WO2017051481A1 - 水門 - Google Patents
水門 Download PDFInfo
- Publication number
- WO2017051481A1 WO2017051481A1 PCT/JP2015/077164 JP2015077164W WO2017051481A1 WO 2017051481 A1 WO2017051481 A1 WO 2017051481A1 JP 2015077164 W JP2015077164 W JP 2015077164W WO 2017051481 A1 WO2017051481 A1 WO 2017051481A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- door body
- door
- sluice
- shoe
- force
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/20—Movable barrages; Lock or dry-dock gates
- E02B7/40—Swinging or turning gates
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/20—Movable barrages; Lock or dry-dock gates
- E02B7/40—Swinging or turning gates
- E02B7/44—Hinged-leaf gates
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/20—Movable barrages; Lock or dry-dock gates
- E02B7/50—Floating gates
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B7/00—Barrages or weirs; Layout, construction, methods of, or devices for, making same
- E02B7/20—Movable barrages; Lock or dry-dock gates
- E02B7/54—Sealings for gates
Definitions
- the present invention relates to a sluice provided in running water or a waterway of a ship.
- the sluice corresponds to storm surges, tsunamis, high waters, inflows of reverse currents and waves from main rivers to tributaries.
- the sluice has a door with a thin walled cross section (torsion structure).
- the door body is generally supported by a foundation ground by a shaft-type support attached to the door body, and generally rotates about the axis, but the door body is directly supported by a concrete structure with a water bottom.
- This support system has a simple structure and is very advantageous in terms of cost (Non-patent Document 1, Patent Document 1).
- FIG. 1 is a cross-sectional view showing an example in which the flap gate is supported by a concrete structure.
- 1 is a door body (solid line, fully closed state), 2 is a door body (dotted line, fully open state), 3 is a center of rotation of the door body 1, 4 is a concrete structure, and 5 is a wood seat.
- the wood seat 5 is fixed to the door bodies 1 and 2.
- the door body (fully opened state) 2 When the sluice is not used, the door body (fully opened state) 2 is stored in a horizontal state below the water surface as indicated by a dotted line. When in use, the door body (fully opened state) 2 stands up by rotating around the center of rotation 3, reaches the position of the solid line door body (fully closed state) 1, and is placed in the concrete structure 4 via the wood seat 5. Supported.
- the swing movement method is a known door body opening / closing method, and the structural advantage of the flap gate described in paragraph 0003 can be utilized in this method.
- FIG. 2 shows the swing movement method of the open / close tide gate.
- Fig. 2 shows the left half of the sluice gate as seen from the ocean side.
- FIG. 2a is a plan view.
- FIG. 2b is a front view.
- FIG. 2 indicates a fully closed door.
- Reference numeral 7 denotes a fully open door.
- the sluice in FIG. 2 takes either 6 or 7.
- the fully open door body 7 is moored on the containment berth 9. At the time of use, it swings around the swing center 8 and moves to the position of the fully closed door body 6.
- Torsional structure has an overwhelming advantage in terms of cost, but conventionally, application to a sluice has been limited to a flap gate fixed to the ground with a shaft-type bearing.
- the present invention makes it possible to apply the twist structure to a swing-moving tide lock, which further increases the cost advantage of the twist structure. It can also be applied to ultra-large tide locks with a span of 200m to 600m.
- the present invention discloses means for solving the following problems and intends to contribute to the realization of a swing-movable torsion structure tide lock.
- Task 1 Restoring force when landing on door body
- Task 2 Door body motion during opening / closing operation
- Task 3 Door body operation using tide level difference
- Task 4 Reaction force and impact force of door body bottom support seat
- a swing center support mechanism To provide a swing movement type open / close sluice using a cost-effective torsion structure, a swing center support mechanism, friction shoes, a door bottom support seat, and operation steps during tidal flow are provided.
- the support mechanism is free to rotate in three axial directions, and a pulling force acts on the movement constraint.
- Friction shoes reduce tidal energy to a door damage avoidance level. With the flexibility and high strength of the door bottom support seat, the impact force is reduced and it can withstand the reaction force. Appropriate tidal energy reduction is performed by selecting the frictional force intensity in the operation step.
- the swing center support mechanism is free to rotate in two axes and is restricted to move in three axes.
- FIG. 1 is an overall view of Embodiment 1.
- FIG. It is an example of a swing movable sluice door. The buoyancy tank arrangement
- FIG. 6 is an enlarged view of the operation tank of FIG. 5, showing a division between buoyancy and preliminary buoyancy. It is a calculation result of FIG. 5 and FIG. It is explanatory drawing of the swing center support mechanism of Example 1.
- FIG. 1 is a detailed view of a friction shoe of Example 1.
- Fig. 3 shows an example of plan data for the tide lock.
