WO2017057528A1 - 非ロボットカー、ロボットカー、道路交通システム、車両共用システム、ロボットカー教習システム及びロボットカー教習方法 - Google Patents
非ロボットカー、ロボットカー、道路交通システム、車両共用システム、ロボットカー教習システム及びロボットカー教習方法 Download PDFInfo
- Publication number
- WO2017057528A1 WO2017057528A1 PCT/JP2016/078747 JP2016078747W WO2017057528A1 WO 2017057528 A1 WO2017057528 A1 WO 2017057528A1 JP 2016078747 W JP2016078747 W JP 2016078747W WO 2017057528 A1 WO2017057528 A1 WO 2017057528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving
- behavior information
- driving behavior
- robot car
- vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a non-robot car having a driving support control function for supporting driving by a human driver, a robot car for which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a non-robot car and a robot car Relates to a road traffic system for traveling on
- the present invention relates to a vehicle sharing system in which a vehicle is shared by a plurality of users.
- the present invention relates to a robot car training system and a robot car training method for improving the automatic driving performance of a robot car.
- Patent Documents 1-13 Many automatic driving control techniques for automobiles have been proposed (patent documents 1-13, non-patent documents 1-4).
- Patent Documents 14-26 A number of techniques relating to a shared vehicle system have been proposed (Patent Documents 14-26, Non-patent Documents 1-4). These technologies include those related to car rental services, car sharing services, taxi services, etc.
- the vehicles used in the shared vehicle system include vehicles equipped with a driving support system and vehicles having an automatic driving function (Patent Document 1-13). Among these techniques are those related to machine learning of driving operations (Patent Documents 27-44).
- Machine learning in a conventional automobile is to improve the automatic driving performance by learning the driving behavior of a human driver (human) of the own vehicle and reflecting the learning result in the automatic driving control of the own vehicle. For this reason, machine learning in a conventional automobile can not be applied to a robot car, that is, a vehicle that travels autonomously without a driving operation by a human driver. In addition, under the situation where the own vehicle is inexperienced (that is, not learned), the relevant vehicle can only exhibit the driving performance of the initial value.
- the problems to be solved by the present invention are as follows. (1) To provide a non-robot car which can improve the driving support performance by utilizing not only the experience of the own vehicle but also the experience of other vehicles. (2) To provide a robot car capable of improving the automatic driving performance by utilizing not only the experience of the own vehicle but also the experience of other vehicles. (3) To provide a road traffic system capable of improving the driving support performance of non-robot cars and the automatic driving performance of robot cars. (4) A common vehicle system is provided in which each vehicle can improve not only the experience of its own vehicle but also the experience of other vehicles to improve the driving performance. (5) A robot car teaching system and a robot car teaching method capable of improving the automatic driving performance of the robot car by making the robot car learn the driving behavior of the human driver.
- the road traffic system of the present invention includes a system having the following configuration.
- a non-robot car performs driving support control based on the traveling condition of the own vehicle while referring to driving behavior information (experience information) of another vehicle. Therefore, according to this road traffic system, even in the situation where the own vehicle is inexperienced, the non-robot car performs the driving support control by performing the driving support information of the other vehicle that has experienced the situation. The situation can be handled with the same level of driving performance as other vehicles.
- a road traffic system in which a plurality of vehicles travels on a road, wherein the vehicles include a non-robot car having a driving support control function for supporting driving by a human driver, and the non-robot car is a traveling condition of its own vehicle
- the driving operation to be executed is determined on the basis of the traveling condition recognized by the traveling condition recognition unit that recognizes the driving behavior information acquiring unit that acquires the driving behavior information of the other vehicle, and the traveling condition recognition unit.
- a driving support control unit that performs driving support control so that the driving operation is performed, and the driving support control unit stores driving knowledge that stores knowledge information to be referred to when determining the driving operation to be performed.
- a learning processing unit for updating the knowledge information stored in the driving knowledge unit based on the driving behavior information acquired by the driving activity information acquisition unit.
- Road traffic system according to claim Rukoto.
- a non-robot car performs a learning process of updating knowledge information (such as a determination criterion for determining a driving operation to be performed) based on driving behavior information of another vehicle while the knowledge information To determine the driving operation according to the traveling condition, and perform driving support control so that the driving operation is performed. Therefore, according to this road traffic system, a non-robot car can perform driving support control by learning the driving behavior of another vehicle that has experienced the situation even in a situation where the own vehicle is unexperienced.
- a road traffic system in which a plurality of vehicles travels on a road, and the vehicles include a non-robot car having a driving support control function of supporting driving by a human driver.
- the non-robot car is based on the traveling condition recognized by the traveling condition recognition unit that recognizes the traveling condition of the own vehicle, the driving behavior information acquisition unit that acquires the driving behavior information of the other vehicle, and the traveling condition recognition unit.
- a driving support control unit that determines a driving operation to be performed and performs driving support control such that the driving operation is performed; and the driving support control unit determines that the driving condition recognition unit recognizes the driving operation.
- the parameter of the driving operation determination function used in the driving operation determination unit is adjusted based on the driving operation determination unit that determines the driving operation according to the situation by calculation and the driving activity information acquired by the driving activity information acquisition unit And a learning processing unit (parameter adjustment unit).
- the non-robot car performs the learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle, and determines the driving operation according to the traveling situation by the driving operation determination function.
- Drive assist control so that the driving operation is performed. Therefore, according to this road traffic system, a non-robot car can perform driving support control by learning the driving behavior of another vehicle that has experienced the situation even in a situation where the own vehicle is unexperienced.
- a road traffic system in which a plurality of vehicles travel on a road, wherein the vehicle includes a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and the robot car is
- the traveling condition recognition unit refers to the traveling condition recognition unit that recognizes the traveling condition, the driving behavior information acquisition unit that acquires the driving behavior information of other vehicles, and the driving behavior information acquired by the driving behavior information acquisition unit
- a road traffic system comprising: an automatic driving control unit that performs automatic driving control based on a recognized traveling condition.
- the robot car performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving behavior information (experience information) of the other vehicle. Therefore, according to this road traffic system, the robot car performs the automatic driving control based on the driving behavior information of the other vehicle who has experienced the situation even in the situation where the own vehicle is unexperienced. The situation can be addressed with the same level of driving performance as a vehicle.
- a road traffic system in which a plurality of vehicles travel on a road, wherein the vehicle includes a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and the robot car is
- the driving operation to be executed is determined based on the traveling condition recognized by the traveling condition recognition unit that recognizes the traveling condition, the driving behavior information acquisition unit that acquires the driving behavior information of other vehicles, and the traveling condition recognition unit.
- an automatic driving control unit performing automatic driving control so as to execute the driving operation, and the automatic driving control unit stores knowledge information to be referred to when determining the driving operation to be performed.
- a learning processing unit that appropriately updates the knowledge information stored in the driving knowledge unit based on the driving knowledge unit and the driving behavior information acquired by the Transportation systems, characterized in that it comprises a processing unit), a.
- the robot car performs the learning process of updating the knowledge information (such as the determination criteria when determining the driving operation to be performed) based on the driving behavior information of the other vehicle, and the knowledge information Reference is made to determine the driving operation according to the traveling condition, and automatic driving control is performed so that the driving operation is performed. Therefore, according to this road traffic system, the robot car learns the driving behavior of the other vehicle that has experienced the situation even in the situation where the own vehicle is inexperienced, and performs the automatic driving control. The situation can be addressed with the same level of driving performance as a vehicle.
- a road traffic system in which a plurality of vehicles travel on a road, wherein the vehicle includes a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and the robot car is
- the driving operation to be executed is determined based on the traveling situation recognized by the traveling situation recognition unit, which recognizes the traveling situation, a driving behavior information acquisition unit which acquires driving behavior information of other vehicles, and the traveling situation recognition unit,
- the automatic driving control unit performs automatic driving control so that the driving operation is performed, and the automatic driving control unit calculates the driving behavior according to the traveling condition recognized by the traveling condition recognition unit.
- the robot car performs a learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle, and determines the driving operation according to the traveling situation by the driving operation determination function.
- the automatic operation control is performed such that the driving operation is performed. Therefore, according to this road traffic system, the robot car learns the driving behavior of the other vehicle that has experienced the situation even in the situation where the own vehicle is inexperienced, and performs the automatic driving control.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information from one or more vehicles, a driving behavior information receiving function, and the driving behavior
- the non-robot car includes a driving condition recognition unit that recognizes the driving condition of the own vehicle, a driving behavior information receiving unit that receives driving behavior information of another vehicle from the computing system, and the driving behavior Driving based on the traveling situation recognized by the traveling situation recognition unit while referring to the driving behavior information received by the information receiving unit Transportation systems, characterized in that it has a driving support control unit that performs assistance control, the.
- the computing system receives driving behavior information (experience information) of one or more vehicles, and sets the driving behavior information to one or more vehicles different from the transmission source of the driving behavior information.
- the non-robot car having received the driving behavior information from the computing system performs driving support control based on the traveling condition of the host vehicle while referring to the driving behavior information. Therefore, according to the road traffic system, even in a situation where the own vehicle is inexperienced, the non-robot car performs the driving assistance control while referring to the driving behavior information of the other vehicle that has experienced the situation. The situation can be handled with the same level of driving performance as other vehicles.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information from one or more vehicles, a driving behavior information receiving function, and the driving behavior
- the non-robot car includes a traveling condition recognition unit that recognizes the traveling condition of the own vehicle, a driving behavior information receiving unit that receives driving behavior information of another vehicle from the computing system, and the traveling condition
- the driving operation to be executed is determined based on the traveling condition recognized by the recognition unit, and the driving assistance is performed so that the driving operation is performed.
- a driving knowledge control unit storing a knowledge information to be referred to when determining the driving behavior, and a driving knowledge received by the driving behavior information receiving unit.
- a road traffic system comprising: a learning processing unit (knowledge update processing unit) that updates knowledge information stored in the driving knowledge unit based on action information.
- the computing system receives driving behavior information (experience information) of one or more vehicles, and sets the driving behavior information to one or more vehicles different from the transmission source of the driving behavior information. Send.
- the non-robot car that has received the driving behavior information from the computing system performs learning processing for updating knowledge information (such as a determination criterion when determining the driving operation to be performed) based on the driving behavior information of the other vehicle,
- knowledge information such as a determination criterion when determining the driving operation to be performed
- the driving operation according to the traveling condition is determined with reference to the knowledge information, and the driving support control is performed so that the driving operation is performed. Therefore, according to this road traffic system, a non-robot car learns the driving behavior of another vehicle that has experienced the situation and performs driving assistance control even in the situation where the own vehicle is unexperienced.
- the situation can be handled with the same level of driving performance as other vehicles.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information from one or more vehicles, a driving behavior information receiving function, and the driving behavior
- the non-robot car is a traveling condition recognition unit that recognizes the traveling condition of the host vehicle, a driving behavior information reception unit that receives the driving behavior information from the computing system, and the traveling condition recognition unit Determine the driving operation to be performed based on the driving situation recognized by the driver, and drive assistance control so that the driving operation is performed
- a driving operation control unit for determining the driving behavior according to the driving condition recognized by the driving condition recognition unit, and the driving operation control unit acquiring the driving activity information;
- a learning processing unit for adjusting parameters of the driving operation determination function used in the driving operation determination unit based on the
- the non-robot car performs the learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle, and determines the driving operation according to the traveling situation by the driving operation determination function.
- Drive assist control so that the driving operation is performed. Therefore, according to this road traffic system, a non-robot car learns the driving behavior of another vehicle that has experienced the situation and performs driving assistance control even in the situation where the own vehicle is unexperienced. The situation can be handled with the same level of driving performance as other vehicles.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information from one or more vehicles, a driving behavior information receiving function, and the driving behavior And a driving action information transmission function of transmitting information to one or more vehicles different from the transmission source of the driving action information, wherein the vehicle is driven by the automatic driving control instead of the driving operation by the human driver.
- the robot car includes a driving situation recognition unit that recognizes a running condition of the host vehicle, a driving behavior information receiving unit that receives the driving behavior information from the computing system, and the driving behavior information.
- the computing system receives driving behavior information (experience information) of one or more vehicles, and sets the driving behavior information to one or more vehicles different from the transmission source of the driving behavior information. Send.
- the robot car having received the driving behavior information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving behavior information. Therefore, according to the road traffic system, the robot car performs automatic driving control while referring to the driving behavior information of other vehicles who have experienced the situation even in the situation where the own vehicle is unexperienced.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information from one or more vehicles, a driving behavior information receiving function, and the driving behavior And a driving action information transmission function of transmitting information to one or more vehicles different from the transmission source of the driving action information, wherein the vehicle is driven by the automatic driving control instead of the driving operation by the human driver.
- the robot car includes a driving condition recognition unit that recognizes the driving condition of the host vehicle, a driving behavior information receiving unit that receives the driving behavior information from the computing system, and the driving condition.
- An automatic driving control unit for performing automatic driving control, wherein the automatic driving control unit receives a driving knowledge unit storing knowledge information to be referred to when determining the driving behavior, and the driving behavior information receiving unit And a learning processing unit (knowledge update processing unit) for updating the knowledge information stored in the driving knowledge unit based on the driving behavior information.
- the computing system receives driving behavior information (experience information) of one or more vehicles, and sets the driving behavior information to one or more vehicles different from the transmission source of the driving behavior information. Send.
- the robot car that has received the driving behavior information from the computing system performs learning processing to update knowledge information (such as a determination criterion when determining the driving operation to be performed) based on the driving behavior information of the other vehicle.
- knowledge information such as a determination criterion when determining the driving operation to be performed
- the driving operation according to the traveling condition is determined with reference to the knowledge information, and the automatic driving control is performed so that the driving operation is performed. Therefore, according to this road traffic system, the robot car learns the driving behavior of the other vehicle that has experienced the situation even in the situation where the own vehicle is inexperienced, and performs the automatic driving control.
- the situation can be addressed with the same level of driving performance as a vehicle.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information from one or more vehicles, a driving behavior information receiving function, and the driving behavior And a driving action information transmission function of transmitting information to one or more vehicles different from the transmission source of the driving action information, wherein the vehicle is driven by the automatic driving control instead of the driving operation by the human driver.
- the robot car includes a traveling state recognition unit that recognizes the traveling state of the own vehicle, a driving behavior information receiving unit that receives driving behavior information of another vehicle from the computing system, and The driving operation to be executed is determined based on the traveling condition recognized by the traveling condition recognition unit, and the driving operation is performed.
- a driving operation determination unit that performs automatic driving control, and the driving control unit determines by calculation the driving behavior according to the traveling condition recognized by the traveling condition recognition unit; And a learning processing unit (parameter adjustment unit) for adjusting a parameter of the driving operation determination function used in the driving operation determination unit based on the driving operation information acquired by the driving operation information acquisition unit.
- Road traffic system In this road traffic system, the robot car performs a learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle, and determines the driving operation according to the traveling situation by the driving operation determination function.
- the automatic operation control is performed such that the driving operation is performed.
- the robot car learns the driving behavior of the other vehicle that has experienced the situation even in the situation where the own vehicle is inexperienced, and performs the automatic driving control.
- the situation can be addressed with the same level of driving performance as a vehicle.
- a road traffic system in which a plurality of vehicles travel on a road, the system having a computing system, the computing system receiving driving behavior information from a robot car, a function of receiving driving behavior information, and A driving behavior information transmission function for transmitting to a robot car, wherein the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by a human driver, and the driving behavior information of the own vehicle is A driving condition information transmitting unit for transmitting to the computing system, wherein the non-robot car is a vehicle having a driving support control function for supporting driving by a human driver, and a traveling condition for recognizing the traveling condition of the own vehicle A recognition unit, and a driver who receives the driving behavior information from the computing system And a driving support control unit that performs driving support control based on the traveling condition recognized by the traveling condition recognition unit while referring to the driving behavior information received by the driving behavior information reception unit.
- Road traffic system characterized by In this road traffic system, the computing system receives driving behavior information (experience information) from a robot car and transmits the driving behavior information to a non-robot car.
- the non-robot car having received the driving behavior information from the computing system performs driving support control based on the traveling condition of the host vehicle while referring to the driving behavior information. Therefore, according to the road traffic system, even in the situation where the own vehicle is inexperienced, the non-robot car performs the driving support control while referring to the driving behavior information of the robot car that has experienced the situation.
- the situation can be handled with the same level of driving performance as a robot car.
- the non-robot car learns the operation technique of the robot car, and the driving support performance of the non-robot car is improved efficiently. It can be done. As the driving support performance of the non-robot car improves, the operation efficiency of the entire road traffic system and the safety can be improved.
- a road traffic system in which a plurality of vehicles travel on a road, the system having a computing system, the computing system receiving driving behavior information from a robot car, a function of receiving driving behavior information, and A driving behavior information transmission function for transmitting to a robot car, wherein the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by a human driver, and the driving behavior information of the own vehicle is A driving condition information transmitting unit for transmitting to the computing system, wherein the non-robot car is a vehicle having a driving support control function for supporting driving by a human driver, and a traveling condition for recognizing the traveling condition of the own vehicle A recognition unit, and a driver who receives the driving behavior information from the computing system
- the information receiving unit has a driving support control unit that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit, and performs driving support control so that the driving operation is performed.
- the driving support control unit stores a driving knowledge unit that stores knowledge information (such as judgment criteria) to be referred to when determining the driving behavior, and the driving behavior information received by the driving behavior information reception unit. And a learning processing unit (knowledge update processing unit) for updating knowledge information stored in the driving knowledge unit.
- the computing system receives driving behavior information (experience information) from a robot car and transmits the driving behavior information to a non-robot car.
- the non-robot car having received the driving behavior information from the computing system performs learning processing for updating the knowledge information (such as the determination criteria for determining the driving operation to be performed) based on the driving behavior information of the robot car.
- the driving operation according to the traveling condition is determined with reference to the knowledge information, and the driving support control is performed so that the driving operation is performed. Therefore, according to this road traffic system, a non-robot car learns the driving behavior of a robot car that has experienced the situation even when the host vehicle is inexperienced, and performs driving support control. The situation can be handled with the same level of driving performance as a robot car. And according to this road traffic system, in a situation where a robot car and a non-robot car coexist, the non-robot car learns the operation technique of the robot car, and the driving support performance of the non-robot car is improved efficiently. It can be done.
- a road traffic system in which a plurality of vehicles travel on a road the system having a computing system, the computing system receiving driving behavior information from a robot car, a function of receiving driving behavior information, and A driving behavior information transmission function for transmitting to a robot car, wherein the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by a human driver, and the driving behavior information of the own vehicle is A driving condition information transmitting unit for transmitting to the computing system, wherein the non-robot car is a vehicle having a driving support control function for supporting driving by a human driver, and a traveling condition for recognizing the traveling condition of the own vehicle A recognition unit, and a driver who receives the driving behavior information from the computing system
- the information receiving unit has a driving support control unit that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit, and perform
- the driving support control unit determines, based on the driving behavior information acquired by the driving behavior information acquiring unit, a driving operation determination unit that determines the driving behavior according to the traveling situation recognized by the driving situation recognition unit by calculation. And a learning processing unit (parameter adjustment unit) for adjusting parameters of the driving operation determination function used in the driving operation determination unit.
- the non-robot car performs the driving operation according to the traveling condition of the host vehicle while performing the learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the robot car. It determines with a function and performs driving assistance control so that the said driving operation is performed.
- a non-robot car learns the driving behavior of a robot car that has experienced the situation even when the host vehicle is inexperienced, and performs driving support control.
- the situation can be handled with the same level of driving performance as a robot car.
- the non-robot car learns the operation technique of the robot car, and the driving support performance of the non-robot car is improved efficiently. It can be done.
- the driving support performance of the non-robot car improves, the operation efficiency of the entire road traffic system and the safety can be improved.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information receiving function for receiving driving behavior information from a non-robot car, and the driving behavior information
- a driving behavior information transmission function for transmitting to a robot car
- the non-robot car is a vehicle whose driving operation is performed by a human driver
- the driving behavior information of the host vehicle is transmitted to the computing system
- An action information transmission unit and the robot car is a vehicle to be operated by automatic driving control instead of driving operation by a human driver
- a driving behavior recognition unit for recognizing a running condition of the host vehicle
- a driving behavior information receiving unit for receiving the driving behavior information from the computing system
- a road traffic system comprising: an automatic driving control unit that performs automatic driving control based on the traveling condition recognized by the traveling condition recognition unit.
- the computing system receives driving behavior information (experience information) from a non-robot car and transmits the driving behavior information to the robot car.
- the robot car having received the driving behavior information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving behavior information. Therefore, according to this road traffic system, the robot car performs automatic driving control while referring to the driving behavior information of the non-robot car that has experienced the situation even in the situation where the own vehicle is unexperienced. The situation can be handled with the same level of driving performance as the non-robot car.
- the robot car learns the driving technique of the human driver who drives the non-robot car, and the automatic driving performance of the robot car is obtained.
- the efficiency can be improved.
- the automatic driving performance of the robot car improves, it is possible to improve the operation efficiency of the entire road traffic system, improve the safety, and the like.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information receiving function for receiving driving behavior information from a non-robot car, and the driving behavior information
- a driving behavior information transmission function for transmitting to a robot car, wherein the non-robot car is a vehicle whose driving operation is performed by a human driver, and the driving behavior information of the host vehicle is transmitted to the computing system
- An action information transmission unit wherein the robot car recognizes a traveling condition of the host vehicle, a driving behavior information reception unit receives the driving behavior information from the computing system, and the traveling Based on the driving situation recognized by the situation recognition unit, the driving operation to be performed is determined, and the driving operation is An automatic driving control unit for performing automatic driving control to be performed, wherein the automatic driving control unit stores a driving knowledge unit storing knowledge information to be referred to when determining the driving behavior;
- a road traffic system comprising: a learning processing unit that updates knowledge information stored in the driving knowledge unit based on driving behavior information received
- the computing system receives driving behavior information (experience information) from a non-robot car and transmits the driving behavior information to the robot car.
- the robot car that has received the driving behavior information from the computing system performs learning processing for updating knowledge information (such as a determination criterion for determining the driving operation to be performed) based on the driving behavior information of the non-robot car.
- the driving operation according to the traveling condition is determined with reference to the knowledge information, and automatic driving control is performed so that the driving operation is performed. Therefore, according to this road traffic system, the robot car learns the driving behavior of the non-robot car who has experienced the situation even in the situation where the own vehicle is inexperienced, and performs the driving assistance control.
- the situation can be handled with the same level of driving performance as a non-robot car.
- the robot car learns the driving technique of the human driver who drives the non-robot car, and the automatic driving performance of the robot car is obtained.
- the efficiency can be improved.
- the automatic driving performance of the robot car improves, it is possible to improve the operation efficiency of the entire road traffic system, improve the safety, and the like.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information receiving function for receiving driving behavior information from a non-robot car, and the driving behavior information
- a driving behavior information transmission function for transmitting to a robot car
- the non-robot car is a vehicle whose driving operation is performed by a human driver
- the driving behavior information of the host vehicle is transmitted to the computing system
- An action information transmission unit wherein the robot car recognizes a traveling condition of the host vehicle, a driving behavior information reception unit receives the driving behavior information from the computing system, and the traveling Based on the driving situation recognized by the situation recognition unit, the driving operation to be performed is determined, and the driving operation is A driving operation control unit for performing automatic driving control to be performed, the driving control operation determining the driving behavior according to the driving condition recognized by the driving condition recognition unit by calculation A determination unit, and a learning processing unit that adjusts parameters of a driving operation determination function used in the driving operation determination unit based on the driving activity information acquired
- the robot car performs the learning operation of adjusting the parameters of the driving operation determination function based on the driving behavior information of the non-robot car, and determines the driving operation according to the traveling condition of the own vehicle. It determines by a function and performs automatic operation control so that the said driving operation is performed. Therefore, according to this road traffic system, the robot car learns the driving behavior of the non-robot car who has experienced the situation even in the situation where the own vehicle is inexperienced, and performs the driving assistance control. The situation can be handled with the same level of driving performance as a non-robot car.
- the non-robot car has a driving behavior information output unit for outputting driving behavior information of the own vehicle to the outside, and the driving behavior information of the own vehicle includes the traveling condition of the own vehicle and the driving operation performed on the own vehicle.
- the road traffic system according to any one of the configurations 1.1 to 1.3, which is driving behavior information in which [Configuration 1.21]
- the robot car has a driving behavior information output unit that outputs driving behavior information of the own vehicle to the outside, and the driving behavior information of the own vehicle includes the traveling condition of the own vehicle and the driving operation performed on the own vehicle.
- the road traffic system according to any one of configurations 1.4 to 1.6, which is the associated driving behavior information.
- the non-robot car has a driving operation detection unit that detects a driving operation of a human driver of a host vehicle.
- a driving behavior information transmission unit that transmits driving behavior information in which the traveling situation recognized by the traveling situation recognition unit and the driving operation detected by the driving operation detection unit are associated to the computing system;
- the road traffic system according to any one of 16 to 1.18.
- the computing system includes a driving behavior information receiving function of receiving driving behavior information of one or a plurality of vehicles, an optimization information generating function of generating driving behavior information optimized based on the driving behavior information, It has an optimization information update function that updates and manages optimized driving behavior information to the latest information, and a driving behavior information transmission function that transmits the optimized driving behavior information to one or more vehicles.
- the computing system includes a driving behavior information receiving function of receiving driving behavior information from a robot car, an optimization information generation function of generating driving behavior information optimized based on the driving behavior information, and the optimization.
- Configuration 1.13 having an optimization information update function of updating and managing updated driving behavior information to the latest information, and a driving behavior information transmitting function of transmitting the optimized driving behavior information to a non-robot car Road traffic system in any one of 1.15 to 1.15.
- the computing system includes a driving behavior information receiving function of receiving driving behavior information from a non-robot car, an optimization information generating function of generating driving behavior information optimized based on the driving behavior information, and the optimization.
- the configuration 1.16 has an optimization information update function of updating and managing the updated driving behavior information to the latest information, and a driving behavior information transmitting function of transmitting the optimized driving behavior information to the robot car.
- the road traffic system according to any one of 1. to 18.
- the robot car refers to driving behavior information received by the driving behavior information receiving unit, and a driving situation recognition unit that recognizes the running condition of the host vehicle, a driving behavior information receiving unit that receives the driving behavior information, and
- the automatic driving control unit that performs automatic driving control based on the traveling condition recognized by the traveling condition recognition unit of the own vehicle, and the traveling condition recognized by the
- Road traffic system to be the computing system receives driving behavior information (experience information) from the robot car, and transmits the driving behavior information to a robot car different from the transmission source of the driving behavior information.
- the robot car having received the driving action information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving action information of the other robot car. Therefore, the robot car performs automatic driving control according to the traveling situation of the own vehicle while referring to the driving behavior information of the other robot cars who have experienced the situation even in the situation where the own vehicle is unexperienced And can handle the situation with the same level of driving performance as the other robot cars.
- this road traffic system it is possible to increase the learning efficiency of the robot cars in the road traffic system and rapidly improve the automatic driving performance by using the driving behavior information among the robot cars. Since the automatic driving performance of all the robot cars in the road traffic system can be rapidly improved, the operation efficiency, safety, etc. of the entire road traffic system are rapidly improved.
- a road traffic system in which a robot car on which driving operation is performed by automatic driving control instead of driving operation by a human driver is traveling on a road
- the computing system includes one or more robot cars
- Driving behavior information receiving function for receiving driving behavior information
- optimization information generating function for generating driving behavior information optimized based on the driving behavior information
- the robot car has an optimization information update function of updating and managing it, and a driving action information transmitting function of transmitting the optimized driving action information to one or more robot cars
- the robot car A driving condition recognition unit for recognizing a driving condition, a driving behavior information receiving unit for receiving the driving behavior information, and the driving behavior information reception
- An automatic driving control unit that performs automatic driving control based on the traveling condition recognized by the traveling condition recognition unit of the own vehicle while referring to the driving behavior information received by the vehicle, and the traveling condition recognized by the traveling condition recognition unit
- a driving behavior information transmitting unit for transmitting to the computing system driving behavior information in which driving behavior by automatic driving control is associated, and the
- Road traffic system characterized in that it is the information which matched.
- the computing system receives driving behavior information (experience information) from a robot car, generates driving behavior information optimized based on the driving behavior information, and performs the optimized driving.
- the action information is updated to the latest information and managed, and the driving action information is transmitted to the robot car.
- the robot car having received the driving action information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving action information of the other robot car.
- the robot car performs automatic driving control with reference to the driving behavior information optimized based on the driving behavior information of the other robot cars who have experienced the situation even in the situation where the own vehicle is inexperienced Therefore, the situation can be dealt with at the same level or higher driving performance as the other robot cars.
- this road traffic system it is possible to increase the learning efficiency of the robot cars in the road traffic system and rapidly improve the automatic driving performance by using the driving behavior information among the robot cars. Since the automatic driving performance of all the robot cars in the road traffic system can be rapidly improved, the operation efficiency, safety, etc. of the entire road traffic system are rapidly improved.
- the optimized driving behavior information may be a driving behavior information optimized according to a vehicle attribute of a vehicle receiving the provision of the driving behavior information, and a possibility that a vehicle receiving the driving behavior information may contact an obstacle.
- Driving behavior information optimized to maximize regenerative energy driving behavior information optimized to minimize the number of accelerations or acceleration times in a predetermined traveling distance or predetermined traveling time, predetermined traveling distance or predetermined traveling time
- Driving behavior information optimized to minimize or maximize the number of braking times or the braking time at the vehicle, so as to minimize the travel distance from the departure point to the arrival point Configuration 1.23, 1.24, 1.25, 1.
- the optimization information generation function is configured to minimize the possibility of the vehicle coming into contact with an obstacle based on the traveling condition of the vehicle receiving the provision of the driving behavior information and the vehicle attribute of the vehicle.
- the road traffic system according to any one of the configurations 1.23, 1.24, 1.25, 1.27, including the function of correcting behavior information.
- the provision destination vehicle when there is a difference between the vehicle attribute of the vehicle providing the driving behavior information (providing source vehicle) and the vehicle attribute of the vehicle receiving the providing of the driving behavior information (providing destination vehicle), the provision destination vehicle The driving behavior information modified so as to minimize the possibility of contact with the obstacle is provided to the destination vehicle.
- the vehicles can perform the driving support control or the automatic driving control with reference to the driving behavior information. .
- a road traffic system in which a plurality of vehicles travels on a road, wherein the vehicles have a function of providing driving behavior information of one's own vehicle to another vehicle, a function of receiving provision of driving behavior information of another vehicle, and And a function of performing driving control of the own vehicle based on the driving behavior information, wherein the driving behavior information of the own vehicle associates the traveling situation of the own vehicle with the driving operation performed in the own vehicle
- a road traffic system characterized in that it is information
- the driving behavior information of the other vehicle is information in which the traveling condition of the other vehicle is associated with the driving operation performed in the other vehicle.
- the vehicles of this road traffic system can mutually provide driving behavior information (experience information) among the vehicles.
- driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, the vehicle of this road traffic system has the same level as the other vehicle by performing the driving control with reference to the driving behavior information of the other vehicle that has experienced the situation.
- a vehicle of this road traffic system can receive driving behavior information (experience information) of another vehicle by inter-vehicle communication. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, the vehicle of this road traffic system has the same level as the other vehicle by performing the driving control with reference to the driving behavior information of the other vehicle that has experienced the situation.
- a road traffic system in which a plurality of vehicles travels on a road, wherein the vehicles refer to a function of receiving driving behavior information of another vehicle by communication between the own vehicle and a ground stationary object, and driving behavior information of the other vehicle And having a function of performing driving control of the own vehicle, wherein the driving behavior information of the other vehicle is information in which the traveling situation of the other vehicle and the driving operation performed in the other vehicle are associated with each other Characteristic road traffic system.
- a vehicle of this road traffic system can receive driving behavior information (experience information) of another vehicle through communication with a ground stationary object. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle.
- a road traffic system in which a plurality of vehicles travel on a road, wherein the vehicle refers to a function of receiving driving behavior information of another vehicle by communication between the host vehicle and the road, and driving behavior information of the other vehicle. And the function of performing driving control of the own vehicle, wherein the driving behavior information of the other vehicle is information correlating the traveling condition of the other vehicle with the driving operation performed in the other vehicle.
- Road traffic system A vehicle of this road traffic system can receive driving behavior information (experience information) of another vehicle through road-vehicle communication.
- driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, the vehicle of this road traffic system has the same level as the other vehicle by performing the driving control with reference to the driving behavior information of the other vehicle that has experienced the situation.
- the driving behavior information of the other vehicle is information correlating the traveling condition of the other vehicle with the driving operation performed in the other vehicle.
- Road traffic system to be.
- a vehicle of this road traffic system can receive driving behavior information (experience information) of another vehicle through communication with a portable terminal. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, the vehicle of this road traffic system has the same level as the other vehicle by performing the driving control with reference to the driving behavior information of the other vehicle that has experienced the situation.
- a road traffic system in which a plurality of vehicles travels on a road, wherein the vehicles have a function of uploading driving behavior information of the host vehicle to a computing system on a network, and computing performance information of other vehicles on the network
- the system has a function to download from the system and a function to control the driving of the vehicle based on the driving behavior information downloaded from the computing system on the network, and the driving behavior information of the vehicle is the traveling condition of the vehicle
- the driving operation performed in the subject vehicle and the driving behavior information of the other vehicle is information in which the traveling state of the other vehicle and the driving operation performed in the other vehicle are associated.
- Road traffic system characterized by The vehicles of this road traffic system can provide driving behavior information (experience information) with a large number of vehicles via a network. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, the vehicle of this road traffic system has the same level as the other vehicle by performing the driving control with reference to the driving behavior information of the other vehicle that has experienced the situation.
- a road traffic system in which a plurality of vehicles travel on a road, and based on a function of uploading driving behavior information of a host vehicle to a computing system on a network, driving behavior information of a host vehicle and driving behavior information of another vehicle A function of downloading the generated driving behavior information from the computing system on the network, and a function of referring to the driving behavior information downloaded from the computing system on the network to control the driving of the vehicle.
- the driving behavior information of the host vehicle is information in which the traveling status of the host vehicle and the driving operation performed on the host vehicle are associated, and the driving behavior information of the other vehicle is the traveling status of the other vehicle and the other vehicle
- a road traffic system characterized in that it is information associated with a driving operation performed in the above.
- the vehicle of this road traffic system uploads the driving behavior information (experience information) of the own vehicle to the computing system on the network, and based on the driving behavior information of the own vehicle and the driving behavior information (experience information) of the other vehicle
- the generated driving behavior information can be downloaded from a computing system on the network.
- the driving behavior information generated based on the driving behavior information of the own vehicle and the driving behavior information of the other vehicle can be used for the drive control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, the vehicle of this road traffic system is driving behavior information generated on the basis of the driving behavior information of the vehicle and the driving behavior information of other vehicles that have experienced the situation.
- a road traffic system in which a plurality of vehicles travel on a road, the plurality of vehicles including a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, the robot car
- a driving condition recognition unit for recognizing a driving condition of the own vehicle, a learning processing unit for learning about objects and driving operations around the own vehicle, a driving behavior information acquiring unit for acquiring driving behavior information of another vehicle, and the driving behavior
- An automatic driving control unit that performs automatic driving control based on the traveling condition recognized by the traveling condition recognition unit of the own vehicle while referring to the driving behavior information acquired by the information acquisition unit and the learning result by the learning processing unit;
- the driving behavior information of the other vehicle includes operation history information in which the traveling condition of the other vehicle and the driving operation performed in the other vehicle are associated; Road traffic system which is characterized.
- the robot car of this road traffic system performs automatic driving control based on the traveling condition of the own vehicle and the learning result of the own vehicle while referring to the driving behavior information (experience information) of the other vehicle. Therefore, even in a situation where the vehicle is inexperienced, the vehicle of this road traffic system is equivalent to the other vehicle by performing automatic driving control with reference to the driving behavior information of the other vehicle that has experienced the situation. The situation can be dealt with at the level of driving performance.
- a road traffic system in which a plurality of vehicles travel on a road, the plurality of vehicles including a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, the robot car
- a driving condition recognition unit for recognizing a driving condition of the own vehicle, a learning processing unit for learning about objects and driving operations around the own vehicle, a driving behavior information acquiring unit for acquiring driving behavior information of another vehicle, and the driving behavior
- An automatic driving control unit performing automatic driving control based on the traveling condition recognized by the traveling condition recognition unit of the own vehicle and the learning result by the learning processing unit while referring to the driving behavior information acquired by the information acquisition unit;
- a driving behavior information output unit that outputs driving behavior information of a vehicle to the outside, and the driving behavior information of the other vehicle includes the traveling condition of the other vehicle and the other vehicle.
- the driving behavior information of the host vehicle is information in which the traveling state of the host vehicle is associated with the driving operation performed by the automatic driving control of the host vehicle.
- Transportation system The robot car of this road traffic system performs automatic driving control based on the traveling condition of the own vehicle and the learning result of the own vehicle while referring to the driving behavior information (experience information) of the other vehicle. Therefore, even in an unexperienced situation, the robot car in this road traffic system performs automatic driving control with reference to the driving behavior information of the other vehicles who have experienced the situation, thereby achieving the same level as the other vehicles. The driving performance can cope with the situation.
- the robot car of this road traffic system outputs the driving behavior information (experience information) of the own vehicle to the outside
- other vehicles reference the driving behavior information output from the robot car and drive assistance control or automatic driving Control can also be performed.
- the other vehicle performs driving support control or automatic driving control with reference to the driving behavior information of the robot car that has experienced the situation even in the unexperienced situation, thereby achieving the same level of driving performance as the robot car. Can handle the situation.
- a road traffic system in which a plurality of vehicles travel on a road, comprising a computing system, the computing system receiving driving behavior information receiving function for receiving driving behavior information from a non-robot car, and the driving behavior information
- a driving behavior information transmission function for transmitting to a robot car
- the non-robot car is a vehicle whose driving operation is performed by a human driver, and a traveling situation recognition unit for recognizing the traveling situation of the own vehicle
- Driving operation detection unit for detecting a driving operation by a human driver of a vehicle, and driving including operation history information in which the traveling condition recognized by the traveling condition recognition unit is associated with the driving operation detected by the driving operation detection unit
- a driving behavior information transmission unit for transmitting behavior information to the computing system
- a vehicle in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a traveling state recognition unit that recognizes a traveling condition of a host vehicle, and a machine learning unit that learns about objects around the host vehicle and driving operation
- the computing system of the road traffic system receives driving behavior information (experience information) from a non-robot car, and transmits the driving behavior information to the robot car.
- the robot car having received the driving behavior information from the computing system performs automatic driving control based on the traveling condition of the own vehicle and the learning result of the own vehicle while referring to the driving behavior information of the non-robot car. Therefore, the robot car of this road traffic system performs the automatic driving control with reference to the driving behavior information of the non-robot car which has experienced the situation even in the situation where the own vehicle is unexperienced.
- the situation can be handled with the same level of driving performance as a car.
- the robot car learns the driving technique of the driver driving the non-robot car, and the automatic driving performance of the robot car is made highly efficient. It can be improved. As the automatic driving performance of the robot car improves, it is possible to improve the operation efficiency of the entire road traffic system, improve the safety, and the like.
- a road traffic system in which a plurality of vehicles travel on a road comprising a computing system, wherein the computing system has a driving behavior information receiving function of receiving driving behavior information from a non-robot car, and the driving behavior information Optimization information generating function of generating optimized driving behavior information, optimization information updating function of updating and managing the optimized driving behavior information to the latest information, and the optimized driving
- the non-robot car is a vehicle on which a driving operation is performed by a human driver, and a traveling situation recognition unit for recognizing the traveling situation of the own vehicle
- a driving operation detection unit for detecting a driving operation of the host vehicle by a human driver, and a traveling condition recognized by the traveling condition recognition unit
- a driving behavior information transmission unit for transmitting, to the computing system, driving behavior information including operation history information associated with the driving operation detected by the driving operation detection unit; and the robot car is operated by a human driver A vehicle in which a driving operation is performed by automatic driving control instead of a
- the computing system of the road traffic system receives driving behavior information (experience information) from a non-robot car, generates driving behavior information optimized based on the driving behavior information, and the optimized driving behavior.
- the information is updated and managed to the latest information, and the driving behavior information is transmitted to the robot car.
- the robot car having received the driving behavior information from the computing system performs automatic driving control based on the traveling condition of the own vehicle and the learning result of the own vehicle while referring to the driving behavior information of the non-robot car.
- the robot car in this road traffic system automatically refers to the driving behavior information optimized based on the driving behavior information of the non-robot car that has experienced the situation even in the situation where the own vehicle is inexperienced By performing the operation control, it is possible to cope with the situation with an operation performance equal to or higher than that of the non-robot car.
- the vehicle of the present invention includes a vehicle having the following configuration.
- a non-robot car having a driving support control function for supporting driving by a human driver, and a driving condition recognition unit recognizing a driving condition of a host vehicle, and a driving behavior information acquiring unit acquiring driving behavior information of another vehicle, A driving support control unit that performs driving support control based on the traveling situation recognized by the traveling situation recognition unit while referring to the driving behavior information acquired by the driving behavior information acquisition unit; Robot car.
- the non-robot car performs the driving support control based on the traveling condition of the own vehicle while referring to the driving behavior information (experience information) of the other vehicle.
- a non-robot car having a driving support control function for supporting driving by a human driver, and a driving condition recognition unit recognizing a driving condition of a host vehicle, and a driving behavior information acquiring unit acquiring driving behavior information of another vehicle, A driving support control unit that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit, and performs driving support control so that the driving operation is performed;
- the control unit stores in the driving knowledge unit a driving knowledge unit that stores knowledge information (judgment criteria) to be referred to when determining the driving behavior and driving behavior information acquired by the driving behavior information acquiring unit.
- a non-robot car comprising: a learning processing unit (knowledge update processing unit) for updating knowledge information being stored.
- the non-robot car performs a learning process of updating knowledge information (such as a determination criterion for determining a driving operation to be performed) based on driving behavior information of another vehicle, and refers to the knowledge information to execute the traveling situation.
- the driving support control is performed so that the driving operation is determined according to the driving operation. Therefore, this non-robot car learns the driving behavior of other vehicles that have experienced the situation even in the situation where the own vehicle is inexperienced, and performs driving support control, thereby driving at the same level as the other vehicle. Performance can handle the situation.
- a non-robot car having a driving support control function for supporting driving by a human driver, and a driving condition recognition unit recognizing a driving condition of a host vehicle, and a driving behavior information acquiring unit acquiring driving behavior information of another vehicle,
- a driving support control unit that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit, and performs driving support control so that the driving operation is performed;
- the control unit performs the driving operation based on the driving operation information acquired by the driving operation information acquisition unit, and a driving operation determination unit that determines the driving operation according to the traveling condition recognized by the driving condition recognition unit by calculation.
- a non-robot car comprising: a learning processing unit (parameter adjustment unit) for adjusting parameters of a driving operation determination function used in the determination unit.
- This non-robot car performs a learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle, determines the driving operation according to the traveling situation by the driving operation determination function, and the driving operation The driving support control is performed to be performed. Therefore, this non-robot car learns the driving behavior of other vehicles that have experienced the situation even in the situation where the own vehicle is inexperienced, and performs driving support control, thereby driving at the same level as the other vehicle. Performance can handle the situation.
- the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of the other vehicle by communication between the host vehicle and the other vehicle, according to any one of configurations 2.1 to 2.3.
- Non robot car The driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of another vehicle by communication between the host vehicle and the ground stationary object, according to any one of configurations 2.1 to 2.3.
- Non robot car The non-robot according to any one of Configurations 2.1 to 2.3, wherein the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of another vehicle by communication between the host vehicle and the road. car.
- the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of another vehicle by communication between the host vehicle and the portable terminal, which is not the first one of the constitutions 2.1 to 2.3.
- Robot car [Configuration 2.8] The non-robot car according to any one of Configurations 2.1 to 2.3, wherein the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of another vehicle from a computing system on a network.
- a driving action information output unit outputting the driving action information of the own vehicle to the outside, the driving action information of the own vehicle corresponds to the driving situation of the own vehicle and the driving operation performed on the own vehicle
- a non-robot car according to any of the features 2.1 to 2.3, which is information.
- a driving operation detection unit for detecting a driving operation by a human driver of the host vehicle, and driving behavior information in which the traveling condition recognized by the traveling condition recognition unit is associated with the driving operation detected by the driving operation detection unit
- the non-robot car according to any one of configurations 2.1 to 2.3, comprising: a driving behavior information transmitting unit to transmit to the computing system.
- a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a driving condition information acquisition unit that recognizes the traveling condition of the own vehicle, and driving behavior information acquisition that acquires driving behavior information of other vehicles And an automatic driving control unit for performing automatic driving control based on the traveling condition recognized by the traveling condition recognition unit while referring to the driving activity information acquired by the driving activity information acquisition unit.
- Robot car to be This robot car performs automatic driving control based on the traveling condition of the own vehicle while referring to driving behavior information (experience information) of another vehicle.
- this robot car performs the same level of driving performance as the other vehicle by performing the automatic driving control based on the driving behavior information of the other vehicle who has experienced the situation even in the situation where the own vehicle is unexperienced. Can handle the situation.
- a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a driving condition information acquisition unit that recognizes the traveling condition of the own vehicle, and driving behavior information acquisition that acquires driving behavior information of other vehicles And an automatic driving control unit that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit, and performs automatic driving control so that the driving operation is performed.
- the automatic driving control unit is configured to perform the driving based on driving behavior information acquired by the driving behavior information acquisition unit, and a driving knowledge unit storing knowledge information to be referred to when the driving behavior determination unit determines the driving behavior.
- a robot car comprising: a learning processing unit (knowledge update processing unit) that appropriately updates knowledge information stored in a knowledge unit.
- the robot car performs a learning process of updating knowledge information (such as a determination criterion for determining a driving operation to be performed) based on driving behavior information of another vehicle, and refers to the knowledge information to obtain a traveling situation. A corresponding driving operation is determined, and automatic driving control is performed so that the driving operation is performed.
- a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a driving condition information acquisition unit that recognizes the traveling condition of the own vehicle, and driving behavior information acquisition that acquires driving behavior information of other vehicles And an automatic driving control unit that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit, and performs automatic driving control so that the driving operation is performed.
- the automatic driving control unit is based on the driving operation information acquired by the driving operation information acquisition unit, and a driving operation determination unit that determines the driving behavior according to the traveling condition recognized by the traveling condition recognition unit by calculation.
- a robot comprising: a learning processing unit (parameter adjustment unit) for adjusting parameters of a driving operation determination function used in the driving operation determination unit; Over.
- the robot car performs a learning process of adjusting parameters of the driving operation determination function based on the driving behavior information of another vehicle, determines the driving operation according to the traveling situation by the driving operation determination function, and executes the driving operation. Automatic operation control to be done.
- the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of the other vehicle by communication between the host vehicle and the other vehicle, according to any one of configurations 2.11 to 2.13.
- Robot car [Configuration 2.15]
- the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of another vehicle by communication between the host vehicle and the ground stationary object, according to any one of configurations 2.11 to 2.13. Robot car.
- the driving behavior information acquiring unit is a driving behavior information receiving unit that receives driving behavior information of another vehicle by communication between the host vehicle and the portable terminal, and the driving behavior information acquiring unit is not one of the constitutions 2.11 to 2.13.
- Robot car [Configuration 2.18] The robot car according to any one of Configurations 2.11 to 2.13, wherein the driving behavior information acquisition unit is a driving behavior information reception unit that receives driving behavior information of another vehicle from a computing system on a network.
- the vehicle is a vehicle of a road traffic system in which a plurality of vehicles travel on a road, and the vehicle has a function of performing driving control of its own vehicle with reference to driving behavior information of the other vehicle, and driving behavior information of the other vehicle Is a piece of information in which traveling conditions of other vehicles are associated with driving operations performed in the other vehicles.
- This vehicle performs driving control of the own vehicle with reference to driving behavior information of another vehicle. Therefore, even in a situation where the own vehicle is inexperienced, the vehicle performs driving control based on the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. Can handle the situation.
- a vehicle of a road traffic system in which a plurality of vehicles travels on a road, a function of providing driving behavior information of one's own vehicle to another vehicle, a function of receiving provision of driving behavior information of another vehicle, and driving behavior of another vehicle And the function of performing driving control of the host vehicle based on the information, wherein the driving behavior information of the host vehicle is information in which the traveling state of the host vehicle and the driving operation performed on the host vehicle are associated,
- the driving behavior information of the other vehicle is information in which a traveling state of the other vehicle is associated with a driving operation performed in the other vehicle. This vehicle can mutually provide driving behavior information (experience information) between the own vehicle and another vehicle.
- driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- It is a vehicle of a road traffic system in which a plurality of vehicles travel on a road, and a function of receiving driving behavior information of the other vehicle by communication between the own vehicle and the other vehicle and driving behavior information of the other vehicle And the function of performing driving control of the own vehicle, wherein the driving behavior information of the other vehicle is information correlating the traveling condition of the other vehicle with the driving operation performed in the other vehicle.
- the vehicle to be This vehicle can receive driving behavior information (experience information) of another vehicle by inter-vehicle communication. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- driving behavior information experience information
- driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- the vehicle to be The vehicle can receive driving behavior information (experience information) of another vehicle by communicating with the ground stationary object. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle.
- a vehicle of a road traffic system in which a plurality of vehicles travel on a road, and a function of receiving driving behavior information of another vehicle by communication between the vehicle and the road, and a vehicle with reference to driving behavior information of the other vehicle And the function of performing driving control of the vehicle, wherein the driving behavior information of the other vehicle is information correlating the traveling state of the other vehicle and the driving operation performed in the other vehicle. .
- This vehicle can receive driving behavior information (experience information) of another vehicle by road-to-vehicle communication.
- driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- the driving behavior information of the other vehicle is information correlating the traveling condition of the other vehicle with the driving operation performed in the other vehicle. vehicle.
- the vehicle can receive driving behavior information (experience information) of another vehicle through communication with the portable terminal. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- driving behavior information experience information
- driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- a vehicle of a road traffic system in which a plurality of vehicles travels on a road, the function of uploading the driving behavior information of the own vehicle to the computing system on the network, and the driving behavior information of other vehicles from the computing system on the network
- the system has a function to be downloaded and a function to control the driving of the vehicle based on the driving behavior information downloaded from the computing system on the network, and the driving behavior information of the vehicle is the traveling condition of the vehicle
- the driving behavior information includes operation history information in which the driving operation performed on the own vehicle is associated, and the driving behavior information on the other vehicle associates the traveling situation of the other vehicle with the driving operation performed on the other vehicle.
- This vehicle which is characterized by This vehicle can provide driving behavior information (experience information) with a large number of vehicles via a network. Then, driving behavior information of another vehicle can be used for driving control of the own vehicle. Therefore, even in a situation where the vehicle is inexperienced, this vehicle performs driving control with reference to the driving behavior information of the other vehicle that has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. It can cope with the situation.
- a vehicle of a road traffic system in which a plurality of vehicles travels on a road, and a function of uploading driving behavior information of the own vehicle to a computing system on a network, driving behavior information of the own vehicle and driving behavior information of other vehicles
- the driving behavior information of the host vehicle is information in which the traveling status of the host vehicle and the driving operation performed on the host vehicle are associated
- the driving behavior information of the other vehicle is the traveling status of the other vehicle and the host
- This vehicle uploads the driving behavior information (experience information) of the own vehicle to the computing system on the network, and the driving behavior information generated based on the driving behavior information of the own vehicle and the driving behavior information of the other vehicle is networked It can be downloaded from the above computing system. Then, the driving behavior information generated based on the driving behavior information of the own vehicle and the driving behavior information of the other vehicle can be used for the drive control of the own vehicle. Therefore, even in the situation where the vehicle is inexperienced, this vehicle refers to the driving behavior information generated based on the driving behavior information of the vehicle and the driving behavior information of the other vehicle that has experienced the situation. By performing driving control, the situation can be coped with driving performance equal to or higher than that of the other vehicle.
