WO2017041662A1 - Gallium nitride-based laser diode and manufacturing method thereof - Google Patents
Gallium nitride-based laser diode and manufacturing method thereof Download PDFInfo
- Publication number
- WO2017041662A1 WO2017041662A1 PCT/CN2016/097755 CN2016097755W WO2017041662A1 WO 2017041662 A1 WO2017041662 A1 WO 2017041662A1 CN 2016097755 W CN2016097755 W CN 2016097755W WO 2017041662 A1 WO2017041662 A1 WO 2017041662A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- type
- confinement layer
- laser diode
- gallium nitride
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
Definitions
- gallium nitride based laser diode and preparation method thereof
- the present invention relates to the field of semiconductor optoelectronic device fabrication, and more particularly to a gallium nitride-based laser diode and a method of fabricating the same.
- LDs Laser diodes
- gallium nitride material has become an important direction for the development of LD because its wavelength range theoretically covers the entire visible light band and ultraviolet band.
- Gallium nitride materials Blue and green LD technology has made great progress in research, but its application is also plagued by difficulties in preparation and not widely used.
- the green LD the lasing of its electric injection has not yet been realized in China.
- the luminous efficiency of LD is relatively low, and electro-lasering is difficult. From the epitaxial structure, it is very important to further increase the LD limiting layer A1 composition to lower the excitation threshold.
- a conventional laser diode confinement layer is an AlGaN layer.
- this n-type A1G aN layer requires a higher A1 composition or thicker to achieve better light confinement.
- the A1 component is high or the thickness is too thick, the epitaxial film will be cleaved.
- the stress limits the incorporation efficiency of A1, making the confinement layer of the higher A1 component more difficult to obtain.
- an object of the present invention is to provide a gallium nitride-based laser diode and a method of fabricating the same.
- a technical solution adopted by the present invention is: Providing a gallium nitride laser diode structure, comprising: a substrate, an n-type layer, an n-type confinement layer, an n-type waveguide layer, and an active layer And a p-type waveguide layer, a p-type confinement layer, and a p-type layer, wherein: the n-type confinement layer comprises a stacked structure of a first n-type confinement layer and a second n-type confinement layer.
- the first n-type confinement layer is A1N
- the second n-type confinement layer is AlGaN
- the stacked structure is a superlattice structure.
- the first n-type confinement layer is an AlN/AlGaN superlattice structure
- the second n-type confinement layer is AlGaN.
- the Al composition of AlGaN in the superlattice structure is not higher than 20%.
- the thickness of the AlGaN in the superlattice structure is 10 to 30 persons, and the thickness of the A1N is 2 to 10 persons.
- the number of cycles of the superlattice structure is 10 ⁇ 30.
- the laser diode emits light in a blue to green light wavelength range.
- another technical solution adopted by the present invention is: Providing a method for preparing a gallium nitride-based laser diode, the process steps comprising: forming an n-type layer over a substrate; Forming an n-type confinement layer on the n-type layer, the n-type confinement layer comprising a stacked structure of a first n-type confinement layer and a second n-type confinement layer; forming an n-type waveguide layer on the n-type confinement layer; Forming a multi-quantum well active layer on the n-type waveguide layer; forming a p-type waveguide layer on the active layer; forming a p-type confinement layer on the p-type waveguide layer; and the p-type confinement layer A p-type layer is formed thereon.
- the first n-type confinement layer is A1N
- the second n-type confinement layer is AlGaN
- the stacked structure is a superlattice structure.
- the first n-type confinement layer is an AlN/AlGaN superlattice structure
- the second n-type confinement layer is AlGaN.
- the present invention has at least the following beneficial effects: (1) By improving the design of the n-type confinement layer, introducing an AlN/AlGaN superlattice structure in the n-type confinement layer can effectively improve the A1 component in the n-type confinement layer. , reducing the lasing threshold, thus making it easier to achieve the lasing of the green laser; (2) using the AlN/AlGaN superlattice as the underlying structure of the n-type confinement layer, can effectively prevent the subsequent epitaxial layer (especially the n-type confinement layer) The splitting can greatly improve the yield.
- FIG. 1 is a side view of a nitride laser diode of the present invention.
- 2 is a schematic view showing the structure of an AlN/AlGaN superlattice in FIG. 1.
- a gallium nitride-based laser diode generally includes: a substrate 1, an n-type layer 2, a first n-type confinement layer 31, and a second n-type confinement layer 32, from bottom to top.
- the material of the substrate 1 may be selected from an alumina single crystal (Sapphire;), SiC (6H-SiC or 4H-SiC), Si, GaAs, GaN substrate or a lattice constant close to a nitride semiconductor.
- Single crystal oxide may be selected from an alumina single crystal (Sapphire;), SiC (6H-SiC or 4H-SiC), Si, GaAs, GaN substrate or a lattice constant close to a nitride semiconductor.
- Single crystal oxide Single crystal oxide.
- the n-type confinement layer includes a stacked structure of the first n-type confinement layer 31 and the second n-type confinement layer 32.
