WO2017043480A1 - 半導体パッケージ - Google Patents
半導体パッケージ Download PDFInfo
- Publication number
- WO2017043480A1 WO2017043480A1 PCT/JP2016/076166 JP2016076166W WO2017043480A1 WO 2017043480 A1 WO2017043480 A1 WO 2017043480A1 JP 2016076166 W JP2016076166 W JP 2016076166W WO 2017043480 A1 WO2017043480 A1 WO 2017043480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor chip
- substrate
- semiconductor
- film substrate
- wiring
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 308
- 239000000758 substrate Substances 0.000 claims abstract description 333
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 37
- 229910000679 solder Inorganic materials 0.000 claims description 50
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000005476 soldering Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 184
- 238000004519 manufacturing process Methods 0.000 description 48
- 239000010949 copper Substances 0.000 description 34
- 238000012986 modification Methods 0.000 description 27
- 230000004048 modification Effects 0.000 description 27
- 229920005989 resin Polymers 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- 239000010931 gold Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 235000009508 confectionery Nutrition 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000006355 external stress Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/50—Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
Definitions
- the present invention relates to a semiconductor package.
- Patent Document 1 discloses a semiconductor package that can relieve external stress and can be mounted on a mounting board (motherboard) having a curved mounting surface.
- an interposer 30 made of a flexible resin film provided with wiring and bent with a support block 20 sandwiched is formed on an element forming surface 10b which is the lower surface of the semiconductor chip 10. Electrically connected.
- the surface of the interposer 30 opposite to the semiconductor chip 10 is electrically connected to the mounting substrate 50 with a plurality of solder balls 40 interposed therebetween.
- the element formation surface 10b of the semiconductor chip 10 faces the substrate 50 and is flip-chip mounted.
- the arrangement area of the plurality of solder balls 40 in the interposer 30 is substantially equal to the area where the element formation surface 10b of the semiconductor chip 10 faces.
- the interval between the bent portions of the interposer 30, that is, the thickness of the support block 20 is smaller than the thickness of the semiconductor chip 10. Further, the support block 20 is disposed along the inside of a portion where the interposer 30 is bent, and this portion is limited to the edge portions of the two opposing sides of the semiconductor chip 10.
- the semiconductor chip on the interposer made of a flexible resin film is pressed, and the semiconductor chip is broken by the pressure at the time of pressing.
- the wiring formed on the interposer made of a bent film is easy to cut.
- the flexible resin film which comprises an interposer also has the problem that it is difficult to maintain a bending shape by a restoring force depending on the composition.
- the height of the upper surface of the semiconductor chip becomes higher than the surface of the mounting substrate due to the interposer formed of the bent film with the support block interposed.
- An object of the present invention is to obtain a semiconductor package in which the wiring in the film substrate) does not break, the bent shape of the interposer can be maintained, and the height from the mounting substrate is suppressed.
- the present invention covers a semiconductor substrate and a package substrate on a main surface of a package substrate or lead frame on which a semiconductor chip with an element formation surface facing up is mounted by a film substrate having wiring. And it is set as the structure electrically connected mutually.
- a package substrate a first semiconductor chip held on a main surface of the package substrate and having an element formation surface on the opposite side to the package substrate, and a first semiconductor
- a film substrate that covers the chip and is held on the element forming surface of the first semiconductor chip and the upper surface of the package substrate is provided.
- a first connection portion is provided on the element forming surface of the first semiconductor chip, and a second connection portion is provided on the upper surface of the package substrate.
- the film substrate has wiring provided on the side facing the first semiconductor chip, and the first connection portion of the first semiconductor chip is electrically connected to the wiring of the film substrate.
- the film substrate and the wiring are extended to the outside of the first semiconductor chip, and the wiring is electrically connected to the second connection portion of the package substrate.
- a lead frame a first semiconductor chip that is held on a main surface of the lead frame and has an element forming surface on the opposite side to the lead frame, and covers the first semiconductor chip and the first semiconductor chip.
- a film substrate held on the element formation surface of the first semiconductor chip and the upper surface of the lead frame.
- a first connection portion is provided on the element forming surface of the first semiconductor chip, and a second connection portion is provided on the upper surface of the lead frame.
- the film substrate has wiring provided on the side facing the first semiconductor chip, and the first connection portion of the first semiconductor chip is electrically connected to the wiring of the film substrate.
- the film substrate and the wiring are extended to the outside of the first semiconductor chip, and the wiring is electrically connected to the second connection portion of the lead frame.
- the semiconductor package of the present invention even if the number of signal lines from the semiconductor chip increases, the configuration of the substrate does not become complicated, the semiconductor chip does not break at the time of manufacture, and alignment is easy. In addition, it is possible to obtain a semiconductor package in which the wiring in the interposer (film substrate) does not break, the bent shape of the interposer can be maintained, and the height from the mounting substrate is suppressed.
- FIG. 1 is a plan view showing a semiconductor package according to the first embodiment of the present disclosure.
- FIG. 2 is a sectional view taken along line II-II in FIG.
- FIG. 3 is a bottom view and a partially enlarged view showing the semiconductor package according to the first embodiment of the present disclosure.
- FIG. 4 is a plan view showing the semiconductor package manufacturing method according to the first embodiment, and shows a chip connection region and a partially enlarged view of the semiconductor chip in a wafer state.
- FIG. 5 is a cross-sectional view taken along line VV of the partially enlarged view of FIG.
- FIG. 6 is a plan view showing a film substrate and a partial enlarged view thereof, which is a method for manufacturing a semiconductor package according to the first embodiment.
- FIG. 1 is a plan view showing a semiconductor package according to the first embodiment of the present disclosure.
- FIG. 2 is a sectional view taken along line II-II in FIG.
- FIG. 3 is a bottom view and a partially enlarged view showing
- FIG. 7 is a partial cross-sectional view taken along line VII-VII in FIG.
- FIG. 8 is a plan view showing a package substrate in a board state and a partially enlarged view thereof, which is a method for manufacturing a semiconductor package according to the first embodiment.
- FIG. 9 is an enlarged plan view showing a substrate connecting portion in the package substrate of FIG.
- FIG. 10A to FIG. 10D are cross-sectional views in order of steps showing the method of manufacturing the semiconductor package according to the first embodiment.
- FIG. 11 is a partial cross-sectional view showing a connection portion between a film substrate and a semiconductor chip, which is a method for manufacturing a semiconductor package according to the first embodiment.
- FIG. 12 is a partial cross-sectional view showing the connection portion between the film substrate and the package substrate in the semiconductor package manufacturing method according to the first embodiment.
- FIG. 13 is a plan view showing a one-step package substrate in a semiconductor package according to a third modification of the manufacturing method of the first embodiment.
- FIG. 14A to FIG. 14C are cross-sectional views in order of steps showing the main part of the semiconductor package manufacturing method according to the third modification of the manufacturing method of the first embodiment.
- FIG. 15A and FIG. 15B are cross-sectional views in order of steps showing the main part of the semiconductor package manufacturing method according to the fourth modification of the manufacturing method of the first embodiment.
- FIG. 16C are cross-sectional views in order of steps showing the main part of the semiconductor package manufacturing method according to the fifth modification of the manufacturing method of the first embodiment.
- FIG. 17 is a plan view showing a first modification of the film substrate constituting the semiconductor package according to the first embodiment.
- FIG. 18 is a plan view showing a second modification of the film substrate constituting the semiconductor package according to the first embodiment.
- FIG. 19 is a plan view showing a third modification of the film substrate constituting the semiconductor package according to the first embodiment.
- FIG. 20 is a plan view showing a fourth modification of the film substrate constituting the semiconductor package according to the first embodiment.
- FIG. 21 is a cross-sectional view illustrating a semiconductor package according to the second embodiment of the present disclosure.
- FIG. 22 is a plan view showing a film substrate constituting a semiconductor package according to the second embodiment, a first semiconductor chip and a second semiconductor chip, and an enlarged view of an inter-chip connection region of each semiconductor chip.
- 23 is a partial cross-sectional view taken along line XXIII-XXIII in the enlarged view of FIG.
- FIG. 24A to FIG. 24C are cross-sectional views in order of steps showing the main part of the method of manufacturing a semiconductor package according to the second embodiment.
- FIG. 25 is a plan view showing a semiconductor package according to the third embodiment of the present disclosure. 26 is a cross-sectional view taken along line XXVI-XXVI in FIG. FIG.
- FIG. 27 is a plan view showing a lead frame in a board (aggregate) state and a partially enlarged view thereof, which is a semiconductor package manufacturing method according to the third embodiment.
- FIG. 28A to FIG. 28C are cross-sectional views in order of steps showing the main part of the method of manufacturing a semiconductor package according to the third embodiment.
- FIG. 29A and FIG. 29B are cross-sectional views in order of steps showing the main part of the semiconductor package manufacturing method according to the third embodiment.
- FIG. 30 is a cross-sectional view showing a semiconductor package according to the fourth embodiment of the present disclosure.
- FIG. 31A to FIG. 31C are cross-sectional views in order of steps showing the main part of the method of manufacturing a semiconductor package according to the fourth embodiment.
- FIG. 1 shows a planar configuration of the semiconductor package according to the first embodiment
- FIG. 2 shows a cross-sectional configuration taken along line II-II in FIG. 1
- FIG. 3 shows a bottom configuration of the semiconductor package.
- a semiconductor package 90 includes a package substrate 100 configured as a wiring substrate having a plurality of wiring layers therein, and a silver plate on the main surface of the package substrate 100.
- the semiconductor chip 200 is fixed or bonded by an adhesive such as resin and has an element formation surface 200a on the opposite side of the package substrate 100, and covers the semiconductor chip 200 and straddles the element formation surface 200a and the upper surface of the package substrate 100.
- the film substrate 300 is fixed or bonded.
- the package substrate 100 has, for example, a plurality of laminated insulating resin layers, and a plurality of wirings 110 selectively disposed along the plurality of insulating resin layers.
- a known resin material can be used.
- an epoxy (glass epoxy) resin or a bismaleidotriazine monomer (BT) resin can be used.
- a chip connection part 200b as a first connection part is provided on the element formation surface 200a of the semiconductor chip 200.
- a plurality of wirings 110 are selectively formed, and a substrate connection portion 100a as a second connection portion is provided.
- a plurality of wirings 110 are also selectively formed on the bottom surface of the package substrate 100, and the wirings 110 of different layers are connected to each other by vias or vias 111.
- the film substrate 300 is provided with a wiring layer 320 on the side facing the element formation surface 200 a of the semiconductor chip 200 and the main surface of the package substrate 100.
- the chip connection part 200b of the semiconductor chip 200 can be easily electrically connected to the wiring layer 320 of the film substrate 300.
- the film substrate 300 and the wiring layer 320 are extended to the outside of the semiconductor chip 200, and the electrical connection between the substrate connecting portion 100a of the package substrate 100 and the wiring layer 320 is facilitated.
- the wiring layer 320 is provided on the side of the film substrate 300 facing the element formation surface 200a of the semiconductor chip 200, but the wiring layer 320 is provided on both the front and back surfaces of the film substrate 300. It is possible to provide it. However, in this case, it is necessary to provide vias penetrating the front and back surfaces of the film substrate 300 in the chip connection part 200b and the substrate connection part 100a so as to establish conduction with the wiring layer on the upper surface.
- each solder ball 120 is electrically connected to a wiring 110 connected to a via 111 provided on the package substrate 100.
- the film substrate 300 includes a film body 310 having flexibility or rigid flexibility, the above-described wiring layer 320, and an anisotropic conductive film (ACF) 330. Is done.
- the film main body 310 has a thickness of 15 ⁇ m to 120 ⁇ m, preferably about 30 ⁇ m, and can use thermosetting polyimide, thermoplastic polyimide, polyamide, polyester, or the like as a main composition. Details of the wiring layer 320 will be described later.
- the anisotropic conductive film 330 is formed by mixing conductive particles such as metal in an insulating thermoplastic resin material, and is conductive only in a region where pressure is partially applied in the film thickness direction, that is, selectively applied. It is a film that produces Here, although the thickness of the anisotropic conductive film 330 is not specifically limited, For example, it can be 20 micrometers.