- a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a learning processing for learning a driving condition recognition unit that recognizes a driving condition of the host vehicle, objects around the host vehicle and driving operation And a driving behavior information acquiring unit for acquiring driving behavior information of another vehicle, and a traveling situation recognized by the traveling situation recognizing unit of the own vehicle while referring to the driving behavior information acquired by the driving behavior information acquiring unit and And an automatic driving control unit performing automatic driving control based on a learning result by the learning processing unit, wherein the driving behavior information of the other vehicle includes a traveling state of the other vehicle and a driving operation performed in the other vehicle.
- a robot car characterized by being associated information.
- This robot car performs automatic driving control based on the traveling condition of the own vehicle and the learning result of the own vehicle while referring to the driving behavior information (experience information) of the other vehicle. Therefore, even in the situation where the own vehicle is inexperienced, this robot car performs driving at the same level as the other vehicle by performing automatic driving control with reference to the driving behavior information of the other vehicle that has experienced the situation. Performance can handle the situation.
- a robot car in which a driving operation is performed by automatic driving control instead of a driving operation by a human driver, and a learning processing for learning a driving condition recognition unit that recognizes a driving condition of the host vehicle, objects around the host vehicle and driving operation
- a driving behavior information acquiring unit for acquiring driving behavior information of another vehicle, and a traveling situation recognized by the traveling situation recognizing unit of the own vehicle while referring to the driving behavior information acquired by the driving behavior information acquiring unit and
- the driving operation information of the other vehicle includes: an automatic driving control unit that performs automatic driving control based on a learning result by the learning processing unit; and a driving activity information output unit that outputs driving activity information of the own vehicle to the outside.
- the driving behavior information of the host vehicle is information in which a traveling state of the host vehicle and a driving operation performed by the automatic driving control of the host vehicle are associated with each other.
- This robot car performs automatic driving control based on the traveling condition of the own vehicle and the learning result of the own vehicle while referring to the driving behavior information (experience information) of the other vehicle. Therefore, even in an unexperienced situation, the robot car performs the automatic driving control with reference to the driving behavior information of the other vehicle who has experienced the situation, thereby achieving the same level of driving performance as the other vehicle. Can handle the situation.
- this robot car outputs the driving behavior information (experience information) of the own vehicle to the outside
- the other vehicle performs the driving assistance control or the automatic driving control with reference to the driving behavior information output from the robot car You can also.
- the other vehicle performs driving support control or automatic driving control with reference to the driving behavior information of the robot car that has experienced the situation even in the unexperienced situation, thereby achieving the same level of driving performance as the robot car. Can handle the situation.
- the computing system of the present invention includes a computing system having the following configuration.
- [Configuration 3.1] A computing system for a road traffic system in which a plurality of vehicles travels on a road, the driving behavior information receiving function of receiving driving behavior information of one or more vehicles, and the driving behavior information transmission source of the driving behavior information And a driving behavior information transmission function of transmitting to one or more different vehicles.
- the computing system receives driving behavior information (experience information) of one or more vehicles, and transmits the driving behavior information to one or more vehicles different from the transmission source of the driving behavior information.
- the vehicle that has received the driving behavior information from the computing system can use the driving behavior information for driving control of the own vehicle.
- a computing system for a road traffic system in which a plurality of vehicles travel on a road, the driving behavior information receiving function of receiving driving behavior information of one or more vehicles, and the driving optimized based on the driving behavior information
- a driving behavior information transmission function to be transmitted to a vehicle.
- the computing system receives driving behavior information (experience information) of one or more vehicles, generates driving behavior information optimized based on the driving behavior information, and generates the optimized driving behavior information. Update and manage the latest information, and send it to one or more vehicles.
- the vehicle that has received the driving behavior information from the computing system can use the driving behavior information for driving control of the own vehicle. That is, even when the vehicle is inexperienced, the vehicle performs driving control with reference to the driving behavior information optimized based on the driving behavior information of the other vehicle who has experienced the situation. The situation can be dealt with at the same level or higher driving performance as the other vehicles.
- the robot car is a vehicle which is operated by automatic operation control instead of operation operation by a human driver, the traveling state recognition unit recognizing a traveling state of the own vehicle, and the traveling.
- a driving behavior information transmission unit for transmitting to the computing system driving behavior information in which the traveling situation recognized by the situation recognition unit is associated with the driving operation by automatic driving control; and the non-robot car is a human A vehicle that has a driving support function that supports driving by a driver, and recognizes traveling conditions of the host vehicle The traveling condition recognized by the traveling condition recognition unit of the own vehicle while referring to the driving behavior information reception unit, the driving behavior information reception unit that receives the driving behavior information, and the driving behavior information reception unit that receives the driving behavior information And a driving support control unit for performing a driving support control based on the above.
- the computing system receives driving behavior information (experience information) from the robot car and transmits the driving behavior information to the non-robot car.
- the robot car having received the driving action information from the computing system performs driving support control based on the traveling condition of the host vehicle while referring to the driving action information. Therefore, even when the non-robot car is inexperienced, the non-robot car performs the driving support control while referring to the driving behavior information of the robot car that has experienced the situation, thereby achieving the same level as the non-robot car.
- the driving performance can cope with the situation. And, according to this computing system, in a situation where a robot car and a non-robot car coexist, the non-robot car learns the operation technique of the robot car, and the driving support performance of the non-robot car is improved efficiently. It can be done.
- the non-robot car is a vehicle that is operated by a human driver, and detects a traveling operation recognition unit that recognizes traveling conditions of the host vehicle, and a driving operation by the human driver of the host vehicle
- Driving behavior information transmission for transmitting to the computing system driving behavior information in which a driving operation detecting unit, driving conditions recognized by the traveling condition recognizing unit, and driving operations detected by the driving operation detecting unit are associated
- the robot car has an automatic driving control instead of a driving operation by a human driver.
- a driving condition recognition unit that recognizes the traveling condition of the vehicle, a driving behavior information reception unit that receives the driving behavior information, and a driving behavior received by the driving behavior information reception unit
- a computing system comprising: an automatic driving control unit performing automatic driving control based on the traveling condition recognized by the traveling condition recognition unit of the host vehicle while referring to behavior information.
- the computing system receives driving behavior information (experience information) from a non-robot car, and transmits the driving behavior information to the robot car.
- the robot car having received the driving behavior information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving behavior information.
- the robot car performs the same level of operation as the non-robot car by performing automatic driving control while referring to the driving behavior information of the non-robot car who has experienced the situation even in the situation where the own vehicle is unexperienced.
- the driving performance can cope with the situation.
- the robot car learns the driving technique of the human driver who drives the non-robot car, and the automatic driving performance of the robot car is obtained. The efficiency can be improved.
- the automatic driving performance of the robot car improves, it is possible to improve the operation efficiency of the entire road traffic system, improve the safety, and the like.
- a computing system for a road traffic system in which a plurality of vehicles travel on a road the driving behavior information receiving function of receiving driving behavior information of one or more robot cars, and transmitting the driving behavior information to the driving behavior information
- a driving behavior information transmission function for transmitting to one or more robot cars different from the original, and the robot car is a vehicle in which the driving operation is performed by automatic driving control instead of the driving operation by a human driver
- a driving condition recognition unit recognizing a driving condition of the own vehicle, a driving behavior information receiving unit receiving the driving behavior information, and the driving behavior information received by the driving behavior information receiving unit while referring to the driving behavior information
- the automatic driving control unit performs automatic driving control based on the traveling condition recognized by the traveling condition recognition unit, and is recognized by the traveling condition recognition unit
- a driving behavior information transmitting unit for transmitting to the computing system driving behavior information in which a driving situation is associated with a driving operation by automatic driving control, and the driving behavior information includes the traveling situation and the driving of the robot car.
- a computing system that is information associated with an operation.
- the computing system receives driving behavior information (experience information) from the robot car, and transmits the driving behavior information to a robot car different from the transmission source of the driving behavior information.
- the robot car having received the driving action information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving action information of the other robot car. Therefore, the robot car performs automatic driving control according to the traveling situation of the own vehicle while referring to the driving behavior information of the other robot cars who have experienced the situation even in the situation where the own vehicle is unexperienced And can handle the situation with the same level of driving performance as the other robot cars.
- robot cars in the road traffic system use driving behavior information to improve learning efficiency of the robot car in the road traffic system and rapidly improve automatic driving performance.
- a computing system for a road traffic system in which a plurality of vehicles travel on a road the driving behavior information receiving function for receiving driving behavior information of one or more robot cars, and optimization based on the driving behavior information
- An optimization information generation function for generating driving behavior information, an optimization information updating function for updating and managing the optimized driving behavior information to the latest information, and one or more of the optimized driving behavior information
- the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by the human driver, and the traveling state of the own vehicle is The driving behavior information received by the driving behavior information receiving unit, the driving behavior information receiving unit that receives the driving behavior information,
- An automatic driving control unit performing automatic driving control based on the traveling condition recognized by the traveling condition recognition unit of the own vehicle while referring to the driving condition by the traveling condition recognition unit recognized by the traveling condition recognition unit and driving operation by the automatic driving control
- Driving behavior information transmitting unit for transmitting to the computing system driving behavior information associated with the driving behavior information, and the driving behavior information is information in which the traveling state of the robot car
- the computing system receives driving behavior information (experience information) from the robot car, generates driving behavior information optimized based on the driving behavior information, and updates the optimized driving behavior information. Update and manage, and transmit the driving behavior information to the robot car.
- the robot car having received the driving action information from the computing system performs automatic driving control based on the traveling condition of the own vehicle while referring to the driving action information of the other robot car. Therefore, the robot car performs automatic driving control with reference to the driving behavior information optimized based on the driving behavior information of the other robot cars who have experienced the situation even in the situation where the own vehicle is inexperienced Therefore, the situation can be dealt with at the same level or higher driving performance as the other robot cars.
- the optimized driving behavior information may be a driving behavior information optimized according to a vehicle attribute of a vehicle receiving the provision of the driving behavior information, and a possibility that a vehicle receiving the driving behavior information may contact an obstacle.
- Driving behavior information optimized so as to minimize the driving behavior information optimized so as to minimize energy consumption of the vehicle receiving the driving behavior information, and of the vehicle receiving the driving behavior information
- Driving behavior information optimized to maximize regenerative energy
- driving behavior information optimized to minimize the number of accelerations or acceleration times in a predetermined traveling distance or predetermined traveling time
- predetermined traveling distance or predetermined traveling time Driving behavior information optimized to minimize or maximize the number of braking times or the braking time at the vehicle, so as to minimize the travel distance from the departure point to the arrival point Optimized been driving behavior information, or travel time of arrival point from the start point is optimized driving behavior information so as to minimize configuration 3.2 or 3.6 computing system.
- the optimization information generation function corrects the driving behavior information based on the vehicle attribute of the vehicle receiving the driving behavior information so as to minimize the possibility of the vehicle coming into contact with an obstacle.
- a computing system according to any one of configurations 3.2, 3.6, including.
- the vehicle attribute of the vehicle providing the driving behavior information (providing source vehicle) is different from the vehicle attribute of the vehicle receiving the providing of the driving behavior information (providing destination vehicle)
- the providing destination vehicle The driving behavior information corrected so as to minimize the possibility of contact with the obstacle is provided to the destination vehicle.
- the vehicles can perform the driving support control or the automatic driving control with reference to the driving behavior information. .
- the computer program of the present invention includes a program having the following configuration.
- [Configuration 4.1] A computer program for realizing the road traffic system according to any one of the configurations 1.1 to 1.39 using one or more computers.
- the road traffic system according to any one of configurations 1.1 to 1.39 is realized by executing this computer program by one or more computers constituting the road traffic system.
- [Configuration 4.2] A computer program for realizing the non-robot car according to any one of configurations 2.1 to 2.10 using one or more computers.
- the non-robot car according to any one of the configurations 2.1 to 2.10 is realized by executing this computer program by one or more computers constituting the non-robot car.
- [Configuration 4.3] A computer program for realizing the robot car according to any one of configurations 2.11 to 2.22, 2.30, and 2.31, using one or more computers.
- the non-robot car according to any one of configurations 2.11 to 2.22, 2.30, and 2.31 is realized by executing this computer program by one or a plurality of computers constituting the robot car.
- Ru. [Configuration 4.1] A computer program for realizing the computing system according to any one of configurations 3.1 to 3.8 by one or more computers. By executing this computer program by one or more computers, the computing system of any one of configurations 3.1 to 3.8 is realized.
- the road traffic system according to any one of the configurations 1.1 to 1.40, wherein a vehicle is shared by a plurality of users.
- the road traffic system of the present invention can be used to construct a vehicle sharing system.
- the vehicle sharing system of the present invention in a situation where a robot car and a non-robot car coexist, the non-robot car learns the operation technique of the robot car, and the driving support performance of the non-robot car is improved efficiently. It can be done.
- the driving support performance of the non-robot car is improved, the operation efficiency of the entire vehicle sharing system, the safety, the customer satisfaction, etc. can be improved.
- the non-robot car learns the operation technique of the robot car, and the driving support performance of the non-robot car is improved efficiently. It can be done. As the driving support performance of the non-robot car is improved, the operation efficiency of the entire vehicle sharing system, the safety, the customer satisfaction, etc. can be improved.
- the robot cars in the vehicle sharing system use the driving behavior information to improve the learning efficiency of the robot car in the vehicle sharing system and rapidly improve the automatic driving performance. It can be done. Since the automatic driving performance of all the robot cars in the shared vehicle system can be rapidly improved, the operation efficiency, safety, customer satisfaction, etc. of the entire shared vehicle system are rapidly improved.
- the robot car training system of the present invention includes a system having the following configuration.
- a non-robot car that has a robot car and a non-robot car that travels the same route as the robot car, and the non-robot car is a vehicle whose driving operation is performed by a human driver, and a traveling condition that recognizes the traveling condition of its own vehicle
- the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by a human driver, and recognizes the traveling condition of the own vehicle.
- Driving condition recognition unit driving behavior information acquisition unit for acquiring driving behavior information of the non-robot car, and the traveling condition recognition unit of the own vehicle
- An automatic driving control unit performing automatic driving control based on the recognized driving situation, and learning processing for learning the driving behavior of the non-robot car based on the driving behavior information acquired by the driving behavior information acquiring unit
- a robot car teaching system characterized by having.
- the non-robot car outputs driving behavior information in which the traveling state of the host vehicle and the driving operation performed by the human driver of the host vehicle are associated.
- the robot car acquires driving behavior information output from the non-robot car.
- the robot car performs automatic driving control based on the traveling condition of the host vehicle, and learns the driving behavior of the non-robot car based on the acquired driving behavior information.
- this robot car training system it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car, and to improve the automatic driving performance of the robot car.
- the automated driving performance of the robot car improves, the safety and reliability of the robot car are improved, and thus the safety and reliability of the entire road traffic system in which the robot car and the non-robot car coexist is improved.
- the automatic driving control unit performs driving of the driving behavior information acquired by the driving behavior information acquiring unit as a learning data set (a combination of a traveling situation and a driving operation performed in the situation), the individual traveling included in the driving behavior information.
- the robot car training system according to configuration 7.1, wherein learning processing (learning processing by supervised learning) is performed such that the same driving operation (correct operation) as the non-robot car is performed in the situation in the host vehicle.
- learning processing learning processing by supervised learning
- the robot car can learn the driving behavior of the human driver who drives the non-robot car by supervised learning in which the driving behavior information of the non-robot car is used as a learning data set.
- the autonomous driving control unit gives a more positive reward when taking a driving action closer to the driving action of the non-robot car obtained from the driving action information of the non-robot car, and is more distant from the driving action of the non-robot car
- Robot car of configuration 7.1 that gives a more negative reward (punishment) when taking a driving action and performs a learning process (learning process by reinforcement learning) so as to take a driving action that is likely to get the most reward.
- Teaching system According to this robot car training system, it is possible to cause the robot car to learn the driving behavior of the human driver who drives the non-robot car by the reinforcement learning based on the driving behavior information of the non-robot car.
- a non-robot car that has a robot car and a non-robot car that travels the same route as the robot car, and the non-robot car is a vehicle whose driving operation is performed by a human driver, and a traveling condition that recognizes the traveling condition of its own vehicle
- the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by a human driver, and recognizes the traveling condition of the own vehicle.
- the driving operation to be executed is determined based on the traveling condition recognition unit to be performed and the traveling condition recognized by the traveling condition recognition unit, and An automatic driving control unit that performs automatic driving control so that the step is executed, and a driving action information acquiring unit that acquires the driving action information output from the non-robot car, the automatic driving control unit comprising
- the driving knowledge unit stores knowledge information (judgement criteria etc.) to be referred to when determining the driving operation and the driving knowledge unit based on the driving behavior information acquired by the driving behavior information acquiring unit
- a robot car training system comprising: a learning processing unit (knowledge updating processing unit) that performs learning processing for updating knowledge information.
- the non-robot car outputs driving behavior information in which the traveling state of the host vehicle and the driving operation performed by the human driver of the host vehicle are associated.
- the robot car acquires driving behavior information output from the non-robot car.
- the robot car refers to the knowledge information to determine the driving operation according to the traveling situation, performs automatic driving control so that the driving operation is performed, and performs the knowledge information (based on the acquired driving action information)
- a learning process is performed to update the judgment criteria etc. when determining the driving operation to be executed.
- this robot car training system it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car, and to improve the automatic driving performance of the robot car.
- the learning processing unit sets the driving behavior information acquired by the driving behavior information acquiring unit as a learning data set (a combination of a traveling situation and a driving operation performed in the situation), and the individual traveling situations included in the driving behavior information. Performing a learning process (learning process by supervised learning) for updating the knowledge information stored in the driving knowledge unit so that the same driving operation (correct operation) as the non-robot car is performed in the host vehicle Robot car training system of 7.4.
- the robot car can learn the driving behavior of the human driver who drives the non-robot car by supervised learning in which the driving behavior information of the non-robot car is used as a learning data set.
- the learning processing unit gives a more positive reward when driving behavior closer to the driving behavior of the non-robot car obtained from the driving behavior information of the non-robot car, and driving farther from the driving behavior of the non-robot car
- a learning process that gives more negative reward (punishment) when taking action, and updates the knowledge information stored in the driving knowledge section so as to take a driving action that is likely to receive the most reward (learning by reinforcement learning Robot car training system of composition 1.4 which performs processing).
- the robot car is a vehicle whose driving operation is performed by automatic driving control instead of the driving operation by a human driver, and recognizes the traveling condition of the own vehicle.
- the driving operation to be executed is determined based on the traveling condition recognition unit to be performed and the traveling condition recognized by the traveling condition recognition unit, and An automatic driving control unit that performs automatic driving control so that the step is executed, and a driving action information acquiring unit that acquires the driving action information output from the non-robot car, the automatic driving control unit comprising
- the driving operation determination unit uses the driving operation determination unit, which determines the driving behavior according to the traveling condition recognized by the traveling condition recognition unit by calculation, and the driving behavior information acquired by the driving behavior information acquisition unit. And a learning processing unit (parameter adjustment unit) for adjusting parameters of the driving operation determination function.
- the non-robot car outputs driving behavior information in which the traveling state of the host vehicle and the driving operation performed by the human driver of the host vehicle are associated.
- the robot car acquires driving behavior information output from the non-robot car.
- the robot car determines the driving operation according to the traveling condition of the own vehicle by the driving operation determination function, performs automatic driving control so that the driving operation is performed, and performs driving based on the acquired driving behavior information. Perform learning processing to adjust the parameters of the operation decision function.
- this robot car training system it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car, and to improve the automatic driving performance of the robot car.
- the learning processing unit sets the driving behavior information acquired by the driving behavior information acquiring unit as a learning data set (a combination of a traveling situation and a driving operation performed in the situation), and the individual traveling situations included in the driving behavior information. Perform a learning process (learning process by supervised learning) to adjust parameters of the driving operation determination function so that the same driving operation (correct operation) as the non-robot car is performed in the host vehicle.
- Robot car training system
- the robot car can learn the driving behavior of the human driver who drives the non-robot car by supervised learning in which the driving behavior information of the non-robot car is used as a learning data set.
- the learning processing unit gives a more positive reward when driving behavior closer to the driving behavior of the non-robot car obtained from the driving behavior information of the non-robot car, and driving farther from the driving behavior of the non-robot car
- a learning process (learning process by reinforcement learning) for adjusting the parameters of the driving operation decision function so as to give a more negative reward (punishment) when taking action and take a driving action that is likely to obtain the most reward
- this robot car training system it is possible to cause the robot car to learn the driving behavior of the human driver who drives the non-robot car by the reinforcement learning based on the driving behavior information of the non-robot car.
- the robot car training system according to any one of configurations 9.1 to 9.9, wherein the non-robot car travels the path before the robot car.
- the robot car is made to learn the driving behavior of the human driver who drives the non-robot car, based on the driving behavior information of the non-robot car traveling on the same route earlier.
- the robot car while causing the robot car to experience a new situation, the robot car is made to learn the driving behavior of the human driver who drives the non-robot car that has already experienced the situation (learning based on prior information) be able to.
- the robot car training system according to any one of the configurations 7.1 to 7.9, wherein the non-robot car travels behind the path after the robot car.
- the robot car is made to learn the driving behavior of the human driver who drives the non-robot car, based on the driving behavior information of the non-robot car traveling on the same route later.
- a driving behavior information receiving unit having a computing system, the computing system receiving driving behavior information from the non-robot car, and a driving behavior information transmitting unit transmitting the driving behavior information to the robot car
- the driving behavior information output unit is a driving behavior information transmitting unit for transmitting the driving behavior information of the non-robot car to the computing system
- the driving behavior information acquisition unit is configured to 7.
- the robot car training system according to any one of the configurations 7.1 to 7.11, which is a driving behavior information reception unit received from the operating system. .
- the computing system receives driving behavior information (experience information) from a non-robot car, and transmits the driving behavior information to the robot car.
- the robot car acquires the driving behavior information of the non-robot car through the computing system, and based on the driving behavior information, the driving behavior of the human driver who drives the non-robot car I can learn.
- the computing system is an optimization information generation unit that generates optimized driving behavior information based on the driving behavior information received by the driving behavior information reception unit; 7.
- a robot car training system according to configuration 7.12 comprising: a driving behavior information transmission unit for transmitting the latest driving behavior information generated by the optimization information generation unit to the robot car.
- the computing system receives driving behavior information (experience information) from a non-robot car, generates driving behavior information optimized based on the driving behavior information, and is optimized. Transmit driving behavior information to the robot car.
- the robot car that has received the optimized driving behavior information from the computing system can learn the driving behavior of the human driver driving the non-robot car based on the optimized driving behavior information.
- the optimized driving behavior information is a driving behavior information optimized according to a vehicle attribute of the robot car receiving the driving behavior information, and a robot car receiving the driving behavior information contacts an obstacle.
- Driving behavior information optimized to minimize possibility driving behavior information optimized to minimize energy consumption of a robot car receiving the driving behavior information, provision of the driving behavior information Driving behavior information optimized to maximize the regenerative energy of the robot car received, driving behavior information optimized to minimize the number of accelerations or acceleration times in a predetermined traveling distance or predetermined traveling time, predetermined traveling distance Or driving behavior information optimized to minimize or maximize the number of braking times or braking times in a predetermined travel time, departure point to arrival point 7.13 of the driving behavior information optimized to minimize the travel distance at the driving point or the driving behavior information optimized to minimize the traveling time from the departure point to the arrival point Robot car teaching system.
- the robot car is provided with a deep learning function realized by a neuromorphic chip, and the features of the driving behavior (recognition, judgment, planning, operation) of a human driver who drives a non-robot car Can be extracted by the robot car for learning.
- the robot car has a learning function imitating a real brain realized by a spiking neural network and the driving behavior of a human driver who drives a non-robot car (recognition, judgment, planning , And operation) can be made to be learned by the robot car by itself.
- the robot car training method of the present invention includes a robot car training method having the following configuration.
- the non-robot car outputs driving behavior information in which the traveling state of the host vehicle and the driving operation performed by the human driver of the host vehicle are associated.
- the robot car acquires driving behavior information output from the non-robot car.
- the robot car performs automatic driving control based on the traveling condition of the host vehicle, and learns driving behavior of a human driver who drives a non-robot car based on the acquired driving behavior information.
- this robot car training method it is possible to make the robot car learn the driving behavior of a human driver who drives a non-robot car, and to improve the automatic driving performance of the robot car.
- the learning step includes driving behavior information acquired in the driving behavior information acquiring step as a learning data set (a combination of a traveling situation and a driving operation performed in the situation) in each traveling situation included in the driving behavior information.
- the robot car training method according to configuration 8.1 which is a step of performing learning processing (learning processing by supervised learning) such that the same driving operation (correct operation) as the non-robot car is performed in the host vehicle.
- the robot car training method it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car by supervised learning using the driving behavior information of the non-robot car as the learning data set.
- the learning step gives a more positive reward when driving behavior closer to the driving behavior of the non-robot car obtained from the driving behavior information of the non-robot car, and driving behavior further away from the driving behavior of the non-robot car Robot of configuration 8.1, which is a step of giving a negative reward (punishment) more when taking out and performing a learning process (learning process by reinforcement learning) so as to take a driving action that is likely to obtain the most reward.
- Car teaching method is a step of giving a negative reward (punishment) more when taking out and performing a learning process (learning process by reinforcement learning) so as to take a driving action that is likely to obtain the most reward.
- a robot car teaching method for driving a robot car by teaching the robot car the driving behavior of a human driver driving a non robot car, wherein the non robot car travels the same route as the robot car A traveling step, a non-robot car traveling condition recognition step in which a non-robot car recognizes the traveling condition of the vehicle while traveling on the route, a non-robot car driving operation of the vehicle by a human driver while traveling A driving action detection step of detecting, a driving action information output step in which a non-robot car outputs driving action information in which the traveling condition is associated with the driving operation, a robot car traveling step in which the robot car travels the route A robot whose robot car recognizes the traveling condition of the vehicle while traveling on the route Running condition recognition step, driving action information acquisition step in which the robot car acquires driving action information
- the non-robot car outputs driving behavior information in which the traveling state of the host vehicle and the driving operation performed by the human driver of the host vehicle are associated.
- the robot car acquires driving behavior information output from the non-robot car.
- the robot car refers to the knowledge information to determine the driving operation according to the traveling situation, performs automatic driving control so that the driving operation is performed, and performs the knowledge information (based on the acquired driving action information)
- a learning process is performed to update the judgment criteria etc. when determining the driving operation to be executed.
- this robot car training system it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car, and to improve the automatic driving performance of the robot car.
- the learning step includes driving behavior information acquired in the driving behavior information acquiring step as a learning data set (a combination of a traveling situation and a driving operation performed in the situation) in each traveling situation included in the driving behavior information.
- learning processing learning processing by supervised learning
- the step of performing learning processing of updating the knowledge information stored in the driving knowledge storing step such that the same driving operation (correct operation) as the non-robot car is performed in the own vehicle
- the robot car training method it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car by supervised learning using the driving behavior information of the non-robot car as the learning data set.
- the learning step gives a more positive reward when driving behavior closer to the driving behavior of the non-robot car obtained from the driving behavior information of the non-robot car, and driving behavior further away from the driving behavior of the non-robot car Learning process that gives more negative rewards (punishment) and takes the driving behavior that most rewards are likely to be obtained, and updating the knowledge information stored by the driving knowledge storage step (learning by reinforcement learning
- a robot car teaching method for driving a robot car by teaching the robot car the driving behavior of a human driver driving a non robot car, wherein the non robot car travels the same route as the robot car A traveling step, a non-robot car traveling condition recognition step in which a non-robot car recognizes the traveling condition of the vehicle while traveling on the route, a non-robot car driving operation of the vehicle by a human driver while traveling A driving action detection step of detecting, a driving action information output step in which a non-robot car outputs driving action information in which the traveling condition is associated with the driving operation, a robot car traveling step in which the robot car travels the route A robot whose robot car recognizes the traveling condition of the vehicle while traveling on the route Running condition recognition step, driving action information acquisition step in which the robot car obtains driving action information
- the non-robot car outputs driving behavior information in which the traveling state of the host vehicle and the driving operation performed by the human driver of the host vehicle are associated.
- the robot car acquires driving behavior information output from the non-robot car.
- the robot car determines the driving operation according to the traveling condition of the own vehicle by the driving operation determination function, performs automatic driving control so that the driving operation is performed, and performs driving based on the acquired driving behavior information. Perform learning processing to adjust the parameters of the operation decision function.
- this robot car training method it is possible to make the robot car learn the driving behavior of a human driver who drives a non-robot car, and to improve the automatic driving performance of the robot car.
- the learning step includes driving behavior information acquired in the driving behavior information acquiring step as a learning data set (a combination of a traveling situation and a driving operation performed in the situation) in each traveling situation included in the driving behavior information.
- Configuration 8 is a step of performing learning processing (learning processing by supervised learning) for adjusting parameters of the driving operation determination function so that the same driving operation (correct operation) as the non-robot car is performed in the host vehicle .7 Robot car teaching method.
- the robot car training method it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car by supervised learning using the driving behavior information of the non-robot car as the learning data set.
- the learning step gives a more positive reward when driving behavior closer to the driving behavior of the non-robot car obtained from the driving behavior information of the non-robot car, and driving behavior further away from the driving behavior of the non-robot car Perform a learning process (learning process by reinforcement learning) to adjust the parameters of the driving operation determination function so as to give a more negative reward (punishment) when taking a driving action and to take a driving action that is likely to obtain the most reward.
- the robot car teaching method of configuration 8.7 which is a step.
- this robot car training method it is possible to make the robot car learn the driving behavior of the human driver who drives the non-robot car by reinforcement learning based on the driving behavior information of the non-robot car.
- the robot car training method according to any one of configurations 8.1 to 8.9, wherein the non-robot car travels the path before the robot car.
- the robot car is made to learn the driving behavior of the human driver who drives the non-robot car, based on the driving behavior information of the non-robot car traveling on the same route earlier.
- this robot car teaching method while making the robot car experience a new situation, making the robot car learn (learning based on prior information) the driving behavior of the human driver of the non-robot car who has already experienced the situation it can.
- Configuration 8.11 8. Robotic teaching method according to any of the features 8.1 to 8.9, characterized in that the non-robot car travels the path after the robot car.
- the robot car is made to learn the driving behavior of the human driver who drives the non-robot car, based on the driving behavior information of the non-robot car traveling on the same route later.
- the driving behavior information output step is a step in which the non-robot car transmits the driving behavior information of the own vehicle to the computing system
- the driving behavior information acquisition step is the robot car
- the computing system receives driving behavior information (experience information) from the non-robot car, and transmits the driving behavior information to the robot car.
- the robot car acquires the driving behavior information of the non-robot car through the computing system, and based on the driving behavior information, the driving behavior of the human driver who drives the non-robot car I can learn.
- An optimization information generation step in which the computing system generates driving behavior information optimized based on the driving behavior information received in the driving behavior information receiving step; and the computing system generates the optimization information in the computing step A driving behavior information transmitting step of transmitting the latest driving behavior information to the robot car.
- the computing system generates driving behavior information optimized based on driving behavior information (experience information) received from the non-robot car, and the optimized driving behavior information is used as a robot.
- driving behavior information experience information
- the robot car that has received the optimized driving behavior information from the computing system can learn the driving behavior of the human driver driving the non-robot car based on the optimized driving behavior information.
- the optimized driving behavior information is a driving behavior information optimized according to a vehicle attribute of the robot car receiving the driving behavior information, and a robot car receiving the driving behavior information contacts an obstacle.
- Driving behavior information optimized to minimize possibility driving behavior information optimized to minimize energy consumption of a robot car receiving the driving behavior information, provision of the driving behavior information Driving behavior information optimized to maximize the regenerative energy of the robot car received, driving behavior information optimized to minimize the number of accelerations or acceleration times in a predetermined traveling distance or predetermined traveling time, predetermined traveling distance Or driving behavior information optimized to minimize or maximize the number of braking times or braking times in a predetermined travel time, departure point to arrival point Of driving behavior information optimized to minimize travel distance at the driving point or driving behavior information optimized to minimize traveling time from the departure point to the arrival point, Robot car teaching method.
- the computer program of the present invention includes a program having the following configuration.
- [Configuration 9.1] A computer program for realizing the robot car teaching system according to any one of configurations 7.1 to 7.17 using one or more computers. By executing this computer program by one or more computers, a robot car training system according to any one of configurations 7.1 to 7.17 is realized.
- [Configuration 9.2] A computer program for implementing the robot car teaching method according to any one of configurations 8.1 to 8.15 using one or more computers. By executing this computer program by one or more computers, the robot car training method according to any one of configurations 8.1 to 8.15 is realized.
- each vehicle drives based on driving behavior information of another vehicle that has experienced the situation even in a situation where the own vehicle has not been experienced.
- driving behavior information of another vehicle that has experienced the situation even in a situation where the own vehicle has not been experienced.
- each vehicle is based on the driving behavior information of the other vehicle that has experienced the situation even in the situation where the own vehicle is unexperienced.
- driving control it is possible to cope with the situation with the same level of driving performance as the other vehicle.
- the robot car learn the driving behavior of the human driver who drives the non-robot car, and to improve the automatic driving performance of the robot car.
- the automated driving performance of the robot car improves, the safety and reliability of the robot car are improved, and thus the safety and reliability of the entire road traffic system in which the robot car and the non-robot car coexist is improved.
- Conceptual diagram showing a configuration example of the road traffic system of the present invention Functional block diagram showing an example of a system configuration of a vehicle (car) in the road traffic system of the present invention Explanatory drawing about embodiment of the road traffic system of this invention.
- Conceptual diagram illustrating the data structure of driving behavior information (A): An explanatory view of data ID (B): An explanatory view of route ID Explanation of travel route
- FIG. 12 An explanatory view following FIG. 12 Explanatory drawing of the embodiment which presupposes FIG.12 and FIG.13
- a conceptual diagram showing another configuration example of the road traffic system of the present invention A conceptual diagram showing yet another configuration example of the road traffic system of the present invention
- a conceptual diagram showing yet another configuration example of the road traffic system of the present invention A conceptual diagram showing yet another configuration example of the road traffic system of the present invention
- a conceptual diagram showing yet another configuration example of the road traffic system of the present invention A conceptual diagram showing yet another configuration example of the road traffic system of the present invention (A): A functional block diagram showing a configuration example of an automatic operation control unit of a robot car in FIGS.
- FIG. 17 to 21 A functional block diagram showing a configuration example of a driving support control unit of a non-robot car in FIG. (A): A functional block diagram showing another configuration example of the automatic driving control unit of the robot car in FIGS. 17 to 21 (B): Another configuration example of the driving support control unit of the non-robot car in FIG.
- Functional block diagram shown A conceptual diagram showing a configuration example of a robot car training system according to the present invention
- FIG. 24 is a flow diagram illustrating the operation content of the robot car training system of FIG.
- FIG. 22 is a flow diagram illustrating the contents of a learning step executed in the configuration example of FIG.
- FIG. 23 is a flow diagram illustrating the contents of a learning step executed in the configuration example of FIG.
- FIG. 32 is a flow chart illustrating the operation content of the robot car training system of FIG. 32;
- a robot car is a car that can travel automatically without human driving. In Japan, it is also called “automotive car”. In English, it is written as “autonomous car”. It is also called “UGV (unmanned ground vehicle)", “driverless car” or “self-driving car”. (Quoted from Wikipedia)
- a non-robot car is a car other than a robot car. The non-robot car is operated by a human driver. A car that does not have the function (automatic driving function) that can automatically travel without human driving is a non-robot car.
- Non-robot cars include vehicles having a manual driving function and a driving support function but not having an automatic driving function.
- the driving situation includes a self situation and a non-self situation (external environment).
- the self status includes the position (latitude, longitude) of the vehicle on the earth, the motion status of the vehicle (internal environment), the relative status with surrounding objects, and the like.
- the motion condition of the vehicle is: center of gravity position (x, y, z), yaw ( ⁇ ), roll ( ⁇ ), pitch ( ⁇ ), speed (first-order time derivative of center of gravity position), acceleration (center of gravity position Second-order time derivative), angular velocity (yaw rate), etc.
- the peripheral object is an object present around the vehicle.
- Surrounding objects include vehicles, pedestrians, stationary objects on the ground, and the like.
- the relative situation with the surrounding object includes the positional relationship between the vehicle and the surrounding object, the distance between the vehicle and the surrounding object, and the like.
- Ground stationary objects include traffic signals, road signs, pedestrian crossings, road shoulders, guard rails, telephone poles, fences, garages, houses, and the like.
- non-self status As examples of non-self status (external environment), travel route, travel lane, width of travel lane, number of lanes, road shape, road slope, road surface type, road surface condition, surrounding brightness, weather, display contents of traffic lights, The number of surrounding vehicles, forward vehicle speed, forward vehicle acceleration, surrounding obstacles, types of traveling lanes, and the like can be mentioned.
- the driving operation is a concept including the content of the operation and the operation amount of the operation.
- an operation for adjusting the propulsive force of the vehicle
- an operation for adjusting the braking force of the vehicle
- the steering angle or steering angular velocity of the vehicle Operations steering operation
- operations for changing the combination of gears of the transmission of the vehicle shift operation
- the driving behavior information is information in which the traveling condition of the vehicle is associated with the driving operation performed on the vehicle, and includes position on the route-driving operation correspondence information, entering and leaving route position-driving operation correspondence information, and the like.
- Information on parking operation (driving operation) performed at each point on the moving route for entering (parking) in the parking space as an example of the entry and exit route position-driving operation correspondence information (position on entry route-driving operation Correspondence table), information on the departure operation (driving operation) performed at each point on the moving path for leaving the parking space (location on leaving route-driving operation correspondence table), and the like can be mentioned.
- the learning includes learning based on various data obtained during manual driving, learning based on various data obtained during driving assistance, and learning based on various data obtained during automatic driving.
- the learning includes learning of action plans, learning about operation tendencies, learning about surrounding objects, and the like.
- the learning of the action plan includes learning of knowledge (data) for determining the driving operation to be performed, learning of a calculation formula (program) for determining the driving operation to be performed, and the like.
- knowledge data
- a calculation formula program
- the knowledge is updated so that the same driving operation (correct operation) as that performed in the other vehicle is performed in the own vehicle for a certain traveling situation.
- a positive reward is given when driving behavior closer to the driving behavior of the other vehicle obtained from the driving behavior information of the other vehicle is taken, and driving behavior further from the driving behavior of the other vehicle Give them a negative reward (punishment), learn how much reward is likely to be earned if they act, and knowledge so that the most reward will be taken.
- reinforcement learning can be mentioned.
- the knowledge is updated such that the action that is likely to receive the most reward is performed, and as a result, the optimal driving action is performed.
- a calculation formula program
- so-called parameter learning for learning a driving operation determination function (calculation formula) that determines (estimates) a driving operation to be performed based on driving behavior information of another vehicle can be mentioned.
- adjustment of the parameters of the driving operation determination function is performed such that an error between the driving behavior information of the other vehicle and the driving operation given by the driving operation determination function is minimized.
- parameter learning using the driving behavior information of another vehicle as a learning data set, the same driving operation (a correct operation) as that of the other vehicle is performed in the own vehicle in each traveling situation included in the driving behavior information.
- a learning process (learning process by supervised learning) that adjusts the parameters of the driving operation determination function is included.
- a positive reward is given when driving behavior closer to the driving behavior of the other vehicle obtained from the driving behavior information of the other vehicle is taken, and from the driving behavior of the other vehicle Give a negative reward (punishment) when you drive further away, and learn how much reward is likely to be obtained if you act, and take action that is likely to receive the most reward.
- reinforcement learning in which parameters of the driving operation determination function are adjusted. In this case, by adjusting the parameters of the driving operation determination function so as to take an action that is likely to obtain the most reward, as a result, the optimum driving action is performed.
- learning based on the number of times of passing at each point and the number of driving operations and the amount of operation performed at each point can be mentioned. For example, the ratio of the number of times of passing each point and the number of specific driving operations performed at the point is calculated, and if the ratio is equal to or more than the predetermined value, the point is set as the operation required point and the ratio is less than the predetermined value If so, the point is set as an operation unnecessary point. As a result of learning, driving support control or automatic driving control is performed at a point set as the operation required point.
- a brake operation with an operation amount equal to or more than a predetermined value As an example of a specific driving operation, a brake operation with an operation amount equal to or more than a predetermined value, an accelerator operation with an operation amount equal to or more than a predetermined value, a steering operation with an operation amount equal to or more than a predetermined value, an operation amount (change amount of gear ratio) is a predetermined value
- the above shift operation etc. can be mentioned.
- learning about a peripheral object learning based on the number of times of passing each point and the number of times of detection of the peripheral object at each point can be mentioned.
- the ratio of the number of times of passing through each point and the number of times of detection of a specific surrounding object detected at the point is calculated, and if the ratio is equal to or more than a predetermined value, the point is set as a caution point and the ratio is predetermined If it is less than the value, the point is set as the standard attention point.
- the detection processing of the surrounding objects is executed with higher accuracy than the detection accuracy at the standard caution point, and based on the detection result, driving assistance considering safety Control or automatic operation control is performed.
- driving support control for reducing the possibility of the vehicle approaching the specific peripheral object when the vehicle is in contact with the specific peripheral object
- Driving support control braking support control
- automatic driving control to reduce the possibility of the vehicle approaching the specific peripheral object when the vehicle contacts the specific peripheral object
- Automatic operation control braking operation control or the like which makes the impact of the vehicle smaller.
- the learning about peripheral objects includes time zone learning about peripheral objects. In the case of learning for each time zone for objects in the vicinity, the ratio is calculated for each time zone of a day, and the point of caution is set for each time zone.
- the learning about driving operations and the learning about surrounding objects include learning in consideration of vehicle attributes.
- Examples of specific peripheral objects include pedestrians and bicycles on pedestrian crossings in front of vehicles, pedestrians and bicycles crossing roads in front of vehicles, oncoming vehicles, passing vehicles, obstacles on roads, and the like.
- Examples of obstacles on the road include vehicles parked and stopped on the roadside, utility poles on the roadside and at corners, trash cans and signs placed on the street, and signs and trees overhanging the road.
- the vehicle attributes include vehicle type, vehicle size, inner / outer ring difference, vehicle weight, usage mode of vehicle, classification of vehicle type, vehicle number, door opening width, engine type, and the like.
- vehicle a private car, a sales car, a freight carrier, a passenger transporter (taxi), a passenger transporter (bus), etc.
- the classification of vehicle types includes large vehicles, small vehicles, two-wheelers, and the like.
- the ratio of the driving operation to be refrained from vehicle attribute is calculated, and a point whose ratio is equal to or more than a predetermined value is set as a caution point.
- the ratio of surrounding objects having a high possibility of approaching within a predetermined distance in the vehicle attributes is calculated, and a point having the ratio equal to or more than a predetermined value is required. It is set as a caution point.
- the driving operation which should be refrained from vehicle attribute high speed traveling and sudden steering operation on the curved road etc of vehicles with high center of gravity (vehicles with high height, vehicles with a lot of loads, etc.), sudden acceleration of bus or taxi An operation, a sudden brake operation, etc. can be mentioned.
- Passengers in the case of buses or taxis, electric poles in the case of large vehicles, billboards overhanging on the road, etc. can be mentioned as examples of nearby objects that are likely to approach within a predetermined distance according to vehicle attributes .
- this type of machine learning operation control method can be used.
- General-purpose image recognition systems capable of detecting arbitrary objects such as surrounding vehicles and pedestrians are known.
- a known general-purpose image recognition system can be used.
- Known as methods for detecting pedestrians and other vehicles are extraction of feature quantities of HOG (Histograms of Orientied Gradients), threshold learning by SVM (Support Vector Machine) which is one of machine learning methods, and the like. There is.
- Computing systems in the road traffic system, the vehicle sharing system, and the robot car training system of the present invention include a Cloud Computing System.
- Cloud computing is one of distributed computing using the Internet.
- the cloud refers to a data center for realizing cloud computing and a server computer group operated in the data center.
- Cloud technology makes it possible to process large volumes of data without the user being aware of where the data is on the Internet.
- the big data in the road traffic system, the vehicle sharing system and the robot car training system of the present invention that is, the huge number of data transmitted from a large number of vehicles traveling on the earth ( Data, data on driving operations, etc.) can be processed.
- the road traffic system, the vehicle sharing system, and the robot car training system of the present invention can be applied to similar systems described in Patent Documents 1-44, Non-Patent Documents 1-4, and the like.
- FIG. 1 is a conceptual view showing a configuration example of a road traffic system of the present invention.
- the road traffic system 1 illustrated in FIG. 1 includes a car 100 and a computing system 200.
- Computing system 200 comprises server computer 210 and database 220.
- the server computer 210 receives driving behavior information of a number of vehicles including the automobile 100 via the Internet 300.
- the server computer 210 stores the received driving behavior information in the database 220.
- the server computer 210 transmits the driving behavior information extracted from the database 220 to a number of vehicles including the automobile 100 via the Internet 300.
- the server computer 210 may be single or plural.
- the database 220 may be disposed on one server computer or distributed on a plurality of server computers.
- the vehicle 100 includes an on-vehicle gateway 110.
- the on-vehicle gateway 110 is an information processing apparatus having a wireless communication function and configured mainly of a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like (not shown).
- the in-vehicle gateway 110 executes various processes by the CPU executing a control program stored in the ROM.
- the on-vehicle gateway 110 uploads various data to the computing system 200 via the Internet 300 (sends to the server computer 210), and downloads various data from the computing system 200 via the Internet 300 (received from the server computer 210) Do.
- the data transmitted and received between the automobile 100 and the computing system 200 includes data of driving behavior information of the host vehicle and data of driving behavior information of another vehicle.
- FIG. 2 is a functional block diagram showing an example of a system configuration of a vehicle (car) in the road traffic system of the present invention.
- the automobile 100 has an on-board gateway 110 and a traveling control system 120.
- the in-vehicle gateway 110 communicates with the computing system 200 under the control of the travel control system 120.
- the in-vehicle gateway 110 inputs data received from the computing system 200 to the traveling control system 120.
- the in-vehicle gateway 110 transmits the data input from the traveling control system 120 to the computing system 200.
- the traveling control system 120 includes a detection unit 121, a vehicle information input unit 122, a positioning unit 123, a map information input unit 124, an operation unit 125, a communication unit 126, a display unit 127, a storage unit 129, a control unit 129, and the like.
- the detection unit 121 is configured of sensors for detecting the presence of objects in the vicinity (other vehicles, pedestrians, stationary objects on the ground, etc.), and the position, size, relative velocity, etc. of objects in the vicinity. .
- the detection unit 121 is embodied by, for example, a sonar 121a, a radar 121b, a camera 121c, a three-dimensional range sensor, and the like.
- the sonar 121a transmits an ultrasonic wave to a predetermined area from each antenna directed in the front, rear, left, and right directions of the host vehicle, and receives the reflected wave. Then, based on the received reflected wave, the positional relationship with the host vehicle, the distance, and the like are output for an object existing in the front, rear, left, and right directions of the host vehicle.
- the radar 121 b irradiates laser light or a millimeter wave from an antenna directed in the front, rear, left, and right directions of the host vehicle, scans a predetermined detection area, and receives the reflected wave.
- the camera 121c is provided at a predetermined position in the front, rear, left, and right directions of the host vehicle, and outputs imaging data in which surrounding vehicles present in the front, rear, left, and right directions of the host vehicle are captured.
- a plurality of such sensors such as sonars, radars, cameras 121c, and three-dimensional range sensors may be used in combination or may be used alone.
- the vehicle information input unit 122 controls information related to the movement status (center of gravity, yaw, roll, pitch, speed, acceleration, angular velocity, etc.) of the host vehicle and driving operation (accelerator operation, brake operation, steering operation, shift operation). Input to the part 128.
- the positioning unit 123 measures the position (latitude, longitude) of the host vehicle on the earth, and inputs the position to the control unit 128.
- the positioning unit 123 is embodied by, for example, a high precision positioning receiver or the like compatible with high precision GPS (Global Positioning System).
- the map information input unit 124 acquires information on the road on which the vehicle is currently traveling from the storage medium storing the road map information, and inputs the information to the control unit 128.
- the operation unit 125 is an input device for inputting operation instructions such as on / off of travel control, switching of control modes, switching of various displays on the display unit 127, and provided, for example, in spokes of a steering wheel of a vehicle. Are realized by switches and the like.
- the communication unit 126 is a communication device for communicating with a communication device provided on the ground stationary object and a communication device mounted on a nearby vehicle. Ground stationary objects include garages and roads.
- the display unit 127 is a display device including a center display provided in the center of the instrument panel and an indicator provided in the meter panel.
- the display unit 127 displays on / off of travel control and a control mode together with information indicating the state of the host vehicle.
- the control modes include a manual driving mode, a driving support mode, and an automatic driving mode.
- the storage unit 128 is a storage device that stores driving behavior information of the host vehicle and driving behavior information of another vehicle.
- the control unit 129 is an information processing apparatus configured mainly by a CPU, a ROM, a RAM, and the like (not shown), and centrally controls each part of the traveling control system 120.
- the control unit 129 executes various processes by the CPU executing a control program stored in the ROM.
- the control unit 129 Based on the position (latitude, longitude) of the host vehicle input from the positioning unit 123 and the road map information input from the map information input unit 124, the control unit 129 provides information on road structures such as telephone poles and traffic signals. And the three-dimensional range sensor of the detection unit 121 detects the three-dimensional distance of the surrounding object. Then, the 3D distance data and the road map are synthesized in real time, and whether the object detected by the 3D range sensor is a road structure or an object on the road (vehicle, pedestrian, etc.) is accurately determined. Identify High-accuracy grasping of the position of the vehicle is realized by a known method such as Monte Carlo localization, and GPS uses position information as secondary information.
- the relative situation with the surrounding object is realized by a known method such as a Kalman filter.
- the control unit 129 stores in the storage unit 19 driving behavior information of the host vehicle based on various information input from the detection unit 121, the vehicle information input unit 122, the positioning unit 123, and the map information input unit 124.
- the operation history information obtained by the detection unit 121, the vehicle information input unit 122, the positioning unit 123, and the map information input unit 124 in the driving behavior information of the own vehicle (the position on the traveling route-driving operation correspondence table, entering and leaving Path position-driving operation correspondence table etc. is included.
- the control unit 129 communicates with the computing system 200 via the onboard gateway 110.
- the control unit 129 transmits the driving behavior information of the vehicle stored in the storage unit 128 to the computing system 200 via the on-vehicle gateway 110.
- the control unit 129 stores the driving behavior information of the other vehicle received via the on-vehicle gateway 110 in the storage unit 128.
- Operation history information obtained by the detection unit 121 of the other vehicle, the vehicle information input unit 122, the positioning unit 123, and the map information input unit 124 is included in the driving behavior information of the other vehicle , Entry and exit route position-driving operation correspondence table, etc.).
- the control unit 129 communicates with surrounding ground stationary objects and surrounding vehicles via the communication unit 126.
- Control unit 129 transmits the driving behavior information of the host vehicle stored in storage unit 128 to the ground stationary object and surrounding vehicles via communication unit 126.
- Control unit 129 stores, in storage unit 128, driving behavior information of another vehicle received via communication unit 126.