- ⁇ -type confinement layer 31 of the first material is eight ⁇ / eight 1 1 - ⁇ & superlattice, wherein 0 ⁇ ⁇ 0.2, i.e., components of AlGaN A1 not higher than 20 ⁇ 3 ⁇ 4!. Shown, A1N / A ⁇ & ⁇ superlattice eight in FIG. 2 1 1 -!! ⁇ & ⁇ Layer 311 thickness 15, the thickness of the A1N layer 312 is 5, a superlattice of 20 cycles.
- the material of the second n-type confinement layer 32 is A x Ga x N, where 0.05 ⁇ X ⁇ 0.4.
- the n-type waveguide layer 4 is x Ga x N, where 0 ⁇ X ⁇ 1.
- the multi-quantum well active layer 5 is composed of an InGaN quantum well 51 and a GaN quantum barrier 52, wherein the thickness of the InGaN quantum well 51 ranges from 5 to 30, and the In composition is 0.15 to 0.7, and the GaN quantum barrier 52 The thickness ranges from 50 to 200.
- the material of the p-type waveguide layer 6 is I ni _ x Ga x N, where 0 ⁇ X ⁇ 1.
- the material of the p-type confinement layer 7 is A — x Ga x N, where 0 ⁇ X ⁇ 1.
- the p-type layer 8 material is a Mg-doped gallium nitride having a thickness ranging from 100 to 4,000.
- the p-type contact layer 9 is a Mg-doped gallium nitride having a thickness ranging from 5 to 100 people.
- the foregoing method for fabricating a gallium nitride-based laser diode includes the steps of: 1) growing an n-type layer 2 on a substrate 1; 2) growing the first n-type confinement layer 31 on the n-type layer 2; 3) growing the second n-type confinement layer 32 on the first n-type confinement layer 31; 4) growing n on the second n-type confinement layer 32
- the n-type confinement layer and the n-type waveguide layer are grown, firstly cooled to 900 to 1 000 ° C, and the cavity pressure is lowered to 50 to 100 torr for the first n-type confinement layer. Growth.
- the temperature and pressure are unchanged, and the growth of the superlattice structure is achieved by switching the gas composition.
- the A1 source gas flow rate is increased and the temperature is adjusted to the AlGaN growth temperature to grow a second n-type confinement layer.
- the temperature is lowered to 700 ⁇ 850 °C, and the cavity pressure is raised to 200 ⁇ 500torr to grow the n-type waveguide layer.
- the temperature is lowered and the pressure of the chamber is adjusted to an appropriate parameter for multi-quantum well structure epitaxy.
- the temperature is raised to perform p-type waveguide layer epitaxy.
- p-type layer epitaxy is carried out, and the growth temperature is between 800 ° C and 1000 ° C, and then p - type contact layer epitaxy is carried out, and the growth temperature is between 800 ° C and 900 ° C. At this point, the epitaxial structure is over.
- the AlN/AlGaN superlattice is used as the n-type confinement underlayer, which can effectively improve the A1 composition of the n-type confinement layer and reduce the laser lasing threshold; effectively prevent the epitaxial layer from cracking and improve Product yield.
- the n-type confinement layer shown in the above embodiment includes a stacked structure of a first n-type confinement layer (A1N/A1 GaN superlattice) and a second n-type confinement layer (AlGaN), practical
- the stack structure may also be formed by alternately forming a superlattice structure between the first n-type confinement layer and the second n-type confinement layer of AlGaN.
- the laser diode shown in the above embodiment has a blue light emission wavelength, the light emission wavelength may be green light or within the blue light to green light wavelength band.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
A gallium nitride-based laser diode and a manufacturing method thereof. The laser diode comprises: a substrate (1), an n-type layer (2), an n-type limiting layer, an n-type waveguide layer (4), an active layer (5), a p-type waveguide layer (6), a p-type limiting layer (7) and a p-type layer (8), wherein the n-type limiting layer comprises a stacked structure consisting of a first n-type limiting layer (31) and a second n-type limiting layer (32). Using the AlN/AlGaN superlattice as the bottom layer of the n-type limiting layer, the Al component of the n-type limiting layer can be effectively improved, and the lasing threshold of a laser can be lowered; epitaxial layer can be effectively prevented from cracking, and the product yield improved.
Description
发明名称:氮化镓基激光二极管及其制备方法 Inventive name: gallium nitride based laser diode and preparation method thereof
[0001] 本发明涉及半导体光电器件制备领域, 尤其涉及一种氮化镓基激光二极管及其 制备方法。 [0001] The present invention relates to the field of semiconductor optoelectronic device fabrication, and more particularly to a gallium nitride-based laser diode and a method of fabricating the same.