- the film substrate 300 including the wiring layer 320 is provided on the main surface of the package substrate 100 so as to spread outside the periphery of the semiconductor chip 200.
- the wiring layer 320 of the film substrate 300 has a minimum wiring pitch in the substrate connection part 100a of the package substrate 100, and the chip connection part of the semiconductor chip 200. It can be made larger than the minimum wiring pitch in the region facing 200b.
- the minimum arrangement pitch of the solder balls is set on the semiconductor chip. It is difficult to make it larger than the minimum wiring pitch. As a result, although it is necessary to increase the number of wiring layers provided in the interposer, it is not easy to form a multilayer wiring structure in a film-like interposer.
- the semiconductor package 90 according to the present embodiment can increase the minimum wiring pitch in the substrate connection portion 100a, the number of wiring layers of the package substrate 100 can be reduced. As a result, the package substrate 100 can be easily manufactured, and the manufacturing cost of the semiconductor package 90 can be suppressed.
- the wiring layer 320 of the film substrate 300 is provided only on the side facing the element forming surface 200 a of the semiconductor chip 200 and the side facing the main surface of the package substrate 100. That is, the wiring layer 320 of the film substrate 300 is formed only on the surface facing the semiconductor chip 200 and the package substrate 100. Thereby, the formation of the wiring layer 320 is facilitated, that is, the production of the film substrate 300 is facilitated.
- the thickness of the semiconductor chip 200 including the silver pod mounted on the package substrate 100 is the height from the main surface of the package substrate 100.
- the semiconductor chip 200 with the element formation surface 200a facing upward is generally smaller in thickness than a semiconductor chip to be flip-chip mounted.
- the amount of bending of the film substrate 300 on the package substrate 100 can be made extremely small.
- it does not wrap completely as in Patent Document 1.
- damage due to bending of the wiring layer 320 of the film substrate 300, that is, cutting, can be prevented, and the bending process itself of the film substrate 300 is facilitated.
- the semiconductor chip 200 is mounted on the package substrate 100.
- the semiconductor package 90 according to the present embodiment can suppress the height from the bottom surface of the package substrate 100 to the top surface of the film substrate 300, it can suppress interference with other components during mounting on the mounting substrate. Can be made compact.
- the semiconductor chip 200 is mounted upward with respect to the main surface of the package substrate 100. Therefore, the alignment of the semiconductor chip 200 on the main surface of the package substrate 100 can be easily and highly accurately performed using the alignment mark on the element formation surface of the semiconductor chip 200.
- the semiconductor chip 200 is a semiconductor chip including a logic system circuit, for example.
- the semiconductor chip 200 is not limited to a logic chip.
- a plurality of chip connection part regions 210 are provided at the periphery of each semiconductor chip region 200 ⁇ / b> B in a semiconductor wafer 200 ⁇ / b> A partitioned into a plurality of semiconductor chip regions 200 ⁇ / b> B.
- FIG. 5 which is a partial enlarged view of the chip connection portion area 210 of FIG. 4 and a cross-sectional view taken along the line VV of the partial enlarged view, A protective (passivation) film 211 made of (Si 2 N 3 ) is formed.
- regions corresponding to the external electrodes (not shown) of the semiconductor chip region 200B in the protective film 211 are etched by lithography and etching methods to expose a plurality of external electrodes.
- electrode pads 212 made of aluminum (Al) are formed by, eg, sputtering, and the mask film is removed.
- solder bumps 213 are formed on the electrode pads 212 by, for example, a transfer method.
- copper (Cu) pillars 213 may be used. In the case of the copper pillar, it can be formed with a finer pitch than the solder bump.
- the Cu pillar 213 is formed by, for example, forming a new resist mask that exposes the central portion of each electrode pad 212 and forming columnar copper plating by electroplating. Subsequently, solder bumps are formed on the upper surface of the copper plating, and the resist mask is removed. Thereafter, a predetermined reflow process is performed to form the Cu pillar 213.
- FIG. 6 and FIG. 7 which is a cross-sectional view taken along the line VII-VII of FIG. 6, a film substrate 300 is produced.
- a copper foil is bonded on one surface of the film body 310.
- a plurality of wirings (wiring patterns) 320a and a plurality of connection terminals 320b are formed from the bonded copper foil by a known subtractive method.
- the plurality of connection terminals 320 b are electrically connected to the chip connection part 200 b of the semiconductor chip 200 or the substrate connection part 100 a of the package substrate 100.
- a protective film 325 made of an insulating resin or the like for protecting the wiring 320a is formed on the film main body 310, and is again formed into a roll shape. Then, the anisotropic conductive film 330 is bonded so that the protective film 325 and each connection terminal 320b may be covered. Subsequently, the film main body 310 on which the wiring 320a, the connection terminal 320b, the protective film 325, and the anisotropic conductive film 330 are formed is cut into a plurality of film substrates 300 to be separated into pieces.
- a chip covering region 300 ⁇ / b> A that is a region covering the semiconductor chip 200 is provided on the individual film substrate 300.
- Each wiring 320a and each connection terminal 320b overlaps a chip connection region 300B that overlaps the chip coating region 300A, a substrate narrow pitch connection portion 300C1 that overlaps a narrow pitch portion in the package substrate 100, and a wide pitch portion in the package substrate 100. It is included in any one of the board wide pitch connection portions 300C2.
- the wiring pitch of the substrate wide pitch connection portion 300C2 that is separated from the chip connection region 300B, that is, disposed at the peripheral edge of the film substrate 300 is the chip connection region 300B. Is larger than the wiring pitch of the substrate narrow pitch connection portion 300C1 adjacent to the substrate.
- the wiring 320a in the film substrate 300 can be wired so as to expand toward the outside, and the overhanging length of the film substrate 300 can be shortened, so that the manufacturing cost of the film substrate 300 can be suppressed.
- the substrate wide pitch connection portion 300C2 is not necessarily provided, and may be configured by only the substrate narrow pitch connection portion 300C1. In this case, the extending distance to the outside of the film substrate 300 is longer than that in the case where the substrate wide pitch connection portion 300C2 is provided.
- FIG. 8 and FIG. 9 which is a partially enlarged plan view of FIG. 8, a package substrate 100 is manufactured.
- a package substrate board 100A including a plurality of package substrate 100 formation regions arranged in a matrix is prepared.
- a substrate board for producing a ball grid array (BGA) or the like can be used.
- BGA ball grid array
- one package substrate 100 is provided with a chip mounting region 100B for mounting the semiconductor chip 200 at the center thereof, and the film substrate 300 is mounted so as to cover the chip mounting region 100B.
- a film substrate mounting area 100C to be mounted is provided.
- a plurality of substrate connection portions 100 a that extend linearly over the main surface of the film substrate mounting region 100 ⁇ / b> C and the package substrate 100 are provided outside the peripheral portion of the chip mounting region 100 ⁇ / b> B.
- FIG. 9 shows an enlarged view of one of the plurality of substrate connecting portions 100a.
- one substrate connection portion 100 a arranged so as to extend outward from the chip mounting region 100 ⁇ / b> B of the package substrate 100 includes a wiring 110 connected to each of the plurality of through holes 111, and a wiring 110 of each wiring 110.
- the substrate connection portion 100 a is composed of an electrode pad 112 made of Al and solder bumps or Cu pillars 113 formed on the electrode pad 112. However, there may be a case where the substrate connecting portion 100a does not include the electrode pad 112.
- Each solder bump or Cu pillar 113 is electrically connected to each corresponding connection terminal 320b shown in FIG. Therefore, the arrangement pitch of the substrate connection portions 100a is larger in the region connected to the substrate wide pitch connection portion 300C2 than in the region connected to the substrate narrow pitch connection portion 300C1 of the film substrate 300.
- the semiconductor chip 200 is provided on the element formation surface on the main surface of the package substrate board 100A on which the wiring (not shown) and the substrate connection portion 100a are formed. Secure using the alignment mark. At this time, a silver candy or a resin-based adhesive can be used as the adhesive 201.
- the main surface of the package substrate board 100A is covered with the protective film 125 except for the substrate connection portion 100a.
- the separated film substrate 300 is placed by being aligned with the semiconductor chip 200 and the package substrate board 100A.
- the film substrate 300 and the semiconductor chip 200, and the film substrate 300 and the package are used by using the heating / pressurizing head 400 to which the special elastic body head 410 having thermal conductivity is attached.
- the substrate board 100A is held together and heated and pressurized. Thereby, the wiring layer (connection terminal) 320 of the film substrate 300 and the connection terminal of the semiconductor chip 200, and the wiring layer 320 of the film substrate 300 and the substrate connection portion 100a of the package substrate board 100A are joined.
- a plurality of solder balls 120 are formed on the back surface of the package substrate board 100A. Thereafter, the package substrate board 100A is singulated to obtain a desired semiconductor package 90.
- FIG. 11 shows a cross-sectional configuration of electrical connection between the film substrate 300 and the semiconductor chip 200.
- the connection terminal 320 b formed on the film substrate 300 is electrically connected to the chip connection part 200 b exposed from the protective film 211 formed on the element formation surface 200 a of the semiconductor chip 200. More specifically, solder bumps or gold (Au) bumps or Cu pillars 213 constituting the chip connection part 200b selectively compress the anisotropic conductive film 330 constituting the film substrate 300 in the film thickness direction. Accordingly, the connection terminal 320b of the film substrate 300 is electrically connected.
- FIG. 12 shows a cross-sectional configuration of electrical connection between the film substrate 300 and the package substrate 100.
- the connection terminal 320 b formed on the film substrate 300 is electrically connected to the substrate connection part 100 a exposed from the protective film 125 formed on the main surface of the package substrate 100.
- the solder bumps or Au bumps or Cu pillars 113 constituting the substrate connection part 100a selectively compress the anisotropic conductive film 330 constituting the film substrate 300 in the film thickness direction, thereby It is electrically connected to the connection terminal 320b of the film substrate 300.
- the film substrate 300 including the anisotropic conductive film 330 is formed in advance into a shape connected to the semiconductor chip 200 and the package substrate 100 using an upper mold and a lower mold. Also good. In this way, it is possible to prevent the displacement of the bonding position when the film substrate 300 is bonded to the package substrate 100, so that the defect rate in the bonding process can be reduced.
- solder bumps, Au bumps or Cu pillars 113 instead of forming solder bumps, Au bumps or Cu pillars 113 on the element formation surface 200a of the semiconductor chip 200 and the main surface of the package substrate 100, a wiring layer constituting the film substrate 300 Solder bumps, Au bumps, or Cu pillars 113 may be formed on 320. In this way, solder bumps, Au bumps, or Cu pillars 113 can be collectively formed on the wiring layer 320 of the film substrate 300, and the manufacturing process can be simplified.
- any of solder bumps, Au bumps, and Cu pillars 113 is provided on the element formation surface 200a of the semiconductor chip 200 and the main surface of the package substrate 100. Not provided. Furthermore, the anisotropic conductive film 330 constituting the film substrate 300 is used only on the element forming surface 200a of the semiconductor chip 200 and the region covering the substrate connecting portion 100a in the package substrate 100.
- the anisotropic conductive film 330 is bonded to the area on the chip which is the element formation surface 200a of the semiconductor chip 200.
- solder bumps, Au bumps, or Cu pillars 113 are formed on the wiring layers 320 constituting the film substrate 300 in regions corresponding to the chip connection portion 200b and the substrate connection portion 100a, respectively.
- the wiring 110 is formed on the main surface of the package substrate board 100A, while none of the solder bumps, Au bumps, and Cu pillars 113 are formed. Thereafter, for example, the anisotropic conductive film 330 separated into four pieces is bonded to the region on the substrate which is the substrate connecting portion 100a connected to the film substrate 300 on the main surface of the package substrate board 100A.
- the semiconductor chip 200 is aligned and fixed to the chip mounting region on the main surface of the package substrate board 100A.
- the individualized film substrate 300 is placed by being aligned with the semiconductor chip 200 and the package substrate board 100A.