- the control unit 129 is connected to a vehicle control unit 130 that is a target of driving control.
- the vehicle control unit 130 includes various electronic control devices such as an engine ECU (Electronic Control Unit) 130a, a brake ECU 130b, a steering angle ECU 130c, and a stability ECU 130d.
- the engine ECU 130a controls the output of the engine by issuing a control command according to the operation amount of the accelerator pedal and the state of the engine.
- the brake ECU 130 b controls the braking force of the brake according to the operation amount of the brake pedal.
- the steering angle ECU 130 c controls the steering angle of the steering.
- the stability ECU 130 d controls the traveling stability of the vehicle.
- the control unit 129 controls the traveling of the vehicle by giving commands to the respective ECUs in the vehicle control unit 130 according to the amount of driving operation (accelerator operation amount, brake operation amount, steering operation amount, etc.).
- the control unit 129 analyzes, in real time, the traveling situation of the host vehicle changing from moment to moment, based on the analysis result and the driving behavior information of the host vehicle and / or the driving behavior information of the other vehicle.
- the drive support information is generated, and the drive support information is notified to the driver using the display unit 127 or the like.
- the control unit 129 analyzes, in real time, the traveling condition of the vehicle which changes from moment to moment, based on the analysis result, the driving behavior information of the vehicle, and / or the driving behavior information of the other vehicle. Drive operation amount is determined, and commands are given to each ECU in the vehicle control unit 130.
- the onboard gateway 110 and the traveling control system 120 are separately present, the onboard gateway 110 can be integrated with the traveling control system 120.
- the automobile 100 configured as described above performs driving assistance and automatic driving based on the traveling state of the host vehicle and the driving behavior information of the host vehicle or the driving behavior information of another vehicle.
- the automobile 100 functions as a non-robot car when traveling in the manual operation mode or the driving support mode, and functions as a robot car when traveling in the automatic operation mode.
- FIG. 3 is an explanatory view of an embodiment of a vehicle (motor vehicle) of the present invention.
- the automobile V1 (100) has no experience of traveling on the traveling route R.
- the automobile V2 (100) has experience of traveling on the traveling route R.
- the vehicle V2 acquires various data related to driving when traveling on the traveling route R, and stores the various data in the storage unit 128 of the host vehicle.
- the vehicle V2 provides the vehicle V1 with driving behavior information including the various data stored in the storage unit 128.
- the driving behavior information in this case includes information in which the traveling route R and the driving operation performed by the vehicle V1 at each point on the route R are associated with each other.
- the automobile (own vehicle) V1 can use the driving behavior information of the automobile (other vehicle) V2 for driving support control and automatic driving control of the own vehicle V1.
- the automobile V1 has no experience of traveling on the traveling route R, but performs driving support control and automatic driving control based on the driving behavior information of the automobile (other vehicle) V2 who has experience traveling the traveling route R. (Other Vehicles) It is possible to exhibit the same level of driving support performance and automatic driving performance as V2.
- the traveling route R is a narrow and winding road or a narrow road where there are many obstacles such as a telephone pole, the driver who is not familiar with driving or a car sharing service, etc. It is not easy for the driver to board the traveling route R to travel smoothly. It is not good at a robot car (automated car) to travel smoothly on this kind of road.
- the vehicle V2 travels smoothly along the travel route R every day, the driver of the vehicle V1 is unfamiliar with the driving because the vehicle V1 performs the driving assistance control with reference to the driving behavior information of the vehicle V2.
- the vehicle V1 is a vehicle such as a car sharing service, the vehicle V1 can smoothly travel on the traveling route R with the same level of driving performance as the vehicle V2.
- the car V1 performs the automatic driving control with reference to the driving behavior information of the car V2 so that the car V1 travels along the traveling route R smoothly with the driving performance of the same level as the car V2. It is possible to
- FIG. 4 is a conceptual view exemplifying a position on a driving route-driving operation correspondence table included in driving behavior information.
- the driving behavior information is managed by data ID: Data ID.
- the data ID is a unique value that can specify data of one piece of driving behavior information out of a huge amount of driving behavior information.
- a unique combination of a vehicle ID (Car ID) and a route ID (Root ID) is specified by the data ID (see FIG. 5A).
- the vehicle ID is a unique value that can identify one vehicle among many vehicles.
- the vehicle ID of the vehicle is also specified by the vehicle ID.
- the path ID is a unique value that can identify one path out of a huge number of paths.
- the combination of the starting point (Starting Point), the arrival point (Destination Point), and the passing point (Pass Point) is specified by the path ID (see FIG. 5B).
- the driving behavior information illustrated in FIG. 4 is obtained when the vehicle V2 travels on the route R on the map illustrated in FIG.
- the starting point (Starting Point) of the route R is S1
- the destination point (Destination Point) is D1
- the pass point (Pass Point) is PP1, PP2, and PP3.
- the driving behavior information illustrated in FIG. 4 indicates the correspondence with the driving operation performed by the vehicle V1 at each point (P1, P2,..., Pn) on the route R.
- acceleration operation start operation
- acceleration operation at point P1 acceleration operation at point P2, deceleration operation (braking operation) at point P3, and left turning operation (operation to turn the steering wheel to the left) at point P4
- the right turning operation operation to return the steering wheel
- acceleration operation at point P6 deceleration operation (braking operation) at point Pn-3
- right turning operation operation to turn the steering wheel to the right
- the left turning operation operation to return the steering wheel
- the deceleration operation braking operation
- a method of delivering driving behavior information from the automobile V2 to the automobile V1 is arbitrary.
- communication between the host vehicle V1 and the other vehicle V2 see FIG. 7
- communication between the host vehicle V1 and the ground stationary object 410 see FIG. 8
- the host vehicle V1 and the road 420 Communication between the host vehicle V1 and the portable terminal 500 (see FIG. 10), delivery of information via the computing system (cloud system) 200 (see FIG. 11), etc.
- a traffic light on a road is illustrated as the ground stationary object 410.
- the vehicles V1 and V2 transmit and receive driving behavior information by using the traffic light 410 as an access point (AP).
- AP access point
- the driving behavior information of the vehicle V2 transmitted from the vehicle V2 is received by the vehicle V1 via the traffic light 410.
- the traffic light 410 that receives the driving behavior information and the traffic light 410 that transmits the driving behavior information may be the same traffic light or may be different traffic lights.
- access points (APs) are arranged at predetermined intervals along the road.
- the access point (AP) may be embedded in the road surface or may be provided on the side of the road.
- the driving behavior information of the automobile (other vehicle) V2 is stored in the portable terminal 500 of the driver of the automobile (own vehicle) V1.
- the driving behavior information is downloaded from the computing system 200 to the portable terminal 430.
- the configuration shown in FIG. 11 is, for example, a ground stationary object 410 shown in FIG. 8 or an access provided on a road 420 shown in FIG. 9 as an access point for communicating vehicles V1 and V2 with the computing system 200 via the Internet 300. It can be realized by using points (AP).
- FIG. 12 is an explanatory view of another embodiment of the automobile of the present invention.
- the garage G is a garage that the automobile V2 (100) uses daily. Since the garage G faces the narrow road ST, the warehousing operation is difficult for a driver who is unfamiliar with driving or a driver who gets on a different vehicle every time of driving by a car sharing service or the like.
- On the left front side of the garage G there is a recess D having a shape branched from the road ST.
- the vehicle V2 In order to insert the vehicle V2 into the garage G, first, as shown in FIG. 13A, the vehicle V2 has to be advanced diagonally to the right until the right end of the vehicle V2 enters the recess D. Thereafter, as shown in FIG.
- the vehicle V2 must be advanced while carefully adjusting the snake angle so that the orbit draws an arc.
- the vehicle V2 acquires various data related to driving when it is stored in the garage G, and stores the various data in the storage unit 128 of the own vehicle.
- the vehicle V2 provides the vehicle V1 (100) with driving behavior information including the various data stored in the storage unit 128.
- the driving behavior information in this case is information in which the moving route for storing in the garage G and the driving operation performed by the vehicle V2 at each point on the route are associated (entry / exit route position-driving operation correspondence table) Is included.
- the manner in which the vehicle V2 provides its driving behavior information to the vehicle V1 is arbitrary.
- FIG. 14 exemplifies a case where driving behavior information is delivered by communication between the vehicles V1 and V2 and the garage G.
- a garage storage experience providing device 440 is provided in the vicinity of the entrance of the garage G.
- the garage storage experience report providing device 440 receives the driving behavior information (experience information) from the automobile V2 (driving behavior information receiving function), and stores the driving behavior information in the storage unit (driving behavior information storage function) . Then, when the vehicle V1 approaches the garage G, the garage storage experience providing device 440 transmits the driving behavior information stored in the storage unit to the vehicle V1.
- the vehicle V1 uses the driving behavior information of the vehicle V2 for the driving support control and the automatic driving control of the own vehicle.
- the car V1 has no experience of warehousing in the garage G, but by performing driving support control and automatic driving control based on the driving behavior information of the car V2 using the garage G on a daily basis, the same level as the car V2 Can be stored in the garage G with the driving support performance and the automatic driving performance. The same is true for leaving goods.
- FIG. 15 is a conceptual view showing a configuration example of a computing system in a road traffic system according to the present invention.
- the server computer 210 in the computing system 200 receives driving behavior information (experience information) of one or more vehicles V1, V2, V3... Via the Internet (driving behavior information receiving function 210a), and the driving behavior Information is transmitted via the Internet 300 to one or more vehicles V1, V2, V3, ... different from the transmission source of the driving behavior information (driving behavior information transmitting function 210b).
- the vehicle that has received the driving behavior information from the server computer 210 can use the driving behavior information for driving support control and automatic driving control of the own vehicle.
- FIG. 16 is a conceptual diagram showing another configuration example of the computing system in the road traffic system of the present invention.
- the server computer 210 in the computing system 200 receives driving behavior information (experience information) of one or more vehicles via the Internet 300 (driving behavior information receiving function 210a), and is optimized based on the driving behavior information. Generate the driving behavior information (optimization information generation function 210c), update the optimized driving behavior information to the latest information and manage it (optimization information updating function 210d), and use the Internet for one or more vehicles It transmits via (driving action information transmission function 210b).
- the vehicle that has received the driving behavior information from the server computer 210 can use the driving behavior information for driving control of the vehicle.
- the driving assistance control and the automatic driving control are performed based on the driving behavior information optimized based on the driving behavior information of the other vehicle that has experienced the situation.
- the situation can be coped with driving support performance and automatic driving performance equal to or higher than vehicles.
- a large number of vehicles V1, V2, V3, ..., Vn mutually utilize driving behavior information to efficiently optimize the driving support performance and the automatic driving performance of each vehicle. it can.
- a large number of vehicles V1, V2, V3, ..., Vn can efficiently optimize the driving support performance and the automatic driving performance of each vehicle by utilizing not only the experience of the own vehicle but also the experiences of other vehicles.
- a transportation system can be realized.
- Targets of optimization include consumed energy, regenerative energy, accident incidence rate, and the like.
- the server computer 210 provides the driving behavior information according to the vehicle attribute of the provision destination vehicle when the vehicle attributes (vehicle type, vehicle size, inner ring difference, etc.) of the provision source vehicle of the driving behavior information and the provision destination vehicle are different. To the optimal value. Therefore, even when the source vehicle and the destination vehicle have different vehicle attributes, the destination vehicle is provided with the driving behavior information optimized for the vehicle.
- the optimized driving behavior information there can be mentioned driving behavior information that has been modified so as to minimize the possibility of the destination vehicle coming into contact with an obstacle, according to the current traveling situation.
- the correspondence relationship between the source vehicle and the destination vehicle may be a many-to-one relationship. In the case of a many-to-one relationship, it is desirable to provide the providing destination vehicle with driving behavior information in which the average value of the driving behavior information of the plurality of providing source vehicles is corrected.
- FIG. 17 is a conceptual view showing another configuration example of the road traffic system of the present invention.
- the vehicles 100 constituting the road traffic system 1 are roughly classified into robot cars (automatically driven cars) 100A and non-robot cars (manually operated cars or cars with a driving support function) 100B. Although only one robot car 100A and one non-robot car 100B are shown in FIG. 17, in an actual system, there are a plurality of robot cars 100A and one or more non-robot cars 100B.
- the server computer 210 in the computing system 200 has a driving behavior information reception function 210a for receiving driving behavior information (experience information) from the non-robot car 100B, and a driving behavior information transmission function 210b for transmitting the driving behavior information to the robot car 100A. And.
- the robot car 100A is a vehicle in which a driving operation is performed by automatic driving control instead of the driving operation by a human driver.
- the robot car 100A includes a driving condition recognition unit 100Aa for recognizing the driving condition of the host vehicle, a driving behavior information receiving unit 100Ab for receiving driving behavior information of the non-robot car 100B from the computing system 200, and a driving behavior information receiving unit 100Ab.
- an automatic driving control unit 100Ac that performs automatic driving control according to the traveling condition recognized by the traveling condition recognition unit 100Aa of the own vehicle while referring to the driving behavior information received by the control unit.
- the robot car 100A performs automatic driving control while learning the driving operation based on various data obtained at the time of automatic driving travelling.
- the robot car 100 ⁇ / b> A includes a so-called driver-assisted self-driving car that a human driver can perform an avoidance operation in an emergency.
- the non-robot car 100B is a vehicle on which a human driver performs a driving operation.
- the non-robot car 100B includes a traveling condition recognition unit 100Ba that recognizes the traveling condition of the host vehicle, a driving operation detection unit 100Bb that detects a driving operation by the human driver of the host vehicle, and a traveling condition recognized by the traveling condition recognition unit 100Ba.
- driving behavior information transmitting unit 100Bc for transmitting to the computing system 200 driving behavior information in which the driving behavior detected by the driving operation detection unit 100Bb is associated with each other.
- the non-robot car 100B executes driving support control while learning the driving operation of the driver of the host vehicle.
- the traveling condition recognition units 100Aa and 100Ba are realized by the detection unit 121, the vehicle information input unit 122, the positioning unit 123, the map information input unit 124, the operation unit 125, the communication unit 126, and the control unit 129.
- the driving operation detection unit 100Bb is realized by the driving operation detection function of the vehicle information input unit 122.
- the driving behavior information reception unit 100Ab and the driving behavior information transmission unit 100Bc are realized by the on-vehicle gateway 110.
- the automatic operation control unit 100Ac is realized by the control unit 129.
- the non-robot car 100B transmits the driving behavior information of the host vehicle to the computing system 200.
- the server computer 210 in the computing system 200 receives the driving behavior information of the non-robot car 100B via the Internet, and transmits the driving behavior information to the robot car 100A via the Internet 300.
- the robot car 100A that has received the driving behavior information of the non-robot car 100B from the server computer 210 uses the driving behavior information for automatic driving control of the own vehicle. That is, the robot car 100A performs automatic driving control according to the traveling condition of the own vehicle while referring to the driving behavior information of the non-robot car 100B received from the server computer 210.
- the driving behavior information that the robot car 100A receives from the computing system 200 is driving behavior information in which the learning result of the driving operation by the driver of the non-robot car 100B is reflected. Therefore, according to this system, the robot car 100A drives the non-robot car 100B even if the non-robot car 100B has experienced the situation even when the host vehicle is inexperienced (not learned). By performing automatic driving control based on the behavior information, the situation can be dealt with with the same level of driving performance as the non-robot car 100B.
- FIG. 18 is a conceptual view showing still another configuration example of the road traffic system of the present invention.
- the same components as in FIG. 17 will be assigned the same reference numerals and descriptions thereof will be omitted as appropriate.
- the server computer 210 in the computing system 200 generates driving behavior information optimized based on the driving behavior information and the driving behavior information receiving function 210a for receiving the driving behavior information (experience information) from the non-robot car 100B.
- the optimization information generation function 210c, the optimization information update function 210d for updating and managing the optimized driving behavior information to the latest information, and the driving behavior information for transmitting the optimized driving behavior information to the robot car 100A And a transmission function 210b.
- the non-robot car 100B transmits the driving behavior information of the host vehicle to the computing system 200.
- the server computer 210 in the computing system 200 receives the driving behavior information of the non-robot car 100B via the Internet, optimizes the driving behavior information, and always updates the latest optimized driving behavior information to the robot car 100A. Send via 300.
- the robot car 100A that has received the driving behavior information of the non-robot car 100B from the server computer 210 can use the driving behavior information for automatic driving control of the own vehicle.
- the robot car 100A is optimal based on the driving behavior information of the non-robot car 100B when the non-robot car 100B is a vehicle that has experienced the situation even in the situation where the own vehicle is unexperienced. By performing automatic driving control based on the updated latest driving behavior information, it is possible to cope with the situation with driving performance equal to or higher than that of the non-robot car 100B.
- the non-robot car 100B learns the driving operation of the driver every day and improves the driving support performance daily, thereby improving the automatic driving performance of the robot car 100A daily be able to. That is, in a situation where the robot car 100A and the non-robot car 100B coexist, the robot car 100A learns the driving technique of the driver driving the non-robot car 100B, and the automatic driving performance of the robot car 100A is improved efficiently. It can be done. As the automatic driving performance of the robot car 100A is improved, the operation efficiency of the entire road traffic system 1 can be improved, the safety can be improved, the customer satisfaction can be improved, and the like. According to the systems shown in FIGS.
- driving behavior information obtained when a professional driver such as a taxi driver or a bus driver drives the non-robot car 100B can be used to improve the operation efficiency of the entire road traffic system 1, safety It can be used to improve gender, etc. It is possible to provide driving behavior information when driving a non-robot car 100B by setting a system in which a professional driver who has provided driving behavior information useful for improving the automatic driving performance of the robot car 100A can obtain a price. Incentives can be given to professional drivers to encourage them to provide driving behavior information using their advanced driving techniques.
- This system is a company and taxi driver who wants to improve the automatic operation performance of the robot car 100A in an environment where the robot car 100A and the non-robot car 100B coexist (transitional environment until all the vehicles become robot cars). It is a system that is convenient for both and bus drivers.
- the certain inter-vehicle distance is maintained in the group of robot cars 100A traveling in a coordinated system.
- the robot car 100A has the driving behavior information receiving unit (driving behavior information acquiring unit) Ab for receiving the driving behavior information of the non-robot car 100A via the Internet.
- the function of acquiring behavior information can also be realized by other methods. For example, inter-vehicle communication (see FIG. 7), communication between the host vehicle and the ground stationary object (see FIG. 8), road-to-vehicle communication (see FIG. 9), communication between the host vehicle and the portable terminal (FIG. 10). See also), etc.
- FIG. 19 is a conceptual view showing still another configuration example of the road traffic system of the present invention.
- the robot car 100A can only use the driving behavior information (experience information) of the non-robot car 100B
- the robot car 100A and the non-robot car 100B can mutually drive the driving behavior information. It is also possible to make it the system configuration which mutually uses.
- the robot car 100A in this case has a driving behavior information output unit (driving behavior information transmitting unit, etc.) 100Ad for providing driving behavior information of the own vehicle to another vehicle as illustrated in FIG. 19A.
- the non-robot car 100B is a car with a driving support function, and as illustrated in FIG.
- a driving condition recognition unit 100Ba for recognizing the driving condition of the own vehicle and driving behavior information of the robot car 100A. Driving according to the driving situation recognized by the driving situation recognition unit 100Ba of the own vehicle while referring to the driving behavior information acquiring unit (driving behavior information receiving unit, etc.) 100Bd to be acquired and the driving behavior information acquired from the robot car 100A And a driving support control unit 100Be that performs support control.
- the driving support control unit 100Be is realized by the control unit 129 (see FIG. 2).
- automatic driving performance of the robot car 100A can be improved daily by the non-robot car 100B learning daily driving operations of the human driver and improving the driving support performance daily
- the driving support performance of the non-robot car 100B can be improved daily. That is, in a situation where the robot car 100A and the non-robot car 100B coexist, the robot car 100A learns the driving technique of the human driver who drives the non-robot car 100B, and the automatic driving performance of the robot car 100A is made highly efficient.
- the non-robot car 100B can learn the driving operation of the robot car 100A to improve the driving support performance of the non-robot car 100B with high efficiency.
- the driving performance of the robot car 100A and the non-robot car 100B is improved, the operation efficiency of the entire road traffic system 1 can be improved, the safety can be improved, and the like.
- the system configuration in which the non-robot car 100B can use the driving behavior information of the robot car 100A is particularly suitable for the road traffic system 1 of the era after the automatic driving performance of the robot car 100A surpasses the driving technique of the human driver. . This is because it is considered that it is meaningless that the robot car 100A learns the driving operation of the human driver when the robot car 100A is better at driving than the human driver.
- FIGS. 20 and 21 are conceptual diagrams showing still another configuration example of the road traffic system of the present invention.
- the robot car 100A and the non-robot car 100B are mixed, but the system configuration is that the vehicle 100 constituting the road traffic system 1 is only the robot car 100A. It is also possible to allow the robot cars 100A inside to use the driving behavior information. Similar to the example of FIG. 19A, the robot car 100A in this case has a driving behavior information output unit (driving behavior information transmitting unit, etc.) 100Ad for providing driving behavior information of the own vehicle to other vehicles. .
- driving behavior information output unit driving behavior information transmitting unit, etc.
- the robot cars 100A in the road traffic system 1 use the driving behavior information to increase the learning efficiency of the robot car 100A in the road traffic system 1, and the automatic driving performance is rapidly increased. It can be improved. Since the automatic driving performance of all the robot cars 100A in the road traffic system 1 can be rapidly improved, the operation efficiency, safety, customer satisfaction, etc. of the entire road traffic system 1 are rapidly improved.
- FIG. 22A is a functional block diagram showing a configuration example of the automatic operation control unit 100Ac of the robot car 100A in FIG. 17 to FIG.
- FIG. 22B is a functional block diagram showing a configuration example of the driving support control unit 100Be of the non-robot car 100B in FIG.
- the automatic driving control unit 100Ac is a functional block that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit 100Aa, and performs automatic driving control so that the driving operation is performed.
- the driving support control unit 100Be is a functional block that determines a driving operation to be performed based on the traveling state recognized by the traveling state recognition unit 100Aa, and performs driving support control so that the driving operation is performed.
- the automatic driving control unit 100Ac stores a driving knowledge unit 101a that stores knowledge information to be referred to when deciding a driving operation to be performed, and a driving behavior information acquisition unit (driving behavior information reception And the like) and a learning processing unit (knowledge update processing unit) 102a that updates the knowledge information stored in the driving knowledge unit 101a based on the driving behavior information acquired by the unit 100Ab.
- the robot car 100A updates the knowledge information (such as the determination criteria for determining the driving operation to be performed) based on the driving behavior information of the other vehicle (the other robot car 100A or the non-robot car 100B).
- the driving operation according to the traveling situation is determined with reference to the knowledge information, and the automatic driving control is performed so that the driving operation is performed. Therefore, even in a situation where the own vehicle is unexperienced, the robot car 100A can learn the driving behavior of another vehicle that has experienced the situation and perform automatic driving control.
- the driving support control unit 100Be includes a driving knowledge unit 101b that stores knowledge information to be referred to when determining a driving operation to be performed, and a driving behavior information acquisition unit (driving behavior (driving behavior). And a learning processing unit (knowledge update processing unit) 102b that updates the knowledge information stored in the driving knowledge unit 101b based on the driving behavior information acquired by the information receiving unit, etc. 100Bd.
- the non-robot car 100B uses the knowledge information (determination criteria when determining the driving operation to be performed, etc.) based on the driving behavior information of the other vehicle (the robot car 100A or the other non-robot car 100B).
- the driving assistance control is performed so that the driving operation is performed. Therefore, even in a situation where the own vehicle is inexperienced, the non-robot car 100B can learn the driving behavior of another vehicle that has experienced the situation to perform driving support control.
- FIG. 23A is a functional block diagram showing another configuration example of the automatic operation control unit 100Ac of the robot car 100A in FIG. 17 to FIG.
- FIG. 23B is a functional block diagram showing another configuration example of the driving support control unit 100Be of the non-robot car 100B in FIG.
- the automatic driving control unit 100Ac is a functional block that determines a driving operation to be performed based on the traveling condition recognized by the traveling condition recognition unit 100Aa, and performs automatic driving control so that the driving operation is performed.
- the driving support control unit 100Be is a functional block that determines a driving operation to be performed based on the traveling state recognized by the traveling state recognition unit 100Aa, and performs driving support control so that the driving operation is performed.
- the automatic driving control unit 100Ac determines the driving operation according to the traveling condition recognized by the traveling condition recognition unit 100Aa by calculation, and the driving operation information acquisition unit (Driving behavior information receiving unit, etc.) Based on the driving behavior information acquired by 100Ab, the learning processing unit 104a adjusts the parameters of the driving operation determination function used in the driving operation determination unit 103a.
- the robot car 100A performs the learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle (the other robot car 100A or the non-robot car 100B). A corresponding driving operation is determined by the driving operation determination function, and automatic driving control is performed so that the driving operation is performed.
- the robot car 100A can learn the driving behavior of another vehicle that has experienced the situation and perform automatic driving control.
- the learning processing unit 104a of the automatic driving control unit 100Ac as a deep neural network, a robot car 100A having general-purpose driving knowledge and driving ability (strong AI) like human beings can be realized in the future.
- the driving assistance control unit 100Be determines the driving operation according to the traveling situation recognized by the traveling situation recognition unit 100Ba by calculation, and the driving action information, and the driving action information.
- the learning processing unit 104b adjusts a parameter of the driving operation determination function used in the driving operation determination unit 103b based on the driving activity information acquired by the acquiring unit (driving activity information receiving unit, etc.) 100Bd.
- the non-robot car 100B performs the learning process of adjusting the parameters of the driving operation determination function based on the driving behavior information of the other vehicle (the robot car 100A or the other non-robot car 100B).
- the driving operation according to is determined by the driving operation determination function, and the driving support control is performed so that the driving operation is performed. Therefore, even in a situation where the own vehicle is inexperienced, the non-robot car 100B can learn the driving behavior of another vehicle that has experienced the situation to perform driving support control.
- the learning processing unit 104b of the driving support control unit 100Be as a deep neural network, in the future, a non-robot car 100B having general-purpose driving knowledge and driving ability (strong AI) like human beings can be realized. .
- the provided driving behavior information it is desirable to have a function of correcting to an optimal value according to the vehicle attribute of the own vehicle and the like and performing driving support control or automatic driving control with reference to the corrected driving behavior information.
- the embodiment of the road traffic system of the present invention shown in FIGS. 1 to 23 is also an embodiment of the vehicle sharing system of the present invention. That is, the description of the embodiment of the road traffic system can be taken as the description of the embodiment of the vehicle sharing system by replacing "road traffic system" in the text with "vehicle sharing system".
- vehicle sharing system there can be mentioned a system which can provide a car rental service, a car sharing service, a robot taxi service, a robot bus service and the like.
- the robot car 100A is a vehicle shared by a plurality of users.
- the non-robot car 100B is a vehicle other than a vehicle shared by a plurality of users.
- FIG. 24 is a conceptual view showing a configuration example of a robot car training system according to the present invention.
- the robot car training system 1 illustrated in FIG. 24 includes a robot car 100A, a non-robot car 100B, and a computing system 200.
- Computing system 200 comprises server computer 210 and database 220.
- the server computer 210 transmits the driving behavior information received by the driving behavior information receiving unit 210a that receives the driving behavior information of the non-robot car 100B via the Internet 300 and the driving behavior information received by the driving behavior information receiving unit 210a to the robot car 100A via the Internet 300 Driving behavior information transmission unit 210b.
- the database 220 accumulates and manages driving behavior information received by the server computer 210.
- the server computer 210 may be single or plural.
- a database (not shown) may be disposed on one server computer or distributed on a plurality of server computers.
- the robot car 100A includes a driving condition recognition unit 100Aa for recognizing the driving condition of the own vehicle, a driving behavior information receiving unit (driving behavior information acquisition unit) 100Ab for receiving the driving behavior information of the non-robot car 100B, and the traveling of the own vehicle.
- the automatic operation control is performed based on the traveling situation recognized by the situation recognition unit 100A, and the learning process for learning the driving behavior of the non-robot car 100B is performed based on the driving behavior information received by the driving behavior information receiving unit 100Ab.
- an operation control unit 100Ac is an operation control unit 100Ac.
- the non-robot car 100B includes a traveling condition recognition unit 100Ba that recognizes the traveling condition of the host vehicle, a driving operation detection unit 100Bb that detects a driving operation by the human driver of the host vehicle, and a traveling condition recognized by the traveling condition recognition unit 100Ba. And a driving action information transmission unit (driving action information output unit) 100Bc that transmits driving action information in which the driving operation detected by the driving operation detection unit 100Bb is associated with each other.
- FIG. 25 is a functional block diagram showing an example of a system configuration of the robot car 100A.
- FIG. 26 is a functional block diagram showing an example of a system configuration of the non-robot car 100A.
- the robot car 100A has an on-vehicle gateway 110A and a traveling control system 120A.
- the in-vehicle gateway 110A communicates with the computing system 200 under the control of the traveling control system 120A.
- the in-vehicle gateway 110A inputs data received from the computing system 200 to the traveling control system 120A.
- the on-vehicle gateway 110 ⁇ / b> A transmits the data input from the traveling control system 120 ⁇ / b> A to the computing system 200.
- the traveling control system 120A includes a detection unit 121A, a vehicle information input unit 122A, a positioning unit 123A, a map information input unit 124A, an operation unit 125A, a communication unit 126A, a display unit 127A, a storage unit 129A, a control unit 129A, and the like.
- the traveling condition recognition unit 100Aa in FIG. 1 is realized by a detection unit 121A, a vehicle information input unit 122A, a positioning unit 123A, a map information input unit 124A, a communication unit 126, and the like, and a control unit 129.
- the driving behavior information receiving unit 100Ab is realized by the on-vehicle gateway 110A.
- the detection unit 121A is configured of sensors for detecting the presence of objects in the vicinity (other vehicles, pedestrians, stationary objects on the ground, etc.), and the position, size, relative velocity, etc. of objects in the vicinity. .
- the detection unit 121A is embodied by, for example, a sonar 121a, a radar 121b, a camera 121c, a three-dimensional range sensor, and the like.
- the sonar 121a transmits an ultrasonic wave to a predetermined area from each antenna directed in the front, rear, left, and right directions of the host vehicle, and receives the reflected wave.
- the radar 121 b irradiates laser light or a millimeter wave from an antenna directed in the front, rear, left, and right directions of the host vehicle, scans a predetermined detection area, and receives the reflected wave. Then, based on the received reflected wave, the positional relationship with the host vehicle, the distance, the relative velocity, and the like are output for an object existing in the front, rear, left and right direction of the vehicle.
- the camera 121c is provided at a predetermined position in the front, rear, left, and right directions of the host vehicle, and outputs imaging data in which surrounding vehicles present in the front, rear, left, and right directions of the host vehicle are captured.
- a plurality of such sensors such as sonars, radars, cameras 121c, and three-dimensional range sensors may be used in combination or may be used alone.
- the vehicle information input unit 122A controls information related to the movement status (center of gravity, yaw, roll, pitch, speed, acceleration, angular velocity, etc.) of the host vehicle and driving operation (accelerator operation, brake operation, steering operation, shift operation). Input to the part 128.
- the positioning unit 123A measures the position (latitude, longitude) of the vehicle on the earth, and inputs the position to the control unit 128A.
- the positioning unit 123A is embodied by, for example, a high accuracy positioning receiver or the like compatible with high accuracy GPS (Global Positioning System).
- the map information input unit 124A acquires, from the storage medium storing the road map information, information on the road on which the vehicle is currently traveling, and inputs the information to the control unit 128A.
- information of the road input by the map information input unit 128A information such as the number of lanes, the lane width, the bend, the slope, the merging, the restriction, and the like can be mentioned.
- the operation unit 125A is an input device for inputting an operation instruction such as switching of various displays in the display unit 127A.
- the communication unit 126A is a communication device for communicating with a communication device provided on the ground stationary object or a communication device mounted on a nearby vehicle. Ground stationary objects include garages and roads.
- the display unit 127A is a display device including a center display provided in the center of the instrument panel and an indicator provided in the meter panel. Information indicating the state of the host vehicle is displayed on the display unit 127A.
- the storage unit 128A is a storage device that stores recognition related information of the host vehicle, driving behavior information of the host vehicle, and driving behavior information of another vehicle.
- the control unit 129A is an information processing apparatus mainly configured with a CPU, a ROM, a RAM, and the like (not shown), and centrally controls each part of the traveling control system 120A.
- the control unit 129A executes various processes by the CPU executing a control program stored in the ROM.
- control unit 129A is information on a road structure such as a telephone pole or a signal device.
- the three-dimensional range sensor of the detection unit 121A detects the three-dimensional distance of the surrounding object.
- Control unit 129A stores recognition related information of the host vehicle in storage unit 19A.
- the recognition related information includes recognition results of peripheral objects and the like, and various data used for the recognition processing.
- Control unit 129A stores, in storage unit 19A, driving behavior information of the host vehicle based on various information input from detection unit 121A, vehicle information input unit 122A, positioning unit 123A, and map information input unit 124A.
- driving behavior information of the own vehicle position on the route-driving operation correspondence information obtained by the detecting unit 121A, the vehicle information input unit 122A, the positioning unit 123A, and the map information input unit 124A (position on the route-driving operation correspondence Tables etc), entry and exit route position-driving operation correspondence information (entry and exit route position-driving operation correspondence table etc) are included.
- the controller 129A communicates with the computing system 200 via the in-vehicle gateway 110A.
- Control unit 129A stores, in storage unit 128A, the driving behavior information of non-robot car 100B received via on-vehicle gateway 110.
- the driving behavior information of the non-robot car 100B the on-path position-driving operation correspondence information obtained by the detecting unit 121B of the non-robot car 100B, the vehicle information input unit 122B, the positioning unit 123B, and the map information input unit 124B
- the route position-driving operation correspondence table etc.) and the entry / exit route position-driving operation correspondence information (entry / exit route position-driving operation correspondence table etc) are included.
- Control unit 129A communicates with surrounding ground stationary objects and surrounding vehicles via communication unit 126A.
- Control unit 129A stores the driving behavior information of non-robot car 100B received via communication unit 126A in storage unit 128A.
- a vehicle control unit 130A to be subjected to driving control is connected to the control unit 129A.
- the vehicle control unit 130A includes various electronic control devices such as an engine ECU (Electronic Control Unit) 130a, a brake ECU 130b, a steering angle ECU 130c, and a stability ECU 130d.
- the engine ECU 130a controls the output of the engine by issuing a control command according to the operation amount of the accelerator pedal and the state of the engine.
- the brake ECU 130 b controls the braking force of the brake according to the operation amount of the brake pedal.
- the steering angle ECU 130 c controls the steering angle of the steering.
- the stability ECU 130 d controls the traveling stability of the vehicle.
- Control unit 129A controls the traveling of the vehicle by giving commands to the respective ECUs in vehicle control unit 130A according to the amount of driving operation (accelerator operation amount, brake operation amount, steering operation amount, etc.).
- the control unit 129A analyzes in real time the traveling condition of the subject vehicle, which changes from moment to moment, detected by the detecting unit 121A or the like, and the analysis result and the driving behavior information of the subject vehicle and / or the driving behavior of the non-robot car 100B. Based on the information, the driving operation amount is determined, and a command is given to each ECU in the vehicle control unit 130.
- the control unit 129A performs a learning process of learning the driving behavior of the non-robot car 100B based on the driving behavior information received by the on-vehicle gateway 110A or the communication unit 126A.
- the in-vehicle gateway 110A and the traveling control system 120A are separately present, the in-vehicle gateway 110A can be integrated with the traveling control system 120A.
- the robot car 100A configured as described above drives the non-robot car 100B while performing automatic driving control based on the traveling state of the host vehicle and the driving behavior information of the host vehicle or the driving behavior information of the non-robot car 100B. Learn driving behavior of human driver.
- the non-robot car 100B has an on-vehicle gateway 110B and a traveling control system 120B.
- the on-vehicle gateway 110B communicates with the computing system 200 under the control of the traveling control system 120B.
- the in-vehicle gateway 110 ⁇ / b> B inputs data received from the computing system 200 to the traveling control system 120 ⁇ / b> B.
- the on-vehicle gateway 110 ⁇ / b> B transmits the data input from the traveling control system 120 ⁇ / b> B to the computing system 200.
- the traveling control system 120B includes a detection unit 121B, a vehicle information input unit 122B, a positioning unit 123B, a map information input unit 124B, an operation unit 125B, a communication unit 126B, a display unit 127B, a storage unit 129B, a control unit 129B, and the like.
- the traveling condition recognition unit 100Ba in FIG. 24 is realized by a detection unit 121B, a vehicle information input unit 122B, a positioning unit 123B, a map information input unit 124B, an operation unit 125B, a communication unit 126B, and the like and a control unit 129B.
- the driving operation detection unit 100Bb is realized by the driving operation detection function of the vehicle information input unit 122B.
- the driving behavior information transmission unit 100Bc is realized by the in-vehicle gateway 110B.
- the configuration and functions of the detection unit 121B, the vehicle information input unit 122B, the positioning unit 123B, the map information input unit 124B, the communication unit 126B and the vehicle control unit 130B are the same as the detection unit 121A of the robot car 100A, the vehicle information input unit 122A, the positioning unit
- the configuration and functions are the same as 123A, map information input unit 124A, communication unit 126A, and vehicle control unit 130A.
- the operation unit 125B is an input device for inputting operation instructions such as on / off of travel control, switching of control modes, switching of various displays on the display unit 127B, and the like.
- the operation unit 125B is embodied by, for example, a switch provided on a spoke portion of a steering wheel of a vehicle.
- the display unit 127B is a display device including a center display provided in the center of the instrument panel and an indicator provided in the meter panel. Information indicating the state of the host vehicle is displayed on the display unit 127B, and on / off of travel control and a control mode are displayed.
- the control mode includes a manual operation mode and a driving support mode.
- the storage unit 128B is a storage device that stores driving behavior information and recognition related information of the host vehicle.
- the control unit 129B is an information processing apparatus mainly configured with a CPU, a ROM, a RAM, and the like (not shown), and centrally controls each part of the traveling control system 120B.
- the control unit 129B executes various processes by the CPU executing the control program stored in the ROM.
- control unit 129B is information on a road structure such as a telephone pole or a signal device.
- the three-dimensional range sensor of the detection unit 121B to detect the three-dimensional distance of the surrounding object.
- Identify Control unit 129B stores, in storage unit 19B, driving behavior information of the host vehicle based on various information input from detection unit 121B, vehicle information input unit 122B, positioning unit 123B, and map information input unit 124B. In the driving behavior information of the own vehicle, position on the route-driving operation correspondence information obtained by the detection unit 121B, the vehicle information input unit 122B, the positioning unit 123B and the map information input unit 124B (position on the route-driving operation correspondence table etc.
- Entry / exit route position-driving operation correspondence information (entry / exit route position-driving operation correspondence table etc.) is included.
- the control unit 129B is connected to a vehicle control unit 130B which is a target of driving control.
- Control unit 129B controls the traveling of the vehicle by giving commands to the respective ECUs in vehicle control unit 130B in accordance with the amount of driving operation (accelerator operation amount, brake operation amount, steering operation amount, etc.).
- the control unit 129B analyzes the traveling condition of the host vehicle changing from moment to moment in real time, and based on the analysis result and the driving behavior information of the host vehicle, the human driver driving the host vehicle A learning process is performed to learn driving behavior.
- control unit 129B In the driving support mode, the control unit 129B generates driving support information based on the analysis result and the driving behavior information of the vehicle while analyzing in real time the traveling condition of the vehicle which changes from moment to moment, and generates the driving assistance information. The driver is notified of the support information using the display unit 127A or the like. Control part 129B performs a learning process which learns the driving action of the human driver who drives self-vehicles also in driving support mode. Control unit 129B causes storage unit 128B to store driving behavior information of the host vehicle. The storage unit 128B stores driving behavior information in which the learning result of the driving behavior of the human driver driving the own vehicle is reflected. The control unit 129B communicates with the computing system 200 via the on-vehicle gateway 110B.
- Control unit 129B transmits the driving behavior information of the host vehicle accumulated in storage unit 128B to computing system 200 via on-vehicle gateway 110B.
- Control unit 129B communicates with surrounding ground stationary objects and surrounding vehicles via communication unit 126B.
- Control unit 129B transmits the driving behavior information of the host vehicle stored in storage unit 128B to the stationary ground object and surrounding vehicles via communication unit 126B.
- the non-robot car 100B configured as described above performs driving control according to the driving operation of the host vehicle by the human driver, while learning processing of the driving behavior of the human driver driving the host vehicle, and driving behavior information of the host vehicle Perform various processing such as transmission processing of
- FIG. 27 is a flow diagram illustrating the operation content of the robot car teaching system of FIG.
- This flow chart is also a flow chart illustrating the contents of a robot car training method implemented by the robot car training system of FIG.
- the robot car 100A drives the non-robot car 100B by driving the robot car 100A and the non-robot car 100B on the same route R (see FIG. 29).
- Driving learning of the robot car 100A is performed by learning.
- the mode in which the robot car 100A and the non-robot car 100B travel along the same route R the mode in which the non-robot car 100B travels in advance of the robot car 100A (FIG. 29A) and the robot car 100A non-robot
- the non-robot car 100B travels the same route R as the robot car 100A (S1: non-robot car travel step). While traveling on the route R, the non-robot car 100B recognizes the traveling condition of the host vehicle (S2: non-robot car traveling condition recognition step). The non-robot car 100B detects a driving operation by the human driver of the host vehicle while traveling along the route R (S3: driving operation detection step). The non-robot car 100B transmits, to the server 210, driving action information in which the traveling state of the host vehicle and the driving operation are associated (S4: driving action information transmission step, driving action information output step). The non-robot car 100B determines whether or not the own vehicle is traveling (S5), and if it is traveling (Yes in S5), the steps S2, S3 and S4 are repeatedly executed.
- the computing system 200 receives driving behavior information from the non-robot car 100B (S11: driving behavior information receiving step).
- the computing system 200 transmits the driving behavior information received from the non-robot car 100B to the robot car 100A (S12: driving behavior information transmitting step).
- the robot car 100A travels the same route R as the non-robot car 100B (S21: robot car travel step). While traveling on the route R, the robot car 100A recognizes the traveling state of the vehicle (S22: robot car traveling state recognition step). The robot car 100A determines the driving operation to be performed based on the traveling condition of the host vehicle (S23: driving operation determination step). The robot car 100A performs automatic operation control so that the determined operation operation is executed (S24: automatic operation control step). The robot car 100A receives the driving behavior information of the non-robot car 100B from the server 210 (S25: driving behavior information receiving step, driving behavior information acquiring step). The robot car 100A learns the driving action of the human driver who drives the non-robot car 100B based on the driving action information received from the server 210 (S26: learning step).
- FIG. 28 is a flow chart illustrating the contents of the learning step S26 of FIG.
- the robot car 100A first generates the driving behavior information of the host vehicle performed by the automatic driving control (S24) (S26a1: driving behavior information generation step). Then, based on the difference between the driving behavior information (learning data set) of the non-robot car 100B received at the driving behavior information receiving step S25 and the driving behavior information of the own vehicle, the individual runs included in the driving behavior information In the situation, the learning process is performed so that the same driving operation (correct operation) as that of the non-robot car is performed in the host vehicle (S26a2: supervised learning step).
- this robot car training system 1 and method it is possible to make the robot car 100A learn the driving behavior of the human driver who drives the non-robot car 100B and improve the automatic driving performance of the robot car 100A.
- the automatic driving performance of the robot car 100A is improved, the safety and reliability of the robot car 100A are improved, and hence the safety and reliability of the entire road traffic system in which the robot car 100A and the non-robot car 100B coexist Do.
- the non-robot car 100B travels in advance of the robot car 100A (FIG. 29A) or the robot car 100A travels in advance of the non-robot car 100B.
- a driving instruction of the robot car 100A can be implemented. According to the driving instruction in the mode of FIG. 29 (A), based on the driving behavior information of the non-robot car 100B traveling on the same route R earlier, the driving behavior of the human driver who drives the non-robot car 100B is It is possible to make 100A learn.
- the robot car 100A can learn the driving behavior of the human driver who drives the non-robot car 100B that has already experienced the situation.
- the driving behavior information of the non-robot car 100B received by the robot car 100A is driving behavior information in which the learning result of the driving behavior of the human driver by the non-robot car 100B is reflected. Therefore, when the robot car 100A performs learning based on the driving action information of the non-robot car 100B, the driving action of the human driver driving the non-robot car 100B can be efficiently learned. According to the driving instruction in the mode of FIG.
- the driving behavior of the human driver driving the non-robot car 100B is It can be learned. That is, after causing the robot car 100A to experience a new situation, the robot car can learn the driving behavior of the human driver of the non-robot car 100B who has experienced the situation (reinforcement learning: learning based on a posteriori information) . Also in this aspect, the robot car 100A can efficiently learn the driving behavior of the human driver who drives the non-robot car 100B.
- the robot car 100A performs automatic driving control based on the driving behavior information of the non-robot car 100B traveling on the same route R first, thereby performing non-robot car 100B and
- the route R can be traveled with the same level of high driving performance.
- the route R is a narrow and winding road or a narrow road where there are many obstacles such as a power pole
- the driver rides different vehicles each time by a driver or car sharing service who is not used to driving. It is not easy for the driver who is driving the route R to travel smoothly. It is not good at the robot car 100A to travel smoothly on this kind of road.
- the robot car 100A performs non-operation control by referring to the driving behavior information of the non-robot car 100B. It becomes possible to travel the route R smoothly with the same level of driving performance as the robot car 100B.
- the teaching of the robot car 100A is most preferably performed by the robot car 100A and the non-robot car 100B traveling on the same route R in one and the same traveling condition.
- a fake city for robot car teaching is used.
- narrow and winding roads, narrow roads with many obstacles such as telephone poles, uneven roads, poor intersections, urban highways, garages that are difficult to get in and out of inexperienced people Etc.
- Other vehicles, pedestrians, livestock, etc. can be freely arranged in this fake town.
- this fake city it is possible to jump out pedestrians (dolls) suddenly on the road, throw in baseball balls and balloons, or scatter leaves.
- the robot car 100A compares the driving operation of the non-robot car 100B performed at each point (P1, P2,..., Pn) on the route R with the driving operation of the host vehicle and determines each point (P1, P2,. In Pn), learning processing is performed such that the same driving operation (correct operation) as that performed in the non-robot car 100B is performed in the host vehicle.
- the own vehicle at the point P3 when the operation amount yyy of the deceleration operation (braking operation) of the own vehicle performed at the point P3 is larger (or smaller) than the operation amount xxx of the deceleration operation (braking operation) of the non-robot car 100B, the own vehicle at the point P3
- the learning process is performed so that the operation amount yyy of the decelerating operation (braking operation) of matches (or becomes as close as possible) to xxx.
- This learning process is performed on "recognition" of the driving situation and "judgment / planning" on the recognized driving situation, among the elements of the driving behavior.
- the robot car 100A performs a process of finding an error of "recognition" of the traveling situation.
- a learning process is performed to correct the error. If an error of "recognition” is found, processing is performed to find an error in "decision / planning" for the recognized travel situation. If an error in "decision / planning” is found, a learning process is performed to correct the error. If an error in “determination / planning” is not found, the process returns to the process of finding an error in “recognition” for another recognition target, or this learning process is ended.
- the robot car 100A when the non-robot car 100B does not perform the decelerating operation (the braking operation) at the point PP3, while the robot car 100A performs the decelerating operation (the braking operation), the robot car 100A is recognized at the point PP3. Reconfirm the object and the process that led to the recognition. This reconfirmation can be performed by reading the driving behavior information and the recognition information of the own vehicle accumulated in the storage unit 128A.
- the robot car 100A is recognized (detected) by the traveling state recognition unit 100Aa (detection unit 121A)
- a learning process is performed to correct the processing content (program parameters and / or data) of "recognition” that has led to recognition of an object as a stone.
- the fact that the non-robot car 100B does not perform the decelerating operation (braking operation) at the point PP3 is because there is a high possibility that there is no high risk object such as a stone falling to the front of the own vehicle. .
- the robot car 100A erroneously recognizes that a leaf or the like falling in front of the host vehicle (an object with a low degree of risk) is a stone (an object with a high degree of risk).
- the non-robot car 100B only travels while turning to the right and does not perform the decelerating operation (braking operation), whereas the robot car 100A performs the decelerating operation (braking operation) In this case, the robot car 100A reconfirms the object recognized at the point Pn-2 and the process of achieving the recognition.
- the robot car 100A is It is judged that the "recognition" of the traveling situation of the host vehicle is correctly made, and the learning processing to correct the processing contents (program parameters and / or data) of the "determination / planning" which has reached deceleration operation (braking operation) Do.
- the driving behavior information is transferred from the non-robot car 100B to the robot car 100A through the computing system 200, but the method of transferring the driving behavior information from the non-robot car 100B to the robot car 100A is arbitrary. is there.
- direct communication between the robot car 100A and the non-robot car 100B (inter-vehicle communication, see FIG. 7), delivery via the ground stationary object 410 (see FIG. 8), and road 420 Delivery (inter-vehicle communication, see FIG. 9), delivery via the portable terminal 500 (see FIG. 10), and the like can be mentioned.
- FIG. 22A is also a block diagram showing a configuration example of the automatic operation control unit Ac of the robot car 100A in the robot car teaching system 1 of FIG.
- the automatic driving control unit 100Ac in this configuration example receives (acquires) the driving knowledge unit 101a storing the knowledge information (judgment criteria etc.) to be referred to when determining the driving operation of the own vehicle, and the driving behavior information receiving unit 100Ab.
- a learning processing unit (knowledge update processing unit) 102a that performs learning processing for updating the knowledge information stored in the driving knowledge unit 101a based on the driving behavior information.
- FIG. 30 is a flow diagram illustrating the contents of the learning step S26 in this configuration example.
- the robot car 100A first generates the driving behavior information of the host vehicle performed by the automatic driving control (S24) (S26b1: driving behavior information generation step).
- the driving behavior information of the non-robot car 100B received in the driving behavior information receiving step S25 is used as a learning data set (a combination of a traveling situation and a driving operation performed in the situation) in each of the traveling situations included in the driving behavior information.
- the learning process (learning process by supervised learning) is performed to update the knowledge information stored in the driving knowledge unit 101a so that the same driving operation (correct operation) as the non-robot car 100B is performed in the own vehicle (S26b2: Supervised learning step).
- the robot car 100A carries out the driving behavior of the human driver who drives the non-robot car 100B by supervised learning using the driving behavior information of the non-robot car 100B as the learning data set. Can be trained.
- FIG. 23A is also a block diagram showing another configuration example of the automatic operation control unit Ac of the robot car 100A in the robot car training system 1 of FIG.
- the automatic operation control unit 100Ac of this another configuration example is A driving operation determination unit 103a that determines a driving behavior according to the traveling condition recognized by the traveling condition recognition unit 100Aa by calculation; And a learning processing unit (parameter adjustment unit) 104a that adjusts parameters of the driving operation determination function used in the driving operation determination unit 103a based on the driving activity information received (acquired) by the driving activity information reception unit 100Ab. .
- FIG. 31 is a flow chart illustrating the contents of the learning step S26 in this another configuration example.
- the robot car 100A first generates the driving behavior information of the host vehicle performed by the automatic driving control (S24) (S26c1: driving behavior information generation step).
- the driving behavior information of the non-robot car 100B received in the driving behavior information receiving step S25 is used as a learning data set (a combination of a traveling situation and a driving operation performed in the situation) in each of the traveling situations included in the driving behavior information.
- the robot car 100A carries out the driving behavior of the human driver who drives the non-robot car 100B by supervised learning using the driving behavior information of the non-robot car 100B as the learning data set. Can be trained.
- FIG. 32 is a conceptual diagram showing another configuration example of the robot car training system according to the present invention.
- the configuration of the server 210 is different from that of the system of FIG.
- the server 210 of the computing system 200 in the robot car training system 1 generates the optimized driving behavior information based on the driving behavior information received by the driving behavior information receiving unit 210a;
- An optimization information updating unit 210d that updates and manages the optimized driving behavior information to the latest information, and a driving behavior information transmitting unit 210b that transmits the latest driving behavior information to the robot car 100A.
- FIG. 33 is a flow chart illustrating the operation content of the robot car teaching system of FIG. This flow chart is also a flow chart illustrating the contents of a robot car training method implemented by the robot car training system of FIG.
- the operation of the computing system 200 is different from the flow diagram of FIG.
- the computing system 200 receives driving behavior information from the non-robot car 100B (S11: driving behavior information receiving step).
- the computing system 200 generates driving behavior information optimized based on the driving behavior information received from the non-robot car 100B (S13: optimization information generating step).
- the computing system 200 updates and manages the optimized driving behavior information to the latest information (S14: optimization information updating step).
- the computing system 200 transmits the optimized latest driving behavior information to the robot car (S12: driving behavior information transmission step).
- the robot car 100A that has received the optimized driving behavior information from the computing system 200 is a non-robot car based on the optimized driving behavior information. It is possible to learn the driving behavior of the human driver driving the 100B.
- the robot car 100A receiving the provision of the driving behavior information and the driving behavior information optimized according to the vehicle attribute of the robot car 100A receiving the provision of the driving behavior information has a fault Driving behavior information optimized to minimize the possibility of contact with objects, driving behavior information optimized to minimize energy consumption of the robot car 100A receiving the driving behavior information, and driving behavior information Driving behavior information optimized to maximize the regenerative energy of the robot car 100A receiving the provision, and driving behavior information optimized to minimize the number of accelerations or acceleration time in a predetermined traveling distance or predetermined traveling time , Optimized to minimize or maximize the number of braking times or braking times in a given travel distance or in a given travel time Driving behavior information, driving behavior information optimized to minimize travel distance from departure point to arrival point, driving behavior information optimized to minimize travel time from departure point to arrival point, Etc. are included.
- the configuration of the automatic operation control unit Ac illustrated in FIGS. 22A and 23A is also applicable to the automatic operation control unit Ac of the robot car 100A in the system of FIG.
- the contents of the learning step S26 in this case are the same as those shown in FIGS. [Other embodiments etc]
- the robot car training system of the present invention is included in the road traffic system of the present invention. Therefore, the description of the embodiment of the robot car training system of the present invention made with reference to FIGS. 24 to 33 is also the description of the embodiment of the road traffic system of the present invention. 12 to 14 are also explanatory views of the embodiment of the robot car training system according to the present invention. The description of the embodiment of the road traffic system of the present invention made with reference to FIGS. 12 to 14 is also the description of the embodiment of the robot car training system of the present invention.
- the non-robot car 100B learns the driving behavior of the human driver of the host vehicle daily to improve the driving support performance daily, so that the robot car 100A can be automatically operated. Driving performance can also be improved daily. That is, in a situation where the robot car 100A and the non-robot car 100B coexist, the robot car 100A learns the driving technique of the human driver who drives the non-robot car 100B, and the automatic driving performance of the robot car 100A is made highly efficient. It can be improved. As the automatic driving performance of the robot car 100A is improved, the safety and reliability of the entire road traffic system can be improved.
- driving behavior information obtained when a professional driver such as a taxi driver or a bus driver drives the non-robot car 100B is used to teach the robot car 100A. It can be used. It is possible to provide driving behavior information when driving a non-robot car 100B by setting a system in which a professional driver who has provided driving behavior information useful for improving the automatic driving performance of the robot car 100A can obtain a price. Incentives can be given to professional drivers to encourage them to provide driving behavior information using their advanced driving techniques.
- the driving behavior information such as the robot car teaching system side, taxi driver, bus driver, etc. It is a convenient system for both parties providing
- the teaching of the robot car 100A is performed by the robot car 100A and the non-robot car 100B traveling on the same route R, but may not necessarily be performed in the same traveling situation.
- the teaching of the robot car 100A can also be performed in a real city.
- the road traffic system in which the robot car 100A and the non-robot car 100B are mixed if an environment capable of teaching the robot car 100A is realized, the huge road traffic system formed on the earth is the robot car It becomes a teaching system.
- the learning processing unit 104a of the automatic driving control unit 100Ac takes a driving action closer to the driving action of the non-robot car 100B grasped from the driving action information of the non-robot car 100B. At times, a positive reward is given, and a negative reward (penalty) is given when driving behavior farther from the driving behavior of the non-robot car 100B is taken, and the driving behavior likely to receive the most reward is taken. It is desirable to perform learning processing (learning processing by reinforcement learning). According to this configuration, it is possible to make the robot car 100A learn the driving behavior of the human driver driving the non-robot car 100B by reinforcement learning based on the driving behavior information of the non-robot car 100B.
- a more positive reward is given when driving behavior closer to the driving behavior of the non-robot car 100B obtained from the driving behavior information of the non-robot car 100B is taken It is used in the driving operation determination unit 103a so as to give a more negative reward (punishment) when taking a driving action farther from the driving action of the non-robot car 100B and take a driving action likely to obtain the most reward. It includes learning to adjust the parameters of the driving operation determination function.
- reinforcement learning based on driving behavior information of the non-robot car 100B
- reinforcement learning it is merely trial and error (if the steering angle is too small compared to the curve of the path that collides with the surrounding object if brake is not applied at a certain timing).
- the automatic driving performance of the robot car 100A can be improved with much higher efficiency as compared with the conventional reinforcement learning that repeatedly collides with peripheral objects. That is, conventional reinforcement learning gives a positive reward when traveling at a higher speed along a determined route, collides with peripheral objects such as guardrails and other vehicles, or deviates from a determined route.
- the automatic driving performance of the robot car can be made in a short time to the level of the driving skill of the human driver. It can be reached.
- the robot car 100A performs conventional reinforcement learning (or unsupervised learning) in which learning is performed based only on the correctness of the driving behavior of the own vehicle regardless of the driving behavior of the human driver. It is desirable to perform reinforcement learning (imitation learning) based on the driving behavior information of the non-robot car 100B while performing.
- reinforcement learning based on the driving behavior information of the non-robot car 100B while performing.
- the driving behavior that is not learned by reinforcement learning (imitation learning) based on the driving behavior information of the non-robot car 100B is the driving that is performed as a result of learning by reinforcement learning (or unsupervised learning) as in the conventional case. It can be supplemented by action.
- the learning processing unit 104a of the automatic operation control unit 100Ac be formed of a multilayer neural network (deep neural network).
- This configuration is realized by installing a multilayer neural network program in the automatic driving control unit 100Ac and executing learning processing by the multilayer neural network program.
- the robot car 100A is provided with a deep learning function realized by a multilayer neural network program, and the characteristics of the driving behavior (recognition, judgment, planning, operation) of the human driver who drives the non-robot car 100B.
- the robot car 100A can make it extract itself and carry out learning.
- a robot car 100A having general-purpose driving knowledge and driving ability (strong AI) like human beings can be realized in the future.
- the learning processing unit 104a of the automatic driving control unit 100Ac be formed of a neuromorphic chip.
- the robot car 100A has a deep learning function realized by a neuromorphic chip, and the characteristics of the driving behavior (recognition, judgment, planning, operation) of the human driver who drives the non-robot car 100B
- the robot car 100A can be made to extract and perform learning (self-organization).
- a robot car 100A having general-purpose driving knowledge and driving ability (strong AI) like human beings can be realized in the future.
- the robot car 100A is provided with a learning function imitating a real brain realized by the spiking neural network, and the driving behavior of the human driver driving the non-robot car 100B (recognition, judgment, planning, The characteristics of the operation) can be extracted by the robot car 100A like a human by itself for learning (self-organization).
- the robot car 100A corrects the driving behavior information provided by the non-robot car 100B to an optimal value according to the vehicle attribute of the host vehicle, and performs learning processing and automatic processing based on the corrected driving behavior information. It is desirable to have a function to perform operation control. For example, when the vehicle size and the inner and outer ring difference are different from those of the non-robot car 100B, the robot car 100A corrects the steering operation amount and the timing of the brake operation included in the driving behavior information provided by the non-robot car 100B. The learning process and the automatic driving control are performed based on the driving behavior information including the corrected steering operation amount and the timing of the brake operation.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
【課題】他車両の経験を利用してロボットカーの自動運転性能を向上させ得る道路交通システムを提供する。 【解決手段】コンピューティングシステム200は、非ロボットカー100Bから運転行動情報を受信する運転行動情報受信機能210aと、運転行動情報をロボットカー100Aに送信する運転行動情報送信機能210bと、を有する。ロボットカー100Aは、自車両の走行状況を認知する走行状況認知部100Aaと、非ロボットカー100Bの運転行動情報をコンピューティングシステム200から受信する運転行動情報受信部100Abと、運転行動情報受信部100Abにより受信した運転行動情報を参照しつつ自車両の走行状況認知部100Aaにより認知された走行状況に応じた自動運転制御を行う自動運転制御部100Acと、を有する。
Description
本発明は、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカー、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカー、及び非ロボットカーやロボットカーが道路を走行する道路交通システムに関するものである。
本発明は、車両を複数の利用者によって共用する車両共用システムに関するものである。
本発明は、ロボットカーの自動運転性能を向上させるためのロボットカー教習システム及びロボットカー教習方法に関するものである。
本発明は、車両を複数の利用者によって共用する車両共用システムに関するものである。
本発明は、ロボットカーの自動運転性能を向上させるためのロボットカー教習システム及びロボットカー教習方法に関するものである。
自動車の自動運転制御技術は数多く提案されている(特許文献1-13、非特許文献1-4)。
車両共用システムに関する技術は数多く提案されている(特許文献14-26、非特許文献1-4)。これらの技術には、レンタカーサービス、カーシェアリングサービス、タクシーサービス、等に関する技術が含まれる。
車両共用システムにおいて使用される車両には、運転支援システムを搭載した車両や自動運転機能を有する車両が含まれる(特許文献1-13)。
これらの技術の中には、運転操作の機械学習に関するものがある(特許文献27-44)。
車両共用システムに関する技術は数多く提案されている(特許文献14-26、非特許文献1-4)。これらの技術には、レンタカーサービス、カーシェアリングサービス、タクシーサービス、等に関する技術が含まれる。
車両共用システムにおいて使用される車両には、運転支援システムを搭載した車両や自動運転機能を有する車両が含まれる(特許文献1-13)。
これらの技術の中には、運転操作の機械学習に関するものがある(特許文献27-44)。
ロボットタクシー株式会社ホームページ http://robottaxi.com/
Google 自動運転車計画 http://www.google.com/selfdrivingcar/
Google vs トヨタ 「自動運転車」は始まりにすぎない(角川EPUB選書) KADOKAWA/中経出版(2014/12/10)
Uberホームページ http://uber.com/
従来の自動車における機械学習は、自車両のヒューマンドライバ(人間)の運転行動を学習し、その学習結果を自車両の自動運転制御に反映させることにより自動運転性能を向上させるものである。
このため、従来の自動車における機械学習は、ロボットカーすなわち、ヒューマンドライバによる運転操作なしで自律走行する車両には適用することができない。また、自車両が未経験(すなわち未学習)の状況下では、当該車両は初期値の運転性能しか発揮し得ない。
このため、従来の自動車における機械学習は、ロボットカーすなわち、ヒューマンドライバによる運転操作なしで自律走行する車両には適用することができない。また、自車両が未経験(すなわち未学習)の状況下では、当該車両は初期値の運転性能しか発揮し得ない。
本発明が解決しようとする課題は、次の通りである。
(1)自車両の経験のみならず他車両の経験も活用して運転支援性能を向上させ得る非ロボットカーを提供する。
(2)自車両の経験のみならず他車両の経験も活用して自動運転性能を向上させ得るロボットカーを提供する。
(3)非ロボットカーの運転支援性能やロボットカーの自動運転性能を向上させ得る道路交通システムを提供する。
(4)各車両が自車両の経験のみならず他車両の経験も活用して運転性能を向上させ得る車両共用システムを提供する。
(5)ロボットカーにヒューマンドライバの運転行動を学習させることによりロボットカーの自動運転性能を向上させることができるロボットカー教習システム及びロボットカー教習方法を提供する。
(1)自車両の経験のみならず他車両の経験も活用して運転支援性能を向上させ得る非ロボットカーを提供する。
(2)自車両の経験のみならず他車両の経験も活用して自動運転性能を向上させ得るロボットカーを提供する。
(3)非ロボットカーの運転支援性能やロボットカーの自動運転性能を向上させ得る道路交通システムを提供する。
(4)各車両が自車両の経験のみならず他車両の経験も活用して運転性能を向上させ得る車両共用システムを提供する。
(5)ロボットカーにヒューマンドライバの運転行動を学習させることによりロボットカーの自動運転性能を向上させることができるロボットカー教習システム及びロボットカー教習方法を提供する。
[1.道路交通システムの構成とその作用]
本発明の道路交通システムには、以下の構成のシステムが含まれる。
[構成1.1]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.2]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができるので、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.3]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転操作を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができるので、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.4]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.5]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を適宜更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.6]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.7]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて運転支援制御を行う。
したがって、道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照しつつ運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.8]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.9]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.10]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報から前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて自動運転制御を行う。
したがって、道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照しつつ自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.11]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.12]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.13]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を非ロボットカーに送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて運転支援制御を行う。
したがって、道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照しつつ運転支援制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.14]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報(判断基準等)を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を非ロボットカーに送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、ロボットカーの運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動を学習して運転支援制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.15]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、ロボットカーの運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動を学習して運転支援制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.16]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報を参照しつつ自動運転制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.17]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、非ロボットカーの運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動を学習して運転支援制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.18]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、非ロボットカーの運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動を学習して運転支援制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.19]
前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた運転行動情報である、構成1.1乃至1.6のいずれか1の道路交通システム。
[構成1.20]
前記非ロボットカーは、自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、構成1.1乃至1.3のいずれか1の道路交通システム。
[構成1.21]
前記ロボットカーは、自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、構成1.4乃至1.6のいずれか1の道路交通システム。
[構成1.22]
前記非ロボットカーは、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、
前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有する構成1.16乃至1.18のいずれか1の道路交通システム。
[構成1.23]
前記コンピューティングシステムは、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数の車両に送信する運転行動情報送信機能と、を有する構成1.7乃至1.12のいずれか1の道路交通システム。
[構成1.24]
前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有する、構成1.13乃至1.15のいずれか1の道路交通システム。
[構成1.25]
前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有する、構成1.16乃至1.18のいずれか1の道路交通システム。
[構成1.26]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが道路を走行する道路交通システムであって、コンピューティングシステムを備え、前記コンピューティングシステムは、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なるロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に応じた自動運転制御を行うことにより、当該他ロボットカーと同等レベルの運転性能で当該状況に対処できる。
この道路交通システムによれば、ロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成1.27]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが道路を走行する道路交通システムであって、コンピューティングシステムを備え、前記のコンピューティングシステムは、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報に基づいて最適化された運転行動情報を参照して自動運転制御を行うことにより、当該他ロボットカーと同等レベルかそれ以上の運転性能で当該状況に対処できる。
この道路交通システムによれば、ロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成1.28]
前記最適化された運転行動情報は、前記運転行動情報の提供を受ける車両の車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受ける車両が障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成1.23、1.24、1.25、1.27のいずれか1の道路交通システム。
[構成1.29]
前記最適化情報生成機能は、前記運転行動情報の提供を受ける車両の走行状況と当該車両の車両属性とに基づいて、当該車両が障害物と接触する可能性が最も小さくなるように、前記運転行動情報を修正する機能を含む、構成1.23、1.24、1.25、1.27のいずれか1の道路交通システム。
この道路交通システムにおいては、運転行動情報の提供元の車両(提供元車両)の車両属性と当該運転行動情報の提供を受ける車両(提供先車両)の車両属性が相違する場合、当該提供先車両が障害物と接触する可能性が最も小さくなるように修正された運転行動情報が当該提供先車両に提供される。
この道路交通システムによれば、運転行動情報の提供元車両と提供先車両の車両属性が相違する場合でも、車両同士が運転行動情報を参照して運転支援制御又は自動運転制御を行うことができる。
[構成1.30]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両の運転行動情報を他車両に提供する機能と、他車両の運転行動情報の提供を受ける機能と、他車両の運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両同士は、車両間で互いに運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.31]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と他車両との間の通信により当該他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、車車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.32]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と地上静止物との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、地上静止物との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.33]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と道路との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、路車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.34]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と携帯端末との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、携帯端末との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.35]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、他車両の運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、ネットワークを介して多数の自動車との間で運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.36]
複数の車両が道路を走行する道路交通システムであって、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、自車両の運転行動情報(経験情報)をネットワーク上のコンピューティングシステムにアップロードし、自車両の運転行動情報と他車両の運転行動情報(経験情報)とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードすることができる。そして、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、自車両の運転行動情報と当該状況を経験したことのある他車両の運転行動情報とに基づいて生成された運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転性能で当該状況に対処できる。
[構成1.37]
複数の複数の車両が道路を走行する道路交通システムであって、前記複数の車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた操作履歴情報を含む、ことを特徴とする道路交通システム。
この道路交通システムのロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.38]
複数の複数の車両が道路を走行する道路交通システムであって、前記複数の車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、自車両の運転行動情報を外部に出力する運転行動情報出力部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報であり、前記自車両の運転行動情報は、自車両の走行状況と自車両の自動運転制御によりなされた運転操作とを対応付けた情報である、道路交通システム。
この道路交通システムのロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムのロボットカーは、未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。また、この道路交通システムのロボットカーは、自車両の運転行動情報(経験情報)を外部に出力するので、ロボットカーから出力された運転行動情報を他車両が参照して運転支援制御又は自動運転制御を行うこともできる。当該他車両は、未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照して運転支援制御又は自動運転制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
[構成1.39]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた操作履歴情報を含む運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する機械学習部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記機械学習部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムのコンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、非ロボットカーの運転行動情報を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムのロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報を参照して自動運転制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.40]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた操作履歴情報を含む運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する機械学習部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記機械学習部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムのコンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、非ロボットカーの運転行動情報を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムのロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報に基づいて最適化された運転行動情報を参照して自動運転制御を行うことにより、当該非ロボットカーと同等レベルかそれ以上の運転性能で当該状況に対処できる。
本発明の道路交通システムには、以下の構成のシステムが含まれる。
[構成1.1]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.2]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができるので、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.3]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転操作を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができるので、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.4]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.5]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を適宜更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.6]
複数の車両が道路を走行する道路交通システムであって、前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.7]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて運転支援制御を行う。
したがって、道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照しつつ運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.8]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.9]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.10]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報から前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて自動運転制御を行う。
したがって、道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照しつつ自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.11]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.12]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.13]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を非ロボットカーに送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて運転支援制御を行う。
したがって、道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照しつつ運転支援制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.14]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報(判断基準等)を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を非ロボットカーに送信する。コンピューティングシステムから運転行動情報を受信した非ロボットカーは、ロボットカーの運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動を学習して運転支援制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.15]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、非ロボットカーは、ロボットカーの運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この道路交通システムによれば、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動を学習して運転支援制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.16]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報を参照しつつ自動運転制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.17]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、非ロボットカーの運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動を学習して運転支援制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.18]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。
この道路交通システムにおいては、ロボットカーは、非ロボットカーの運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、この道路交通システムによれば、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動を学習して運転支援制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.19]
前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた運転行動情報である、構成1.1乃至1.6のいずれか1の道路交通システム。
[構成1.20]
前記非ロボットカーは、自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、構成1.1乃至1.3のいずれか1の道路交通システム。
[構成1.21]
前記ロボットカーは、自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、構成1.4乃至1.6のいずれか1の道路交通システム。
[構成1.22]
前記非ロボットカーは、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、
前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有する構成1.16乃至1.18のいずれか1の道路交通システム。
[構成1.23]
前記コンピューティングシステムは、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数の車両に送信する運転行動情報送信機能と、を有する構成1.7乃至1.12のいずれか1の道路交通システム。
[構成1.24]
前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有する、構成1.13乃至1.15のいずれか1の道路交通システム。
[構成1.25]
前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有する、構成1.16乃至1.18のいずれか1の道路交通システム。
[構成1.26]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが道路を走行する道路交通システムであって、コンピューティングシステムを備え、前記コンピューティングシステムは、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なるロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に応じた自動運転制御を行うことにより、当該他ロボットカーと同等レベルの運転性能で当該状況に対処できる。
この道路交通システムによれば、ロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成1.27]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが道路を走行する道路交通システムであって、コンピューティングシステムを備え、前記のコンピューティングシステムは、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムにおいては、コンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報に基づいて最適化された運転行動情報を参照して自動運転制御を行うことにより、当該他ロボットカーと同等レベルかそれ以上の運転性能で当該状況に対処できる。
この道路交通システムによれば、ロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成1.28]
前記最適化された運転行動情報は、前記運転行動情報の提供を受ける車両の車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受ける車両が障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成1.23、1.24、1.25、1.27のいずれか1の道路交通システム。
[構成1.29]
前記最適化情報生成機能は、前記運転行動情報の提供を受ける車両の走行状況と当該車両の車両属性とに基づいて、当該車両が障害物と接触する可能性が最も小さくなるように、前記運転行動情報を修正する機能を含む、構成1.23、1.24、1.25、1.27のいずれか1の道路交通システム。
この道路交通システムにおいては、運転行動情報の提供元の車両(提供元車両)の車両属性と当該運転行動情報の提供を受ける車両(提供先車両)の車両属性が相違する場合、当該提供先車両が障害物と接触する可能性が最も小さくなるように修正された運転行動情報が当該提供先車両に提供される。
この道路交通システムによれば、運転行動情報の提供元車両と提供先車両の車両属性が相違する場合でも、車両同士が運転行動情報を参照して運転支援制御又は自動運転制御を行うことができる。
[構成1.30]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両の運転行動情報を他車両に提供する機能と、他車両の運転行動情報の提供を受ける機能と、他車両の運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両同士は、車両間で互いに運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.31]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と他車両との間の通信により当該他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、車車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.32]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と地上静止物との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、地上静止物との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.33]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と道路との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、路車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.34]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両と携帯端末との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、携帯端末との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.35]
複数の車両が道路を走行する道路交通システムであって、前記車両は、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、他車両の運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、ネットワークを介して多数の自動車との間で運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.36]
複数の車両が道路を走行する道路交通システムであって、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。
この道路交通システムの車両は、自車両の運転行動情報(経験情報)をネットワーク上のコンピューティングシステムにアップロードし、自車両の運転行動情報と他車両の運転行動情報(経験情報)とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードすることができる。そして、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報を自車両の運転制御に利用できる。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、自車両の運転行動情報と当該状況を経験したことのある他車両の運転行動情報とに基づいて生成された運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転性能で当該状況に対処できる。
[構成1.37]
複数の複数の車両が道路を走行する道路交通システムであって、前記複数の車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた操作履歴情報を含む、ことを特徴とする道路交通システム。
この道路交通システムのロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムの車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成1.38]
複数の複数の車両が道路を走行する道路交通システムであって、前記複数の車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、自車両の運転行動情報を外部に出力する運転行動情報出力部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報であり、前記自車両の運転行動情報は、自車両の走行状況と自車両の自動運転制御によりなされた運転操作とを対応付けた情報である、道路交通システム。
この道路交通システムのロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムのロボットカーは、未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。また、この道路交通システムのロボットカーは、自車両の運転行動情報(経験情報)を外部に出力するので、ロボットカーから出力された運転行動情報を他車両が参照して運転支援制御又は自動運転制御を行うこともできる。当該他車両は、未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照して運転支援制御又は自動運転制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
[構成1.39]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた操作履歴情報を含む運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する機械学習部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記機械学習部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムのコンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、非ロボットカーの運転行動情報を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムのロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報を参照して自動運転制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
この道路交通システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成1.40]
複数の車両が道路を走行する道路交通システムであって、コンピューティングシステムを有し、前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた操作履歴情報を含む運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する機械学習部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記機械学習部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。
この道路交通システムのコンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、非ロボットカーの運転行動情報を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、この道路交通システムのロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報に基づいて最適化された運転行動情報を参照して自動運転制御を行うことにより、当該非ロボットカーと同等レベルかそれ以上の運転性能で当該状況に対処できる。
[2.道路交通システムにおける車両の構成とその作用]
本発明の車両には、以下の構成の車両が含まれる。
[構成2.1]
ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする非ロボットカー。
この非ロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて運転支援制御を行う。
したがって、この非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.2]
ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報(判断基準)を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする非ロボットカー。
この非ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.3]
ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする非ロボットカー。
この非ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.4]
前記運転行動情報取得部は、自車両と他車両との間の通信により当該他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.5]
前記運転行動情報取得部は、自車両と地上静止物との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.6]
前記運転行動情報取得部は、自車両と道路との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.7]
前記運転行動情報取得部は、自車両と携帯端末との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.8]
前記運転行動情報取得部は、他車両の運転行動情報をネットワーク上のコンピューティングシステムから受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.9]
自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.10]
自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有する構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.11]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。
したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.12]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記運転行動決定部が運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を適宜更新する学習処理部(知識更新処理部)と、を有することを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.13]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.14]
前記運転行動情報取得部は、自車両と他車両との間の通信により当該他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.15]
前記運転行動情報取得部は、自車両と地上静止物との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.16]
前記運転行動情報取得部は、自車両と道路との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.17]
前記運転行動情報取得部は、自車両と携帯端末との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1の非ロボットカー。
[構成2.18]
前記運転行動情報取得部は、他車両の運転行動情報をネットワーク上のコンピューティングシステムから受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.19]
前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.20]
前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.21]
自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.22]
複数の車両が道路を走行する道路交通システムの車両であって、前記車両は、他車両の運転行動情報を参照して自車両の運転制御を行う機能を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、他車両の運転行動情報を参照して自車両の運転制御を行う。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.23]
複数の車両が道路を走行する道路交通システムの車両であって、自車両の運転行動情報を他車両に提供する機能と、他車両の運転行動情報の提供を受ける機能と、他車両の運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、自車両と他車両との間で互いに運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.24]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と他車両との間の通信により当該他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、車車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.25]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と地上静止物との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、地上静止物との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.26]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と道路との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、路車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.27]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と携帯端末との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、携帯端末との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.28]
複数の車両が道路を走行する道路交通システムの車両であって、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、他車両の運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた操作履歴情報を含む運転行動情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、ネットワークを介して多数の自動車との間で運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.29]
複数の車両が道路を走行する道路交通システムの車両であって、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、自車両の運転行動情報(経験情報)をネットワーク上のコンピューティングシステムにアップロードし、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードすることができる。そして、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、自車両の運転行動情報と当該状況を経験したことのある他車両の運転行動情報とに基づいて生成された運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転性能で当該状況に対処できる。
[構成2.30]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.31]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、自車両の運転行動情報を外部に出力する運転行動情報出力部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報であり、
前記自車両の運転行動情報は、自車両の走行状況と自車両の前記自動運転制御によりなされた運転操作とを対応付けた情報である、ロボットカー。
このロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、このロボットカーは、未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。また、このロボットカーは、自車両の運転行動情報(経験情報)を外部に出力するので、ロボットカーから出力された運転行動情報を他車両が参照して運転支援制御又は自動運転制御を行うこともできる。当該他車両は、未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照して運転支援制御又は自動運転制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
本発明の車両には、以下の構成の車両が含まれる。
[構成2.1]
ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする非ロボットカー。
この非ロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて運転支援制御を行う。
したがって、この非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.2]
ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報(判断基準)を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部(知識更新処理部)と、を有することを特徴とする非ロボットカー。
この非ロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.3]
ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とする非ロボットカー。
この非ロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。
したがって、この非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.4]
前記運転行動情報取得部は、自車両と他車両との間の通信により当該他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.5]
前記運転行動情報取得部は、自車両と地上静止物との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.6]
前記運転行動情報取得部は、自車両と道路との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.7]
前記運転行動情報取得部は、自車両と携帯端末との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.8]
前記運転行動情報取得部は、他車両の運転行動情報をネットワーク上のコンピューティングシステムから受信する運転行動情報受信部である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.9]
自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.10]
自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有する構成2.1乃至2.3のいずれか1の非ロボットカー。
[構成2.11]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。
したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.12]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記運転行動決定部が運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を適宜更新する学習処理部(知識更新処理部)と、を有することを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.13]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。
したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.14]
前記運転行動情報取得部は、自車両と他車両との間の通信により当該他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.15]
前記運転行動情報取得部は、自車両と地上静止物との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.16]
前記運転行動情報取得部は、自車両と道路との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.17]
前記運転行動情報取得部は、自車両と携帯端末との間の通信により他車両の運転行動情報を受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1の非ロボットカー。
[構成2.18]
前記運転行動情報取得部は、他車両の運転行動情報をネットワーク上のコンピューティングシステムから受信する運転行動情報受信部である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.19]
前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.20]
前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.21]
自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報である、構成2.11乃至2.13のいずれか1のロボットカー。
[構成2.22]
複数の車両が道路を走行する道路交通システムの車両であって、前記車両は、他車両の運転行動情報を参照して自車両の運転制御を行う機能を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、他車両の運転行動情報を参照して自車両の運転制御を行う。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.23]
複数の車両が道路を走行する道路交通システムの車両であって、自車両の運転行動情報を他車両に提供する機能と、他車両の運転行動情報の提供を受ける機能と、他車両の運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、自車両と他車両との間で互いに運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.24]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と他車両との間の通信により当該他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、車車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.25]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と地上静止物との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、地上静止物との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.26]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と道路との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転制御を行う機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、路車間通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.27]
複数の車両が道路を走行する道路交通システムの車両であって、自車両と携帯端末との間の通信により他車両の運転行動情報を受け取る機能と、他車両の運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、携帯端末との通信により他車両の運転行動情報(経験情報)を受け取ることができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.28]
複数の車両が道路を走行する道路交通システムの車両であって、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、他車両の運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報に基づいて自車両の運転制御を行う機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた操作履歴情報を含む運転行動情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、ネットワークを介して多数の自動車との間で運転行動情報(経験情報)を提供し合うことができる。そして、他車両の運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.29]
複数の車両が道路を走行する道路交通システムの車両であって、自車両の運転行動情報をネットワーク上のコンピューティングシステムにアップロードする機能と、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードする機能と、ネットワーク上のコンピューティングシステムからダウンロードした運転行動情報を参照して自車両の運転を制御する機能と、を有し、前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた情報であり、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とする車両。
この車両は、自車両の運転行動情報(経験情報)をネットワーク上のコンピューティングシステムにアップロードし、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報をネットワーク上のコンピューティングシステムからダウンロードすることができる。そして、自車両の運転行動情報と他車両の運転行動情報とに基づいて生成された運転行動情報を自車両の運転制御に利用できる。したがって、この車両は、自車両が未経験の状況においても、自車両の運転行動情報と当該状況を経験したことのある他車両の運転行動情報とに基づいて生成された運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転性能で当該状況に対処できる。
[構成2.30]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報である、ことを特徴とするロボットカー。
このロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、このロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成2.31]
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、自車両の走行状況を認知する走行状況認知部と、自車両の周辺物体及び運転操作について学習する学習処理部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ自車両の前記走行状況認知部により認知された走行状況及び前記学習処理部による学習結果に基づいて自動運転制御を行う自動運転制御部と、自車両の運転行動情報を外部に出力する運転行動情報出力部と、を有し、前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた情報であり、
前記自車両の運転行動情報は、自車両の走行状況と自車両の前記自動運転制御によりなされた運転操作とを対応付けた情報である、ロボットカー。
このロボットカーは、他車両の運転行動情報(経験情報)を参照しつつ自車両の走行状況及び自車両の学習結果に基づいて自動運転制御を行う。したがって、このロボットカーは、未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報を参照して自動運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。また、このロボットカーは、自車両の運転行動情報(経験情報)を外部に出力するので、ロボットカーから出力された運転行動情報を他車両が参照して運転支援制御又は自動運転制御を行うこともできる。当該他車両は、未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照して運転支援制御又は自動運転制御を行うことにより、当該ロボットカーと同等レベルの運転性能で当該状況に対処できる。
[3.コンピューティングシステムの構成とその作用]
本発明のコンピューティングシステムには、以下の構成のコンピューティングシステムが含まれる。
[構成3.1]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有するコンピューティングシステム。
このコンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。このコンピューティングシステムから運転行動情報を受信した車両は、当該運転行動情報を自車両の運転制御に利用できる。すなわち、当該車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成3.2]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数の車両に送信する運転行動情報送信機能と、を有するコンピューティングシステム。
このコンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、1又は複数の車両に送信する。このコンピューティングシステムから運転行動情報を受信した車両は、当該運転行動情報を自車両の運転制御に利用できる。すなわち、当該車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて最適化された運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転性能で当該状況に対処できる。
[構成3.3]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転を支援する運転支援機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とするコンピューティングシステム。
このコンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を非ロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて運転支援制御を行う。したがって、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照しつつ運転支援制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、このコンピューティングシステムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成3.4]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とするコンピューティングシステム。
このコンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて自動運転制御を行う。したがって、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報を参照しつつ自動運転制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、このコンピューティングシステムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成3.5]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、コンピューティングシステム。
このコンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なるロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に応じた自動運転制御を行うことにより、当該他ロボットカーと同等レベルの運転性能で当該状況に対処できる。
このコンピューティングシステムによれば、道路交通システム内のロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成3.6]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、コンピューティングシステム。
このコンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報に基づいて最適化された運転行動情報を参照して自動運転制御を行うことにより、当該他ロボットカーと同等レベルかそれ以上の運転性能で当該状況に対処できる。
このコンピューティングシステムによれば、道路交通システム内のロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成3.7]
前記最適化された運転行動情報は、前記運転行動情報の提供を受ける車両の車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受ける車両が障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成3.2又は3.6のコンピューティングシステム。
[構成3.8]
前記最適化情報生成機能は、前記運転行動情報の提供を受ける車両の車両属性に基づいて、当該車両が障害物と接触する可能性が最も小さくなるように、前記運転行動情報を修正する機能を含む、構成3.2、3.6のいずれか1のコンピューティングシステム。
このコンピューティングシステムは、運転行動情報の提供元の車両(提供元車両)の車両属性と当該運転行動情報の提供を受ける車両(提供先車両)の車両属性が相違する場合、当該提供先車両が障害物と接触する可能性が最も小さくなるように修正された運転行動情報が当該提供先車両に提供する。
このコンピューティングシステムによれば、運転行動情報の提供元車両と提供先車両の車両属性が相違する場合でも、車両同士が運転行動情報を参照して運転支援制御又は自動運転制御を行うことができる。
本発明のコンピューティングシステムには、以下の構成のコンピューティングシステムが含まれる。
[構成3.1]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有するコンピューティングシステム。
このコンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する。このコンピューティングシステムから運転行動情報を受信した車両は、当該運転行動情報を自車両の運転制御に利用できる。すなわち、当該車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
[構成3.2]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数の車両に送信する運転行動情報送信機能と、を有するコンピューティングシステム。
このコンピューティングシステムは、1又は複数の車両の運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、1又は複数の車両に送信する。このコンピューティングシステムから運転行動情報を受信した車両は、当該運転行動情報を自車両の運転制御に利用できる。すなわち、当該車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて最適化された運転行動情報を参照して運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転性能で当該状況に対処できる。
[構成3.3]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転を支援する運転支援機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とするコンピューティングシステム。
このコンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を非ロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて運転支援制御を行う。したがって、非ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのあるロボットカーの運転行動情報を参照しつつ運転支援制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、このコンピューティングシステムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成3.4]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とするコンピューティングシステム。
このコンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。コンピューティングシステムから運転行動情報を受信したロボットカーは、当該運転行動情報を参照しつつ、自車両の走行状況に基づいて自動運転制御を行う。したがって、ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある非ロボットカーの運転行動情報を参照しつつ自動運転制御を行うことにより、当該非ロボットカーと同等レベルの運転性能で当該状況に対処できる。
そして、このコンピューティングシステムによれば、ロボットカーと非ロボットカーとが共存する状況下で、非ロボットカーを運転するヒューマンドライバの運転テクニックをロボットカーに学習させて、ロボットカーの自動運転性能を高効率に向上させることができる。ロボットカーの自動運転性能が向上するにつれて、道路交通システム全体の運用効率の向上、安全性の向上、等が図られる。
[構成3.5]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、コンピューティングシステム。
このコンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報を当該運転行動情報の送信元とは異なるロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に応じた自動運転制御を行うことにより、当該他ロボットカーと同等レベルの運転性能で当該状況に対処できる。
このコンピューティングシステムによれば、道路交通システム内のロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成3.6]
複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、コンピューティングシステム。
このコンピューティングシステムは、ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報を最新の情報に更新して管理し、当該運転行動情報をロボットカーに送信する。このコンピューティングシステムから運転行動情報を受信したロボットカーは、他ロボットカーの運転行動情報を参照しつつ自車両の走行状況に基づいて自動運転制御を行う。したがって、当該ロボットカーは、自車両が未経験の状況においても、当該状況を経験したことのある他ロボットカーの運転行動情報に基づいて最適化された運転行動情報を参照して自動運転制御を行うことにより、当該他ロボットカーと同等レベルかそれ以上の運転性能で当該状況に対処できる。
このコンピューティングシステムによれば、道路交通システム内のロボットカー同士が運転行動情報を利用し合うことにより、道路交通システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、道路交通システム全体の運用効率、安全性、等が急速に向上する。
[構成3.7]
前記最適化された運転行動情報は、前記運転行動情報の提供を受ける車両の車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受ける車両が障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成3.2又は3.6のコンピューティングシステム。
[構成3.8]
前記最適化情報生成機能は、前記運転行動情報の提供を受ける車両の車両属性に基づいて、当該車両が障害物と接触する可能性が最も小さくなるように、前記運転行動情報を修正する機能を含む、構成3.2、3.6のいずれか1のコンピューティングシステム。
このコンピューティングシステムは、運転行動情報の提供元の車両(提供元車両)の車両属性と当該運転行動情報の提供を受ける車両(提供先車両)の車両属性が相違する場合、当該提供先車両が障害物と接触する可能性が最も小さくなるように修正された運転行動情報が当該提供先車両に提供する。
このコンピューティングシステムによれば、運転行動情報の提供元車両と提供先車両の車両属性が相違する場合でも、車両同士が運転行動情報を参照して運転支援制御又は自動運転制御を行うことができる。
[4.コンピュータプログラム]
本発明のコンピュータプログラムには、以下の構成のプログラムが含まれる。
[構成4.1]
構成1.1乃至1.39のいずれかに記載の道路交通システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを道路交通システムを構成する1又は複数のコンピュータにより実行することにより、構成1.1乃至1.39のいずれか1の道路交通システムが実現される。
[構成4.2]
構成2.1乃至2.10のいずれかに記載の非ロボットカーを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを非ロボットカーを構成する1又は複数のコンピュータにより実行することにより、構成2.1乃至2.10のいずれかに記載の非ロボットカーが実現される。
[構成4.3]
構成2.11乃至2.22、構成2.30、構成2.31のいずれかに記載のロボットカーを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムをロボットカーを構成する1又は複数のコンピュータにより実行することにより、構成2.11乃至2.22、構成2.30、構成2.31のいずれかに記載の非ロボットカーが実現される。
[構成4.1]
構成3.1乃至3.8のいずれか1のコンピューティングシステムを1又は複数のコンピュータにより実現するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、構成3.1乃至3.8のいずれか1のコンピューティングシステムが実現される。
本発明のコンピュータプログラムには、以下の構成のプログラムが含まれる。
[構成4.1]
構成1.1乃至1.39のいずれかに記載の道路交通システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを道路交通システムを構成する1又は複数のコンピュータにより実行することにより、構成1.1乃至1.39のいずれか1の道路交通システムが実現される。
[構成4.2]
構成2.1乃至2.10のいずれかに記載の非ロボットカーを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを非ロボットカーを構成する1又は複数のコンピュータにより実行することにより、構成2.1乃至2.10のいずれかに記載の非ロボットカーが実現される。
[構成4.3]
構成2.11乃至2.22、構成2.30、構成2.31のいずれかに記載のロボットカーを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムをロボットカーを構成する1又は複数のコンピュータにより実行することにより、構成2.11乃至2.22、構成2.30、構成2.31のいずれかに記載の非ロボットカーが実現される。
[構成4.1]
構成3.1乃至3.8のいずれか1のコンピューティングシステムを1又は複数のコンピュータにより実現するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、構成3.1乃至3.8のいずれか1のコンピューティングシステムが実現される。
[5.車両共用システムの構成とその作用]
構成1.1乃至1.40のいずれか1の道路交通システムにおいて、車両を複数の利用者によって共用することを特徴とする車両共用システム。
本発明によれば、本発明の道路交通システムを利用して、車両共用システムを構築できる。
本発明の車両共用システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、車両共用システム全体の運用効率の向上、安全性の向上、顧客満足度の向上、等が図られる。
本発明の車両共用システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、車両共用システム全体の運用効率の向上、安全性の向上、顧客満足度の向上、等が図られる。
本発明の車両共用システムによれば、車両共用システム内のロボットカー同士が運転行動情報を利用し合うことにより、車両共用システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。車両共用システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、車両共用システム全体の運用効率、安全性、顧客満足度、等が急速に向上する。
構成1.1乃至1.40のいずれか1の道路交通システムにおいて、車両を複数の利用者によって共用することを特徴とする車両共用システム。
本発明によれば、本発明の道路交通システムを利用して、車両共用システムを構築できる。
本発明の車両共用システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、車両共用システム全体の運用効率の向上、安全性の向上、顧客満足度の向上、等が図られる。
本発明の車両共用システムによれば、ロボットカーと非ロボットカーとが共存する状況下で、ロボットカーの運転テクニックを非ロボットカーに学習させて、非ロボットカーの運転支援性能を高効率に向上させることができる。非ロボットカーの運転支援性能が向上するにつれて、車両共用システム全体の運用効率の向上、安全性の向上、顧客満足度の向上、等が図られる。
本発明の車両共用システムによれば、車両共用システム内のロボットカー同士が運転行動情報を利用し合うことにより、車両共用システム内のロボットカーの学習効率を高めて、自動運転性能を急速に向上させることができる。車両共用システム内の全てのロボットカーの自動運転性能を急速に向上させることができるため、車両共用システム全体の運用効率、安全性、顧客満足度、等が急速に向上する。
[6.コンピュータプログラム]
本発明の車両共用システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、本発明の道路交通システムを利用して、車両共用システムを構築できる。
[7.ロボットカー教習システムの構成とその作用]
本発明のロボットカー教習システムには、以下の構成のシステムが含まれる。
[構成7.1]
ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記非ロボットカーの運転行動情報を取得する運転行動情報取得部と、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行うとともに、前記運転行動情報取得部により取得した運転行動情報に基づいて前記非ロボットカーの運転行動を学習する学習処理を行う自動運転制御部と、を有することを特徴とするロボットカー教習システム。
このロボットカー教習システムにおいては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に基づいて自動運転制御を行うとともに、取得した運転行動情報に基づいて非ロボットカーの運転行動を学習する。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成7.2]
前記自動運転制御部は、前記運転行動情報取得部により取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように学習処理(教師あり学習による学習処理)を行う、構成7.1のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.3]
前記自動運転制御部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように学習処理(強化学習による学習処理)を行う、構成7.1のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.4]
ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、前記非ロボットカーから出力された前記運転行動情報を取得する運転行動情報取得部と、を有し、前記自動運転制御部は、前記運転操作を決定する際に参照する知識情報(判断基準等)を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理を行う学習処理部(知識更新処理部)と、を有することを特徴とするロボットカー教習システム。
このロボットカー教習システムにおいては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行う。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成7.5]
前記学習処理部は、前記運転行動情報取得部により取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転知識部に記憶された知識情報を更新する学習処理(教師あり学習による学習処理)を行う、構成7.4のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.6]
前記学習処理部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転知識部に記憶された知識情報を更新する学習処理(強化学習による学習処理)を行う、構成1.4のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.7]
ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、前記非ロボットカーから出力された前記運転行動情報を取得する運転行動情報取得部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とするロボットカー教習システム。
このロボットカー教習システムにおいては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行う。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成7.8]
前記学習処理部は、前記運転行動情報取得部により取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)を行う、構成9.7のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.9]
前記学習処理部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転操作決定関数のパラメタを調整する学習処理(強化学習による学習処理)を行う、構成9.7のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.10]
前記非ロボットカーが前記経路を前記ロボットカーよりも先に走行することを特徴とする、構成9.1乃至9.9のいずれか1のロボットカー教習システム。
このロボットカー教習システムでは、同じ経路を先に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習システムによれば、ロボットカーに新たな状況を経験させつつ、当該状況を既に経験した非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習(事前情報に基づく学習)させることができる。
[構成7.11]
前記非ロボットカーが前記経路を前記ロボットカーよりも後に走行することを特徴とする、構成7.1乃至7.9のいずれか1のロボットカー教習システム。
このロボットカー教習システムでは、同じ経路を後に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習システムによれば、ロボットカーに新たな状況を経験させた後で、当該状況を経験した非ロボットカーのヒューマンドライバの運転行動をロボットカーに学習(事後情報に基づく学習)させることができる。
[構成7.12]
コンピューティングシステムを有し、前記コンピューティングシステムは、前記非ロボットカーから運転行動情報を受信する運転行動情報受信部と、前記運転行動情報を前記ロボットカーに送信する運転行動情報送信部と、を有し、前記運転行動情報出力部は、前記非ロボットカーの運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部であり、前記運転行動情報取得部は、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部である、構成7.1乃至7.11のいずれか1のロボットカー教習システム。
。
このロボットカー教習システムにおいては、コンピューティングシステムが、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。
このロボットカー教習システムによれば、ロボットカーは、コンピューティングシステムを介して非ロボットカーの運転行動情報を取得し、その運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成7.13]
前記コンピューティングシステムは、前記運転行動情報受信部により受信した運転行動情報に基づいて、最適化された運転行動情報を生成する最適化情報生成部と、
前記最適化情報生成部により生成された最新の運転行動情報を前記ロボットカーに送信する運転行動情報送信部と、を有する構成7.12のロボットカー教習システム。
このロボットカー教習システムにおいては、コンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報をロボットカーに送信する。コンピューティングシステムから最適化された運転行動情報を受信したロボットカーは、当該最適化された運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成7.14]
前記最適化された運転行動情報は、前記運転行動情報の提供を受けるロボットカーの車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーが障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成7.13のロボットカー教習システム。
[構成7.15]
前記自動運転制御部は、多層ニューラルネット・プログラムがインストールされており、当該多層ニューラルネット・プログラムにより前記学習処理を行う、構成7.1乃至7.9のいずれかのロボットカー教習システム。
このロボットカー教習システムによれば、多層ニューラルネット・プログラムにより実現される深層学習機能をロボットカーに持たせ、非ロボットカーを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカーに自ら抽出させて学習を行わせることができる。
[構成7.16]
前記自動運転制御部は、ニューロモーフィック・チップを備え、当該ニューロモーフィック・チップにより前記学習処理を行う、構成7.1乃至7.9のいずれかのロボットカー教習システム。
このロボットカー教習システムによれば、ニューロモーフィック・チップにより実現される深層学習機能をロボットカーに持たせ、非ロボットカーを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカーに自ら抽出させて学習を行わせることができる。
[構成7.17]
前記ニューロモーフィック・チップには、スパイキング・ニューラルネットが実装されている、構成7.16のロボットカー教習システム。
このロボットカー教習システムによれば、スパイキング・ニューラルネットにより実現される本物の脳を模した学習機能をロボットカーに持たせ、非ロボットカーを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカーに自ら抽出させて学習を行わせることができる。
本発明の車両共用システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、本発明の道路交通システムを利用して、車両共用システムを構築できる。
[7.ロボットカー教習システムの構成とその作用]
本発明のロボットカー教習システムには、以下の構成のシステムが含まれる。
[構成7.1]
ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記非ロボットカーの運転行動情報を取得する運転行動情報取得部と、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行うとともに、前記運転行動情報取得部により取得した運転行動情報に基づいて前記非ロボットカーの運転行動を学習する学習処理を行う自動運転制御部と、を有することを特徴とするロボットカー教習システム。
このロボットカー教習システムにおいては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に基づいて自動運転制御を行うとともに、取得した運転行動情報に基づいて非ロボットカーの運転行動を学習する。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成7.2]
前記自動運転制御部は、前記運転行動情報取得部により取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように学習処理(教師あり学習による学習処理)を行う、構成7.1のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.3]
前記自動運転制御部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように学習処理(強化学習による学習処理)を行う、構成7.1のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.4]
ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、前記非ロボットカーから出力された前記運転行動情報を取得する運転行動情報取得部と、を有し、前記自動運転制御部は、前記運転操作を決定する際に参照する知識情報(判断基準等)を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理を行う学習処理部(知識更新処理部)と、を有することを特徴とするロボットカー教習システム。
このロボットカー教習システムにおいては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行う。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成7.5]
前記学習処理部は、前記運転行動情報取得部により取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転知識部に記憶された知識情報を更新する学習処理(教師あり学習による学習処理)を行う、構成7.4のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.6]
前記学習処理部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転知識部に記憶された知識情報を更新する学習処理(強化学習による学習処理)を行う、構成1.4のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.7]
ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、前記非ロボットカーから出力された前記運転行動情報を取得する運転行動情報取得部と、を有し、前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)と、を有することを特徴とするロボットカー教習システム。
このロボットカー教習システムにおいては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行う。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成7.8]
前記学習処理部は、前記運転行動情報取得部により取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)を行う、構成9.7のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.9]
前記学習処理部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転操作決定関数のパラメタを調整する学習処理(強化学習による学習処理)を行う、構成9.7のロボットカー教習システム。
このロボットカー教習システムによれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成7.10]
前記非ロボットカーが前記経路を前記ロボットカーよりも先に走行することを特徴とする、構成9.1乃至9.9のいずれか1のロボットカー教習システム。
このロボットカー教習システムでは、同じ経路を先に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習システムによれば、ロボットカーに新たな状況を経験させつつ、当該状況を既に経験した非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習(事前情報に基づく学習)させることができる。
[構成7.11]
前記非ロボットカーが前記経路を前記ロボットカーよりも後に走行することを特徴とする、構成7.1乃至7.9のいずれか1のロボットカー教習システム。
このロボットカー教習システムでは、同じ経路を後に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習システムによれば、ロボットカーに新たな状況を経験させた後で、当該状況を経験した非ロボットカーのヒューマンドライバの運転行動をロボットカーに学習(事後情報に基づく学習)させることができる。
[構成7.12]
コンピューティングシステムを有し、前記コンピューティングシステムは、前記非ロボットカーから運転行動情報を受信する運転行動情報受信部と、前記運転行動情報を前記ロボットカーに送信する運転行動情報送信部と、を有し、前記運転行動情報出力部は、前記非ロボットカーの運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部であり、前記運転行動情報取得部は、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部である、構成7.1乃至7.11のいずれか1のロボットカー教習システム。
。
このロボットカー教習システムにおいては、コンピューティングシステムが、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。
このロボットカー教習システムによれば、ロボットカーは、コンピューティングシステムを介して非ロボットカーの運転行動情報を取得し、その運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成7.13]
前記コンピューティングシステムは、前記運転行動情報受信部により受信した運転行動情報に基づいて、最適化された運転行動情報を生成する最適化情報生成部と、
前記最適化情報生成部により生成された最新の運転行動情報を前記ロボットカーに送信する運転行動情報送信部と、を有する構成7.12のロボットカー教習システム。
このロボットカー教習システムにおいては、コンピューティングシステムは、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報をロボットカーに送信する。コンピューティングシステムから最適化された運転行動情報を受信したロボットカーは、当該最適化された運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成7.14]
前記最適化された運転行動情報は、前記運転行動情報の提供を受けるロボットカーの車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーが障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成7.13のロボットカー教習システム。
[構成7.15]
前記自動運転制御部は、多層ニューラルネット・プログラムがインストールされており、当該多層ニューラルネット・プログラムにより前記学習処理を行う、構成7.1乃至7.9のいずれかのロボットカー教習システム。
このロボットカー教習システムによれば、多層ニューラルネット・プログラムにより実現される深層学習機能をロボットカーに持たせ、非ロボットカーを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカーに自ら抽出させて学習を行わせることができる。
[構成7.16]
前記自動運転制御部は、ニューロモーフィック・チップを備え、当該ニューロモーフィック・チップにより前記学習処理を行う、構成7.1乃至7.9のいずれかのロボットカー教習システム。
このロボットカー教習システムによれば、ニューロモーフィック・チップにより実現される深層学習機能をロボットカーに持たせ、非ロボットカーを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカーに自ら抽出させて学習を行わせることができる。
[構成7.17]
前記ニューロモーフィック・チップには、スパイキング・ニューラルネットが実装されている、構成7.16のロボットカー教習システム。
このロボットカー教習システムによれば、スパイキング・ニューラルネットにより実現される本物の脳を模した学習機能をロボットカーに持たせ、非ロボットカーを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカーに自ら抽出させて学習を行わせることができる。
[9.ロボットカー教習方法の構成とその作用]
本発明のロボットカー教習方法には、以下の構成のロボットカー教習方法が含まれる。
[構成8.1]
非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、ロボットカーが前記経路を走行するロボットカー走行ステップと、前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、ロボットカーが自車両の走行状況に基づいて自動運転制御を行う自動運転制御ステップと、前記運転行動情報に基づいてロボットカーが非ロボットカーを運転するヒューマンドライバの運転行動を学習する学習ステップと、を有することを特徴とするロボットカー教習方法。
このロボットカー教習方法においては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に基づいて自動運転制御を行うとともに、取得した運転行動情報に基づいて非ロボットカーを運転するヒューマンドライバの運転行動を学習する。
このロボットカー教習方法によれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成8.2]
前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように学習処理(教師あり学習による学習処理)を行うステップである、構成8.1のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.3]
前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように学習処理(強化学習による学習処理)を行うステップである、構成8.1のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.4]
非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、ロボットカーが前記経路を走行するロボットカー走行ステップと、前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、前記ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、ロボットカーが自車両の走行状況に基づいて実行すべき運転操作を決定する運転操作決定ステップと、前記運転操作が実行されるように自動運転制御を行う自動運転制御ステップと、前記運転操作を決定する際に参照する知識情報(判断基準等)を記憶する運転知識記憶ステップと、前記運転行動情報取得ステップにより取得した運転行動情報に基づいて、前記知識情報を更新する学習処理を行う学習ステップと、を有することを特徴とするロボットカー教習方法。
このロボットカー教習方法においては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行う。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成8.5]
前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転知識記憶ステップにより記憶された知識情報を更新する学習処理(教師あり学習による学習処理)を行うステップである、構成8.4のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.6]
前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転知識記憶ステップにより記憶された知識情報を更新する学習処理(強化学習による学習処理)を行うステップである、構成8.4のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.7]
非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、ロボットカーが前記経路を走行するロボットカー走行ステップと、前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、前記ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、ロボットカーが自車両の走行状況に応じた運転行動を計算により決定する運転操作決定ステップと、前記運転操作が実行されるように自動運転制御を行う自動運転制御ステップと、前記運転行動情報取得ステップにより取得した運転行動情報に基づいて、前記運転操作決定ステップにおいて使用される運転操作決定関数のパラメタを調整する学習処理を行う学習ステップと、を有することを特徴とするロボットカー教習方法。
このロボットカー教習方法においては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行う。
このロボットカー教習方法によれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成8.8]
前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)を行うステップである、構成8.7のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.9]
前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転操作決定関数のパラメタを調整する学習処理(強化学習による学習処理)を行うステップである、構成8.7のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.10]
前記非ロボットカーが前記経路を前記ロボットカーよりも先に走行することを特徴とする、構成8.1乃至8.9のいずれか1のロボットカー教習方法。
このロボットカー教習方法では、同じ経路を先に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習方法によれば、ロボットカーに新たな状況を経験させつつ、当該状況を既に経験した非ロボットカーのヒューマンドライバの運転行動をロボットカーに学習(事前情報に基づく学習)させることができる。
[構成8.11]
前記非ロボットカーが前記経路を前記ロボットカーよりも後に走行することを特徴とする、構成8.1乃至8.9のいずれか1のロボットカー教習方法。
このロボットカー教習方法では、同じ経路を後に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習方法によれば、ロボットカーに新たな状況を経験させた後で、当該状況を経験した非ロボットカーのヒューマンドライバの運転行動をロボットカーに学習(事後情報に基づく学習)させることができる。
[構成8.12]
コンピューティングシステムを使用し、前記コンピューティングシステムが前記非ロボットカーから運転行動情報を受信する運転行動情報受信ステップと、前記コンピューティングシステムが前記運転行動情報を前記ロボットカーに送信する運転行動情報送信ステップと、を有し、前記運転行動情報出力ステップは、前記非ロボットカーが自車両の前記運転行動情報を前記コンピューティングシステムに送信するステップであり、前記運転行動情報取得ステップは、前記ロボットカーが前記運転行動情報を前記コンピューティングシステムから受信するステップである、構成8.1乃至8.9のいずれか1のロボットカー教習方法。
。
このロボットカー教習方法においては、コンピューティングシステムが、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。
このロボットカー教習方法によれば、ロボットカーは、コンピューティングシステムを介して非ロボットカーの運転行動情報を取得し、その運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成8.13]
前記コンピューティングシステムが前記運転行動情報受信ステップにより受信した運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成ステップと、前記コンピューティングシステムが前記最適化情報生成ステップにより生成された最新の運転行動情報を前記ロボットカーに送信する運転行動情報送信ステップと、を有する構成8.12のロボットカー教習方法。
このロボットカー教習方法においては、コンピューティングシステムは、非ロボットカーから受信した運転行動情報(経験情報)に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報をロボットカーに送信する。コンピューティングシステムから最適化された運転行動情報を受信したロボットカーは、当該最適化された運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成8.14]
前記最適化された運転行動情報は、前記運転行動情報の提供を受けるロボットカーの車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーが障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成8.13のロボットカー教習方法。
本発明のロボットカー教習方法には、以下の構成のロボットカー教習方法が含まれる。
[構成8.1]
非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、ロボットカーが前記経路を走行するロボットカー走行ステップと、前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、ロボットカーが自車両の走行状況に基づいて自動運転制御を行う自動運転制御ステップと、前記運転行動情報に基づいてロボットカーが非ロボットカーを運転するヒューマンドライバの運転行動を学習する学習ステップと、を有することを特徴とするロボットカー教習方法。
このロボットカー教習方法においては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に基づいて自動運転制御を行うとともに、取得した運転行動情報に基づいて非ロボットカーを運転するヒューマンドライバの運転行動を学習する。
このロボットカー教習方法によれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成8.2]
前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように学習処理(教師あり学習による学習処理)を行うステップである、構成8.1のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.3]
前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように学習処理(強化学習による学習処理)を行うステップである、構成8.1のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.4]
非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、ロボットカーが前記経路を走行するロボットカー走行ステップと、前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、前記ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、ロボットカーが自車両の走行状況に基づいて実行すべき運転操作を決定する運転操作決定ステップと、前記運転操作が実行されるように自動運転制御を行う自動運転制御ステップと、前記運転操作を決定する際に参照する知識情報(判断基準等)を記憶する運転知識記憶ステップと、前記運転行動情報取得ステップにより取得した運転行動情報に基づいて、前記知識情報を更新する学習処理を行う学習ステップと、を有することを特徴とするロボットカー教習方法。
このロボットカー教習方法においては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行う。
このロボットカー教習システムによれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成8.5]
前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転知識記憶ステップにより記憶された知識情報を更新する学習処理(教師あり学習による学習処理)を行うステップである、構成8.4のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.6]
前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転知識記憶ステップにより記憶された知識情報を更新する学習処理(強化学習による学習処理)を行うステップである、構成8.4のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.7]
非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、ロボットカーが前記経路を走行するロボットカー走行ステップと、前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、前記ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、ロボットカーが自車両の走行状況に応じた運転行動を計算により決定する運転操作決定ステップと、前記運転操作が実行されるように自動運転制御を行う自動運転制御ステップと、前記運転行動情報取得ステップにより取得した運転行動情報に基づいて、前記運転操作決定ステップにおいて使用される運転操作決定関数のパラメタを調整する学習処理を行う学習ステップと、を有することを特徴とするロボットカー教習方法。
このロボットカー教習方法においては、非ロボットカーは、自車両の走行状況と自車両のヒューマンドライバによりなされた運転操作とを対応付けた運転行動情報を出力する。ロボットカーは、非ロボットカーから出力された運転行動情報を取得する。そして、ロボットカーは、自車両の走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行うとともに、取得した運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行う。
このロボットカー教習方法によれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[構成8.8]
前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように、前記運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)を行うステップである、構成8.7のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報を学習データセットとする教師あり学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.9]
前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転操作決定関数のパラメタを調整する学習処理(強化学習による学習処理)を行うステップである、構成8.7のロボットカー教習方法。
このロボットカー教習方法によれば、非ロボットカーの運転行動情報に基づく強化学習により、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることができる。
[構成8.10]
前記非ロボットカーが前記経路を前記ロボットカーよりも先に走行することを特徴とする、構成8.1乃至8.9のいずれか1のロボットカー教習方法。
このロボットカー教習方法では、同じ経路を先に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習方法によれば、ロボットカーに新たな状況を経験させつつ、当該状況を既に経験した非ロボットカーのヒューマンドライバの運転行動をロボットカーに学習(事前情報に基づく学習)させることができる。
[構成8.11]
前記非ロボットカーが前記経路を前記ロボットカーよりも後に走行することを特徴とする、構成8.1乃至8.9のいずれか1のロボットカー教習方法。
このロボットカー教習方法では、同じ経路を後に走行した非ロボットカーの運転行動情報に基づいて、当該非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させる。
このロボットカー教習方法によれば、ロボットカーに新たな状況を経験させた後で、当該状況を経験した非ロボットカーのヒューマンドライバの運転行動をロボットカーに学習(事後情報に基づく学習)させることができる。
[構成8.12]
コンピューティングシステムを使用し、前記コンピューティングシステムが前記非ロボットカーから運転行動情報を受信する運転行動情報受信ステップと、前記コンピューティングシステムが前記運転行動情報を前記ロボットカーに送信する運転行動情報送信ステップと、を有し、前記運転行動情報出力ステップは、前記非ロボットカーが自車両の前記運転行動情報を前記コンピューティングシステムに送信するステップであり、前記運転行動情報取得ステップは、前記ロボットカーが前記運転行動情報を前記コンピューティングシステムから受信するステップである、構成8.1乃至8.9のいずれか1のロボットカー教習方法。
。
このロボットカー教習方法においては、コンピューティングシステムが、非ロボットカーから運転行動情報(経験情報)を受信し、当該運転行動情報をロボットカーに送信する。
このロボットカー教習方法によれば、ロボットカーは、コンピューティングシステムを介して非ロボットカーの運転行動情報を取得し、その運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成8.13]
前記コンピューティングシステムが前記運転行動情報受信ステップにより受信した運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成ステップと、前記コンピューティングシステムが前記最適化情報生成ステップにより生成された最新の運転行動情報を前記ロボットカーに送信する運転行動情報送信ステップと、を有する構成8.12のロボットカー教習方法。
このロボットカー教習方法においては、コンピューティングシステムは、非ロボットカーから受信した運転行動情報(経験情報)に基づいて最適化された運転行動情報を生成し、当該最適化された運転行動情報をロボットカーに送信する。コンピューティングシステムから最適化された運転行動情報を受信したロボットカーは、当該最適化された運転行動情報に基づいて、非ロボットカーを運転するヒューマンドライバの運転行動を学習することができる。
[構成8.14]
前記最適化された運転行動情報は、前記運転行動情報の提供を受けるロボットカーの車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーが障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受けるロボットカーの回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、構成8.13のロボットカー教習方法。
[9.コンピュータプログラム]
本発明のコンピュータプログラムには、以下の構成のプログラムが含まれる。
[構成9.1]
構成7.1乃至7.17のいずれかに記載のロボットカー教習システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、構成7.1乃至7.17のいずれか1のロボットカー教習システムが実現される。
[構成9.2]
構成8.1乃至8.15のいずれかに記載のロボットカー教習方法を1又は複数のコンピュータを用いて実施するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、構成8.1乃至8.15のいずれかに記載のロボットカー教習方法が実現される。
本発明のコンピュータプログラムには、以下の構成のプログラムが含まれる。
[構成9.1]
構成7.1乃至7.17のいずれかに記載のロボットカー教習システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、構成7.1乃至7.17のいずれか1のロボットカー教習システムが実現される。
[構成9.2]
構成8.1乃至8.15のいずれかに記載のロボットカー教習方法を1又は複数のコンピュータを用いて実施するためのコンピュータプログラム。
このコンピュータプログラムを1又は複数のコンピュータにより実行することにより、構成8.1乃至8.15のいずれかに記載のロボットカー教習方法が実現される。
本発明によれば、複数の車両が道路を走行する道路交通システムにおいて、各車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
本発明によれば、車両を複数の利用者によって共用する車両共用システムにおいて、各車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
本発明によれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
本発明によれば、車両を複数の利用者によって共用する車両共用システムにおいて、各車両は、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転制御を行うことにより、当該他車両と同等レベルの運転性能で当該状況に対処できる。
本発明によれば、非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させて、ロボットカーの自動運転性能を向上させることができる。ロボットカーの自動運転性能が向上するにつれて、ロボットカーの安全性・信頼性が向上し、ひいてはロボットカーと非ロボットカーとが共存する道路交通システム全体の安全性・信頼性が向上する。
[用語の説明等]
ロボットカーとは、人間の運転なしで自動で走行できる自動車である。日本では「自動運転車」とも呼ばれている。英語では「autonomous car」と表記される。その他「UGV (unmanned ground vehicle)」「ドライバーレスカー (driverless car)」「self-driving car」などとも呼ばれている。(ウィキペディアより引用)
非ロボットカーとは、ロボットカー以外の自動車である。非ロボットカーは、ヒューマンドライバにより運転操作がなされる。
人間の運転なしで自動で走行できる機能(自動運転機能)を持っていない自動車は、非ロボットカーである。非ロボットカーには、手動運転機能と運転支援機能とを持ち自動運転機能を持たない自動車が含まれる。手動運転機能と運転支援機能と自動運転機能とを兼ね備えた自動車は、手動運転モード又は運転支援モードでの走行時には非ロボットカーとして機能し、自動運転モードでの走行時にはロボットカーとして機能する。
走行状況(運転状況)には、自己状況と非自己状況(外界環境)とが含まれる。
自己状況には、当該車両の地球上における位置(緯度、経度)、当該車両の運動状況(内界環境)、周辺物体との相対状況、等が含まれる。
当該車両の運動状況は、重心位置(x,y,z)、ヨー(ψ)、ロール(φ)、ピッチ(θ)、)、速度(重心位置の一階時間微分)、加速度(重心位置の二階時間微分)、角速度(ヨーレート)、等により表現される。
周辺物体は、車両の周辺に存在する物体である。
周辺物体には、車両、歩行者、地上静止物、等が含まれる。
周辺物体との相対状況には、当該車両と周辺の物体との位置関係、当該車両と周辺の物体との距離、等が含まれる。
地上静止物には、交通信号、道路標識、横断歩道、路肩、ガードレール、電柱、塀、車庫、家屋、等が含まれる。
非自己状況(外界環境)の例として、走行経路、走行車線、走行車線の幅、車線数、道路形状、道路勾配、路面の種類、路面状態、周囲の明るさ、天候、信号機の表示内容、周辺車両数、前方車両速度、前方車両加速度、周辺障害物、走行車線の種類、等を挙げることができる。
運転操作は、操作の内容と当該操作の操作量とを含む概念である。
操作の内容の例として、当該車両の推進力を調整するための操作(アクセル操作)、当該車両の制動力を調整するための操作(ブレーキ操作)、当該車両の操舵角または操舵角速度を調整するための操作(ステアリング操作)、当該車両のトランスミッションの歯車の組み合わせを変える操作(シフト操作)、等を挙げることができる。
運転行動情報は、車両の走行状況と当該車両においてなされた運転操作とを対応付けた情報であり、経路上位置-運転操作対応情報、入出車経路位置-運転操作対応情報、等が含まれる。
経路上位置-運転操作対応情報の例として、経路上の各地点(要所要所)においてなされたブレーキ操作の情報(経路上位置-ブレーキ操作対応テーブル)、経路上の各地点においてなされたブレーキ操作及びステアリング操作の情報(経路上位置-ステアリング操作対応テーブル)、経路上の各地点においてなされたブレーキ操作及びアクセル操作の情報(経路上位置-ブレーキ操作・アクセル操作対応テーブル)、経路上の各地点においてなされたアクセル操作及びステアリング操作の情報(経路上位置-アクセル操作・ステアリング操作対応テーブル)、経路上の各地点においてなされたブレーキ操作及びシフト操作の情報(経路上位置-ブレーキ操作・シフト操作対応テーブル)、経路上の各地点においてなされたステアリング操作及びシフト操作の情報(経路上位置-ステアリング操作・シフト操作対応テーブル)、経路上の各地点においてなされたアクセル操作及びシフト操作の情報(経路上位置-アクセル操作・シフト操作対応テーブル)、経路上の各地点においてなされたブレーキ操作、アクセル操作、ステアリング操作及びシフト操作の情報(経路上位置-ブレーキ操作・アクセル操作・ステアリング操作・シフト操作対応テーブル)、経路と運転操作及び消費エネルギとを関連付けた情報(経路-運転操作・消費エネルギ対応テーブル)、経路と運転操作及び回生エネルギ吸収率とを関連付けた情報(経路-運転操作・回生エネルギ吸収率対応テーブル)、等を挙げることができる。
入出車経路位置-運転操作対応情報の例として、駐車スペースに入車(駐車)するための移動経路上の各地点においてなされた駐車操作(運転操作)の情報(入車経路上位置-運転操作対応テーブル)、駐車スペースから出車するための移動経路上の各地点においてなされた出車操作(運転操作)の情報(出車経路上位置-運転操作対応テーブル)、等を挙げることができる。
学習には、手動運転走行時に得られた各種データに基づく学習と、運転支援走行時に得られた各種データに基づく学習と、自動運転走行時に得られた各種データに基づく学習とが含まれる。
学習には、行動計画の学習、操作傾向についての学習、周辺物体についての学習、等が含まれる。
行動計画の学習には、実行すべき運転操作を決定するための知識(データ)の学習、実行すべき運転操作を決定するための計算式(プログラム)の学習、等が含まれる。
知識の学習の例として、他車両の運転行動情報を学習データセットとして、実行すべき運転操作を決定するための判断基準(運転知識)を学習していく所謂教師あり学習を挙げることができる。この場合、ある走行状況に対して、他車両においてなされたのと同じ運転操作(正解の操作)が自車両においてなされるように知識の更新がなされる。
知識の学習の別の例として、他車両の運転行動情報から把握される他車両の運転行動により近い運転行動をとったときにプラスの報酬を与え、当該他車両の運転行動からより遠い運転行動をとったときにマイナスの報酬(罰)を与えて、どのように行動するとどれくらいの報酬が得られそうかを学習させていき、最も多くの報酬が得られそうな行動がなされるように知識を更新する所謂強化学習を挙げることができる。この場合、最も多くの報酬が得られそうな行動がなされるように知識が更新されることで、結果的に最適な運転行動がなされるようになる。
計算式(プログラム)の学習の例として、他車両の運転行動情報に基づいて実行すべき運転操作を決定(推定)する運転操作決定関数(計算式)を学習する所謂パラメタ学習を挙げることができる。この場合、例えば、他車両の運転行動情報と運転操作決定関数の与える運転操作との誤差が最小となるように、運転操作決定関数のパラメタの調整がなされる。この場合のパラメタ学習には、他車両の運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において当該他車両と同じ運転操作(正解の操作)が自車両においてなされるように、運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)が含まれる。
