969-appb-000007
一种橡胶改性的相变导热界面材料的制备方法,包括如下步骤:
(1)称取如下重量的原料:58号石蜡35g、微晶蜡5788基础相变树脂50g、LY9552U改性橡胶35g、C8010增粘树脂85g、2,2’-亚甲基-二-(4-甲基,6-叔丁基苯酚)抗氧剂1g、双(二辛氧基焦磷酸酯基)乙撑钛酸酯偶联剂34g、球形氧化铝导热粒子660g、氮化硼粉100g;
(2)将步骤(1)称取的基础相变树脂、改性橡胶、增粘树脂、抗氧剂,升温至70℃,混合均匀,搅拌30~45分钟,得到膏状物;
(3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
(4)升高温度至120℃,取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
实施例1-7相变导热界面材料试样的热阻及导热系数测试数据,如表1所示。
表1 实施例1-7相变导热界面材料试样的热阻及导热系数测试数据
Figure PCTCN2015096969-appb-000008
由表1的实验所得的各项指标,可得到下述结论:
(1)本发明提供的相变导热界面材料展现优秀的传热性能;通过使用调整配方在以下的范围:基础相变树脂3~10%、合成橡胶1~5%、增粘树脂5~10%、抗氧剂0~1%、偶联剂0~5%和导热粒子69~85%。混合均匀后制备的相变导热界面材料将展现优秀的热传导性能,热阻值低至0.025℃·in2/W;同时在50~70℃的温度范围内表现明显的相变过程。
(2)本发明提供的相变导热界面材料能够很容易地从PET离型膜上剥离,使用方便,而且该相变导热片外观平整,少于1%体积分数的气泡出现。
(3)通过在配方中优化加入合适质量分数的合成橡胶,可以提高该发明提供的相变导热界面材料的内聚力及与其他界面测粘接性能。
(4)本发明提供的相变导热界面材料的本体导热导热系数在1.50~3.00W/m·K。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种橡胶改性的相变导热界面材料,其特征在于,包括如下重量百分数的原料:基础相变树脂3~10%、合成橡胶1~5%、增粘树脂5~10%、抗氧剂0~1%、偶联剂0~5%和导热粒子69~85%。
  2. 根据权利要求1所述的一种橡胶改性的相变导热界面材料,其特征在于,所述原料的重量百分数为:基础相变树脂5%、合成橡胶3%、增粘树脂8%、抗氧剂0.1%、偶联剂3.4%和导热粒子80.5%。
  3. 根据权利要求1或2所述的一种橡胶改性的相变导热界面材料,其特征在于,所述基础相变树脂为石蜡、微晶蜡、蜂蜡中的一种或多种;所述合成橡胶为SEBS、SBS的一种或两种,所述增粘树脂为C5石油树脂、C9石油树脂、松香中的一种或者多种;所述抗氧剂为2,2’-亚甲基-二-(4-甲基,6-叔丁基苯酚)、抗氧剂1076、抗氧剂1010中的一种或多种;所述偶联剂为硅烷类偶联剂、钛酸酯类偶联剂中一种或两种;所述导热粒子为铝粉、氧化铝粉、氮化硼、氮化铝、氧化锌中的一种或多种。
  4. 根据权利要求3所述的一种橡胶改性的相变导热界面材料,其特征在于,所述硅烷类偶联剂为γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、乙烯基三甲氧基硅烷中的一种或多种,所述钛酸酯类偶联剂为双(二辛氧基焦磷酸酯基)乙撑钛酸酯、磷酸酯双钛酸酯、异丙基三油酸酰氧基钛酸酯中的一种或多种。
  5. 一种橡胶改性的相变导热界面材料的制备方法,其特征在于,包括如下步骤:
    (1)称取如下重量百分数的原料:基础相变树脂3~10%、合成橡胶1~5%、增粘树脂5~10%、抗氧剂0~1%、偶联剂0~5%和导热粒子69~85%;
    (2)将步骤(1)称取的基础相变树脂、合成橡胶、增粘树脂、抗氧剂,混合均匀后,升温至70℃,搅拌30~45分钟,得到膏状物;
    (3)将步骤(1)称取的偶联剂,加到步骤(2)所得膏状物中,搅拌≥10分钟,至所述偶联剂完全溶解,得到混合物A;
    (4)取步骤(1)称取的导热粒子,缓慢加入到步骤(3)所得混合物A中,搅拌60~90分钟,待混合均匀后,真空去泡30~45分钟,即得所述橡胶改性的相变导热界面材料。
  6. 根据权利要求5所述的一种橡胶改性的相变导热界面材料的制备方法,其特征在于,步骤(1)所述原料的重量百分数为:基础相变树脂5%、合成橡胶3%、增粘树脂8%、抗氧剂0.1%、偶联剂3.4%和导热粒子80.5%。
  7. 根据权利要求5或6所述的一种橡胶改性的相变导热界面材料的制备方法,其特征在于,所述基础相变树脂为石蜡、微晶蜡、蜂蜡中的一种或多种;所述合成橡胶为SEBS、SBS的一种或两种,所述增粘树脂为C5石油树脂、C9石油树脂、松香中的一种或者多种;所述抗氧剂为2,2’-亚甲基-二-(4-甲基,6-叔丁基苯酚)、抗氧剂1076、抗氧剂1010中的一种或多种;所述偶联剂为硅烷类偶联剂、钛酸酯类偶联剂中一种或两种;所述导热粒子为铝粉、氧化铝粉、氮化硼、氮化铝、氧化锌中的一种或多种。
  8. 根据权利要求7所述的一种橡胶改性的相变导热界面材料的制备方法,其特征在于,所述硅烷类偶联剂为γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、乙烯基三甲氧基硅烷中的一种或多种,所述钛酸酯类偶联剂为双(二辛氧基焦磷酸酯基)乙撑钛酸酯、磷酸酯双钛酸酯、异丙基三油酸酰氧基钛酸酯中的一种或多种。
PCT/CN2015/096969 2015-12-03 2015-12-10 一种橡胶改性的相变导热界面材料及制备方法 WO2017092066A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527812A JP2018538690A (ja) 2015-12-03 2015-12-10 ゴム変性の相変化熱伝導材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510881348.0A CN105441034A (zh) 2015-12-03 2015-12-03 一种橡胶改性的相变导热界面材料及制备方法
CN201510881348.0 2015-12-03

Publications (1)

Publication Number Publication Date
WO2017092066A1 true WO2017092066A1 (zh) 2017-06-08

Family

ID=55551691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096969 WO2017092066A1 (zh) 2015-12-03 2015-12-10 一种橡胶改性的相变导热界面材料及制备方法

Country Status (3)

Country Link
JP (1) JP2018538690A (zh)
CN (1) CN105441034A (zh)
WO (1) WO2017092066A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303642A (zh) * 2019-11-26 2020-06-19 东莞市美庆电子科技有限公司 一种低热阻相变导热材料及其制备方法
CN112625452A (zh) * 2020-12-31 2021-04-09 南昌大学 一种用于电子设备的相变储能硅脂垫片及其制备方法
CN113174140A (zh) * 2021-06-02 2021-07-27 山东鹤鹏技术有限公司 一种化学改性的硅橡胶及其制备方法
CN119371940A (zh) * 2024-12-27 2025-01-28 常州宏巨电子科技有限公司 一种碳基强化导热的高粘性定型相变材料及其制备方法和应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817881A (zh) * 2017-01-22 2017-06-09 嘉兴斯达半导体股份有限公司 一种功率半导体模块及其制备方法
CN106800786B (zh) * 2017-01-22 2019-06-25 深圳市净相科技有限公司 一种高导热、绝缘、阻燃型热整流材料及其制备方法
CN107216858B (zh) * 2017-05-18 2022-09-09 平湖阿莱德实业有限公司 一种导热相变储能界面组合物制备方法
CN107189767B (zh) * 2017-05-27 2020-11-27 广州中科检测技术服务有限公司 一种高界面传热效果、可塑、无粘污的界面传热材料及其制备方法
CN107722942A (zh) * 2017-11-10 2018-02-23 苏州环明电子科技有限公司 相变高导热界面材料及其制备方法
CN108003406A (zh) * 2017-12-20 2018-05-08 深圳德邦界面材料有限公司 一种耐温导热相变材料及其制备方法
CN108102376A (zh) * 2017-12-20 2018-06-01 深圳德邦界面材料有限公司 一种可移除的导热相变材料及其制备方法
CN108504334A (zh) * 2018-05-16 2018-09-07 苏州矽美科导热科技有限公司 一种超薄相变导热界面材料及其制备方法
CN109679535B (zh) * 2018-12-26 2020-09-29 深圳德邦界面材料有限公司 一种光模块用可固化的相变导热贴及其制备方法
CN110317580B (zh) * 2019-07-18 2021-05-14 深圳前海量子翼纳米碳科技有限公司 一种绝缘的高潜热相变蓄热吸热材料
TWI737369B (zh) * 2020-06-30 2021-08-21 世大化成股份有限公司 具內嵌式溫度調節單元之透氣載體及其製程
CN116445040A (zh) * 2023-03-28 2023-07-18 贵州师范大学 一种具有蓄热-导热双功能电绝缘凝胶及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580116A (zh) * 2003-08-15 2005-02-16 台盐实业股份有限公司 散热界面材料组成
CN103540280A (zh) * 2013-09-27 2014-01-29 沈阳建筑大学 一种导热、导电热熔胶及其制备方法
CN104610697A (zh) * 2014-05-15 2015-05-13 浙江三赢医疗器械有限公司 一种tpe及其制造方法和用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113313A (ja) * 2001-09-21 2003-04-18 Three M Innovative Properties Co 熱伝導性組成物
TW200409246A (en) * 2002-07-15 2004-06-01 Honeywell Int Inc Thermal interconnect and interface systems, methods of production and uses thereof
JP4070714B2 (ja) * 2003-12-25 2008-04-02 電気化学工業株式会社 樹脂組成物及び相変化型熱伝導部材
EP2118191A1 (en) * 2007-01-10 2009-11-18 Momentive Performance Materials Inc. Thermal interface materials and methods for making thereof
JP2009102577A (ja) * 2007-10-25 2009-05-14 Polymatech Co Ltd 熱伝導性組成物
CN102341474B (zh) * 2009-03-02 2014-09-24 霍尼韦尔国际公司 热界面材料及制造和使用它的方法
JP5558161B2 (ja) * 2010-03-29 2014-07-23 アロン化成株式会社 発熱体と、冷却部品との間のスペーサーとして使用される熱伝導性エラストマー組成物
EP3105300B1 (en) * 2014-02-13 2019-08-21 Honeywell International Inc. Compressible thermal interface materials
CN104650817A (zh) * 2015-02-12 2015-05-27 平湖阿莱德实业有限公司 一种导热相变材料及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580116A (zh) * 2003-08-15 2005-02-16 台盐实业股份有限公司 散热界面材料组成
CN103540280A (zh) * 2013-09-27 2014-01-29 沈阳建筑大学 一种导热、导电热熔胶及其制备方法
CN104610697A (zh) * 2014-05-15 2015-05-13 浙江三赢医疗器械有限公司 一种tpe及其制造方法和用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303642A (zh) * 2019-11-26 2020-06-19 东莞市美庆电子科技有限公司 一种低热阻相变导热材料及其制备方法
CN112625452A (zh) * 2020-12-31 2021-04-09 南昌大学 一种用于电子设备的相变储能硅脂垫片及其制备方法
CN112625452B (zh) * 2020-12-31 2022-08-09 南昌大学 一种用于电子设备的相变储能硅脂垫片及其制备方法
CN113174140A (zh) * 2021-06-02 2021-07-27 山东鹤鹏技术有限公司 一种化学改性的硅橡胶及其制备方法
CN113174140B (zh) * 2021-06-02 2022-10-14 合盛硅业(上海)有限公司 一种化学改性的硅橡胶及其制备方法
CN119371940A (zh) * 2024-12-27 2025-01-28 常州宏巨电子科技有限公司 一种碳基强化导热的高粘性定型相变材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105441034A (zh) 2016-03-30
JP2018538690A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2017092066A1 (zh) 一种橡胶改性的相变导热界面材料及制备方法
CN103030976B (zh) 一种单组份加热固化液体硅橡胶及其制备方法
CN102153955B (zh) 一种使用玻璃纤维网作为支撑结构的导热贴片的制备方法
WO2017113084A1 (zh) 基于合成石墨改性的高导热超薄胶带
CN103333494A (zh) 一种导热绝缘硅橡胶热界面材料及其制备方法
CN105400460B (zh) 导电胶组合物和胶带及其在太阳能电池组件中的应用
WO2011145523A1 (ja) 熱伝導性粘着シート
CN105400202A (zh) 一种氮化硼/石墨烯复合导热硅脂及其制备方法
CN102850911A (zh) 氧化石墨烯散热降温涂料及其制备方法
CN105348821A (zh) 一种高导热性能的相变石墨导热材料及制备方法
CN103555196A (zh) 一种led灯的纳米氮化铝散热涂料及其制备方法
CN108003841A (zh) 一种相变吸波导热材料及其制备方法和用途
WO2013191045A1 (ja) 熱伝導性粘着組成物
CN107573446B (zh) 氮化硼纳米片与聚丙烯酸凝胶复合热界面材料及制备方法
CN103524995A (zh) 一种高导热绝缘塑料
CN112020749B (zh) 用于附接太阳能电池的导电粘合剂
CN109880541A (zh) 可快速固化且具高粘接强度的导热材料
JP2011241328A (ja) 熱伝導性粘着シート
CN116790227A (zh) 一种基于有机硅体系的高性能导热相变材料及其制备方法
CN105462533A (zh) 一种大功率led封装用导电银胶及其制备方法
CN116462970A (zh) 一种高导热电绝缘硅橡胶垫片及其制备方法
CN100339983C (zh) 放热用构件及其连接构造体
CN104253174B (zh) 一种导热型太阳能电池封装背板膜的制备方法
WO2021142751A1 (zh) 一种丙烯酸导电胶及其制备方法和应用
CN111171771A (zh) 一种粘结片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018527812

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15909580

Country of ref document: EP

Kind code of ref document: A1