- the film substrate 300 and the semiconductor chip 200, and the film substrate 300 and the package substrate board 100A are bundled using the heating and pressurizing head having the special elastic body head described above. Hold and heat and pressurize. Thereby, the wiring layer 320 of the film substrate 300, the connection terminal of the semiconductor chip 200, and the substrate connection part 100a of the package substrate board 100A are bonded to each other. Subsequently, a plurality of solder balls 120 are formed on the back surface of the package substrate board 100A, and then the package substrate board 100A is singulated to obtain a desired semiconductor package 90.
- the anisotropic conductive film 330 is divided into the chip connection portion of the semiconductor chip 200 and the substrate connection portion of the package substrate 100. The amount used can be reduced.
- the semiconductor chip 200 may be bonded to the film substrate 300, and then the film substrate 300 bonded to the semiconductor chip 200 may be bonded to the package substrate 100.
- the film substrate 300 and the semiconductor chip 200 are bonded using a support base 420 and a heating / pressurizing head 401 whose surfaces facing each other are flat. Can do.
- the elastic film 202 is provided on the back surface of the semiconductor chip 200 supported by the support base 420, the occurrence rate of chip cracking can be suppressed.
- the film substrate 300 and the package substrate 100 are joined using a heating / pressurizing head 401 having a planar shape that presses only the substrate connection portion 100 a in the package substrate 100. be able to.
- the bonding between the film substrate 300 and the semiconductor chip 200 and the bonding between the film substrate 300 and the package substrate 100 are performed in separate steps, whereby the mutual alignment can be performed in each step.
- the accuracy of the alignment can be relaxed, the defect rate at the time of assembly can be reduced.
- solder bump or a solder film melted and attached instead of the solder bump for bonding the film substrate 300 and the semiconductor chip 200 and bonding the film substrate 300 and the package substrate 100 is used. It may be used. If it does in this way, since it can form cheaper than Cu pillar, manufacturing cost can be reduced.
- a solder bump or a solder film is formed on the element forming surface of the semiconductor chip 200 by a transfer method or the like.
- the film substrate 300 and the semiconductor chip 200 are joined using the support table 420 and the heating and pressing head 401 described above.
- the anisotropic conductive film 330 is not used, the solder bump formed on the semiconductor chip 200 is sealed with the resin material 203. Thereafter, the film substrate 300 to which the semiconductor chip 200 is bonded is placed in alignment with the package substrate 100.
- the film substrate 300 is bonded to the package substrate board 100A using the heating and pressing head 401 described above.
- solder bumps 113 and the electrode pads 112 formed on the package substrate board 100A may be sealed with a resin material 203. Thereafter, solder balls are formed on the back surface of the package substrate board 100A and separated into individual pieces.
- FIG. 17 shows a planar shape according to a first modification of the film substrate 300.
- the film substrate 300 according to this modification is provided with notches 300a that reach the four corners of the chip covering region 300A of the semiconductor chip. In this way, the difference between the height of the semiconductor chip connecting portion 200a in the film substrate 300 and the height of the substrate connecting portion 100a of the package substrate 100 in the film substrate 300 causes the film substrate 300 to be bonded to the package substrate 100. Twist can be prevented.
- the notch 300a is provided in all four corners of the chip covering region 300A. However, if at least one notch 300a is provided, an effect can be obtained.
- the notch 300a does not necessarily reach the corner of the chip covering region 300A.
- FIG. 18 shows a planar shape according to a second modification of the film substrate 300.
- the film substrate 300 according to the present modified example is a notch that is notched with a narrower width than the first modified example from its four corners toward each corner of the chip covering region 300A.
- a portion 300a is provided.
- the film substrate 300 can form wirings in directions other than the direction perpendicular to the boundary line of the chip covering region 300A. For this reason, the pitch of the wiring from the chip connection portion of the semiconductor chip 200 to the substrate connection portion of the package substrate 100 can be increased.
- the notch 300a does not necessarily reach the corner of the chip covering region 300A.
- FIG. 19 shows a planar shape according to a third modification of the film substrate 300.
- a narrow notched portion that reaches from each side of the film substrate 300 to the opposite side of the chip covering region 300A.
- a portion 300b is provided. In this way, even when the element formation surface, which is the upper surface of the semiconductor chip 200, and the main surface of the package substrate 100 are not parallel, twisting during bonding of the film substrate 300 to the package substrate 100 is prevented. be able to.
- notches 300a and 300b do not necessarily need to reach the chip covering region 300A.
- FIG. 20 shows a planar shape according to a fourth modification of the film substrate 300.
- the cutout portions 300a and 300b are the same as in the third modified example, but the film substrate 300 is provided with two chip covering regions 300A. That is, a semiconductor package in which two semiconductor chips 200 are mounted side by side on the main surface of the package substrate 100 is assumed.
- the wiring provided on the film substrate 300 has a wiring pitch smaller than that of the package substrate 100, the number of wirings that can be connected between the two semiconductor chips 200 can be easily increased. Thereby, a coplanar waveguide can be provided, and a signal including a high frequency can be easily transmitted.
- FIG. 21 shows a cross-sectional configuration of a semiconductor package according to the second embodiment
- FIG. 22 shows a connection portion between two stacked semiconductor chips, an enlarged plan view thereof, and a plan configuration of an opening portion of a film substrate passing therethrough
- FIG. 23 shows a cross-sectional configuration along the line XXIII-XXIII in FIG.
- the same components as those in the first embodiment are denoted by the same reference numerals.
- the semiconductor package 91 according to the second embodiment is formed by interposing a film substrate 300 on a semiconductor chip 200 (hereinafter referred to as the first semiconductor chip 200 in the present embodiment). 2 A configuration in which a semiconductor chip 250 is mounted is adopted. The second semiconductor chip 250 is bonded to the film substrate 300 with an adhesive 201 such as a thermosetting resin.
- the second semiconductor chip 250 is assumed to be a memory chip.
- the first semiconductor chip 200 is not limited to a logic chip
- the second semiconductor chip 250 is not limited to a memory chip.
- an inter-chip connection region 210a is formed at the center of the element formation surface 200a of the first semiconductor chip 200 and the center of the element formation surface 250a of the second semiconductor chip 250 according to the present embodiment. Is provided.
- the film substrate 300 is provided with an opening 300c that exposes the inter-chip connection region 210a.
- the second semiconductor chip 250 is a chip-on-chip that is flip-chip mounted on the first semiconductor chip 200.
- each inter-chip connecting portion 200c includes, for example, an electrode pad 212 made of Al, a Cu pillar 213 formed thereon, and a solder bump 214 formed on the top surface of the Cu pillar 213. It consists of.
- each inter-chip connection unit 200 c corresponds to a third connection unit in the first semiconductor chip 200.
- the same effects as those of the first embodiment can be obtained, and even if the second semiconductor chip 250 is stacked on the first semiconductor chip 200, the heat dissipation of the first semiconductor chip 200 is achieved. Can be secured by the wiring layer 320 of the film substrate 300.
- the inter-chip connection part 200c with the second semiconductor chip 250 is formed for the first semiconductor chip 200.
- the chip connection part 200b and the inter-chip connection are formed.
- the part 200c includes a Cu pillar 213 and a solder bump 214 shown in FIG.
- the inter-chip connection portion 200 c including the Cu pillar 213 and the solder bump 214 is formed also for the inter-chip connection region 210 a in the second semiconductor chip 250.
- an opening 300c corresponding to the inter-chip connection region 210a is provided at the center of the chip mounting region 300A in the film substrate 300.
- the first semiconductor chip 200 and the film substrate 300 are bonded onto the package substrate 100.
- the second semiconductor chip 250 is positioned and placed on the film substrate 300, and the second semiconductor chip 250 is heated and pressed by the heating and pressing head 401.
- the second semiconductor chip 250 is bonded to the first semiconductor chip 200.
- an adhesive 201 made of a resin or the like is injected between the second semiconductor chip 250 and the film substrate 300 and bonded to each other.
- a plurality of solder balls 120 are formed on the back surface of the package substrate board 100A, and then the package substrate board 100A is singulated to obtain a desired semiconductor package 91.
- FIG. 25 illustrates a planar configuration of the semiconductor package according to the third embodiment
- FIG. 26 illustrates a cross-sectional configuration taken along line XXVI-XXVI in FIG.
- the same components as those in the first embodiment are denoted by the same reference numerals.
- the semiconductor package 92 uses a lead frame 500 shown in FIG. 27 as a package substrate.
- the lead frame 500 for example, QFP (Quad Flat Package), TQFP (Thin Quad Flat Package), QFN (Quad Flat Non-Leaded Package), or the like can be used.
- the semiconductor chip 200 is fixed by an adhesive material 201 such as silver candy.
- the configuration of the chip connection part 200b in the semiconductor chip 200 is the same as that of the first embodiment.
- solder bumps, Au bumps, or Cu pillars 513 are provided in the lead connection portions 500a that are electrical connection portions with the film substrate 300 in the respective leads 500c.
- a holding frame 550 made of a planar rectangular resin material is bonded to the periphery of the film substrate 300 in each lead 500 c so as to surround the film substrate 300.
- the holding frame 550 is used for holding the individual leads 500c when the lead frame 500 is singulated, and when the outer end of each lead 500c is cut off, and the outer end is used as the external connection portion 500b.
- the same effects as those of the first embodiment can be obtained, and a low-cost lead frame 550 such as QFP can be used as a package substrate. Therefore, the manufacturing cost of the semiconductor package 92 can be reduced. Can be reduced.
- the semiconductor chip mounted on the lead frame 550 is sealed with ceramic or sealing resin, but in this embodiment, since it is covered with the thin film substrate 300, it has excellent heat dissipation characteristics, In addition, noise mixed in the electric signal is also reduced.
- the plate-like metal member including the lead 500c with the periphery cut off and the die pad 500B is also referred to as a lead frame for convenience.
- two or more semiconductor chips 200 may be mounted on one die pad 500B.
- a lead frame aggregate 500A is prepared in which a plurality of lead frames 500 in a state before the QFP lead frame 500 is singulated are included in a matrix.
- each lead frame 500 has a die pad 500B, which is a chip mounting area, at the center, and a plurality of lead frames 500 arranged radially extending from the periphery of the die pad 500B to the outside.
- a lead 500c is shown in FIG. 27, for example, a lead frame aggregate 500A is prepared in which a plurality of lead frames 500 in a state before the QFP lead frame 500 is singulated are included in a matrix.
- each lead frame 500 has a die pad 500B, which is a chip mounting area, at the center, and a plurality of lead frames 500 arranged radially extending from the periphery of the die pad 500B to the outside.
- a lead 500c is a lead frame aggregate 500A in which a plurality of lead frames 500 in a state before the QFP lead frame 500 is singulated are included
- the lead frame 500 is provided with a film substrate mounting area 500C for mounting the film substrate 300 so as to cover the die pad 500B.
- the film substrate mounting area 500C is disposed inside a dam bar 500d provided in the vicinity of the outer end of each lead 500c. Note that the dam bar 500d is provided for holding the leads in the lead frame state between adjacent ones, and usually for preventing the sealing resin from flowing out when the sealing resin is injected.
- solder bumps, Au bumps, or Cu pillars 513 are formed on the periphery of the film substrate mounting area 500C on each lead 500c.
- a solder film melted and attached instead of the solder bump may be used. In this case, since it can be formed at a lower cost than any of the solder bump, Au bump, and Cu pillar 513, the manufacturing cost can be reduced.
- the semiconductor chip 200 is fixed on the lead frame aggregate 500A with an adhesive 201 such as a silver candy using an alignment mark provided on the element formation surface 200a. To do.
- the separated film substrate 300 is placed by being aligned with the semiconductor chip 200 and the lead frame assembly 500A.
- the film substrate 300 and the semiconductor chip 200, and the film substrate 300 and the leads are read using the heating / pressurizing head 400 to which the special elastic body head 410 having thermal conductivity is attached.
- the frame aggregate 500A is held together and heated and pressurized. Thereby, the wiring layer 320 of the film substrate 300 and the connection terminal of the semiconductor chip 200, and the wiring layer 320 of the film substrate 300 and the lead connection portion 500a of the lead frame assembly 500A are joined.