計算式(プログラム)の学習の別の例として、他車両の運転行動情報から把握される他車両の運転行動により近い運転行動をとったときにプラスの報酬を与え、当該他車両の運転行動からより遠い運転行動をとったときにマイナスの報酬(罰)を与えて、どのように行動するとどれくらいの報酬が得られそうかを学習させていき、最も多くの報酬が得られそうな行動をとるように運転操作決定関数のパラメタを調整する所謂強化学習を挙げることができる。この場合、最も多くの報酬が得られそうな行動をとるように運転操作決定関数のパラメタが調整されることで、結果的に最適な運転行動がなされるようになる。
操作傾向についての学習の例として、各地点の通過回数と各地点においてなされた運転操作の回数・操作量に基づく学習を挙げることができる。例えば、各地点の通過回数と当該地点においてなされた特定の運転操作の回数の割合を計算し、当該割合が所定値以上であれば当該地点を要操作地点に設定し、当該割合が所定値未満であれば当該地点を操作不要地点に設定する。学習の結果、要操作地点に設定された地点では、運転支援制御又は自動運転制御が実行される。
特定の運転操作の例として、操作量が所定値以上のブレーキ操作、操作量が所定値以上のアクセル操作、操作量が所定値以上のステアリング操作、操作量(ギヤ比の変化量)が所定値以上のシフト操作、等を挙げることができる。
周辺の物体についての学習の例として、各地点の通過回数と各地点における周辺の物体の検出回数に基づく学習を挙げることができる。例えば、各地点の通過回数と当該地点において検出された特定の周辺物体の検出回数の割合を計算し、当該割合が所定値以上であれば当該地点を要注意地点に設定し、当該割合が所定値未満であれば当該地点を標準注意地点に設定する。学習の結果、要注意地点に設定された地点では、標準注意地点における検出精度よりも高精度で周辺の物体の検出処理が実行され、その検出結果に基づいて、より安全性を考慮した運転支援制御又は自動運転制御が実行される。
より安全性を考慮した運転支援制御の例として、特定の周辺物体に自車両が接触する可能性をより小さくする運転支援制御(接触回避支援制御)、特定の周辺物体に自車両が接触したときの衝撃をより小さくする運転支援制御(制動支援制御)、等を挙げることができる。
より安全性を考慮した自動運転制御の例として、特定の周辺物体に自車両が接触する可能性をより小さくする自動運転制御(接触回避運転制御)、特定の周辺物体に自車両が接触したときの衝撃をより小さくする自動運転制御(制動運転制御)、等を挙げることができる。
周辺の物体についての学習には、周辺の物体についての時間帯毎の学習が含まれる。周辺の物体についての時間帯毎の学習の場合、前記割合が一日の時間帯毎に計算され、前記要注意地点が時間帯毎に設定される。
運転操作についての学習及び周辺の物体についての学習には、車両属性を考慮した学習が含まれる。
特定の周辺の物体の例として、車両前方の横断歩道上の歩行者や自転車、車両前方の道路を横切る歩行者や自転車、対向車、追い越し車、路上の障害物、等を挙げることができる。
路上の障害物の例として、路側に駐・停車中の車両、路側や曲がり角の電柱、路上に置かれたゴミ箱や看板、道路上に張り出した看板や樹木、等を挙げることができる。
ロボットカーとは、人間の運転なしで自動で走行できる自動車である。日本では「自動運転車」とも呼ばれている。英語では「autonomous car」と表記される。その他「UGV (unmanned ground vehicle)」「ドライバーレスカー (driverless car)」「self-driving car」などとも呼ばれている。(ウィキペディアより引用)
非ロボットカーとは、ロボットカー以外の自動車である。非ロボットカーは、ヒューマンドライバにより運転操作がなされる。
人間の運転なしで自動で走行できる機能(自動運転機能)を持っていない自動車は、非ロボットカーである。非ロボットカーには、手動運転機能と運転支援機能とを持ち自動運転機能を持たない自動車が含まれる。手動運転機能と運転支援機能と自動運転機能とを兼ね備えた自動車は、手動運転モード又は運転支援モードでの走行時には非ロボットカーとして機能し、自動運転モードでの走行時にはロボットカーとして機能する。
走行状況(運転状況)には、自己状況と非自己状況(外界環境)とが含まれる。
自己状況には、当該車両の地球上における位置(緯度、経度)、当該車両の運動状況(内界環境)、周辺物体との相対状況、等が含まれる。
当該車両の運動状況は、重心位置(x,y,z)、ヨー(ψ)、ロール(φ)、ピッチ(θ)、)、速度(重心位置の一階時間微分)、加速度(重心位置の二階時間微分)、角速度(ヨーレート)、等により表現される。
周辺物体は、車両の周辺に存在する物体である。
周辺物体には、車両、歩行者、地上静止物、等が含まれる。
周辺物体との相対状況には、当該車両と周辺の物体との位置関係、当該車両と周辺の物体との距離、等が含まれる。
地上静止物には、交通信号、道路標識、横断歩道、路肩、ガードレール、電柱、塀、車庫、家屋、等が含まれる。
非自己状況(外界環境)の例として、走行経路、走行車線、走行車線の幅、車線数、道路形状、道路勾配、路面の種類、路面状態、周囲の明るさ、天候、信号機の表示内容、周辺車両数、前方車両速度、前方車両加速度、周辺障害物、走行車線の種類、等を挙げることができる。
運転操作は、操作の内容と当該操作の操作量とを含む概念である。
操作の内容の例として、当該車両の推進力を調整するための操作(アクセル操作)、当該車両の制動力を調整するための操作(ブレーキ操作)、当該車両の操舵角または操舵角速度を調整するための操作(ステアリング操作)、当該車両のトランスミッションの歯車の組み合わせを変える操作(シフト操作)、等を挙げることができる。
運転行動情報は、車両の走行状況と当該車両においてなされた運転操作とを対応付けた情報であり、経路上位置-運転操作対応情報、入出車経路位置-運転操作対応情報、等が含まれる。
経路上位置-運転操作対応情報の例として、経路上の各地点(要所要所)においてなされたブレーキ操作の情報(経路上位置-ブレーキ操作対応テーブル)、経路上の各地点においてなされたブレーキ操作及びステアリング操作の情報(経路上位置-ステアリング操作対応テーブル)、経路上の各地点においてなされたブレーキ操作及びアクセル操作の情報(経路上位置-ブレーキ操作・アクセル操作対応テーブル)、経路上の各地点においてなされたアクセル操作及びステアリング操作の情報(経路上位置-アクセル操作・ステアリング操作対応テーブル)、経路上の各地点においてなされたブレーキ操作及びシフト操作の情報(経路上位置-ブレーキ操作・シフト操作対応テーブル)、経路上の各地点においてなされたステアリング操作及びシフト操作の情報(経路上位置-ステアリング操作・シフト操作対応テーブル)、経路上の各地点においてなされたアクセル操作及びシフト操作の情報(経路上位置-アクセル操作・シフト操作対応テーブル)、経路上の各地点においてなされたブレーキ操作、アクセル操作、ステアリング操作及びシフト操作の情報(経路上位置-ブレーキ操作・アクセル操作・ステアリング操作・シフト操作対応テーブル)、経路と運転操作及び消費エネルギとを関連付けた情報(経路-運転操作・消費エネルギ対応テーブル)、経路と運転操作及び回生エネルギ吸収率とを関連付けた情報(経路-運転操作・回生エネルギ吸収率対応テーブル)、等を挙げることができる。
入出車経路位置-運転操作対応情報の例として、駐車スペースに入車(駐車)するための移動経路上の各地点においてなされた駐車操作(運転操作)の情報(入車経路上位置-運転操作対応テーブル)、駐車スペースから出車するための移動経路上の各地点においてなされた出車操作(運転操作)の情報(出車経路上位置-運転操作対応テーブル)、等を挙げることができる。
学習には、手動運転走行時に得られた各種データに基づく学習と、運転支援走行時に得られた各種データに基づく学習と、自動運転走行時に得られた各種データに基づく学習とが含まれる。
学習には、行動計画の学習、操作傾向についての学習、周辺物体についての学習、等が含まれる。
行動計画の学習には、実行すべき運転操作を決定するための知識(データ)の学習、実行すべき運転操作を決定するための計算式(プログラム)の学習、等が含まれる。
知識の学習の例として、他車両の運転行動情報を学習データセットとして、実行すべき運転操作を決定するための判断基準(運転知識)を学習していく所謂教師あり学習を挙げることができる。この場合、ある走行状況に対して、他車両においてなされたのと同じ運転操作(正解の操作)が自車両においてなされるように知識の更新がなされる。
知識の学習の別の例として、他車両の運転行動情報から把握される他車両の運転行動により近い運転行動をとったときにプラスの報酬を与え、当該他車両の運転行動からより遠い運転行動をとったときにマイナスの報酬(罰)を与えて、どのように行動するとどれくらいの報酬が得られそうかを学習させていき、最も多くの報酬が得られそうな行動がなされるように知識を更新する所謂強化学習を挙げることができる。この場合、最も多くの報酬が得られそうな行動がなされるように知識が更新されることで、結果的に最適な運転行動がなされるようになる。
計算式(プログラム)の学習の例として、他車両の運転行動情報に基づいて実行すべき運転操作を決定(推定)する運転操作決定関数(計算式)を学習する所謂パラメタ学習を挙げることができる。この場合、例えば、他車両の運転行動情報と運転操作決定関数の与える運転操作との誤差が最小となるように、運転操作決定関数のパラメタの調整がなされる。この場合のパラメタ学習には、他車両の運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において当該他車両と同じ運転操作(正解の操作)が自車両においてなされるように、運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)が含まれる。
計算式(プログラム)の学習の別の例として、他車両の運転行動情報から把握される他車両の運転行動により近い運転行動をとったときにプラスの報酬を与え、当該他車両の運転行動からより遠い運転行動をとったときにマイナスの報酬(罰)を与えて、どのように行動するとどれくらいの報酬が得られそうかを学習させていき、最も多くの報酬が得られそうな行動をとるように運転操作決定関数のパラメタを調整する所謂強化学習を挙げることができる。この場合、最も多くの報酬が得られそうな行動をとるように運転操作決定関数のパラメタが調整されることで、結果的に最適な運転行動がなされるようになる。
操作傾向についての学習の例として、各地点の通過回数と各地点においてなされた運転操作の回数・操作量に基づく学習を挙げることができる。例えば、各地点の通過回数と当該地点においてなされた特定の運転操作の回数の割合を計算し、当該割合が所定値以上であれば当該地点を要操作地点に設定し、当該割合が所定値未満であれば当該地点を操作不要地点に設定する。学習の結果、要操作地点に設定された地点では、運転支援制御又は自動運転制御が実行される。
特定の運転操作の例として、操作量が所定値以上のブレーキ操作、操作量が所定値以上のアクセル操作、操作量が所定値以上のステアリング操作、操作量(ギヤ比の変化量)が所定値以上のシフト操作、等を挙げることができる。
周辺の物体についての学習の例として、各地点の通過回数と各地点における周辺の物体の検出回数に基づく学習を挙げることができる。例えば、各地点の通過回数と当該地点において検出された特定の周辺物体の検出回数の割合を計算し、当該割合が所定値以上であれば当該地点を要注意地点に設定し、当該割合が所定値未満であれば当該地点を標準注意地点に設定する。学習の結果、要注意地点に設定された地点では、標準注意地点における検出精度よりも高精度で周辺の物体の検出処理が実行され、その検出結果に基づいて、より安全性を考慮した運転支援制御又は自動運転制御が実行される。
より安全性を考慮した運転支援制御の例として、特定の周辺物体に自車両が接触する可能性をより小さくする運転支援制御(接触回避支援制御)、特定の周辺物体に自車両が接触したときの衝撃をより小さくする運転支援制御(制動支援制御)、等を挙げることができる。
より安全性を考慮した自動運転制御の例として、特定の周辺物体に自車両が接触する可能性をより小さくする自動運転制御(接触回避運転制御)、特定の周辺物体に自車両が接触したときの衝撃をより小さくする自動運転制御(制動運転制御)、等を挙げることができる。
周辺の物体についての学習には、周辺の物体についての時間帯毎の学習が含まれる。周辺の物体についての時間帯毎の学習の場合、前記割合が一日の時間帯毎に計算され、前記要注意地点が時間帯毎に設定される。
運転操作についての学習及び周辺の物体についての学習には、車両属性を考慮した学習が含まれる。
特定の周辺の物体の例として、車両前方の横断歩道上の歩行者や自転車、車両前方の道路を横切る歩行者や自転車、対向車、追い越し車、路上の障害物、等を挙げることができる。
路上の障害物の例として、路側に駐・停車中の車両、路側や曲がり角の電柱、路上に置かれたゴミ箱や看板、道路上に張り出した看板や樹木、等を挙げることができる。
車両属性には、車種、車両寸法、内外輪差、車両重量、車両の使用形態、車両種別の区分、車体番号、ドア開放幅、エンジン形式、等が含まれる。
車両の使用形態の例として、自家用車、営業車、貨物輸送車、旅客輸送車(タクシー)、旅客輸送車(バス)、等を挙げることができる。車両種別の区分には、大型車、小型車、二輪車、等がある。
車両属性を考慮した運転操作についての学習の場合、例えば、車両属性上控えるべき運転操作についての前記割合が計算され、当該割合が所定値以上の地点が要注意地点に設定される。
車両属性を考慮した周辺の物体についての学習の場合、例えば、車両属性上所定距離以内に接近する可能性が高い周辺の物体についての前記割合が計算され、当該割合が所定値以上の地点が要注意地点に設定される。
車両属性上控えるべき運転操作の例として、重心位置が高い車両(車高の高い車両、積み荷の多い車両、等)の曲線路などにおける高速走行や急激なステアリング操作、バスやタクシーの急なアクセル操作や急なブレーキ操作、等を挙げることができる。
車両属性上所定距離以内に接近する可能性が高い周辺の物体の例として、車両がバスやタクシーの場合の乗降客、大型車両の場合の電柱や路上に張り出した看板、等を挙げることができる。
車両の使用形態の例として、自家用車、営業車、貨物輸送車、旅客輸送車(タクシー)、旅客輸送車(バス)、等を挙げることができる。車両種別の区分には、大型車、小型車、二輪車、等がある。
車両属性を考慮した運転操作についての学習の場合、例えば、車両属性上控えるべき運転操作についての前記割合が計算され、当該割合が所定値以上の地点が要注意地点に設定される。
車両属性を考慮した周辺の物体についての学習の場合、例えば、車両属性上所定距離以内に接近する可能性が高い周辺の物体についての前記割合が計算され、当該割合が所定値以上の地点が要注意地点に設定される。
車両属性上控えるべき運転操作の例として、重心位置が高い車両(車高の高い車両、積み荷の多い車両、等)の曲線路などにおける高速走行や急激なステアリング操作、バスやタクシーの急なアクセル操作や急なブレーキ操作、等を挙げることができる。
車両属性上所定距離以内に接近する可能性が高い周辺の物体の例として、車両がバスやタクシーの場合の乗降客、大型車両の場合の電柱や路上に張り出した看板、等を挙げることができる。
自車両のドライバによる手動運転時の運転行動(「認識」「判断・計画」「操作」)を機械学習し、その学習結果を参照して自車両の運転支援制御を行う機能を有する運転制御方式は公知である。本発明のロボットカー教習システムの非ロボットカーにおいても、この種の機械学習による運転制御方式を利用可能である。
周辺車両や歩行者など任意の対象物の検出が可能な汎用画像認識システムは公知である。本発明のロボットカー教習システムの車両においても、公知の汎用画像認識システムを利用可能である。歩行者や他車両を検出するための手法として、HOG(Histograms of Orientied Gradients)特徴量抽出、機械学習の手法の一つであるSVM(Support Vector Machine)によるしきい値学習、等が知られている。
周辺車両や歩行者など任意の対象物の検出が可能な汎用画像認識システムは公知である。本発明のロボットカー教習システムの車両においても、公知の汎用画像認識システムを利用可能である。歩行者や他車両を検出するための手法として、HOG(Histograms of Orientied Gradients)特徴量抽出、機械学習の手法の一つであるSVM(Support Vector Machine)によるしきい値学習、等が知られている。
本発明の道路交通システム、車両共用システム及びロボットカー教習システムにおけるコンピューティングシステムには、クラウドコンピューティングシステム(Cloud Computing System)が含まれる。
クラウドコンピューティングとは、インターネットを利用した分散コンピューティングの一つである。
クラウドとは、クラウドコンピューティングを実現するためのデータセンタや、その中で運用されているサーバコンピュータ群などのことをいう。
クラウド技術により、インターネット上にあるデータの所在をユーザに意識させずに大容量のデータを処理することができる。
クラウド技術を利用することにより、本発明の道路交通システム、車両共用システム及びロボットカー教習システム内のビッグデータすなわち、地球上を走行する多数の車両から送信される膨大な数のデータ(走行状況に関するデータ、運転操作に関するデータ、等)を処理することができる。
クラウドコンピューティングとは、インターネットを利用した分散コンピューティングの一つである。
クラウドとは、クラウドコンピューティングを実現するためのデータセンタや、その中で運用されているサーバコンピュータ群などのことをいう。
クラウド技術により、インターネット上にあるデータの所在をユーザに意識させずに大容量のデータを処理することができる。
クラウド技術を利用することにより、本発明の道路交通システム、車両共用システム及びロボットカー教習システム内のビッグデータすなわち、地球上を走行する多数の車両から送信される膨大な数のデータ(走行状況に関するデータ、運転操作に関するデータ、等)を処理することができる。
本発明の道路交通システム、車両共用システム及びロボットカー教習システムは、特許文献1-44、非特許文献1-4、等に記載されている類いのシステムに応用し得る。
[道路交通システム]
図1は本発明の道路交通システムの構成例を示す概念図である。
図1に例示される道路交通システム1は、自動車100とコンピューティングシステム200とを有する。
コンピューティングシステム200は、サーバコンピュータ210とデータベース220とを備える。サーバコンピュータ210は、自動車100を含む多数の車両の運転行動情報をインターネット300経由で受信する。サーバコンピュータ210は、受信した運転行動情報をデータベース220に蓄積する。サーバコンピュータ210は、データベース220から抽出した運転行動情報を、自動車100を含む多数の車両にインターネット300経由で送信する。サーバコンピュータ210は単体でも複数でもよい。データベース220は一つのサーバコンピュータに配置されていても、複数のサーバコンピュータに分散配置されていてもよい。
自動車100は、車載ゲートウェイ110を備える。
車載ゲートウェイ110は、図示しないCPU(Central Processing Unit )、ROM(Read Only Memory )、RAM(Random Access Memory)等を中心に構成される、無線通信機能を備えた情報処理装置である。車載ゲートウェイ110は、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。車載ゲートウェイ110は、各種のデータをインターネット300経由でコンピューティングシステム200にアップロード(サーバコンピュータ210に送信)し、また各種のデータをコンピューティングシステム200からインターネット300経由でダウンロード(サーバコンピュータ210から受信)する。自動車100とコンピューティングシステム200との間で送受信されるデータには、自車両の運転行動情報のデータ及び他車両の運転行動情報のデータが含まれる。
図1は本発明の道路交通システムの構成例を示す概念図である。
図1に例示される道路交通システム1は、自動車100とコンピューティングシステム200とを有する。
コンピューティングシステム200は、サーバコンピュータ210とデータベース220とを備える。サーバコンピュータ210は、自動車100を含む多数の車両の運転行動情報をインターネット300経由で受信する。サーバコンピュータ210は、受信した運転行動情報をデータベース220に蓄積する。サーバコンピュータ210は、データベース220から抽出した運転行動情報を、自動車100を含む多数の車両にインターネット300経由で送信する。サーバコンピュータ210は単体でも複数でもよい。データベース220は一つのサーバコンピュータに配置されていても、複数のサーバコンピュータに分散配置されていてもよい。
自動車100は、車載ゲートウェイ110を備える。
車載ゲートウェイ110は、図示しないCPU(Central Processing Unit )、ROM(Read Only Memory )、RAM(Random Access Memory)等を中心に構成される、無線通信機能を備えた情報処理装置である。車載ゲートウェイ110は、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。車載ゲートウェイ110は、各種のデータをインターネット300経由でコンピューティングシステム200にアップロード(サーバコンピュータ210に送信)し、また各種のデータをコンピューティングシステム200からインターネット300経由でダウンロード(サーバコンピュータ210から受信)する。自動車100とコンピューティングシステム200との間で送受信されるデータには、自車両の運転行動情報のデータ及び他車両の運転行動情報のデータが含まれる。
図2は本発明の道路交通システムにおける車両(自動車)のシステム構成の一例を示す機能ブロック図である。
自動車100は、車載ゲートウェイ110と走行制御システム120とを有する。
車載ゲートウェイ110は、走行制御システム120の制御下で、コンピューティングシステム200と通信する。車載ゲートウェイ110は、コンピューティングシステム200から受信したデータを走行制御システム120に入力する。車載ゲートウェイ110は、走行制御システム120から入力されたデータをコンピューティングシステム200に送信する。
走行制御システム120は、検知部121、車両情報入力部122、測位部123、地図情報入力部124、操作部125、通信部126、表示部127、記憶部129、制御部129、等を備える。
検知部121は、周辺の物体(他車両、歩行者、地上静止物、等)の存在や、周辺の物体の位置、大きさ、相対速度、等を検知するためのセンサ類で構成されている。検知部121は、例えば、ソナー121aやレーダ121b、カメラ121c、3次元レンジセンサ、等で具現化される。
ソナー121aは、自車両の前後左右方向に向けられた各アンテナから超音波を所定領域に送信し、その反射波を受信する。そして、受信した反射波に基づき、自車両の前後左右方向に存在する物体について、自車両との位置関係、距離等を出力する。レーダ121bは、自車両の前後左右方向に向けられたアンテナからレーザ光又はミリ波を照射して所定の検知領域を走査し、その反射波を受信する。そして、受信した反射波に基づき、車両の前後左右方向に存在する物体について、自車両との位置関係、距離、相対速度等を出力する。カメラ121cは、自車両の前後左右方向の所定位置に設けられており、自車両の前後左右方向に存在する周辺車両が写った撮像データを出力する。なお、これらのソナーやレーダ、カメラ121c、3次元レンジセンサ、等のセンサ類は、複数のものを複合的に用いてもよいし、単独で用いてもよい。
車両情報入力部122は、自車両の運動状況(重心位置、ヨー、ロール、ピッチ、速度、加速度、角速度、等)及び運転操作(アクセル操作、ブレーキ操作、ステアリング操作、シフト操作)に関する情報を制御部128に入力する。
測位部123は、地球上における自車両の位置(緯度、経度)を測位し、制御部128に入力する。測位部123は、例えば、高精度GPS(Global Positioning System)に対応した高精度測位受信機等で具現化される。
地図情報入力部124は、道路地図情報を記憶する記憶媒体から、自車両が現在走行している道路に関する情報を取得し、制御部128に入力する。地図情報入力部128によって入力される道路の情報の例として、車線数、車線幅、曲り、勾配、合流、規制等の情報等を挙げることができる。
操作部125は、走行制御のオン・オフや制御モードの切り換え、表示部127における各種表示の切り換え等の操作指示を入力するための入力装置であり、例えば、車両のステアリングホイールのスポーク部分に設けられるスイッチ等により具現化される。
通信部126は、地上静止物に設けられた通信機や、周辺車両に搭載された通信機との間で、通信を行うための通信装置である。地上静止物には、車庫や道路が含まれる。
表示部127は、インストルメントパネル中央部に設けられるセンタディスプレイ、及び、メータパネル内に設けられるインジケータで構成される表示装置である。表示部127には、自車両の状態を示す情報とともに、走行制御のオン・オフや制御モードが表示される。制御モードには、手動運転モードと、運転支援モードと、自動運転モードとがある。
記憶部128は、自車両の運転行動情報及び他車両の運転行動情報を記憶する記憶装置である。
制御部129は、図示しないCPU、ROM、RAM等を中心に構成される情報処理装置であり、走行制御システム120の各部を統括制御する。制御部129は、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。
制御部129は、測位部123から入力された自車両の位置(緯度、経度)と地図情報入力部124から入力された道路地図情報とに基づいて、電柱や信号器などの道路構造物の情報を含む詳細道路データを算出するとともに、検知部121の3次元レンジセンサにより周囲の物体の3次元距離を検出する。そして、3次元距離データと道路地図とをリアルタイムで合成し、3次元レンジセンサにより検出された物体が、道路構造物なのか、道路上の物体(車両、歩行者、等)なのかを正確に識別する。
自車両の位置の高精度把握は、モンテカルロ・ローカリゼーションといった既知の手法により実現され、GPSに位置情報は二次的情報として利用される。周辺物体との相対状況は、カルマンフィルタといった既知の手法により実現される。
制御部129は、検知部121、車両情報入力部122、測位部123、及び、地図情報入力部124から入力された各種情報に基づく自車両の運転行動情報を記憶部19に蓄積する。自車両の運転行動情報には、検知部121、車両情報入力部122、測位部123、及び、地図情報入力部124により得られた操作履歴情報(走行経路上位置-運転操作対応テーブル、入出車経路位置-運転操作対応テーブル、等)が含まれる。
制御部129は、車載ゲートウェイ110を介してコンピューティングシステム200と通信する。
制御部129は、記憶部128に蓄積された自車両の運転行動情報を、車載ゲートウェイ110を介してコンピューティングシステム200に送信する。
制御部129は、車載ゲートウェイ110を介して受信した他車両の運転行動情報を、記憶部128に蓄積する。他車両の運転行動情報には、他車両の検知部121、車両情報入力部122、測位部123、及び、地図情報入力部124により得られた操作履歴情報(走行経路上位置-運転操作対応テーブル、入出車経路位置-運転操作対応テーブル、等)が含まれる。
制御部129は、通信部126を介して周辺の地上静止物や周辺の車両と通信する。
制御部129は、記憶部128に蓄積された自車両の運転行動情報を、通信部126を介して地上静止物や周辺の車両に送信する。
制御部129は、通信部126を介して受信した他車両の運転行動情報を、記憶部128に蓄積する。
制御部129には、運転制御の対象となる車両制御部130が接続されている。
車両制御部130は、エンジンECU(Electronic Control Unit)130a、ブレーキECU130b、舵角ECU130c、スタビリティECU130d、等の各種電子制御装置からなる。エンジンECU130aは、アクセルペダルの操作量やエンジンの状態に応じた制御指令を出して、エンジンの出力を制御する。ブレーキECU130bは、ブレーキペダルの操作量に応じてブレーキの制動力を制御する。舵角ECU130cは、ステアリングの舵角を制御する。スタビリティECU130dは、車両の走行安定性を制御する。
制御部129は、運転操作量(アクセル操作量、ブレーキ操作量、ステアリング操作量、等)に応じて、車両制御部130内の各ECUに指令を与えることで、車両の走行を制御する。
制御部129は、運転支援モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報及び/又は他車両の運転行動情報とに基づいて運転支援情報を生成し、当該運転支援情報を、表示部127などを使用してドライバに報知する。
制御部129は、自動運転モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報及び/又は他車両の運転行動情報とに基づいて運転操作量を決定し、車両制御部130内の各ECUに指令を与える。
上記の例では、車載ゲートウェイ110と走行制御システム120とが各々別個に存在しているが、車載ゲートウェイ110は走行制御システム120と統合できる。
自動車100は、車載ゲートウェイ110と走行制御システム120とを有する。
車載ゲートウェイ110は、走行制御システム120の制御下で、コンピューティングシステム200と通信する。車載ゲートウェイ110は、コンピューティングシステム200から受信したデータを走行制御システム120に入力する。車載ゲートウェイ110は、走行制御システム120から入力されたデータをコンピューティングシステム200に送信する。
走行制御システム120は、検知部121、車両情報入力部122、測位部123、地図情報入力部124、操作部125、通信部126、表示部127、記憶部129、制御部129、等を備える。
検知部121は、周辺の物体(他車両、歩行者、地上静止物、等)の存在や、周辺の物体の位置、大きさ、相対速度、等を検知するためのセンサ類で構成されている。検知部121は、例えば、ソナー121aやレーダ121b、カメラ121c、3次元レンジセンサ、等で具現化される。
ソナー121aは、自車両の前後左右方向に向けられた各アンテナから超音波を所定領域に送信し、その反射波を受信する。そして、受信した反射波に基づき、自車両の前後左右方向に存在する物体について、自車両との位置関係、距離等を出力する。レーダ121bは、自車両の前後左右方向に向けられたアンテナからレーザ光又はミリ波を照射して所定の検知領域を走査し、その反射波を受信する。そして、受信した反射波に基づき、車両の前後左右方向に存在する物体について、自車両との位置関係、距離、相対速度等を出力する。カメラ121cは、自車両の前後左右方向の所定位置に設けられており、自車両の前後左右方向に存在する周辺車両が写った撮像データを出力する。なお、これらのソナーやレーダ、カメラ121c、3次元レンジセンサ、等のセンサ類は、複数のものを複合的に用いてもよいし、単独で用いてもよい。
車両情報入力部122は、自車両の運動状況(重心位置、ヨー、ロール、ピッチ、速度、加速度、角速度、等)及び運転操作(アクセル操作、ブレーキ操作、ステアリング操作、シフト操作)に関する情報を制御部128に入力する。
測位部123は、地球上における自車両の位置(緯度、経度)を測位し、制御部128に入力する。測位部123は、例えば、高精度GPS(Global Positioning System)に対応した高精度測位受信機等で具現化される。
地図情報入力部124は、道路地図情報を記憶する記憶媒体から、自車両が現在走行している道路に関する情報を取得し、制御部128に入力する。地図情報入力部128によって入力される道路の情報の例として、車線数、車線幅、曲り、勾配、合流、規制等の情報等を挙げることができる。
操作部125は、走行制御のオン・オフや制御モードの切り換え、表示部127における各種表示の切り換え等の操作指示を入力するための入力装置であり、例えば、車両のステアリングホイールのスポーク部分に設けられるスイッチ等により具現化される。
通信部126は、地上静止物に設けられた通信機や、周辺車両に搭載された通信機との間で、通信を行うための通信装置である。地上静止物には、車庫や道路が含まれる。
表示部127は、インストルメントパネル中央部に設けられるセンタディスプレイ、及び、メータパネル内に設けられるインジケータで構成される表示装置である。表示部127には、自車両の状態を示す情報とともに、走行制御のオン・オフや制御モードが表示される。制御モードには、手動運転モードと、運転支援モードと、自動運転モードとがある。
記憶部128は、自車両の運転行動情報及び他車両の運転行動情報を記憶する記憶装置である。
制御部129は、図示しないCPU、ROM、RAM等を中心に構成される情報処理装置であり、走行制御システム120の各部を統括制御する。制御部129は、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。
制御部129は、測位部123から入力された自車両の位置(緯度、経度)と地図情報入力部124から入力された道路地図情報とに基づいて、電柱や信号器などの道路構造物の情報を含む詳細道路データを算出するとともに、検知部121の3次元レンジセンサにより周囲の物体の3次元距離を検出する。そして、3次元距離データと道路地図とをリアルタイムで合成し、3次元レンジセンサにより検出された物体が、道路構造物なのか、道路上の物体(車両、歩行者、等)なのかを正確に識別する。
自車両の位置の高精度把握は、モンテカルロ・ローカリゼーションといった既知の手法により実現され、GPSに位置情報は二次的情報として利用される。周辺物体との相対状況は、カルマンフィルタといった既知の手法により実現される。
制御部129は、検知部121、車両情報入力部122、測位部123、及び、地図情報入力部124から入力された各種情報に基づく自車両の運転行動情報を記憶部19に蓄積する。自車両の運転行動情報には、検知部121、車両情報入力部122、測位部123、及び、地図情報入力部124により得られた操作履歴情報(走行経路上位置-運転操作対応テーブル、入出車経路位置-運転操作対応テーブル、等)が含まれる。
制御部129は、車載ゲートウェイ110を介してコンピューティングシステム200と通信する。
制御部129は、記憶部128に蓄積された自車両の運転行動情報を、車載ゲートウェイ110を介してコンピューティングシステム200に送信する。
制御部129は、車載ゲートウェイ110を介して受信した他車両の運転行動情報を、記憶部128に蓄積する。他車両の運転行動情報には、他車両の検知部121、車両情報入力部122、測位部123、及び、地図情報入力部124により得られた操作履歴情報(走行経路上位置-運転操作対応テーブル、入出車経路位置-運転操作対応テーブル、等)が含まれる。
制御部129は、通信部126を介して周辺の地上静止物や周辺の車両と通信する。
制御部129は、記憶部128に蓄積された自車両の運転行動情報を、通信部126を介して地上静止物や周辺の車両に送信する。
制御部129は、通信部126を介して受信した他車両の運転行動情報を、記憶部128に蓄積する。
制御部129には、運転制御の対象となる車両制御部130が接続されている。
車両制御部130は、エンジンECU(Electronic Control Unit)130a、ブレーキECU130b、舵角ECU130c、スタビリティECU130d、等の各種電子制御装置からなる。エンジンECU130aは、アクセルペダルの操作量やエンジンの状態に応じた制御指令を出して、エンジンの出力を制御する。ブレーキECU130bは、ブレーキペダルの操作量に応じてブレーキの制動力を制御する。舵角ECU130cは、ステアリングの舵角を制御する。スタビリティECU130dは、車両の走行安定性を制御する。
制御部129は、運転操作量(アクセル操作量、ブレーキ操作量、ステアリング操作量、等)に応じて、車両制御部130内の各ECUに指令を与えることで、車両の走行を制御する。
制御部129は、運転支援モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報及び/又は他車両の運転行動情報とに基づいて運転支援情報を生成し、当該運転支援情報を、表示部127などを使用してドライバに報知する。
制御部129は、自動運転モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報及び/又は他車両の運転行動情報とに基づいて運転操作量を決定し、車両制御部130内の各ECUに指令を与える。
上記の例では、車載ゲートウェイ110と走行制御システム120とが各々別個に存在しているが、車載ゲートウェイ110は走行制御システム120と統合できる。
上記のように構成された自動車100は、自車両の走行状況と自車両の運転行動情報又は他車両の運転行動情報とに基づいて運転支援や自動運転を行う。自動車100は、手動運転モード又は運転支援モードでの走行時には非ロボットカーとして機能し、自動運転モードでの走行時にはロボットカーとして機能する。
図3は本発明の車両(自動車)の実施形態についての説明図である。
自動車V1(100)は、走行経路Rを走行した経験がない。
自動車V2(100)は、走行経路Rを走行した経験がある。
自動車V2は、走行経路Rを走行した時に運転に関する各種データを取得し、当該各種データを自車両の記憶部128に記憶している。自動車V2は、当該記憶部128に記憶した当該各種データを含む運転行動情報を自動車V1に提供する。この場合の運転行動情報には、走行経路Rと当該経路R上の各地点において自動車V1によりなされた運転操作とを対応付けた情報が含まれる。
自動車(自車両)V1は、自動車(他車両)V2の運転行動情報を自車両V1の運転支援制御及び自動運転制御に利用できる。自動車V1は、走行経路Rを走行した経験がないが、走行経路Rを走行した経験がある自動車(他車両)V2の運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、自動車(他車両)V2と同等レベルの運転支援性能及び自動運転性能を発揮し得る。
自動車V1(100)は、走行経路Rを走行した経験がない。
自動車V2(100)は、走行経路Rを走行した経験がある。
自動車V2は、走行経路Rを走行した時に運転に関する各種データを取得し、当該各種データを自車両の記憶部128に記憶している。自動車V2は、当該記憶部128に記憶した当該各種データを含む運転行動情報を自動車V1に提供する。この場合の運転行動情報には、走行経路Rと当該経路R上の各地点において自動車V1によりなされた運転操作とを対応付けた情報が含まれる。
自動車(自車両)V1は、自動車(他車両)V2の運転行動情報を自車両V1の運転支援制御及び自動運転制御に利用できる。自動車V1は、走行経路Rを走行した経験がないが、走行経路Rを走行した経験がある自動車(他車両)V2の運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、自動車(他車両)V2と同等レベルの運転支援性能及び自動運転性能を発揮し得る。
たとえば、走行経路Rが、幅の狭い曲がりくねった道路や、電柱などの障害物が多く存在する幅の狭い道路である場合、運転に不慣れなドライバやカーシェアリングサービスなどで運転の度に異なる車両に搭乗するドライバにとっては、走行経路Rをスムーズに走行することは簡単ではない。この種の道路をスムーズに走行することはロボットカー(自動運転車)も苦手である。
しかし、自動車V2が走行経路Rを日常スムーズに走行する車両であるならば、自動車V2の運転行動情報を参照して自動車V1が運転支援制御を行うことにより、自動車V1のドライバが運転に不慣れである場合や自動車V1がカーシェアリングサービスなどの車両である場合でも、自動車V1は自動車V2と同等レベルの運転性能で走行経路Rをスムーズに走行することができる。自動車V1がロボットカーである場合でも、自動車V2の運転行動情報を参照して自動車V1が自動運転制御を行うことにより、自動車V1は自動車V2と同等レベルの運転性能で走行経路Rをスムーズに走行することが可能となる。
しかし、自動車V2が走行経路Rを日常スムーズに走行する車両であるならば、自動車V2の運転行動情報を参照して自動車V1が運転支援制御を行うことにより、自動車V1のドライバが運転に不慣れである場合や自動車V1がカーシェアリングサービスなどの車両である場合でも、自動車V1は自動車V2と同等レベルの運転性能で走行経路Rをスムーズに走行することができる。自動車V1がロボットカーである場合でも、自動車V2の運転行動情報を参照して自動車V1が自動運転制御を行うことにより、自動車V1は自動車V2と同等レベルの運転性能で走行経路Rをスムーズに走行することが可能となる。
図4は運転行動情報に含まれる走行経路上位置-運転操作対応テーブルを例示する概念図である。運転行動情報は、データID:Data ID)により管理されている。データIDは、膨大な量の運転行動情報の中から1の運転行動情報のデータを特定し得る固有の値である。データIDにより、車両ID(Car ID)と経路ID(Root ID)との一意の組み合わせが特定される(図5(A)参照)。車両IDは、多数の車両の中から1の車両を特定し得る固有の値である。車両IDにより、当該車両の車両属性も特定される。経路IDは、膨大な数の経路の中から1の経路を特定し得る固有の値である。経路IDにより、出発点(Starting Point)、到着点(Destination Point)及び経由点(Pass Point)の組み合わせが特定される(図5(B)参照)。
図4に例示する運転行動情報は、図6に例示する地図上の経路Rを自動車V2が走行した際に得られたものである。経路Rの出発点(Starting Point)はS1、到着点(Destination Point)はD1、経由点(Pass Point)はPP1,PP2,PP3である。図4に例示する運転行動情報は、経路R上の各地点(P1,P2,・・・,Pn)において自動車V1によりなされた運転操作との対応関係を示している。例えば、地点P1では加速操作(発進操作)が、地点P2では加速操作が、地点P3では減速操作(制動操作)が、地点P4では左転蛇操作(ハンドルを左に回す操作)が、地点P5では右転蛇操作(ハンドルを戻す操作)が、地点P6では加速操作が、地点Pn-3では減速操作(制動操作)が、地点Pn-2では右転蛇操作(ハンドルを右に回す操作)が、地点Pn-1では左転蛇操作(ハンドルを戻す操作)が、地点Pnでは減速操作(制動操作)が、それぞれなされたことが示されている。図中の「xxx」は各操作における操作量である。
図4に例示する運転行動情報は、図6に例示する地図上の経路Rを自動車V2が走行した際に得られたものである。経路Rの出発点(Starting Point)はS1、到着点(Destination Point)はD1、経由点(Pass Point)はPP1,PP2,PP3である。図4に例示する運転行動情報は、経路R上の各地点(P1,P2,・・・,Pn)において自動車V1によりなされた運転操作との対応関係を示している。例えば、地点P1では加速操作(発進操作)が、地点P2では加速操作が、地点P3では減速操作(制動操作)が、地点P4では左転蛇操作(ハンドルを左に回す操作)が、地点P5では右転蛇操作(ハンドルを戻す操作)が、地点P6では加速操作が、地点Pn-3では減速操作(制動操作)が、地点Pn-2では右転蛇操作(ハンドルを右に回す操作)が、地点Pn-1では左転蛇操作(ハンドルを戻す操作)が、地点Pnでは減速操作(制動操作)が、それぞれなされたことが示されている。図中の「xxx」は各操作における操作量である。
自動車V2から自動車V1へ運転行動情報を受け渡す方法は任意である。その方法の例として、自車両V1と他車両V2との間の通信(図7参照)、自車両V1と地上静止物410との間の通信(図8参照)、自車両V1と道路420との間の通信(図9参照)、自車両V1と携帯端末500との間の通信(図10参照)、コンピューティングシステム(クラウドシステム)200を介しての情報の受け渡し(図11参照)、等を挙げることができる。
図8には、地上静止物410として道路の信号機が例示されている。自動車V1、V2は、信号機410をアクセスポイント(AP)に利用して運転行動情報を送受信する。図8の例では、自動車V2から送信された自動車V2の運転行動情報が信号機410を媒介として自動車V1に受信されている。なお、運転行動情報を受信する信号機410とその運転行動情報を送信する信号機410は、同一の信号機であってもよいし、異なる信号機であってもよい。
図9の例では、道路に沿って所定間隔ごとにアクセスポイント(AP)が配置されている。アクセスポイント(AP)は、路面に埋設されてもよいし、道路の側方に設けられてもよい。
図10の例では、自動車(他車両)V2の運転行動情報が自動車(自車両)V1のドライバの携帯端末500に記憶されている。当該運転行動情報はコンピューティングシステム200から携帯端末430にダウンロードされたものである。そして、自動車V1の車内における近距離無線通信により、自動車(他車両)V2の運転行動情報が携帯端末430から自動車V1に送信される。
図11の構成は、自動車V1、V2がインターネット300経由でコンピューティングシステム200と通信を行うためのアクセスポイントとして、例えば図8に示す地上静止物410や図9に示す道路420に設けられたアクセスポイント(AP)を使用することにより実現可能である。
図8には、地上静止物410として道路の信号機が例示されている。自動車V1、V2は、信号機410をアクセスポイント(AP)に利用して運転行動情報を送受信する。図8の例では、自動車V2から送信された自動車V2の運転行動情報が信号機410を媒介として自動車V1に受信されている。なお、運転行動情報を受信する信号機410とその運転行動情報を送信する信号機410は、同一の信号機であってもよいし、異なる信号機であってもよい。
図9の例では、道路に沿って所定間隔ごとにアクセスポイント(AP)が配置されている。アクセスポイント(AP)は、路面に埋設されてもよいし、道路の側方に設けられてもよい。
図10の例では、自動車(他車両)V2の運転行動情報が自動車(自車両)V1のドライバの携帯端末500に記憶されている。当該運転行動情報はコンピューティングシステム200から携帯端末430にダウンロードされたものである。そして、自動車V1の車内における近距離無線通信により、自動車(他車両)V2の運転行動情報が携帯端末430から自動車V1に送信される。
図11の構成は、自動車V1、V2がインターネット300経由でコンピューティングシステム200と通信を行うためのアクセスポイントとして、例えば図8に示す地上静止物410や図9に示す道路420に設けられたアクセスポイント(AP)を使用することにより実現可能である。
図12は本発明の自動車の別の実施形態についての説明図である。
車庫Gは、自動車V2(100)が日常使用している車庫である。
車庫Gは、細い道路STに面しているため、運転に不慣れなドライバやカーシェアリングサービスなどで運転の度に異なる車両に搭乗するドライバにとっては入庫操作が難しい。
車庫Gの左側斜め前方には、道路STから分岐した形状の凹部Dがある。
自動車V2を車庫Gに入れるためには、先ず、図13(A)に示すように、自動車V2の右先端が凹部Dの中に入るまで、自動車V2を右斜め方向に前進させなければならない。その後、図13(B)に示すように、軌道が弧を描くように蛇角を注意深く調整しながら自動車V2を進行させなければならない。
自動車V2は、車庫Gに入庫した時に運転に関する各種データを取得し、当該各種データを自車両の記憶部128に記憶している。自動車V2は、当該記憶部128に記憶した当該各種データを含む運転行動情報を自動車V1(100)に提供する。この場合の運転行動情報には、車庫Gに入庫するための移動経路と当該経路上の各地点において自動車V2によりなされた運転操作とを対応付けた情報(入出車経路位置-運転操作対応テーブル)が含まれる。自動車V2がその運転行動情報を自動車V1に提供する方法は任意である。
車庫Gは、自動車V2(100)が日常使用している車庫である。
車庫Gは、細い道路STに面しているため、運転に不慣れなドライバやカーシェアリングサービスなどで運転の度に異なる車両に搭乗するドライバにとっては入庫操作が難しい。
車庫Gの左側斜め前方には、道路STから分岐した形状の凹部Dがある。
自動車V2を車庫Gに入れるためには、先ず、図13(A)に示すように、自動車V2の右先端が凹部Dの中に入るまで、自動車V2を右斜め方向に前進させなければならない。その後、図13(B)に示すように、軌道が弧を描くように蛇角を注意深く調整しながら自動車V2を進行させなければならない。
自動車V2は、車庫Gに入庫した時に運転に関する各種データを取得し、当該各種データを自車両の記憶部128に記憶している。自動車V2は、当該記憶部128に記憶した当該各種データを含む運転行動情報を自動車V1(100)に提供する。この場合の運転行動情報には、車庫Gに入庫するための移動経路と当該経路上の各地点において自動車V2によりなされた運転操作とを対応付けた情報(入出車経路位置-運転操作対応テーブル)が含まれる。自動車V2がその運転行動情報を自動車V1に提供する方法は任意である。
図14には、自動車V1、V2と車庫Gとの間の通信により運転行動情報の受け渡しが行なわれる場合が例示されている。図14の例では、車庫Gの入り口近傍に、車庫入れ経験提供装置440が設けられている。車庫入れ経験報提供装置440は、自動車V2からその運転行動情報(経験情報)を受信し(運転行動情報受信機能)、その運転行動情報を記憶部に記憶している(運転行動情報記憶機能)。そして、車庫入れ経験提供装置440は、自動車V1が車庫Gに近づいたら、その記憶部に記憶されている運転行動情報を自動車V1に送信する。
自動車V1は、自動車V2の運転行動情報を自車両の運転支援制御及び自動運転制御に利用する。自動車V1は、車庫Gに入庫した経験はないが、車庫Gを日常的に使用している自動車V2の運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、自動車V2と同等レベルの運転支援性能及び自動運転性能で車庫Gに入庫することができる。出庫の場合も同様である。
自動車V1は、自動車V2の運転行動情報を自車両の運転支援制御及び自動運転制御に利用する。自動車V1は、車庫Gに入庫した経験はないが、車庫Gを日常的に使用している自動車V2の運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、自動車V2と同等レベルの運転支援性能及び自動運転性能で車庫Gに入庫することができる。出庫の場合も同様である。
図15は本発明の道路交通システムにおけるコンピューティングシステムの構成例を示す概念図である。
コンピューティングシステム200内のサーバコンピュータ210は、1又は複数の自動車V1、V2、V3・・・の運転行動情報(経験情報)をインターネット経由で受信し(運転行動情報受信機能210a)、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の自動車V1、V2、V3・・・にインターネット300経由で送信する(運転行動情報送信機能210b)。サーバコンピュータ210から運転行動情報を受信した車両は、当該運転行動情報を自車両の運転支援制御及び自動運転制御に利用できる。自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、当該他車両と同等レベルの運転支援性能及び自動運転性能で当該状況に対処できる。
このシステムによれば、多数の自動車V1、V2、V3、・・・、Vnが運転行動情報を互いに利用し合うことにより、各車両の運転支援性能及び自動運転性能を効率良く向上させることができる。これにより、多数の自動車V1、V2、V3、・・・、Vnが自車両の経験のみならず他車両の経験も活用して各車両の運転支援性能及び自動運転性能を向上させ得る道路交通システムを実現することができる。
コンピューティングシステム200内のサーバコンピュータ210は、1又は複数の自動車V1、V2、V3・・・の運転行動情報(経験情報)をインターネット経由で受信し(運転行動情報受信機能210a)、当該運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の自動車V1、V2、V3・・・にインターネット300経由で送信する(運転行動情報送信機能210b)。サーバコンピュータ210から運転行動情報を受信した車両は、当該運転行動情報を自車両の運転支援制御及び自動運転制御に利用できる。自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、当該他車両と同等レベルの運転支援性能及び自動運転性能で当該状況に対処できる。
このシステムによれば、多数の自動車V1、V2、V3、・・・、Vnが運転行動情報を互いに利用し合うことにより、各車両の運転支援性能及び自動運転性能を効率良く向上させることができる。これにより、多数の自動車V1、V2、V3、・・・、Vnが自車両の経験のみならず他車両の経験も活用して各車両の運転支援性能及び自動運転性能を向上させ得る道路交通システムを実現することができる。
図16は本発明の道路交通システムにおけるコンピューティングシステムの別の構成例を示す概念図である。
コンピューティングシステム200内のサーバコンピュータ210は、1又は複数の車両の運転行動情報(経験情報)をインターネット300経由で受信し(運転行動情報受信機能210a)、当該運転行動情報に基づいて最適化された運転行動情報を生成し(最適化情報生成機能210c)、当該最適化された運転行動情報を最新の情報に更新して管理し(最適化情報更新機能210d)、1又は複数の車両にインターネット経由で送信する(運転行動情報送信機能210b)。
サーバコンピュータ210から運転行動情報を受信した車両は、当該運転行動情報を自車両の運転制御に利用できる。自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて最適化された運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転支援性能及び自動運転性能で当該状況に対処できる。
このシステムによれば、多数の自動車V1、V2、V3、・・・、Vnが運転行動情報を互いに利用し合うことにより、各車両の運転支援性能及び自動運転性能を効率良く最適化することができる。これにより、多数の自動車V1、V2、V3、・・・、Vnが自車両の経験のみならず他車両の経験も活用して各車両の運転支援性能及び自動運転性能を効率良く最適化し得る道路交通システムシステムを実現することができる。最適化の対象には、消費エネルギ、回生エネルギ、事故発生率、等が含まれる。
サーバコンピュータ210は、運転行動情報の提供元車両と提供先車両の車両属性(車種、車両寸法、内外輪差、等)が異なる場合、提供先車両の車両属性に応じて、提供する運転行動情報を最適値に修正する。したがって、提供元車両と提供先車両の車両属性がが異なる場合でも、提供先車両には、その自動車のために最適化された運転行動情報が提供される。最適化された運転行動情報の例として、その時々の走行状況に応じて、提供先車両が障害物と接触する可能性が最も小さくなるように修正された運転行動情報を挙げることができる。この構成により、たとえば、提供元車両と提供先車両が全く同じ経路を走行する場合でも、両車両の車両寸法や内外輪差が相違する場合には、両車両のステアリング操作量やブレーキ操作のタイミングを修正した運転行動情報が提供先車両に提供される。提供元車両と提供先車両との対応関係は、多対1の関係であることもある。多対1の関係の場合、複数の提供元車両の運転行動情報の平均値を修正した運転行動情報を提供先車両に提供することが望ましい。
コンピューティングシステム200内のサーバコンピュータ210は、1又は複数の車両の運転行動情報(経験情報)をインターネット300経由で受信し(運転行動情報受信機能210a)、当該運転行動情報に基づいて最適化された運転行動情報を生成し(最適化情報生成機能210c)、当該最適化された運転行動情報を最新の情報に更新して管理し(最適化情報更新機能210d)、1又は複数の車両にインターネット経由で送信する(運転行動情報送信機能210b)。
サーバコンピュータ210から運転行動情報を受信した車両は、当該運転行動情報を自車両の運転制御に利用できる。自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動情報に基づいて最適化された運転行動情報に基づいて運転支援制御及び自動運転制御を行うことにより、当該他車両と同等レベルかそれ以上の運転支援性能及び自動運転性能で当該状況に対処できる。
このシステムによれば、多数の自動車V1、V2、V3、・・・、Vnが運転行動情報を互いに利用し合うことにより、各車両の運転支援性能及び自動運転性能を効率良く最適化することができる。これにより、多数の自動車V1、V2、V3、・・・、Vnが自車両の経験のみならず他車両の経験も活用して各車両の運転支援性能及び自動運転性能を効率良く最適化し得る道路交通システムシステムを実現することができる。最適化の対象には、消費エネルギ、回生エネルギ、事故発生率、等が含まれる。
サーバコンピュータ210は、運転行動情報の提供元車両と提供先車両の車両属性(車種、車両寸法、内外輪差、等)が異なる場合、提供先車両の車両属性に応じて、提供する運転行動情報を最適値に修正する。したがって、提供元車両と提供先車両の車両属性がが異なる場合でも、提供先車両には、その自動車のために最適化された運転行動情報が提供される。最適化された運転行動情報の例として、その時々の走行状況に応じて、提供先車両が障害物と接触する可能性が最も小さくなるように修正された運転行動情報を挙げることができる。この構成により、たとえば、提供元車両と提供先車両が全く同じ経路を走行する場合でも、両車両の車両寸法や内外輪差が相違する場合には、両車両のステアリング操作量やブレーキ操作のタイミングを修正した運転行動情報が提供先車両に提供される。提供元車両と提供先車両との対応関係は、多対1の関係であることもある。多対1の関係の場合、複数の提供元車両の運転行動情報の平均値を修正した運転行動情報を提供先車両に提供することが望ましい。
図17は本発明の道路交通システムの別の構成例を示す概念図である。
この道路交通システム1を構成する車両100は、ロボットカー(自動運転車)100Aと非ロボットカー(手動運転車又は運転支援機能付き自動車)100Bとに大別される。図17には、ロボットカー100Aと非ロボットカー100Bが各一台ずつしか示されていないが、実際のシステムでは、ロボットカー100Aは複数台あり、非ロボットカー100Bは一台又は複数台ある。
コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bから運転行動情報(経験情報)を受信する運転行動情報受信機能210aと、運転行動情報をロボットカー100Aに送信する運転行動情報送信機能210bと、を有する。
ロボットカー100Aは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両である。ロボットカー100Aは、自車両の走行状況を認知する走行状況認知部100Aaと、非ロボットカー100Bの運転行動情報をコンピューティングシステム200から受信する運転行動情報受信部100Abと、運転行動情報受信部100Abにより受信した運転行動情報を参照しつつ自車両の走行状況認知部100Aaにより認知された走行状況に応じた自動運転制御を行う自動運転制御部100Acと、を有する。
ロボットカー100Aは、自動運転走行時に得られた各種データに基づいて運転操作を学習しつつ自動運転制御を行う。ロボットカー100Aには、緊急時にヒューマンドライバが回避操作し得る所謂ドライバ支援型自動運転車が含まれる。
非ロボットカー100Bは、ヒューマンドライバにより運転操作がなされる車両である。非ロボットカー100Bは、自車両の走行状況を認知する走行状況認知部100Baと、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部100Bbと、走行状況認知部100Baにより認知された走行状況と運転操作検出部100Bbにより検出された運転操作とを対応付けた運転行動情報をコンピューティングシステム200に送信する運転行動情報送信部100Bcと、を有する。非ロボットカー100Bは、自車両のドライバによる運転操作を学習しつつ運転支援制御を実行する。
この道路交通システム1を構成する車両100は、ロボットカー(自動運転車)100Aと非ロボットカー(手動運転車又は運転支援機能付き自動車)100Bとに大別される。図17には、ロボットカー100Aと非ロボットカー100Bが各一台ずつしか示されていないが、実際のシステムでは、ロボットカー100Aは複数台あり、非ロボットカー100Bは一台又は複数台ある。
コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bから運転行動情報(経験情報)を受信する運転行動情報受信機能210aと、運転行動情報をロボットカー100Aに送信する運転行動情報送信機能210bと、を有する。
ロボットカー100Aは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両である。ロボットカー100Aは、自車両の走行状況を認知する走行状況認知部100Aaと、非ロボットカー100Bの運転行動情報をコンピューティングシステム200から受信する運転行動情報受信部100Abと、運転行動情報受信部100Abにより受信した運転行動情報を参照しつつ自車両の走行状況認知部100Aaにより認知された走行状況に応じた自動運転制御を行う自動運転制御部100Acと、を有する。
ロボットカー100Aは、自動運転走行時に得られた各種データに基づいて運転操作を学習しつつ自動運転制御を行う。ロボットカー100Aには、緊急時にヒューマンドライバが回避操作し得る所謂ドライバ支援型自動運転車が含まれる。
非ロボットカー100Bは、ヒューマンドライバにより運転操作がなされる車両である。非ロボットカー100Bは、自車両の走行状況を認知する走行状況認知部100Baと、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部100Bbと、走行状況認知部100Baにより認知された走行状況と運転操作検出部100Bbにより検出された運転操作とを対応付けた運転行動情報をコンピューティングシステム200に送信する運転行動情報送信部100Bcと、を有する。非ロボットカー100Bは、自車両のドライバによる運転操作を学習しつつ運転支援制御を実行する。
走行状況認知部100Aa、100Baは、検知部121、車両情報入力部122、測位部123、地図情報入力部124、操作部125、通信部126、等と制御部129とにより実現される。
運転操作検出部100Bbは、車両情報入力部122の運転操作検出機能により実現される。
運転行動情報受信部100Ab及び運転行動情報送信部100Bcは、車載ゲートウェイ110により実現される。
自動運転制御部100Acは、制御部129により実現される。
運転操作検出部100Bbは、車両情報入力部122の運転操作検出機能により実現される。
運転行動情報受信部100Ab及び運転行動情報送信部100Bcは、車載ゲートウェイ110により実現される。
自動運転制御部100Acは、制御部129により実現される。
非ロボットカー100Bは、自車両の運転行動情報をコンピューティングシステム200に送信する。コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bの運転行動情報をインターネット経由で受信し、当該運転行動情報をロボットカー100Aにインターネット300経由で送信する。サーバコンピュータ210から非ロボットカー100Bの運転行動情報を受信したロボットカー100Aは、当該運転行動情報を自車両の自動運転制御に利用する。すなわち、ロボットカー100Aは、サーバコンピュータ210から受信した非ロボットカー100Bの運転行動情報を参照しつつ自車両の走行状況に応じた自動運転制御を行う。ロボットカー100Aがコンピューティングシステム200から受け取る運転行動情報は、非ロボットカー100Bのドライバによる運転操作の学習結果が反映された運転行動情報である。
したがって、このシステムによれば、ロボットカー100Aは、自車両が未経験(未学習)の状況においても、非ロボットカー100Bが当該状況を経験したことのある車両である場合、非ロボットカー100Bの運転行動情報に基づいて自動運転制御を行うことにより、非ロボットカー100Bと同等レベルの運転性能で当該状況に対処できる。
したがって、このシステムによれば、ロボットカー100Aは、自車両が未経験(未学習)の状況においても、非ロボットカー100Bが当該状況を経験したことのある車両である場合、非ロボットカー100Bの運転行動情報に基づいて自動運転制御を行うことにより、非ロボットカー100Bと同等レベルの運転性能で当該状況に対処できる。
図18は本発明の道路交通システムの更に別の構成例を示す概念図である。図17と共通の構成要素については同一の符号を付してその説明を適宜省略する。
コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bから運転行動情報(経験情報)を受信する運転行動情報受信機能210aと、運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能210cと、最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能210dと、最適化された運転行動情報をロボットカー100Aに送信する運転行動情報送信機能210bと、を有する。
非ロボットカー100Bは、自車両の運転行動情報をコンピューティングシステム200に送信する。コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bの運転行動情報をインターネット経由で受信し、当該運転行動情報を最適化し、常に最新の最適化された運転行動情報をロボットカー100Aにインターネット300経由で送信する。サーバコンピュータ210から非ロボットカー100Bの運転行動情報を受信したロボットカー100Aは、当該運転行動情報を自車両の自動運転制御に利用し得る。
このシステムによれば、ロボットカー100Aは、自車両が未経験の状況においても、非ロボットカー100Bが当該状況を経験したことのある車両である場合、非ロボットカー100Bの運転行動情報に基づいて最適化された最新の運転行動情報に基づいて自動運転制御を行うことにより、当該非ロボットカー100Bと同等レベルかそれ以上の運転性能で当該状況に対処できる。
コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bから運転行動情報(経験情報)を受信する運転行動情報受信機能210aと、運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能210cと、最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能210dと、最適化された運転行動情報をロボットカー100Aに送信する運転行動情報送信機能210bと、を有する。
非ロボットカー100Bは、自車両の運転行動情報をコンピューティングシステム200に送信する。コンピューティングシステム200内のサーバコンピュータ210は、非ロボットカー100Bの運転行動情報をインターネット経由で受信し、当該運転行動情報を最適化し、常に最新の最適化された運転行動情報をロボットカー100Aにインターネット300経由で送信する。サーバコンピュータ210から非ロボットカー100Bの運転行動情報を受信したロボットカー100Aは、当該運転行動情報を自車両の自動運転制御に利用し得る。
このシステムによれば、ロボットカー100Aは、自車両が未経験の状況においても、非ロボットカー100Bが当該状況を経験したことのある車両である場合、非ロボットカー100Bの運転行動情報に基づいて最適化された最新の運転行動情報に基づいて自動運転制御を行うことにより、当該非ロボットカー100Bと同等レベルかそれ以上の運転性能で当該状況に対処できる。
図17及び図18のシステムによれば、非ロボットカー100Bがドライバの運転操作を日々学習して運転支援性能を日々向上させていくことにより、ロボットカー100Aの自動運転性能も日々向上させていくことができる。すなわち、ロボットカー100Aと非ロボットカー100Bとが共存する状況下で、非ロボットカー100Bを運転するドライバの運転テクニックをロボットカー100Aに学習させて、ロボットカー100Aの自動運転性能を高効率に向上させることができる。ロボットカー100Aの自動運転性能が向上するにつれて、道路交通システム1全体の運用効率の向上、安全性の向上、顧客満足度の向上、等が図られる。
図17及び図18のシステムによれば、タクシードライバやバスドライバ等、プロフェッショナルドライバが非ロボットカー100Bを運転した際に得られた運転行動情報を、道路交通システム1全体の運用効率の向上、安全性の向上、等のために利用することができる。ロボットカー100Aの自動運転性能の向上に役立つ運転行動情報を提供したプロフェッショナルドライバが対価を得ることができるシステムとすることにより、非ロボットカー100Bを運転した際の運転行動情報を提供することへのインセンティブをプロフェッショナルドライバ達に与えて、彼らの持つ高度な運転テクニックによる運転行動情報の提供を促すことができる。このシステムは、ロボットカー100Aと非ロボットカー100Bとが共存する環境(全ての車両がロボットカーになるまでの過渡的環境)において、ロボットカー100Aの自動運転性能を向上させたい企業等とタクシードライバやバスドライバ等の双方にとって都合の良いシステムである。
図17及び図18のシステムによれば、タクシードライバやバスドライバ等、プロフェッショナルドライバが非ロボットカー100Bを運転した際に得られた運転行動情報を、道路交通システム1全体の運用効率の向上、安全性の向上、等のために利用することができる。ロボットカー100Aの自動運転性能の向上に役立つ運転行動情報を提供したプロフェッショナルドライバが対価を得ることができるシステムとすることにより、非ロボットカー100Bを運転した際の運転行動情報を提供することへのインセンティブをプロフェッショナルドライバ達に与えて、彼らの持つ高度な運転テクニックによる運転行動情報の提供を促すことができる。このシステムは、ロボットカー100Aと非ロボットカー100Bとが共存する環境(全ての車両がロボットカーになるまでの過渡的環境)において、ロボットカー100Aの自動運転性能を向上させたい企業等とタクシードライバやバスドライバ等の双方にとって都合の良いシステムである。
ところで、交通法規を完全に遵守するロボットカーと交通法規を遵守するとは限らない非ロボットカーとが共存する状況においては、両者の運転行動特性(特に「判断・計画」)の相違による事故が発生するという問題が想定され得る。
例えば、進行方向の信号器の点灯色が黄色(注意)からもうすぐ赤(停止)に切り替わるというタイミングで車両が交差点に近づいた場合、当該車両がロボットカーであれば必ず交差点の手前で停止するが、非ロボットカーは交差点の手前で停止するとは限らない。その結果、ロボットカーの後続車両が非ロボットカーである場合、交差点の手前で停止したロボットカーに非ロボットカーが後方から追突するという事故(もらい事故)が多発する可能性がある。
また、道路を走行する全ての車両がロボットカーであれば、車車間通信や路車間通信によるネットワークを構築することで、ロボットカー集団として安全で効率的な走行環境を作り上げることが可能になるが、この集団の中に人間が運転する非ロボットカー(手動運転車)が1台でも入り込むと、この協調体制が一気に崩壊してしまうという問題も想定され得る。
これらの問題点は、図17及び図18のシステムによれば、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させて、ロボットカー100Aの運転行動を可能な限り非ロボットカー100Bの運転行動に近づけることにより解消し得る。例えば、非ロボットカー100Bによるもらい事故の危険が発生する可能性の高い状況下では、ロボットカー100Aに非ロボットカー100Bと同じような運転行動(交通法規を遵守しない運転行動)を敢えて選択させることにより、そのような危険を回避し得る。また、正確に一定の車間距離(交通法規を遵守した車間距離又は空気抵抗を可及的に低減し得る車間距離)を保ちながら協調体制で走行しているロボットカー100Aの集団に前記一定の車間距離とは異なる車間距離で走行する非ロボットカー100Bが割り込んだ場合、非ロボットカー100Bの前後それぞれ数台のロボットカー100Aに非ロボットカー100Bと同じような運転行動(前記一定の車間距離とは異なる車間距離で走行する運転行動)を敢えて選択させることにより、ロボットカー100Aの集団の協調体制を可能な限り保持した安全且つ効率的な走行環境を実現し得る。
例えば、進行方向の信号器の点灯色が黄色(注意)からもうすぐ赤(停止)に切り替わるというタイミングで車両が交差点に近づいた場合、当該車両がロボットカーであれば必ず交差点の手前で停止するが、非ロボットカーは交差点の手前で停止するとは限らない。その結果、ロボットカーの後続車両が非ロボットカーである場合、交差点の手前で停止したロボットカーに非ロボットカーが後方から追突するという事故(もらい事故)が多発する可能性がある。
また、道路を走行する全ての車両がロボットカーであれば、車車間通信や路車間通信によるネットワークを構築することで、ロボットカー集団として安全で効率的な走行環境を作り上げることが可能になるが、この集団の中に人間が運転する非ロボットカー(手動運転車)が1台でも入り込むと、この協調体制が一気に崩壊してしまうという問題も想定され得る。
これらの問題点は、図17及び図18のシステムによれば、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させて、ロボットカー100Aの運転行動を可能な限り非ロボットカー100Bの運転行動に近づけることにより解消し得る。例えば、非ロボットカー100Bによるもらい事故の危険が発生する可能性の高い状況下では、ロボットカー100Aに非ロボットカー100Bと同じような運転行動(交通法規を遵守しない運転行動)を敢えて選択させることにより、そのような危険を回避し得る。また、正確に一定の車間距離(交通法規を遵守した車間距離又は空気抵抗を可及的に低減し得る車間距離)を保ちながら協調体制で走行しているロボットカー100Aの集団に前記一定の車間距離とは異なる車間距離で走行する非ロボットカー100Bが割り込んだ場合、非ロボットカー100Bの前後それぞれ数台のロボットカー100Aに非ロボットカー100Bと同じような運転行動(前記一定の車間距離とは異なる車間距離で走行する運転行動)を敢えて選択させることにより、ロボットカー100Aの集団の協調体制を可能な限り保持した安全且つ効率的な走行環境を実現し得る。
図17及び図18では、ロボットカー100Aが非ロボットカー100Aの運転行動情報をインターネット経由で受信する運転行動情報受信部(運転行動情報取得部)Abを有しているが、ロボットカー100Aが運転行動情報を取得する機能はこれ以外の方式によっても実現可能である。たとえば、車車間通信(図7参照)、自車両と地上静止物との間の通信(図8参照)、路車間通信(図9参照)、自車両と携帯端末との間の通信(図10参照)、等によっても実現可能である。
図19は本発明の道路交通システムの更に別の構成例を示す概念図である。
図17及び図18のシステム構成では、非ロボットカー100Bの運転行動情報(経験情報)をロボットカー100Aが利用し得るのみであるが、ロボットカー100Aと非ロボットカー100Bとが運転行動情報を互いに利用し合うシステム構成とすることも可能である。この場合のロボットカー100Aは、図19(A)に例示するように、自車両の運転行動情報を他車両に提供するための運転行動情報出力部(運転行動情報送信部、等)100Adを有する。また、非ロボットカー100Bは、運転支援機能付き自動車であり、図19(B)に例示するように、自車両の走行状況を認知する走行状況認知部100Baと、ロボットカー100Aの運転行動情報を取得する運転行動情報取得部(運転行動情報受信部、等)100Bdと、ロボットカー100Aから取得した運転行動情報を参照しつつ自車両の走行状況認知部100Baにより認知された走行状況に応じた運転支援制御を行う運転支援制御部100Beと、を有する。運転支援制御部100Beは、制御部129(図2参照)により実現される。
このシステム構成によれば、非ロボットカー100Bがヒューマンドライバの運転操作を日々学習して運転支援性能を日々向上させていくことにより、ロボットカー100Aの自動運転性能も日々向上させていくことができると同時に、ロボットカー100Aが運転操作を日々学習して自動運転性能を日々向上させていくことにより、非ロボットカー100Bの運転支援性能も日々向上させていくことができる。すなわち、ロボットカー100Aと非ロボットカー100Bとが共存する状況下で、非ロボットカー100Bを運転するヒューマンドライバの運転テクニックをロボットカー100Aに学習させて、ロボットカー100Aの自動運転性能を高効率に向上させることができると同時に、ロボットカー100Aの運転操作を非ロボットカー100Bに学習させて、非ロボットカー100Bの運転支援性能を高効率に向上させることができる。ロボットカー100A及び非ロボットカー100Bの運転性能が向上するにつれて、道路交通システム1全体の運用効率の向上、安全性の向上、等が図られる。
図17及び図18のシステム構成では、非ロボットカー100Bの運転行動情報(経験情報)をロボットカー100Aが利用し得るのみであるが、ロボットカー100Aと非ロボットカー100Bとが運転行動情報を互いに利用し合うシステム構成とすることも可能である。この場合のロボットカー100Aは、図19(A)に例示するように、自車両の運転行動情報を他車両に提供するための運転行動情報出力部(運転行動情報送信部、等)100Adを有する。また、非ロボットカー100Bは、運転支援機能付き自動車であり、図19(B)に例示するように、自車両の走行状況を認知する走行状況認知部100Baと、ロボットカー100Aの運転行動情報を取得する運転行動情報取得部(運転行動情報受信部、等)100Bdと、ロボットカー100Aから取得した運転行動情報を参照しつつ自車両の走行状況認知部100Baにより認知された走行状況に応じた運転支援制御を行う運転支援制御部100Beと、を有する。運転支援制御部100Beは、制御部129(図2参照)により実現される。
このシステム構成によれば、非ロボットカー100Bがヒューマンドライバの運転操作を日々学習して運転支援性能を日々向上させていくことにより、ロボットカー100Aの自動運転性能も日々向上させていくことができると同時に、ロボットカー100Aが運転操作を日々学習して自動運転性能を日々向上させていくことにより、非ロボットカー100Bの運転支援性能も日々向上させていくことができる。すなわち、ロボットカー100Aと非ロボットカー100Bとが共存する状況下で、非ロボットカー100Bを運転するヒューマンドライバの運転テクニックをロボットカー100Aに学習させて、ロボットカー100Aの自動運転性能を高効率に向上させることができると同時に、ロボットカー100Aの運転操作を非ロボットカー100Bに学習させて、非ロボットカー100Bの運転支援性能を高効率に向上させることができる。ロボットカー100A及び非ロボットカー100Bの運転性能が向上するにつれて、道路交通システム1全体の運用効率の向上、安全性の向上、等が図られる。
ロボットカー100Aの運転行動情報を非ロボットカー100Bが利用し得るシステム構成は、ロボットカー100Aの自動運転性能がヒューマンドライバの運転テクニックを凌駕した時点以後の時代の道路交通システム1に特に好適である。このような、ロボットカー100Aがヒューマンドライバよりも運転が上手になった時代においては、もはやロボットカー100Aがヒューマンドライバの運転操作を学習することは無意味であると考えられるからである。
図20及び図21は本発明の道路交通システムの更に別の構成例を示す概念図である。図17及び図18のシステム構成では、ロボットカー100Aと非ロボットカー100Bとが混在しているが、道路交通システム1を構成する車両100がロボットカー100Aのみであるシステム構成とし、道路交通システム1内のロボットカー100A同士が運転行動情報を利用し合えるようにすることも可能である。この場合のロボットカー100Aは、図19(A)の例と同様に、自車両の運転行動情報を他車両に提供するための運転行動情報出力部(運転行動情報送信部、等)100Adを有する。
このシステム構成によれば、道路交通システム1内のロボットカー100A同士が運転行動情報を利用し合うことにより、道路交通システム1内のロボットカー100Aの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム1内の全てのロボットカー100Aの自動運転性能を急速に向上させることができるため、道路交通システム1全体の運用効率、安全性、顧客満足度、等が急速に向上する。
このシステム構成によれば、道路交通システム1内のロボットカー100A同士が運転行動情報を利用し合うことにより、道路交通システム1内のロボットカー100Aの学習効率を高めて、自動運転性能を急速に向上させることができる。道路交通システム1内の全てのロボットカー100Aの自動運転性能を急速に向上させることができるため、道路交通システム1全体の運用効率、安全性、顧客満足度、等が急速に向上する。
図22(A)は、図17乃至図21中のロボットカー100Aの自動運転制御部100Acの構成例を示す機能ブロック図である。図22(B)は、図19中の非ロボットカー100Bの運転支援制御部100Beの構成例を示す機能ブロック図である。
自動運転制御部100Acは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う機能ブロックである。
運転支援制御部100Beは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う機能ブロックである。
自動運転制御部100Acは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う機能ブロックである。
運転支援制御部100Beは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う機能ブロックである。
図22(A)に示すように、自動運転制御部100Acは、実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部101aと、運転行動情報取得部(運転行動情報受信部、等)100Abにより取得した運転行動情報に基づいて、運転知識部101aに記憶されている知識情報を更新する学習処理部(知識更新処理部)102aとを有している。
この構成によれば、ロボットカー100Aは、他車両(他ロボットカー100A又は非ロボットカー100B)の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。したがって、ロボットカー100Aは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことができる。
この構成によれば、ロボットカー100Aは、他車両(他ロボットカー100A又は非ロボットカー100B)の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う。したがって、ロボットカー100Aは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことができる。
また、図22(B)に示すように、運転支援制御部100Beは、実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部101bと、運転行動情報取得部(運転行動情報受信部、等)100Bdにより取得した運転行動情報に基づいて、運転知識部101bに記憶されている知識情報を更新する学習処理部(知識更新処理部)102bとを有している。
この構成によれば、非ロボットカー100Bは、他車両(ロボットカー100A又は他の非ロボットカー100B)の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。したがって、非ロボットカー100Bは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができる。
この構成によれば、非ロボットカー100Bは、他車両(ロボットカー100A又は他の非ロボットカー100B)の運転行動情報に基づいて知識情報(実行すべき運転操作を決定する際の判断基準など)を更新する学習処理を行いつつ、当該知識情報を参照して走行状況に応じた運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う。したがって、非ロボットカー100Bは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができる。
図23(A)は、図17乃至図21中のロボットカー100Aの自動運転制御部100Acの別の構成例を示す機能ブロック図である。図23(B)は、図19中の非ロボットカー100Bの運転支援制御部100Beの別の構成例を示す機能ブロック図である。
自動運転制御部100Acは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う機能ブロックである。
運転支援制御部100Beは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う機能ブロックである。
自動運転制御部100Acは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う機能ブロックである。
運転支援制御部100Beは、走行状況認知部100Aaにより認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う機能ブロックである。
図23(A)に示すように、自動運転制御部100Acは、走行状況認知部100Aaにより認知された走行状況に応じた運転操作を計算により決定する運転操作決定部103aと、運転行動情報取得部(運転行動情報受信部、等)100Abにより取得した運転行動情報に基づいて、運転操作決定部103aにおいて使用される運転操作決定関数のパラメタを調整する学習処理部104aとを有する。
この構成によれば、ロボットカー100Aは、他車両(他のロボットカー100A又は非ロボットカー100B)の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。したがって、ロボットカー100Aは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことができる。
自動運転制御部100Acの学習処理部104aをディープ・ニューラルネットで構成することにより、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持ったロボットカー100Aが実現され得る。
この構成によれば、ロボットカー100Aは、他車両(他のロボットカー100A又は非ロボットカー100B)の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように自動運転制御を行う。したがって、ロボットカー100Aは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して自動運転制御を行うことができる。
自動運転制御部100Acの学習処理部104aをディープ・ニューラルネットで構成することにより、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持ったロボットカー100Aが実現され得る。
また、図23(B)に示すように、運転支援制御部100Beは、走行状況認知部100Baにより認知された走行状況に応じた運転操作を計算により決定する運転操作決定部103bと、運転行動情報取得部(運転行動情報受信部、等)100Bdにより取得した運転行動情報に基づいて、運転操作決定部103bにおいて使用される運転操作決定関数のパラメタを調整する学習処理部104bとを有する。
この構成によれば、非ロボットカー100Bは、他車両(ロボットカー100A又は他の非ロボットカー100B)の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。したがって、非ロボットカー100Bは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができる。
運転支援制御部100Beの学習処理部104bをディープ・ニューラルネットで構成することにより、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持った非ロボットカー100Bが実現され得る。
この構成によれば、非ロボットカー100Bは、他車両(ロボットカー100A又は他の非ロボットカー100B)の運転行動情報に基づいて運転操作決定関数のパラメタを調整する学習処理を行いつつ、走行状況に応じた運転操作を運転操作決定関数により決定し、当該運転操作が実行されるように運転支援制御を行う。したがって、非ロボットカー100Bは、自車両が未経験の状況においても、当該状況を経験したことのある他車両の運転行動を学習して運転支援制御を行うことができる。
運転支援制御部100Beの学習処理部104bをディープ・ニューラルネットで構成することにより、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持った非ロボットカー100Bが実現され得る。
以上の実施形態において、自動車100は、経験情報の提供元である他車両と提供先である自車両の車両属性(車種や車体の各部の寸法など)が異なる場合、提供された運転行動情報を自車両の車両属性などに応じて最適値に修正し、当該修正した運転行動情報を参照して運転支援制御又は自動運転制御を行う機能を有することが望ましい。
[車両共用システム]
図1乃至図23に示した本発明の道路交通システムの実施形態は、本発明の車両共用システムの実施形態でもある。すなわち、道路交通システムの実施形態の説明は、その文中の「道路交通システム」を「車両共用システム」と読み替えることにより、車両共用システムの実施形態の説明とすることができる。車両共用システムの例として、レンタカーサービス、カーシェアリングサービス、ロボットタクシーサービス、ロボットバスサービスなどを提供しうるシステムを挙げることができる。
なお、車両共用システムにおいては、多くの場合、ロボットカー100Aは、複数の利用者によって共用される車両である。また、多くの場合、非ロボットカー100Bは、複数の利用者によって共用される車両以外の車両である。
図1乃至図23に示した本発明の道路交通システムの実施形態は、本発明の車両共用システムの実施形態でもある。すなわち、道路交通システムの実施形態の説明は、その文中の「道路交通システム」を「車両共用システム」と読み替えることにより、車両共用システムの実施形態の説明とすることができる。車両共用システムの例として、レンタカーサービス、カーシェアリングサービス、ロボットタクシーサービス、ロボットバスサービスなどを提供しうるシステムを挙げることができる。
なお、車両共用システムにおいては、多くの場合、ロボットカー100Aは、複数の利用者によって共用される車両である。また、多くの場合、非ロボットカー100Bは、複数の利用者によって共用される車両以外の車両である。
[ロボットカー教習システム]
図24は本発明のロボットカー教習システムの構成例を示す概念図である。
図24に例示されるロボットカー教習システム1は、ロボットカー100Aと非ロボットカー100Bとコンピューティングシステム200とを有する。
コンピューティングシステム200は、サーバコンピュータ210とデータベース220とを備える。
サーバコンピュータ210は、非ロボットカー100Bの運転行動情報をインターネット300経由で受信する運転行動情報受信部210aと、運転行動情報受信部210aにより受信した運転行動情報をインターネット300経由でロボットカー100Aに送信する運転行動情報送信部210bと、を有する。
データベース220は、サーバコンピュータ210により受信された運転行動情報を蓄積し管理している。
サーバコンピュータ210は単体でも複数でもよい。データベース(図示省略)は1つのサーバコンピュータに配置されていても、複数のサーバコンピュータに分散配置されていてもよい。
図24は本発明のロボットカー教習システムの構成例を示す概念図である。
図24に例示されるロボットカー教習システム1は、ロボットカー100Aと非ロボットカー100Bとコンピューティングシステム200とを有する。
コンピューティングシステム200は、サーバコンピュータ210とデータベース220とを備える。
サーバコンピュータ210は、非ロボットカー100Bの運転行動情報をインターネット300経由で受信する運転行動情報受信部210aと、運転行動情報受信部210aにより受信した運転行動情報をインターネット300経由でロボットカー100Aに送信する運転行動情報送信部210bと、を有する。
データベース220は、サーバコンピュータ210により受信された運転行動情報を蓄積し管理している。
サーバコンピュータ210は単体でも複数でもよい。データベース(図示省略)は1つのサーバコンピュータに配置されていても、複数のサーバコンピュータに分散配置されていてもよい。
ロボットカー100Aは、自車両の走行状況を認知する走行状況認知部100Aaと、非ロボットカー100Bの運転行動情報を受信する運転行動情報受信部(運転行動情報取得部)100Abと、自車両の走行状況認知部100Aにより認知された走行状況に基づいて自動運転制御を行うとともに、運転行動情報受信部100Abにより受信した運転行動情報に基づいて非ロボットカー100Bの運転行動を学習する学習処理を行う自動運転制御部100Acと、を有する。
非ロボットカー100Bは、自車両の走行状況を認知する走行状況認知部100Baと、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部100Bbと、走行状況認知部100Baにより認知された走行状況と運転操作検出部100Bbにより検出された運転操作とを対応付けた運転行動情報を送信する運転行動情報送信部(運転行動情報出力部)100Bcと、を有する。
図25はロボットカー100Aのシステム構成の一例を示す機能ブロック図である。図26は非ロボットカー100Aのシステム構成の一例を示す機能ブロック図である。
図25に示されるように、ロボットカー100Aは、車載ゲートウェイ110Aと走行制御システム120Aとを有する。
車載ゲートウェイ110Aは、走行制御システム120Aの制御下で、コンピューティングシステム200と通信する。車載ゲートウェイ110Aは、コンピューティングシステム200から受信したデータを走行制御システム120Aに入力する。車載ゲートウェイ110Aは、走行制御システム120Aから入力されたデータをコンピューティングシステム200に送信する。
走行制御システム120Aは、検知部121A、車両情報入力部122A、測位部123A、地図情報入力部124A、操作部125A、通信部126A、表示部127A、記憶部129A、制御部129A、等を備える。図1における走行状況認知部100Aaは、検知部121A、車両情報入力部122A、測位部123A、地図情報入力部124A、通信部126、等と制御部129とにより実現される。また、運転行動情報受信部100Abは、車載ゲートウェイ110Aにより実現される。そして、自動運転制御部100Acは、制御部129Aにより実現される。
検知部121Aは、周辺の物体(他車両、歩行者、地上静止物、等)の存在や、周辺の物体の位置、大きさ、相対速度、等を検知するためのセンサ類で構成されている。検知部121Aは、例えば、ソナー121aやレーダ121b、カメラ121c、3次元レンジセンサ、等で具現化される。
ソナー121aは、自車両の前後左右方向に向けられた各アンテナから超音波を所定領域に送信し、その反射波を受信する。そして、受信した反射波に基づき、自車両の前後左右方向に存在する物体について、自車両との位置関係、距離等を出力する。レーダ121bは、自車両の前後左右方向に向けられたアンテナからレーザ光又はミリ波を照射して所定の検知領域を走査し、その反射波を受信する。そして、受信した反射波に基づき、車両の前後左右方向に存在する物体について、自車両との位置関係、距離、相対速度等を出力する。カメラ121cは、自車両の前後左右方向の所定位置に設けられており、自車両の前後左右方向に存在する周辺車両が写った撮像データを出力する。なお、これらのソナーやレーダ、カメラ121c、3次元レンジセンサ、等のセンサ類は、複数のものを複合的に用いてもよいし、単独で用いてもよい。
車両情報入力部122Aは、自車両の運動状況(重心位置、ヨー、ロール、ピッチ、速度、加速度、角速度、等)及び運転操作(アクセル操作、ブレーキ操作、ステアリング操作、シフト操作)に関する情報を制御部128に入力する。
測位部123Aは、地球上における自車両の位置(緯度、経度)を測位し、制御部128Aに入力する。測位部123Aは、例えば、高精度GPS(Global Positioning System)に対応した高精度測位受信機等で具現化される。
地図情報入力部124Aは、道路地図情報を記憶する記憶媒体から、自車両が現在走行している道路に関する情報を取得し、制御部128Aに入力する。地図情報入力部128Aによって入力される道路の情報の例として、車線数、車線幅、曲り、勾配、合流、規制等の情報等を挙げることができる。
操作部125Aは、表示部127Aにおける各種表示の切り換え等の操作指示を入力するための入力装置である。
通信部126Aは、地上静止物に設けられた通信機や、周辺車両に搭載された通信機との間で、通信を行うための通信装置である。地上静止物には、車庫や道路が含まれる。
表示部127Aは、インストルメントパネル中央部に設けられるセンタディスプレイ、及び、メータパネル内に設けられるインジケータで構成される表示装置である。表示部127Aには、自車両の状態を示す情報が表示される。
記憶部128Aは、自車両の認識関連情報、自車両の運転行動情報及び他車両の運転行動情報を記憶する記憶装置である。
制御部129Aは、図示しないCPU、ROM、RAM等を中心に構成される情報処理装置であり、走行制御システム120Aの各部を統括制御する。制御部129Aは、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。
制御部129Aは、測位部123Aから入力された自車両の位置(緯度、経度)と地図情報入力部124Aから入力された道路地図情報とに基づいて、電柱や信号器などの道路構造物の情報を含む詳細道路データを算出するとともに、検知部121Aの3次元レンジセンサにより周囲の物体の3次元距離を検出する。そして、3次元距離データと道路地図とをリアルタイムで合成し、3次元レンジセンサにより検出された物体が、道路構造物なのか、道路上の物体(車両、歩行者、等)なのかを正確に識別する。
自車両の位置の高精度把握は、モンテカルロ・ローカリゼーションといった既知の手法により実現され、GPSの位置情報は二次的情報として利用される。周辺物体との相対状況は、カルマンフィルタといった既知の手法により実現される。
制御部129Aは、自車両の認識関連情報を記憶部19Aに蓄積する。認識関連情報には、周辺物体などの認識結果とその認識処理に使用された各種データとが含まれる。
制御部129Aは、検知部121A、車両情報入力部122A、測位部123A、及び、地図情報入力部124Aから入力された各種情報に基づく自車両の運転行動情報を記憶部19Aに蓄積する。自車両の運転行動情報には、検知部121A、車両情報入力部122A、測位部123A、及び、地図情報入力部124Aにより得られた経路上位置-運転操作対応情報(経路上位置-運転操作対応テーブルなど)、入出車経路位置-運転操作対応情報(入出車経路位置-運転操作対応テーブルなど)が含まれる。
制御部129Aは、車載ゲートウェイ110Aを介してコンピューティングシステム200と通信する。
制御部129Aは、車載ゲートウェイ110を介して受信した非ロボットカー100Bの運転行動情報を、記憶部128Aに蓄積する。非ロボットカー100Bの運転行動情報には、非ロボットカー100Bの検知部121B、車両情報入力部122B、測位部123B、及び、地図情報入力部124Bにより得られた経路上位置-運転操作対応情報(経路上位置-運転操作対応テーブルなど)、入出車経路位置-運転操作対応情報(入出車経路位置-運転操作対応テーブルなど)が含まれる。
制御部129Aは、通信部126Aを介して周辺の地上静止物や周辺の車両と通信する。
制御部129Aは、通信部126Aを介して受信した非ロボットカー100Bの運転行動情報を、記憶部128Aに蓄積する。
制御部129Aには、運転制御の対象となる車両制御部130Aが接続されている。
車両制御部130Aは、エンジンECU(Electronic Control Unit)130a、ブレーキECU130b、舵角ECU130c、スタビリティECU130d、等の各種電子制御装置からなる。エンジンECU130aは、アクセルペダルの操作量やエンジンの状態に応じた制御指令を出して、エンジンの出力を制御する。ブレーキECU130bは、ブレーキペダルの操作量に応じてブレーキの制動力を制御する。舵角ECU130cは、ステアリングの舵角を制御する。スタビリティECU130dは、車両の走行安定性を制御する。
制御部129Aは、運転操作量(アクセル操作量、ブレーキ操作量、ステアリング操作量、等)に応じて、車両制御部130A内の各ECUに指令を与えることで、車両の走行を制御する。
制御部129Aは、検知部121Aなどにより検知された時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報及び/又は非ロボットカー100Bの運転行動情報とに基づいて運転操作量を決定し、車両制御部130内の各ECUに指令を与える。
制御部129Aは、車載ゲートウェイ110Aや通信部126Aにより受信した運転行動情報に基づいて非ロボットカー100Bの運転行動を学習する学習処理を行う。
上記の例では、車載ゲートウェイ110Aと走行制御システム120Aとが各々別個に存在しているが、車載ゲートウェイ110Aは走行制御システム120Aと統合できる。
車載ゲートウェイ110Aは、走行制御システム120Aの制御下で、コンピューティングシステム200と通信する。車載ゲートウェイ110Aは、コンピューティングシステム200から受信したデータを走行制御システム120Aに入力する。車載ゲートウェイ110Aは、走行制御システム120Aから入力されたデータをコンピューティングシステム200に送信する。
走行制御システム120Aは、検知部121A、車両情報入力部122A、測位部123A、地図情報入力部124A、操作部125A、通信部126A、表示部127A、記憶部129A、制御部129A、等を備える。図1における走行状況認知部100Aaは、検知部121A、車両情報入力部122A、測位部123A、地図情報入力部124A、通信部126、等と制御部129とにより実現される。また、運転行動情報受信部100Abは、車載ゲートウェイ110Aにより実現される。そして、自動運転制御部100Acは、制御部129Aにより実現される。
検知部121Aは、周辺の物体(他車両、歩行者、地上静止物、等)の存在や、周辺の物体の位置、大きさ、相対速度、等を検知するためのセンサ類で構成されている。検知部121Aは、例えば、ソナー121aやレーダ121b、カメラ121c、3次元レンジセンサ、等で具現化される。
ソナー121aは、自車両の前後左右方向に向けられた各アンテナから超音波を所定領域に送信し、その反射波を受信する。そして、受信した反射波に基づき、自車両の前後左右方向に存在する物体について、自車両との位置関係、距離等を出力する。レーダ121bは、自車両の前後左右方向に向けられたアンテナからレーザ光又はミリ波を照射して所定の検知領域を走査し、その反射波を受信する。そして、受信した反射波に基づき、車両の前後左右方向に存在する物体について、自車両との位置関係、距離、相対速度等を出力する。カメラ121cは、自車両の前後左右方向の所定位置に設けられており、自車両の前後左右方向に存在する周辺車両が写った撮像データを出力する。なお、これらのソナーやレーダ、カメラ121c、3次元レンジセンサ、等のセンサ類は、複数のものを複合的に用いてもよいし、単独で用いてもよい。
車両情報入力部122Aは、自車両の運動状況(重心位置、ヨー、ロール、ピッチ、速度、加速度、角速度、等)及び運転操作(アクセル操作、ブレーキ操作、ステアリング操作、シフト操作)に関する情報を制御部128に入力する。
測位部123Aは、地球上における自車両の位置(緯度、経度)を測位し、制御部128Aに入力する。測位部123Aは、例えば、高精度GPS(Global Positioning System)に対応した高精度測位受信機等で具現化される。
地図情報入力部124Aは、道路地図情報を記憶する記憶媒体から、自車両が現在走行している道路に関する情報を取得し、制御部128Aに入力する。地図情報入力部128Aによって入力される道路の情報の例として、車線数、車線幅、曲り、勾配、合流、規制等の情報等を挙げることができる。
操作部125Aは、表示部127Aにおける各種表示の切り換え等の操作指示を入力するための入力装置である。
通信部126Aは、地上静止物に設けられた通信機や、周辺車両に搭載された通信機との間で、通信を行うための通信装置である。地上静止物には、車庫や道路が含まれる。
表示部127Aは、インストルメントパネル中央部に設けられるセンタディスプレイ、及び、メータパネル内に設けられるインジケータで構成される表示装置である。表示部127Aには、自車両の状態を示す情報が表示される。
記憶部128Aは、自車両の認識関連情報、自車両の運転行動情報及び他車両の運転行動情報を記憶する記憶装置である。
制御部129Aは、図示しないCPU、ROM、RAM等を中心に構成される情報処理装置であり、走行制御システム120Aの各部を統括制御する。制御部129Aは、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。
制御部129Aは、測位部123Aから入力された自車両の位置(緯度、経度)と地図情報入力部124Aから入力された道路地図情報とに基づいて、電柱や信号器などの道路構造物の情報を含む詳細道路データを算出するとともに、検知部121Aの3次元レンジセンサにより周囲の物体の3次元距離を検出する。そして、3次元距離データと道路地図とをリアルタイムで合成し、3次元レンジセンサにより検出された物体が、道路構造物なのか、道路上の物体(車両、歩行者、等)なのかを正確に識別する。
自車両の位置の高精度把握は、モンテカルロ・ローカリゼーションといった既知の手法により実現され、GPSの位置情報は二次的情報として利用される。周辺物体との相対状況は、カルマンフィルタといった既知の手法により実現される。
制御部129Aは、自車両の認識関連情報を記憶部19Aに蓄積する。認識関連情報には、周辺物体などの認識結果とその認識処理に使用された各種データとが含まれる。
制御部129Aは、検知部121A、車両情報入力部122A、測位部123A、及び、地図情報入力部124Aから入力された各種情報に基づく自車両の運転行動情報を記憶部19Aに蓄積する。自車両の運転行動情報には、検知部121A、車両情報入力部122A、測位部123A、及び、地図情報入力部124Aにより得られた経路上位置-運転操作対応情報(経路上位置-運転操作対応テーブルなど)、入出車経路位置-運転操作対応情報(入出車経路位置-運転操作対応テーブルなど)が含まれる。
制御部129Aは、車載ゲートウェイ110Aを介してコンピューティングシステム200と通信する。
制御部129Aは、車載ゲートウェイ110を介して受信した非ロボットカー100Bの運転行動情報を、記憶部128Aに蓄積する。非ロボットカー100Bの運転行動情報には、非ロボットカー100Bの検知部121B、車両情報入力部122B、測位部123B、及び、地図情報入力部124Bにより得られた経路上位置-運転操作対応情報(経路上位置-運転操作対応テーブルなど)、入出車経路位置-運転操作対応情報(入出車経路位置-運転操作対応テーブルなど)が含まれる。
制御部129Aは、通信部126Aを介して周辺の地上静止物や周辺の車両と通信する。
制御部129Aは、通信部126Aを介して受信した非ロボットカー100Bの運転行動情報を、記憶部128Aに蓄積する。
制御部129Aには、運転制御の対象となる車両制御部130Aが接続されている。
車両制御部130Aは、エンジンECU(Electronic Control Unit)130a、ブレーキECU130b、舵角ECU130c、スタビリティECU130d、等の各種電子制御装置からなる。エンジンECU130aは、アクセルペダルの操作量やエンジンの状態に応じた制御指令を出して、エンジンの出力を制御する。ブレーキECU130bは、ブレーキペダルの操作量に応じてブレーキの制動力を制御する。舵角ECU130cは、ステアリングの舵角を制御する。スタビリティECU130dは、車両の走行安定性を制御する。
制御部129Aは、運転操作量(アクセル操作量、ブレーキ操作量、ステアリング操作量、等)に応じて、車両制御部130A内の各ECUに指令を与えることで、車両の走行を制御する。
制御部129Aは、検知部121Aなどにより検知された時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報及び/又は非ロボットカー100Bの運転行動情報とに基づいて運転操作量を決定し、車両制御部130内の各ECUに指令を与える。
制御部129Aは、車載ゲートウェイ110Aや通信部126Aにより受信した運転行動情報に基づいて非ロボットカー100Bの運転行動を学習する学習処理を行う。
上記の例では、車載ゲートウェイ110Aと走行制御システム120Aとが各々別個に存在しているが、車載ゲートウェイ110Aは走行制御システム120Aと統合できる。
上記のように構成されたロボットカー100Aは、自車両の走行状況と自車両の運転行動情報又は非ロボットカー100Bの運転行動情報とに基づいて自動運転制御を行いつつ、非ロボットカー100Bを運転するヒューマンドライバの運転行動を学習する。
図26に示されるように、非ロボットカー100Bは、車載ゲートウェイ110Bと走行制御システム120Bとを有する。
車載ゲートウェイ110Bは、走行制御システム120Bの制御下で、コンピューティングシステム200と通信する。車載ゲートウェイ110Bは、コンピューティングシステム200から受信したデータを走行制御システム120Bに入力する。車載ゲートウェイ110Bは、走行制御システム120Bから入力されたデータをコンピューティングシステム200に送信する。
走行制御システム120Bは、検知部121B、車両情報入力部122B、測位部123B、地図情報入力部124B、操作部125B、通信部126B、表示部127B、記憶部129B、制御部129B、等を備える。図24における走行状況認知部100Baは、検知部121B、車両情報入力部122B、測位部123B、地図情報入力部124B、操作部125B、通信部126B、等と制御部129Bとにより実現される。運転操作検出部100Bbは、車両情報入力部122Bの運転操作検出機能により実現される。また、運転行動情報送信部100Bcは、車載ゲートウェイ110Bにより実現される。
検知部121B、車両情報入力部122B、測位部123B、地図情報入力部124B、通信部126B及び車両制御部130Bの構成及び機能は、ロボットカー100Aの検知部121A、車両情報入力部122A、測位部123A、地図情報入力部124A、通信部126A及び車両制御部130Aの構成及び機能と同様である。
操作部125Bは、走行制御のオン・オフや制御モードの切り換え、表示部127Bにおける各種表示の切り換え等の操作指示を入力するための入力装置である。操作部125Bは、例えば、車両のステアリングホイールのスポーク部分に設けられるスイッチ等により具現化される。
表示部127Bは、インストルメントパネル中央部に設けられるセンタディスプレイ、及び、メータパネル内に設けられるインジケータで構成される表示装置である。表示部127Bには、自車両の状態を示す情報が表示されるとともに、走行制御のオン・オフや制御モードが表示される。制御モードには、手動運転モードと、運転支援モードとがある。
記憶部128Bは、自車両の運転行動情報及び認識関連情報を記憶する記憶装置である。
制御部129Bは、図示しないCPU、ROM、RAM等を中心に構成される情報処理装置であり、走行制御システム120Bの各部を統括制御する。制御部129Bは、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。
制御部129Bは、測位部123Bから入力された自車両の位置(緯度、経度)と地図情報入力部124Bから入力された道路地図情報とに基づいて、電柱や信号器などの道路構造物の情報を含む詳細道路データを算出するとともに、検知部121Bの3次元レンジセンサにより周囲の物体の3次元距離を検出する。そして、3次元距離データと道路地図とをリアルタイムで合成し、3次元レンジセンサにより検出された物体が、道路構造物なのか、道路上の物体(車両、歩行者、等)なのかを正確に識別する。
制御部129Bは、検知部121B、車両情報入力部122B、測位部123B及び地図情報入力部124Bから入力された各種情報に基づく自車両の運転行動情報を記憶部19Bに蓄積する。自車両の運転行動情報には、検知部121B、車両情報入力部122B、測位部123B及び地図情報入力部124Bにより得られた経路上位置-運転操作対応情報(経路上位置-運転操作対応テーブルなど)、入出車経路位置-運転操作対応情報(入出車経路位置-運転操作対応テーブルなど)が含まれる。
制御部129Bには、運転制御の対象となる車両制御部130Bが接続されている。
制御部129Bは、運転操作量(アクセル操作量、ブレーキ操作量、ステアリング操作量、等)に応じて、車両制御部130B内の各ECUに指令を与えることで、車両の走行を制御する。
制御部129Bは、手動運転モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報に基づいて、自車両を運転するヒューマンドライバの運転行動を学習する学習処理を行う。
制御部129Bは、運転支援モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報に基づいて運転支援情報を生成し、当該運転支援情報を、表示部127Aなどを使用してドライバに報知する。制御部129Bは、運転支援モードにおいても、自車両を運転するヒューマンドライバの運転行動を学習する学習処理を行う。
制御部129Bは、自車両の運転行動情報を記憶部128Bに記憶させる。記憶部128Bには、自車両を運転するヒューマンドライバの運転行動の学習結果が反映された運転行動情報が記憶される。
制御部129Bは、車載ゲートウェイ110Bを介してコンピューティングシステム200と通信する。
制御部129Bは、記憶部128Bに蓄積された自車両の運転行動情報を、車載ゲートウェイ110Bを介してコンピューティングシステム200に送信する。
制御部129Bは、通信部126Bを介して周辺の地上静止物や周辺の車両と通信する。
制御部129Bは、記憶部128Bに蓄積された自車両の運転行動情報を、通信部126Bを介して地上静止物や周辺の車両に送信する。
車載ゲートウェイ110Bは、走行制御システム120Bの制御下で、コンピューティングシステム200と通信する。車載ゲートウェイ110Bは、コンピューティングシステム200から受信したデータを走行制御システム120Bに入力する。車載ゲートウェイ110Bは、走行制御システム120Bから入力されたデータをコンピューティングシステム200に送信する。
走行制御システム120Bは、検知部121B、車両情報入力部122B、測位部123B、地図情報入力部124B、操作部125B、通信部126B、表示部127B、記憶部129B、制御部129B、等を備える。図24における走行状況認知部100Baは、検知部121B、車両情報入力部122B、測位部123B、地図情報入力部124B、操作部125B、通信部126B、等と制御部129Bとにより実現される。運転操作検出部100Bbは、車両情報入力部122Bの運転操作検出機能により実現される。また、運転行動情報送信部100Bcは、車載ゲートウェイ110Bにより実現される。
検知部121B、車両情報入力部122B、測位部123B、地図情報入力部124B、通信部126B及び車両制御部130Bの構成及び機能は、ロボットカー100Aの検知部121A、車両情報入力部122A、測位部123A、地図情報入力部124A、通信部126A及び車両制御部130Aの構成及び機能と同様である。
操作部125Bは、走行制御のオン・オフや制御モードの切り換え、表示部127Bにおける各種表示の切り換え等の操作指示を入力するための入力装置である。操作部125Bは、例えば、車両のステアリングホイールのスポーク部分に設けられるスイッチ等により具現化される。
表示部127Bは、インストルメントパネル中央部に設けられるセンタディスプレイ、及び、メータパネル内に設けられるインジケータで構成される表示装置である。表示部127Bには、自車両の状態を示す情報が表示されるとともに、走行制御のオン・オフや制御モードが表示される。制御モードには、手動運転モードと、運転支援モードとがある。
記憶部128Bは、自車両の運転行動情報及び認識関連情報を記憶する記憶装置である。
制御部129Bは、図示しないCPU、ROM、RAM等を中心に構成される情報処理装置であり、走行制御システム120Bの各部を統括制御する。制御部129Bは、ROMに記憶されている制御プログラムをCPUが実行することにより、各種処理を実行する。
制御部129Bは、測位部123Bから入力された自車両の位置(緯度、経度)と地図情報入力部124Bから入力された道路地図情報とに基づいて、電柱や信号器などの道路構造物の情報を含む詳細道路データを算出するとともに、検知部121Bの3次元レンジセンサにより周囲の物体の3次元距離を検出する。そして、3次元距離データと道路地図とをリアルタイムで合成し、3次元レンジセンサにより検出された物体が、道路構造物なのか、道路上の物体(車両、歩行者、等)なのかを正確に識別する。
制御部129Bは、検知部121B、車両情報入力部122B、測位部123B及び地図情報入力部124Bから入力された各種情報に基づく自車両の運転行動情報を記憶部19Bに蓄積する。自車両の運転行動情報には、検知部121B、車両情報入力部122B、測位部123B及び地図情報入力部124Bにより得られた経路上位置-運転操作対応情報(経路上位置-運転操作対応テーブルなど)、入出車経路位置-運転操作対応情報(入出車経路位置-運転操作対応テーブルなど)が含まれる。
制御部129Bには、運転制御の対象となる車両制御部130Bが接続されている。
制御部129Bは、運転操作量(アクセル操作量、ブレーキ操作量、ステアリング操作量、等)に応じて、車両制御部130B内の各ECUに指令を与えることで、車両の走行を制御する。
制御部129Bは、手動運転モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報に基づいて、自車両を運転するヒューマンドライバの運転行動を学習する学習処理を行う。
制御部129Bは、運転支援モードにおいては、時々刻々と変化する自車両の走行状況をリアルタイムで解析しつつ、当該解析結果と自車両の運転行動情報に基づいて運転支援情報を生成し、当該運転支援情報を、表示部127Aなどを使用してドライバに報知する。制御部129Bは、運転支援モードにおいても、自車両を運転するヒューマンドライバの運転行動を学習する学習処理を行う。
制御部129Bは、自車両の運転行動情報を記憶部128Bに記憶させる。記憶部128Bには、自車両を運転するヒューマンドライバの運転行動の学習結果が反映された運転行動情報が記憶される。
制御部129Bは、車載ゲートウェイ110Bを介してコンピューティングシステム200と通信する。
制御部129Bは、記憶部128Bに蓄積された自車両の運転行動情報を、車載ゲートウェイ110Bを介してコンピューティングシステム200に送信する。
制御部129Bは、通信部126Bを介して周辺の地上静止物や周辺の車両と通信する。
制御部129Bは、記憶部128Bに蓄積された自車両の運転行動情報を、通信部126Bを介して地上静止物や周辺の車両に送信する。
上記のように構成された非ロボットカー100Bは、自車両のヒューマンドライバによる運転操作に応じた運転制御を行いつつ、自車両を運転するヒューマンドライバの運転行動の学習処理、自車両の運転行動情報の送信処理、等、各種処理を行う。
図27は図24のロボットカー教習システムの動作内容を例示するフロー図である。このフロー図は、図24のロボットカー教習システムにより実現されるロボットカー教習方法の内容を例示するフロー図でもある。
このロボットカー教習システム1及び方法では、ロボットカー100Aと非ロボットカー100Bとを同じ経路R(図29参照)を走行させて、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることによりロボットカー100Aの運転教習が行なわれる。ロボットカー100Aと非ロボットカー100Bとが同じ経路Rを走行する態様には、非ロボットカー100Bがロボットカー100Aに先行して走行する態様(図29(A))と、ロボットカー100Aが非ロボットカー100Bに先行して走行する態様(図29(B))とがある。いずれの態様においても、以下の動作がなされる。
このロボットカー教習システム1及び方法では、ロボットカー100Aと非ロボットカー100Bとを同じ経路R(図29参照)を走行させて、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることによりロボットカー100Aの運転教習が行なわれる。ロボットカー100Aと非ロボットカー100Bとが同じ経路Rを走行する態様には、非ロボットカー100Bがロボットカー100Aに先行して走行する態様(図29(A))と、ロボットカー100Aが非ロボットカー100Bに先行して走行する態様(図29(B))とがある。いずれの態様においても、以下の動作がなされる。
非ロボットカー100Bは、ロボットカー100Aと同じ経路Rを走行する(S1:非ロボットカー走行ステップ)。
非ロボットカー100Bは、経路Rを走行中に、自車両の走行状況を認知する(S2:非ロボットカー走行状況認知ステップ)。
非ロボットカー100Bは、経路Rを走行中に、自車両のヒューマンドライバによる運転操作を検出する(S3:運転操作検出ステップ)。
非ロボットカー100Bは、自車両の走行状況と運転操作とを対応付けた運転行動情報をサーバ210に送信する(S4:運転行動情報送信ステップ、運転行動情報出力ステップ)。
非ロボットカー100Bは、自車両が走行中であるか否か判別し(S5)、走行中であれば(S5でYes)、ステップS2、S3、S4を繰り返し実行する。
非ロボットカー100Bは、経路Rを走行中に、自車両の走行状況を認知する(S2:非ロボットカー走行状況認知ステップ)。
非ロボットカー100Bは、経路Rを走行中に、自車両のヒューマンドライバによる運転操作を検出する(S3:運転操作検出ステップ)。
非ロボットカー100Bは、自車両の走行状況と運転操作とを対応付けた運転行動情報をサーバ210に送信する(S4:運転行動情報送信ステップ、運転行動情報出力ステップ)。
非ロボットカー100Bは、自車両が走行中であるか否か判別し(S5)、走行中であれば(S5でYes)、ステップS2、S3、S4を繰り返し実行する。
コンピューティングシステム200は、非ロボットカー100Bから運転行動情報を受信する(S11:運転行動情報受信ステップ)。
コンピューティングシステム200は、非ロボットカー100Bから受信した運転行動情報をロボットカー100Aに送信する(S12:運転行動情報送信ステップ)。
コンピューティングシステム200は、非ロボットカー100Bから受信した運転行動情報をロボットカー100Aに送信する(S12:運転行動情報送信ステップ)。
ロボットカー100Aは、非ロボットカー100Bと同じ経路Rを走行する(S21:ロボットカー走行ステップ)。
ロボットカー100Aは、経路Rを走行中に、自車両の走行状況を認知する(S22:ロボットカー走行状況認知ステップ)。
ロボットカー100Aは、自車両の走行状況に基づいて実行すべき運転操作を決定する(S23:運転操作決定ステップ)。
ロボットカー100Aは、決定した運転操作が実行されるように自動運転制御を行う(S24:自動運転制御ステップ)。
ロボットカー100Aは、非ロボットカー100Bの運転行動情報をサーバ210から受信する(S25:運転行動情報受信ステップ、運転行動情報取得ステップ)。
ロボットカー100Aは、サーバ210から受信した運転行動情報に基づいて非ロボットカー100Bを運転するヒューマンドライバの運転行動を学習する(S26:学習ステップ)。
ロボットカー100Aは、経路Rを走行中に、自車両の走行状況を認知する(S22:ロボットカー走行状況認知ステップ)。
ロボットカー100Aは、自車両の走行状況に基づいて実行すべき運転操作を決定する(S23:運転操作決定ステップ)。
ロボットカー100Aは、決定した運転操作が実行されるように自動運転制御を行う(S24:自動運転制御ステップ)。
ロボットカー100Aは、非ロボットカー100Bの運転行動情報をサーバ210から受信する(S25:運転行動情報受信ステップ、運転行動情報取得ステップ)。
ロボットカー100Aは、サーバ210から受信した運転行動情報に基づいて非ロボットカー100Bを運転するヒューマンドライバの運転行動を学習する(S26:学習ステップ)。
図28は図27の学習ステップS26の内容を例示するフロー図である。
学習ステップS26において、ロボットカー100Aは、まず、自動運転制御(S24)によりなされた自車両の運転行動情報を生成する(S26a1:運転行動情報生成ステップ)。
そして、運転行動情報受信ステップS25で受信した非ロボットカー100Bの運転行動情報(学習データセット)と自車両の運転行動情報との違いから、非ロボットカー100Bの運転行動情報に含まれる個々の走行状況において、非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように学習処理を行う(S26a2:教師あり学習ステップ)。
学習ステップS26において、ロボットカー100Aは、まず、自動運転制御(S24)によりなされた自車両の運転行動情報を生成する(S26a1:運転行動情報生成ステップ)。
そして、運転行動情報受信ステップS25で受信した非ロボットカー100Bの運転行動情報(学習データセット)と自車両の運転行動情報との違いから、非ロボットカー100Bの運転行動情報に含まれる個々の走行状況において、非ロボットカーと同じ運転操作(正解の操作)が自車両においてなされるように学習処理を行う(S26a2:教師あり学習ステップ)。
このロボットカー教習システム1及び方法によれば、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させて、ロボットカー100Aの自動運転性能を向上させることができる。ロボットカー100Aの自動運転性能が向上するにつれて、ロボットカー100Aの安全性・信頼性が向上し、ひいてはロボットカー100Aと非ロボットカー100Bとが共存する道路交通システム全体の安全性・信頼性が向上する。
このロボットカー教習システム1及び方法は、非ロボットカー100Bがロボットカー100Aに先行して走行する態様(図29(A))、又は、ロボットカー100Aが非ロボットカー100Bに先行して走行する態様(図29(B))で、ロボットカー100Aの運転教習を実施することができる。
図29(A)の態様での運転教習によれば、同じ経路Rを先に走行した非ロボットカー100Bの運転行動情報に基づいて、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。すなわち、ロボットカー100Aに新たな状況を経験させつつ、当該状況を既に経験した非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。ロボットカー100Aが受け取る非ロボットカー100Bの運転行動情報は、非ロボットカー100Bによるヒューマンドライバの運転行動の学習結果が反映された運転行動情報である。したがって、ロボットカー100Aが非ロボットカー100Bの運転行動情報に基づいて学習を行うことにより、非ロボットカー100Bを運転するヒューマンドライバの運転行動を効率良く学習することができる。
図29(B)の態様での運転教習によれば、同じ経路を後に走行した非ロボットカー100Bの運転行動情報に基づいて、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。すなわち、ロボットカー100Aに新たな状況を経験させた後で、当該状況を経験した非ロボットカー100Bのヒューマンドライバの運転行動をロボットカーに学習(強化学習:事後情報に基づく学習)させることができる。この態様においても、ロボットカー100Aは、非ロボットカー100Bを運転するヒューマンドライバの運転行動を効率良く学習することができる。
図29(A)の態様での運転教習によれば、同じ経路Rを先に走行した非ロボットカー100Bの運転行動情報に基づいて、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。すなわち、ロボットカー100Aに新たな状況を経験させつつ、当該状況を既に経験した非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。ロボットカー100Aが受け取る非ロボットカー100Bの運転行動情報は、非ロボットカー100Bによるヒューマンドライバの運転行動の学習結果が反映された運転行動情報である。したがって、ロボットカー100Aが非ロボットカー100Bの運転行動情報に基づいて学習を行うことにより、非ロボットカー100Bを運転するヒューマンドライバの運転行動を効率良く学習することができる。
図29(B)の態様での運転教習によれば、同じ経路を後に走行した非ロボットカー100Bの運転行動情報に基づいて、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。すなわち、ロボットカー100Aに新たな状況を経験させた後で、当該状況を経験した非ロボットカー100Bのヒューマンドライバの運転行動をロボットカーに学習(強化学習:事後情報に基づく学習)させることができる。この態様においても、ロボットカー100Aは、非ロボットカー100Bを運転するヒューマンドライバの運転行動を効率良く学習することができる。
また、図29(A)の態様によれば、ロボットカー100Aは、同じ経路Rを先に走行した非ロボットカー100Bの運転行動情報に基づいて自動運転制御を行うことにより、非ロボットカー100Bと同等レベルの高い運転性能で経路Rを走行することができる。
たとえば、経路Rが、幅の狭い曲がりくねった道路や、電柱などの障害物が多く存在する幅の狭い道路である場合、運転に不慣れなドライバやカーシェアリングサービスなどで運転の度に異なる車両に搭乗するドライバにとっては、経路Rをスムーズに走行することは簡単ではない。この種の道路をスムーズに走行することはロボットカー100Aも苦手である。
しかし、非ロボットカー100Bが経路Rを日常スムーズに走行する車両であるならば、非ロボットカー100Bの運転行動情報を参照してロボットカー100Aが自動運転制御を行うことにより、ロボットカー100Aは非ロボットカー100Bと同等レベルの運転性能で経路Rをスムーズに走行することが可能となる。
たとえば、経路Rが、幅の狭い曲がりくねった道路や、電柱などの障害物が多く存在する幅の狭い道路である場合、運転に不慣れなドライバやカーシェアリングサービスなどで運転の度に異なる車両に搭乗するドライバにとっては、経路Rをスムーズに走行することは簡単ではない。この種の道路をスムーズに走行することはロボットカー100Aも苦手である。
しかし、非ロボットカー100Bが経路Rを日常スムーズに走行する車両であるならば、非ロボットカー100Bの運転行動情報を参照してロボットカー100Aが自動運転制御を行うことにより、ロボットカー100Aは非ロボットカー100Bと同等レベルの運転性能で経路Rをスムーズに走行することが可能となる。
再び図4乃至図6を参照して説明する。
ロボットカー100Aの教習は、最も好ましくは、ロボットカー100Aと非ロボットカー100Bとが全く同一の経路Rを全く同一の走行状況で走行することにより行われる。全く同一の走行状況を実現するために、ロボットカー教習のための偽物の街が使用される。この偽物の街には、幅の狭い曲がりくねった道路、電柱などの障害物が多く存在する幅の狭い道路、でこぼこ道、見通しの悪い交差点、市街地ハイウェイ、不慣れな人には入出車しにくい車庫、等がまるで本物の様に再現されている。この偽物の街には、他車両、歩行者、家畜、等を自在に配置できる。この偽物の街では、道路に急に歩行者(人形)を飛び出させたり、野球のボールや風船を投入したり、木の葉を降り散らしたりすることも自在になし得る。
ロボットカー100Aの教習は、最も好ましくは、ロボットカー100Aと非ロボットカー100Bとが全く同一の経路Rを全く同一の走行状況で走行することにより行われる。全く同一の走行状況を実現するために、ロボットカー教習のための偽物の街が使用される。この偽物の街には、幅の狭い曲がりくねった道路、電柱などの障害物が多く存在する幅の狭い道路、でこぼこ道、見通しの悪い交差点、市街地ハイウェイ、不慣れな人には入出車しにくい車庫、等がまるで本物の様に再現されている。この偽物の街には、他車両、歩行者、家畜、等を自在に配置できる。この偽物の街では、道路に急に歩行者(人形)を飛び出させたり、野球のボールや風船を投入したり、木の葉を降り散らしたりすることも自在になし得る。
ロボットカー100Aは、経路R上の各地点(P1,P2,・・・,Pn)においてなされた非ロボットカー100Bの運転操作と自車両の運転操作とを比較し、各地点(P1,P2,・・・,Pn)において、非ロボットカー100Bにおいてなされたのと同じ運転操作(正解の操作)が自車両においてなされるように学習処理を行う。例えば、地点P3においてなされた自車両の減速操作(制動操作)の操作量yyyが非ロボットカー100Bの減速操作(制動操作)の操作量xxxよりも大きい(あるいは小さい)場合、地点P3における自車両の減速操作(制動操作)の操作量yyyがxxxと一致する(限りなく近くなる)ように学習処理を行う。
この学習処理は、運転行動の要素のうち特に、走行状況についての「認識」及び認識された走行状況に対する「判断・計画」についてなされる。ロボットカー100Aは、走行状況についての「認識」の誤りを発見する処理を行う。「認識」の誤りが発見されたならば、その誤りを修正する学習処理を行う。「認識」の誤りが発見されなければ、認識された走行状況に対する「判断・計画」の誤りを発見する処理を行う。「判断・計画」の誤りが発見されたならば、その誤りを修正する学習処理を行う。「判断・計画」の誤りが発見されなければ、別の認識対象についての「認識」の誤りを発見する処理に戻るか又はこの学習処理については終了する。
例えば、地点PP3において、非ロボットカー100Bは減速操作(制動操作)を行わなかったのに対しロボットカー100Aは減速操作(制動操作)を行った場合、ロボットカー100Aは、地点PP3において認識された対象及び認識に至った過程について再確認する。この再確認は、記憶部128Aに蓄積された自車両の運転行動情報及び認識情報を読み出すことにより行うことができる。その結果、例えば、自車両の前方に落下する石(こぶし大の石)が「認識」されていた場合、ロボットカー100Aは、走行状況認知部100Aa(検知部121A)により認知(検知)された物体を石と認識するに至った「認識」の処理内容(プログラム・パラメータ及び/又はデータ)を修正する学習処理を行う。地点PP3において非ロボットカー100Bが減速操作(制動操作)を行わなかったということは、自車両の前方に落下する石のような危険度の大きい物体は存在しなかった可能性が高いからである。この例の場合、ロボットカー100Aは、自車両の前方に落下する木の葉など(危険度が小さい物体)を石(危険度の大きい物体)であると誤って認識した可能性が大きい。
また、例えば、地点Pn-2において、非ロボットカー100Bは右転舵しつつ走行するのみで減速操作(制動操作)は行わなかったのに対し、ロボットカー100Aは減速操作(制動操作)を行った場合、ロボットカー100Aは、地点Pn-2において認識された対象及び認識に至った過程について再確認する。その結果、例えば、右折を許す表示状態から右折を許さない表示状態に切り替わった交差点の信号器、及び、自車両の間近に後方から接近する他車両が認識されていた場合、ロボットカー100Aは、自車両の走行状況の「認識」は正しくなされたと判断し、減速操作(制動操作)を行うに至った「判断・計画」の処理内容(プログラム・パラメータ及び/又はデータ)を修正する学習処理を行う。地点P-2において、信号器が右折を許さない表示状態に切り替わったにもかかわらず、非ロボットカー100Bが減速操作(制動操作)を行わなかったということは、後方から接近する他車両による追突事故を回避するためであった可能性が高いからである。
この学習処理は、運転行動の要素のうち特に、走行状況についての「認識」及び認識された走行状況に対する「判断・計画」についてなされる。ロボットカー100Aは、走行状況についての「認識」の誤りを発見する処理を行う。「認識」の誤りが発見されたならば、その誤りを修正する学習処理を行う。「認識」の誤りが発見されなければ、認識された走行状況に対する「判断・計画」の誤りを発見する処理を行う。「判断・計画」の誤りが発見されたならば、その誤りを修正する学習処理を行う。「判断・計画」の誤りが発見されなければ、別の認識対象についての「認識」の誤りを発見する処理に戻るか又はこの学習処理については終了する。
例えば、地点PP3において、非ロボットカー100Bは減速操作(制動操作)を行わなかったのに対しロボットカー100Aは減速操作(制動操作)を行った場合、ロボットカー100Aは、地点PP3において認識された対象及び認識に至った過程について再確認する。この再確認は、記憶部128Aに蓄積された自車両の運転行動情報及び認識情報を読み出すことにより行うことができる。その結果、例えば、自車両の前方に落下する石(こぶし大の石)が「認識」されていた場合、ロボットカー100Aは、走行状況認知部100Aa(検知部121A)により認知(検知)された物体を石と認識するに至った「認識」の処理内容(プログラム・パラメータ及び/又はデータ)を修正する学習処理を行う。地点PP3において非ロボットカー100Bが減速操作(制動操作)を行わなかったということは、自車両の前方に落下する石のような危険度の大きい物体は存在しなかった可能性が高いからである。この例の場合、ロボットカー100Aは、自車両の前方に落下する木の葉など(危険度が小さい物体)を石(危険度の大きい物体)であると誤って認識した可能性が大きい。
また、例えば、地点Pn-2において、非ロボットカー100Bは右転舵しつつ走行するのみで減速操作(制動操作)は行わなかったのに対し、ロボットカー100Aは減速操作(制動操作)を行った場合、ロボットカー100Aは、地点Pn-2において認識された対象及び認識に至った過程について再確認する。その結果、例えば、右折を許す表示状態から右折を許さない表示状態に切り替わった交差点の信号器、及び、自車両の間近に後方から接近する他車両が認識されていた場合、ロボットカー100Aは、自車両の走行状況の「認識」は正しくなされたと判断し、減速操作(制動操作)を行うに至った「判断・計画」の処理内容(プログラム・パラメータ及び/又はデータ)を修正する学習処理を行う。地点P-2において、信号器が右折を許さない表示状態に切り替わったにもかかわらず、非ロボットカー100Bが減速操作(制動操作)を行わなかったということは、後方から接近する他車両による追突事故を回避するためであった可能性が高いからである。
図24の例では、非ロボットカー100Bからロボットカー100Aへコンピューティングシステム200を介して運転行動情報が受け渡されるが、非ロボットカー100Bからロボットカー100Aへ運転行動情報を受け渡す方法は任意である。その他の方法の例として、ロボットカー100Aと非ロボットカー100Bとの直接通信(車車間通信、図7参照)、地上静止物410を介しての受け渡し(図8参照)、道路420を介しての受け渡し(車路間通信、図9参照)、携帯端末500を介しての受け渡し(図10参照)、等を挙げることができる。
図22(A)は図24のロボットカー教習システム1におけるロボットカー100Aの自動運転制御部Acの構成例を示すブロック図でもある。
この構成例の自動運転制御部100Acは、自車両の運転操作を決定する際に参照する知識情報(判断基準等)を記憶した運転知識部101aと、運転行動情報受信部100Abにより受信(取得)した運転行動情報に基づいて、運転知識部101aに記憶されている知識情報を更新する学習処理を行う学習処理部(知識更新処理部)102aと、を有する。
この構成例の自動運転制御部100Acは、自車両の運転操作を決定する際に参照する知識情報(判断基準等)を記憶した運転知識部101aと、運転行動情報受信部100Abにより受信(取得)した運転行動情報に基づいて、運転知識部101aに記憶されている知識情報を更新する学習処理を行う学習処理部(知識更新処理部)102aと、を有する。
図30はこの構成例における学習ステップS26の内容を例示するフロー図である。
学習ステップS26において、ロボットカー100Aは、まず、自動運転制御(S24)によりなされた自車両の運転行動情報を生成する(S26b1:運転行動情報生成ステップ)。
運転行動情報受信ステップS25で受信した非ロボットカー100Bの運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において非ロボットカー100Bと同じ運転操作(正解の操作)が自車両においてなされるように、運転知識部101aに記憶された知識情報を更新する学習処理(教師あり学習による学習処理)を行う(S26b2:教師あり学習ステップ)。
この実施形態のロボットカー教習システム1及び方法によれば、非ロボットカー100Bの運転行動情報を学習データセットとする教師あり学習により、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。
学習ステップS26において、ロボットカー100Aは、まず、自動運転制御(S24)によりなされた自車両の運転行動情報を生成する(S26b1:運転行動情報生成ステップ)。
運転行動情報受信ステップS25で受信した非ロボットカー100Bの運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において非ロボットカー100Bと同じ運転操作(正解の操作)が自車両においてなされるように、運転知識部101aに記憶された知識情報を更新する学習処理(教師あり学習による学習処理)を行う(S26b2:教師あり学習ステップ)。
この実施形態のロボットカー教習システム1及び方法によれば、非ロボットカー100Bの運転行動情報を学習データセットとする教師あり学習により、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。
図23(A)は図24のロボットカー教習システム1におけるロボットカー100Aの自動運転制御部Acの別の構成例を示すブロック図でもある。
この別の構成例の自動運転制御部100Acは、
走行状況認知部100Aaにより認知された走行状況に応じた運転行動を計算により決定する運転操作決定部103aと、
運転行動情報受信部100Abにより受信(取得)した運転行動情報に基づいて、運転操作決定部103aにおいて使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)104aと、を有する。
この別の構成例の自動運転制御部100Acは、
走行状況認知部100Aaにより認知された走行状況に応じた運転行動を計算により決定する運転操作決定部103aと、
運転行動情報受信部100Abにより受信(取得)した運転行動情報に基づいて、運転操作決定部103aにおいて使用される運転操作決定関数のパラメタを調整する学習処理部(パラメタ調整部)104aと、を有する。
図31はこの別の構成例における学習ステップS26の内容を例示するフロー図である。
学習ステップS26において、ロボットカー100Aは、まず、自動運転制御(S24)によりなされた自車両の運転行動情報を生成する(S26c1:運転行動情報生成ステップ)。
運転行動情報受信ステップS25で受信した非ロボットカー100Bの運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において非ロボットカー100Bと同じ運転操作(正解の操作)が自車両においてなされるように、運転操作決定部103aにおいて使用される運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)を行う(S26c2:教師あり学習ステップ)。
この実施形態のロボットカー教習システム1及び方法によれば、非ロボットカー100Bの運転行動情報を学習データセットとする教師あり学習により、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。
学習ステップS26において、ロボットカー100Aは、まず、自動運転制御(S24)によりなされた自車両の運転行動情報を生成する(S26c1:運転行動情報生成ステップ)。
運転行動情報受信ステップS25で受信した非ロボットカー100Bの運転行動情報を学習データセット(走行状況と当該状況においてなされた運転操作との組)として、当該運転行動情報に含まれる個々の走行状況において非ロボットカー100Bと同じ運転操作(正解の操作)が自車両においてなされるように、運転操作決定部103aにおいて使用される運転操作決定関数のパラメタを調整する学習処理(教師あり学習による学習処理)を行う(S26c2:教師あり学習ステップ)。
この実施形態のロボットカー教習システム1及び方法によれば、非ロボットカー100Bの運転行動情報を学習データセットとする教師あり学習により、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。
図32は本発明のロボットカー教習システムの別の構成例を示す概念図である。図24のシステムとはサーバ210の構成が相違する。
このロボットカー教習システム1におけるコンピューティングシステム200のサーバ210は、運転行動情報受信部210aにより受信した運転行動情報に基づいて、最適化された運転行動情報を生成する最適化情報生成部210cと、最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新部210dと、最新の運転行動情報をロボットカー100Aに送信する運転行動情報送信部210bと、を有する。
このロボットカー教習システム1におけるコンピューティングシステム200のサーバ210は、運転行動情報受信部210aにより受信した運転行動情報に基づいて、最適化された運転行動情報を生成する最適化情報生成部210cと、最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新部210dと、最新の運転行動情報をロボットカー100Aに送信する運転行動情報送信部210bと、を有する。
図33は図32のロボットカー教習システムの動作内容を例示するフロー図である。このフロー図は、図32のロボットカー教習システムにより実現されるロボットカー教習方法の内容を例示するフロー図でもある。図27のフロー図とはコンピューティングシステム200の動作が相違する。
コンピューティングシステム200は、非ロボットカー100Bから運転行動情報を受信する(S11:運転行動情報受信ステップ)。
コンピューティングシステム200は、非ロボットカー100Bから受信した運転行動情報に基づいて最適化された運転行動情報を生成する(S13:最適化情報生成ステップ)。
コンピューティングシステム200は、最適化された運転行動情報を最新の情報に更新して管理する(S14:最適化情報更新ステップ)。
コンピューティングシステム200は、最適化された最新の運転行動情報をロボットカーに送信する(S12:運転行動情報送信ステップ)。
この実施形態のロボットカー教習システム1及び方法によれば、コンピューティングシステム200から最適化された運転行動情報を受信したロボットカー100Aは、当該最適化された運転行動情報に基づいて、非ロボットカー100Bを運転するヒューマンドライバの運転行動を学習することができる。
コンピューティングシステム200は、非ロボットカー100Bから運転行動情報を受信する(S11:運転行動情報受信ステップ)。
コンピューティングシステム200は、非ロボットカー100Bから受信した運転行動情報に基づいて最適化された運転行動情報を生成する(S13:最適化情報生成ステップ)。
コンピューティングシステム200は、最適化された運転行動情報を最新の情報に更新して管理する(S14:最適化情報更新ステップ)。
コンピューティングシステム200は、最適化された最新の運転行動情報をロボットカーに送信する(S12:運転行動情報送信ステップ)。
この実施形態のロボットカー教習システム1及び方法によれば、コンピューティングシステム200から最適化された運転行動情報を受信したロボットカー100Aは、当該最適化された運転行動情報に基づいて、非ロボットカー100Bを運転するヒューマンドライバの運転行動を学習することができる。
この実施形態における最適化された運転行動情報には、運転行動情報の提供を受けるロボットカー100Aの車両属性に応じて最適化された運転行動情報、運転行動情報の提供を受けるロボットカー100Aが障害物と接触する可能性が最少になるように最適化された運転行動情報、運転行動情報の提供を受けるロボットカー100Aの消費エネルギが最少になるように最適化された運転行動情報、運転行動情報の提供を受けるロボットカー100Aの回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報、等が含まれる。
図22(A)及び図23(A)図16に例示される自動運転制御部Acの構成は図32のシステムにおけるロボットカー100Aの自動運転制御部Acにも適用可能である。この場合の学習ステップS26の内容は、図30及び図31と同様である。
[その他の実施形態等]
[その他の実施形態等]
本発明のロボットカー教習システムは、本発明の道路交通システムに含まれる。したがって、図24乃至図33を参照してなされた本発明のロボットカー教習システムの実施形態の説明は、本発明の道路交通システムの実施形態の説明でもある。
また、図12乃至図14は、本発明のロボットカー教習システムの実施形態についての説明図でもある。そして、図12乃至図14を参照してなされた本発明の道路交通システムの実施形態の説明は、本発明のロボットカー教習システムの実施形態の説明でもある。
また、図12乃至図14は、本発明のロボットカー教習システムの実施形態についての説明図でもある。そして、図12乃至図14を参照してなされた本発明の道路交通システムの実施形態の説明は、本発明のロボットカー教習システムの実施形態の説明でもある。
以上の実施形態のロボットカー教習システム及び方法によれば、非ロボットカー100Bが自車両のヒューマンドライバの運転行動を日々学習して運転支援性能を日々向上させていくことにより、ロボットカー100Aの自動運転性能も日々向上させていくことができる。すなわち、ロボットカー100Aと非ロボットカー100Bとが共存する状況下で、非ロボットカー100Bを運転するヒューマンドライバの運転テクニックをロボットカー100Aに学習させて、ロボットカー100Aの自動運転性能を高効率に向上させることができる。ロボットカー100Aの自動運転性能が向上するにつれて、道路交通システム全体の安全性・信頼性の向上が図られる。
以上の実施形態のロボットカー教習システム及び方法によれば、タクシードライバやバスドライバ等、プロフェッショナルドライバが非ロボットカー100Bを運転した際に得られた運転行動情報を、ロボットカー100Aの教習のために利用することができる。ロボットカー100Aの自動運転性能の向上に役立つ運転行動情報を提供したプロフェッショナルドライバが対価を得ることができるシステムとすることにより、非ロボットカー100Bを運転した際の運転行動情報を提供することへのインセンティブをプロフェッショナルドライバ達に与えて、彼らの持つ高度な運転テクニックによる運転行動情報の提供を促すことができる。このシステムは、ロボットカー100Aと非ロボットカー100Bとが共存する環境(全ての車両がロボットカーになるまでの過渡的環境)において、ロボットカー教習システム側とタクシードライバやバスドライバ等、運転行動情報を提供する側の双方にとって都合の良いシステムである。
以上の実施形態において、ロボットカー100Aの教習は、ロボットカー100Aと非ロボットカー100Bとが同一の経路Rを走行することにより行われるが、必ずしも同一の走行状況で行われなくてもよい。ロボットカー100Aの教習は、本物の街で行うこともできる。ロボットカー100Aと非ロボットカー100Bとが混在する道路交通システムにおいて、ロボットカー100Aの教習を行うことが可能な環境が実現されたならば、地球上に形成された巨大な道路交通システムがロボットカー教習システムとなる。
以上の実施形態のロボットカー教習システムにおいて、自動運転制御部100Acの学習処理部104aは、非ロボットカー100Bの運転行動情報から把握される当該非ロボットカー100Bの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカー100Bの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与えて、最も多くの報酬が得られそうな運転行動をとるように学習処理(強化学習による学習処理)を行うことが望ましい。
この構成によれば、非ロボットカー100Bの運転行動情報に基づく強化学習により、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。
この構成によれば、非ロボットカー100Bの運転行動情報に基づく強化学習により、非ロボットカー100Bを運転するヒューマンドライバの運転行動をロボットカー100Aに学習させることができる。
非ロボットカー100Bの運転行動情報に基づく強化学習には、非ロボットカー100Bの運転行動情報から把握される非ロボットカー100Bの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカー100Bの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように知識部101aに記憶された知識情報を更新する学習が含まれる。
非ロボットカー100Bの運転行動情報に基づく強化学習には、非ロボットカー100Bの運転行動情報から把握される非ロボットカー100Bの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカー100Bの運転行動からより遠い運転行動をとったときによりマイナスの報酬(罰)を与え、最も多くの報酬が得られそうな運転行動をとるように運転操作決定部103aにおいて使用される運転操作決定関数のパラメタを調整する学習が含まれる。
非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)によれば、単に試行錯誤(あるタイミングでブレーキをかけなかったら周辺物体に衝突した、経路の曲がりに比べて舵角が小さすぎたら周辺物体に衝突した、といったこと)を繰り返す従来の強化学習と比較して格段と高い効率でロボットカー100Aの自動運転性能を向上させることができる。すなわち、従来の強化学習は、決められた経路に沿ってより速い速度で走行しだときにプラスの報酬を与え、ガードレールや他車両など周辺物体に衝突したり決められた経路を外れたりしたりしたときにマイナスの報酬(罰)を与えて、どのような行動をするとどれくらいの報酬が得られそうかを学習していくのみ、すなわちヒューマンドライバの運転行動とは無関係に自車両の運転行動の正否に基づいて学習するのみであるため、ロボットカー100Aの自動運転性能をヒューマンドライバの運転テクニックのレベルまで高めるには長期間にわたる非常に膨大な回数の試行錯誤を要する。これに対し、非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)は、ヒューマンドライバの運転テクニックを目標とし、その目標を達成するために、非ロボットカー100Bを運転するヒューマンドライバの運転行動(お手本)に自車両の運転行動を近づけていく試行錯誤を繰り返すため(この点では「教師あり学習」ともいえる)、ロボットカーの自動運転性能をヒューマンドライバの運転テクニックのレベルまで短期間で到達させることができる。
以上の実施形態のロボットカー教習システムにおいて、ロボットカー100Aは、ヒューマンドライバの運転行動とは無関係に自車両の運転行動の正否のみに基づいて学習する従来同様の強化学習(或いは教師なし学習)を行うとともに、非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)を行うことが望ましい。
この構成によれば、非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)による学習がなされていない運転行動を、従来同様の強化学習(或いは教師なし学習)による学習の結果なされる運転行動により補うことができる。また反対に、従来同様の強化学習(或いは教師なし学習)による学習がなされていない、あるいは学習が進んでいない運転行動を、非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)による学習の結果なされる運転行動により補うことができる。
この構成によれば、非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)による学習がなされていない運転行動を、従来同様の強化学習(或いは教師なし学習)による学習の結果なされる運転行動により補うことができる。また反対に、従来同様の強化学習(或いは教師なし学習)による学習がなされていない、あるいは学習が進んでいない運転行動を、非ロボットカー100Bの運転行動情報に基づく強化学習(模倣学習)による学習の結果なされる運転行動により補うことができる。
以上の実施形態のロボットカー教習システムにおいて、自動運転制御部100Acの学習処理部104aを多層ニューラルネット(ディープ・ニューラルネット)で構成することが望ましい。この構成は、自動運転制御部100Acに多層ニューラルネット・プログラムをインストールし、当該多層ニューラルネット・プログラムにより学習処理を実行することにより実現される。
この構成によれば、多層ニューラルネット・プログラムにより実現される深層学習機能をロボットカー100Aに持たせ、非ロボットカー100Bを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカー100Aに自ら抽出させて学習を行わせることができる。この構成により、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持ったロボットカー100Aが実現され得る。
この構成によれば、多層ニューラルネット・プログラムにより実現される深層学習機能をロボットカー100Aに持たせ、非ロボットカー100Bを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカー100Aに自ら抽出させて学習を行わせることができる。この構成により、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持ったロボットカー100Aが実現され得る。
以上の実施形態のロボットカー教習システムにおいて、自動運転制御部100Acの学習処理部104aをニューロモーフィック・チップで構成することが望ましい。
この構成によれば、ニューロモーフィック・チップにより実現される深層学習機能をロボットカー100Aに持たせ、非ロボットカー100Bを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカー100Aに自ら抽出させて学習(自己組織化)を行わせることができる。この構成により、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持ったロボットカー100Aが実現され得る。
この構成によれば、ニューロモーフィック・チップにより実現される深層学習機能をロボットカー100Aに持たせ、非ロボットカー100Bを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカー100Aに自ら抽出させて学習(自己組織化)を行わせることができる。この構成により、将来的には人間と同じく汎用の運転知識・運転能力(強いAI)を持ったロボットカー100Aが実現され得る。
上記ニューロモーフィック・チップには、スパイキング・ニューラルネットが実装されていることが望ましい。
この構成によれば、スパイキング・ニューラルネットにより実現される本物の脳を模した学習機能をロボットカー100Aに持たせ、非ロボットカー100Bを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカー100Aに人間のように自ら抽出させて学習(自己組織化)を行わせることができる。
この構成によれば、スパイキング・ニューラルネットにより実現される本物の脳を模した学習機能をロボットカー100Aに持たせ、非ロボットカー100Bを運転するヒューマンドライバの運転行動(認識、判断・計画、操作)の特徴をロボットカー100Aに人間のように自ら抽出させて学習(自己組織化)を行わせることができる。
以上の実施形態において、ロボットカー100Aは、非ロボットカー100Bから提供された運転行動情報を自車両の車両属性に応じて最適値に修正し、当該修正した運転行動情報に基づいて学習処理及び自動運転制御を行う機能を有することが望ましい。たとえば、車両寸法や内外輪差が非ロボットカー100Bと相違する場合、ロボットカー100Aは、非ロボットカー100Bから提供された運転行動情報に含まれるステアリング操作量やブレーキ操作のタイミングを修正し、当該修正したステアリング操作量やブレーキ操作のタイミングを含む運転行動情報に基づいて学習処理及び自動運転制御を行う。
1 道路交通システム,車両共用システム,ロボットカー教習システム
100 車両
100A ロボットカー(車両)
100Aa 走行状況認知部
100Ab 運転行動情報受信部(運転行動情報取得部)
100Ac 自動運転制御部
100Ad 運転行動情報出力部
100B 非ロボットカー(車両)
100Ba 走行状況認知部
100Bb 運転操作検出部
100Bc 運転行動情報送信部(運転行動情報出力部)
100Bd 運転行動情報取得部
100Be 運転支援制御部
101a 運転知識部
102a 学習処理部
103a 運転操作決定部
104a 学習処理部
101b 運転知識部
102b 学習処理部
103b 運転操作決定部
104b 学習処理部
110 車載ゲートウェイ
120 走行制御システム
200 コンピューティングシステム
210a 運転行動情報受信部(運転行動情報受信機能)
210b 運転行動情報送信部(運転行動情報受信機能)
210c 最適化情報生成部(最適化情報生成機能)
210d 最適化情報更新部(最適化情報更新機能)
210 サーバコンピュータ
220 データベース
300 インターネット(ネットワーク)
410 信号器(地上静止物)
420 道路(地上静止物)
440 車庫入れ経験提供装置
500 携帯端末
G 車庫(地上静止物)
V1 自車両
V2 他車両
100 車両
100A ロボットカー(車両)
100Aa 走行状況認知部
100Ab 運転行動情報受信部(運転行動情報取得部)
100Ac 自動運転制御部
100Ad 運転行動情報出力部
100B 非ロボットカー(車両)
100Ba 走行状況認知部
100Bb 運転操作検出部
100Bc 運転行動情報送信部(運転行動情報出力部)
100Bd 運転行動情報取得部
100Be 運転支援制御部
101a 運転知識部
102a 学習処理部
103a 運転操作決定部
104a 学習処理部
101b 運転知識部
102b 学習処理部
103b 運転操作決定部
104b 学習処理部
110 車載ゲートウェイ
120 走行制御システム
200 コンピューティングシステム
210a 運転行動情報受信部(運転行動情報受信機能)
210b 運転行動情報送信部(運転行動情報受信機能)
210c 最適化情報生成部(最適化情報生成機能)
210d 最適化情報更新部(最適化情報更新機能)
210 サーバコンピュータ
220 データベース
300 インターネット(ネットワーク)
410 信号器(地上静止物)
420 道路(地上静止物)
440 車庫入れ経験提供装置
500 携帯端末
G 車庫(地上静止物)
V1 自車両
V2 他車両
Claims (84)
- 複数の車両が道路を走行する道路交通システムであって、
前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
前記車両にはヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転操作を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて、実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、前記実行すべき運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を適宜更新する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
前記車両にはヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、
前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、
前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、
前記車両には、ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーが含まれ、
前記非ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、
前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報から前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、
前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、1又は複数の車両から運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有し、
前記車両には、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが含まれ、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記コンピューティングシステムから他車両の運転行動情報を受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、
前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、
前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、
前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部を有し、
前記非ロボットカーは、ヒューマンドライバによる運転を支援する運転支援制御機能を有する車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、
前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記ロボットカーは、ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、
前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、
前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報受信部により受信した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする道路交通システム。 - 複数の車両が道路を走行する道路交通システムであって、
コンピューティングシステムを有し、
前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、
前記非ロボットカーは、ヒューマンドライバにより運転操作がなされる車両であって、自車両の運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする道路交通システム。 - 前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた運転行動情報である、請求項1乃至6のいずれか1項記載の道路交通システム。
- 前記非ロボットカーは、自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、
前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、請求項1乃至3のいずれか1項記載の道路交通システム。 - 前記ロボットカーは、自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、
前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、請求項4乃至6のいずれか1項記載の道路交通システム。 - 前記非ロボットカーは、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有する請求項16乃至18のいずれか1項記載の道路交通システム。
- 前記コンピューティングシステムは、1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数の車両に送信する運転行動情報送信機能と、を有する請求項7乃至12のいずれか1項記載の道路交通システム。
- 前記コンピューティングシステムは、ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有する、請求項13乃至15のいずれか1項記載の道路交通システム。
- 前記コンピューティングシステムは、非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有する、請求項16乃至18のいずれか1項記載の道路交通システム。
- ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが道路を走行する道路交通システムであって、
コンピューティングシステムを備え、
前記コンピューティングシステムは、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。 - ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーが道路を走行する道路交通システムであって、
コンピューティングシステムを備え、
前記のコンピューティングシステムは、1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とする道路交通システム。 - 前記最適化された運転行動情報は、前記運転行動情報の提供を受ける車両の車両属性に応じて最適化された運転行動情報、前記運転行動情報の提供を受ける車両が障害物と接触する可能性が最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の消費エネルギが最少になるように最適化された運転行動情報、前記運転行動情報の提供を受ける車両の回生エネルギが最大になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における加速回数或いは加速時間が最少になるように最適化された運転行動情報、所定走行距離若しくは所定走行時間における制動回数又は制動時間が最少又は最大になるように最適化された運転行動情報、出発地点から到着地点までの走行距離が最少になるように最適化された運転行動情報、又は、出発地点から到着地点までの走行時間が最少になるように最適化された運転行動情報である、請求項23、24、25、27のいずれか1項記載の道路交通システム。
- ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、
自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とする非ロボットカー。 - ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、
自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理部と、を有することを特徴とする非ロボットカー。 - ヒューマンドライバによる運転を支援する運転支援制御機能を有する非ロボットカーであって、
自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように運転支援制御を行う運転支援制御部と、を有し、
前記運転支援制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とする非ロボットカー。 - 自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、
前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、請求項29乃至31のいずれか1項記載の非ロボットカー。 - 自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有する請求項29乃至31のいずれか1項記載の非ロボットカー。
- ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、
自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記運転行動情報取得部により取得した運転行動情報を参照しつつ、前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とするロボットカー。 - ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、
自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、前記運転行動決定部が運転行動を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を適宜更新する学習処理部と、を有することを特徴とするロボットカー。 - ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされるロボットカーであって、
自車両の走行状況を認知する走行状況認知部と、他車両の運転行動情報を取得する運転行動情報取得部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、を有し、
前記自動運転制御部は、前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理部と、を有することを特徴とするロボットカー。 - 前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた運転行動情報である、請求項34乃至36のいずれか1項記載のロボットカー。
- 前記他車両の運転行動情報は、他車両の走行状況と当該他車両においてなされた運転操作とを対応付けた運転行動情報である、請求項34乃至36のいずれか1項記載のロボットカー。
- 自車両の運転行動情報を外部に出力する運転行動情報出力部を有し、
前記自車両の運転行動情報は、自車両の走行状況と当該自車両においてなされた運転操作とを対応付けた運転行動情報である、請求項34乃至36のいずれか1項記載のロボットカー。 - 複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、
1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数の車両に送信する運転行動情報送信機能と、を有するコンピューティングシステム。 - 複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、
1又は複数の車両の運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数の車両に送信する運転行動情報送信機能と、を有するコンピューティングシステム。 - 複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、
ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を非ロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記非ロボットカーは、
ヒューマンドライバにより運転を支援する運転支援機能を有する車両であって、
自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて運転支援制御を行う運転支援制御部と、を有することを特徴とするコンピューティングシステム。 - 複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、
非ロボットカーから運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報をロボットカーに送信する運転行動情報送信機能と、を有し、
前記非ロボットカーは、
ヒューマンドライバにより運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、を有することを特徴とするコンピューティングシステム。 - 複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、
1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報を当該運転行動情報の送信元とは異なる1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とするコンピューティングシステム。 - 複数の車両が道路を走行する道路交通システムのコンピューティングシステムであって、
1又は複数のロボットカーの運転行動情報を受信する運転行動情報受信機能と、前記運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成機能と、前記最適化された運転行動情報を最新の情報に更新して管理する最適化情報更新機能と、前記最適化された運転行動情報を1又は複数のロボットカーに送信する運転行動情報送信機能と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記運転行動情報を受信する運転行動情報受信部と、前記運転行動情報受信部により受信した運転行動情報を参照しつつ、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行う自動運転制御部と、前記走行状況認知部により認知された走行状況と自動運転制御による運転操作とを対応付けた運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部と、を有し、
前記運転行動情報は、前記ロボットカーの走行状況と運転操作とを対応付けた情報である、ことを特徴とするコンピューティングシステム。 - 前記最適化情報生成機能は、
前記運転行動情報の提供を受ける車両の車両属性に基づいて、当該車両が障害物と接触する可能性が最も小さくなるように、前記運転行動情報を修正する機能を含む、請求項41又は45に記載のコンピューティングシステム。 - 請求項1乃至28のいずれかに記載の道路交通システム。を1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
- 請求項29乃至33のいずれかに記載の非ロボットカーを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
- 請求項34乃至39のいずれかに記載のロボットカーを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
- 請求項40乃至46のいずれかのコンピューティングシステムを1又は複数のコンピュータにより実現するためのコンピュータプログラム。
- 請求項1乃至28のいずれかに記載の道路交通システムにおいて、
車両を複数の利用者によって共用することを特徴とする車両共用システム。 - 請求項51に記載の車両共用システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
- ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、
前記非ロボットカーは、
ヒューマンドライバにより運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記非ロボットカーの運転行動情報を取得する運転行動情報取得部と、自車両の前記走行状況認知部により認知された走行状況に基づいて自動運転制御を行うとともに、前記運転行動情報取得部により取得した運転行動情報に基づいて前記非ロボットカーの運転行動を学習する学習処理を行う自動運転制御部と、を有することを特徴とするロボットカー教習システム。 - 前記自動運転制御部は、前記運転行動情報取得部により取得した運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作が自車両においてなされるように学習処理を行う、請求項53記載のロボットカー教習システム。
- 前記自動運転制御部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬を与え、最も多くの報酬が得られそうな運転行動をとるように学習処理を行う、請求項53記載のロボットカー教習システム。
- ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、
前記非ロボットカーは、
ヒューマンドライバにより運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、前記非ロボットカーから出力された前記運転行動情報を取得する運転行動情報取得部と、を有し、
前記自動運転制御部は、
前記運転操作を決定する際に参照する知識情報を記憶した運転知識部と、前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転知識部に記憶されている知識情報を更新する学習処理を行う学習処理部と、を有することを特徴とするロボットカー教習システム。 - 前記学習処理部は、前記運転行動情報取得部により取得した運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作が自車両においてなされるように、前記運転知識部に記憶された知識情報を更新する学習処理を行う、請求項56記載のロボットカー教習システム。
- 前記学習処理部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転知識部に記憶された知識情報を更新する学習処理を行う、請求項56記載のロボットカー教習システム。
- ロボットカーと、当該ロボットカーと同じ経路を走行する非ロボットカーとを有し、
前記非ロボットカーは、
ヒューマンドライバにより運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、自車両のヒューマンドライバによる運転操作を検出する運転操作検出部と、前記走行状況認知部により認知された走行状況と前記運転操作検出部により検出された運転操作とを対応付けた運転行動情報を出力する運転行動情報出力部と、を有し、
前記ロボットカーは、
ヒューマンドライバによる運転操作の代わりに自動運転制御によって運転操作がなされる車両であって、
自車両の走行状況を認知する走行状況認知部と、前記走行状況認知部により認知された走行状況に基づいて実行すべき運転操作を決定し、当該運転操作が実行されるように自動運転制御を行う自動運転制御部と、前記非ロボットカーから出力された前記運転行動情報を取得する運転行動情報取得部と、を有し、
前記自動運転制御部は、
前記走行状況認知部により認知された走行状況に応じた運転行動を計算により決定する運転操作決定部と、
前記運転行動情報取得部により取得した運転行動情報に基づいて、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理を行う学習処理部と、を有することを特徴とするロボットカー教習システム。 - 前記学習処理部は、前記運転行動情報取得部により取得した運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作が自車両においてなされるように、前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理を行う、請求項60記載のロボットカー教習システム。
- 前記学習処理部は、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転操作決定部において使用される運転操作決定関数のパラメタを調整する学習処理を行う、請求項59記載のロボットカー教習システム。
- 前記非ロボットカーが前記経路を前記ロボットカーよりも先に走行することを特徴とする、請求項53乃至61のいずれか1に記載のロボットカー教習システム。
- 前記非ロボットカーが前記経路を前記ロボットカーよりも後に走行することを特徴とする、請求項53乃至61のいずれか1に記載のロボットカー教習システム。
- コンピューティングシステムを有し、
前記コンピューティングシステムは、前記非ロボットカーから運転行動情報を受信する運転行動情報受信部と、前記運転行動情報を前記ロボットカーに送信する運転行動情報送信部と、を有し、
前記運転行動情報出力部は、前記非ロボットカーの運転行動情報を前記コンピューティングシステムに送信する運転行動情報送信部であり、
前記運転行動情報取得部は、前記運転行動情報を前記コンピューティングシステムから受信する運転行動情報受信部である、請求項53乃至63のいずれか1記載のロボットカー教習システム。 - 前記コンピューティングシステムは、前記運転行動情報受信部により受信した運転行動情報に基づいて、最適化された運転行動情報を生成する最適化情報生成部と、前記最適化情報生成部により生成された最新の運転行動情報を前記ロボットカーに送信する運転行動情報送信部と、を有する請求項64記載のロボットカー教習システム。
- 前記最適化情報生成機能は、
前記運転行動情報の提供を受ける車両の車両属性に基づいて、当該車両が障害物と接触する可能性が最も小さくなるように、前記運転行動情報を修正する機能を含む、請求項65記載のロボットカー教習システム。 - 前記自動運転制御部は、多層ニューラルネット・プログラムがインストールされており、当該多層ニューラルネット・プログラムにより前記学習処理を行う、請求項54乃至62のいずれか1に記載のロボットカー教習システム。
- 前記自動運転制御部は、ニューロモーフィック・チップを備え、当該ニューロモーフィック・チップにより前記学習処理を行う、請求項54乃至62のいずれか1に記載のロボットカー教習システム。
- 前記ニューロモーフィック・チップには、スパイキング・ニューラルネットが実装されている、請求項68記載のロボットカー教習システム。
- 非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、
非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、
前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、
前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、
前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、
ロボットカーが前記経路を走行するロボットカー走行ステップと、
前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、
ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、
ロボットカーが自車両の走行状況に基づいて自動運転制御を行う自動運転制御ステップと、
前記運転行動情報に基づいてロボットカーが非ロボットカーを運転するヒューマンドライバの運転行動を学習する学習ステップと、を有することを特徴とするロボットカー教習方法。 - 前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作が自車両においてなされるように学習処理を行うステップである、請求項70記載のロボットカー教習方法。
- 前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬を与え、最も多くの報酬が得られそうな運転行動をとるように学習処理を行うステップである、請求項70記載のロボットカー教習方法。
- 非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、
非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、
前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、
前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、
前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、
ロボットカーが前記経路を走行するロボットカー走行ステップと、
前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、
前記ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、
ロボットカーが自車両の走行状況に基づいて実行すべき運転操作を決定する運転操作決定ステップと、
前記運転操作が実行されるように自動運転制御を行う自動運転制御ステップと、
前記運転操作を決定する際に参照する知識情報を記憶する運転知識記憶ステップと、
前記運転行動情報取得ステップにより取得した運転行動情報に基づいて、前記知識情報を更新する学習処理を行う学習ステップと、を有することを特徴とするロボットカー教習方法。 - 前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作が自車両においてなされるように、前記運転知識記憶ステップにより記憶された知識情報を更新する学習処理を行うステップである、請求項73記載のロボットカー教習方法。
- 前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転知識記憶ステップにより記憶された知識情報を更新する学習処理を行うステップである、請求項73記載のロボットカー教習方法。
- 非ロボットカーを運転するヒューマンドライバの運転行動をロボットカーに学習させることにより当該ロボットカーの運転教習を行うロボットカー教習方法であって、
非ロボットカーがロボットカーと同じ経路を走行する非ロボットカー走行ステップと、
前記経路を走行中に非ロボットカーが自車両の走行状況を認知する非ロボットカー走行状況認知ステップと、
前記経路を走行中に非ロボットカーが自車両のヒューマンドライバによる運転操作を検出する運転操作検出ステップと、
前記走行状況と前記運転操作とを対応付けた運転行動情報を非ロボットカーが出力する運転行動情報出力ステップと、
ロボットカーが前記経路を走行するロボットカー走行ステップと、
前記経路を走行中にロボットカーが自車両の走行状況を認知するロボットカー走行状況認知ステップと、
前記ロボットカーが非ロボットカーの運転行動情報を取得する運転行動情報取得ステップと、
ロボットカーが自車両の走行状況に応じた運転行動を計算により決定する運転操作決定ステップと、
前記運転操作が実行されるように自動運転制御を行う自動運転制御ステップと、
前記運転行動情報取得ステップにより取得した運転行動情報に基づいて、前記運転操作決定ステップにおいて使用される運転操作決定関数のパラメタを調整する学習処理を行う学習ステップと、を有することを特徴とするロボットカー教習方法。 - 前記学習ステップは、前記運転行動情報取得ステップにより取得した運転行動情報を学習データセットとして、当該運転行動情報に含まれる個々の走行状況において前記非ロボットカーと同じ運転操作が自車両においてなされるように、前記運転操作決定ステップにおいて使用される運転操作決定関数のパラメタを調整する学習処理を行うステップである、請求項76記載のロボットカー教習方法。
- 前記学習ステップは、前記非ロボットカーの運転行動情報から把握される非ロボットカーの運転行動により近い運転行動をとったときによりプラスの報酬を与え、当該非ロボットカーの運転行動からより遠い運転行動をとったときによりマイナスの報酬を与え、最も多くの報酬が得られそうな運転行動をとるように前記運転操作決定関数のパラメタを調整する学習処理を行うステップである、請求項76記載のロボットカー教習方法。
- 前記非ロボットカーが前記経路を前記ロボットカーよりも先に走行することを特徴とする、請求項70乃至78のいずれか1に記載のロボットカー教習方法。
- 前記非ロボットカーが前記経路を前記ロボットカーよりも後に走行することを特徴とする、請求項70乃至78のいずれか1に記載のロボットカー教習方法。
- コンピューティングシステムを使用し、
前記コンピューティングシステムが前記非ロボットカーから運転行動情報を受信する運転行動情報受信ステップと、
前記コンピューティングシステムが前記運転行動情報を前記ロボットカーに送信する運転行動情報送信ステップと、を有し、
前記運転行動情報出力ステップは、前記非ロボットカーが自車両の前記運転行動情報を前記コンピューティングシステムに送信するステップであり、
前記運転行動情報取得ステップは、前記ロボットカーが前記運転行動情報を前記コンピューティングシステムから受信するステップである、請求項70乃至78のいずれか1に記載のロボットカー教習方法。
。 - 前記コンピューティングシステムが前記運転行動情報受信ステップにより受信した運転行動情報に基づいて最適化された運転行動情報を生成する最適化情報生成ステップと、
前記コンピューティングシステムが前記最適化情報生成ステップにより生成された最新の運転行動情報を前記ロボットカーに送信する運転行動情報送信ステップと、を有する請求項81記載のロボットカー教習方法。 - 請求項53乃至69のいずれか1に記載のロボットカー教習システムを1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
- 請求項70乃至82のいずれか1記載のロボットカー教習方法を1又は複数のコンピュータを用いて実現するためのコンピュータプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017543533A JPWO2017057528A1 (ja) | 2015-10-01 | 2016-09-29 | 非ロボットカー、ロボットカー、道路交通システム、車両共用システム、ロボットカー教習システム及びロボットカー教習方法 |
JP2024154378A JP2024170579A (ja) | 2015-10-01 | 2024-09-07 | 道路交通システム、車両共用システム及びロボットカー教習システム |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015196299 | 2015-10-01 | ||
JP2015-196298 | 2015-10-01 | ||
JP2015-196299 | 2015-10-01 | ||
JP2015196298 | 2015-10-01 | ||
JP2015-205132 | 2015-10-17 | ||
JP2015205132 | 2015-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057528A1 true WO2017057528A1 (ja) | 2017-04-06 |
Family
ID=58427570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078747 WO2017057528A1 (ja) | 2015-10-01 | 2016-09-29 | 非ロボットカー、ロボットカー、道路交通システム、車両共用システム、ロボットカー教習システム及びロボットカー教習方法 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JPWO2017057528A1 (ja) |
WO (1) | WO2017057528A1 (ja) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018198824A1 (ja) * | 2017-04-26 | 2018-11-01 | 日立オートモティブシステムズ株式会社 | 車両制御装置および運転支援システム |
WO2018220829A1 (ja) * | 2017-06-02 | 2018-12-06 | 本田技研工業株式会社 | ポリシー生成装置及び車両 |
WO2019049141A1 (en) * | 2017-09-06 | 2019-03-14 | Osr Enterprises Ag | SYSTEM AND METHOD FOR USING KNOWLEDGE COLLECTED BY A VEHICLE |
WO2019077685A1 (ja) * | 2017-10-17 | 2019-04-25 | 本田技研工業株式会社 | 走行モデル生成システム、走行モデル生成システムにおける車両、処理方法およびプログラム |
CN109711946A (zh) * | 2018-12-28 | 2019-05-03 | 深圳市元征科技股份有限公司 | 一种车辆共享的方法及车辆共享服务器 |
CN109726795A (zh) * | 2017-10-30 | 2019-05-07 | 罗伯特·博世有限公司 | 用于训练中央人工智能模块的方法 |
JP2019106674A (ja) * | 2017-12-14 | 2019-06-27 | Adiva株式会社 | 自動運転制御システム、自動運転制御方法、及び車両 |
EP3359439A4 (en) * | 2015-10-05 | 2019-07-10 | Aptiv Technologies Limited | HUMANIZED STEERING MODEL FOR AUTOMATED VEHICLES |
US10860028B2 (en) * | 2017-08-14 | 2020-12-08 | Honda Motor Co., Ltd. | Vehicle control apparatus, vehicle control method, and program |
JP6818118B1 (ja) * | 2019-11-27 | 2021-01-20 | 株式会社日立製作所 | 演算装置、車載装置、自動運転システム |
US10981564B2 (en) | 2018-08-17 | 2021-04-20 | Ford Global Technologies, Llc | Vehicle path planning |
JP2021086638A (ja) * | 2019-11-27 | 2021-06-03 | 株式会社日立製作所 | 演算装置、車載装置、自動運転システム |
US11037063B2 (en) | 2017-08-18 | 2021-06-15 | Diveplane Corporation | Detecting and correcting anomalies in computer-based reasoning systems |
JP2021109508A (ja) * | 2020-01-09 | 2021-08-02 | トヨタ自動車株式会社 | 車両用制御装置、車両制御方法及び車両用制御プログラム |
US11092962B1 (en) * | 2017-11-20 | 2021-08-17 | Diveplane Corporation | Computer-based reasoning system for operational situation vehicle control |
JP2021520541A (ja) * | 2018-04-04 | 2021-08-19 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド | 周囲のビークルの観察を使用して交通フローを判定するためのシステム及び方法 |
US11176465B2 (en) | 2018-11-13 | 2021-11-16 | Diveplane Corporation | Explainable and automated decisions in computer-based reasoning systems |
US11205126B1 (en) | 2017-10-04 | 2021-12-21 | Diveplane Corporation | Evolutionary programming techniques utilizing context indications |
KR20220019204A (ko) * | 2020-08-07 | 2022-02-16 | 한국전자통신연구원 | 자율주행 차량에서의 주행 경로 생성 및 제어 시스템 및 방법 |
US11385633B2 (en) | 2018-04-09 | 2022-07-12 | Diveplane Corporation | Model reduction and training efficiency in computer-based reasoning and artificial intelligence systems |
US11454939B2 (en) | 2018-04-09 | 2022-09-27 | Diveplane Corporation | Entropy-based techniques for creation of well-balanced computer based reasoning systems |
US11494669B2 (en) | 2018-10-30 | 2022-11-08 | Diveplane Corporation | Clustering, explainability, and automated decisions in computer-based reasoning systems |
US11625625B2 (en) | 2018-12-13 | 2023-04-11 | Diveplane Corporation | Synthetic data generation in computer-based reasoning systems |
US11640561B2 (en) | 2018-12-13 | 2023-05-02 | Diveplane Corporation | Dataset quality for synthetic data generation in computer-based reasoning systems |
US11657294B1 (en) | 2017-09-01 | 2023-05-23 | Diveplane Corporation | Evolutionary techniques for computer-based optimization and artificial intelligence systems |
US11669769B2 (en) | 2018-12-13 | 2023-06-06 | Diveplane Corporation | Conditioned synthetic data generation in computer-based reasoning systems |
US11676069B2 (en) | 2018-12-13 | 2023-06-13 | Diveplane Corporation | Synthetic data generation using anonymity preservation in computer-based reasoning systems |
US11727286B2 (en) | 2018-12-13 | 2023-08-15 | Diveplane Corporation | Identifier contribution allocation in synthetic data generation in computer-based reasoning systems |
US11763176B1 (en) | 2019-05-16 | 2023-09-19 | Diveplane Corporation | Search and query in computer-based reasoning systems |
US11823080B2 (en) | 2018-10-30 | 2023-11-21 | Diveplane Corporation | Clustering, explainability, and automated decisions in computer-based reasoning systems |
KR102606632B1 (ko) * | 2022-11-08 | 2023-11-30 | 주식회사 라이드플럭스 | 인공지능 기반 자율주행 차량의 주행 경로 보정방법, 장치 및 컴퓨터프로그램 |
US11880775B1 (en) | 2018-06-05 | 2024-01-23 | Diveplane Corporation | Entropy-based techniques for improved automated selection in computer-based reasoning systems |
US11941542B2 (en) | 2017-11-20 | 2024-03-26 | Diveplane Corporation | Computer-based reasoning system for operational situation control of controllable systems |
US20240259773A1 (en) * | 2019-06-07 | 2024-08-01 | Anthony Macaluso | Systems and methods for managing a vehicle's energy via a wireless network |
US12107455B2 (en) | 2023-01-30 | 2024-10-01 | Anthony Macaluso | Matable energy storage devices |
US12103416B2 (en) | 2019-06-07 | 2024-10-01 | Anthony Macaluso | Energy management system and methods |
JP7585479B2 (ja) | 2020-11-04 | 2024-11-18 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 車両の制御プロセスを実施するための方法、該方法を実施するために構成された手段を含有するコントロールユニットまたはコントロールユニット複合体、該コントロールユニットまたは該コントロールユニット複合体を有する車両の制御システム、該制御システムを有する車両、および該方法を実施するように設計されたプログラムコードを有するコンピュータプログラム製品。 |
US12157366B2 (en) | 2022-03-09 | 2024-12-03 | Anthony Macaluso | Flexible arm generator |
CN119218238A (zh) * | 2024-12-04 | 2024-12-31 | 张家港长城汽车研发有限公司 | 车辆驾驶方法、装置、电子设备和车辆 |
US12249896B2 (en) | 2019-06-07 | 2025-03-11 | Anthony Macaluso | Power generation from vehicle wheel rotation |
US12252026B2 (en) | 2022-03-09 | 2025-03-18 | Anthony Macaluso | Electric vehicle charging station |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1186183A (ja) * | 1997-09-11 | 1999-03-30 | Hitachi Ltd | 交通流計測装置、及びこれを利用する装置 |
JP2004030132A (ja) * | 2002-06-25 | 2004-01-29 | Mitsubishi Heavy Ind Ltd | 移動体制御装置及び方法、遠隔制御装置、移動体制御システム、コンピュータプログラム |
JP2009137410A (ja) * | 2007-12-05 | 2009-06-25 | Toyota Motor Corp | 走行軌跡生成方法及び走行軌跡生成装置 |
JP2015067154A (ja) * | 2013-09-30 | 2015-04-13 | トヨタ自動車株式会社 | 運転支援装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2995970B2 (ja) * | 1991-12-18 | 1999-12-27 | トヨタ自動車株式会社 | 車両用走行制御装置 |
JP3143063B2 (ja) * | 1996-06-07 | 2001-03-07 | 株式会社日立製作所 | 移動体の走行制御装置 |
JP4480995B2 (ja) * | 2003-12-18 | 2010-06-16 | 富士重工業株式会社 | 車両用運転支援装置 |
JP5003465B2 (ja) * | 2007-12-25 | 2012-08-15 | 住友電気工業株式会社 | 運転支援システム、路上通信装置、および、情報提供装置 |
JP5287736B2 (ja) * | 2010-01-12 | 2013-09-11 | トヨタ自動車株式会社 | 車両制御装置 |
-
2016
- 2016-09-29 WO PCT/JP2016/078747 patent/WO2017057528A1/ja active Application Filing
- 2016-09-29 JP JP2017543533A patent/JPWO2017057528A1/ja active Pending
-
2024
- 2024-09-07 JP JP2024154378A patent/JP2024170579A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1186183A (ja) * | 1997-09-11 | 1999-03-30 | Hitachi Ltd | 交通流計測装置、及びこれを利用する装置 |
JP2004030132A (ja) * | 2002-06-25 | 2004-01-29 | Mitsubishi Heavy Ind Ltd | 移動体制御装置及び方法、遠隔制御装置、移動体制御システム、コンピュータプログラム |
JP2009137410A (ja) * | 2007-12-05 | 2009-06-25 | Toyota Motor Corp | 走行軌跡生成方法及び走行軌跡生成装置 |
JP2015067154A (ja) * | 2013-09-30 | 2015-04-13 | トヨタ自動車株式会社 | 運転支援装置 |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3359439A4 (en) * | 2015-10-05 | 2019-07-10 | Aptiv Technologies Limited | HUMANIZED STEERING MODEL FOR AUTOMATED VEHICLES |
EP4105105A1 (en) * | 2015-10-05 | 2022-12-21 | Aptiv Technologies Limited | Humanized steering model for automated vehicles |
JP2018185669A (ja) * | 2017-04-26 | 2018-11-22 | 日立オートモティブシステムズ株式会社 | 車両制御装置および運転支援システム |
WO2018198824A1 (ja) * | 2017-04-26 | 2018-11-01 | 日立オートモティブシステムズ株式会社 | 車両制御装置および運転支援システム |
WO2018220829A1 (ja) * | 2017-06-02 | 2018-12-06 | 本田技研工業株式会社 | ポリシー生成装置及び車両 |
JPWO2018220829A1 (ja) * | 2017-06-02 | 2020-04-16 | 本田技研工業株式会社 | ポリシー生成装置及び車両 |
US10860028B2 (en) * | 2017-08-14 | 2020-12-08 | Honda Motor Co., Ltd. | Vehicle control apparatus, vehicle control method, and program |
US11037063B2 (en) | 2017-08-18 | 2021-06-15 | Diveplane Corporation | Detecting and correcting anomalies in computer-based reasoning systems |
US12198069B2 (en) | 2017-08-18 | 2025-01-14 | Howso Incorporated | Detecting and correcting anomalies in computer-based reasoning systems |
US11748635B2 (en) | 2017-08-18 | 2023-09-05 | Diveplane Corporation | Detecting and correcting anomalies in computer-based reasoning systems |
US11657294B1 (en) | 2017-09-01 | 2023-05-23 | Diveplane Corporation | Evolutionary techniques for computer-based optimization and artificial intelligence systems |
WO2019049141A1 (en) * | 2017-09-06 | 2019-03-14 | Osr Enterprises Ag | SYSTEM AND METHOD FOR USING KNOWLEDGE COLLECTED BY A VEHICLE |
US11586934B1 (en) | 2017-10-04 | 2023-02-21 | Diveplane Corporation | Evolutionary programming techniques utilizing context indications |
US11853900B1 (en) | 2017-10-04 | 2023-12-26 | Diveplane Corporation | Evolutionary programming techniques utilizing context indications |
US11205126B1 (en) | 2017-10-04 | 2021-12-21 | Diveplane Corporation | Evolutionary programming techniques utilizing context indications |
JPWO2019077685A1 (ja) * | 2017-10-17 | 2020-11-05 | 本田技研工業株式会社 | 走行モデル生成システム、走行モデル生成システムにおける車両、処理方法およびプログラム |
WO2019077685A1 (ja) * | 2017-10-17 | 2019-04-25 | 本田技研工業株式会社 | 走行モデル生成システム、走行モデル生成システムにおける車両、処理方法およびプログラム |
CN111201554A (zh) * | 2017-10-17 | 2020-05-26 | 本田技研工业株式会社 | 行驶模型生成系统、行驶模型生成系统中的车辆、处理方法以及程序 |
CN111201554B (zh) * | 2017-10-17 | 2022-04-08 | 本田技研工业株式会社 | 行驶模型生成系统、行驶模型生成系统中的车辆、处理方法以及存储介质 |
CN109726795A (zh) * | 2017-10-30 | 2019-05-07 | 罗伯特·博世有限公司 | 用于训练中央人工智能模块的方法 |
CN109726795B (zh) * | 2017-10-30 | 2024-12-03 | 罗伯特·博世有限公司 | 用于训练中央人工智能模块的方法 |
US11941542B2 (en) | 2017-11-20 | 2024-03-26 | Diveplane Corporation | Computer-based reasoning system for operational situation control of controllable systems |
US11092962B1 (en) * | 2017-11-20 | 2021-08-17 | Diveplane Corporation | Computer-based reasoning system for operational situation vehicle control |
JP2019106674A (ja) * | 2017-12-14 | 2019-06-27 | Adiva株式会社 | 自動運転制御システム、自動運転制御方法、及び車両 |
JP7043241B2 (ja) | 2017-12-14 | 2022-03-29 | aidea株式会社 | 自動運転制御システム、自動運転制御方法、及び車両 |
JP2021520541A (ja) * | 2018-04-04 | 2021-08-19 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド | 周囲のビークルの観察を使用して交通フローを判定するためのシステム及び方法 |
JP7179866B2 (ja) | 2018-04-04 | 2022-11-29 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド | 周囲のビークルの観察を使用して交通フローを判定するためのシステム及び方法 |
US11385633B2 (en) | 2018-04-09 | 2022-07-12 | Diveplane Corporation | Model reduction and training efficiency in computer-based reasoning and artificial intelligence systems |
US11454939B2 (en) | 2018-04-09 | 2022-09-27 | Diveplane Corporation | Entropy-based techniques for creation of well-balanced computer based reasoning systems |
US12001177B2 (en) | 2018-04-09 | 2024-06-04 | Howso Incorporated | Entropy-based techniques for creation of well-balanced computer based reasoning systems |
US11880775B1 (en) | 2018-06-05 | 2024-01-23 | Diveplane Corporation | Entropy-based techniques for improved automated selection in computer-based reasoning systems |
US10981564B2 (en) | 2018-08-17 | 2021-04-20 | Ford Global Technologies, Llc | Vehicle path planning |
US11494669B2 (en) | 2018-10-30 | 2022-11-08 | Diveplane Corporation | Clustering, explainability, and automated decisions in computer-based reasoning systems |
US11823080B2 (en) | 2018-10-30 | 2023-11-21 | Diveplane Corporation | Clustering, explainability, and automated decisions in computer-based reasoning systems |
US12141714B2 (en) | 2018-10-30 | 2024-11-12 | Howso Incorporated | Clustering, explainability, and automated decisions in computer-based reasoning systems |
US11361231B2 (en) | 2018-11-13 | 2022-06-14 | Diveplane Corporation | Explainable and automated decisions in computer-based reasoning systems |
US11361232B2 (en) | 2018-11-13 | 2022-06-14 | Diveplane Corporation | Explainable and automated decisions in computer-based reasoning systems |
US11176465B2 (en) | 2018-11-13 | 2021-11-16 | Diveplane Corporation | Explainable and automated decisions in computer-based reasoning systems |
US12067467B2 (en) | 2018-11-13 | 2024-08-20 | Howso Incorporated | Explainable and automated decisions in computer-based reasoning systems |
US11741382B1 (en) | 2018-11-13 | 2023-08-29 | Diveplane Corporation | Explainable and automated decisions in computer-based reasoning systems |
US11625625B2 (en) | 2018-12-13 | 2023-04-11 | Diveplane Corporation | Synthetic data generation in computer-based reasoning systems |
US11783211B2 (en) | 2018-12-13 | 2023-10-10 | Diveplane Corporation | Synthetic data generation in computer-based reasoning systems |
US11676069B2 (en) | 2018-12-13 | 2023-06-13 | Diveplane Corporation | Synthetic data generation using anonymity preservation in computer-based reasoning systems |
US11727286B2 (en) | 2018-12-13 | 2023-08-15 | Diveplane Corporation | Identifier contribution allocation in synthetic data generation in computer-based reasoning systems |
US11640561B2 (en) | 2018-12-13 | 2023-05-02 | Diveplane Corporation | Dataset quality for synthetic data generation in computer-based reasoning systems |
US12008446B2 (en) | 2018-12-13 | 2024-06-11 | Howso Incorporated | Conditioned synthetic data generation in computer-based reasoning systems |
US12175386B2 (en) | 2018-12-13 | 2024-12-24 | Howso Incorporated | Identifier contribution allocation in synthetic data generation in computer-based reasoning systems |
US12154041B2 (en) | 2018-12-13 | 2024-11-26 | Howso Incorporated | Identifier contribution allocation in synthetic data generation in computer-based reasoning systems |
US11669769B2 (en) | 2018-12-13 | 2023-06-06 | Diveplane Corporation | Conditioned synthetic data generation in computer-based reasoning systems |
CN109711946A (zh) * | 2018-12-28 | 2019-05-03 | 深圳市元征科技股份有限公司 | 一种车辆共享的方法及车辆共享服务器 |
US12260348B2 (en) | 2019-05-16 | 2025-03-25 | Howso Incorporated | Search and query in computer-based reasoning systems |
US11763176B1 (en) | 2019-05-16 | 2023-09-19 | Diveplane Corporation | Search and query in computer-based reasoning systems |
US20240259773A1 (en) * | 2019-06-07 | 2024-08-01 | Anthony Macaluso | Systems and methods for managing a vehicle's energy via a wireless network |
US12103416B2 (en) | 2019-06-07 | 2024-10-01 | Anthony Macaluso | Energy management system and methods |
US12249896B2 (en) | 2019-06-07 | 2025-03-11 | Anthony Macaluso | Power generation from vehicle wheel rotation |
US12096324B2 (en) * | 2019-06-07 | 2024-09-17 | Anthony Macaluso | Systems and methods for managing a vehicle's energy via a wireless network |
CN113179635A (zh) * | 2019-11-27 | 2021-07-27 | 株式会社日立制作所 | 运算装置、车载装置及自动驾驶系统 |
WO2021106295A1 (ja) * | 2019-11-27 | 2021-06-03 | 株式会社日立製作所 | 演算装置、車載装置、自動運転システム |
JP2021086638A (ja) * | 2019-11-27 | 2021-06-03 | 株式会社日立製作所 | 演算装置、車載装置、自動運転システム |
CN113179635B (zh) * | 2019-11-27 | 2024-09-20 | 株式会社日立制作所 | 运算装置、车载装置及自动驾驶系统 |
JP2021084527A (ja) * | 2019-11-27 | 2021-06-03 | 株式会社日立製作所 | 演算装置、車載装置、自動運転システム |
JP6818118B1 (ja) * | 2019-11-27 | 2021-01-20 | 株式会社日立製作所 | 演算装置、車載装置、自動運転システム |
JP2021109508A (ja) * | 2020-01-09 | 2021-08-02 | トヨタ自動車株式会社 | 車両用制御装置、車両制御方法及び車両用制御プログラム |
JP7211375B2 (ja) | 2020-01-09 | 2023-01-24 | トヨタ自動車株式会社 | 車両用制御装置 |
US11866067B2 (en) | 2020-08-07 | 2024-01-09 | Electronics And Telecommunications Research Institute | System and method for generating and controlling driving paths in autonomous vehicle |
KR20220019204A (ko) * | 2020-08-07 | 2022-02-16 | 한국전자통신연구원 | 자율주행 차량에서의 주행 경로 생성 및 제어 시스템 및 방법 |
KR102525191B1 (ko) | 2020-08-07 | 2023-04-26 | 한국전자통신연구원 | 자율주행 차량에서의 주행 경로 생성 및 제어 시스템 및 방법 |
JP7585479B2 (ja) | 2020-11-04 | 2024-11-18 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 車両の制御プロセスを実施するための方法、該方法を実施するために構成された手段を含有するコントロールユニットまたはコントロールユニット複合体、該コントロールユニットまたは該コントロールユニット複合体を有する車両の制御システム、該制御システムを有する車両、および該方法を実施するように設計されたプログラムコードを有するコンピュータプログラム製品。 |
US12157366B2 (en) | 2022-03-09 | 2024-12-03 | Anthony Macaluso | Flexible arm generator |
US12252026B2 (en) | 2022-03-09 | 2025-03-18 | Anthony Macaluso | Electric vehicle charging station |
KR102606632B1 (ko) * | 2022-11-08 | 2023-11-30 | 주식회사 라이드플럭스 | 인공지능 기반 자율주행 차량의 주행 경로 보정방법, 장치 및 컴퓨터프로그램 |
US12160132B2 (en) | 2023-01-30 | 2024-12-03 | Anthony Macaluso | Matable energy storage devices |
US12107455B2 (en) | 2023-01-30 | 2024-10-01 | Anthony Macaluso | Matable energy storage devices |
CN119218238A (zh) * | 2024-12-04 | 2024-12-31 | 张家港长城汽车研发有限公司 | 车辆驾驶方法、装置、电子设备和车辆 |
Also Published As
Publication number | Publication date |
---|---|
JP2024170579A (ja) | 2024-12-10 |
JPWO2017057528A1 (ja) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024170579A (ja) | 道路交通システム、車両共用システム及びロボットカー教習システム | |
EP3795457B1 (en) | Preparing autonomous vehicles for turns | |
EP3428028B1 (en) | Vehicle control device mounted on vehicle and method for controlling the vehicle | |
CN110356402B (zh) | 车辆控制装置、车辆控制方法及存储介质 | |
RU2660158C1 (ru) | Устройство управления движением и способ управления движением | |
RU2659670C1 (ru) | Устройство и способ управления движением для транспортного средства | |
RU2657656C1 (ru) | Устройство управления движением и способ управления движением | |
EP3626569B1 (en) | Driving assistance device and driving assistance method | |
RU2671457C1 (ru) | Устройство управления движением и способ управления движением | |
US10967861B2 (en) | Using discomfort for speed planning in responding to tailgating vehicles for autonomous vehicles | |
WO2016013574A1 (ja) | 自動車とコンピューティングシステム | |
US20230168095A1 (en) | Route providing device and route providing method therefor | |
JP2019159426A (ja) | 車両制御装置、車両制御方法、およびプログラム | |
US11945433B1 (en) | Risk mitigation in speed planning | |
US12017681B2 (en) | Obstacle prediction system for autonomous driving vehicles | |
CA3094795C (en) | Using discomfort for speed planning for autonomous vehicles | |
CN114764022B (zh) | 用于自主驾驶车辆的声源检测和定位的系统和方法 | |
CN112977473A (zh) | 用于预测移动障碍物驶出十字路口的方法及系统 | |
EP3995379B1 (en) | Behavior prediction for railway agents for autonomous driving system | |
KR20210070387A (ko) | 자율 주행 차량들에 대한 폴백 거동들을 구현하기 위한 시스템 | |
JP2019137189A (ja) | 車両制御システム、車両制御方法、およびプログラム | |
US12116007B2 (en) | Trajectory limiting for autonomous vehicles | |
JP2019156269A (ja) | 車両制御装置、車両制御方法、及びプログラム | |
An et al. | Automatic valet parking system incorporating a nomadic device and parking servers | |
CN116674591A (zh) | 自动驾驶车辆操作方法、电子设备以及计算机可读介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851699 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017543533 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851699 Country of ref document: EP Kind code of ref document: A1 |