- FIG. 4 shows a swing mobile tide lock in an embodiment based on the data of FIG.
- FIG. 4 shows the left half of the sluice gate as seen from the ocean side.
- FIG. 4a is a plan view.
- FIG. 4b is a front view.
- FIG. 6 indicates a fully closed door.
- Reference numeral 7 denotes a fully open door.
- the sluice in FIG. 4 is in either 6 or 7 state.
- 8 is a swing center of the door body 6
- 9 is a storage quay of the door body 7
- 10 is a center line of the tide lock gate
- 11 is a swing center support mechanism
- 12 is a side thruster
- 13 is a friction shoe.
- the fully open door body 7 floats on the surface of the water by the buoyancy of the door body buoyancy tank, and is moored on the containment berth 9.
- the side thruster 12 thrusts to swing about the swing center 8 to move to the position of the fully closed door body 6 to release buoyancy and land.
- FIG. 5 shows the swing motion of the door body 7 of FIG. 4 and shows the buoyancy tank arrangement of the door body 7 and the acting force of the door body 7.
- FIG. 6 is an enlarged view of the operation tank shown in FIG. 5 and shows a classification of buoyancy and preliminary buoyancy.
- the tank arrangement of FIG. 5 is the operation tank, the equilibrium tank, and the upright tank, and the acting force is the operation buoyancy, the equilibrium buoyancy, the upright buoyancy, the door weight W, and the pulling force S, and the door of FIG.
- the body 7 floats on the water surface by the preliminary buoyancy of the operation tank of FIG.
- the role of each tank is as follows. Upright tank: Paired with the pulling force S to maintain the uprightness of the door body.
- Balanced tank Balances with the majority of the door's own weight, and measures the volume reduction of the operation tank.
- Operation tank Settling and floating operations of the door body by pouring water.
- FIG. 7 shows calculation results of the acting force and the tank volume shown in FIGS. 5 and 6.
- the center height of the balanced tank and the upright tank is approximately the same as the height of the center of gravity of the door body. Since both tanks are always submerged, the preliminary buoyancy is zero, and during the swing motion, only the preliminary buoyancy of the operation tank floats on the water surface.
- the swing center support mechanism 11 in FIG. 4 is a support point fixed to the bottom of the water.
- the support conditions are free to rotate in three axial directions and the movement is constrained, and a pulling force always acts while the sluice is in operation.
- FIG. 8 shows an example satisfying this support condition. During construction, maintenance inspection, repair, and renewal, the sluice is not in operation, and the sluice in operation (in working condition) is a period other than the above.
- FIG. 8 a is a front view of the swing center support mechanism 11.
- FIG. 8A is an AA cross section of FIG. 8a.
- FIG. 8B is a BB cross section of FIG. 8A.
- FIG. 8C is a CC cross section of FIG. 8B.
- FIG. 8D is a DD cross section of FIG. 8C.
- FIG. 8E is an EE cross section (metal) of FIG. 8D.
- the end support key of FIG. 8a is the functional heart of the swing center support mechanism 11, and FIGS. 8A-8E show details of the end support key.
- the cross section of the key in FIG. 8B is a crossed letter shown in FIG. 8D, and the upper half forms the key ball head shown in FIG. 8B.
- the key holder is fixed to the anchorage embedded in the submarine concrete shown in FIG. 8E, and the lower half of the key is inserted into the key holder as shown in FIG. 8B, and both are connected by a wire clip.
- the key ball head fixed to the seabed is covered with a ball seat fixed to the door side shown in FIG. 8B.
- the inside of the ball seat and the outside of the key ball head serve as bearing surfaces, and perform load transmission and sliding functions.
- the lower half of the ball seat is fixed to the door body by welding, and the upper half is bolt-removable because of the need for maintenance. An upward pulling force S always acts on the lower half of the ball seat.
- the door body shaking accompanying the swing motion in the waves is rolling (rolling), pitching (pitching), vertical shaking (dipping) and the like.
- the swinging motion of the door body has a rotating element and a moving element at the support point position of the swing center support mechanism 11.
- the moving element is constrained at the support point of the three-axis direction movement restraint, but the rotating element is not constrained at the support point of the three-axis direction free rotation, and the influence on the structural strength of the door body swing is remarkably reduced.
- Problem 2 Door movement during opening / closing operation
- FIG. 9 is a detailed view of the friction shoe 13 shown in FIG.
- FIG. 9a is an enlarged view of the door body (solid line, fully closed state) 6 shown in FIG. 4b.
- FIG. 9A is an AA cross section of FIG. 9A.
- FIG. 9B is a BB cross section of FIG. 9A.
- 6 is a door body
- 8 is a swing center
- 13 is a friction shoe
- 14 is an upper of the friction shoe
- 15 is a wear material affixed to the sole of the friction shoe
- 16 is a bottom support seat (watertight) of the door body 6 Part)
- 17 is the tip of the wear material
- 18 is the arc radius of the tip 17.