- the peripheral portion of the lead frame 500 is cut off to separate each lead 500c, and then the outside of each lead 500c is bent downward. As a result, a desired individual semiconductor package 92 can be obtained from the lead frame assembly 500A.
- FIG. 30 illustrates a cross-sectional configuration of the semiconductor package according to the fourth embodiment.
- the same components as those in the first to third embodiments are denoted by the same reference numerals.
- the semiconductor package 93 uses a lead frame 500 such as QFP shown in FIG. 27 as a package substrate, as in the third embodiment.
- a lead frame 500 such as QFP shown in FIG. 27 as a package substrate
- Cu pillars 213 exposed from the opening 300c provided in the film substrate 300 are disposed, as in the second embodiment.
- a connected second semiconductor chip 250 is mounted.
- the second semiconductor chip 250 is bonded to the film substrate 300 with an adhesive 201 such as a thermosetting resin.
- the first semiconductor chip 200 is assumed to be a logic chip, for example, and the second semiconductor chip 250 is assumed to be a memory chip, for example.
- the combination of the first semiconductor chip 200 and the second semiconductor chip 250 is not limited to this.
- the same effects as those of the second embodiment and the third embodiment can be obtained. Since the thin film substrate 300 is interposed, a chip-on-chip structure can be easily performed.
- an interchip connection portion with the second semiconductor chip 250 is formed for the first semiconductor chip 200.
- the chip connection portion and the interchip connection portion are:
- the structure includes the Cu pillar 213 and the solder bump 214 shown in FIG.
- an inter-chip connection portion including the Cu pillar 213 and the solder bump 214 is also formed in the inter-chip connection region in the second semiconductor chip 250.
- an opening corresponding to the inter-chip connection region is provided at the center of the chip mounting region 300A in the film substrate 300.
- the first semiconductor chip 200 and the film substrate 300 are bonded onto the lead frame 500.
- the second semiconductor chip 250 is positioned and placed on the film substrate 300, and the second semiconductor chip 250 is heated and pressed by the heating and pressing head 401.
- the second semiconductor chip 250 is bonded to the first semiconductor chip 200.
- an adhesive 201 made of resin or the like is injected between the second semiconductor chip 250 and the film substrate 300 to adhere to each other.
- the periphery of the lead frame 500 is cut off to separate each lead 500c, and then the outside of each lead 500c is bent downward. As a result, a desired individual semiconductor package 93 can be obtained from the lead frame assembly 500A.
- the semiconductor package according to the present invention is useful as a semiconductor package having a package substrate with high resistance to external stress and a simple structure.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Wire Bonding (AREA)
Abstract
半導体パッケージは、パッケージ基板の上に保持され、該パッケージ基板と反対側に素子形成面を有する半導体チップと、該半導体チップを覆うと共にその素子形成面及びパッケージ基板の上面に保持されたフィルム基板とを備えている。半導体チップの素子形成面には、チップ接続部が設けられ、パッケージ基板の上面には基板接続部が設けられており、フィルム基板は半導体チップと対向する側に設けられた配線を有する。半導体チップのチップ接続部は、フィルム基板の配線と電気的に接続され、フィルム基板及び配線は半導体チップの外側に延伸され、配線は基板接続部と電気的に接続されている。
Description
本発明は、半導体パッケージに関する。
外部からの応力を緩和でき、さらには実装面が曲面状の実装基板(マザーボード)にも実装が可能な半導体パッケージが、例えば特許文献1に記載されている。
特許文献1の図8に示すように、半導体チップ10の下面である素子形成面10bには、配線が設けられた可撓性樹脂フィルムからなり、支持ブロック20を挟んで屈曲されたインターポーザ30が電気的に接続されている。インターポーザ30における半導体チップ10と反対側の面は、複数の半田ボール40を介在させて実装用の基板50と電気的に接続されている。
半導体チップ10の素子形成面10bは、上述したように、基板50と対向しており、フリップチップ実装されている。インターポーザ30における複数の半田ボール40の配置領域は、半導体チップ10の素子形成面10bの対向する領域とほぼ同等である。インターポーザ30の屈曲された部分の間隔、すなわち支持ブロック20の厚さは、半導体チップ10の厚さよりも小さい。また、支持ブロック20は、インターポーザ30を屈曲する部位の内側に沿って配置されており、この部位は半導体チップ10の対向する2辺の縁部に限られる。
しかしながら、前記従来の可撓性を有する半導体パッケージは、第1に、半導体チップから引き出される信号線の数が増えると半田ボールの配置ピッチが小さくなる。このため、基板の配線ピッチも同様に小さくなるので、基板の構成及び製造が複雑となるという問題がある。
第2に、半導体パッケージを基板上に実装する際に、可撓性樹脂フィルムからなるインターポーザ上の半導体チップを押下することとなり、この押下時の圧力によって半導体チップが割れてしまうという問題がある。
第3に、半導体チップの素子形成面が下面となるため、該半導体チップをインターポーザと接続する工程での位置合わせが困難であるという問題もある。
第4に、屈曲したフィルムからなるインターポーザに形成された配線が切断しやすい。さらには、インターポーザを構成する可撓性樹脂フィルムは、その組成によっては復元力により屈曲形状を維持しにくいという問題もある。また、支持ブロックを介在させた屈曲したフィルムからなるインターポーザによって、半導体チップの上面の高さが実装基板の表面から高くなってしまう。
本発明は、かかる点に鑑み、半導体チップからの信号線の数が増えても基板の構成が複雑にならず、且つ、製造時に半導体チップが割れることなく、しかも位置合わせが容易で、インターポーザ(フィルム基板)内の配線に断線が生じず、該インターポーザの屈曲形状の維持が可能で、且つ、実装基板からの高さが抑制された半導体パッケージを得られるようにすることを目的とする。
なお、上記の複数の目的は、少なくとも1つが達成されれば良い。
上記の課題を解決するため、本発明は、素子形成面を上にした半導体チップを主面に搭載したパッケージ基板又はリードフレームの主面を、配線を有するフィルム基板によって半導体チップ及びパッケージ基板を覆うと共に、互いに電気的に接続する構成とする。
具体的には、本発明の第1の態様は、パッケージ基板と、パッケージ基板の主面上に保持され、パッケージ基板に対して反対側に素子形成面を有する第1半導体チップと、第1半導体チップを覆うと共に該第1半導体チップの素子形成面及びパッケージ基板の上面に保持されたフィルム基板とを備えている。第1半導体チップの素子形成面には、第1接続部が設けられ、パッケージ基板の上面には、第2接続部が設けられている。フィルム基板は、第1半導体チップと対向する側に設けられた配線を有し、第1半導体チップの第1接続部は、フィルム基板の配線と電気的に接続されている。フィルム基板及び配線は、第1半導体チップの外側に延伸され、配線はパッケージ基板の第2接続部と電気的に接続されている。
本発明の第2の態様は、リードフレームと、リードフレームの主面上に保持され、リードフレームに対して反対側に素子形成面を有する第1半導体チップと、第1半導体チップを覆うと共に該第1半導体チップの素子形成面及びリードフレームの上面に保持されたフィルム基板とを備えている。第1半導体チップの素子形成面には、第1接続部が設けられ、リードフレームの上面には、第2接続部が設けられている。フィルム基板は、第1半導体チップと対向する側に設けられた配線を有し、第1半導体チップの第1接続部は、フィルム基板の配線と電気的に接続されている。フィルム基板及び配線は、第1半導体チップの外側に延伸され、配線はリードフレームの第2接続部と電気的に接続されている。
本発明に係る半導体パッケージによると、半導体チップからの信号線の数が増えても基板の構成が複雑にならず、且つ、製造時に半導体チップが割れることなく、しかも、位置合わせが容易となる。さらに、インターポーザ(フィルム基板)内の配線に断線が生じず、該インターポーザの屈曲形状の維持が可能で、且つ、実装基板からの高さが抑制された半導体パッケージを得ることができる。
本開示の実施形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物又はその用途を制限することを意図しない。
(第1の実施形態)
本開示の第1の実施形態に係る半導体パッケージについて図1~図3を参照しながら説明する。図1は第1の実施形態に係る半導体パッケージの平面構成を表し、図2は図1のII-II線における断面構成を表し、図3は該半導体パッケージの底面構成を表している。
本開示の第1の実施形態に係る半導体パッケージについて図1~図3を参照しながら説明する。図1は第1の実施形態に係る半導体パッケージの平面構成を表し、図2は図1のII-II線における断面構成を表し、図3は該半導体パッケージの底面構成を表している。
図1及び図2に示すように、本実施形態に係る半導体パッケージ90は、内部に複数の配線層を有する配線基板として構成されたパッケージ基板100と、該パッケージ基板100の主面上に銀鑞又は樹脂等の接着材により固着又は接合され、パッケージ基板100と反対側に素子形成面200aを有する半導体チップ200と、該半導体チップ200を覆うと共にその素子形成面200a及びパッケージ基板100の上面に跨がって固着又は接合されたフィルム基板300とを有している。
パッケージ基板100は、例えば、積層された複数の絶縁性樹脂層と、該複数の絶縁性樹脂層に沿って内部に選択的に配設された複数の配線110とを有している。絶縁性樹脂には、公知の樹脂材を用いることができ、例えば、エポキシ(ガラスエポキシ)樹脂又はビスマレイドトリアジンモノマ(BT)樹脂等を用いることができる。
半導体チップ200の素子形成面200aには、第1接続部としてのチップ接続部200bが設けられている。パッケージ基板100の主面上には、複数の配線110が選択的に形成され、第2接続部としての基板接続部100aが設けられている。また、パッケージ基板100の底面上にも複数の配線110が選択的に形成され、異なる層の配線110は、ビア(via)又は貫通孔111によって互いに接続されている。