背景技术 Background technique
[0002] 激光二极管 (Laser diode, 简称 LD)在准直性, 光纯度等方面的优势, 受到广泛 关注, 并在许多技术领域有不可替代的应用。 特别是基于氮化镓材料的 LD, 由 于其波长范围理论上覆盖了整个可见光波段和紫外波段, 因此成为目前 LD发展 的重要方向。 氮化镓材料蓝光和绿光 LD技术在研究上取得了很大的进步, 但是 其应用还困扰于制备困难而没有广泛应用。 尤其是绿光 LD, 国内尚未实现其电 注入的激射。 目前 LD的发光效率相对较低, 电激射困难, 从外延结构而言, 进 一步提高 LD限制层 A1组分以降低激发阈值是非常重要的。 [0002] Laser diodes (LDs) have attracted much attention in terms of collimation, light purity, etc., and have irreplaceable applications in many technical fields. In particular, LD based on gallium nitride material has become an important direction for the development of LD because its wavelength range theoretically covers the entire visible light band and ultraviolet band. Gallium nitride materials Blue and green LD technology has made great progress in research, but its application is also plagued by difficulties in preparation and not widely used. Especially the green LD, the lasing of its electric injection has not yet been realized in China. At present, the luminous efficiency of LD is relatively low, and electro-lasering is difficult. From the epitaxial structure, it is very important to further increase the LD limiting layer A1 composition to lower the excitation threshold.
[0003] 传统的激光二极管限制层为 AlGaN层。 为了在更长波长吋实现激射, 此 n型 A1G aN层需要更高的 A1组分或者更厚以实现更好的光限制。 而 A1组分较高或者厚度 过厚吋外延薄膜会幵裂。 此外, 由于外延层生长在 GaN层之上, 应力限制了 A1的 并入效率, 使较高 A1组分的限制层更难获得。 [0003] A conventional laser diode confinement layer is an AlGaN layer. In order to achieve lasing at longer wavelengths, this n-type A1G aN layer requires a higher A1 composition or thicker to achieve better light confinement. When the A1 component is high or the thickness is too thick, the epitaxial film will be cleaved. In addition, since the epitaxial layer is grown on the GaN layer, the stress limits the incorporation efficiency of A1, making the confinement layer of the higher A1 component more difficult to obtain.
技术问题 technical problem
问题的解决方案 Problem solution
技术解决方案 Technical solution
[0004] 针对现有技术的不足, 本发明的目的在于: 提出一种氮化镓基激光二极管及制 备方法。 In view of the deficiencies of the prior art, an object of the present invention is to provide a gallium nitride-based laser diode and a method of fabricating the same.
[0005] 为解决以上技术问题, 本发明采用的一个技术方案是: 提供一种氮化镓激光二 极管结构, 包括: 衬底、 n型层、 n型限制层、 n型波导层、 有源层、 p型波导层 、 p型限制层和 p型层, 其特征在于: 所述 n型限制层包括第一 n型限制层和第二 n 型限制层构成的堆叠结构。 In order to solve the above technical problem, a technical solution adopted by the present invention is: Providing a gallium nitride laser diode structure, comprising: a substrate, an n-type layer, an n-type confinement layer, an n-type waveguide layer, and an active layer And a p-type waveguide layer, a p-type confinement layer, and a p-type layer, wherein: the n-type confinement layer comprises a stacked structure of a first n-type confinement layer and a second n-type confinement layer.
[0006] 优选的, 所述第一 n型限制层为 A1N, 第二 n型限制层为 AlGaN, 所述堆叠结构 为超晶格结构。
[0007] 优选的, 所述第一 n型限制层为 AlN/AlGaN超晶格结构, 所述第二 n型限制层为 AlGaN。 [0006] Preferably, the first n-type confinement layer is A1N, the second n-type confinement layer is AlGaN, and the stacked structure is a superlattice structure. [0007] Preferably, the first n-type confinement layer is an AlN/AlGaN superlattice structure, and the second n-type confinement layer is AlGaN.
[0008] 优选的, 所述超晶格结构中 AlGaN的 A1组分不高于 20%。 [0008] Preferably, the Al composition of AlGaN in the superlattice structure is not higher than 20%.
[0009] 优选的, 所述超晶格结构中 AlGaN厚度为 10~30人, A1N厚度为 2~10人。 [0009] Preferably, the thickness of the AlGaN in the superlattice structure is 10 to 30 persons, and the thickness of the A1N is 2 to 10 persons.
[0010] 优选的, 所述超晶格结构的周期数为 10~30个。 [0010] Preferably, the number of cycles of the superlattice structure is 10~30.
[0011] 优选的, 所述激光二极管发光波长为蓝光至绿光波段。 [0011] Preferably, the laser diode emits light in a blue to green light wavelength range.
[0012] 为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种氮化镓基激 光二极管的制备方法, 其工艺步骤包括: 在一衬底之上形成 n型层; 在所述 n型 层上形成 n型限制层, 所述 n型限制层包括第一 n型限制层和第二 n型限制层构成 的堆叠结构; 在所述 n型限制层上形成 n型波导层; 在所述 n型波导层上形成多量 子阱有源层; 在所述有源层上形成 p型波导层; 在所述 p型波导层上形成 p型限制 层; 在所述 p型限制层上形成 p型层。 [0012] In order to solve the above technical problem, another technical solution adopted by the present invention is: Providing a method for preparing a gallium nitride-based laser diode, the process steps comprising: forming an n-type layer over a substrate; Forming an n-type confinement layer on the n-type layer, the n-type confinement layer comprising a stacked structure of a first n-type confinement layer and a second n-type confinement layer; forming an n-type waveguide layer on the n-type confinement layer; Forming a multi-quantum well active layer on the n-type waveguide layer; forming a p-type waveguide layer on the active layer; forming a p-type confinement layer on the p-type waveguide layer; and the p-type confinement layer A p-type layer is formed thereon.
[0013] 优选的, 所述第一 n型限制层为 A1N, 第二 n型限制层为 AlGaN, 所述堆叠结构 为超晶格结构。 [0013] Preferably, the first n-type confinement layer is A1N, the second n-type confinement layer is AlGaN, and the stacked structure is a superlattice structure.
[0014] 优选的, 所述第一 n型限制层为 AlN/AlGaN超晶格结构, 所述第二 n型限制层为 AlGaN。 [0014] Preferably, the first n-type confinement layer is an AlN/AlGaN superlattice structure, and the second n-type confinement layer is AlGaN.
[0015] 本发明至少具有以下有益效果: (1) 通过改善 n型限制层的设计, 在 n型限制 层中引入 AlN/AlGaN超晶格结构, 可以有效提高 n型限制层中的 A1组分, 降低激 射阈值, 因而更容易实现绿光激光器的激射; (2) 采用 AlN/AlGaN超晶格作为 n 型限制层的底层结构, 可以有效预防后续外延层 (尤其是 n型限制层) 的幵裂, 可以极大地提高成品率。 [0015] The present invention has at least the following beneficial effects: (1) By improving the design of the n-type confinement layer, introducing an AlN/AlGaN superlattice structure in the n-type confinement layer can effectively improve the A1 component in the n-type confinement layer. , reducing the lasing threshold, thus making it easier to achieve the lasing of the green laser; (2) using the AlN/AlGaN superlattice as the underlying structure of the n-type confinement layer, can effectively prevent the subsequent epitaxial layer (especially the n-type confinement layer) The splitting can greatly improve the yield.
发明的有益效果 Advantageous effects of the invention
对附图的简要说明 Brief description of the drawing
附图说明 DRAWINGS
[0016] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。 The drawings are intended to provide a further understanding of the invention, and are intended to be a part of the description of the invention. In addition, the drawing figures are a summary of the description and are not drawn to scale.
[0017] 图 1为本发明之氮化物激光二极管侧视图。
[0018] 图 2为图 1中 AlN/AlGaN超晶格结构示意图。 1 is a side view of a nitride laser diode of the present invention. 2 is a schematic view showing the structure of an AlN/AlGaN superlattice in FIG. 1.
[0019] 图中各标号表示如下: 1.衬底; 2.n型层; 31.第一 n型限制层; 311. [0019] The reference numerals in the figures are as follows: 1. substrate; 2. n-type layer; 31. first n-type limiting layer;
AlGaN层; 312. A1N层; 32.第二 n型限制层; 4.n型波导层; 5.有源层; 51.量子阱 ; 52.量子垒; 6.p型波导层; 7.p型限制层; 8.p型层; 9.p型接触层。 AlGaN layer; 312. A1N layer; 32. Second n-type confinement layer; 4. n-type waveguide layer; 5. Active layer; 51. Quantum well; 52. Quantum barrier; 6. P-type waveguide layer; Type limiting layer; 8. p type layer; 9. p type contact layer.
本发明的实施方式 Embodiments of the invention
[0020] 下面结合附图对本发明的具体实施方式进行详细说明。 [0020] Specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
[0021] 请参看附图 1, 一种氮化镓基激光二极管, 自下而上一般包括: 衬底 1、 n型层 2 、 第一 n型限制层 31、 第二 n型限制层 32、 n型波导层 4、 多量子阱有源层 5、 p型 波导层 6、 p型限制层 7、 p型层 8和 p型接触层 9, 激光二极管发光波长为蓝光至绿 光波段。 Referring to FIG. 1, a gallium nitride-based laser diode generally includes: a substrate 1, an n-type layer 2, a first n-type confinement layer 31, and a second n-type confinement layer 32, from bottom to top. The n-type waveguide layer 4, the multiple quantum well active layer 5, the p-type waveguide layer 6, the p-type confinement layer 7, the p-type layer 8, and the p-type contact layer 9, the laser diode emits light in the blue to green wavelength band.
[0022] 具体地, 衬底 1的材料可选择氧化铝单晶 (Sapphire;)、 SiC(6H-SiC或 4H-SiC)、 Si 、 GaAs、 GaN衬底或者晶格常数接近于氮化物半导体的单晶氧化物。 [0022] Specifically, the material of the substrate 1 may be selected from an alumina single crystal (Sapphire;), SiC (6H-SiC or 4H-SiC), Si, GaAs, GaN substrate or a lattice constant close to a nitride semiconductor. Single crystal oxide.
[0023] n型层 2的材料为氮化铝镓铟 (A X— yGa xIn yN), 其中 0≤X< 1, 0≤Y< 1 = [0023] The material of the n-type layer 2 is aluminum gallium indium nitride (A X — y Ga x In y N), where 0≤X< 1, 0≤Y< 1 =
[0024] η型限制层包括第一 η型限制层 31和第二 η型限制层 32构成的堆叠结构。 第一 η型 限制层 31材料为八^/八1 1— & !^超晶格, 其中 0<Χ< 0.2, 即 AlGaN的 A1组分不高 于 20<¾。 如图 2所示, A1N/A ^& ^超晶格中八1 1—!^& !^层311的厚度 15人, A1N 层 312的厚度 5人, 超晶格为 20个周期。 第二 n型限制层 32材料为 A xGa x N, 其中 0.05≤X< 0.4。 [0024] The n-type confinement layer includes a stacked structure of the first n-type confinement layer 31 and the second n-type confinement layer 32. Η-type confinement layer 31 of the first material is eight ^ / eight 1 1 - ^ & superlattice, wherein 0 <Χ <0.2, i.e., components of AlGaN A1 not higher than 20 <¾!. Shown, A1N / A ^ & ^ superlattice eight in FIG. 2 1 1 -!! ^ & ^ Layer 311 thickness 15, the thickness of the A1N layer 312 is 5, a superlattice of 20 cycles. The material of the second n-type confinement layer 32 is A x Ga x N, where 0.05 ≤ X < 0.4.
[0025] n型波导层 4为 xGa xN, 其中 0≤X< 1。 [0025] The n-type waveguide layer 4 is x Ga x N, where 0≤X<1.
[0026] 多量子阱有源层 5由 InGaN量子阱 51与 GaN量子垒 52组成, 其中 InGaN量子阱 51 的厚度范围为 5人〜 30人、 In组份为 0.15~0.7, GaN量子垒 52的厚度范围为 50人〜 200 入。 The multi-quantum well active layer 5 is composed of an InGaN quantum well 51 and a GaN quantum barrier 52, wherein the thickness of the InGaN quantum well 51 ranges from 5 to 30, and the In composition is 0.15 to 0.7, and the GaN quantum barrier 52 The thickness ranges from 50 to 200.
[0027] p型波导层 6材料为 In i_xGa xN, 其中 0≤X< 1。 [0027] The material of the p-type waveguide layer 6 is I ni _ x Ga x N, where 0≤X<1.
[0028] p型限制层 7材料为 A — xGa xN, 其中 0≤X< 1。 [0028] The material of the p-type confinement layer 7 is A — x Ga x N, where 0≤X<1.
[0029] p型层 8材料为镁惨杂 (Mg-doped)之氮化镓, 其厚度范围为 100人~4000人。 [0029] The p-type layer 8 material is a Mg-doped gallium nitride having a thickness ranging from 100 to 4,000.
[0030] p型接触层 9材料为镁惨杂 (Mg-doped)之氮化镓, 其厚度范围为 5人~100人。 [0030] The p-type contact layer 9 is a Mg-doped gallium nitride having a thickness ranging from 5 to 100 people.
[0031] 前述氮化镓基激光二极管的制作方法, 包括步骤: 1) 在衬底 1上生长 n型层 2;
2) 在 n型层 2上生长第一 n型限制层 31 ; 3) 在第一 n型限制层 31上生长第二 n型限 制层 32; 4) 在第二 n型限制层 32上生长 n型波导层 4; 5) 在 n型波导层 4上生长 有源层 5; 6) 在有源层 5上生长 p型波导层 6; 7) 在 p型波导层 6上生长 p型限制层 7; 8) 在 p型限制层 7上生长 p型层 8; 9) 在 p型层 8上生长 p型接触层 9。 [0031] The foregoing method for fabricating a gallium nitride-based laser diode includes the steps of: 1) growing an n-type layer 2 on a substrate 1; 2) growing the first n-type confinement layer 31 on the n-type layer 2; 3) growing the second n-type confinement layer 32 on the first n-type confinement layer 31; 4) growing n on the second n-type confinement layer 32 The waveguide layer 4; 5) the active layer 5 is grown on the n-type waveguide layer 4; 6) the p-type waveguide layer 6 is grown on the active layer 5; 7) the p-type confinement layer 7 is grown on the p-type waveguide layer 6. 8) growing the p-type layer 8 on the p-type confinement layer 7; 9) growing the p-type contact layer 9 on the p-type layer 8.
[0032] 具体地, 在 n型层生长结束后, 生长 n型限制层和 n型波导层, 首先降温至 900~1 000°C, 腔体压力降低至 50~100torr进行第一 n型限制层的生长。 生长 AlN/AlGaN 超晶格期间温度和压力不变, 通过切换气体组分实现超晶格结构生长。 结束后 提高 A1源气体流量并调整温度至 AlGaN生长温度生长第二 n型限制层。 结束后降 低温度至 700~850°C, 腔体压力升高至 200~500torr生长 n型波导层。 生长结束后 降温并将腔体压力调整至合适参数进行多量子阱结构外延。 生长结束后升温进 行 p型波导层外延。 完成后调整温度、 压力和气体流量进行 p型限制层外延。 再 进行 p型层外延, 其成长温度介于 800°C~1000°C, 之后进行 p型接触层外延, 其成 长温度介于 800°C~900°C。 至此外延结构生长结束。 [0032] Specifically, after the growth of the n-type layer is completed, the n-type confinement layer and the n-type waveguide layer are grown, firstly cooled to 900 to 1 000 ° C, and the cavity pressure is lowered to 50 to 100 torr for the first n-type confinement layer. Growth. During the growth of the AlN/AlGaN superlattice, the temperature and pressure are unchanged, and the growth of the superlattice structure is achieved by switching the gas composition. After the end, the A1 source gas flow rate is increased and the temperature is adjusted to the AlGaN growth temperature to grow a second n-type confinement layer. After the end, the temperature is lowered to 700~850 °C, and the cavity pressure is raised to 200~500torr to grow the n-type waveguide layer. After the growth is completed, the temperature is lowered and the pressure of the chamber is adjusted to an appropriate parameter for multi-quantum well structure epitaxy. After the growth is completed, the temperature is raised to perform p-type waveguide layer epitaxy. After completion, adjust the temperature, pressure and gas flow for p-type confinement layer extension. Further, p-type layer epitaxy is carried out, and the growth temperature is between 800 ° C and 1000 ° C, and then p - type contact layer epitaxy is carried out, and the growth temperature is between 800 ° C and 900 ° C. At this point, the epitaxial structure is over.
[0033] 在本发明中, 采用 AlN/AlGaN超晶格作为 n型限制层底层, 可以有效地提高 n型 限制层的 A1组分, 降低激光器激射阈值; 有效地预防外延层幵裂, 提高产品良 率。 [0033] In the present invention, the AlN/AlGaN superlattice is used as the n-type confinement underlayer, which can effectively improve the A1 composition of the n-type confinement layer and reduce the laser lasing threshold; effectively prevent the epitaxial layer from cracking and improve Product yield.
[0034] 需要说明的是, 虽然上述实施例示出的 n型限制层包括第一 n型限制层 (A1N/A1 GaN超晶格) 和第二 n型限制层 (AlGaN) 构成的堆叠结构, 实际上, 该堆叠结 构也可以是由 A1N第一 n型限制层与 AlGaN第二 n型限制层交替形成超晶格结构。 此外, 虽然上述实施例示出的激光二极管发光波长为蓝光, 其发光波长还可以 为绿光, 或是在蓝光至绿光波段之内。 [0034] It should be noted that although the n-type confinement layer shown in the above embodiment includes a stacked structure of a first n-type confinement layer (A1N/A1 GaN superlattice) and a second n-type confinement layer (AlGaN), practical The stack structure may also be formed by alternately forming a superlattice structure between the first n-type confinement layer and the second n-type confinement layer of AlGaN. In addition, although the laser diode shown in the above embodiment has a blue light emission wavelength, the light emission wavelength may be green light or within the blue light to green light wavelength band.
[0035] 应当理解的是, 上述具体实施方案为本发明的优选实施例, 本发明的范围不限 于该实施例, 凡依本发明所做的任何变更, 皆属本发明的保护范围之内。 [0035] It is to be understood that the above-described embodiments are a preferred embodiment of the present invention, and the scope of the present invention is not limited to the embodiments, and any modifications made in accordance with the present invention are within the scope of the present invention.
[0036]
[0036]
Claims
[权利要求 1] 氮化镓基激光二极管, 包括: 衬底、 n型层、 n型限制层、 n型波导层 [Claim 1] A gallium nitride-based laser diode comprising: a substrate, an n-type layer, an n-type confinement layer, and an n-type waveguide layer
、 有源层、 p型波导层、 p型限制层和 p型层, 其特征在于: 所述 n型限 制层包括第一 n型限制层和第二 n型限制层构成的堆叠结构。 The active layer, the p-type waveguide layer, the p-type confinement layer and the p-type layer are characterized in that: the n-type confinement layer comprises a stacked structure of a first n-type confinement layer and a second n-type confinement layer.
[权利要求 2] 根据权利要求 1所述的氮化镓基激光二极管, 其特征在于: 所述第一 n 型限制层为 A1N, 第二 n型限制层为 AlGaN, 所述堆叠结构为超晶格 结构。 [Claim 2] The gallium nitride-based laser diode according to claim 1, wherein: the first n-type confinement layer is A1N, the second n-type confinement layer is AlGaN, and the stacked structure is super-crystal Grid structure.
[权利要求 3] 根据权利要求 1所述的氮化镓基激光二极管, 其特征在于: 所述第一 n 型限制层为 AlN/AlGaN超晶格结构, 所述第二 n型限制层为 AlGaN。 [Claim 3] The gallium nitride-based laser diode according to claim 1, wherein: the first n-type confinement layer is an AlN/AlGaN superlattice structure, and the second n-type confinement layer is AlGaN .
[权利要求 4] 根据权利要求 2或 3所述的氮化镓基激光二极管, 其特征在于: 所述超 晶格结构中 AlGaN的 A1组分不高于 20%。 [Claim 4] The gallium nitride-based laser diode according to claim 2 or 3, wherein the Al1 composition of the AlGaN in the superlattice structure is not more than 20%.
[权利要求 5] 根据权利要求 2或 3所述的氮化镓基激光二极管, 其特征在于: 所述超 晶格结构中 AlGaN厚度为 10~30人, A1N厚度为 2~10人。 [Claim 5] The gallium nitride-based laser diode according to claim 2 or 3, wherein: the AlGaN has a thickness of 10 to 30 persons in the superlattice structure, and the A1N has a thickness of 2 to 10 persons.
[权利要求 6] 氮化镓基激光二极管的制备方法, 其工艺步骤包括: [Claim 6] A method for preparing a gallium nitride-based laser diode, the process steps of which include:
在一衬底之上形成 n型层; Forming an n-type layer over a substrate;
在所述 n型层上形成 n型限制层, 所述 n型限制层包括第一 n型限制层和 第二 n型限制层构成的堆叠结构; Forming an n-type confinement layer on the n-type layer, the n-type confinement layer comprising a stacked structure of a first n-type confinement layer and a second n-type confinement layer;
在所述 n型限制层上形成 n型波导层; Forming an n-type waveguide layer on the n-type confinement layer;
在所述 n型波导层上形成多量子阱有源层; Forming a multiple quantum well active layer on the n-type waveguide layer;
在所述有源层上形成 p型波导层; Forming a p-type waveguide layer on the active layer;
在所述 p型波导层上形成 p型限制层; Forming a p-type confinement layer on the p-type waveguide layer;
在所述 p型限制层上形成 p型层。 A p-type layer is formed on the p-type confinement layer.
[权利要求 7] 根据权利要求 1所述的氮化镓基激光二极管的制备方法, 其特征在于[Claim 7] A method of fabricating a gallium nitride-based laser diode according to claim 1, wherein
: 所述第一 n型限制层为 A1N, 第二 n型限制层为 AlGaN, 所述堆叠结 构为超晶格结构。 The first n-type confinement layer is A1N, the second n-type confinement layer is AlGaN, and the stacked structure is a superlattice structure.
[权利要求 8] 根据权利要求 1所述的一种氮化镓基激光二极管的制备方法, 其特征 在于: 所述第一 n型限制层为 AlN/AlGaN超晶格结构, 所述第二 n型限 制层为 AlGaN。
[Claim 8] The method for fabricating a gallium nitride-based laser diode according to claim 1, wherein: the first n-type confinement layer is an AlN/AlGaN superlattice structure, and the second n The type of limiting layer is AlGaN.
[权利要求 9] 根据权利要求 7或 8所述的氮化镓基激光二极管的制备方法, 其特征在 于: 所述超晶格结构的生长温度为 900°C~1000°C。 [Claim 9] The method for producing a gallium nitride-based laser diode according to claim 7 or 8, wherein the superlattice structure has a growth temperature of 900 ° C to 1000 ° C.
[权利要求 10] 根据权利要求 7或 8所述的氮化镓基激光二极管的制备方法, 其特征在 于: 所述超晶格结构的生长压力为 50torr~200torr。
[Claim 10] The method for fabricating a gallium nitride-based laser diode according to claim 7 or 8, wherein the superlattice structure has a growth pressure of 50 torr to 200 torr.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510576295.1A CN105048286A (en) | 2015-09-11 | 2015-09-11 | Gallium nitride-based laser diode and preparation method thereof |
CN201510576295.1 | 2015-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017041662A1 true WO2017041662A1 (en) | 2017-03-16 |
Family
ID=54454619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/097755 WO2017041662A1 (en) | 2015-09-11 | 2016-09-01 | Gallium nitride-based laser diode and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105048286A (en) |
WO (1) | WO2017041662A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105048286A (en) * | 2015-09-11 | 2015-11-11 | 厦门市三安光电科技有限公司 | Gallium nitride-based laser diode and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1776927A (en) * | 2004-11-09 | 2006-05-24 | 三菱电机株式会社 | Semiconductor light emitting element |
US20060273300A1 (en) * | 2005-06-03 | 2006-12-07 | Samsung Electronics Co., Ltd. | III-V Group GaN-based compound semiconductor device |
CN101449395A (en) * | 2006-05-26 | 2009-06-03 | 罗姆股份有限公司 | A nitride semiconductor luminous element |
US20150036709A1 (en) * | 2011-07-14 | 2015-02-05 | Rohm Co., Ltd. | Semiconductor laser device |
CN105048286A (en) * | 2015-09-11 | 2015-11-11 | 厦门市三安光电科技有限公司 | Gallium nitride-based laser diode and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101257080B (en) * | 2008-03-11 | 2014-10-15 | 北京大学东莞光电研究院 | Nitride base ridge-type LED and laser as well as method for preparing the same |
CN102148479A (en) * | 2011-03-04 | 2011-08-10 | 中国科学院半导体研究所 | Preparation method for wide-side 808nm divided mode semiconductor laser structure |
CN102508940B (en) * | 2011-09-30 | 2013-07-31 | 哈尔滨师范大学 | Method for analog designing of active area of AlGaN/GaN terahertz quantum cascade laser |
CN102570308A (en) * | 2012-01-16 | 2012-07-11 | 苏州纳睿光电有限公司 | Nitride semiconductor laser |
CN104282808B (en) * | 2014-10-08 | 2017-06-06 | 西安神光皓瑞光电科技有限公司 | A kind of ultraviolet LED extension active area structure growing method |
-
2015
- 2015-09-11 CN CN201510576295.1A patent/CN105048286A/en active Pending
-
2016
- 2016-09-01 WO PCT/CN2016/097755 patent/WO2017041662A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1776927A (en) * | 2004-11-09 | 2006-05-24 | 三菱电机株式会社 | Semiconductor light emitting element |
US20060273300A1 (en) * | 2005-06-03 | 2006-12-07 | Samsung Electronics Co., Ltd. | III-V Group GaN-based compound semiconductor device |
CN101449395A (en) * | 2006-05-26 | 2009-06-03 | 罗姆股份有限公司 | A nitride semiconductor luminous element |
US20150036709A1 (en) * | 2011-07-14 | 2015-02-05 | Rohm Co., Ltd. | Semiconductor laser device |
CN105048286A (en) * | 2015-09-11 | 2015-11-11 | 厦门市三安光电科技有限公司 | Gallium nitride-based laser diode and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
XIE, ZILI ET AL.: "The Study of The Characteristics of The Alxga(1-x)N/A1N Superlattice", JOURNAL OF FUNCTIONAL MATERIALS, vol. 39, no. 5, 31 May 2008 (2008-05-31), pages 727 - 728, ISSN: 1001-9731 * |
Also Published As
Publication number | Publication date |
---|---|
CN105048286A (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999866B2 (en) | Method for growing gallium nitride based semiconductor heterostructure | |
EP2325899A1 (en) | Semiconductor device | |
CN105355741B (en) | A kind of LED epitaxial structure and preparation method | |
JP2006093683A (en) | Semiconductor substrate, semiconductor element and semiconductor light emitting element | |
CN103811609A (en) | Oxide semiconductor light-emitting diode epitaxial wafer, device and manufacturing method thereof | |
CN111403566B (en) | Light-emitting diode device structure with sidewall field plate and preparation method thereof | |
CN103151435A (en) | Gallium nitride base light-emitting diode with composite potential barrier | |
JP2005101533A (en) | Light emitting device and manufacturing method therefor | |
CN104617487A (en) | Same-temperature growth method of laser quantum well active region on gallium nitride native substrate | |
CN115020558B (en) | High-recombination-efficiency light-emitting diode epitaxial wafer and preparation method thereof | |
KR101781505B1 (en) | Gallium nitride type semiconductor light emitting device and method of fabricating the same | |
JPH08264833A (en) | Light emitting diode | |
JP2010232364A (en) | Group III nitride laminate, manufacturing method thereof, and group III nitride semiconductor device | |
CN108110097A (en) | GaN base LED component and preparation method thereof | |
JP2009238803A (en) | Gan-based semiconductor substrate, method of manufacturing the same, and semiconductor device | |
JP2013541227A (en) | High power, high efficiency, and low efficiency Droop III nitride light emitting diode on semipolar {20-2-1} substrate | |
CN111326611B (en) | Method for etching table top of III-nitride semiconductor light-emitting device | |
CN103996766B (en) | Gallium nitride based light emitting diode and preparation method thereof | |
KR20150015760A (en) | Template for light emitting device fabricating and method of fabricating ultraviolet light emitting device | |
WO2017041662A1 (en) | Gallium nitride-based laser diode and manufacturing method thereof | |
JP2004014587A (en) | Nitride-based compound semiconductor epitaxial wafer and light emitting device | |
JP2008214132A (en) | Group III nitride semiconductor thin film, group III nitride semiconductor light emitting device, and method of manufacturing group III nitride semiconductor thin film | |
JP2006066787A (en) | Sapphire substrate and light emitting device using the same | |
JP3543628B2 (en) | Method for growing nitride III-V compound semiconductor and method for manufacturing semiconductor light emitting device | |
CN104241458A (en) | Method for preparing gallium-nitride-based LED epitaxial wafer with variable barrier width |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16843600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16843600 Country of ref document: EP Kind code of ref document: A1 |