- the tip 17 of the wear material 15 attached to the sole of the friction shoe 13 shown in FIG. 9A has an arc shape with a radius of 18.
- FIGS. 10 and 11 show a state in which a tide level difference ⁇ h and a shoe friction force couple are acting, and FIG. 10 shows the state before the door body tilt is generated, and FIG.
- a horizontal component and a vertical component of the tide level difference ⁇ h act on the door body due to the inclination of ⁇ °.
- the shoe reaction force and the shoe friction force are obtained by adding the vertical component of the tide level difference ⁇ h to the shoe load.
- the door body balances the horizontal component of the tide level difference ⁇ h, the frictional force of the shoe, the vertical component of the tide level difference ⁇ h, the inclination moment due to the couple of the shoe reaction force, the shoe load, the shoe reaction force, the pulling force S, and the upright moment due to the upright buoyancy. Stable at an inclination angle of ⁇ °. Further, when the coefficient of friction is small (for example, coefficient of friction ⁇ 0.3), the couple of the shoe load and the shoe reaction force is much larger than the couple of the horizontal component of the shoe friction force and the tide level difference ⁇ h, and the inclination occurs. However, the door body moves to the fully closed position while maintaining an upright state (corresponding to the above-mentioned problem “Problem 3.1 Horizontal tilt of the door body”).
- FIG. 12 shows such a case.
- the curved portion arrangement is both ends and one end, the both end wall shapes are vertical and inclined, and the curved portion shape is an arc and a free curve, but the common point is that the tip portion 17 is a convex curved shape.
- the speed of tidal currents in the world is generally 1.0 to 3.0 Kt ( ⁇ 0.5 to 1.5 m / s) except for the special topography found in the Seto Inland Sea.
- the door closing operation during tidal current, that is, tidal current operation is performed at this level of flow velocity.
- FIG. 13 shows the external force moment (torsional moment) acting on the unit width of the door body at the time of storm surge and at the time of collision in tidal current operation.
- the means is friction force of friction shoes, side thrusters, tag boats and the like.
- the friction force is about 107 tf when the shoe load is 1074 tf and the friction coefficient is 0.1.
- FIG. 14 is an example of the control limit of the door-mounted side thruster, and shows the limit at which the door can remain stationary with the flow velocity and the tide level difference.
- FIG. 15 is a plan view of the door installation site, showing the landing position of the door body, the fully closed position, the landing angle ⁇ c, the tidal current direction, and the swing center when the tidal current operation is performed.
- the buoyancy prevention device is set. After that, the door body is given buoyancy by injecting air into the operation tank to prepare for the opening operation by the reverse tidal current accompanying the tide level reduction.
- FIG. 17 is another example of the swing center support mechanism shown in FIG. 8.
- FIG. 8 shows an example in which the support condition of the three-axis direction free rotation and the three-axis direction movement constraint is satisfied, whereas FIG. An example of satisfying the support conditions of free rotation and triaxial movement restraint is shown.
- FIG. 17 a is a front view of the swing center support mechanism 11.
- FIG. 17F is a FF cross section of FIG.
- FIG. 17G is a GG cross section of FIG. 17F.
- FIG. 17H is an HH cross section of FIG. 17G.
- the end rotation axis of FIG. 17a is a mechanism added to FIG. 8a, and FIGS. 17F to 17H show details of the end rotation axis.
- the details of the end support key of FIG. 17a apply the details of the end support key shown in FIGS. 8A to 8E.
- the round shaft shown in FIG. 17F is fixed to the sluice column, the long shaft hole is fixed to the door body side, and the round shaft is inserted and set in the long shaft hole.
- FIG. 17F is fixed to the sluice column
- the long shaft hole is fixed to the door body side
- the round shaft is inserted and set in the long shaft hole.
- FIG. 17G shows a long shaft hole fixed on the door body side and a round shaft inserted and set in the long shaft hole.
- the center line of the round axis coincides with the swing center.
- FIG. 17H shows a state in which the round shaft fixed to the sluice column is inserted and set in the long shaft hole fixed to the door body.
- the long shaft hole is long in the direction that allows the pitching of the door body around the end support mechanism, and the direction that constrains the rolling in the direction perpendicular thereto is the diameter of the round shaft.
- consideration is given to leaving the terminal support key and the end support bracket to support the impact load and the hydraulic load acting on the door body when the door body is fully closed as the diameter has a slight clearance.
- the door body during the swing motion floats on the water surface only with the preliminary buoyancy of the operation tank shown in FIG.
- the tank buoyancy-pulling force S 9000 tf
- the door body weight W is balanced.
- the friction shoe 13 of FIG. 4 arrives at the bottom of the water (landing) and fits in the position of the door body 6 of FIG. In this state, the load of the friction shoe 13 is zero.