図2に示すように、フィルム基板300には、半導体チップ200の素子形成面200a及びパッケージ基板100の主面と対向する側に配線層320が設けられている。これにより、半導体チップ200のチップ接続部200bは、フィルム基板300の配線層320との電気的な接続が容易となる。また、フィルム基板300及び配線層320は、半導体チップ200の外側にまで延伸され、パッケージ基板100の基板接続部100aと配線層320との電気的な接続が容易となる。
なお、本実施形態に係る半導体パッケージ90は、フィルム基板300における半導体チップ200の素子形成面200aと対向する側に配線層320を設けているが、フィルム基板300の表裏の両面に配線層320を設けることは可能である。但し、この場合、チップ接続部200b及び基板接続部100aには、フィルム基板300の表裏面を貫通するビアを設けて、上面の配線層との導通を図る必要がある。
図3に示すように、パッケージ基板100の底面上には、例えば、複数の半田ボール120が行列状に配置されている。図3の部分拡大図に示すように、各半田ボール120は、パッケージ基板100に設けられたビア111に接続された配線110とそれぞれ電気的に接続されている。
フィルム基板300は、詳細には、可撓性又はリジッドフレクシブル(rigid flexible)性を有するフィルム本体310と、上述の配線層320と、異方性導電フィルム(ACF:anisotropic conductive film)330とから構成される。フィルム本体310は、例えば、厚さが15μm~120μm、好ましくは30μm程度で、熱硬化性を有するポリイミド、又は熱可塑性を有するポリイミド、ポリアミド若しくはポリエステル等を主な組成として用いることができる。配線層320の詳細は後述する。
異方性導電フィルム330は、絶縁性の熱可塑性樹脂材に金属等の導電性粒子が混入されてなり、圧力が膜厚方向に部分的、すなわち選択的に引加された領域にのみ導電性を生じるフィルムである。ここで、異方性導電フィルム330の厚さは、特に限定されないが、例えば20μmとすることができる。
以上説明したように、本実施形態に係る半導体パッケージ90は、パッケージ基板100の主面上において、配線層320を含むフィルム基板300が半導体チップ200の周囲の外側に拡がって設けられている。これにより、半導体チップ200からの信号線の数が増えた場合でも、フィルム基板300の配線層320においては、パッケージ基板100の基板接続部100aにおける最小の配線ピッチを、半導体チップ200のチップ接続部200bと対向する領域の最小配線ピッチよりも大きくすることができる。
例えば、前述した引用文献1のように、インターポーザの裏面の半田ボールの配置面積が半導体チップとの対向面積とほぼ同一の構成である場合は、半田ボールの最小の配置ピッチを、半導体チップ上の最小配線ピッチよりも大きくすることは困難である。その結果、インターポーザに設ける配線層の層数を増やす必要が生じるものの、フィルム状のインターポーザでは、多層配線構造とすることも容易ではない。
一方、本実施形態に係る半導体パッケージ90は、基板接続部100aにおける最小の配線ピッチを大きくすることが可能となるので、パッケージ基板100の配線層の層数を減らすことができる。その結果、パッケージ基板100の製造が容易となるので、半導体パッケージ90の製造コストを抑えることができる。
また、フィルム基板300の配線層320は、半導体チップ200の素子形成面200aと対向する側、及びパッケージ基板100の主面と対向する側にのみ設けている。すなわち、フィルム基板300の配線層320は、半導体チップ200及びパッケージ基板100と対向する側の面にのみ形成されている。これにより、配線層320の形成は容易となり、すなわち、フィルム基板300の製造も容易となる。
また、パッケージ基板100上に搭載された銀鑞を含む半導体チップ200の厚さが、パッケージ基板100の主面からの高さとなる。その上、素子形成面200aを上に向けた半導体チップ200は、一般に、フリップチップ実装される半導体チップよりもその厚さが小さい。これにより、フィルム基板300のパッケージ基板100上での曲げ量を極めて小さくすることが可能となる。ましてや、特許文献1のように完全に折り返すこともない。その結果、フィルム基板300の配線層320の曲げによる損傷、すなわち切断を防ぐことができ、フィルム基板300の曲げ工程自体も容易となる。さらに、本実施形態においては、半導体チップ200がパッケージ基板100上に搭載されている。このため、フィルム基板300の復元力による応力又は可撓性による外部からの応力を受け難いので、フィルム基板300による半導体チップ200の損傷、すなわち割れを防ぐことができる。また、本実施形態に係る半導体パッケージ90は、パッケージ基板100の底面からフィルム基板300の上面までの高さを抑えることができるので、実装基板への実装時に他の部品等との干渉を抑えることができ、コンパクト化が容易となる。
また、本実施形態においては、半導体チップ200をパッケージ基板100の主面に対して上向きに搭載している。このため、半導体チップ200の素子形成面における位置合わせマークを用いて、パッケージ基板100の主面上への半導体チップ200の位置合わせを容易に且つ高精度に行うことができる。
(製造方法)
以下、第1の実施形態に係る半導体パッケージの製造方法について、図4~図16を参照しながら説明する。
以下、第1の実施形態に係る半導体パッケージの製造方法について、図4~図16を参照しながら説明する。
ここでは、半導体チップ200は、例えばロジック系回路を含む半導体チップとする。但し、半導体チップ200はロジック系チップに限られない。図4に示すように、複数の半導体チップ領域200Bに区画された半導体ウエハ200Aにおける各半導体チップ領域200Bの周縁部には、複数のチップ接続部領域210が設けられている。図4のチップ接続部領域210における部分拡大図及び該部分拡大図のV-V線における断面図である図5に示すように、各半導体チップ領域200Bのチップ接続部領域210に、例えば窒化シリコン(Si2N3)からなる保護(パッシべーション)膜211を成膜する。
続いて、リソグラフィ法及びエッチング法により、保護膜211における半導体チップ領域200Bの外部電極(図示せず)とそれぞれ対応する領域をエッチングして、複数の外部電極を露出する。その後、例えば、保護膜211のみがマスクされた状態で、例えばスパッタ法により、アルミニウム(Al)からなる電極パッド212をそれぞれ形成し、マスク膜を除去する。続いて、例えば転写法により、各電極パッド212の上に半田バンプ213を形成する。ここで、半田バンプ213に代えて、銅(Cu)ピラー213を用いてもよい。銅ピラーの場合は、半田バンプと比べて、さらに微細なピッチで形成することが可能となる。Cuピラー213の形成は、例えば、各電極パッド212の中央部を露出する新たなレジストマスクを形成し、電界めっき法により柱状の銅めっきを形成する。続いて、銅めっきの上面に半田バンプを形成し、レジストマスクを除去する。その後、所定のリフロー処理を行ってCuピラー213を形成する。
次に、図6及び該図6のVII-VII線における断面図である図7に示すように、フィルム基板300を作製する。
まず、フィルム本体310の一の面上に銅箔を貼り合わせる。このとき、ロール状のフィルム本体310を用い、銅箔を貼り合わせた後、再度ロール状としてもよい。その後、図6の部分拡大平面図及び図7に示すように、例えば、公知のサブトラクティブ法により、貼り合わせた銅箔から、複数の配線(配線パターン)320a及び複数の接続端子320bを形成する。複数の接続端子320bは、半導体チップ200のチップ接続部200b又はパッケージ基板100の基板接続部100aと電気的に接続される。
続いて、フィルム本体310の上に、配線320aを保護する絶縁性樹脂等からなる保護膜325を形成し、再度ロール状とする。その後、保護膜325及び各接続端子320bを覆うように、異方性導電フィルム330を貼り合わせる。続いて、配線320a、接続端子320b、保護膜325及び異方性導電フィルム330が形成されたフィルム本体310を複数のフィルム基板300に切断してそれぞれ個片化する。
図6に示すように、個片化されたフィルム基板300には、その半導体チップ200を覆う領域であるチップ被覆領域300Aが設けられる。また、各配線320a及び各接続端子320bは、チップ被覆領域300Aと重なるチップ接続領域300Bと、パッケージ基板100における狭ピッチ部と重なる基板狭ピッチ接続部300C1と、パッケージ基板100における広ピッチ部と重なる基板広ピッチ接続部300C2との、いずれかに含まれる。
本実施形態においては、各配線320a及び各接続端子320bにおいて、チップ接続領域300Bから離れた、すなわちフィルム基板300の周縁部に配置された基板広ピッチ接続部300C2の配線ピッチは、チップ接続領域300Bと隣接する基板狭ピッチ接続部300C1の配線ピッチよりも大きい。これにより、フィルム基板300における配線320aは、外側に向かうに連れて拡がるように配線でき、フィルム基板300の張り出し長さを短くすることができるので、フィルム基板300の製造コストを抑えることができる。
なお、基板広ピッチ接続部300C2は、必ずしも設ける必要はなく、基板狭ピッチ接続部300C1のみで構成してもよい。この場合には、フィルム基板300の外側への延伸距離が基板広ピッチ接続部300C2を設ける場合よりも長くなる。
次に、図8及び該図8の部分拡大平面図である図9に示すように、パッケージ基板100を作製する。
まず、図8に示すように、行列状に配置された複数のパッケージ基板100の形成領域を含むパッケージ基板ボード100Aを用意する。パッケージ基板ボード100Aには、ボールグリッドアレイ(BGA)等を作製する基板ボードを用いることができる。その部分拡大平面図に示すように、1つのパッケージ基板100には、その中央部に半導体チップ200を搭載するチップ搭載領域100Bが設けられ、該チップ搭載領域100Bを覆うように、フィルム基板300を搭載するフィルム基板搭載領域100Cが設けられる。また、チップ搭載領域100Bの周縁部から外側には、フィルム基板搭載領域100C及びパッケージ基板100の主面上にわたって直線状に延びる複数の基板接続部100aが設けられる。
図9は複数の基板接続部100aのうちの1つを拡大して示している。図9に示すように、パッケージ基板100のチップ搭載領域100Bから外側に延びるように配置された1つの基板接続部100aは、複数の貫通孔111とそれぞれ接続された配線110と、各配線110の端部と接続された基板接続部100aとを有している。該基板接続部100aは、Alからなる電極パッド112と、該電極パッド112の上に形成された半田バンプ又はCuピラー113とから構成される。但し、基板接続部100aは、電極パッド112を介さない場合もあり得る。各半田バンプ又はCuピラー113は、図6に示した、それぞれ対応する各接続端子320bと電気的に接続される。従って、基板接続部100aの配置ピッチは、フィルム基板300の基板狭ピッチ接続部300C1と接続される領域よりも、基板広ピッチ接続部300C2と接続される領域の方が大きい。
次に、図10(a)~図10(d)を参照しながら、上述のように作製された半導体チップ200、フィルム基板300及びパッケージ基板100から、半導体パッケージ90を組み立てる工程を説明する。
まず、図10(a)に示すように、配線(図示せず)及び基板接続部100aが形成されたパッケージ基板ボード100Aの主面上に、半導体チップ200をその素子形成面上に設けられた位置合わせマークを用いて固着する。このとき、接着材201として銀鑞又は樹脂系の接着材を用いることができる。ここで、パッケージ基板ボード100Aの主面は、基板接続部100aを除いて、保護膜125によって覆われている。
次に、図10(b)に示すように、個片化したフィルム基板300を、半導体チップ200及びパッケージ基板ボード100Aに対してそれぞれ位置合わせを行って載置する。
次に、図10(c)に示すように、熱伝導性を有する特殊弾性体ヘッド410が装着された加熱加圧用ヘッド400を用いて、フィルム基板300と半導体チップ200、及びフィルム基板300とパッケージ基板ボード100Aとを一括して保持し、加熱及び加圧を行う。これにより、フィルム基板300の配線層(接続端子)320と半導体チップ200の接続端子、及びフィルム基板300の配線層320とパッケージ基板ボード100Aの基板接続部100aとがそれぞれ接合される。
次に、図10(d)に示すように、パッケージ基板ボード100Aの裏面に複数の半田ボール120を形成する。その後、パッケージ基板ボード100Aを個片化して、所望の半導体パッケージ90を得る。
図11にフィルム基板300と半導体チップ200との電気的な接続の断面構成を示す。図11に示すように、フィルム基板300に形成された接続端子320bは、半導体チップ200の素子形成面200a上に形成された保護膜211から露出するチップ接続部200bと電気的に接続される。より詳細には、チップ接続部200bを構成する半田バンプ若しくは金(Au)バンプ又はCuピラー213が、フィルム基板300を構成する異方性導電フィルム330をその膜厚方向に選択的に圧縮することにより、該フィルム基板300の接続端子320bと電気的に接続される。
図12にフィルム基板300とパッケージ基板100との電気的な接続の断面構成を示す。図12に示すように、フィルム基板300に形成された接続端子320bは、パッケージ基板100の主面上に形成された保護膜125から露出する基板接続部100aと電気的に接続される。より詳細には、基板接続部100aを構成する半田バンプ若しくはAuバンプ又はCuピラー113が、フィルム基板300を構成する異方性導電フィルム330をその膜厚方向に選択的に圧縮することにより、該フィルム基板300の接続端子320bと電気的に接続される。
以下、製造方法の種々の変形例について適宜図面を交えて説明する。
(製造方法の第1変形例)
製造方法の第1変形例として、あらかじめ上部金型及び下部金型を用いて、異方性導電膜330を含むフィルム基板300を、半導体チップ200及びパッケージ基板100と接続される形状に成形してもよい。このようにすると、フィルム基板300をパッケージ基板100に接合する際の接合位置の位置ずれを防止することができるので、接合工程における不良率を低減することができる。
製造方法の第1変形例として、あらかじめ上部金型及び下部金型を用いて、異方性導電膜330を含むフィルム基板300を、半導体チップ200及びパッケージ基板100と接続される形状に成形してもよい。このようにすると、フィルム基板300をパッケージ基板100に接合する際の接合位置の位置ずれを防止することができるので、接合工程における不良率を低減することができる。
(製造方法の第2変形例)
製造方法の第2変形例として、半導体チップ200の素子形成面200a上及びパッケージ基板100の主面上に半田バンプ若しくはAuバンプ又はCuピラー113を形成する代わりに、フィルム基板300を構成する配線層320の上に、半田バンプ若しくはAuバンプ又はCuピラー113を形成してもよい。このようにすると、フィルム基板300の配線層320の上に半田バンプ若しくはAuバンプ又はCuピラー113を一括に形成でき、製造プロセスを簡略化することができる。
製造方法の第2変形例として、半導体チップ200の素子形成面200a上及びパッケージ基板100の主面上に半田バンプ若しくはAuバンプ又はCuピラー113を形成する代わりに、フィルム基板300を構成する配線層320の上に、半田バンプ若しくはAuバンプ又はCuピラー113を形成してもよい。このようにすると、フィルム基板300の配線層320の上に半田バンプ若しくはAuバンプ又はCuピラー113を一括に形成でき、製造プロセスを簡略化することができる。
(製造方法の第3変形例)
製造方法の第3変形例は、第2変形例と同様に、半導体チップ200の素子形成面200a上及びパッケージ基板100の主面上には、半田バンプ、Auバンプ及びCuピラー113のいずれをも設けない。さらに、フィルム基板300を構成する異方性導電フィルム330を、半導体チップ200の素子形成面200a及びパッケージ基板100における基板接続部100aを覆う領域上にのみ使用する。
製造方法の第3変形例は、第2変形例と同様に、半導体チップ200の素子形成面200a上及びパッケージ基板100の主面上には、半田バンプ、Auバンプ及びCuピラー113のいずれをも設けない。さらに、フィルム基板300を構成する異方性導電フィルム330を、半導体チップ200の素子形成面200a及びパッケージ基板100における基板接続部100aを覆う領域上にのみ使用する。
すなわち、まず、半導体チップ200の素子形成面200aであるチップ上領域に異方性導電フィルム330を貼り合わせる。
続いて、フィルム基板300を構成する配線層320の上に、チップ接続部200b及び基板接続部100aとそれぞれ対応する領域に半田バンプ若しくはAuバンプ又はCuピラー113を形成する。
続いて、図13に示すように、パッケージ基板ボード100Aの主面上に、配線110を形成する一方、半田バンプ、Auバンプ及びCuピラー113のいずれをも形成しない。その後、パッケージ基板ボード100Aの主面上におけるフィルム基板300と接続する基板接続部100aである基板上領域に、例えば四片に個片化された異方性導電フィルム330を貼り合わせる。
続いて、図14(a)に示すように、パッケージ基板ボード100Aの主面上のチップ搭載領域に半導体チップ200を位置合わせして固着する。
続いて、図14(b)に示すように、個片化したフィルム基板300を、半導体チップ200及びパッケージ基板ボード100Aに対してそれぞれ位置合わせを行って載置する。
続いて、図14(c)に示すように、上述した特殊弾性体ヘッドを有する加熱加圧用ヘッドを用いて、フィルム基板300と半導体チップ200、及びフィルム基板300とパッケージ基板ボード100Aとを一括して保持し、加熱及び加圧を行う。これにより、フィルム基板300の配線層320と、半導体チップ200の接続端子及びパッケージ基板ボード100Aの基板接続部100aとをそれぞれ接合する。続いて、パッケージ基板ボード100Aの裏面に複数の半田ボール120を形成し、その後、パッケージ基板ボード100Aを個片化して、所望の半導体パッケージ90を得る。
このように、第3変形例によると、異方性導電フィルム330を、半導体チップ200のチップ接続部とパッケージ基板100の基板接続部とに分割して配置するため、異方性導電フィルム330の使用量を削減することができる。
(製造方法の第4変形例)
製造方法の第4変形例として、フィルム基板300に半導体チップ200を接合し、その後、半導体チップ200を接合したフィルム基板300をパッケージ基板100に接合してもよい。
製造方法の第4変形例として、フィルム基板300に半導体チップ200を接合し、その後、半導体チップ200を接合したフィルム基板300をパッケージ基板100に接合してもよい。
具体的には、図15(a)に示すように、フィルム基板300と半導体チップ200との接合には、互いの対向面が平坦な支持台420と加熱加圧用ヘッド401とを用いて行うことができる。このとき、支持台420に支持される半導体チップ200の裏面に弾性膜202を設けておくと、チップ割れの発生率を抑えることができる。
また、図15(b)に示すように、フィルム基板300とパッケージ基板100との接合には、パッケージ基板100における基板接続部100aのみを押圧する平面形状を有する加熱加圧用ヘッド401を用いて行うことができる。
このように、フィルム基板300と半導体チップ200との接合、及びフィルム基板300とパッケージ基板100との接合を別々の工程で行うことにより、それぞれの工程で互いの位置合わせを行うことができる。その結果、当該位置合わせの精度を緩和することができるので、組み立て時の不良率を低減することができる。
(製造方法の第5変形例)
製造方法の第5変形例として、フィルム基板300と半導体チップ200との接合、及びフィルム基板300とパッケージ基板100との接合に、半田バンプ又は該半田バンプに代えて溶融し付着させた半田膜を用いてもよい。このようにすると、Cuピラーよりも安価に形成できるため、製造コストを削減することができる。
製造方法の第5変形例として、フィルム基板300と半導体チップ200との接合、及びフィルム基板300とパッケージ基板100との接合に、半田バンプ又は該半田バンプに代えて溶融し付着させた半田膜を用いてもよい。このようにすると、Cuピラーよりも安価に形成できるため、製造コストを削減することができる。
具体的には、まず、半導体チップ200の素子形成面に、半田バンプ又は半田膜を転写法等により形成する。
次に、図16(a)に示すように、フィルム基板300と半導体チップ200とを、上述した支持台420と加熱加圧用ヘッド401とを用いて接合する。第5変形例においては、異方性導電フィルム330を用いないため、半導体チップ200に形成された半田バンプを樹脂材203により封止する。その後、半導体チップ200を接合したフィルム基板300を、パッケージ基板100と位置合わせをして載置する。
次に、図16(b)に示すように、上述した加熱加圧用ヘッド401を用いて、フィルム基板300をパッケージ基板ボード100Aと接合する。
次に、図16(c)に示すように、パッケージ基板ボード100Aに形成された半田バンプ113及び電極パッド112を樹脂材203により封止してもよい。その後は、パッケージ基板ボード100Aの裏面に半田ボールを形成して個片化する。
(フィルム基板の変形例)
-第1変形例-
図17にフィルム基板300の第1変形例に係る平面形状を示す。図17に示すように、本変形例に係るフィルム基板300は、半導体チップのチップ被覆領域300Aの4つの角部に達する切り欠き部300aが設けられている。このようにすると、フィルム基板300における半導体チップ接続部200aの高さと、フィルム基板300におけるパッケージ基板100の基板接続部100aとの高さとの違いによって、フィルム基板300のパッケージ基板100への接合時の撚れを防止することができる。
-第1変形例-
図17にフィルム基板300の第1変形例に係る平面形状を示す。図17に示すように、本変形例に係るフィルム基板300は、半導体チップのチップ被覆領域300Aの4つの角部に達する切り欠き部300aが設けられている。このようにすると、フィルム基板300における半導体チップ接続部200aの高さと、フィルム基板300におけるパッケージ基板100の基板接続部100aとの高さとの違いによって、フィルム基板300のパッケージ基板100への接合時の撚れを防止することができる。
なお、本変形例では、切り欠き部300aをチップ被覆領域300Aの4つの角部の全てに設けたが、少なくとも1つの切り欠き部300aを設ければ効果を得ることができる。
また、切り欠き部300aは、必ずしもチップ被覆領域300Aの角部に達する必要はない。
-第2変形例-
図18にフィルム基板300の第2変形例に係る平面形状を示す。図18に示すように、本変形例に係るフィルム基板300は、その4つの角部からチップ被覆領域300Aの各角部に向かって、第1変形例よりも狭い幅で切り欠かれた切り欠き部300aが設けられている。このようにすると、フィルム基板300は、チップ被覆領域300Aの境界線に対して垂直な方向以外にも配線を形成できるようになる。このため、半導体チップ200のチップ接続部からパッケージ基板100の基板接続部への配線のピッチを大きくすることができる。
図18にフィルム基板300の第2変形例に係る平面形状を示す。図18に示すように、本変形例に係るフィルム基板300は、その4つの角部からチップ被覆領域300Aの各角部に向かって、第1変形例よりも狭い幅で切り欠かれた切り欠き部300aが設けられている。このようにすると、フィルム基板300は、チップ被覆領域300Aの境界線に対して垂直な方向以外にも配線を形成できるようになる。このため、半導体チップ200のチップ接続部からパッケージ基板100の基板接続部への配線のピッチを大きくすることができる。
なお、本変形例においても、少なくとも1つの切り欠き部300aを設ければ効果を得ることができる。
また、切り欠き部300aは、必ずしもチップ被覆領域300Aの角部に達する必要はない。
-第3変形例-
図19にフィルム基板300の第3変形例に係る平面形状を示す。図19に示すように、本変形例においては、第2変形例として設けた切り欠き部300aに加え、フィルム基板300の各辺からチップ被覆領域300Aの対向する辺に達する、幅が狭い切り欠き部300bを設けている。このようにすると、半導体チップ200の上面である素子形成面と、パッケージ基板100の主面とが平行でない場合であっても、フィルム基板300のパッケージ基板100への接合時の撚れを防止することができる。
図19にフィルム基板300の第3変形例に係る平面形状を示す。図19に示すように、本変形例においては、第2変形例として設けた切り欠き部300aに加え、フィルム基板300の各辺からチップ被覆領域300Aの対向する辺に達する、幅が狭い切り欠き部300bを設けている。このようにすると、半導体チップ200の上面である素子形成面と、パッケージ基板100の主面とが平行でない場合であっても、フィルム基板300のパッケージ基板100への接合時の撚れを防止することができる。
なお、本変形例においても、切り欠き部300a、300bは、少なくとも1つを設ければ有効である。
また、切り欠き部300a、300bは、必ずしもチップ被覆領域300Aに達する必要はない。
-第4変形例-
図20にフィルム基板300の第4変形例に係る平面形状を示す。
図20にフィルム基板300の第4変形例に係る平面形状を示す。
図20に示すように、本変形例においては、各切り欠き部300a、300bは、第3の変形例と同様ではあるが、フィルム基板300には2つのチップ被覆領域300Aが設けられている。すなわち、パッケージ基板100の主面上には、2つの半導体チップ200が並置して搭載される半導体パッケージを想定している。
このようにすると、フィルム基板300に設けられる配線は、パッケージ基板100の配線よりも配線ピッチが小さいため、2つの半導体チップ200間で接続できる配線の本数を容易に増やすことができる。これにより、コプレーナ導波路を設けることもでき、高周波を含む信号を容易に伝送することができる。
なお、上述したフィルム基板の平面形状の各変形例は、第1の実施形態に限られず、後述する第2の実施形態、第3の実施形態及び第4の実施形態に係る半導体パッケージのいずれにも適用が可能である。
(第2の実施形態)
本開示の第2の実施形態に係る半導体パッケージについて図21~図23を参照しながら説明する。図21は第2の実施形態に係る半導体パッケージの断面構成を表し、図22は積層された2つの半導体チップ同士の接続部及びその拡大平面図並びにそれを貫通するフィルム基板の開口部の平面構成を表し、図23は図22のXXIII-XXIII線における断面構成を表している。第2の実施形態においては、第1の実施形態と同一の構成部材には同一の符号を付している。
(第2の実施形態)
本開示の第2の実施形態に係る半導体パッケージについて図21~図23を参照しながら説明する。図21は第2の実施形態に係る半導体パッケージの断面構成を表し、図22は積層された2つの半導体チップ同士の接続部及びその拡大平面図並びにそれを貫通するフィルム基板の開口部の平面構成を表し、図23は図22のXXIII-XXIII線における断面構成を表している。第2の実施形態においては、第1の実施形態と同一の構成部材には同一の符号を付している。
図21に示すように、第2の実施形態に係る半導体パッケージ91は、半導体チップ200(以下、本実施形態において第1半導体チップ200と呼ぶ。)の上に、フィルム基板300を介在させて第2半導体チップ250が搭載された構成を採る。第2半導体チップ250は、フィルム基板300とは、例えば熱硬化性樹脂等の接着材201によって接着されている。
第1半導体チップ200を、例えばロジック系のチップとすると、第2半導体チップ250はメモリ系のチップが想定される。但し、第1半導体チップ200はロジック系チップに限られず、また、第2半導体チップ250はメモリ系チップに限られない。
図22に示すように、本実施形態に係る第1半導体チップ200の素子形成面200aの中央部、及び第2半導体チップ250の素子形成面250aの中央部には、それぞれチップ間接続領域210aが設けられている。フィルム基板300には、これらチップ間接続領域210aを露出する開口部300cが設けられている。従って、第2半導体チップ250は、第1半導体チップ200に対してフリップチップ実装されたチップオンチップである。
次に、図22のチップ間接続領域210aの拡大図に示すように、複数のチップ間接続部200cが、例えば行列状に配置される。各チップ間接続部200cは、図23に示すように、例えばAlからなる電極パッド212と、その上に形成されたCuピラー213と、該Cuピラー213の頂面上に形成された半田バンプ214とから構成される。また、各チップ間接続部200cは、第1半導体チップ200においては第3接続部に相当する。
第2の実施形態によると、第1の実施形態と同様の効果を得られる上に、第2半導体チップ250を第1半導体チップ200の上に積層しても、該第1半導体チップ200の放熱は、フィルム基板300の配線層320によって確保することができる。
(製造方法)
以下、第2の実施形態に係る半導体パッケージの製造方法について、図24(a)~図24(c)を参照しながらその要部を説明する。
以下、第2の実施形態に係る半導体パッケージの製造方法について、図24(a)~図24(c)を参照しながらその要部を説明する。
まず、第1半導体チップ200に対して、フィルム基板300とのチップ接続部200bに加え、第2半導体チップ250とのチップ間接続部200cを形成する、ここでは、チップ接続部200b及びチップ間接続部200cは、図23に示すCuピラー213及び半田バンプ214を含む構成とする。また、第2半導体チップ250におけるチップ間接続領域210aに対しても、Cuピラー213及び半田バンプ214を含むチップ間接続部200cを形成する。また、フィルム基板300におけるチップ搭載領域300Aの中央部に、チップ間接続領域210aと対応する開口部300cを設ける。
続いて、第1の実施形態の製造方法と同様に、第1半導体チップ200とフィルム基板300とを、パッケージ基板100の上に接合する。
次に、図24(a)に示すように、フィルム基板300上に、第2半導体チップ250を位置合わせして載置し、加熱加圧用ヘッド401によって第2半導体チップ250を加熱及び加圧して、第2半導体チップ250を第1半導体チップ200と接合する。
次に、図24(b)に示すように、第2半導体チップ250とフィルム基板300との間に、樹脂等からなる接着材201を注入して互いに接着する。
次に、図24(c)に示すように、パッケージ基板ボード100Aの裏面に複数の半田ボール120を形成し、その後、パッケージ基板ボード100Aを個片化して、所望の半導体パッケージ91を得る。
(第3の実施形態)
本開示の第3の実施形態に係る半導体パッケージについて図25及び図26を参照しながら説明する。図25は第3の実施形態に係る半導体パッケージの平面構成を表し、図26は図25のXXVI-XXVI線における断面構成を表している。第3の実施形態においても、第1の実施形態と同一の構成部材には同一の符号を付している。
本開示の第3の実施形態に係る半導体パッケージについて図25及び図26を参照しながら説明する。図25は第3の実施形態に係る半導体パッケージの平面構成を表し、図26は図25のXXVI-XXVI線における断面構成を表している。第3の実施形態においても、第1の実施形態と同一の構成部材には同一の符号を付している。
図25及び図26に示すように、第3の実施形態に係る半導体パッケージ92は、パッケージ基板として、図27に示すリードフレーム500を用いている。リードフレーム500には、例えば、QFP(Quad Flat Package)、TQFP(Thin Quad Flat Package)又はQFN(Quad Flat Non-Leaded Package)等を用いることができる。
リードフレーム500のダイパッド500Bの上には、半導体チップ200が銀鑞等の接着材201により固着されている。半導体チップ200におけるチップ接続部200bの構成は、第1の実施形態と同様である。
図26に示すように、各リード500cにおけるフィルム基板300との電気的な接続部であるリード接続部500aには、半田バンプ若しくはAuバンプ又はCuピラー513が設けられている。また、各リード500cにおけるフィルム基板300の周辺部には、該フィルム基板300を囲むように、平面方形状の樹脂材からなる保持枠550が接着されている。該保持枠550は、リードフレーム500を個片化した際の個々のリード500cの保持用であり、また、各リード500cの外側の端部を切り落とす際、及び外側の端部を外部接続部500bとして屈曲させる際の治具の支持用部材となる。
第3の実施形態によると、第1の実施形態と同様の効果を得られる上に、QFPのような低コストのリードフレーム550をパッケージ基板として用いることができるので、半導体パッケージ92の製造コストを低減することができる。
また、通常、リードフレーム550に搭載された半導体チップは、セラミック又は封止樹脂により封止されるが、本実施形態においては、膜厚が薄いフィルム基板300によって覆われるため、放熱特性に優れ、且つ電気信号に混入するノイズも低減される。
なお、本明細書においては、周囲が切り落とされた状態のリード500cと、ダイパッド500Bとを含む板状金属部材を便宜上リードフレームとも呼ぶ。
また、本実施形態においても、1つのダイパッド500Bの上に2つ以上の半導体チップ200を搭載してもよい。
(製造方法)
以下、第3の実施形態に係る半導体パッケージの製造方法の要部について、図27~図29を参照しながら説明する。
以下、第3の実施形態に係る半導体パッケージの製造方法の要部について、図27~図29を参照しながら説明する。
まず、図27に示すように、例えば、QFP用のリードフレーム500の個片化される前の状態の複数のリードフレーム500が行列状に含まれるリードフレーム集合体500Aを用意する。各リードフレーム500は、その部分拡大平面図に示すように、中央部にチップ搭載領域であるダイパッド500Bと、該ダイパッド500Bの周囲から間隔をおいて外側に放射状に延びるように配置された複数のリード500cとを有している。
リードフレーム500には、ダイパッド500Bを覆うように、フィルム基板300を搭載するフィルム基板搭載領域500Cが設けられている。該フィルム基板搭載領域500Cは、各リード500cの外側の端部の近傍に設けられたダムバー500dの内側に配置される。なお、ダムバー500dは、リードフレーム状態にあるリードを隣接間で保持すると共に、通常、封止用樹脂を注入する際の該封止用樹脂の流出防止用に設けられる。
続いて、各リード500c上におけるフィルム基板搭載領域500Cの周縁部に、半田バンプ若しくはAuバンプ又はCuピラー513を形成する。または、半田バンプに代えて溶融し付着させた半田膜を用いてもよい。このようにすると、半田バンプ、Auバンプ及びCuピラー513のいずれよりも安価に形成できるため、製造コストを削減することができる。
次に、図28(a)に示すように、リードフレーム集合体500Aの上に、半導体チップ200をその素子形成面200aに設けられた位置合わせマークを用いて銀鑞等の接着材201で固着する。
次に、図28(b)に示すように、個片化したフィルム基板300を、半導体チップ200及びリードフレーム集合体500Aに対してそれぞれ位置合わせを行って載置する。
次に、図28(c)に示すように、熱伝導性を有する特殊弾性体ヘッド410が装着された加熱加圧用ヘッド400を用いて、フィルム基板300と半導体チップ200、及びフィルム基板300とリードフレーム集合体500Aとを一括して保持し、加熱及び加圧を行う。これにより、フィルム基板300の配線層320と半導体チップ200の接続端子、及びフィルム基板300の配線層320とリードフレーム集合体500Aのリード接続部500aとがそれぞれ接合される。
次に、図29(a)に示すように、リードフレーム集合体500Aにおける各リードフレーム500に対して、上金型430及び下金型431を用いてフィルム基板300の周囲に樹脂からなる保持枠550を配置して接着する。
次に、図29(b)に示すように、リードフレーム500の周縁部を切り落として、各リード500cを個片化し、続いて、各リード500cの外側を下方に屈曲させる。これにより、リードフレーム集合体500Aから、個片化された所望の半導体パッケージ92を得ることができる。
(第4の実施形態)
本開示の第4の実施形態に係る半導体パッケージについて図30を参照しながら説明する。図30は第4の実施形態に係る半導体パッケージの断面構成を表している。第4の実施形態においては、第1~第3の実施形態と同一の構成部材には同一の符号を付している。
本開示の第4の実施形態に係る半導体パッケージについて図30を参照しながら説明する。図30は第4の実施形態に係る半導体パッケージの断面構成を表している。第4の実施形態においては、第1~第3の実施形態と同一の構成部材には同一の符号を付している。
図30に示すように、第4の実施形態に係る半導体パッケージ93は、第3の実施形態と同様に、パッケージ基板として、図27に示したQFP等のリードフレーム500を用いている。半導体チップ200(以下、本実施形態において第1半導体チップ200と呼ぶ。)の上には、第2の実施形態と同様に、フィルム基板300に設けた開口部300cから露出するCuピラー213同士で接続された第2半導体チップ250が搭載されている。第2半導体チップ250は、フィルム基板300とは、例えば熱硬化性樹脂等の接着材201によって接着される。
第1半導体チップ200は、例えばロジック系チップが想定され、第2半導体チップ250は、例えばメモリ系チップが想定される。但し、第1半導体チップ200及び第2半導体チップ250の組み合わせはこれに限られない。
第4の実施形態によると、第2の実施形態及び第3の実施形態と同様の効果を得られ、
膜厚が薄いフィルム基板300を介しているため、チップオンチップ構造を容易に行える。
膜厚が薄いフィルム基板300を介しているため、チップオンチップ構造を容易に行える。
(製造方法)
以下、第4の実施形態に係る半導体パッケージの製造方法について、図31(a)~図31(c)を参照しながらその要部を説明する。
以下、第4の実施形態に係る半導体パッケージの製造方法について、図31(a)~図31(c)を参照しながらその要部を説明する。
まず、第1半導体チップ200に対して、フィルム基板300とのチップ接続部に加え、第2半導体チップ250とのチップ間接続部を形成する、ここでは、チップ接続部及びチップ間接続部は、図23に示すCuピラー213及び半田バンプ214を含む構成とする。また、第2半導体チップ250におけるチップ間接続領域に対しても、Cuピラー213及び半田バンプ214を含むチップ間接続部を形成する。また、フィルム基板300におけるチップ搭載領域300Aの中央部に、チップ間接続領域と対応する開口部を設ける。
続いて、第1の実施形態と同様に、第1半導体チップ200とフィルム基板300とをリードフレーム500の上に接合する。
次に、図31(a)に示すように、フィルム基板300上に、第2半導体チップ250を位置合わせして載置し、加熱加圧用ヘッド401によって第2半導体チップ250を加熱及び加圧して、第2半導体チップ250を第1半導体チップ200と接合する。
次に、図31(b)に示すように、第2半導体チップ250とフィルム基板300との間に、樹脂等からなる接着材201を注入して互いに接着する。
次に、図31(c)に示すように、リードフレーム集合体500Aにおける各リードフレーム500に対して、上金型430及び下金型431を用いてフィルム基板300の周囲に樹脂からなる保持枠550を配置して接着する。
次に、リードフレーム500の周縁部を切り落として、各リード500cを個片化し、続いて、各リード500cの外側を下方に屈曲させる。これにより、リードフレーム集合体500Aから、個片化された所望の半導体パッケージ93を得ることができる。
本発明に係る半導体パッケージは、外部からの応力に対して耐性が高く、且つ、構造が簡単なパッケージ基板を有する半導体パッケージとして有用である。
90、91、92、93 半導体パッケージ
100 パッケージ基板
100A パッケージ基板ボード
100B チップ搭載領域
100a 基板接続部(第2接続部)
100C フィルム基板搭載領域
110 配線
111 貫通孔
112 電極パッド
113 半田バンプ/銅(Cu)ピラー/金(Au)バンプ/半田膜
120 半田ボール
200 半導体チップ(第1半導体チップ)
200A 半導体ウエハ
200B 半導体チップ領域
200a 素子形成面
200b チップ接続部(第1接続部)
200c チップ間接続部(第3接続部)
201 接着材
202 弾性膜
203 樹脂材
210 チップ接続部領域
210a チップ間接続領域
211 保護膜
212 電極パッド
213 半田バンプ/銅(Cu)ピラー
214 半田バンプ
250 第2半導体チップ
250a 素子形成面
300 フィルム基板
300A チップ被覆領域
300B チップ接続領域
300C1 基板狭ピッチ接続部
300C2 基板広ピッチ接続部
300a、300b 切り欠き部
300c 開口部
310 フィルム本体
320 配線層
320a 配線(配線パターン)
320b 接続端子
330 異方性導電フィルム(AFC)
500 リードフレーム
500A リードフレーム集合体
500B ダイパッド(チップ搭載領域)
500C フィルム基板搭載領域
500a リード接続部(第2接続部)
500b 外部接続部
500c リード
513 半田バンプ/銅(Cu)ピラー/金(Au)バンプ/半田膜
100 パッケージ基板
100A パッケージ基板ボード
100B チップ搭載領域
100a 基板接続部(第2接続部)
100C フィルム基板搭載領域
110 配線
111 貫通孔
112 電極パッド
113 半田バンプ/銅(Cu)ピラー/金(Au)バンプ/半田膜
120 半田ボール
200 半導体チップ(第1半導体チップ)
200A 半導体ウエハ
200B 半導体チップ領域
200a 素子形成面
200b チップ接続部(第1接続部)
200c チップ間接続部(第3接続部)
201 接着材
202 弾性膜
203 樹脂材
210 チップ接続部領域
210a チップ間接続領域
211 保護膜
212 電極パッド
213 半田バンプ/銅(Cu)ピラー
214 半田バンプ
250 第2半導体チップ
250a 素子形成面
300 フィルム基板
300A チップ被覆領域
300B チップ接続領域
300C1 基板狭ピッチ接続部
300C2 基板広ピッチ接続部
300a、300b 切り欠き部
300c 開口部
310 フィルム本体
320 配線層
320a 配線(配線パターン)
320b 接続端子
330 異方性導電フィルム(AFC)
500 リードフレーム
500A リードフレーム集合体
500B ダイパッド(チップ搭載領域)
500C フィルム基板搭載領域
500a リード接続部(第2接続部)
500b 外部接続部
500c リード
513 半田バンプ/銅(Cu)ピラー/金(Au)バンプ/半田膜
Claims (20)
- パッケージ基板と、
前記パッケージ基板の主面上に保持され、前記パッケージ基板に対して反対側に素子形成面を有する第1半導体チップと、
前記第1半導体チップを覆うと共に該第1半導体チップの前記素子形成面及び前記パッケージ基板の上面に保持されたフィルム基板とを備え、
前記第1半導体チップの前記素子形成面には、第1接続部が設けられ、
前記パッケージ基板の上面には、第2接続部が設けられており、
前記フィルム基板は、前記第1半導体チップと対向する側に設けられた配線を有し、
前記第1半導体チップの前記第1接続部は、前記フィルム基板の前記配線と電気的に接続されており、
前記フィルム基板及び前記配線は、前記第1半導体チップの外側に延伸され、
前記配線は、前記パッケージ基板の前記第2接続部と電気的に接続されている半導体パッケージ。 - 請求項1に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、前記第1半導体チップと対向する側にのみ設けられている半導体パッケージ。 - 請求項1又は2に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、前記パッケージ基板の前記第2接続部の周辺領域における配線ピッチが、前記第1半導体チップの前記第1接続部の周辺領域における配線ピッチよりも大きい半導体パッケージ。 - 請求項1~3のいずれか1項に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、異方性導電膜によって覆われており、
前記配線における前記第1接続部及び前記第2接続部との電気的な接続は、それぞれ前記異方性導電膜における選択的な異方性接続である半導体パッケージ。 - 請求項4に記載の半導体パッケージにおいて、
前記異方性導電膜は、前記第1半導体チップの前記素子形成面の上に配置されるチップ上領域と、前記パッケージ基板の前記第2接続部の上に配置される基板上領域とに分割されている半導体パッケージ。 - 請求項1~3のいずれか1項に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、前記第1接続部及び前記2接続部とそれぞれ半田によって接続されている半導体パッケージ。 - 請求項1~6のいずれか1項に記載の半導体パッケージにおいて、
前記第1半導体チップは、前記パッケージ基板の主面上に少なくとも2つ配置されており、
前記フィルム基板及び前記配線は、前記少なくとも2つの第1半導体チップの外側に延伸されている半導体パッケージ。 - 請求項1~7のいずれか1項に記載の半導体パッケージにおいて、
前記第1半導体チップの上に前記フィルム基板を介在させて保持された第2半導体チップをさらに備え、
前記第1半導体チップは、前記素子形成面に第3接続部を有しており、
前記第2半導体チップは、前記フィルム基板に設けられた開口部から露出する前記第3接続部と電気的に接続されている半導体パッケージ。 - 請求項1~8のいずれか1項に記載の半導体パッケージにおいて、
前記フィルム基板は、前記第1半導体チップにおける少なくとも1つの角部と対向する部位に切り欠き部を有している半導体パッケージ。 - 請求項9に記載の半導体パッケージにおいて、
前記フィルム基板は、前記第1半導体チップにおける少なくとも1つの辺と対向する部位に切り欠き部を有している半導体パッケージ。 - リードフレームと、
前記リードフレームの主面上に保持され、前記リードフレームに対して反対側に素子形成面を有する第1半導体チップと、
前記第1半導体チップを覆うと共に該第1半導体チップの前記素子形成面及び前記リードフレームの上面に保持されたフィルム基板とを備え、
前記第1半導体チップの前記素子形成面には、第1接続部が設けられ、
前記リードフレームの上面には、第2接続部が設けられており、
前記フィルム基板は、前記第1半導体チップと対向する側に設けられた配線を有し、
前記第1半導体チップの前記第1接続部は、前記フィルム基板の前記配線と電気的に接続されており、
前記フィルム基板及び前記配線は、前記第1半導体チップの外側に延伸され、
前記配線は、前記リードフレームの前記第2接続部と電気的に接続されている半導体パッケージ。 - 請求項11に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、前記第1半導体チップと対向する側にのみ設けられている半導体パッケージ。 - 請求項11又は12に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、前記リードフレームの前記第2接続部の周辺領域における配線ピッチが、前記第1半導体チップの前記第1接続部の周辺領域における配線ピッチよりも大きい半導体パッケージ。 - 請求項11~13のいずれか1項に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、異方性導電膜によって覆われており、
前記配線における前記第1接続部及び前記第2接続部との電気的な接続は、それぞれ前記異方性導電膜における選択的な異方性接続である半導体パッケージ。 - 請求項14に記載の半導体パッケージにおいて、
前記異方性導電膜は、前記第1半導体チップの前記素子形成面の上に配置されるチップ上領域と、前記リードフレームの前記第2接続部の上に配置される基板上領域とに分割されている半導体パッケージ。 - 請求項11~13のいずれか1項に記載の半導体パッケージにおいて、
前記フィルム基板の前記配線は、前記第1接続部及び前記第2接続部とそれぞれ半田によって接続されている半導体パッケージ。 - 請求項11~16のいずれか1項に記載の半導体パッケージにおいて、
前記第1半導体チップは、前記リードフレームの主面上に少なくとも2つ配置されており、
前記フィルム基板及び前記配線は、前記少なくとも2つの第1半導体チップの外側に延伸されている半導体パッケージ。 - 請求項11~17のいずれか1項に記載の半導体パッケージにおいて、
前記第1半導体チップの上に前記フィルム基板を介在させて保持された第2半導体チップをさらに備え、
前記第1半導体チップは、前記素子形成面に第3接続部を有しており、
前記第2半導体チップは、前記フィルム基板に設けられた開口部から露出する前記第3接続部と電気的に接続されている半導体パッケージ。 - 請求項11~18のいずれか1項に記載の半導体パッケージにおいて、
前記フィルム基板は、前記第1半導体チップにおける少なくとも1つの角部と対向する部位に切り欠き部を有している半導体パッケージ。 - 請求項19に記載の半導体パッケージにおいて、
前記フィルム基板は、前記第1半導体チップにおける少なくとも1つの辺と対向する部位に切り欠き部を有している半導体パッケージ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-177638 | 2015-09-09 | ||
JP2015177638 | 2015-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043480A1 true WO2017043480A1 (ja) | 2017-03-16 |
Family
ID=58239690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076166 WO2017043480A1 (ja) | 2015-09-09 | 2016-09-06 | 半導体パッケージ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017043480A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020049989A1 (ja) * | 2018-09-07 | 2020-03-12 | 株式会社村田製作所 | モジュールおよびモジュールの製造方法 |
WO2020071027A1 (ja) * | 2018-10-04 | 2020-04-09 | 日本航空電子工業株式会社 | 電子部品の取付構造の製造方法、電子部品の取付構造、電子モジュール、配線シート |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005252134A (ja) * | 2004-03-08 | 2005-09-15 | Casio Comput Co Ltd | フィルム基板の接合方法およびフィルム基板の接合構造 |
JP2005340588A (ja) * | 2004-05-28 | 2005-12-08 | Matsushita Electric Ind Co Ltd | 半導体装置およびその製造方法 |
WO2012086107A1 (ja) * | 2010-12-24 | 2012-06-28 | パナソニック株式会社 | 電子部品実装構造中間体、電子部品実装構造体および電子部品実装構造体の製造方法 |
-
2016
- 2016-09-06 WO PCT/JP2016/076166 patent/WO2017043480A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005252134A (ja) * | 2004-03-08 | 2005-09-15 | Casio Comput Co Ltd | フィルム基板の接合方法およびフィルム基板の接合構造 |
JP2005340588A (ja) * | 2004-05-28 | 2005-12-08 | Matsushita Electric Ind Co Ltd | 半導体装置およびその製造方法 |
WO2012086107A1 (ja) * | 2010-12-24 | 2012-06-28 | パナソニック株式会社 | 電子部品実装構造中間体、電子部品実装構造体および電子部品実装構造体の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020049989A1 (ja) * | 2018-09-07 | 2020-03-12 | 株式会社村田製作所 | モジュールおよびモジュールの製造方法 |
WO2020071027A1 (ja) * | 2018-10-04 | 2020-04-09 | 日本航空電子工業株式会社 | 電子部品の取付構造の製造方法、電子部品の取付構造、電子モジュール、配線シート |
US11881470B2 (en) | 2018-10-04 | 2024-01-23 | Japan Aviation Electronics Industry, Limited | Method for manufacturing mounting structure for electronic component, mounting structure for electronic component, electronic module, and wiring sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100856609B1 (ko) | 반도체장치 및 그 제조방법 | |
JP5420505B2 (ja) | 半導体装置の製造方法 | |
US6621172B2 (en) | Semiconductor device and method of fabricating the same, circuit board, and electronic equipment | |
JP3487524B2 (ja) | 半導体装置及びその製造方法 | |
US20110156226A1 (en) | Interposer and semiconductor device | |
US6841884B2 (en) | Semiconductor device | |
KR20060101385A (ko) | 반도체 장치 및 그 제조 방법 | |
JP2011044654A (ja) | 半導体装置 | |
JP6161380B2 (ja) | 半導体装置の製造方法 | |
WO2017043480A1 (ja) | 半導体パッケージ | |
JP2677242B2 (ja) | 半導体装置及びその製造方法 | |
JP2005044989A (ja) | 半導体パッケージ及びその製造方法 | |
JP4030220B2 (ja) | 半導体チップの実装構造 | |
JP3968321B2 (ja) | 半導体装置およびその製造方法 | |
JP2008235492A (ja) | 半導体装置および半導体装置の製造方法 | |
JP2007150346A (ja) | 半導体装置及びその製造方法、回路基板並びに電子機器 | |
JP3739632B2 (ja) | 半導体装置およびその製造方法 | |
JP3889311B2 (ja) | プリント配線板 | |
JP5297445B2 (ja) | 半導体装置 | |
US11862544B2 (en) | Electronic assembly | |
JP2001127245A (ja) | 半導体装置及びその製造方法、回路基板並びに電子機器 | |
JP4342577B2 (ja) | 半導体チップの実装構造 | |
JP4175339B2 (ja) | 半導体装置の製造方法 | |
TWI393197B (zh) | 晶片封裝 | |
JP2008270511A (ja) | 電子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16844341 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16844341 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |