[go: up one dir, main page]

WO2017061464A1 - 非水電解液及びそれを用いた蓄電デバイス - Google Patents

非水電解液及びそれを用いた蓄電デバイス Download PDF

Info

Publication number
WO2017061464A1
WO2017061464A1 PCT/JP2016/079612 JP2016079612W WO2017061464A1 WO 2017061464 A1 WO2017061464 A1 WO 2017061464A1 JP 2016079612 W JP2016079612 W JP 2016079612W WO 2017061464 A1 WO2017061464 A1 WO 2017061464A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
lithium
preferable
compound
electrolytic solution
Prior art date
Application number
PCT/JP2016/079612
Other languages
English (en)
French (fr)
Inventor
安部 浩司
近藤 正英
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN201680058044.7A priority Critical patent/CN108140889B/zh
Priority to JP2017544523A priority patent/JP6777087B2/ja
Priority to US15/766,219 priority patent/US20180301758A1/en
Publication of WO2017061464A1 publication Critical patent/WO2017061464A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte capable of improving charge storage characteristics and discharge storage characteristics of a power storage device in a high temperature environment, and a power storage device using the same.
  • lithium ion secondary batteries and lithium ion capacitors have attracted attention as power supplies for vehicles such as electric vehicles and hybrid cars, and power supplies for idling stop.
  • a non-aqueous electrolyte prepared by dissolving an electrolyte such as LiPF 6 or LiBF 4 in a cyclic carbonate such as ethylene carbonate or propylene carbonate and a linear carbonate such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate A water electrolyte is used.
  • an electrolyte such as LiPF 6 or LiBF 4
  • a cyclic carbonate such as ethylene carbonate or propylene carbonate
  • a linear carbonate such as dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte comprises a non-aqueous solvent, an electrolyte salt, 1,3-dioxane, and a sulfonic acid.
  • Nonaqueous electrolyte secondary batteries containing an ester compound have been proposed. According to Patent Document 1, it is possible to improve the initial capacity, cycle characteristics, and storage characteristics of a secondary battery capable of high-voltage charging in which the potential of the positive electrode active material exceeds 4.3V.
  • the lithium secondary battery when the lithium secondary battery is held in a charged state for a long time in a high temperature environment (for example, an environment where the temperature exceeds 50 ° C., such as in a car in midsummer), the battery is a non-aqueous solvent on the positive electrode surface. Some of them may be oxidatively decomposed, resulting in deposition of decomposition products and liquid withering due to gas generation. If this happens, there is a problem that the interfacial resistance of the positive electrode is increased and the desirable electrochemical characteristics of the battery are degraded.
  • a high temperature environment for example, an environment where the temperature exceeds 50 ° C., such as in a car in midsummer
  • the coating on the negative electrode surface may be dissolved to cause the locally active negative electrode surface to appear. Then, the active negative electrode surface and a part of the non-aqueous solvent react to cause self-discharge, and the potential of the negative electrode rises. In particular, under a high temperature environment, a series of reactions are accelerated, so that the battery is overdischarged and the negative electrode current collector is melted, which causes a problem that the desirable electrochemical characteristics of the battery are deteriorated.
  • An object of the present invention is to provide a non-aqueous electrolyte capable of improving charge storage characteristics and discharge storage characteristics under a high temperature environment, and an electricity storage device using the same.
  • Patent Document 1 1,3-dioxane and a sulfonic acid ester are mixed and added, and although a certain effect can be obtained with respect to charge storage characteristics, for improvement of discharge storage characteristics under a high temperature environment, There is no description or suggestion, and it is the fact that sufficient effects have not been obtained. Therefore, the present inventors have intensively studied to solve the above-mentioned problems, and are non-aqueous electrolytes in which an electrolyte salt is dissolved in a non-aqueous solvent, which is 1,3-dioxane in the non-aqueous electrolyte.
  • the present invention provides the following (1) and (2).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group selected from a methyl group and an ethyl group, or an alkoxy group selected from a methoxy group and an ethoxy group
  • a power storage device comprising a positive electrode, a negative electrode, and a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolytic solution is the non-aqueous electrolytic solution according to (1) Power storage device characterized by.
  • the present invention it is possible to provide a non-aqueous electrolyte capable of improving charge storage characteristics and discharge storage characteristics under a high temperature environment, and a storage device such as a lithium battery using the same.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, and contains 0.1 to 4% by mass of 1,3-dioxane in the non-aqueous electrolyte. Furthermore, it is characterized in that it contains 0.1 to 4% by mass of the compound having a carbon-carbon triple bond represented by the above general formula (I).
  • the non-aqueous electrolyte solution of the present invention can improve charge storage characteristics and discharge storage characteristics under a high temperature environment.
  • the compound having a specific characteristic group (ester group or carbonate group) represented by the above general formula (I) and used in combination with 1,3-dioxane and a carbon-carbon triple bond is an anode side.
  • the film is electrochemically reduced to form a film, but dissolution and regeneration of the film proceed under a high temperature environment, which causes an increase in the interfacial resistance of the negative electrode.
  • 1,3-dioxane does not form a film although it is electrochemically reduced on the negative electrode side, if it remains in the electrolytic solution, it is reduced on the negative electrode surface and becomes a factor of self-discharge.
  • a specific amount of 1,3-dioxane and a compound having a specific amount of carbon-carbon triple bond are used in combination, a part of 1,3-dioxane in the film formation process of the compound having a carbon-carbon triple bond Is incorporated into the coating to form a strong composite coating. Since the composite coating has high durability in a high temperature environment, self-discharge during long-term storage is suppressed.
  • the non-aqueous electrolyte of the present invention can improve both charge storage characteristics and discharge storage characteristics under high temperature environment.
  • the content of 1,3-dioxane in the non-aqueous electrolyte is preferably 0.1 to 4% by mass. If the content is 4% by mass or less, there is little possibility that the film is excessively formed on the electrode and the electrochemical characteristics are deteriorated, and if 0.1% by mass or more, the formation of the film is sufficient. The effect of improving storage characteristics is enhanced.
  • 0.2 mass% or more is preferable in a non-aqueous electrolyte, and, as for this content, 0.3 mass% or more is more preferable.
  • 3.8 mass% or less is preferable, 3.5 mass% or less is more preferable, and 3.2 mass% or less is more preferable as the upper limit.
  • the compound having a carbon-carbon triple bond contained in the non-aqueous electrolytic solution of the present invention is represented by the following general formula (I).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group selected from a methyl group and an ethyl group, or an alkoxy group selected from a methoxy group and an ethoxy group
  • R 1 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 2 is an alkyl group selected from a methyl group and an ethyl group, or an alkoxy group selected from a methoxy group and an ethoxy group, preferably an alkoxy group selected from a methoxy group and an ethoxy group, and more preferably a methoxy group.
  • 2-propynyl acetate compound 1
  • 2-propynyl propionate compound 2
  • methyl 2-propynyl carbonate compound 5
  • ethyl 2-propynyl carbonate compound 6
  • methyl 2- Further preferred is propynyl carbonate (compound 5) or ethyl 2-propynyl carbonate (compound 6).
  • the compound having a carbon-carbon triple bond represented by the above general formula (I) has a carbonate group as a characteristic group in its structure, charge storage characteristics and discharge storage characteristics under an even higher temperature environment are obtained. It is preferable because it improves.
  • the compounds represented by the general formula (I) can be used singly or in combination of two or more.
  • the total content of the compound having a carbon-carbon triple bond represented by the above general formula (I) contained in the non-aqueous electrolyte is 0.1 in the non-aqueous electrolyte. -4% by mass is preferable. If the content is 4% by mass or less, there is little possibility that the film is excessively formed on the electrode and the electrochemical characteristics are deteriorated, and if 0.1% by mass or more, the formation of the film is sufficient. The effect of improving storage characteristics is enhanced. 0.2 mass% or more is preferable in a non-aqueous electrolyte, and, as for this content, 0.3 mass% or more is more preferable. Moreover, 3.5 mass% or less is preferable, 3.3 mass% or less is more preferable, and 3.2 mass% or less is more preferable as the upper limit.
  • the content Cd of 1,3-dioxane contained in the non-aqueous electrolyte and the content Ct of a compound having a carbon-carbon triple bond represented by the general formula (I) are used.
  • 0.3 mass% or more is preferable, 0.5 mass% or more is more preferable, 0.6 mass% or more is further more preferable, and, as for the total amount (Cd + Ct), 7.5 mass% or less is preferable, and its upper limit is 7 mass.
  • % Or less is more preferable, and 6% by mass or less is more preferable.
  • the mass ratio of the content of the compound having 1,3-dioxane and the carbon-carbon triple bond is in the above range, the charge storage characteristics and the discharge storage characteristics in a high temperature environment are further improved, which is preferable.
  • non-aqueous electrolyte solution of the present invention non-aqueous solvents, electrolyte salts, and other additives described in the following which are 1,3-dioxane and a compound having a carbon-carbon triple bond represented by the above general formula (I) By combining them, a unique effect is exhibited that the effect of improving the charge storage characteristics and the discharge storage characteristics under a high temperature environment is synergistically improved.
  • Non-aqueous solvent As a non-aqueous solvent used for the non-aqueous electrolytic solution of the present invention, one or more selected from cyclic carbonates, chain esters, lactones, ethers, and amides are preferably mentioned. In order to synergistically improve the electrochemical properties under a high temperature environment, it is preferable that a chain ester is contained, more preferably a chain carbonate is contained, and it is further preferable that both a cyclic carbonate and a chain ester be contained. Preferably, both cyclic carbonate and linear carbonate are preferably included. In addition, the term "linear ester" is used as a concept including linear carbonate and linear carboxylic acid ester.
  • the cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (hereinafter collectively referred to as “DFEC”), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and 4-ethynyl-1 And ethylene, 3-dioxolan-2-one (EEC), ethylene carbonate (EC), propylene carbonate (PC), 4-fluoro-1,3-dioxolan-2-one (FEC). ), Vinylene carbonate (VC), and 4-ethynyl-1,3-dioxo One or two or more selected from the emission-2-one (EEC) is more preferable.
  • DFEC ethylene carbonate
  • PC propylene carbonate
  • FEC 4-fluoro-1
  • At least one of the aforementioned carbon-carbon double bonds or unsaturated bonds such as carbon-carbon triple bonds, or cyclic carbonates having a fluorine atom since the electrochemical characteristics in a high temperature environment are further improved. It is more preferable to include both a cyclic carbonate containing an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom.
  • VC, VEC or EEC is more preferable as the cyclic carbonate having unsaturated bonds such as carbon-carbon double bonds or carbon-carbon triple bonds
  • FEC or DFEC is more preferable as the cyclic carbonate having a fluorine atom.
  • the content of the cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.07% by volume or more, more preferably 0.2% by volume, relative to the total volume of the non-aqueous solvent.
  • the upper limit is preferably 7% by volume or less, more preferably 4% by volume or less, and still more preferably 2.5% by volume or less. It is preferable that the content is in the above-mentioned range because the electrochemical characteristics in a high temperature environment can be further improved without impairing the Li ion permeability.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.07% by volume or more, more preferably 3% by volume or more, still more preferably 4% by volume or more, based on the total volume of the non-aqueous solvent.
  • the upper limit is preferably 35% by volume or less, more preferably 25% by volume or less, and further 15% by volume or less. It is preferable that the content is in the above-mentioned range because electrochemical characteristics in a high temperature environment can be further improved without impairing Li ion permeability.
  • the content of the cyclic carbonate having the unsaturated bond relative to the content of the cyclic carbonate having a fluorine atom is preferably 0.2% by volume or more, more preferably 3% by volume or more, further preferably 7% by volume or more, and the upper limit thereof is preferably 40% by volume or less, more preferably 30% by volume or less, and further 15% by volume or less is there. It is particularly preferable that the content is in the above-mentioned range because the electrochemical characteristics in a high temperature environment can be further improved without impairing the Li ion permeability.
  • the non-aqueous solvent contains both ethylene carbonate and the cyclic carbonate having the unsaturated bond, because the electrochemical properties of the film formed on the electrode can be improved under high temperature environment, and ethylene carbonate and
  • the content of the cyclic carbonate having an unsaturated bond is preferably 3% by volume or more, more preferably 5% by volume or more, still more preferably 7% by volume or more, based on the total volume of the non-aqueous solvent.
  • the upper limit is preferably 45% by volume or less, more preferably 35% by volume or less, and still more preferably 25% by volume or less.
  • These solvents may be used alone or in combination of two or more, since the effect of improving the electrochemical characteristics in a high temperature environment is further improved, which is preferable, and a combination of three or more is used. It is particularly preferred to Preferred combinations of these cyclic carbonates include EC and PC, EC and VC, PC and VC, VC and FEC, EC and FEC, PC and FEC, FEC and DFEC, EC and DFEC, PC and DFEC, VC and DFEC , VEC and DFEC, VC and EEC, EC and EEC, EC and PC and VC, EC and PC and FEC, EC and VC and FEC, EC and VC and VEC, EC and VC and EEC, EC and EEC and FEC, PC And VC and FEC, EC and VC and DFEC, PC and VC and DFEC, EC, PC and VC and FEC, or EC and PC and VC and DFEC, etc.
  • one or two or more asymmetric linear carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate, dimethyl
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC carbonate
  • DEC diethyl carbonate
  • dipropyl carbonate and dibutyl carbonate
  • pivalate such as methyl pivalate, ethyl pivalate, propyl pivalate, propionone
  • one or more chain carboxylic acid esters selected from methyl acid (MP), ethyl propionate (EP), propyl propionate (PP), methyl acetate and ethyl acetate (EA) And the like to apply.
  • a methyl group selected from dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, methyl propionate and methyl acetate Ethyl acetate (EA), ethyl propionate (EP) and propyl propionate (PP) are preferred in addition to the chain ester having the above, and especially linear carbonates having a methyl group are preferred.
  • a linear carbonate it is preferable to use 2 or more types.
  • both symmetrical linear carbonate and asymmetric linear carbonate are contained, and it is further preferable that symmetrical linear carbonate is contained more than asymmetric linear carbonate.
  • the content of the linear ester is not particularly limited, but is preferably in the range of 60 to 90% by volume with respect to the total volume of the non-aqueous solvent. If the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and if it is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte may be reduced to deteriorate the electrochemical characteristics. Since the amount is small, the above range is preferable.
  • the symmetrical linear carbonates include dimethyl carbonate (DMC). Further, it is more preferable that the asymmetric linear carbonate has a methyl group, and methyl ethyl carbonate (MEC) is particularly preferable. In the above case, the electrochemical characteristics in a high temperature environment are further improved, which is preferable.
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • the ratio of the cyclic carbonate to the chain ester is preferably 10/90 to 45/55, and more preferably 15/85 to 40/60, from the viewpoint of improving the electrochemical properties at high temperatures. Is more preferable, and 20/80 to 35/65 is particularly preferable.
  • nonaqueous solvents can be added in addition to the above-mentioned nonaqueous solvents.
  • Other nonaqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, or 1,2-dibutoxyethane And the like.
  • Preferred examples include one or more selected from lactone ethers such as chain ethers of the above, amides such as dimethylformamide, sulfones such as sulfolane, and lactones such as ⁇ -butyrolactone (GBL) or ⁇ -valerolactone and ⁇ -angelica lactone.
  • lactone ethers such as chain ethers of the above, amides such as dimethylformamide, sulfones such as sulfolane, and lactones such as ⁇ -butyrolactone (GBL) or ⁇ -valerolactone and ⁇ -angelica lactone.
  • the content of the other nonaqueous solvent is usually 1% or more, preferably 2% or more, and usually 40% or less, preferably 30% or less, more preferably 20% or less, based on the total volume of the nonaqueous solvent. It is below.
  • the above non-aqueous solvents are usually used in combination to achieve appropriate physical properties.
  • the combination is, for example, a combination of cyclic carbonate and chain carbonate, a combination of cyclic carbonate and chain carboxylic acid ester, a combination of cyclic carbonate and chain ester (especially chain carbonate) and lactone, cyclic carbonate and chain Preferred examples include combinations of cyclic esters (particularly chain carbonates) and ethers, combinations of cyclic carbonates and chain carbonates and chain carboxylic acid esters, and the like, and combinations of cyclic carbonates and chain esters and lactones are more preferable.
  • lactones it is more preferable to use ⁇ -butyrolactone (GBL).
  • additives may also be added to the non-aqueous electrolyte in order to improve the electrochemical properties in a higher temperature environment.
  • Specific examples of the other additives preferably include the following compounds (A) to (G).
  • Cyclic anhydrides such as (G) Cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, or ethoxyheptafluorocyclotetraphosphazene.
  • nitriles one or more selected from succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
  • aromatic compounds one or more selected from biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene Is more preferable, and one or more selected from biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene and tert-amylbenzene are particularly preferable.
  • isocyanate compounds (C) one or more selected from hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of the compounds (A) to (C) is preferably 0.01 to 7% by mass in the non-aqueous electrolyte. In this range, the coating is sufficiently formed without becoming too thick, and the electrochemical characteristics in a high temperature environment are further enhanced.
  • the content is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and the upper limit thereof is preferably 5% by mass or less, and more preferably 3% by mass or less in the non-aqueous electrolyte. .
  • cyclic or chain-like S O group-containing compounds selected from (D) sultone, cyclic sulfite, cyclic sulfate, sulfonic acid ester, vinyl sulfone, (E) phosphorus-containing compound, (F) cyclic acid anhydride, And (G) containing a cyclic phosphazene compound is preferable because the electrochemical properties in a higher temperature environment are improved.
  • 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl acetate
  • ethylene sulfate, pentafluorophenyl methanesulfonate, and divinyl sulfone are more preferable.
  • the cyclic phosphazene compound is preferably a cyclic phosphazene compound such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene or phenoxypentafluorocyclotriphosphazene, and is preferably methoxypentafluorocyclotriphosphazene or ethoxypentafluorocyclo Triphosphazene is more preferred.
  • the content of the compounds (D) to (G) is preferably 0.001 to 5% by mass in the non-aqueous electrolyte. In this range, the coating is sufficiently formed without becoming too thick, and the electrochemical characteristics in a high temperature environment are further enhanced.
  • the content is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, and the upper limit thereof is more preferably 3% by mass or less, and further preferably 2% by mass or less. .
  • lithium salt examples include lithium bis (oxalato) borate [LiBOB], lithium difluoro (oxalato) borate [LiDFOB], lithium tetrafluoro (oxalato) phosphate [LiTFOP], and lithium difluorobis (oxalato) phosphate [LiDFOP]
  • the proportion of the lithium salt in the non-aqueous solvent is preferably 0.001 M or more and 0.5 M or less. Within this range, the effect of improving the electrochemical characteristics in a high temperature environment is further exhibited. Preferably it is 0.01 M or more, More preferably, it is 0.03 M or more, More preferably, it is 0.04 M or more. The upper limit thereof is preferably 0.4 M or less, more preferably 0.2 M or less. (However, M shows mol / L.)
  • lithium salt As an electrolyte salt used for this invention, the following lithium salt is mentioned suitably.
  • inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , lithium salts containing a linear fluorinated alkyl group such as LiPF 5 (iso-C 3 F 7 ), (CF 2 ) 2 (SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 NLi And at least one lithium salt selected from lithium salts having a cyclic fluorinated alkyl group such as LiPF 5
  • LiPF 6 LiBF 4 , LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2 preferably, it is most preferable to use LiPF 6.
  • the concentration of the electrolyte salt is usually preferably 0.3 M or more, more preferably 0.7 M or more, and still more preferably 1.1 M or more with respect to the non-aqueous solvent.
  • the upper limit thereof is preferably 2.5 M or less, more preferably 2.0 M or less, and still more preferably 1.6 M or less.
  • preferable combinations of these electrolyte salts include LiPF 6 , and at least one lithium salt selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI].
  • the effect of improving the electrochemical characteristics in a high temperature environment Is preferable because it is less likely to lower the effect of improving the electrochemical characteristics in a high temperature environment.
  • it is 0.01 M or more, More preferably, it is 0.03 M or more, More preferably, it is 0.04 M or more.
  • the upper limit thereof is preferably 0.8 M or less, more preferably 0.6 M or less, and still more preferably 0.4 M or less.
  • the non-aqueous electrolytic solution of the present invention is, for example, mixed with the above-mentioned non-aqueous solvent, and expressed with 1,3-dioxane and the general formula (I) with respect to the above-mentioned electrolytic salt and the non-aqueous electrolytic solution. It can be obtained by adding a compound having a carbon-carbon triple bond. Under the present circumstances, the compound represented by General formula (I) added to the non-aqueous solvent and non-aqueous electrolyte to be used is beforehand refine
  • the non-aqueous electrolyte solution of the present invention can be used in the following first to fourth electricity storage devices, and as the non-aqueous electrolyte, not only liquid ones but also gelled ones can be used. Furthermore, the non-aqueous electrolytic solution of the present invention can also be used for solid polymer electrolytes. Above all, it is preferable to use as a first storage battery device (that is, for lithium battery) or a fourth storage battery device (that is, for lithium ion capacitor) that uses lithium salt for electrolyte salt. More preferably, it is most suitable to use for lithium secondary batteries.
  • the lithium battery which is the first electricity storage device, is a generic term for lithium primary batteries and lithium secondary batteries, and lithium secondary batteries are used as a concept including so-called lithium ion secondary batteries.
  • the lithium battery of the present invention comprises a positive electrode, a negative electrode, and the non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent.
  • the constituent members such as the positive electrode and the negative electrode other than the non-aqueous electrolytic solution can be used without particular limitation.
  • a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese and nickel is used as a positive electrode active material for lithium secondary batteries.
  • lithium composite metal oxides for example, LiCoO 2 , LiCo 1 -x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or two or more elements selected from Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.8 Mn 0 .1 Co 0.1 O 2, LiNi 0.8 Co 0.15 Al 0.05 O 2, Li 2 MnO 3 and LiMO 2 (M is, Co, Ni, Mn, transition metals such as Fe) solid solution of , And LiNi 1/2 Mn 3/2 O One or two or more selected from
  • the electrochemical characteristics are likely to be degraded in a high temperature environment due to a reaction with an electrolyte during charge, but in the lithium secondary battery according to the present invention The deterioration of these electrochemical properties can be suppressed.
  • the non-aqueous solvent is generally decomposed on the surface of the positive electrode by the catalytic action of Ni, and the resistance of the battery tends to increase.
  • the electrochemical characteristics in a high temperature environment tend to be deteriorated, but the lithium secondary battery according to the present invention is preferable because the deterioration of these electrochemical characteristics can be suppressed.
  • the positive electrode active material having a ratio of the atomic concentration of Ni to the atomic concentration of all transition metal elements in the positive electrode active material is preferably 10 atomic% or more, since the above effect becomes remarkable. It is more preferable to use a substance, and it is further preferable to use a positive electrode active material of 30 atomic% or more.
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , One or more selected from LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 are preferably mentioned.
  • a lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese. Specific examples thereof include one or more selected from LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , and LiFe 1-x Mn x PO 4 (0.1 ⁇ x ⁇ 0.9).
  • lithium-containing olivine-type phosphates may be substituted with other elements, and some of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, Nb It is also possible to substitute with one or more elements selected from Cu, Zn, Mo, Ca, Sr, W, Zr and the like, or to coat with a compound or carbon material containing these other elements. Among these, LiFePO 4 or LiMnPO 4 is preferred.
  • the lithium-containing olivine-type phosphate can also be used, for example, as a mixture with the above-mentioned positive electrode active material.
  • the lithium-containing olivine-type phosphate forms a stable phosphoric acid skeleton (PO 4 ) structure and is excellent in thermal stability during charging, so that it can improve charge storage characteristics and discharge storage characteristics under a high temperature environment it can.
  • the positive electrode for lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4, CuS, CuSO 4, TiO 2, TiS 2, SiO 2, SnO, V 2 O 5, V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Bi 2 Pb 2 O 5 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , WO 3 , SeO 2 , MnO 2 , Mn 2 O 3 Oxides or chalcogen compounds of one or more metal elements such as Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, and sulfur such as SO 2 , SOCl 2 compounds of the general formula (CF x) fluorocarbon (graphite fluoride) represented by n, and the like.
  • MnO 2 , V 2 O 5 or fluorinated graphite is preferable.
  • the conductive agent of the positive electrode is not particularly limited as long as it is an electron conductive material which does not cause a chemical change.
  • graphite such as natural graphite (scalate graphite etc.), artificial graphite etc., carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black or thermal black etc. may be mentioned.
  • graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, and more preferably 2 to 5% by mass.
  • the positive electrode includes the above-mentioned positive electrode active material as a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Mixed with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, etc., added with a high boiling point solvent such as 1-methyl-2-pyrrolidone and kneaded to prepare a positive electrode mixture Then, the positive electrode mixture is applied to an aluminum foil of a current collector, a stainless steel lath plate, etc., dried and pressure-molded, and then under a vacuum at a temperature of about 50 ° C.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene flu
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, for further increasing the capacity of the battery, it is preferably 2 g / cm 3 or more, more preferably, 3 g / cm 3 It is the above, More preferably, it is 3.6 g / cm ⁇ 3 > or more. The upper limit thereof is preferably 4 g / cm 3 or less.
  • lithium metal lithium alloy
  • carbon material capable of inserting and extracting lithium [graphitizable carbon, difficulty of 0.37 nm or more of (002) plane spacing Lithium titanate compounds such as graphitized carbon, graphite having an (002) plane spacing of 0.34 nm or less, tin (single body), tin compound, silicon (single body), silicon compound, Li 4 Ti 5 O 12 and the like Etc.
  • a highly crystalline carbon material such as artificial graphite or natural graphite in the ability to absorb and release lithium ions
  • the lattice spacing (d 002 ) of the lattice plane ( 002 ) is 0.
  • artificial graphite particles having a massive structure in which a plurality of flat graphite particles are aggregated or bonded non-parallel to each other or, for example, scaly natural graphite particles repeat mechanical actions such as compressive force, frictional force, shear force, etc. It is preferable to use graphite particles which have been given spheroidizing treatment.
  • the ratio I (110) / I (004) of the peak intensity I (004) on the (004) plane is 0.01 or more, the amount of metal elution from the positive electrode active material is further improved and the charge storage characteristics are improved. Therefore, it is preferably 0.05 or more, more preferably 0.1 or more.
  • the upper limit is preferably 0.5 or less, and more preferably 0.3 or less, because excessive treatment may lower crystallinity and decrease the discharge capacity of the battery.
  • a highly crystalline carbon material core material
  • a carbon material that is less crystalline than the core material since the electrochemical characteristics in a high temperature environment are further improved.
  • the crystallinity of the coated carbon material can be confirmed by TEM. If highly crystalline carbon materials are used, they tend to react with the non-aqueous electrolyte during charging and to decrease the electrochemical characteristics at low or high temperatures by increasing the interfacial resistance, but the lithium secondary battery according to the present invention The electrochemical characteristics in a high temperature environment become good.
  • metal compounds capable of inserting and extracting lithium as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu And compounds containing at least one metal element such as Zn, Ag, Mg, Sr, or Ba.
  • These metal compounds may be used in any form such as an alloy, an oxide, a nitride, a sulfide, a boride, an alloy with lithium, or any of an alloy, an oxide, an alloy with an oxide or lithium. It is preferable because it can increase the capacity.
  • one containing at least one element selected from Si, Ge and Sn is preferable, and one containing at least one element selected from Si and Sn is particularly preferable because the capacity of the battery can be increased.
  • the negative electrode is kneaded using the same conductive agent, binder and high boiling point solvent as in the preparation of the above positive electrode to form a negative electrode mixture, and this negative electrode mixture is then applied to copper foil of the current collector and the like. After drying and pressure molding, it can be manufactured by heat treatment at a temperature of about 50 ° C. to 250 ° C. for about 2 hours under vacuum.
  • the density of the portion excluding the current collector of the negative electrode is usually 1.1 g / cm 3 or more, and is preferably 1.5 g / cm 3 or more, particularly preferably 1.7 g, in order to further increase the capacity of the battery. / Cm 3 or more. In addition, as an upper limit, 2 g / cm ⁇ 3 > or less is preferable.
  • lithium metal or a lithium alloy is mentioned as a negative electrode active material for lithium primary batteries.
  • the structure of the lithium battery is not particularly limited, and a coin battery, a cylindrical battery, a prismatic battery, a laminate battery or the like having a single layer or multilayer separator can be applied.
  • the battery separator is not particularly limited, but a microporous film, woven fabric, non-woven fabric, etc. of a single layer or laminated layer of polyolefin such as polypropylene, polyethylene, ethylene-propylene copolymer, etc. can be used.
  • a laminate of polyolefin a laminate of polyethylene and polypropylene is preferable, and a three-layer structure of polypropylene / polyethylene / polypropylene is more preferable.
  • the thickness of the separator is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 4 ⁇ m or more, and the upper limit thereof is 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the lithium secondary battery according to the present invention is excellent in the electrochemical characteristics under high temperature environment even when the charge final voltage is 4.2 V or more, particularly 4.3 V or more, and the characteristics are excellent even at 4.4 V or more. is there.
  • the discharge termination voltage can be usually 2.8 V or more, and further 2.5 V or more, but the lithium secondary battery in the present invention can be 2.0 V or more.
  • the current value is not particularly limited, it is usually used in the range of 0.1 to 30C.
  • the lithium battery in the present invention can be charged and discharged at -40 to 100 ° C, preferably -10 to 80 ° C.
  • a method of providing a safety valve on the battery cover or making a notch in a member such as a battery can or a gasket can also be adopted.
  • a current blocking mechanism that senses the internal pressure of the battery and cuts off the current can be provided on the battery cover.
  • the second electricity storage device of the present invention is an electricity storage device that contains the non-aqueous electrolyte solution of the present invention and stores energy using the electric double layer capacity at the interface between the electrolyte solution and the electrode.
  • One example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this storage device is activated carbon.
  • the bilayer capacity increases approximately in proportion to the surface area.
  • the third electricity storage device of the present invention is an electricity storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using the electrode doping / dedoping reaction.
  • the electrode active material used in the electricity storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide and copper oxide, and ⁇ -conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy associated with electrode doping / de-doping reactions.
  • a fourth electricity storage device of the present invention is an electricity storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using intercalation of lithium ions to a carbon material such as graphite which is a negative electrode. It is called a lithium ion capacitor (LIC).
  • the positive electrode include those using an electric double layer between an activated carbon electrode and an electrolytic solution, and those using a doping / dedoping reaction of a ⁇ -conjugated polymer electrode.
  • the electrolyte includes lithium salts such as at least LiPF 6.
  • Examples 1 to 18 and Comparative Examples 1 to 6 [Fabrication of lithium ion secondary battery] 92% by mass of LiNi 0.33 Co 0.33 Mn 0.34 O 2 and 5% by mass of acetylene black (conductive agent) are mixed with 3% by mass of polyvinylidene fluoride (binder) in advance to 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. The positive electrode material mixture paste was applied to one side of an aluminum foil (current collector), dried and pressurized, and punched into a predetermined size to prepare a positive electrode sheet. The density of the portion of the positive electrode excluding the current collector was 3.6 g / cm 3 .
  • the solution was added to the solution which had been dissolved and mixed to prepare a negative electrode mixture paste.
  • the negative electrode material mixture paste was applied to one side of a copper foil (current collector), dried and pressurized to form a negative electrode sheet having a predetermined size.
  • the density of the part except the current collector of the negative electrode was 1.5 g / cm 3 .
  • the peak intensity I of the (110) plane of the graphite crystal and the ratio of the peak intensity I of the (004) plane I (004) [I (110) / I (004)] was 0.1. Then, the positive electrode sheet, the microporous polyethylene film separator, and the negative electrode sheet were laminated in this order, and the non-aqueous electrolytic solution having the composition shown in Tables 1 and 2 was added thereto to prepare a laminate battery.
  • this laminated battery was charged for 7 hours to a final voltage of 4.2 V at a constant current of 0.2 C and a constant voltage in a thermostat bath at 60 ° C., and was stored for 7 days in an open circuit state. Then, it was put in a thermostat at 25 ° C., and was discharged to a final voltage of 2.5 V under a constant current of 1 C. Subsequently, the battery is charged to a final voltage of 4.4 V for 7 hours at a constant current of 0.2 C and a constant voltage in a 25 ° C. constant temperature, and discharged to a final voltage of 2.5 V under a constant current of 0.2 C. The post recovery discharge capacity was determined.
  • the capacity recovery rate after high temperature charge storage was determined by the following equation.
  • Recovery rate after storage at high temperature charge (%) (Recovery discharge capacity / initial discharge capacity) x 100
  • the rate of change in impedance after charge storage was determined by the following equation. Impedance change rate (%) after storage at high temperature charge (% after storage impedance / initial impedance) x 100
  • Example 19 comparative example 7 A positive electrode sheet was manufactured using LiNi 0.6 Co 0.2 Mn 0.2 O 2 (positive electrode active material) in place of the positive electrode active material used in Example 1. 92 mass% of LiNi 0.6 Co 0.2 Mn 0.2 O 2 and 5 mass% of acetylene black (conductive agent) are mixed, and 3 mass% of polyvinylidene fluoride (binding agent) is preliminarily mixed with 1-methyl-2- The mixture was added to a solution dissolved in pyrrolidone and mixed to prepare a positive electrode mixture paste. This positive electrode material mixture paste was applied onto an aluminum foil (current collector), dried and pressurized, punched into a predetermined size, and a positive electrode sheet was prepared.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 positive electrode active material
  • a laminated battery was produced in the same manner as in Example 1 except that 4 V and the discharge termination voltage were 2.5 V, and the battery evaluation was performed. Moreover, the metal elution amount after high temperature discharge storage calculated
  • the effect of the present invention is represented by a specific amount of 1,3-dioxane of the present invention and a specific amount of the general formula (I) in a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent. It was found that this is a unique effect when a compound having a carbon-carbon triple bond is contained in combination. Further, from Example 19 and Comparative Example 7, similar effects can be observed when LiNi 0.6 Co 0.2 Mn 0.2 O 2 is used for the positive electrode. Therefore, it is clear that the effect of the present invention is not dependent on a specific positive electrode or negative electrode.
  • non-aqueous electrolytic solution of the present invention also has the effect of improving charge storage characteristics and discharge characteristics under high temperature environments such as lithium primary batteries, lithium ion capacitors, lithium air batteries and the like.
  • the non-aqueous electrolytic solution of the present invention it is possible to obtain an electricity storage device having excellent electrochemical characteristics in a high temperature environment.
  • a non-aqueous electrolyte for a storage device mounted on a hybrid electric vehicle, a plug-in hybrid electric vehicle, a battery electric vehicle, etc. it is possible to obtain a storage device capable of improving the electrochemical characteristics under high temperature environment. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、高温環境下での充電保存特性及び放電保存特性を向上させることができる非水電解液に関し、非水溶媒に電解質塩が溶解されている非水電解液において、非水電解液中に1,3-ジオキサンを0.1~4質量%含有し、更に下記一般式(I)で表される炭素-炭素三重結合を有する化合物を0.1~4質量%含有することを特徴とする蓄電デバイス用非水電解液、及びそれを用いた蓄電デバイスである。(式中、Rは、水素原子又はメチル基を示し、Rは、メチル基、エチル基、メトキシ基又はエトキシ基を示す。)

Description

非水電解液及びそれを用いた蓄電デバイス
 本発明は、高温環境下での蓄電デバイスの充電保存特性及び放電保存特性を向上できる非水電解液、並びにそれを用いた蓄電デバイスに関する。
 近年、電気自動車やハイブリッドカー等の自動車用の電源、アイドリングストップ用の電源として、リチウムイオン二次電池及びリチウムイオンキャパシタが注目されている。
 リチウム二次電池の電解液としては、エチレンカーボネート、プロピレンカーボネート等の環状カーボネートと、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートに、LiPF、LiBF等の電解質を溶解させた非水電解液が用いられている。
 こうしたリチウム二次電池のサイクル特性、保存特性等の電池特性を改良するために、これらの非水電解液に用いられる非水系溶媒や電解質について種々の検討がなされている。
 例えば、特許文献1には、正極と負極と非水電解質とを備える非水電解質二次電池において、前記非水電解質が、非水溶媒と、電解質塩と、1,3-ジオキサンと、スルホン酸エステル化合物とを含む非水電解質二次電池が提案されている。特許文献1によれば、正極活物質の電位が4.3Vを超える高電圧充電ができる二次電池の初期容量、サイクル特性及び保存特性を改善できるとしている。
 ところで、リチウム二次電池を高温環境下(例えば、真夏の車内など温度が50℃を超えるような環境下)、充電状態で長期間保持した場合には、電池は正極表面上で非水溶媒の一部が酸化分解してしまい、分解物の沈着やガス発生による液枯れを起こす可能性がある。そうなると、正極の界面抵抗が増大し、電池の望ましい電気化学特性を低下させてしまうという問題がある。
 一方、リチウム二次電池を高温環境下、放電状態で長期間保持した場合には、負極表面の被膜が溶解して局所的に活性な負極表面が現れる可能性がある。そうなると、活性な負極表面と非水溶媒の一部が反応して自己放電が起こり、負極の電位が上昇する。特に高温環境下では一連の反応が加速されるため、電池が過放電状態となって負極集電体が溶け出し、電池の望ましい電気化学特性を低下させてしまうという問題がある。
特開2009―140919号
 本発明は、高温環境下での充電保存特性及び放電保存特性を向上させることができる非水電解液、並びにそれを用いた蓄電デバイスを提供することを目的とする。
 特許文献1では、1,3-ジオキサンとスルホン酸エステルとを混合添加しており、充電保存特性については一定の効果が得られるものの、高温環境下での放電保存特性の向上に対しては、何ら記載も示唆もなく、十分な効果が得られていないのが実情である。
 そこで、本発明者らは、上記課題を解決するために鋭意研究を重ね、非水溶媒に電解質塩が溶解されている非水電解液であって、非水電解液中に1,3-ジオキサンを0.1~4質量%含有し、更に下記一般式(I)で表される炭素-炭素三重結合を有する化合物の少なくとも一種を0.1~4質量%含有させることで、高温環境下での充電保存特性及び放電保存特性が格段に向上することを見出し、本発明を完成した。
 すなわち、本発明は、下記の(1)及び(2)を提供するものである。
 (1)非水電解液に電解質塩が溶解されている非水電解液であって、非水電解液中に1,3-ジオキサンを0.1~4質量%含有し、更に下記一般式(I)で表される炭素-炭素三重結合を有する化合物を0.1~4質量%含有することを特徴とする非水電解液。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは、水素原子又はメチル基を示し、Rは、メチル基及びエチル基から選ばれるアルキル基、又はメトキシ基及びエトキシ基から選ばれるアルコキシ基を示す。)
 (2)正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記(1)に記載の非水電解液であることを特徴とする蓄電デバイス。
 本発明によれば、高温環境下での充電保存特性及び放電保存特性を向上させることができる非水電解液、並びにそれを用いたリチウム電池等の蓄電デバイスを提供することができる。
〔非水電解液〕
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液であって、非水電解液中に1,3-ジオキサンを0.1~4質量%含有し、更に前記一般式(I)で表される炭素-炭素三重結合を有する化合物を0.1~4質量%含有することを特徴とする。
 本発明の非水電解液が、高温環境下で充電保存特性及び放電保存特性を向上させることができる理由は必ずしも明確ではないが、以下のように考えられる。
 本発明では、1,3-ジオキサンと組み合わせて使用される前記一般式(I)で表される特定の特性基(エステル基又は炭酸エステル基)と炭素-炭素三重結合を有する化合物は、負極側で電気化学的に還元され、被膜を形成するが、高温環境下では被膜の溶解、再生成が進行するため、負極の界面抵抗が増大する要因になってしまう。一方、1,3-ジオキサンは、負極側で電気化学的に還元されるものの被膜を形成しないため、電解液中に残存すると負極表面で還元され、自己放電の要因になってしまう。ところが、特定量の1,3-ジオキサンと特定量の炭素-炭素三重結合を有する化合物を組み合わせて使用すると、炭素-炭素三重結合を有する化合物の被膜形成過程において、1,3-ジオキサンの一部が被膜に取り込まれて、強固な複合被膜が形成される。該複合被膜は、高温環境下での耐久性が高いため、長期保存時の自己放電が抑制される。
 更に、電解液中に残存する1,3-ジオキサンと特定の炭素-炭素三重結合を有する化合物の還元分解生成物の一部が相俟って正極表面に作用し、熱安定性の高い被膜を形成するため充電保存時の抵抗増大を抑制する。この結果、本発明の非水電解液は高温環境下での充電保存特性及び放電保存特性の両方を向上させることができると考えられる。
 本発明の非水電解液において、1,3-ジオキサンの含有量は、非水電解液中に0.1~4質量%が好ましい。該含有量が4質量%以下であれば、電極上に過度に被膜が形成され電気化学特性が低下するおそれが少なく、また0.1質量%以上であれば被膜の形成が十分であり、充電保存特性向上の効果が高まる。該含有量は、非水電解液中に0.2質量%以上が好ましく、0.3質量%以上がより好ましい。また、その上限は、3.8質量%以下が好ましく、3.5質量%以下がより好ましく、3.2質量%以下がより好ましい。
 本発明の非水電解液に含まれる炭素-炭素三重結合を有する化合物は、下記一般式(I)で表される。
Figure JPOXMLDOC01-appb-C000003

(式中、Rは、水素原子又はメチル基を示し、Rは、メチル基及びエチル基から選ばれるアルキル基、又はメトキシ基及びエトキシ基から選ばれるアルコキシ基を示す。)
 前記一般式(I)において、Rは、水素原子又はメチル基であるが、水素原子がより好ましい。
 Rは、メチル基及びエチル基から選ばれるアルキル基、又はメトキシ基及びエトキシ基から選ばれるアルコキシ基であるが、メトキシ基及びエトキシ基から選ばれるアルコキシ基が好ましく、メトキシ基がより好ましい。
 前記一般式(I)で表される炭素-炭素三重結合を有する化合物としては、具体的に以下の化合物が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記化合物の中でも、酢酸2-プロピニル(化合物1)、プロピオン酸2-プロピニル(化合物2)、メチル 2-プロピニル カーボネート(化合物5)、エチル 2-プロピニル カーボネート(化合物6)がより好ましく、メチル 2-プロピニル カーボネート(化合物5)、又はエチル 2-プロピニル カーボネート(化合物6)が更に好ましい。前記一般式(I)で表される炭素-炭素三重結合を有する化合物が、構造中に特性基として炭酸エステル基を有していると、一段と高温環境下での充電保存特性及び放電保存特性が向上するので好ましい。
 一般式(I)で表される化合物は、一種単独で又は二種以上を組み合せて用いることができる。
 本発明の非水電解液において、非水電解液に含有される前記一般式(I)で表される炭素-炭素三重結合を有する化合物の合計含有量は、非水電解液中に0.1~4質量%が好ましい。該含有量が4質量%以下であれば、電極上に過度に被膜が形成され電気化学特性が低下するおそれが少なく、また0.1質量%以上であれば被膜の形成が十分であり、充電保存特性向上の効果が高まる。該含有量は、非水電解液中に0.2質量%以上が好ましく、0.3質量%以上がより好ましい。また、その上限は、3.5質量%以下が好ましく、3.3質量%以下がより好ましく、3.2質量%以下がより好ましい。
 本発明の非水電解液において、非水電解液に含有される1,3-ジオキサンの含有量Cdと前記一般式(I)で表される炭素-炭素三重結合を有する化合物の含有量Ctの総量(Cd+Ct)は、0.3質量%以上が好ましく、0.5質量%以上がより好ましく、0.6質量%以上が更に好ましく、その上限は、7.5質量%以下が好ましく、7質量%以下がより好ましく、6質量%以下が更に好ましい。
 また、Cd>Ctであると好ましく、1,3-ジオキサンの含有量Cdと炭素-炭素三重結合を有する化合物の含有量Ctの質量比は、Cd/Ct=51/49~99/1が好ましく、55/45~95/5がより好ましく、60/40~90/10が更に好ましい。1,3-ジオキサンと炭素-炭素三重結合を有する化合物の含有量の質量比が上記範囲であると、一段と高温環境下での充電保存特性及び放電保存特性が向上するので好ましい。
 本発明の非水電解液において、1,3-ジオキサンと前記一般式(I)で表される炭素-炭素三重結合を有する化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、高温環境下での充電保存特性及び放電保存特性を向上させる効果が相乗的に向上するという特異な効果を発現する。
〔非水溶媒〕
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドから選ばれる一種又は二種以上が好適に挙げられる。高温環境下で電気化学特性を相乗的に向上させるため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることがより好ましく、環状カーボネートと鎖状エステルの両方が含まれることが更に好ましく、環状カーボネートと鎖状カーボネートの両方が含まれることが特に好ましい。
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上が挙げられ、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、ビニレンカーボネート(VC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上がより好適である。
 また、前記炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合、又はフッ素原子を有する環状カーボネートのうち少なくとも一種を使用すると高温環境下での電気化学特性が一段と向上するので好ましく、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、又はEECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECが更に好ましい。
 炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対して、好ましくは0.07体積%以上、より好ましくは0.2体積%以上、更に好ましくは0.7体積%以上であり、また、その上限は、好ましくは7体積%以下、より好ましくは4体積%以下、更に好ましくは2.5体積%以下である。該含有量が上記範囲であると、Liイオン透過性を損なうことなく一段と高温環境下での電気化学特性をより向上させることができるので好ましい。
 フッ素原子を有する環状カーボネートの含有量は、非水溶媒の総体積に対して好ましくは0.07体積%以上、より好ましくは3体積%以上、更に好ましくは4体積%以上であり、また、その上限は、好ましくは35体積%以下、より好ましくは25体積%以下、更に15体積%以下である。該含有量が上記範囲であると、Liイオン透過性を損なうことなく一段と高温環境下での電気化学特性を向上させることができるので好ましい。
 非水溶媒が前記不飽和結合を有する環状カーボネートとフッ素原子を有する環状カーボネートの両方を含む場合、フッ素原子を有する環状カーボネートの含有量に対する前記不飽和結合を有する環状カーボネートの含有量は、好ましくは0.2体積%以上、より好ましくは3体積%以上、更に好ましくは7体積%以上であり、その上限は、好ましくは40体積%以下、より好ましくは30体積%以下、更に15体積%以下である。該含有量が上記範囲であると、Liイオン透過性を損なうことなく一段と高温環境下での電気化学特性を向上させることができるので特に好ましい。
 また、非水溶媒がエチレンカーボネートと前記不飽和結合を有する環状カーボネートの両方を含むと電極上に形成される被膜の高温環境下での電気化学特性を向上させることができるので好ましく、エチレンカーボネート及び前記不飽和結合を有する環状カーボネートの含有量は、非水溶媒の総体積に対し、好ましくは3体積%以上、より好ましくは5体積%以上、更に好ましくは7体積%以上であり、また、その上限は、好ましくは45体積%以下、より好ましくは35体積%以下、更に好ましくは25体積%以下である。
 これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、高温環境下での電気化学特性の改善効果が更に向上するので好ましく、3種類以上を組み合わせて使用することが特に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPC、ECとVC、PCとVC、VCとFEC、ECとFEC、PCとFEC、FECとDFEC、ECとDFEC、PCとDFEC、VCとDFEC、VECとDFEC、VCとEEC、ECとEEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとVEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、ECとVCとDFEC、PCとVCとDFEC、ECとPCとVCとFEC、又はECとPCとVCとDFEC等が好ましい。前記の組合せのうち、ECとVC、ECとFEC、PCとFEC、ECとPCとVC、ECとPCとFEC、ECとVCとFEC、ECとVCとEEC、ECとEECとFEC、PCとVCとFEC、又はECとPCとVCとFEC等の組合せがより好ましい。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる一種又は二種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる一種又は二種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)、プロピオン酸プロピル(PP)、酢酸メチル、及び酢酸エチル(EA)から選ばれる一種又は二種以上の鎖状カルボン酸エステルが好適に挙げられる。
 前記鎖状エステルの中でも、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、プロピオン酸メチル、及び酢酸メチルから選ばれるメチル基を有する鎖状エステルの他、酢酸エチル(EA)、プロピオン酸エチル(EP)、プロピオン酸プロピル(PP)が好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、鎖状カーボネートを用いる場合には、二種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートが非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状エステルの含有量は、特に制限されないが、非水溶媒の総体積に対して、60~90体積%の範囲で用いるのが好ましい。該含有量が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して電気化学特性が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限は、95体積%以下がより好ましく、85体積%以下が更に好ましい。対称鎖状カーボネートにジメチルカーボネート(DMC)が含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネート(MEC)が特に好ましい。上記の場合に一段と高温環境下での電気化学特性が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(体積比)が10/90~45/55が好ましく、15/85~40/60がより好ましく、20/80~35/65が特に好ましい。
 本発明においては、上記の非水溶媒の他にその他の非水溶媒を添加することができる。その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、又は1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、又は1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン(GBL)又はγ-バレロラクトン、α-アンゲリカラクトン等のラクトンから選ばれる一種又は二種以上が好適に挙げられる。
 その他の非水溶媒の含有量は、非水溶媒の総体積に対して、通常1%以上、好ましくは2%以上であり、また通常40%以下、好ましくは30%以下、更に好ましくは20%以下である。
 上記の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状カーボネートとの組合せ、環状カーボネートと鎖状カルボン酸エステルとの組合せ、環状カーボネートと鎖状エステル(特に鎖状カーボネート)とラクトンとの組合せ、環状カーボネートと鎖状エステル(特に鎖状カーボネート)とエーテルとの組合せ、環状カーボネートと鎖状カーボネートと鎖状カルボン酸エステルとの組合せ等が好適に挙げられ、環状カーボネートと鎖状エステルとラクトンとの組合せがより好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いると更に好ましい。
 一段と高温環境下での電気化学特性を向上させる目的で、非水電解液中に更にその他の添加剤を加えることもできる。
 その他の添加剤の具体例としては、以下の(A)~(G)の化合物が好適に挙げられる。
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルから選ばれる一種又は二種以上のニトリル。
 (B)シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、又は1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、メチルフェニルカーボネート、エチルフェニルカーボネート、又はジフェニルカーボネート等の芳香族化合物。
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる一種又は二種以上のイソシアネート化合物。
 (D)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、又は2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート等のスルトン、エチレンサルファイト等の環状サルファイト、エチレンサルフェート、[4,4’-ビス(1,3,2-ジオキサチオラン)]2,2,2’,2’-テトラオキシド、(2,2-ジオキシド-1,3,2-ジオキサチオラン-4-イル)メチルメタンスルホネート、又は4-((メチルスルホニル)メチル)-1,3,2-ジオキサチオラン 2,2-ジオキシド等の環状サルフェート、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、又はメチレンメタンジスルホネート等のスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、又はビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる一種又は二種以上の環状又は鎖状のS=O基含有化合物。
 (E)リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、エチル 2-(ジエトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる一種又は二種以上のリン含有化合物。
 (F)無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、又は3-スルホ-プロピオン酸無水物等の環状酸無水物。
 (G)メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、又はエトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物。
 上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物から選ばれる少なくとも一種以上を含むと一段と高温環境下での電気化学特性が向上するので好ましい。
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルから選ばれる一種又は二種以上がより好ましい。
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンから選ばれる一種又は二種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンから選ばれる一種又は二種以上が特に好ましい。
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる一種又は二種以上がより好ましい。
 前記(A)~(C)の化合物の含有量は、非水電解液中に0.01~7質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と高温環境下での電気化学特性が高まる。該含有量は、非水電解液中に0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下がより好ましく、3質量%以下が更に好ましい。
 また、(D)スルトン、環状サルファイト、環状サルフェート、スルホン酸エステル、ビニルスルホンから選ばれる環状又は鎖状のS=O基含有化合物、(E)リン含有化合物、(F)環状酸無水物、及び(G)環状ホスファゼン化合物を含むと一段と高温環境下での電気化学特性が向上するので好ましい。
 前記環状のS=O基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、メチレン メタンジスルホネート、エチレンサルファイト、及びエチレンサルフェートから選ばれる一種又は二種以上が好適に挙げられる。
 また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、及びビス(2-ビニルスルホニルエチル)エーテルから選ばれる一種又は二種以上が好適に挙げられる。
 前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、エチレンサルフェート、ペンタフルオロフェニル メタンスルホネート、及びジビニルスルホンから選ばれる一種又は二種以上が更に好ましい。
 (E)リン含有化合物としては、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチル 2-(ジメチルホスホリル)アセテート、エチル 2-(ジメチルホスホリル)アセテート、メチル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、メチル 2-(ジメトキシホスホリル)アセテート、エチル 2-(ジメトキシホスホリル)アセテート、メチル 2-(ジエトキシホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートが好ましく、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、エチル 2-(ジエチルホスホリル)アセテート、2-プロピニル 2-(ジメチルホスホリル)アセテート、2-プロピニル 2-(ジエチルホスホリル)アセテート、エチル 2-(ジエトキシホスホリル)アセテート、2-プロピニル 2-(ジメトキシホスホリル)アセテート、又は2-プロピニル 2-(ジエトキシホスホリル)アセテートがより好ましい。
 (F)環状酸無水物としては、無水コハク酸、無水マレイン酸、又は3-アリル無水コハク酸が好ましく、無水コハク酸又は3-アリル無水コハク酸がより好ましい。
 (G)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、又はフェノキシペンタフルオロシクロトリホスファゼン等の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン、又はエトキシペンタフルオロシクロトリホスファゼンがより好ましい。
 前記(D)~(G)の化合物の含有量は、非水電解液中に0.001~5質量%が好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と高温環境下での電気化学特性が高まる。該含有量は、非水電解液中に0.01質量%以上がより好ましく、0.1質量%以上が更に好ましく、その上限は、3質量%以下がより好ましく、2質量%以下が更に好ましい。
 また、一段と高温環境下での電気化学特性を向上させる目的で、非水電解液中にさらに、シュウ酸骨格を有するリチウム塩、リン酸骨格を有するリチウム塩及びS=O基を有するリチウム塩の中から選ばれる一種以上のリチウム塩を含むことが好ましい。
 リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕、及びリチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕から選ばれる少なくとも一種のシュウ酸骨格を有するリチウム塩、LiPOやLiPOF等のリン酸骨格を有するリチウム塩、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕、及びFSOLiから選ばれる一種以上のS=O基を有するリチウム塩が好適に挙げられる。これらの中でも、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiTFMSB、LMS、LES、LFES、及びFSOLiから選ばれるリチウム塩を含むことがより好ましい。
 前記リチウム塩が非水溶媒中に占める割合は、0.001M以上0.5M以下が好ましい。この範囲にあると高温環境下での電気化学特性の向上効果が一段と発揮される。好ましくは0.01M以上、より好ましくは0.03M以上、更に好ましくは0.04M以上である。その上限は、好ましくは0.4M以下、より好ましくは0.2M以下である。(ただし、Mはmol/Lを示す。)
(電解質塩)
 本発明に使用される電解質塩としては、下記のリチウム塩が好適に挙げられる。
 リチウム塩としては、LiPF、LiBF、LiClO、LiN(SOF)〔LiFSI〕等の無機リチウム塩、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C7、LiPF(iso-C7)等の鎖状のフッ化アルキル基を含有するリチウム塩、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウム塩等から選ばれる少なくとも一種のリチウム塩が好適に挙げられ、これらの一種又は二種以上を混合して使用することができる。
 これらの中でも、LiPF、LiBF、LiN(SOF)〔LiFSI〕、LiN(SOCF、及びLiN(SOから選ばれる一種又は二種以上が好ましく、LiPFを用いることが最も好ましい。
 電解質塩の濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.7M以上がより好ましく、1.1M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.6M以下が更に好ましい。
 また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiN(SOCF、及びLiN(SOF)〔LiFSI〕から選ばれる少なくとも一種のリチウム塩が非水電解液中に含まれている場合が好ましく、LiPF以外のリチウム塩が非水溶媒中に占める割合は、0.001M以上であると、高温環境下での電気化学特性の向上効果が発揮されやすく、1.0M以下であると高温環境下での電気化学特性の向上効果が低下する懸念が少ないので好ましい。好ましくは0.01M以上、より好ましくは0.03M以上、更に好ましくは0.04M以上である。その上限は、好ましくは0.8M以下、より好ましくは0.6M以下、更に好ましくは0.4M以下である。
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して、1,3-ジオキサンと一般式(I)で表される炭素-炭素三重結合を有する化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える一般式(I)で表される化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。
〔第1の蓄電デバイス(リチウム電池)〕
 第1の蓄電デバイスであるリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称であり、リチウム二次電池は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 本発明のリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルからなる群より選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、一種単独で用いるか又は二種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる一種又は二種以上の元素、0.001≦x≦0.05)、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2から選ばれる一種又は二種以上がより好適である。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
 高充電電圧で動作するリチウム複合金属酸化物を使用すると、一般的に、充電時における電解液との反応により高温環境下で電気化学特性が低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができる。
 特にNiを含む正極活物質を用いると、一般的に、Niの触媒作用により正極表面での非水溶媒の分解が起き、電池の抵抗が増加しやすい傾向にある。特に高温環境下での電気化学特性が低下しやすい傾向にあるが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を抑制することができるので好ましい。特に、正極活物質中の全遷移金属元素の原子濃度に対するNiの原子濃度の割合が、10atomic%を超える正極活物質を用いた場合に上記効果が顕著になるので好ましく、20atomic%以上の正極活物質を用いることがより好ましく、30atomic%以上の正極活物質を用いることが更に好ましい。具体的には、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.6Mn0.2Co0.2、LiNi0.8Mn0.1Co0.1、及びLiNi0.8Co0.15Al0.05から選ばれる一種又は二種以上が好適に挙げられる。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる少なくとも一種以上を含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、LiMnPO、及びLiFe1-xMnPO(0.1<x<0.9)から選ばれる一種又は二種以上が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる一種以上の元素で置換したり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO又はLiMnPOが好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 リチウム含有オリビン型リン酸塩は、安定したリン酸骨格(PO)構造を形成し、充電時の熱安定性に優れるため、高温環境下での充電保存特性及び放電保存特性を向上することができる。
 また、リチウム一次電池用正極としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VO、Nb、Bi、BiPb,Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、CoOなどの、一種又は二種以上の金属元素の酸化物あるいはカルコゲン化合物、SO、SOClなどの硫黄化合物、一般式(CFnで表されるフッ化炭素(フッ化黒鉛)などが挙げられる。これらの中でも、MnO、V、又はフッ化黒鉛などが好ましい。
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、又はサーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、2~5質量%がより好ましい。
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池の容量をさらに高めるため、好ましくは2g/cm以上であり、より好ましくは、3g/cm以上であり、更に好ましくは3.6g/cm以上である。また、その上限は4g/cm以下が好ましい。
 リチウム二次電池用負極活物質としては、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛など〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、LiTi12等のチタン酸リチウム化合物等から選ばれる一種又は二種以上が挙げられる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料を使用することがより好ましく、格子面(002)の面間隔(d002)が0.340nm(ナノメータ)以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料を使用することが更に好ましい。
 特に複数の扁平状の黒鉛質微粒子が互いに非平行に集合又は結合した塊状構造を有する人造黒鉛粒子や、例えば、鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることが好ましい。
 負極の集電体を除く部分の密度を1.5g/cm以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が、0.01以上となると一段と正極活物質からの金属溶出量の改善と、充電保存特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、高温環境下での電気化学特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、TEMにより確認することができる。
 高結晶性の炭素材料を使用すると、充電時において非水電解液と反応し、界面抵抗の増加によって低温又は高温における電気化学特性を低下させる傾向があるが、本発明に係るリチウム二次電池では高温環境下での電気化学特性が良好となる。
 また、負極活物質としてのリチウムを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、又はBa等の金属元素を少なくとも一種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金の何れかが高容量化できるので好ましい。これらの中でも、Si、Ge及びSnから選ばれる少なくとも一種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも一種の元素を含むものが電池を高容量化できるので特に好ましい。
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下で加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池の容量をさらに高めるため、好ましくは1.5g/cm以上であり、特に好ましくは1.7g/cm以上である。なお、上限としては、2g/cm以下が好ましい。
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はないが、ポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
 ポリオレフィンの積層体としては、ポリエチレンとポリプロピレンとの積層体が好ましく、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造がより好ましい。
 セパレータの厚みは、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、また、その上限は、30μm以下、好ましくは20μm以下、より好ましくは15μm以下である。
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも高温環境下での電気化学特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 本発明の第2の蓄電デバイスは、本発明の非水電解液を含み、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。二重層容量は概ね表面積に比例して増加する。
〔第3の蓄電デバイス〕
 本発明の第3の蓄電デバイスは、本発明の非水電解液を含み、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 本発明の第4の蓄電デバイスは、本発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF6等のリチウム塩が含まれる。
 以下、本発明の化合物を用いた電解液の実施例を示すが、本発明は、これらの実施例に限定されるものではない。
実施例1~18、比較例1~6
〔リチウムイオン二次電池の作製〕
 LiNi0.33Co0.33Mn0.34 92質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製した。正極の集電体を除く部分の密度は3.6g/cmであった。
 また、ケイ素(単体)5質量%、人造黒鉛(d002=0.335nm、負極活物質)90質量%を、予めポリフッ化ビニリデン(結着剤)5質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き負極シートを作製した。負極の集電体を除く部分の密度は1.5g/cmであった。また、この電極シートを用いてX線回折測定した結果、黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比〔I(110)/I(004)〕は0.1であった。
 そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、表1~2に記載の組成の非水電解液を加えて、ラミネート電池を作製した。
〔高温充電保存特性の評価〕
<初期放電容量及びインピーダンス>
 上記の方法で作製したラミネート電池を用いて、25℃の恒温槽中、0.2Cの定電流及び定電圧で、終止電圧4.2Vまで7時間充電し、0.2Cの定電流下終止電圧2.5Vまで放電することで初期放電容量を求めた。その後、25℃の恒温槽中、1kHzでのインピーダンスを測定し、初期のインピーダンスを求めた。
<高温充電保存試験>
 次に、このラミネート電池を60℃の恒温槽中、0.2Cの定電流及び定電圧で終止電圧4.2Vまで7時間充電し、開回路の状態で7日間保存を行った。その後、25℃の恒温槽に入れ、一旦1Cの定電流下終止電圧2.5Vまで放電した。
 引き続き、25℃の恒温槽中、0.2Cの定電流及び定電圧で、終止電圧4.4Vまで7時間充電し、0.2Cの定電流下終止電圧2.5Vまで放電することで充電保存後の回復放電容量を求めた。高温充電保存後の容量回復率を以下の式により求めた。
 高温充電保存後の容量回復率(%)=(回復放電容量/初期放電容量)×100
 更にその後、コイン電池を25℃の恒温槽中、1kHzでのインピーダンスを測定し、充電保存後のインピーダンスを求めた。充電保存後のインピーダンス変化率を以下の式により求めた。
 高温充電保存後のインピーダンス変化率(%)=(保存後インピーダンス/初期インピーダンス)×100
〔高温放電保存特性の評価〕
<高温放電保存後の電解液中の金属溶出量>
 上記の方法で同様に作製したラミネート電池を用いて、25℃の恒温槽中、0.2Cの定電流及び定電圧で、終止電圧4.2Vまで7時間充電し、0.2Cの定電流下終止電圧2.5Vまで放電した。
 次に、このラミネート電池を80℃の恒温に入れ、開回路の状態で14日間保存を行った。その後、25℃の恒温槽に入れ、十分に冷却した後、ラミネート電池から電解液を抽出した。そして、電解液中のCuイオン(負極集電気体からの金属溶出)の濃度をICP-MS分析により定量した。高温放電保存後の金属溶出量は比較例1の金属溶出量を100%とした時を基準として、相対値を求めた。
 電池の作製条件及び電池特性を表1及び2に示す。
 なお、表1の実施例10で用いたPPは、プロピオン酸プロピルの略である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例19、比較例7
 実施例1で用いた正極活物質に変えて、LiNi0.6Co0.2Mn0.2(正極活物質)を用いて、正極シートを作製した。LiNi0.6Co0.2Mn0.2 92質量%、アセチレンブラック(導電剤)5質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上に塗布し、乾燥、加圧処理して所定の大きさに打ち抜き、正極シートを作製したこと、電池評価の際の充電終止電圧を4.4V、放電終止電圧を2.5Vとしたことの他は、実施例1と同様にラミネート電池を作製し、電池評価を行った。
 また、高温放電保存後の金属溶出量は比較例7の金属溶出量を100%とした時を基準として、相対値を求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
 上記実施例1~19のリチウム二次電池は何れも、本発明の非水電解液において1,3-ジオキサンと前記一般式(I)で表される炭素-炭素三重結合を有する化合物の両方を添加しない場合の比較例1、いずれか一方を添加した場合の比較例2及び3、いずれか一方を本発明の特定量よりも過度に添加した場合の比較例4及び5、1,3-ジオキサンと炭素-炭素三重結合を有するスルホン酸エステルを添加した比較例6の非水電解液を用いたリチウム二次電池に比べ、充電保存特性及び放電保存特性が顕著に向上している。
 以上より、本発明の効果は、非水溶媒に電解質塩が溶解されている非水電解液において、本発明の特定量の1,3-ジオキサンと特定量の前記一般式(I)で表される炭素-炭素三重結合を有する化合物を組み合わせて含有させた場合の特有の効果であることが判明した。
 また、実施例19と比較例7から、正極にLiNi0.6Co0.2Mn0.2を用いた場合にも同様な効果がみられる。従って、本発明の効果は、特定の正極や負極に依存した効果でないことは明らかである。
 更に、本発明の非水電解液は、リチウム一次電池、リチウムイオンキャパシタ、リチウム空気電池等の高温環境下での充電保存特性及び放電特性を改善する効果も有する。
 本発明の非水電解液を使用すれば、高温環境下での電気化学特性に優れた蓄電デバイスを得ることができる。特にハイブリッド電気自動車、プラグインハイブリッド電気自動車、バッテリー電気自動車などに搭載される蓄電デバイス用の非水電解液として使用される場合、高温環境下での電気化学特性を向上できる蓄電デバイスを得ることができる。

Claims (9)

  1.  非水溶媒に電解質塩が溶解されている非水電解液であって、非水電解液中に1,3-ジオキサンを0.1~4質量%含有し、更に下記一般式(I)で表される炭素-炭素三重結合を有する化合物を0.1~4質量%含有することを特徴とする蓄電デバイス用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、水素原子又はメチル基を示し、Rは、メチル基及びエチル基から選ばれるアルキル基、又はメトキシ基及びエトキシ基から選ばれるアルコキシ基を示す。)
  2.  一般式(I)で表される化合物が、酢酸2-プロピニル、プロピオン酸2-プロピニル、メチル 2-プロピニル カーボネート、及びエチル 2-プロピニル カーボネートから選ばれる一種又は二種以上である、請求項1に記載の非水電解液。
  3.  非水溶媒が、環状カーボネート及び鎖状エステルを含む、請求項1又は2に記載の非水電解液。
  4.  環状カーボネートが、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オンから選ばれる一種又は二種以上を含む、請求項3に記載の非水電解液。
  5.  鎖状エステルとして対称鎖状カーボネートと非対称鎖状カーボネートの両方を含み、対称鎖状カーボネートが非対称鎖状カーボネートより多く含まれる、請求項3又は4に記載の非水電解液。
  6.  正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が請求項1~5のいずれかに記載の非水電解液であることを特徴とする蓄電デバイス。
  7.  負極が負極活物質として、リチウム金属、リチウム合金、リチウムを吸蔵及び放出することが可能な炭素材料、スズ、スズ化合物、ケイ素、ケイ素化合物、及びチタン酸リチウム化合物から選ばれる一種又は二種以上を含む、請求項6に記載のリチウムイオン二次電池。
  8.  正極が正極活物質として、コバルト、マンガン、及びニッケルから選ばれる一種又は二種以上を含有するリチウムとの複合金属酸化物、又はリチウム含有オリビン型リン酸塩を含む、請求項6又は7に記載の蓄電デバイス。
  9.  蓄電デバイスが、リチウム二次電池又はリチウムイオンキャパシタである、請求項6~8のいずれかに記載の蓄電デバイス。
PCT/JP2016/079612 2015-10-09 2016-10-05 非水電解液及びそれを用いた蓄電デバイス WO2017061464A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680058044.7A CN108140889B (zh) 2015-10-09 2016-10-05 非水电解液及使用了非水电解液的蓄电设备
JP2017544523A JP6777087B2 (ja) 2015-10-09 2016-10-05 非水電解液及びそれを用いた蓄電デバイス
US15/766,219 US20180301758A1 (en) 2015-10-09 2016-10-05 Nonaqueous electrolyte solution and electricity storage device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201576 2015-10-09
JP2015201576 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061464A1 true WO2017061464A1 (ja) 2017-04-13

Family

ID=58487744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079612 WO2017061464A1 (ja) 2015-10-09 2016-10-05 非水電解液及びそれを用いた蓄電デバイス

Country Status (4)

Country Link
US (1) US20180301758A1 (ja)
JP (1) JP6777087B2 (ja)
CN (1) CN108140889B (ja)
WO (1) WO2017061464A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658498A (zh) * 2017-10-24 2018-02-02 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池
JP2018190624A (ja) * 2017-05-09 2018-11-29 トヨタ自動車株式会社 非水電解質二次電池
KR20190022382A (ko) * 2017-08-24 2019-03-06 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20190033448A (ko) * 2017-09-21 2019-03-29 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019059694A3 (ko) * 2017-09-21 2019-05-09 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019039903A3 (ko) * 2017-08-24 2019-05-09 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
JP2020161428A (ja) * 2019-03-28 2020-10-01 三洋電機株式会社 非水電解質二次電池
WO2021131240A1 (ja) * 2019-12-26 2021-07-01 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2022203047A1 (ja) * 2021-03-26 2022-09-29 Muアイオニックソリューションズ株式会社 非水系電解液及びそれを用いた非水系電解液電池
WO2023190335A1 (ja) * 2022-03-30 2023-10-05 株式会社レゾナック 電気化学デバイス及び電気化学デバイス用電解液
WO2023190363A1 (ja) * 2022-03-30 2023-10-05 株式会社レゾナック 電気化学デバイス及び電気化学デバイス用電解液
JP2024515977A (ja) * 2021-10-22 2024-04-11 エルジー エナジー ソリューション リミテッド 電解液添加剤、これを含むリチウム二次電池用電解液、およびリチウム二次電池
JP2024137649A (ja) * 2023-03-23 2024-10-07 三星エスディアイ株式会社 リチウム二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998956B (zh) * 2017-11-22 2021-12-10 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
JP7168851B2 (ja) 2017-12-06 2022-11-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2020040314A1 (ja) * 2018-08-24 2020-02-27 株式会社村田製作所 非水電解質二次電池
US12125980B2 (en) 2018-12-13 2024-10-22 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR102473691B1 (ko) * 2018-12-13 2022-12-05 주식회사 엘지에너지솔루션 리튬 이차전지용 전해질
US11735774B2 (en) 2021-04-28 2023-08-22 Apple Inc. Multifunctional electrolytes for rechargeable lithium-ion batteries
KR102651787B1 (ko) * 2021-07-14 2024-03-26 주식회사 엘지에너지솔루션 리튬 이차전지용 비수계 전해액 및 이를 포함하는 리튬 이차전지
KR20230162773A (ko) * 2022-05-20 2023-11-28 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 비수전해액과 이를 포함하는 이차 전지, 전지 모듈,전지 팩 및 전기 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203594A (ja) * 2000-11-02 2002-07-19 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
WO2005117197A1 (ja) * 2004-05-28 2005-12-08 Ube Industries, Ltd. 非水電解液およびリチウム二次電池
WO2007139130A1 (ja) * 2006-05-31 2007-12-06 Sanyo Electric Co., Ltd. 高電圧充電型非水電解質二次電池
WO2012067248A1 (ja) * 2010-11-19 2012-05-24 三菱化学株式会社 4-アルキニル-1,3-ジオキソラン-2-オン誘導体の製造法
WO2013168821A1 (ja) * 2012-05-11 2013-11-14 宇部興産株式会社 非水電解液、及びそれを用いた蓄電デバイス
JP2013239426A (ja) * 2011-11-11 2013-11-28 Mitsubishi Chemicals Corp 非水系電解液二次電池、および非水系電解液
WO2014021272A1 (ja) * 2012-07-31 2014-02-06 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4093699B2 (ja) * 2000-03-13 2008-06-04 株式会社デンソー 非水電解液及び非水電解液二次電池
JP4304404B2 (ja) * 2000-10-02 2009-07-29 宇部興産株式会社 非水電解液およびそれを用いたリチウム二次電池
US9281541B2 (en) * 2007-04-05 2016-03-08 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
JP6177042B2 (ja) * 2013-03-12 2017-08-09 日立マクセル株式会社 リチウム二次電池
CN105556729B (zh) * 2013-04-04 2019-04-09 索尔维公司 非水电解质组合物
JP6224382B2 (ja) * 2013-09-04 2017-11-01 マクセルホールディングス株式会社 リチウム二次電池
JP6128403B2 (ja) * 2013-10-31 2017-05-17 エルジー・ケム・リミテッド リチウム二次電池
JP5835514B1 (ja) * 2015-05-27 2015-12-24 宇部興産株式会社 リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203594A (ja) * 2000-11-02 2002-07-19 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
WO2005117197A1 (ja) * 2004-05-28 2005-12-08 Ube Industries, Ltd. 非水電解液およびリチウム二次電池
WO2007139130A1 (ja) * 2006-05-31 2007-12-06 Sanyo Electric Co., Ltd. 高電圧充電型非水電解質二次電池
WO2012067248A1 (ja) * 2010-11-19 2012-05-24 三菱化学株式会社 4-アルキニル-1,3-ジオキソラン-2-オン誘導体の製造法
JP2013239426A (ja) * 2011-11-11 2013-11-28 Mitsubishi Chemicals Corp 非水系電解液二次電池、および非水系電解液
WO2013168821A1 (ja) * 2012-05-11 2013-11-14 宇部興産株式会社 非水電解液、及びそれを用いた蓄電デバイス
WO2014021272A1 (ja) * 2012-07-31 2014-02-06 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190624A (ja) * 2017-05-09 2018-11-29 トヨタ自動車株式会社 非水電解質二次電池
KR102264733B1 (ko) * 2017-08-24 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
CN110582883A (zh) * 2017-08-24 2019-12-17 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
CN110582883B (zh) * 2017-08-24 2022-05-03 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
US11876177B2 (en) 2017-08-24 2024-01-16 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20190022382A (ko) * 2017-08-24 2019-03-06 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019039903A3 (ko) * 2017-08-24 2019-05-09 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
US11183711B2 (en) 2017-09-21 2021-11-23 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP3742537A3 (en) * 2017-09-21 2021-03-24 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR102264735B1 (ko) * 2017-09-21 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
CN110612632B (zh) * 2017-09-21 2022-08-12 株式会社Lg新能源 锂二次电池用非水性电解质溶液和包含其的锂二次电池
EP3605710A4 (en) * 2017-09-21 2020-11-11 LG Chem, Ltd. NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY AND SECONDARY LITHIUM BATTERY INCLUDING IT
KR20190033448A (ko) * 2017-09-21 2019-03-29 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019059694A3 (ko) * 2017-09-21 2019-05-09 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
CN110612632A (zh) * 2017-09-21 2019-12-24 株式会社Lg化学 锂二次电池用非水性电解质溶液和包含其的锂二次电池
CN107658498A (zh) * 2017-10-24 2018-02-02 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池
WO2019080258A1 (zh) * 2017-10-24 2019-05-02 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池
CN107658498B (zh) * 2017-10-24 2020-10-20 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池
JP2020161428A (ja) * 2019-03-28 2020-10-01 三洋電機株式会社 非水電解質二次電池
JP7301266B2 (ja) 2019-03-28 2023-07-03 パナソニックエナジー株式会社 非水電解質二次電池
JPWO2021131240A1 (ja) * 2019-12-26 2021-07-01
WO2021131240A1 (ja) * 2019-12-26 2021-07-01 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2022203047A1 (ja) * 2021-03-26 2022-09-29 Muアイオニックソリューションズ株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP2024515977A (ja) * 2021-10-22 2024-04-11 エルジー エナジー ソリューション リミテッド 電解液添加剤、これを含むリチウム二次電池用電解液、およびリチウム二次電池
JP7704329B2 (ja) 2021-10-22 2025-07-08 エルジー エナジー ソリューション リミテッド 電解液添加剤、これを含むリチウム二次電池用電解液、およびリチウム二次電池
WO2023190363A1 (ja) * 2022-03-30 2023-10-05 株式会社レゾナック 電気化学デバイス及び電気化学デバイス用電解液
WO2023190335A1 (ja) * 2022-03-30 2023-10-05 株式会社レゾナック 電気化学デバイス及び電気化学デバイス用電解液
JP2024137649A (ja) * 2023-03-23 2024-10-07 三星エスディアイ株式会社 リチウム二次電池

Also Published As

Publication number Publication date
US20180301758A1 (en) 2018-10-18
JP6777087B2 (ja) 2020-10-28
CN108140889B (zh) 2020-12-25
CN108140889A (zh) 2018-06-08
JPWO2017061464A1 (ja) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6777087B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6614146B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6673225B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6866183B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6575521B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6007915B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6222106B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP7019598B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP6737280B2 (ja) 蓄電デバイス用非水電解液及びそれを用いた蓄電デバイス
JP6229453B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
KR20140148427A (ko) 비수 전해액 및 그것을 이용한 축전 디바이스
JP7082613B2 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP2019114391A (ja) 非水電解液およびそれを用いた蓄電デバイス
JPWO2016076327A1 (ja) 非水電解液及びそれを用いた蓄電デバイス
JP2019164937A (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6252200B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP6303507B2 (ja) 非水電解液およびそれを用いた蓄電デバイス
JP2022024391A (ja) 非水電解液およびそれを用いた蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544523

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766219

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853618

Country of ref document: EP

Kind code of ref document: A1