- Door body swings associated with swing motion in the waves are rolling (rolling), pitching (pitching), vertical shaking (dipping) and the like.
- the swinging motion of the door body has a rotating element and a moving element at the support point position of the swing center support mechanism 11.
- the moving element is constrained at the support point for 3-axis movement restraint, but the rotating element is not restrained for pitching at the support point for free rotation in the biaxial direction, and part of the vertical shaking is converted to pitching.
- the Since the large roll (rolling) is restrained by the round shaft in FIG. 17, the influence on the structural strength is slightly increased, but since the restraint force of the roll is small, the influence can be mitigated with appropriate consideration. (Corresponding to the above-mentioned problem "Problem 2: Door movement during opening / closing operation").
- FIG. 18 shows an example of a bottom support seat with flexibility and high strength.
- FIG. 18 a is a cross-sectional view showing the relative position between the bottom support seat and the bottom of the door body.
- FIG. 8A is a detail A of FIG. 18a.
- 18B is a cross section B of FIG. 18A.
- FIG. 18A shows a state where a rigid material such as steel is embedded in a flexible material such as rubber.
- FIG. 18B shows a state in which the flexible material and the rigid material are continuous in the length direction of the door body.
- the internal flexible material surrounded by the rigid material approaches a triaxial stress (hydrostatic pressure stress) state.
- the material has the property of significantly increasing the yield point in the triaxial stress state. For example, this phenomenon is the background to the operation in the state where the contact surface stress between the roller and the rail exceeds the breaking strength.
- the impact force associated with the rotation start of the door body cross section is softened by the flexibility at the beginning of the collision, and it is able to withstand the reaction force with high strength and high inertial force after compression (previous issue, Problem 4: Reaction force of the door body bottom support seat) And impact force).
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Barrages (AREA)
Abstract
Description
図2aは平面図である。図2bは正面図である。
課題1:扉体着床時の復原力
課題2:開閉操作時の扉体運動
課題3:潮位差利用の扉体操作
課題4:扉体底部支持座の反力と衝撃力
格納岸壁に係留されている扉体は、使用時に、スイング運動で、全閉位置に移動する。スイング移動中の扉体は水面に浮いた状態にあり、船舶復元理論に従った復原力機能を備えている。全閉位置では浮力タンクへの注水により浮力を放出して水底に着床する。着床状態では復原力機能が総て消滅する可能性があり、その様な場合は扉体は水底で転覆する。
稼働中の防潮水門は荒天時の波浪中の開閉が一つの重要な操作条件である。スイング移動中の扉体は水面に浮いた状態にあるので、波浪中の船舶と同様に、動揺が発生する。動揺の主なものは横揺(ローリング)、縦揺(ピッチング)、上下揺(デッピング)である。これらの運動をスイング中心で総て拘束すると周期性のある拘束力が発生するので、構造強度の面から好ましくない。
扉体の両側(海側、港側)に潮位差がある状態で扉体の開閉操作を行うことは避けて通れない。潮位差が小さくて扉体搭載の推力機械(サイドスラスター)や操作用タッグボート等で扉体コントロールが可能な範囲は扉体操作に不具合はない。これを越えた潮位差の下で閉操作を行う場合はコントロールが可能なスイング角度内で扉体を水底に着床させ、海側潮位を利用して全閉操作を行う。又、陸側潮位を利用した開操作も可能である。潮位差利用の扉体操作での課題
は(3.1)扉体の横傾斜、(3.2)衝撃エネルギーである。以下に各々の課題について説明する。
潮位差利用の開閉操作では扉体は水底に着床した状態にあり、扉体の移動に伴い着床面に摩擦力が作用する。潮位差と摩擦力は作用高さが異なり、方向が逆であるから、扉体には回転モーメントが作用して大きな横傾斜が発生する。着床した扉体は復原力機能が消滅していて転覆する可能性がある。
利用する潮位差が大きくて扉体搭載の推力機械(サイドスラスター)や操作
用タッグボート等で扉体コントロールが不可能な状態で閉操作を行う場合は、コントロール可能なスイング角度内で扉体を水底に着床させ、海側潮位を利用して全閉操作を行う。扉体は海側潮位に押されて陸側に移動を始め、移動速度を徐々に上げて全閉位置に至り、水底のコンクリート構造に衝突する。衝突時のエネルギーは扉体が着床位置から全閉位置に移動する間に扉体に蓄えられた運動エネルギーであり、この量が大き過ぎて衝突力が大きくなると扉体及び水底コンクリート構造が破損する可能性がある。
潮流の中で扉体閉操作が行われる時に底部支持座が水底コンクリート構造に当たり、扉体慣性力の反力が支持座に作用するとともに扉体断面の回転起動に伴う衝撃力が作用する。反力と衝撃力による扉体底部支持座の損傷を回避する必要がある。
図4aは平面図である。図4bは正面図である。
直立タンク:引き力Sと対を成して扉体の直立性を維持する。
均衡タンク:扉体自重の過半数と均衡させ、操作タンクの容積削減を計る。
操作タンク:注排水により扉体を沈降および浮上操作する。
2 扉体(点線、全開状態 (フラップ) )
3 回転中心(フラップ)
4 コンクリート構造(フラップ)
5 木座(フラップ)
6 扉体(実線、全閉状態 (スイング) )
7 扉体(点線、全開状態 (スイング) )
8 スイング中心
9 格納岸壁(スイング)
10 防潮水門の中心線(スイング)
11 スイング中心支持機構
12 サイドスラスタ-
13 摩擦靴
14 アッパー(摩擦靴)
15 摩耗材(摩擦靴)
16 底部支持座(水密部)
17 先端部(摩耗材)
18 円弧半径(先端部)
Claims (5)
- 流水や船舶の水路を横切る方向に設けられ、全開時は格納位置に係留され、全閉時は浮上状態でスイング活動により全閉位置に移動する扉体を備える水門において、
前記扉体は、水底に固定された支持点を持ち、前記支持点の支持条件が3軸方向回転自由且つ移動拘束であることを特徴とする水門。 - 流水や船舶の水路を横切る方向に設けられ、全開時は格納位置に係留され、全閉時は浮上状態でスイング活動により全閉位置に移動する扉体を備える水門において、
前記扉体は、水底と前記扉体の上部に中心軸を共有する固定された支持点を持ち、前記支持点の支持条件が2軸方向回転自由且つ3軸方向移動拘束であることを特徴とする水門。 - 水門稼働中において、前記支持点には引き力が作用することを特徴とする請求項1又は請求項2記載の水門。
- 前記扉体の底部に摩擦靴を備え、前記摩擦靴の靴底先端部が凸形湾曲形状であることを特徴とする請求項1又は請求項2記載の水門。
- 前記扉体が陸側海底の構造に接触する箇所に設けられる底部支持座を備え、前記底部支持座は柔軟材の中に剛材が埋め込まれ、柔軟且つ高強度に構成されていることを特徴とする請求項1又は請求項2記載の水門。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/762,183 US11384498B2 (en) | 2015-09-25 | 2015-09-25 | Sluice gate |
EP15904738.0A EP3339513B1 (en) | 2015-09-25 | 2015-09-25 | Sluice gate |
JP2017541215A JP6472104B2 (ja) | 2015-09-25 | 2015-09-25 | 水門 |
PCT/JP2015/077164 WO2017051481A1 (ja) | 2015-09-25 | 2015-09-25 | 水門 |
CN201580083336.1A CN108026708B (zh) | 2015-09-25 | 2015-09-25 | 水闸 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/077164 WO2017051481A1 (ja) | 2015-09-25 | 2015-09-25 | 水門 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051481A1 true WO2017051481A1 (ja) | 2017-03-30 |
Family
ID=58385990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077164 WO2017051481A1 (ja) | 2015-09-25 | 2015-09-25 | 水門 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11384498B2 (ja) |
EP (1) | EP3339513B1 (ja) |
JP (1) | JP6472104B2 (ja) |
CN (1) | CN108026708B (ja) |
WO (1) | WO2017051481A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018177489A1 (en) * | 2017-03-30 | 2018-10-04 | Steen Olsen Invest Aps | Flood protection |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11384498B2 (en) * | 2015-09-25 | 2022-07-12 | Hiroshi Tereta | Sluice gate |
US10612204B2 (en) * | 2016-08-22 | 2020-04-07 | Hiroshi Terata | Sluice gate |
CN110046467B (zh) * | 2019-05-08 | 2022-06-07 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种考虑闸门水封力学特性效应的闸门地震响应分析方法 |
CN114808871A (zh) * | 2022-05-23 | 2022-07-29 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种无启闭系统的一字浮体闸门 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290420A (ja) * | 1985-08-30 | 1987-04-24 | Hokoku Kogyo Kk | 自動転倒堰 |
JP2003239263A (ja) * | 2002-02-08 | 2003-08-27 | Mitsubishi Heavy Ind Ltd | 開閉式港湾構造物 |
JP2009084883A (ja) * | 2007-09-28 | 2009-04-23 | Nippon Sharyo Seizo Kaisha Ltd | 鉄道軌道用防水ゲート |
JP2013002250A (ja) * | 2011-06-21 | 2013-01-07 | Hitachi Zosen Corp | 浮体式フラップゲート |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422076A (en) * | 1922-07-11 | Theodor becher | ||
USRE22745E (en) * | 1946-04-23 | Automatic lock gate | ||
US610548A (en) * | 1898-09-13 | manny | ||
US196686A (en) * | 1877-10-30 | Improvement in canal-lock gates | ||
US1334354A (en) * | 1918-05-25 | 1920-03-23 | George H Gibby | Tide or backwater gate |
US1329679A (en) * | 1918-10-24 | 1920-02-03 | Scott M Sampson | Automatic water-gate |
US1363820A (en) * | 1920-01-19 | 1920-12-28 | Stauwerke A G | Automatic segment-weir |
US1593306A (en) * | 1922-03-23 | 1926-07-20 | Lawski Lars | Lock gate |
US1602111A (en) * | 1924-05-08 | 1926-10-05 | Jermar Frantisek | Sluice gate |
US1648535A (en) * | 1927-02-17 | 1927-11-08 | Ernest L Broome | Sealing device for hydraulic gates |
US1920698A (en) * | 1930-02-25 | 1933-08-01 | Huguenin Albert | Adjustable gate for both ways of flow in substantially horizontal sluices |
US1938675A (en) * | 1932-11-11 | 1933-12-12 | Morgan Smith S Co | Crest gate |
US1986701A (en) * | 1933-01-25 | 1935-01-01 | Vereinigte Stahlwerke Ag | Bottom seal for gates or the like |
US1985872A (en) * | 1933-04-10 | 1934-12-25 | Schon Karl | Sluice weir |
US2009234A (en) * | 1934-07-28 | 1935-07-23 | James A Leonard | Sluiceway regulator |
US2055512A (en) * | 1935-02-25 | 1936-09-29 | Galen A Wallace | Sluice gate seal |
US2139458A (en) * | 1937-01-18 | 1938-12-06 | Krupp Ag Grusonwerk | Sluice gate |
US2118404A (en) * | 1937-01-28 | 1938-05-24 | Jermar Frantisek | Hydrostatic weir shutter |
US2317975A (en) * | 1939-03-10 | 1943-05-04 | Howard E Boath | Hydraulic gate construction |
US2192510A (en) * | 1939-07-03 | 1940-03-05 | Morgan Smith S Co | Automatic movable gate for dams |
US2322846A (en) * | 1940-06-19 | 1943-06-29 | Aluminum Co Of America | Hydraulic gate structure and the like |
US2529141A (en) * | 1946-07-05 | 1950-11-07 | Neyret Beylier & Piccard Picte | Spillway installation for dams |
US2551678A (en) * | 1948-02-12 | 1951-05-08 | Jermar Frantisek | Hydraulic structure and the like |
US2598389A (en) * | 1948-11-29 | 1952-05-27 | Jermar Frantisek | Hydrostatic weir, gate, and the like |
US2621484A (en) * | 1949-05-17 | 1952-12-16 | Jermar Frantisek | Hydraulic gate |
US2966777A (en) * | 1955-05-10 | 1961-01-03 | Escritorio Saturnino De Brito | Dam |
US2904963A (en) * | 1955-12-28 | 1959-09-22 | Creusot Forges Ateliers | Device for the control of the opening of a gate |
US2994199A (en) * | 1957-04-03 | 1961-08-01 | Martin Antoine Herve | Wall structure for separating two bodies of liquid |
US2909899A (en) * | 1957-06-13 | 1959-10-27 | Pacific Coast Eng Co | Gate elevating mechanism |
US3221504A (en) * | 1960-04-29 | 1965-12-07 | Fluid Dynamics Ltd | Method and apparatus for the automatic regulation of boturating devices |
US3133518A (en) * | 1961-09-22 | 1964-05-19 | Arden L Burnett | Dry dock lock |
US3316934A (en) * | 1962-09-17 | 1967-05-02 | Charles A Sowers | Expandable hinge weir |
US3331208A (en) * | 1963-10-02 | 1967-07-18 | Traction Et D Expl Sa Soc Gen | Divided water-way for water-craft movement |
DE1209512B (de) * | 1964-02-05 | 1966-01-20 | Beteiligungs & Patentverw Gmbh | Armierter, mit Nischen versehener Wehrpfeiler zur Auflagerung fuer Drehlager von Segmentschuetzen |
AT307325B (de) * | 1967-05-19 | 1973-05-25 | Krupp Gmbh | Drehlager für ein Segmentschütz |
FR1556220A (ja) * | 1967-08-03 | 1969-02-07 | ||
US3693356A (en) * | 1970-10-19 | 1972-09-26 | Allis Chalmers Mfg Co | Hydraulic turbine inlet configuration |
US3756032A (en) * | 1971-03-10 | 1973-09-04 | Riva Calzoni Spa | Sluicegate structure |
GB1415525A (en) * | 1972-09-11 | 1975-11-26 | Maunsell Partners Pty Ltd | Flap-type dock gate and a dock having such a gate |
JPS533880B2 (ja) | 1973-06-15 | 1978-02-10 | ||
GB1506079A (en) * | 1975-09-18 | 1978-04-05 | Nomura T | Water gate control system |
US4146346A (en) * | 1977-06-22 | 1979-03-27 | Salo Eric A | Apparatus and method for controlling tide waters |
US4394098A (en) * | 1980-11-03 | 1983-07-19 | Allis-Chalmers Corporation | Radial gate having fine tuning of flow control |
IT1205108B (it) * | 1987-05-25 | 1989-03-15 | Riva Calzoni Spa | Cerniera disconnettibile,particolarmente per il vincolo al fondale di apparecchiature in installazioni sottomarine |
FR2630471B1 (fr) * | 1988-04-25 | 1990-08-24 | Neyrpic | Joint destine a l'etancheite laterale d'un clapet de barrage |
FR2641355B1 (fr) * | 1989-01-03 | 1991-07-12 | Alsthom Fluides | Vanne de regulation automatique d'un niveau |
NL8901563A (nl) * | 1989-06-21 | 1991-01-16 | Waterschap Kromme Rijn | Onderdorpel constructie voor tuimelstuw. |
EP0478817A1 (de) * | 1990-10-02 | 1992-04-08 | Leningradsky Fil. Gosudarstv. Proektno-Izyskatels. I Nauchno-Issl. Inst. Morskogo Transp. Sojuzmorniiproekt - Lenmorniiproekt | Einschwimmbarer Verschluss eines Schiffsdurchlassbauwerks |
US5199812A (en) * | 1991-09-10 | 1993-04-06 | The United States Of America As Represented By The Secretary Of The Army | Hydraulic fixed strut game |
US5222834A (en) * | 1992-07-02 | 1993-06-29 | The United States Of America As Represented By The U.S. Army Corps Of Engineers | Collapsible safety prop for waterway dams |
US5178490A (en) * | 1992-07-02 | 1993-01-12 | The United States Of America As Represented By The Secretary Of The Army | Wicket dam lifting module |
US5433555A (en) * | 1994-02-22 | 1995-07-18 | Nancy Brac De La Perriere | Wicket dam and lifting jack |
US5709502A (en) * | 1995-08-23 | 1998-01-20 | Obermeyer; Henry K. | Connection system for reinforced composite structures |
DE19607076C2 (de) * | 1996-02-24 | 2003-11-20 | Walter Hunger | Verschwenkvorrichtung für schwere Teile im Wasserbau, insbesondere für Schleusentore |
US6287050B1 (en) * | 1997-07-10 | 2001-09-11 | Smart Vent, Inc. | Foundation flood gate with ventilation |
EP1204799B1 (en) * | 1999-07-30 | 2004-10-27 | Res-Del International Limited | Liquid flow controller device |
US6623209B1 (en) * | 2002-04-04 | 2003-09-23 | Floodbreak Llc | Automatic flood gate |
US7037039B1 (en) * | 2004-07-06 | 2006-05-02 | Johnson Machine Works, Inc. | Method and apparatus for an improved lock and dam assembly |
CN1740452A (zh) * | 2005-09-16 | 2006-03-01 | 赵素龙 | 旋转升降式景观拦河阐坝 |
CN201162208Y (zh) * | 2008-01-24 | 2008-12-10 | 上海勘测设计研究院 | 一种浮体平开门 |
JP5180945B2 (ja) * | 2009-11-24 | 2013-04-10 | 日立造船株式会社 | 起伏ゲート式防波堤の係留装置 |
FR2954787B1 (fr) * | 2009-12-24 | 2012-08-03 | Alstom Hydro France | Vantail pour porte busquee et porte busquee comprenant un tel vantail |
CN201722668U (zh) * | 2010-07-07 | 2011-01-26 | 扬州楚门机电设备制造有限公司 | 一种底枢在门顶的人字闸门 |
US20120034032A1 (en) * | 2010-08-05 | 2012-02-09 | Waters Jr Louis A | Self-Actuating Flood Guard |
JP5611806B2 (ja) * | 2010-12-24 | 2014-10-22 | 有限会社ミューロン | ゲートの軸受け構造 |
US8511939B2 (en) * | 2010-12-27 | 2013-08-20 | Floodbreak, L.L.C. | Self-actuating storm surge barrier |
US20120163917A1 (en) * | 2010-12-27 | 2012-06-28 | Waters Jr Louis A | Super elevation surface self-actuating flood barrier |
JP5845025B2 (ja) * | 2011-08-24 | 2016-01-20 | 日立造船株式会社 | 浮体式フラップゲートの扉体構造 |
JP5792022B2 (ja) * | 2011-10-19 | 2015-10-07 | 日立造船株式会社 | 壁面設置用フラップゲート式防水パネル |
JP5971956B2 (ja) * | 2012-01-16 | 2016-08-17 | 日立造船株式会社 | 浮体式フラップゲート |
CN102799740B (zh) * | 2012-07-30 | 2015-02-11 | 株洲南车时代电气股份有限公司 | 基于有限元的屏蔽门导靴三维滑动摩擦特性仿真分析方法 |
US9970170B2 (en) * | 2012-09-04 | 2018-05-15 | Hiroshi Terata | Sluice gate |
US9783946B2 (en) * | 2012-09-04 | 2017-10-10 | Hiroshi Terata | Sluice gate |
ES2815563T3 (es) * | 2013-05-09 | 2021-03-30 | Floodbreak Llc | Defensa contra inundaciones con accionamiento automático |
US11384498B2 (en) * | 2015-09-25 | 2022-07-12 | Hiroshi Tereta | Sluice gate |
US10612204B2 (en) * | 2016-08-22 | 2020-04-07 | Hiroshi Terata | Sluice gate |
-
2015
- 2015-09-25 US US15/762,183 patent/US11384498B2/en active Active
- 2015-09-25 CN CN201580083336.1A patent/CN108026708B/zh not_active Expired - Fee Related
- 2015-09-25 JP JP2017541215A patent/JP6472104B2/ja active Active
- 2015-09-25 EP EP15904738.0A patent/EP3339513B1/en active Active
- 2015-09-25 WO PCT/JP2015/077164 patent/WO2017051481A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290420A (ja) * | 1985-08-30 | 1987-04-24 | Hokoku Kogyo Kk | 自動転倒堰 |
JP2003239263A (ja) * | 2002-02-08 | 2003-08-27 | Mitsubishi Heavy Ind Ltd | 開閉式港湾構造物 |
JP2009084883A (ja) * | 2007-09-28 | 2009-04-23 | Nippon Sharyo Seizo Kaisha Ltd | 鉄道軌道用防水ゲート |
JP2013002250A (ja) * | 2011-06-21 | 2013-01-07 | Hitachi Zosen Corp | 浮体式フラップゲート |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018177489A1 (en) * | 2017-03-30 | 2018-10-04 | Steen Olsen Invest Aps | Flood protection |
US11629469B2 (en) | 2017-03-30 | 2023-04-18 | Steen Olsen Invest Aps | Flood protection |
Also Published As
Publication number | Publication date |
---|---|
JP6472104B2 (ja) | 2019-02-20 |
EP3339513A1 (en) | 2018-06-27 |
CN108026708B (zh) | 2020-09-15 |
CN108026708A (zh) | 2018-05-11 |
EP3339513A4 (en) | 2019-05-01 |
US11384498B2 (en) | 2022-07-12 |
JPWO2017051481A1 (ja) | 2018-05-24 |
EP3339513B1 (en) | 2020-03-25 |
US20180258600A1 (en) | 2018-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6472104B2 (ja) | 水門 | |
CN1894501B (zh) | 支撑系统 | |
CA2637305C (en) | Gravity foundations for tidal stream turbines | |
CN203021962U (zh) | 一种浮式码头 | |
WO2013084546A1 (ja) | 浮体式風力発電装置 | |
CN114481959B (zh) | 一种锚泊式自适应水位升降防船撞方法 | |
KR102359551B1 (ko) | 부유 구조물 | |
US4441449A (en) | Port ramp for access to a roll-on roll-off ship | |
CN104314051B (zh) | 一种系泊缓冲防船撞系统 | |
CN114481960B (zh) | 水位变化条件下自定位约束锚泊式桥梁防船撞系统 | |
CN114481961B (zh) | 限制性水深条件下的锚泊式防撞设施缆绳调节平衡方法 | |
CN216739495U (zh) | 一种涉水建筑区域式防船撞保护装置 | |
CN207597353U (zh) | 一种旋转式浮体河道挡潮闸门 | |
US8869727B1 (en) | Buoyant structure | |
CN200992699Y (zh) | 转轴支撑浮箱防撞装置 | |
KR20110031403A (ko) | 파도의 관성력을 이용한 양수식 파력발전장치 | |
CN208830265U (zh) | 一种桥墩防撞装置 | |
CN211596664U (zh) | 一种船舶拦阻设施 | |
CN203174489U (zh) | 船撞桥梁桥架的限高防撞装置 | |
WO2015088745A1 (en) | Buoyant structure | |
CN115416810A (zh) | 一种适用于浅海的重锤式系泊筒形基础 | |
JP7573348B1 (ja) | 浮桟橋の係留装置 | |
CN103953012B (zh) | 一种螺旋桨驱动浮体门 | |
KR20190122381A (ko) | 선박 | |
CN112726511A (zh) | 一种用于保护套缆工人的系船柱安全系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15904738 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017541215 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015904738 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15762183 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |