[go: up one dir, main page]

WO2017038673A1 - Air compression device - Google Patents

Air compression device Download PDF

Info

Publication number
WO2017038673A1
WO2017038673A1 PCT/JP2016/074954 JP2016074954W WO2017038673A1 WO 2017038673 A1 WO2017038673 A1 WO 2017038673A1 JP 2016074954 W JP2016074954 W JP 2016074954W WO 2017038673 A1 WO2017038673 A1 WO 2017038673A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooling
compressor
wall
cooler
Prior art date
Application number
PCT/JP2016/074954
Other languages
French (fr)
Japanese (ja)
Inventor
将 黒光
洋司 高嶋
高橋 亮
源平 田中
徹 水船
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to CN201680049963.8A priority Critical patent/CN107923379B/en
Priority to JP2017537831A priority patent/JP6743030B2/en
Publication of WO2017038673A1 publication Critical patent/WO2017038673A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to an air compression device that generates compressed air.
  • Compressed air generating device is used for various purposes.
  • Compressed air generated by an air compressor mounted on a vehicle may be supplied to a brake device that applies a braking force to the vehicle or a pneumatic device that opens and closes the door of the vehicle.
  • Patent Documents 1 and 2 propose to arrange a cooler next to a compressor that generates compressed air with respect to the design of the air compressor. Compressed air is supplied from the compressor to the cooler. The cooler can cool the compressed air efficiently.
  • Patent Documents 1 and 2 propose to provide fins in the cooler to promote heat dissipation from the cooler.
  • the fins of Patent Documents 1 and 2 protrude in the opposite direction to the compressor.
  • the flow path of the outside air is used to cool the compressor. It must be provided separately from the air flow path.
  • the air compressor is structurally complicated. Designers can rely on natural heat dissipation from the fins of the cooler for heat dissipation from the cooler. In this case, a separate flow path for the fins of the cooler is not required, but the heat dissipation efficiency from the cooler is low.
  • An object of the present invention is to provide an air compression apparatus having a cooling structure capable of effectively cooling both a cooler and a compressor without requiring a complicated flow path of cooling air.
  • An air compression device includes a compressor that generates compressed air, and a cooler that forms an internal space into which the compressed air flows.
  • the cooler includes a first cavity forming surface provided with a first fin.
  • the compressor includes a second cavity forming surface provided with second fins.
  • the first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler.
  • the first fin and the second fin protrude into the cooling duct.
  • FIG. 1 It is a conceptual diagram of the air compressor of 1st Embodiment. It is a schematic perspective view of the fin which can be utilized for the air compression apparatus shown by FIG. 1 (2nd Embodiment). It is a schematic perspective view of the fin which can be utilized for the air compression apparatus shown by FIG. 1 (2nd Embodiment). It is a conceptual diagram of the air compressor of 3rd Embodiment. It is a schematic perspective view of the cooler of a 4th embodiment.
  • FIG. 5 is a schematic cross-sectional view of the cooler shown in FIG. 4. It is a general
  • FIG. 10 is a schematic perspective view of a guide frame of the air compression device shown in FIG. 9.
  • FIG. 10B is a schematic rear view of the guide frame shown in FIG. 10A.
  • FIG. 10B is a schematic rear view of the guide frame shown in FIG. 10A.
  • FIG. 10B is a schematic perspective view of the air compressor of 8th Embodiment.
  • FIG. 12B is another schematic perspective view of the air compression device shown in FIG. 12A.
  • the body of the cooler through which the compressed air flows is located between the fins of the cooler and the fins of the compressor.
  • the cooling air supplied through a common flow path cools the cooler fins and the compressor fins
  • the body of the cooler will collide with the flow of cooling air and cause turbulence, for example. This reduces the cooling efficiency.
  • an air blower having a large air blowing capacity is required to cool these fins sufficiently.
  • the present inventors have developed a cooling technique for efficiently cooling not only the compressor but also the compressed air even if a small blower is used. In the first embodiment, an exemplary cooling technique is described.
  • FIG. 1 is a conceptual diagram of an air compressor 100 according to the first embodiment. With reference to FIG. 1, an air compressor 100 is described.
  • the air compression device 100 includes a compressor 200 and a cooler 300.
  • the cooler 300 is disposed next to the compressor 200.
  • the cooler 300 is attached to the compressor 200.
  • the compressor 200 includes a second cavity forming surface 210 located at a portion facing the cooler 300.
  • the cooler 300 includes a first cavity forming surface 310 located at a portion facing the second cavity forming surface 210 of the compressor 200.
  • An upper connection surface 224 is formed on the upper side of the second cavity forming surface 210, and a lower connection surface 225 is formed on the lower side.
  • An upper connection surface 334 is formed on the upper side of the first cavity forming surface 310, and a lower connection surface 335 is formed on the lower side.
  • the upper connection surface 224 of the compressor 200 and the upper connection surface 334 of the cooler 300 are coupled to each other. Further, the lower connection surface 225 of the compressor 200 and the lower connection surface 335 of the cooler 300 are coupled to each other. *
  • the second cavity forming surface 210 and the first cavity forming surface 310 define a cooling duct 400 that cooperates and has a space extending in the horizontal direction. That is, each of the second cavity forming surface 210 and the first cavity forming surface 310 has a shape in which the duct is divided in half. Although the shape of the space in the cooling duct 400 may be any shape, in the first embodiment, the space is formed in a rectangular shape. For this reason, the first cavity forming surface 310 is connected to the first upper surface 310a facing downward, the first side surface 310b extending downward from the back end of the first upper surface 310a, and the lower end of the first side surface 310b. And a first lower surface 310c facing.
  • the first side surface 310b is longer than each of the first upper surface 310a and the first lower surface 310C. However, the first side surface 310b may be shorter than the first upper surface 310a and the first lower surface 310C. In this case, the fin protrudes from the first side surface 310b, but may protrude from one of the first upper surface 310a and the first lower surface 310c.
  • the second cavity forming surface 210 is connected to the second upper surface 210a facing downward, the second side surface 210b extending downward from the back end of the second upper surface 210a, and the lower end of the second side surface 210b, and facing upward.
  • a second lower surface 210c is connected to the second upper surface 210a facing downward, the second side surface 210b extending downward from the back end of the second upper surface 210a, and the lower end of the second side surface 210b, and facing upward.
  • the second side surface 210b is longer than each of the second upper surface 210a and the first lower surface 210C.
  • the first side surface 310b may be shorter than each of the first upper surface 310a and the first lower surface 310C.
  • the fin protrudes from the second side surface 210b, but may protrude from one of the first upper surface 310a and the first lower surface 310c.
  • the first cavity forming surface 310 includes a fin provided on the first side surface 310b
  • the second cavity forming surface 210 includes a fin provided on the second upper surface 210a.
  • the first cavity forming surface 310 and the second cavity forming surface 210 are formed in a curved shape.
  • the fin may protrude toward the center in the cross section of the space in the cooling duct 400.
  • the space in the cooling duct 400 is formed in, for example, a triangular shape, the first cavity forming surface 310 and the second cavity forming surface 210 are formed to be inclined. In this case, the inclined surfaces of the first cavity forming surface 310 and the second cavity forming surface 210 are opposed to each other. In this case, the fin may protrude toward the center of the cooling duct 400.
  • first cavity forming surface 310 and the second cavity forming surface 210 may be facing each other as in the present embodiment, but even if they are not facing each other, one or more surfaces (planes) , Including the inclined surface and the curved surface), and other members may be interposed between the cavity forming surfaces 210 and 310.
  • the cooling duct 400 includes the first cavity forming surface 310 and the second cavity forming surface 210, but may include other members.
  • first cavity forming surface 310 and the second cavity forming surface 210 may be arranged at positions facing each other as in the present embodiment, but the first cavity forming surface 310 and the second cavity forming surface 210
  • the cavity forming surfaces 210 may be arranged close to each other on the same plane or substantially the same plane. For example, if the space in the cooling duct 400 is formed in a rectangular cross section, the first cavity forming surface 310 and the second cavity forming surface 210 are disposed adjacent to one inner surface of the four inner circumferential surfaces. It may be. In this case, other inner surfaces may be constituted by other members.
  • the compressor 200 compresses air to generate compressed air.
  • the compressor 200 may be a general scroll compressor.
  • the compressor 200 may be a general rotary compressor.
  • the compressor 200 may be a general swing compressor.
  • the compressor 200 may be a typical reciprocating compressor. The principle of this embodiment is not limited to a specific structure of the compressor 200.
  • Compressed air discharged from the compressor 200 is supplied to the cooler 300.
  • the cooler 300 an internal space 301 into which compressed air flows is formed.
  • the compressed air may be supplied from the compressor 200 to the internal space 301 of the cooler 300 through a pipe member (not shown) extending across the cooling duct 400.
  • the compressed air may be supplied from the compressor 200 to the internal space 301 of the cooler 300 through a pipe member that bypasses the cooling duct 400.
  • the principle of the present embodiment is not limited to a specific supply path of compressed air from the compressor 200 to the cooler 300.
  • Cooling air is supplied to the cooling duct 400.
  • blower devices such as a sirocco fan device, a turbo fan device, a cross flow fan device, and a propeller fan device may be used to supply cooling air to the cooling duct 400.
  • the principle of the present embodiment is not limited to a specific technique for supplying cooling air to the cooling duct 400.
  • the drive part (motor etc.) of an air blower may be shared with the drive part of other apparatuses, such as a compressor, the drive part of an air blower is provided separately from the drive part of another apparatus.
  • the cooling air can be sent to the cooling duct by rotating the fan while the other devices are stopped, and the cooling efficiency can be improved.
  • the cooler 300 further includes first fins 320 protruding from the first side surface 310b of the first cavity forming surface 310 toward the second side surface 210b of the second cavity forming surface 210 of the compressor 200.
  • the compressor 200 further includes a second fin 220 that protrudes from the second side surface 210 b of the second cavity forming surface 210 toward the first side surface 310 b of the first cavity forming surface 310 of the cooler 300. Both the fins 320 and 220 protrude in the cooling duct 400.
  • Cooling air flows into the cooling duct 400.
  • the cooling air takes heat from the fins 320 and 220 while flowing in the cooling duct 400.
  • both the cooler 300 and the compressor 200 are cooled.
  • the cooling duct 400 is formed by the first cavity forming surface 310 formed in the cooler 300 and the second cavity forming surface 210 formed in the compressor 200, the air compressor 100 cools them. Does not require a large space for. Thus, the designer can give the air compressor 100 a small dimension.
  • Second Embodiment Designers designing air compression devices may give the fins described in connection with the first embodiment various shapes. In the second embodiment, exemplary shapes of the fins are described.
  • FIGS. 1 to 2B are schematic perspective views of the fins 101 and 102.
  • FIG. The fins 101 and 102 will be described with reference to FIGS. 1 to 2B.
  • a designer who designs an air compression device may give the shape of the fins 101 and 102 to the second fin 220 and the first fin 320 described with reference to FIG. Alternatively, the designer may project the fins 101 and 102 from the inner wall surface of the cooling duct 400A described with reference to FIG.
  • the fin 101 has a flat surface extending substantially parallel to the flow direction of the cooling air. Therefore, the cooling air can smoothly flow along the flat surface of the fin 101.
  • the fin 102 has a wavy surface extending in the flow direction of the cooling air. Since the fin 102 has a wider contact area with the cooling air than the fin 101, the cooling air can take a large amount of heat from the fin 102.
  • the air compressing device may have a partition wall disposed inside the cooling duct. If the internal space of the cooling duct is partitioned into a plurality of small spaces by the partition wall, the cooling air flowing in the cooling duct is rectified. As a result, the cooling air can take a large amount of heat from the compressed air in the compressor and the cooler.
  • an exemplary air compression device having a partition wall is described.
  • FIG. 3 is a conceptual diagram of an air compressor 100A of the third embodiment.
  • the air compressor 100A will be described with reference to FIG.
  • symbol which is common in 1st Embodiment means that the element to which the said code
  • the air compressor 100A includes a compressor 200 and a cooler 300.
  • the description of the first embodiment is incorporated in these elements.
  • the air compressor 100A further includes a partition wall 410 disposed between the second fin 220 and the first fin 320. Unlike the fins 220 and 320 that protrude in the horizontal direction in the cooling duct 400, the partition wall 410 extends in the vertical direction in the cooling duct 400, and the internal space of the cooling duct 400 is divided into a left flow space 411 and a right flow space 412. Divide into The left flow space 411 is defined between the partition wall 410 and the first cavity forming surface 310 of the cooler 300. The right flow space 412 is defined between the partition wall 410 and the second cavity forming surface 210 of the compressor 200. The cooling air flows into the left flow space 411 and the right flow space 412.
  • the partition wall 410 may or may not contact the leading edge of each of the second fins 220 and the first fins 320. If the partition wall 410 abuts on the second fins 220 protruding in the right flow space 412, the second fins 220 divide the right flow space 412 up and down. If the partition wall 410 comes into contact with the first fin 320 protruding in the left flow space 411, the first fin 320 divides the left flow space 411 vertically. In this case, since the heat of the second fins 220 and the first fins 320 can be released to the partition wall 410, the cooling air can efficiently take heat from the compressed air in the compressor 200 and the cooler 300. If the partition wall 410 is separated from at least one of the fins 220 and 320, heat transfer between the fins 220 and 320 is less likely to occur.
  • the partition wall 410 may be formed of the same material as one or both of the fins 220 and 320. Alternatively, the partition wall 410 may be formed from a different material than the fins 220 and 320. For example, the designer may select a material having a lower thermal conductivity than the material used for the fins 220 and 320 as the material of the partition wall 410. In this case, since the amount of heat that travels between the compressor 200 and the cooler 300 is small, complicated thermal interference between the compressor 200 and the cooler 300 is less likely to occur. This facilitates control related to the heat of compressor 200 and cooler 300.
  • FIG. 4 is a schematic perspective view of the cooler 300B of the fourth embodiment. With reference to FIG.3 and FIG.4, the cooler 300B is demonstrated.
  • the cooler 300B includes an outer shell 330 having a first cavity forming surface 310 formed on the outer surface, and a check valve 340.
  • the outer shell 330 is a substantially rectangular box.
  • the compressed air flows into the outer shell 330.
  • the check valve 340 protrudes upward from the outer shell 330.
  • the compressed air is exhausted from the inside of the outer shell 330 through the check valve 340.
  • the cooler 300B can be used as the cooler 300 described with reference to FIG.
  • the outer shell 330 includes an upstream surface 331 and a downstream surface 332 opposite to the upstream surface 331.
  • the cooling air flows from the upstream surface 331 toward the downstream surface 332.
  • the height dimension (vertical direction) of the upstream surface 331 and the downstream surface 332 is larger than the width dimension (horizontal direction) of the upstream surface 331 and the downstream surface 332.
  • the outer shell 330 includes a connection surface 333 between the upstream surface 331 and the downstream surface 332.
  • the connection surface 333 is connected to a compressor (not shown) or a partition member (not shown) disposed between the compressor and the outer shell 330.
  • the connection surface 333 includes an upper connection surface 334 located above the first cavity forming surface 310 and a lower connection surface 335 located below the first cavity forming surface 310.
  • the cooling air flows into the flow region defined by the first cavity forming surface 310 between the upper connection surface 334 and the lower connection surface 335.
  • the upper connection surface 334 is substantially flush with the lower connection surface 335.
  • the upper connection surface 334 and the lower connection surface 335 are connected to a compressor or a partition member disposed between the compressor and the outer shell 330.
  • the flow region defined by the first cavity forming surface 310 is recessed from the upper connection surface 334 and the lower connection surface 335.
  • the outer shell 330 includes a plurality of first fins 336 that protrude in the flow region.
  • the plurality of first fins 336 extend from the upstream surface 331 toward the downstream surface 332.
  • the leading edge of each of the plurality of first fins 336 is substantially flush with the upper connection surface 334 and the lower connection surface 335.
  • the leading edge of each of the plurality of first fins 336 may contact a compressor or a partition member disposed between the compressor and the outer shell 330.
  • the outer shell 330 includes an inflow tube 337 that protrudes substantially at the center of the flow region.
  • the compressed air flows into the inner space of the outer shell 330 through the inlet 338 surrounded by the inflow cylinder 337.
  • the cooling air flowing in the flow region takes heat from the first cavity forming surface 310 and the plurality of first fins 336 that define the flow region, so that the compressed air flowing into the inner space of the outer shell 330 is efficiently To be cooled.
  • FIG. 5 is a schematic cross-sectional view showing the internal structure of the cooler 300B.
  • the cooler 300B is further described with reference to FIG.
  • the outer shell 330 includes an upper wall 351, a lower wall 352, an upstream wall 353, and a downstream wall 354.
  • the outer wall of the check valve 340 is formed integrally with the upper wall 351 in the vicinity of the corner defined by the upper wall 351 and the upstream wall 353.
  • the upper wall 351 extends substantially horizontally between the upper end of the upstream wall 353 and the upper end of the downstream wall 354.
  • the lower wall 352 extends substantially horizontally between the lower end of the upstream wall 353 and the lower end of the downstream wall 354.
  • the upstream wall 353 and the downstream wall 354 extend substantially vertically.
  • the outer shell 330 includes a plurality of partition walls that partition a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354, and define a plurality of flow paths.
  • the plurality of partition walls include a linear upper partition wall 361, a linear lower partition wall 362, and a substantially ⁇ -shaped central partition wall 363.
  • the upper partition wall 361 extends substantially horizontally from the upstream wall 353. The tip of the upper partition wall 361 is separated from the downstream wall 354.
  • the lower partition wall 362 extends substantially horizontally below the upper partition wall 361. Both end portions of the lower partition wall 362 are separated from the upstream wall 353 and the downstream wall 354, respectively.
  • the central partition wall 363 is formed between the upper partition wall 361 and the lower partition wall 362.
  • the central partition wall 363 includes a straight wall 364 and a bent wall 365.
  • the straight wall 364 extends substantially horizontally from the downstream wall 354.
  • the tip of the straight wall 364 is separated from the upstream wall 353.
  • the bent wall 365 extends downward from the straight wall 364 near the inlet 338 and then bends toward the downstream wall 354.
  • the distal end portion of the bending wall 365 is separated from the downstream wall 354.
  • the straight wall 364 and the bent wall 365 partially surround the inflow port 338.
  • the outer shell 330 has a first internal flow path 371, a second internal flow path 372, a third internal flow path in a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354.
  • An internal channel 373, a fourth internal channel 374, and a fifth internal channel 375 are defined.
  • the first internal flow path 371 is defined by a straight wall 364 and a bent wall 365.
  • the first internal flow path 371 is continuous with the inflow port 338 and extends toward the downstream wall 354.
  • the compressed air flowing in from the inflow port 338 flows along the first internal flow path 371 and travels toward the downstream wall 354.
  • the second internal flow path 372 is defined by the central partition wall 363 and the lower partition wall 362.
  • the third internal flow path 373 is defined by the lower partition wall 362 and the lower wall 352.
  • the compressed air that has reached the end of the first internal flow path 371 flows downward through a gap between the distal end portion of the bent wall 365 and the downstream wall 354. A part of the compressed air then flows toward the upstream wall 353 through the second internal flow path 372. The other part of the compressed air flows toward the upstream wall 353 through the third internal flow path 373.
  • Compressed air that has reached the end of the third internal flow path 373 flows upward through the gap between the lower partition wall 362 and the upstream wall 353, and merges with the compressed air at the end of the second internal flow path 372.
  • the compressed air at the end of the second internal flow path 372 flows upward through the gap between the straight wall 364 and the upstream wall 353 and flows into the fourth internal flow path 374.
  • Compressed air then flows along the fourth internal flow path 374 and travels toward the downstream wall 354.
  • the compressed air that has reached the end of the fourth internal flow path 374 flows upward through the gap between the upper partition wall 361 and the downstream wall 354 and flows into the fifth internal flow path 375.
  • Compressed air then flows along the fifth internal flow path 375 and travels toward the upstream wall 353.
  • the compressed air is finally exhausted from the check valve 340 disposed near the end of the fifth internal flow path 375.
  • a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354 is located inside the first cavity forming surface 310 that forms a flow region through which cooling air flows.
  • the flow path of the compressed air is a meandering flow path in a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354. For this reason, the heat exchange area is long. Therefore, the compressed air is effectively cooled by the cooling air.
  • the inner wall surface of the outer shell 330 may condense. Condensed water flows downward under the action of gravity, and may eventually accumulate in the lowest channel (third internal channel 373). However, the flow path of the compressed air communicates between the inlet 338 and the check valve 340 without passing through the third internal flow path 373. For this reason, since the compressed air can go to the check valve 340 through the second internal flow path 372, the compressed air is hardly clogged in the cooler 300B.
  • FIG. 6 is a schematic exploded perspective view of a scroll compressor 200C of the fifth embodiment.
  • the scroll compressor 200C will be described with reference to FIGS.
  • the scroll compressor 200C can be used as the compressor 200 described with reference to FIG.
  • the scroll compressor 200 ⁇ / b> C includes a holding frame body 230, a swinging rotary body 240, and a lid body 250.
  • the holding frame 230 includes a leg portion 231, an outer shell body 232, and a shaft portion 233.
  • the leg 231 is fixed to a base (not shown).
  • the outer shell body 232 is connected to the upper end of the leg portion 231 and defines a generally circular accommodation space 239.
  • the swinging rotator 240 is accommodated in the accommodation space 239.
  • the outer shell 232 includes a ring wall 261, an upper arc wall 262, a lower arc wall 263, an inflow wall 264, and an outflow wall 265.
  • Ring wall 261 includes an outer surface 266 and an inner surface 267 opposite to outer surface 266.
  • the shaft portion 233 protrudes from the outer surface 266.
  • the inner surface 267 faces the swinging rotator 240.
  • the upper arc wall 262 protrudes toward the lid 250 from the upper part of the outer edge of the ring wall 261 that describes a circular outline.
  • the lower arc wall 263 protrudes from the lower part of the outer edge of the ring wall 261 toward the lid body 250.
  • the upper arc wall 262, the lower arc wall 263, and the ring wall 261 define an accommodation space 239 in which the swinging rotary body 240 is accommodated in cooperation with the lid body 250.
  • the inflow wall 264 connects one end of the upper arc wall 262 (the front end in FIG. 6) and one end of the lower arc wall 263 (the front end in FIG. 6).
  • the inflow wall 264 protrudes from the one end of the upper arc wall 262 and the one end of the lower arc wall 263 at a substantially right angle with respect to the protruding direction of the shaft portion 233.
  • the inflow wall 264 has a substantially C-shaped cross section.
  • the inflow wall 264 cooperates with the lid body 250 to define an inflow port through which cooling air flows.
  • the outflow wall 265 is formed between the other end of the upper arc wall 262 (the back end in FIG. 6) and the other end of the lower arc wall 263 (the back end in FIG. 6).
  • the outflow wall 265 protrudes from the upper arc wall 262 and the lower arc wall 263 in the direction opposite to the inflow wall 264. Similar to the inflow wall 264, the outflow wall 265 has a substantially C-shaped cross section.
  • the outflow wall 265 cooperates with the lid body 250 to define an outflow port from which cooling air flows out.
  • the shaft portion 233 includes a cylindrical portion 234 and a rotating shaft 235.
  • the cylindrical portion 234 protrudes from the outer surface 266 of the ring wall 261.
  • a space in the cylindrical portion 234 accommodates a conversion mechanism (not shown) that converts the rotational motion of the rotating shaft 235 into the swinging rotational motion of the swinging rotating body 240.
  • a conversion mechanism (not shown) that converts the rotational motion of the rotating shaft 235 into the swinging rotational motion of the swinging rotating body 240.
  • Various techniques used for known scroll compressors may be used for the conversion mechanism. The principle of this embodiment is not limited to a specific structure of the conversion mechanism.
  • the rotating shaft 235 receives a driving force generated by a motor or other driving source.
  • the rotating shaft 235 is connected to the conversion mechanism described above within the cylindrical portion 234.
  • the rocking rotator 240 includes a first disk 241, a second disk 242, a movable scroll 243, and a large number of fins 244.
  • the first disk 241 is disposed next to the inner surface 267 of the ring wall 261.
  • the second disk 242 is disposed in parallel with the first disk 241 while forming a gap with the first disk 241.
  • the second disk 242 is disposed between the first disk 241 and the lid body 250.
  • the spiral movable scroll 243 protrudes from the second disk 242 toward the lid 250.
  • the plurality of fins 244 divide the space between the first disk 241 and the second disk 242 into a plurality of flow paths having a narrow cross section. A space formed between the plurality of fins 244 functions as a cooling channel for cooling the movable scroll 243.
  • the first disc 241 is connected to a conversion mechanism in the cylindrical portion 234.
  • the swinging rotation of the swinging rotator 240 is caused by the rotation of the rotating shaft 235.
  • the center of the movable scroll 243 rotates around the rotation center axis of the rotation shaft 235.
  • FIG. 7 is a schematic perspective view of the lid body 250.
  • the lid 250 will be described with reference to FIGS. 3, 6 and 7.
  • the lid body 250 includes a ring lid plate 251 and an accommodation wall 252.
  • the ring lid plate 251 and the accommodation wall 252 generally have a circular cross section.
  • the ring lid plate 251 is larger in diameter than the receiving wall 252.
  • the ring lid plate 251 includes an inner surface 253 and an outer surface 254 opposite to the inner surface 253.
  • the inner surface 253 is in close contact with the end surfaces of the upper arc wall 262 and the lower arc wall 263.
  • the housing wall 252 includes a peripheral wall 255 and an end wall 256.
  • the peripheral wall 255 protrudes from the outer surface 254 of the ring lid plate 251 in the axial direction of the rotary shaft 235.
  • the peripheral wall 255 defines an accommodation space having a substantially circular cross section in which the second disk 242 and the movable scroll 243 are accommodated.
  • the peripheral wall 255 surrounds the second disc 242.
  • the end wall 256 closes the end of the accommodation space defined by the peripheral wall 255.
  • the lid body 250 includes a spiral fixed scroll 257 that protrudes from the end wall 256 toward the second disk 242.
  • the fixed scroll 257 forms a spiral space complementary to the movable scroll 243.
  • the movable scroll 243 is inserted into the spiral space and meshes with the fixed scroll 257.
  • the air is compressed by the fixed scroll 257 and the movable scroll 243 to become compressed air.
  • a discharge port 258 is formed in the end wall 256.
  • the discharge port 258 is located substantially at the center of the fixed scroll 257.
  • the compressed air compressed in the scroll compressor 200 ⁇ / b> C is exhausted from the discharge port 258.
  • the lid 250 includes vertical walls 271 and 272.
  • the vertical wall 271 protrudes from the outer peripheral surface of the ring lid plate 251 toward the outer side in the radial direction of the ring lid plate 251, and is in close contact with the two end surfaces of the inflow wall 264.
  • an inflow port for cooling air that flows in to cool the swinging rotator 240 is formed.
  • the vertical wall 272 protrudes from the outer peripheral surface of the ring lid plate 251 toward the outer side in the radial direction of the ring lid plate 251 in the direction opposite to the vertical wall 271.
  • the vertical wall 272 is in close contact with the two end faces of the outflow wall 265. Thereby, the outflow port which discharges the cooling air after cooling the rocking
  • the lid body 250 includes an upper boundary wall 273 and a lower boundary wall 274.
  • a lower surface of the upper boundary wall 273 is a second upper surface 210 a of the second cavity forming surface 210.
  • the upper boundary wall 273 protrudes from the outer surface 254 and the end wall 256 of the ring lid plate 251, and defines an upper boundary of a region through which cooling air for cooling the fixed scroll 257 flows.
  • the lower boundary wall 274 is located below the upper boundary wall 273.
  • the upper surface of the lower boundary wall 274 is a second lower surface 210 c of the second cavity forming surface 210. Similar to the upper boundary wall 273, the lower boundary wall 274 protrudes from the outer surface 254 and the end wall 256 of the ring lid plate 251.
  • the lower boundary wall 274 defines the lower boundary of the region through which cooling air for cooling the fixed scroll 257 flows.
  • the lid body 250 includes a plurality of second fins 220C.
  • the plurality of fins 220 ⁇ / b> C protrude from the outer surface 254 of the ring lid plate 251 and the end wall 256 of the receiving wall 252 between the upper boundary wall 273 and the lower boundary wall 274. That is, the outer surface 254 of the ring lid plate 251 and the end wall 256 of the receiving wall 252 are the second side surface 210 b of the second cavity forming surface 210.
  • FIG. 8 is a schematic exploded perspective view of an air compressor 100D of the sixth embodiment.
  • the air compressor 100D will be described with reference to FIGS. 3, 4, 7 and 8.
  • symbol which is common in 4th Embodiment or 5th Embodiment means that the element to which the said code
  • the air compressor 100D includes the cooler 300B described in relation to the fourth embodiment.
  • the description of the fourth embodiment is applied to the cooler 300B. That is, the cooling duct 400 includes the first cavity forming surface 310 in the cooler 300B, the outer surface 254 and the end wall 256 of the ring lid plate 251 of the lid 250, the lower surface of the upper boundary wall 273, and the upper surface of the lower boundary wall 274. And formed by.
  • the air compressor 100D further includes the scroll compressor 200C described in relation to the fifth embodiment.
  • the description of the fifth embodiment is applied to the scroll compressor 200C.
  • the air compressor 100D further includes a partition wall 410D.
  • the partition wall 410D is configured by a heat insulating member.
  • the partition wall 410D is sandwiched between the leading edges of the first fins 336 of the cooler 300B and the leading edges of the second fins 220C of the scroll compressor 200C. Since the partition wall 410D has a lower thermal conductivity than the first fin 336 and the second fin 220C, it is difficult for heat to flow between the scroll compressor 200C and the cooler 300B.
  • the air compressor 100D further includes a supply pipe 420.
  • An insertion hole 413 is formed substantially at the center of the partition wall 410D.
  • the supply pipe 420 is inserted into the insertion hole 413.
  • the supply pipe 420 includes an upstream end 421 and a downstream end 422.
  • the upstream end 421 is inserted into the discharge port 258 (see FIG. 7) of the scroll compressor 200C.
  • the downstream end 422 is inserted into the inlet 338 (see FIG. 4) of the cooler 300B. Therefore, the compressed air is supplied from the scroll compressor 200C to the cooler 300B through the supply pipe 420. Since both ends of the supply pipe 420 are held by the scroll compressor 200 ⁇ / b> C and the cooler 300 ⁇ / b> B, excessively high stress does not occur at the discharge port 258 and the inflow port 338.
  • the flow path of the cooling air for cooling the movable scroll 243 is defined between the holding frame body 230 and the lid body 250.
  • the flow path of the cooling air for cooling the compressed air in the fixed scroll 257 (see FIG. 7) and the cooler 300B is formed in the first cavity forming surface 310 and the lid 250 formed in the cooler 300B. Defined by the second cavity forming surface 210. Therefore, the movable scroll 243 and the fixed scroll 257 disposed between the two flow paths are effectively cooled.
  • the fixed scroll and the movable scroll are effectively cooled by the arrangement of the fixed scroll and the movable scroll between the two flow paths.
  • a common blower may be used to supply cooling air to the two flow paths.
  • the designer can give the air compressor a small dimension.
  • an exemplary air compressor that supplies cooling air to two flow paths using a common blower will be described.
  • FIG. 9 is a schematic perspective view of an air compressor 100E according to the seventh embodiment.
  • the air compressor 100E is described with reference to FIGS.
  • symbol which is common in 6th Embodiment means that the element to which the said code
  • the air compressor 100E includes a scroll compressor 200C (see FIG. 9), a cooler 300B (see FIG. 9), a partition wall 410D (see FIG. 8), and a supply pipe 420. (See FIG. 8).
  • the description of the sixth embodiment is incorporated in these elements.
  • the air compression device 100 ⁇ / b> E includes a base 110. Legs 231 (see FIG. 8) of the holding frame 230 are defined on the base 110.
  • the cooler 300B is fixed to the lid 250 via a partition wall 410D (see FIG. 8). Therefore, the scroll compressor 200 ⁇ / b> C and the cooler 300 ⁇ / b> B are stably installed on the base 110.
  • the air compressor 100E includes a blower 430 and a first guide frame 440.
  • the blower 430 generates cooling air.
  • the first guide frame 440 is disposed between the blower 430 and the assembly formed by the scroll compressor 200C and the cooler 300B.
  • the first guide frame 440 traps the cooling air generated by the blower 430 between the blower 430 and the assembly formed by the scroll compressor 200C and the cooler 300B. That is, the first guide frame 440 constitutes an upstream guide portion that guides cooling air to the cooling duct 400.
  • the cooling air intensively flows into the two flow paths described with reference to FIG.
  • FIG. 10A is a schematic perspective view of the first guide frame 440.
  • FIG. 10B is a schematic rear view of the first guide frame 440.
  • the first guide frame 440 will be described with reference to FIGS. 8 to 10B.
  • the first guide frame 440 includes a mounting box 441 and a packing 442.
  • the mounting box 441 includes a peripheral wall 443, a first mounting wall 444, and a second mounting wall 445.
  • the peripheral wall 443 defines a substantially rectangular outer peripheral contour.
  • the blower 430 is attached to the first attachment wall 444.
  • a substantially circular opening 446 is formed in the first mounting wall 444.
  • the blower 430 sends cooling air into the first guide frame 440 through the opening 446.
  • the second mounting wall 445 is formed with a substantially rectangular opening 447.
  • the packing 442 is attached to the outer surface of the second attachment wall 445 and surrounds the opening 447.
  • the cooler 300 ⁇ / b> B includes an outer surface 339 opposite to the connection surface 333.
  • FIG. 8 shows points P01 and P02.
  • the point P01 indicates the upper end of the corner line between the upstream surface 331 and the outer surface 339.
  • the point P02 indicates the lower end of the corner line between the upstream surface 331 and the outer surface 339.
  • the inflow wall 264 of the scroll compressor 200 ⁇ / b> C includes an upstream surface 281, a concave surface 282, and a flat surface 283.
  • the upstream surface 281 is substantially flush with the upstream surface 331 of the cooler 300B.
  • the concave surface 282 is bent at a substantially right angle from the upstream surface 281 and serves as an inner peripheral surface of an inflow port into which cooling air for cooling the movable scroll 243 flows.
  • the flat surface 283 is bent at a right angle from the upstream surface 281 on the side opposite to the concave surface 282 and extends substantially vertically.
  • FIG. 8 shows points P03 and P04.
  • the point P03 indicates the lower end of the corner line between the flat surface 283 and the upstream surface 281.
  • the point P04 indicates the upper end of the corner line between the flat surface 283 and the upstream surface 281.
  • a rectangular frame region having corners at the points P01 to P04 is formed.
  • the two flow paths of the cooling air described in relation to the sixth embodiment have an opening formed by a rectangular frame region defined by the points P01 to P04 as an upstream end.
  • the rectangular area defined by the points P01 to P04 is complementary to the rectangular opening 447 formed in the second mounting wall 445 of the first guide frame 440.
  • the rectangular area defined by the points P01 to P04 may be fitted into the opening 447. Since the opening 447 is surrounded by the packing 442, the cooling air generated by the blower 430 can flow into the two flow paths without leaking from the first guide frame 440.
  • the designer may incorporate various devices, arrangements and structures for driving the compressor into the air compression device.
  • an exemplary drive technique for driving a compressor is described.
  • FIG. 11 is a schematic perspective view of an air compressor 100F of the eighth embodiment.
  • the air compression apparatus 100F will be described with reference to FIGS.
  • symbol which is common in 7th Embodiment means that the element to which the said code
  • the air compressor 100F includes a base 110 (see FIG. 11), a scroll compressor 200C (see FIG. 11), a cooler 300B (see FIG. 11), and a partition wall 410D. (See FIG. 8), a supply pipe 420 (see FIG. 8), a blower 430 (see FIG. 11), and a first guide frame 440 (see FIG. 11).
  • the description of the seventh embodiment is incorporated in these elements.
  • the scroll compressor 200C includes an intake duct 280.
  • the flow path defined by the intake duct 280 is a space in which the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) mesh (that is, a space surrounded by the holding frame body 230 and the lid body 250). It leads to.
  • the air compression apparatus 100F includes a filter duct 120.
  • the filter duct 120 includes a filter part 121 and a flexible duct 122.
  • the proximal end of the flexible duct 122 is connected to the intake duct 280 (see FIG. 9).
  • the filter part 121 is attached to the tip part of the flexible duct 122.
  • the scroll compressor 200 ⁇ / b> C is driven, a negative pressure environment is generated in the intake duct 280 and the flexible duct 122.
  • the air around the filter unit 121 flows into the space where the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) mesh with each other through the flexible duct 122 and the intake duct 280.
  • the filter unit 121 removes foreign substances from the air that has flowed in.
  • the fixed scroll 257 and the movable scroll 243 compress the air that flows in to generate compressed air.
  • the air compression device 100F includes a frame body 500.
  • the frame 500 includes a first column 510, a second column 520, a third column 530, a fourth column 540, a first beam member 550, a second beam member 560, and a bottom plate 570.
  • the bottom plate 570 has a substantially rectangular shape.
  • the bottom plate 570 lies below the base 110.
  • the first column 510, the second column 520, the third column 530, and the fourth column 540 extend upward from the four corners of the bottom plate 570.
  • the first support column 510 and the third support column 530 are arranged on one diagonal line of the bottom plate 570.
  • the second support column 520 and the fourth support column 540 are arranged on another diagonal line of the bottom plate 570.
  • the first beam member 550 extends substantially horizontally between the first column 510 and the second column 520.
  • the second beam member 560 extends substantially horizontally between the third support column 530 and the fourth support column 540.
  • the first beam member 550 extends substantially parallel to the second beam member 560.
  • the base 110 is fixed on the first beam member 550 and the second beam member 560.
  • the air compression device 100F includes a motor 610 and a transmission mechanism 620.
  • the base 110 includes an upper surface 111 and a lower surface 112 opposite to the upper surface 111.
  • the scroll compressor 200 ⁇ / b> C is fixed to the upper surface 111, while the motor 610 is fixed to the lower surface 112. Since the scroll compressor 200C and the motor 610 are arranged vertically, the designer who designs the air compressor 100F can give a small value to the area of the frame 500 on the horizontal plane.
  • the transmission mechanism 620 includes an upper pulley 621, a lower pulley 622, a tension pulley 623, and an endless belt 624.
  • the motor 610 includes a motor shaft 611 extending substantially parallel to the rotation shaft 235 of the scroll compressor 200C.
  • the upper pulley 621 is attached to the rotary shaft 235.
  • the lower pulley 622 is attached to the motor shaft 611.
  • Endless belt 624 surrounds upper pulley 621 and lower pulley 622.
  • the tension pulley 623 gives an appropriate tension to the endless belt 624.
  • ⁇ Ninth Embodiment> The designer can design various housings that protect the compressor and other devices using the frame described in the context of the eighth embodiment.
  • an exemplary frame structure is described.
  • FIG. 12A is a schematic perspective view of an air compression device 100G of the ninth embodiment.
  • FIG. 12B is another schematic perspective view of the air compression device 100G.
  • the air compressor 100G will be described with reference to FIGS. 8 and 11 to 12B.
  • the reference sign common to the eighth embodiment means that the element to which the reference sign is attached is functionally common to the eighth embodiment. Therefore, description of 8th Embodiment is used for the element to which the common code
  • the air compressor 100G includes a base 110 (see FIG. 11), a filter duct 120 (see FIG. 11), a scroll compressor 200C (see FIG. 11), and a cooler 300B. (See FIG. 11), partition wall 410D (see FIG. 8), supply pipe 420 (see FIG. 8), blower 430 (see FIG. 11), and first guide frame 440 (see FIG. 11). ), A motor 610 (see FIG. 11), and a transmission mechanism 620 (see FIG. 11). The description of the eighth embodiment is incorporated in these elements.
  • the air compressor 100G further includes a housing 700.
  • the frame 500 described with reference to FIG. 11 is used as a part of the housing 700.
  • the housing 700 includes a top plate 710.
  • the top plate 710 is an upper end of the first column 510 (see FIG. 11), the second column 520 (see FIG. 11), the third column 530 (see FIG. 11), and the fourth column 540 (see FIG. 11). Installed. Accordingly, the top plate 710 lies substantially horizontally on the bottom plate 570 (see FIG. 12B) and the base 110 (see FIG. 11).
  • the housing 700 includes a right panel 720 (see FIG. 12A) and a left panel 730 (see FIG. 12B).
  • the right panel 720 is a space surrounded by a bottom plate 570 (see FIG. 12B), a top plate 710 (see FIG. 12A), a first column 510 (see FIG. 11), and a fourth column 540 (see FIG. 11).
  • the left panel 730 closes a space surrounded by the bottom plate 570, the top plate 710, the second support column 520 (see FIG. 11), and the third support column 530 (see FIG. 11).
  • the housing 700 includes an upper cover 740 and a lower cover 750.
  • the upper cover 740 closes a space surrounded by the top plate 710, the first beam member 550 (see FIG. 11), the first support column 510 (see FIG. 11), and the second support column 520 (see FIG. 11).
  • the blower 430 (see FIG. 11) and the first guide frame 440 (see FIG. 11) are disposed between the upper cover 740 and the scroll compressor 200C.
  • the lower cover 750 is surrounded by a bottom plate 570 (see FIG. 11), a first beam member 550 (see FIG. 11), a first support column 510 (see FIG. 11), and a second support column 520 (see FIG. 11). Block the space.
  • the lower cover 750 includes a holding frame 751 and a plurality of flange plates 752.
  • the holding frame 751 is formed from a plate material along the bottom plate 570, the first beam member 550, the first support column 510, and the second support column 520.
  • the plurality of ribs 752 are held by a holding frame 751.
  • Each of the plurality of ribs 752 extends substantially horizontally in a space surrounded by the holding frame 751.
  • the plurality of ribs 752 are aligned in the vertical direction.
  • the scroll compressor 200 ⁇ / b> C sucks through the filter duct 120. Air outside the casing 700 (outside air) is sucked into the filter duct 120 through a gap formed between the plurality of ribs 752. Similarly, the blower 430 also sucks outside air through a gap formed between the plurality of ribs 752 and generates cooling air.
  • the air compression device 100G includes a cooling device 810, a dehumidifying device 820, and a control panel 830.
  • the cooling device 810 is attached to the housing 700 on the opposite side of the upper cover 740.
  • the dehumidifying device 820 and the control panel 830 are attached to the housing 700 on the opposite side of the lower cover 750.
  • Compressed air generated by the scroll compressor 200C (see FIG. 11) is supplied to the cooling device 810 through the cooler 300B (see FIG. 11). Since the cooling device 810 is disposed outside the housing 700, the compressed air is effectively cooled by the outside air in the cooling device 810. Thereafter, the compressed air is supplied to the dehumidifier 820. The dehumidifier 820 dehumidifies the compressed air. The dehumidified compressed air is supplied to a tank for storing the compressed air and various pneumatic devices.
  • the control panel 830 controls operations of the motor 610 (see FIG. 11), the blower 430 (see FIG. 11), and other devices.
  • ⁇ Tenth Embodiment> The designer may provide the housing with various structures for exhausting the cooling air generated by the blower.
  • an exemplary frame structure having an exhaust function will be described.
  • FIG. 13 is a schematic perspective view of the exhaust structure 130 of the tenth embodiment.
  • the exhaust structure 130 will be described with reference to FIGS. 8, 11, 12A and 13.
  • the exhaust structure 130 includes an exhaust plate 760 and a second guide frame 770.
  • the exhaust plate 760 is a space surrounded by a bottom plate 570 (see FIG. 11), a top plate 710 (see FIG. 12A), a third support column 530 (see FIG. 11), and a fourth support column 540 (see FIG. 11). Close partly.
  • the exhaust plate 760 is located on the side opposite to the upper cover 740 (see FIG. 12A). The exhaust plate 760 is used as a part of the housing 700 (see FIG. 12A).
  • the exhaust plate 760 includes an outer surface 761 and an inner surface 762 opposite to the outer surface 761.
  • the outer surface 761 forms a part of the outer surface of the housing 700 (see FIG. 12A).
  • Inner surface 762 partially defines an accommodation space in which scroll compressor 200C (see FIG. 11) is accommodated.
  • the cooling device 810 is attached to the outer surface 761.
  • the second guide frame 770 is attached to the inner surface 762.
  • the second guide frame 770 includes a box portion 771 and a packing 772.
  • Box portion 771 includes a peripheral wall 773 and an opposing wall 774.
  • the peripheral wall 773 protrudes inward from the exhaust plate 760.
  • the peripheral wall 773 includes a downstream edge 775 and a rectangular edge 776.
  • the downstream edge 775 is adjacent to the exhaust plate 760.
  • a rectangular edge 776 surrounds the opposing wall 774.
  • the facing wall 774 faces the exhaust plate 760.
  • a substantially rectangular opening 777 is formed in the opposing wall 774.
  • the packing 772 is attached to the opposing wall 774 along the edge that defines the opening 777.
  • the second guide frame 770 is connected to the scroll compressor 200C and the cooler 300B so that the packing 772 surrounds the downstream ends of the two flow paths of the cooling air described with reference to FIG.
  • FIG. 14 is a schematic perspective view of the air compressor 100G.
  • the cooling device 810 has been removed from the air compression device 100G shown in FIG.
  • the air compressor 100G will be described with reference to FIGS. 12B to 14.
  • an exhaust port 769 is formed in the exhaust plate 760.
  • the exhaust port 769 extends in the horizontal direction.
  • a downstream edge 775 (see FIG. 13) of the second guide frame 770 surrounds the exhaust port 769.
  • the cooling device 810 includes a meandering pipe line 811 into which compressed air flows.
  • the pipe line 811 extends substantially straight in the horizontal direction and bends repeatedly in the vertical direction.
  • the exhaust port 769 opens toward the extended region of the pipe line 811 (see FIG. 12B). Therefore, the pipe line 811 is exhausted through the opening 777 (see FIG. 13) of the second guide frame 770 (see FIG. 13) and the exhaust port 769 (see FIG. 14) of the exhaust plate 760 (see FIG. 14). Exposed to the cooled air. As a result, the compressed air flowing along the meandering pipe 811 is effectively cooled.
  • a pipe member having low rigidity is suitable in an environment where vibration occurs.
  • the flexible tube member will swing, so the designer may select a tube member with high stiffness.
  • the exhaust principle described in connection with the tenth embodiment does not create a strong air flow that circulates within the housing of the air compressor, so the designer utilizes a tube member that is at least partially flexible. May be.
  • an exemplary frame structure that guides compressed air using a flexible resin tube will be described.
  • FIG. 15 is a schematic perspective view of the air compressor 100G.
  • the air compressor 100G will be described with reference to FIGS. 12B and 15.
  • the air compression device 100G includes a resin pipe 140.
  • the resin pipe 140 is connected to the check valve 340 of the cooler 300B and the meandering pipe 811 (see FIG. 12B) of the cooling device 810 (see FIG. 12B). Therefore, the compressed air is guided from the cooler 300 ⁇ / b> B to the cooling device 810 by the resin tube 140.
  • the resin tube 140 may be formed of polytetrafluoroethylene or other suitable heat resistant resin.
  • the resin tube 140 is extended outside the region where the cooling air flows. Therefore, the resin tube 140 is not easily shaken by the cooling air.
  • the principle of the present embodiment is not limited to a specific material used for the resin tube 140.
  • Designers can design various air compression devices according to the design principles described in relation to the various embodiments described above. Some of the various features described in connection with one of the various embodiments described above may be applied to the air compression apparatus described in connection with another other embodiment.
  • An air compression device includes a compressor that generates compressed air, and a cooler that forms an internal space into which the compressed air flows.
  • the cooler includes a first cavity forming surface provided with a first fin.
  • the compressor includes a second cavity forming surface provided with second fins.
  • the first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler.
  • the first fin and the second fin protrude into the cooling duct.
  • the compressed air flows into the internal space of the cooler. Since the first cavity forming surface of the cooler and the second cavity forming surface of the compressor form a cooling duct that allows the flow of cooling air, a large space is required to secure a space for cooling the cooler and the compressor. Absent. Since both the first fin provided on the first cavity forming surface and the second fin provided on the second cavity forming surface protrude into the cooling duct, the first fin is forced by the cooling air supplied to the cooling duct. And efficiently cooled. Since the first fin and the second fin are cooled by the cooling air flowing in the common cooling duct, the designer does not have to provide the air compressor with a complicated flow path of the cooling air.
  • this air compression apparatus includes a compressor that generates compressed air and a cooler that forms an internal space into which the compressed air flows.
  • the cooler includes a first cavity forming surface located at a portion facing the compressor, and a first fin provided on the first cavity forming surface.
  • the compressor includes a second cavity forming surface facing the first cavity forming surface of the cooler, and a second fin provided on the second cavity forming surface.
  • the first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler. The first fin and the second fin protrude into the cooling duct.
  • the first cavity forming surface and the second cavity forming surface are disposed at positions facing each other, at least two of the cooling ducts are formed by the first cavity forming surface and the second cavity forming surface. Side surfaces can be configured, and this cooling duct can be configured easily.
  • the air compression device may further include a partition wall disposed between the first fin and the second fin.
  • the partition wall may partition the cooling air flow space in the cooling duct into a first flow space from which the first fin protrudes and a second flow space from which the second fin protrudes.
  • the partition wall is disposed between the first fin and the second fin, the cooling air in the cooling duct is rectified. Therefore, since the flow resistance of the cooling air in the cooling duct can be reduced, the compressed air and the compressor in the cooler are efficiently cooled.
  • the partition wall may have a lower thermal conductivity than the first fin and the second fin.
  • the partition wall since the partition wall has a lower thermal conductivity than the first fin and the second fin, the amount of heat passing between the compressor and the cooler is reduced.
  • the air compression device may further include a blower that generates the cooling air and an upstream guide portion that guides the cooling air to the cooling duct.
  • the upstream guide unit guides the cooling air generated by the blower to the cooling duct, so that the compressed air and the compressor in the cooler are efficiently cooled.
  • the compressor may be a scroll compressor having a fixed scroll and a movable scroll that generates the compressed air in cooperation with the fixed scroll.
  • the scroll compressor may define a cooling flow path for cooling the movable scroll.
  • the fixed scroll and the movable scroll may be disposed between the cooling duct and the cooling flow path.
  • the upstream guide portion may include a first guide frame that surrounds an upstream end of the cooling duct and an upstream end of the cooling flow path.
  • the upstream guide portion includes the first guide frame that surrounds the upstream end of the cooling duct and the upstream end of the cooling flow path, the cooling air generated by the blower flows into the cooling duct and the cooling flow path. be introduced. Since the fixed scroll and the movable scroll are disposed between the cooling duct and the cooling flow path, the compressed air, the fixed scroll, and the movable scroll in the cooler are efficiently cooled.
  • the air compressor is disposed between a casing formed with an exhaust port through which the cooling air is exhausted, the exhaust port and the scroll compressor, and a downstream end of the cooling duct and the cooling flow.
  • a second guide frame that guides the cooling air exhausted from the downstream end of the passage to the exhaust port.
  • the second guide frame may include a packing that surrounds the cooling duct and the downstream end of the cooling flow path, and a downstream edge that surrounds the exhaust port.
  • the packing of the second guide frame surrounds the downstream end of the cooling duct and the downstream end of the cooling flow path, and the downstream edge of the second guide frame surrounds the exhaust port. The air is efficiently exhausted from the housing.
  • the housing may include a first wall and a second wall opposite to the first wall.
  • the blower and the first guide frame may be disposed between the first wall and the scroll compressor.
  • the second guide frame may be attached to the second wall.
  • the blower and the first guide frame are disposed between the first wall and the scroll compressor, and the second guide frame is attached to the second wall, the cooling generated by the blower. Air is efficiently exhausted from the exhaust port through the first guide frame, the cooling duct, the cooling flow path, and the second guide frame.
  • the air compressor is at least partially capable of guiding the compressed air from the cooler including a pipe line exposed to the cooling air exhausted from the exhaust port and the cooler to the pipe line. And a flexible guide tube.
  • the guide tube since the guide tube is at least partially flexible, the guide tube can be deformed according to the vibration generated in the air compression device. It becomes difficult to give a destructive load to the part connected to the.
  • the above-described air compressor can effectively cool both the cooler and the compressor without requiring a complicated flow path of the cooling air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Disclosed is an air compression device provided with a compressor that compresses air and generates compressed air, and a cooler that defines an internal space, into which the compressed air flows. The cooler has a first cavity-forming surface provided with a first fan. The compressor has a second cavity-forming surface provided with a second fan. The first cavity-forming surface and the second cavity-forming surface form a cooling duct that permits the flow of a cooling air, which draws heat from the compressor and the cooler. The first fan and the second fan protrude into the cooling duct.

Description

空気圧縮装置Air compressor
 本発明は、圧縮空気を生成する空気圧縮装置に関する。 The present invention relates to an air compression device that generates compressed air.
 圧縮空気を生成する空気圧縮装置は、様々な用途に利用される。車両(たとえば、鉄道車両)に搭載された空気圧縮装置によって生成された圧縮空気は、車両に制動力を作用させるブレーキ装置や車両の扉を開閉駆動する空圧機器に供給されることもある。 Compressed air generating device is used for various purposes. Compressed air generated by an air compressor mounted on a vehicle (for example, a railway vehicle) may be supplied to a brake device that applies a braking force to the vehicle or a pneumatic device that opens and closes the door of the vehicle.
 特許文献1及び2は、空気圧縮装置の設計に関して、圧縮空気を生成するコンプレッサの隣に冷却器を配置することを提案する。圧縮空気は、コンプレッサから冷却器へ供給される。冷却器は、圧縮空気を効率的に冷却することができる。 Patent Documents 1 and 2 propose to arrange a cooler next to a compressor that generates compressed air with respect to the design of the air compressor. Compressed air is supplied from the compressor to the cooler. The cooler can cool the compressed air efficiently.
 冷却器の温度は、冷却器の内部を流れる圧縮空気によって、高くなる。特許文献1及び2は、冷却器からの放熱を促すために冷却器にフィンを設けることを提案する。特許文献1及び2のフィンは、コンプレッサとは反対方向に突出される。空気圧縮装置の外部から取り込まれた外気を冷却器のフィンの周囲に導き、冷却器のフィンからの強制的な放熱を生じさせるためには、外気の流動経路は、コンプレッサを冷却するための冷却空気の流動経路とは別異に設けられる必要がある。この場合、空気圧縮装置は、構造的に複雑化する。設計者は、冷却器からの放熱を、冷却器のフィンからの自然放熱に頼ることもできる。この場合、冷却器のフィン用の別異の流動経路が必要とされない一方で、冷却器からの放熱効率は低くなる。 The temperature of the cooler is raised by the compressed air flowing inside the cooler. Patent Documents 1 and 2 propose to provide fins in the cooler to promote heat dissipation from the cooler. The fins of Patent Documents 1 and 2 protrude in the opposite direction to the compressor. In order to guide the outside air taken in from the outside of the air compressor around the fins of the cooler and to generate forced heat dissipation from the fins of the cooler, the flow path of the outside air is used to cool the compressor. It must be provided separately from the air flow path. In this case, the air compressor is structurally complicated. Designers can rely on natural heat dissipation from the fins of the cooler for heat dissipation from the cooler. In this case, a separate flow path for the fins of the cooler is not required, but the heat dissipation efficiency from the cooler is low.
特開平8-261182号公報JP-A-8-261182 特開2003-90291号公報JP 2003-90291 A
 本発明の目的は、冷却空気の複雑な流動経路を要することなく、冷却器及びコンプレッサをともに効果的に冷却することができる冷却構造を有する空気圧縮装置を提供することである。 An object of the present invention is to provide an air compression apparatus having a cooling structure capable of effectively cooling both a cooler and a compressor without requiring a complicated flow path of cooling air.
 本発明の一局面に係る空気圧縮装置は、圧縮空気を生成するコンプレッサと、前記圧縮空気が流入する内部空間を形成する冷却器と、を備える。前記冷却器は、第1フィンが設けられた第1空洞形成面を含む。前記コンプレッサは、第2フィンが設けられた第2空洞形成面を含む。前記第1空洞形成面及び前記第2空洞形成面は、前記コンプレッサと前記冷却器とから熱を奪う冷却空気の流動を許容する冷却ダクトを形成する。前記第1フィン及び前記第2フィンは、前記冷却ダクト内に突出している。 An air compression device according to one aspect of the present invention includes a compressor that generates compressed air, and a cooler that forms an internal space into which the compressed air flows. The cooler includes a first cavity forming surface provided with a first fin. The compressor includes a second cavity forming surface provided with second fins. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler. The first fin and the second fin protrude into the cooling duct.
第1実施形態の空気圧縮装置の概念図である。It is a conceptual diagram of the air compressor of 1st Embodiment. 図1に示される空気圧縮装置に利用可能なフィンの概略的な斜視図である(第2実施形態)。It is a schematic perspective view of the fin which can be utilized for the air compression apparatus shown by FIG. 1 (2nd Embodiment). 図1に示される空気圧縮装置に利用可能なフィンの概略的な斜視図である(第2実施形態)。It is a schematic perspective view of the fin which can be utilized for the air compression apparatus shown by FIG. 1 (2nd Embodiment). 第3実施形態の空気圧縮装置の概念図である。It is a conceptual diagram of the air compressor of 3rd Embodiment. 第4実施形態の冷却器の概略的な斜視図である。It is a schematic perspective view of the cooler of a 4th embodiment. 図4に示される冷却器の概略的な断面図である。FIG. 5 is a schematic cross-sectional view of the cooler shown in FIG. 4. 第5実施形態のスクロールコンプレッサの概略的な展開斜視図である。It is a general | schematic expansion | deployment perspective view of the scroll compressor of 5th Embodiment. 図6に示されるスクロールコンプレッサの蓋体の概略的な斜視図である。It is a schematic perspective view of the cover body of the scroll compressor shown by FIG. 第6実施形態の空気圧縮装置の概略的な展開斜視図である。It is a general | schematic expansion | deployment perspective view of the air compressor of 6th Embodiment. 第7実施形態の空気圧縮装置の概略的な斜視図である。It is a schematic perspective view of the air compressor of 7th Embodiment. 図9に示される空気圧縮装置の案内枠の概略的な斜視図である。FIG. 10 is a schematic perspective view of a guide frame of the air compression device shown in FIG. 9. 図10Aに示される案内枠の概略的な背面図である。FIG. 10B is a schematic rear view of the guide frame shown in FIG. 10A. 第8実施形態の空気圧縮装置の概略的な斜視図である。It is a schematic perspective view of the air compressor of 8th Embodiment. 第9実施形態の空気圧縮装置の概略的な斜視図である。It is a schematic perspective view of the air compressor of 9th Embodiment. 図12Aに示される空気圧縮装置の他のもう1つの概略的な斜視図である。FIG. 12B is another schematic perspective view of the air compression device shown in FIG. 12A. 第10実施形態の排気構造の概略的な斜視図である。It is a schematic perspective view of the exhaust structure of 10th Embodiment. 図13に示される排気構造を有する空気圧縮装置の概略的な斜視図である。It is a schematic perspective view of the air compression apparatus which has the exhaust structure shown by FIG. 図14に示される空気圧縮装置の概略的な斜視図である(第11実施形態)。It is a schematic perspective view of the air compression apparatus shown by FIG. 14 (11th Embodiment).
 <第1実施形態>
 上述の従来技術の下では、圧縮空気が流動する冷却器の本体部は、冷却器のフィンとコンプレッサのフィンとの間に位置する。したがって、共通の流動経路を通じて供給された冷却空気が、冷却器のフィンとコンプレッサのフィンとを冷却するならば、冷却器の本体部は、冷却空気の流れにぶつかり、たとえば、乱流を引き起こす。このことは、冷却効率を低減させる。加えて、冷却器のフィンは、コンプレッサのフィンから離れているので、これらのフィンを十分に冷やすために、大きな送風能力を有する送風装置が必要とされる。本発明者等は、小型の送風装置が用いられたとしても、コンプレッサだけでなく圧縮空気をも効率的に冷却するための冷却技術を開発した。第1実施形態において、例示的な冷却技術が説明される。
<First Embodiment>
Under the prior art described above, the body of the cooler through which the compressed air flows is located between the fins of the cooler and the fins of the compressor. Thus, if the cooling air supplied through a common flow path cools the cooler fins and the compressor fins, the body of the cooler will collide with the flow of cooling air and cause turbulence, for example. This reduces the cooling efficiency. In addition, since the fins of the cooler are separated from the fins of the compressor, an air blower having a large air blowing capacity is required to cool these fins sufficiently. The present inventors have developed a cooling technique for efficiently cooling not only the compressor but also the compressed air even if a small blower is used. In the first embodiment, an exemplary cooling technique is described.
 図1は、第1実施形態の空気圧縮装置100の概念図である。図1を参照して、空気圧縮装置100が説明される。 FIG. 1 is a conceptual diagram of an air compressor 100 according to the first embodiment. With reference to FIG. 1, an air compressor 100 is described.
 空気圧縮装置100は、コンプレッサ200と、冷却器300と、を備える。冷却器300は、コンプレッサ200の隣に配置される。そして、冷却器300は、コンプレッサ200に取り付けられている。コンプレッサ200は、冷却器300に対向する部位に位置する第2空洞形成面210を含む。 The air compression device 100 includes a compressor 200 and a cooler 300. The cooler 300 is disposed next to the compressor 200. The cooler 300 is attached to the compressor 200. The compressor 200 includes a second cavity forming surface 210 located at a portion facing the cooler 300.
冷却器300は、コンプレッサ200の第2空洞形成面210に対向する部位に位置する第1空洞形成面310を含む。第2空洞形成面210の上側には、上接続面224が形成され、下側には下接続面225が形成されている。第1空洞形成面310の上側には上接続面334が形成され、下側には下接続面335が形成されている。そして、コンプレッサ200の上接続面224と、冷却器300の上接続面334とが互いに結合されている。また、コンプレッサ200の下接続面225と、冷却器300の下接続面335とが互いに結合されている。  The cooler 300 includes a first cavity forming surface 310 located at a portion facing the second cavity forming surface 210 of the compressor 200. An upper connection surface 224 is formed on the upper side of the second cavity forming surface 210, and a lower connection surface 225 is formed on the lower side. An upper connection surface 334 is formed on the upper side of the first cavity forming surface 310, and a lower connection surface 335 is formed on the lower side. The upper connection surface 224 of the compressor 200 and the upper connection surface 334 of the cooler 300 are coupled to each other. Further, the lower connection surface 225 of the compressor 200 and the lower connection surface 335 of the cooler 300 are coupled to each other. *
第2空洞形成面210及び第1空洞形成面310は、協働し水平方向に延びる空間を有する冷却ダクト400を規定する。すなわち、第2空洞形成面210及び第1空洞形成面310は、いずれもダクトを半割りした形状のものである。冷却ダクト400内の空間の形状はどのような形状でもよいが、第1実施形態では、断面矩形状に形成されている。このため、第1空洞形成面310は、下を向いた第1上面310aと、第1上面310aの奥端部から下方に延びる第1側面310bと、第1側面310bの下端に繋がり、上を向いた第1下面310cとを有する。第1側面310bは、第1上面310a及び第1下面310Cのそれぞれよりも長い。しかしながら、第1側面310bは、第1上面310a及び第1下面310Cよりも短くてもよい。この場合、フィンは、第1側面310bから突出するものとなされているが、第1上面310a及び第1下面310cのうち一方から突出していてもよい。また第2空洞形成面210は、下を向いた第2上面210aと、第2上面210aの奥端部から下方に延びる第2側面210bと、第2側面210bの下端に繋がり、上を向いた第2下面210cとを有する。第2側面210bは、第2上面210a及び第1下面210Cのそれぞれよりも長い。しかしながら、第1側面310bは、第1上面310a及び第1下面310Cのそれぞれよりも短くてもよい。この場合、フィンは、第2側面210bから突出するものとなされているが、第1上面310a及び第1下面310cのうち一方から突出していてもよい。この場合、第1空洞形成面310においてはフィンが第1側面310bに設けられ、第2空洞形成面210においてはフィンが第2上面210aに設けられるものなども含まれる。 The second cavity forming surface 210 and the first cavity forming surface 310 define a cooling duct 400 that cooperates and has a space extending in the horizontal direction. That is, each of the second cavity forming surface 210 and the first cavity forming surface 310 has a shape in which the duct is divided in half. Although the shape of the space in the cooling duct 400 may be any shape, in the first embodiment, the space is formed in a rectangular shape. For this reason, the first cavity forming surface 310 is connected to the first upper surface 310a facing downward, the first side surface 310b extending downward from the back end of the first upper surface 310a, and the lower end of the first side surface 310b. And a first lower surface 310c facing. The first side surface 310b is longer than each of the first upper surface 310a and the first lower surface 310C. However, the first side surface 310b may be shorter than the first upper surface 310a and the first lower surface 310C. In this case, the fin protrudes from the first side surface 310b, but may protrude from one of the first upper surface 310a and the first lower surface 310c. The second cavity forming surface 210 is connected to the second upper surface 210a facing downward, the second side surface 210b extending downward from the back end of the second upper surface 210a, and the lower end of the second side surface 210b, and facing upward. A second lower surface 210c. The second side surface 210b is longer than each of the second upper surface 210a and the first lower surface 210C. However, the first side surface 310b may be shorter than each of the first upper surface 310a and the first lower surface 310C. In this case, the fin protrudes from the second side surface 210b, but may protrude from one of the first upper surface 310a and the first lower surface 310c. In this case, the first cavity forming surface 310 includes a fin provided on the first side surface 310b, and the second cavity forming surface 210 includes a fin provided on the second upper surface 210a.
 なお、冷却ダクト400内の空間が、例えば断面円形状に形成されているならば、第1空洞形成面310および第2空洞形成面210は、湾曲状に形成されることになる。この場合、フィンは、冷却ダクト400内の空間の断面内の中心に向かって突出していてもよい。或いは、冷却ダクト400内の空間が、例えば断面三角形状に形成されているならば、第1空洞形成面310および第2空洞形成面210は、傾斜して形成されることになる。この場合、第1空洞形成面310および第2空洞形成面210は、傾斜面同士が対向するものとなされる。また、この場合、フィンは、冷却ダクト400の中心に向かって突出していてもよい。 In addition, if the space in the cooling duct 400 is formed in, for example, a circular cross section, the first cavity forming surface 310 and the second cavity forming surface 210 are formed in a curved shape. In this case, the fin may protrude toward the center in the cross section of the space in the cooling duct 400. Alternatively, if the space in the cooling duct 400 is formed in, for example, a triangular shape, the first cavity forming surface 310 and the second cavity forming surface 210 are formed to be inclined. In this case, the inclined surfaces of the first cavity forming surface 310 and the second cavity forming surface 210 are opposed to each other. In this case, the fin may protrude toward the center of the cooling duct 400.
 さらに、第1空洞形成面310および第2空洞形成面210は、本実施形態のように、正対しているものであってもよいが、正対していなくても、一乃至複数の面(平面、傾斜面、湾曲面を含む)のうちの少なくとも一部分が互いに向き合うものであればよく、各空洞形成面210,310の間に他の部材が介在するものであってもよい。また、本実施形態では、冷却ダクト400は、第1空洞形成面310および第2空洞形成面210から構成されているが、他の部材を含むものであってもよい。 Further, the first cavity forming surface 310 and the second cavity forming surface 210 may be facing each other as in the present embodiment, but even if they are not facing each other, one or more surfaces (planes) , Including the inclined surface and the curved surface), and other members may be interposed between the cavity forming surfaces 210 and 310. In the present embodiment, the cooling duct 400 includes the first cavity forming surface 310 and the second cavity forming surface 210, but may include other members.
 また、第1空洞形成面310および第2空洞形成面210は、本実施形態のように、互いに対向する位置に配置されているものであってもよいが、第1空洞形成面310および第2空洞形成面210が同一平面乃至は略同一平面上に近接配置しているものであってもよい。例えば冷却ダクト400内の空間が、断面矩形状に形成されているならば、四周内側面のうちの一内側面に第1空洞形成面310および第2空洞形成面210が隣接して配置されているものであってもよい。この場合、他の内側面については他の部材によって構成されるものであってもよい。 Further, the first cavity forming surface 310 and the second cavity forming surface 210 may be arranged at positions facing each other as in the present embodiment, but the first cavity forming surface 310 and the second cavity forming surface 210 The cavity forming surfaces 210 may be arranged close to each other on the same plane or substantially the same plane. For example, if the space in the cooling duct 400 is formed in a rectangular cross section, the first cavity forming surface 310 and the second cavity forming surface 210 are disposed adjacent to one inner surface of the four inner circumferential surfaces. It may be. In this case, other inner surfaces may be constituted by other members.
 コンプレッサ200は、空気を圧縮し、圧縮空気を生成する。コンプレッサ200は、一般的なスクロール圧縮機であってもよい。代替的に、コンプレッサ200は、一般的なロータリ圧縮機であってもよい。更に代替的に、コンプレッサ200は、一般的なスイング圧縮機であってもよい。更に代替的に、コンプレッサ200は、一般的な往復動式圧縮機であってもよい。本実施形態の原理は、コンプレッサ200の特定の構造に限定されない。 The compressor 200 compresses air to generate compressed air. The compressor 200 may be a general scroll compressor. Alternatively, the compressor 200 may be a general rotary compressor. Further alternatively, the compressor 200 may be a general swing compressor. Further alternatively, the compressor 200 may be a typical reciprocating compressor. The principle of this embodiment is not limited to a specific structure of the compressor 200.
 コンプレッサ200から吐出された圧縮空気は、冷却器300へ供給される。冷却器300内には、圧縮空気が流入する内部空間301が形成されている。圧縮空気は、冷却ダクト400を横切って延びる図示省略の管部材を通じて、コンプレッサ200から冷却器300の内部空間301へ供給されてもよい。代替的に、圧縮空気は、冷却ダクト400を迂回する管部材を通じて、コンプレッサ200から冷却器300の内部空間301へ供給されてもよい。本実施形態の原理は、コンプレッサ200から冷却器300への圧縮空気の特定の供給経路に限定されない。 Compressed air discharged from the compressor 200 is supplied to the cooler 300. In the cooler 300, an internal space 301 into which compressed air flows is formed. The compressed air may be supplied from the compressor 200 to the internal space 301 of the cooler 300 through a pipe member (not shown) extending across the cooling duct 400. Alternatively, the compressed air may be supplied from the compressor 200 to the internal space 301 of the cooler 300 through a pipe member that bypasses the cooling duct 400. The principle of the present embodiment is not limited to a specific supply path of compressed air from the compressor 200 to the cooler 300.
 冷却空気は、冷却ダクト400へ供給される。シロッコファン装置、ターボファン装置、クロスフローファン装置やプロペラファン装置といった様々な種類の送風装置が、冷却ダクト400への冷却空気の供給に用いられてもよい。本実施形態の原理は、冷却ダクト400への冷却空気の特定の供給技術に限定されない。なお、送風装置の駆動部(モータなど)を、コンプレッサなど他の装置の駆動部と共用させるものであってもよいが、送風装置の駆動部を他の装置の駆動部と別個独立に設けることにより、他の装置が停止している間もファンを回転させて冷却ダクトへ冷却空気を送ることができ、冷却効率を高めることができる。 Cooling air is supplied to the cooling duct 400. Various types of blower devices such as a sirocco fan device, a turbo fan device, a cross flow fan device, and a propeller fan device may be used to supply cooling air to the cooling duct 400. The principle of the present embodiment is not limited to a specific technique for supplying cooling air to the cooling duct 400. In addition, although the drive part (motor etc.) of an air blower may be shared with the drive part of other apparatuses, such as a compressor, the drive part of an air blower is provided separately from the drive part of another apparatus. Thus, the cooling air can be sent to the cooling duct by rotating the fan while the other devices are stopped, and the cooling efficiency can be improved.
 冷却器300は、第1空洞形成面310の第1側面310bからコンプレッサ200の第2空洞形成面210における第2側面210bに向けて突出する第1フィン320を更に含む。コンプレッサ200は、第2空洞形成面210の第2側面210bから冷却器300の第1空洞形成面310における第1側面310bに向けて突出する第2フィン220を更に含む。フィン320,220はともに、冷却ダクト400内で突出する。 The cooler 300 further includes first fins 320 protruding from the first side surface 310b of the first cavity forming surface 310 toward the second side surface 210b of the second cavity forming surface 210 of the compressor 200. The compressor 200 further includes a second fin 220 that protrudes from the second side surface 210 b of the second cavity forming surface 210 toward the first side surface 310 b of the first cavity forming surface 310 of the cooler 300. Both the fins 320 and 220 protrude in the cooling duct 400.
 冷却空気は、冷却ダクト400内に流入する。冷却空気は、冷却ダクト400内を流れる間、フィン320,220から熱を奪う。この結果、冷却器300及びコンプレッサ200はともに、冷却される。 Cooling air flows into the cooling duct 400. The cooling air takes heat from the fins 320 and 220 while flowing in the cooling duct 400. As a result, both the cooler 300 and the compressor 200 are cooled.
 冷却ダクト400が、冷却器300に形成された第1空洞形成面310と、コンプレッサ200に形成された第2空洞形成面210とによって形成されているので、空気圧縮装置100は、これらを冷却するための広い空間を必要としない。したがって、設計者は、空気圧縮装置100に小さな寸法を与えることができる。 Since the cooling duct 400 is formed by the first cavity forming surface 310 formed in the cooler 300 and the second cavity forming surface 210 formed in the compressor 200, the air compressor 100 cools them. Does not require a large space for. Thus, the designer can give the air compressor 100 a small dimension.
 <第2実施形態>
 空気圧縮装置を設計する設計者は、第1実施形態に関連して説明されたフィンに様々な形状を与えてもよい。第2実施形態において、フィンの例示的な形状が説明される。
Second Embodiment
Designers designing air compression devices may give the fins described in connection with the first embodiment various shapes. In the second embodiment, exemplary shapes of the fins are described.
 図2A及び図2Bは、フィン101,102の概略的な斜視図である。図1乃至図2Bを参照して、フィン101,102が説明される。 2A and 2B are schematic perspective views of the fins 101 and 102. FIG. The fins 101 and 102 will be described with reference to FIGS. 1 to 2B.
 空気圧縮装置(図示せず)を設計する設計者は、フィン101,102の形状を、図1を参照して説明された第2フィン220,第1フィン320に与えてもよい。代替的に、設計者は、フィン101,102を、図2を参照して説明された冷却ダクト400Aの内壁面から突出させてもよい。 A designer who designs an air compression device (not shown) may give the shape of the fins 101 and 102 to the second fin 220 and the first fin 320 described with reference to FIG. Alternatively, the designer may project the fins 101 and 102 from the inner wall surface of the cooling duct 400A described with reference to FIG.
 図2Aに示されるように、フィン101は、冷却空気の流動方向に略平行に延びる平坦な面を有する。したがって、冷却空気は、フィン101の平坦な面に沿って、円滑に流れることができる。 As shown in FIG. 2A, the fin 101 has a flat surface extending substantially parallel to the flow direction of the cooling air. Therefore, the cooling air can smoothly flow along the flat surface of the fin 101.
 図2Bに示されるように、フィン102は、冷却空気の流動方向に延びる波打った面を有する。フィン102は、フィン101よりも、冷却空気との広い接触面積を有するので、冷却空気は、多量の熱をフィン102から奪うことができる。 2B, the fin 102 has a wavy surface extending in the flow direction of the cooling air. Since the fin 102 has a wider contact area with the cooling air than the fin 101, the cooling air can take a large amount of heat from the fin 102.
 <第3実施形態>
 空気圧縮装置は、冷却ダクトの内部に配置された仕切壁を有してもよい。冷却ダクトの内部空間が仕切壁によって複数の小さな空間に区画されるならば、冷却ダクト内を流れる冷却空気は、整流される。この結果、冷却空気は、コンプレッサ及び冷却器内の圧縮空気から多量の熱を奪うことができる。第3実施形態において、仕切壁を有する例示的な空気圧縮装置が説明される。
<Third Embodiment>
The air compressing device may have a partition wall disposed inside the cooling duct. If the internal space of the cooling duct is partitioned into a plurality of small spaces by the partition wall, the cooling air flowing in the cooling duct is rectified. As a result, the cooling air can take a large amount of heat from the compressed air in the compressor and the cooler. In the third embodiment, an exemplary air compression device having a partition wall is described.
 図3は、第3実施形態の空気圧縮装置100Aの概念図である。図3を参照して、空気圧縮装置100Aが説明される。第1実施形態と共通する符号は、当該符号が付された要素が、第1実施形態と機能的に共通することを意味する。したがって、第1実施形態の説明は、共通の符号が付された要素に援用される。 FIG. 3 is a conceptual diagram of an air compressor 100A of the third embodiment. The air compressor 100A will be described with reference to FIG. The code | symbol which is common in 1st Embodiment means that the element to which the said code | symbol was attached | subjected is functionally common in 1st Embodiment. Therefore, description of 1st Embodiment is used for the element to which the common code | symbol was attached | subjected.
 第1実施形態と同様に、空気圧縮装置100Aは、コンプレッサ200と、冷却器300と、を備える。第1実施形態の説明は、これらの要素に援用される。 As in the first embodiment, the air compressor 100A includes a compressor 200 and a cooler 300. The description of the first embodiment is incorporated in these elements.
 空気圧縮装置100Aは、第2フィン220および第1フィン320間に配置された仕切壁410を更に備える。冷却ダクト400内で水平方向に突出するフィン220,320とは異なり、仕切壁410は、冷却ダクト400内で垂直方向に延び、冷却ダクト400の内部空間を左流動空間411と右流動空間412とに区画する。左流動空間411は、仕切壁410と、冷却器300の第1空洞形成面310との間で規定される。右流動空間412は、仕切壁410と、コンプレッサ200の第2空洞形成面210との間で規定される。冷却空気は、左流動空間411と右流動空間412とに流入する。 The air compressor 100A further includes a partition wall 410 disposed between the second fin 220 and the first fin 320. Unlike the fins 220 and 320 that protrude in the horizontal direction in the cooling duct 400, the partition wall 410 extends in the vertical direction in the cooling duct 400, and the internal space of the cooling duct 400 is divided into a left flow space 411 and a right flow space 412. Divide into The left flow space 411 is defined between the partition wall 410 and the first cavity forming surface 310 of the cooler 300. The right flow space 412 is defined between the partition wall 410 and the second cavity forming surface 210 of the compressor 200. The cooling air flows into the left flow space 411 and the right flow space 412.
 仕切壁410は、第2フィン220及び第1フィン320それぞれの先端縁に当接してもよいし、当接しなくてもよい。仕切壁410が、右流動空間412内で突出する第2フィン220に当接するならば、第2フィン220は、右流動空間412を上下に区画する。仕切壁410が左流動空間411内で突出する第1フィン320に当接するならば、第1フィン320は、左流動空間411を上下に区画する。この場合、第2フィン220及び第1フィン320の熱を仕切壁410に逃がすことができるので、冷却空気は、コンプレッサ200及び冷却器300内の圧縮空気から熱を効率的に奪うことができる。仕切壁410が、フィン220,320のうち少なくとも一方から離れているならば、フィン220,320間での熱伝達は生じにくくなる。 The partition wall 410 may or may not contact the leading edge of each of the second fins 220 and the first fins 320. If the partition wall 410 abuts on the second fins 220 protruding in the right flow space 412, the second fins 220 divide the right flow space 412 up and down. If the partition wall 410 comes into contact with the first fin 320 protruding in the left flow space 411, the first fin 320 divides the left flow space 411 vertically. In this case, since the heat of the second fins 220 and the first fins 320 can be released to the partition wall 410, the cooling air can efficiently take heat from the compressed air in the compressor 200 and the cooler 300. If the partition wall 410 is separated from at least one of the fins 220 and 320, heat transfer between the fins 220 and 320 is less likely to occur.
 仕切壁410は、フィン220,320のうち一方或いは両方と同一の材料から形成されてもよい。代替的に、仕切壁410は、フィン220,320とは異なる材料から形成されてもよい。たとえば、設計者は、仕切壁410の材料として、フィン220,320に用いられる材料よりも低い熱伝導率を有する材料を選択してもよい。この場合、コンプレッサ200と冷却器300との間で往来する熱量は小さいので、コンプレッサ200と冷却器300との間での複雑な熱的干渉は生じにくくなる。このことは、コンプレッサ200及び冷却器300の熱に関連する制御を容易化する。 The partition wall 410 may be formed of the same material as one or both of the fins 220 and 320. Alternatively, the partition wall 410 may be formed from a different material than the fins 220 and 320. For example, the designer may select a material having a lower thermal conductivity than the material used for the fins 220 and 320 as the material of the partition wall 410. In this case, since the amount of heat that travels between the compressor 200 and the cooler 300 is small, complicated thermal interference between the compressor 200 and the cooler 300 is less likely to occur. This facilitates control related to the heat of compressor 200 and cooler 300.
 <第4実施形態>
 空気圧縮装置を設計する設計者は、冷却器に、様々な構造及び様々な形状を与えることができる。第4実施形態において、例示的な冷却器が説明される。
<Fourth embodiment>
Designers designing air compression devices can give the cooler different structures and different shapes. In the fourth embodiment, an exemplary cooler is described.
 図4は、第4実施形態の冷却器300Bの概略的な斜視図である。図3及び図4を参照して、冷却器300Bが説明される。 FIG. 4 is a schematic perspective view of the cooler 300B of the fourth embodiment. With reference to FIG.3 and FIG.4, the cooler 300B is demonstrated.
 冷却器300Bは、第1空洞形成面310が外面に形成された外殻体330と、逆止弁340と、を備える。外殻体330は、略矩形の箱である。圧縮空気は、外殻体330内に流入する。逆止弁340は、外殻体330から上方に突出する。圧縮空気は、逆止弁340を通じて、外殻体330の内部から排気される。冷却器300Bは、図3を参照して説明された冷却器300として利用可能である。 The cooler 300B includes an outer shell 330 having a first cavity forming surface 310 formed on the outer surface, and a check valve 340. The outer shell 330 is a substantially rectangular box. The compressed air flows into the outer shell 330. The check valve 340 protrudes upward from the outer shell 330. The compressed air is exhausted from the inside of the outer shell 330 through the check valve 340. The cooler 300B can be used as the cooler 300 described with reference to FIG.
 外殻体330は、上流面331と、上流面331とは反対側の下流面332と、を含む。冷却空気は、上流面331から下流面332へ向けて流れる。上流面331及び下流面332の高さ寸法(垂直方向)は、上流面331及び下流面332の幅寸法(水平方向)よりも大きい。 The outer shell 330 includes an upstream surface 331 and a downstream surface 332 opposite to the upstream surface 331. The cooling air flows from the upstream surface 331 toward the downstream surface 332. The height dimension (vertical direction) of the upstream surface 331 and the downstream surface 332 is larger than the width dimension (horizontal direction) of the upstream surface 331 and the downstream surface 332.
 外殻体330は、上流面331と下流面332との間の接続面333を含む。接続面333は、コンプレッサ(図示せず)、又は、コンプレッサと外殻体330との間に配置される仕切部材(図示せず)に接続される。 The outer shell 330 includes a connection surface 333 between the upstream surface 331 and the downstream surface 332. The connection surface 333 is connected to a compressor (not shown) or a partition member (not shown) disposed between the compressor and the outer shell 330.
 接続面333は、第1空洞形成面310の上側に位置する上接続面334と、第1空洞形成面310の下側に位置する下接続面335と、を含む。冷却空気は、上接続面334と下接続面335との間において第1空洞形成面310によって区画された流動領域に流入する。上接続面334は、下接続面335と略面一である。上接続面334及び下接続面335は、コンプレッサ、又は、コンプレッサと外殻体330との間に配置される仕切部材に接続される。第1空洞形成面310によって区画された流動領域は、上接続面334及び下接続面335から凹設される。 The connection surface 333 includes an upper connection surface 334 located above the first cavity forming surface 310 and a lower connection surface 335 located below the first cavity forming surface 310. The cooling air flows into the flow region defined by the first cavity forming surface 310 between the upper connection surface 334 and the lower connection surface 335. The upper connection surface 334 is substantially flush with the lower connection surface 335. The upper connection surface 334 and the lower connection surface 335 are connected to a compressor or a partition member disposed between the compressor and the outer shell 330. The flow region defined by the first cavity forming surface 310 is recessed from the upper connection surface 334 and the lower connection surface 335.
 外殻体330は、流動領域内で突出する複数の第1フィン336を含む。複数の第1フィン336は、上流面331から下流面332に向けて延びる。複数の第1フィン336それぞれの先端縁は、上接続面334及び下接続面335と略面一である。複数の第1フィン336それぞれの先端縁は、コンプレッサ、又は、コンプレッサと外殻体330との間に配置される仕切部材に接触してもよい。 The outer shell 330 includes a plurality of first fins 336 that protrude in the flow region. The plurality of first fins 336 extend from the upstream surface 331 toward the downstream surface 332. The leading edge of each of the plurality of first fins 336 is substantially flush with the upper connection surface 334 and the lower connection surface 335. The leading edge of each of the plurality of first fins 336 may contact a compressor or a partition member disposed between the compressor and the outer shell 330.
 外殻体330は、流動領域の略中心において突出する流入筒337を含む。圧縮空気は、流入筒337によって囲まれた流入口338を通じて、外殻体330の内部空間へ流入する。流動領域内を流れる冷却空気は、流動領域を規定する第1空洞形成面310及び複数の第1フィン336から熱を奪うので、外殻体330の内部空間へ流入した圧縮空気は、効率的に冷却される。 The outer shell 330 includes an inflow tube 337 that protrudes substantially at the center of the flow region. The compressed air flows into the inner space of the outer shell 330 through the inlet 338 surrounded by the inflow cylinder 337. The cooling air flowing in the flow region takes heat from the first cavity forming surface 310 and the plurality of first fins 336 that define the flow region, so that the compressed air flowing into the inner space of the outer shell 330 is efficiently To be cooled.
 図5は、冷却器300Bの内部構造を示す概略的な断面図である。図5を参照して、冷却器300Bが更に説明される。 FIG. 5 is a schematic cross-sectional view showing the internal structure of the cooler 300B. The cooler 300B is further described with reference to FIG.
 外殻体330は、上壁351と、下壁352と、上流壁353と、下流壁354と、を含む。逆止弁340の外壁は、上壁351と上流壁353とによって規定される角隅部の近くで、上壁351と一体的に形成される。上壁351は、上流壁353の上端と下流壁354の上端との間で略水平に延びる。下壁352は、上流壁353の下端と下流壁354の下端との間で略水平に延びる。上流壁353及び下流壁354は、略垂直に延びる。 The outer shell 330 includes an upper wall 351, a lower wall 352, an upstream wall 353, and a downstream wall 354. The outer wall of the check valve 340 is formed integrally with the upper wall 351 in the vicinity of the corner defined by the upper wall 351 and the upstream wall 353. The upper wall 351 extends substantially horizontally between the upper end of the upstream wall 353 and the upper end of the downstream wall 354. The lower wall 352 extends substantially horizontally between the lower end of the upstream wall 353 and the lower end of the downstream wall 354. The upstream wall 353 and the downstream wall 354 extend substantially vertically.
 外殻体330は、上壁351、下壁352、上流壁353及び下流壁354によって囲まれた略矩形状の内部空間を仕切り、複数の流路を規定する複数の仕切壁を含む。複数の仕切壁は、直線状の上仕切壁361と、直線状の下仕切壁362と、略τ字型の中央仕切壁363と、を含む。 The outer shell 330 includes a plurality of partition walls that partition a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354, and define a plurality of flow paths. The plurality of partition walls include a linear upper partition wall 361, a linear lower partition wall 362, and a substantially τ-shaped central partition wall 363.
 上仕切壁361は、上流壁353から略水平に延びる。上仕切壁361の先端部は、下流壁354から離間している。 The upper partition wall 361 extends substantially horizontally from the upstream wall 353. The tip of the upper partition wall 361 is separated from the downstream wall 354.
 下仕切壁362は、上仕切壁361の下方で略水平に延びる。下仕切壁362の両端部は、上流壁353及び下流壁354からそれぞれ離間している。 The lower partition wall 362 extends substantially horizontally below the upper partition wall 361. Both end portions of the lower partition wall 362 are separated from the upstream wall 353 and the downstream wall 354, respectively.
 中央仕切壁363は、上仕切壁361と下仕切壁362との間に形成される。中央仕切壁363は、直線壁364と、屈曲壁365と、を含む。直線壁364は、下流壁354から略水平に延びる。直線壁364の先端部は、上流壁353から離間している。屈曲壁365は、流入口338の近くにおいて、直線壁364から下方に延び、その後、下流壁354に向けて屈曲する。屈曲壁365の先端部は、下流壁354から離間している。直線壁364及び屈曲壁365は、流入口338を部分的に取り囲む。 The central partition wall 363 is formed between the upper partition wall 361 and the lower partition wall 362. The central partition wall 363 includes a straight wall 364 and a bent wall 365. The straight wall 364 extends substantially horizontally from the downstream wall 354. The tip of the straight wall 364 is separated from the upstream wall 353. The bent wall 365 extends downward from the straight wall 364 near the inlet 338 and then bends toward the downstream wall 354. The distal end portion of the bending wall 365 is separated from the downstream wall 354. The straight wall 364 and the bent wall 365 partially surround the inflow port 338.
 外殻体330は、上壁351、下壁352、上流壁353及び下流壁354によって囲まれた略矩形状の内部空間内において、第1内部流路371、第2内部流路372、第3内部流路373、第4内部流路374及び第5内部流路375を規定する。 The outer shell 330 has a first internal flow path 371, a second internal flow path 372, a third internal flow path in a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354. An internal channel 373, a fourth internal channel 374, and a fifth internal channel 375 are defined.
 第1内部流路371は、直線壁364と屈曲壁365とによって規定される。第1内部流路371は、流入口338に連なり、下流壁354に向けて延びる。流入口338から流入した圧縮空気は、第1内部流路371に沿って流れ、下流壁354へ向かう。 The first internal flow path 371 is defined by a straight wall 364 and a bent wall 365. The first internal flow path 371 is continuous with the inflow port 338 and extends toward the downstream wall 354. The compressed air flowing in from the inflow port 338 flows along the first internal flow path 371 and travels toward the downstream wall 354.
 第2内部流路372は、中央仕切壁363と下仕切壁362とによって規定される。第3内部流路373は、下仕切壁362と下壁352とによって規定される。第1内部流路371の終端に到達した圧縮空気は、屈曲壁365の先端部と下流壁354との間の空隙を通じて、下方に流れる。圧縮空気の一部は、その後、第2内部流路372を通じて、上流壁353に向けて流れる。圧縮空気の他の部分は、第3内部流路373を通じて、上流壁353に向けて流れる。 The second internal flow path 372 is defined by the central partition wall 363 and the lower partition wall 362. The third internal flow path 373 is defined by the lower partition wall 362 and the lower wall 352. The compressed air that has reached the end of the first internal flow path 371 flows downward through a gap between the distal end portion of the bent wall 365 and the downstream wall 354. A part of the compressed air then flows toward the upstream wall 353 through the second internal flow path 372. The other part of the compressed air flows toward the upstream wall 353 through the third internal flow path 373.
 第3内部流路373の終端に到達した圧縮空気は、下仕切壁362と上流壁353との間の空隙を通じて、上方に流れ、第2内部流路372の終端の圧縮空気と合流する。第2内部流路372の終端の圧縮空気は、直線壁364と上流壁353との間の空隙を通じて、上方に流れ、第4内部流路374に流入する。 Compressed air that has reached the end of the third internal flow path 373 flows upward through the gap between the lower partition wall 362 and the upstream wall 353, and merges with the compressed air at the end of the second internal flow path 372. The compressed air at the end of the second internal flow path 372 flows upward through the gap between the straight wall 364 and the upstream wall 353 and flows into the fourth internal flow path 374.
 圧縮空気は、その後、第4内部流路374に沿って流れ、下流壁354に向かう。第4内部流路374の終端に到達した圧縮空気は、上仕切壁361と下流壁354との間の空隙を通じて、上方に流れ、第5内部流路375に流入する。 Compressed air then flows along the fourth internal flow path 374 and travels toward the downstream wall 354. The compressed air that has reached the end of the fourth internal flow path 374 flows upward through the gap between the upper partition wall 361 and the downstream wall 354 and flows into the fifth internal flow path 375.
 圧縮空気は、その後、第5内部流路375に沿って流れ、上流壁353に向かう。圧縮空気は、最終的に、第5内部流路375の終端近くに配置された逆止弁340から排気される。 Compressed air then flows along the fifth internal flow path 375 and travels toward the upstream wall 353. The compressed air is finally exhausted from the check valve 340 disposed near the end of the fifth internal flow path 375.
 上壁351、下壁352、上流壁353及び下流壁354によって囲まれた略矩形状の内部空間は、冷却空気が流れる流動領域を形成する第1空洞形成面310の内側に位置する。圧縮空気の流路は、上壁351、下壁352、上流壁353及び下流壁354によって囲まれた略矩形状の内部空間内で蛇行した流路となっている。このため、熱交換面積が長くなっている。したがって、圧縮空気は、冷却空気によって効果的に冷却される。 A substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354 is located inside the first cavity forming surface 310 that forms a flow region through which cooling air flows. The flow path of the compressed air is a meandering flow path in a substantially rectangular internal space surrounded by the upper wall 351, the lower wall 352, the upstream wall 353, and the downstream wall 354. For this reason, the heat exchange area is long. Therefore, the compressed air is effectively cooled by the cooling air.
 圧縮空気の冷却の結果、外殻体330の内壁面は、結露することもある。結露水は、重力作用の下で下方へ流れ、最終的に、最も下の流路(第3内部流路373)に溜まることもある。しかしながら、圧縮空気の流路は、第3内部流路373を介することなく、流入口338と逆止弁340との間で連通している。このため、圧縮空気は、第2内部流路372を通じて、逆止弁340に向かうことができるので、冷却器300B内での圧縮空気の詰まりは生じにくい。 As a result of the cooling of the compressed air, the inner wall surface of the outer shell 330 may condense. Condensed water flows downward under the action of gravity, and may eventually accumulate in the lowest channel (third internal channel 373). However, the flow path of the compressed air communicates between the inlet 338 and the check valve 340 without passing through the third internal flow path 373. For this reason, since the compressed air can go to the check valve 340 through the second internal flow path 372, the compressed air is hardly clogged in the cooler 300B.
 <第5実施形態>
 空気圧縮装置を設計する設計者は、コンプレッサとして、スクロールコンプレッサを選択してもよい。第5実施形態において、例示的なスクロールコンプレッサが説明される。
<Fifth Embodiment>
A designer who designs an air compressor may select a scroll compressor as the compressor. In the fifth embodiment, an exemplary scroll compressor is described.
 図6は、第5実施形態のスクロールコンプレッサ200Cの概略的な展開斜視図である。図3及び図6を参照して、スクロールコンプレッサ200Cが説明される。 FIG. 6 is a schematic exploded perspective view of a scroll compressor 200C of the fifth embodiment. The scroll compressor 200C will be described with reference to FIGS.
 スクロールコンプレッサ200Cは、図3を参照して説明されたコンプレッサ200として利用可能である。スクロールコンプレッサ200Cは、保持枠体230と、揺動回転体240と、蓋体250と、を備える。 The scroll compressor 200C can be used as the compressor 200 described with reference to FIG. The scroll compressor 200 </ b> C includes a holding frame body 230, a swinging rotary body 240, and a lid body 250.
 保持枠体230は、脚部231と、外殻体232と、シャフト部233と、を含む。脚部231は、基台(図示せず)に固定される。外殻体232は、脚部231の上端に接続され、全体的に円形の収容空間239を規定する。揺動回転体240は、収容空間239内に収容される。 The holding frame 230 includes a leg portion 231, an outer shell body 232, and a shaft portion 233. The leg 231 is fixed to a base (not shown). The outer shell body 232 is connected to the upper end of the leg portion 231 and defines a generally circular accommodation space 239. The swinging rotator 240 is accommodated in the accommodation space 239.
 外殻体232は、リング壁261と、上弧壁262と、下弧壁263と、流入壁264と、流出壁265と、を含む。リング壁261は、外面266と、外面266とは反対側の内面267と、を含む。シャフト部233は、外面266から突出する。内面267は、揺動回転体240に対向する。 The outer shell 232 includes a ring wall 261, an upper arc wall 262, a lower arc wall 263, an inflow wall 264, and an outflow wall 265. Ring wall 261 includes an outer surface 266 and an inner surface 267 opposite to outer surface 266. The shaft portion 233 protrudes from the outer surface 266. The inner surface 267 faces the swinging rotator 240.
 上弧壁262は、円形輪郭を描くリング壁261の外縁の上部から蓋体250に向けて突出する。下弧壁263は、リング壁261の外縁の下部から蓋体250に向けて突出する。上弧壁262、下弧壁263及びリング壁261は、蓋体250と協働して、揺動回転体240が収容される収容空間239を規定する。 The upper arc wall 262 protrudes toward the lid 250 from the upper part of the outer edge of the ring wall 261 that describes a circular outline. The lower arc wall 263 protrudes from the lower part of the outer edge of the ring wall 261 toward the lid body 250. The upper arc wall 262, the lower arc wall 263, and the ring wall 261 define an accommodation space 239 in which the swinging rotary body 240 is accommodated in cooperation with the lid body 250.
 流入壁264は、上弧壁262の一端部(図6における手前側の端部)と下弧壁263の一端部(図6における手前側の端部)とを接続する。流入壁264は、上弧壁262の一端部及び下弧壁263の一端部から、シャフト部233の突出方向に対して略直角に突出する。流入壁264は、略C型の断面を有する。流入壁264は、蓋体250と協働して、冷却空気が流入する流入口を規定する。 The inflow wall 264 connects one end of the upper arc wall 262 (the front end in FIG. 6) and one end of the lower arc wall 263 (the front end in FIG. 6). The inflow wall 264 protrudes from the one end of the upper arc wall 262 and the one end of the lower arc wall 263 at a substantially right angle with respect to the protruding direction of the shaft portion 233. The inflow wall 264 has a substantially C-shaped cross section. The inflow wall 264 cooperates with the lid body 250 to define an inflow port through which cooling air flows.
 流出壁265は、上弧壁262の他端部(図6における奥側の端部)と下弧壁263の他端部(図6における奥側の端部)との間で形成される。流出壁265は、上弧壁262及び下弧壁263から、流入壁264とは反対方向に突出する。流入壁264と同様に、流出壁265は、略C型の断面を有する。流出壁265は、蓋体250と協働して、冷却空気が流出する流出口を規定する。 The outflow wall 265 is formed between the other end of the upper arc wall 262 (the back end in FIG. 6) and the other end of the lower arc wall 263 (the back end in FIG. 6). The outflow wall 265 protrudes from the upper arc wall 262 and the lower arc wall 263 in the direction opposite to the inflow wall 264. Similar to the inflow wall 264, the outflow wall 265 has a substantially C-shaped cross section. The outflow wall 265 cooperates with the lid body 250 to define an outflow port from which cooling air flows out.
 シャフト部233は、円筒部234と、回転シャフト235と、を含む。円筒部234は、リング壁261の外面266から突出する。円筒部234内の空間には、回転シャフト235の回転運動を、揺動回転体240の揺動回転運動に変換する変換機構(図示せず)が収容される。既知のスクロールコンプレッサに用いられる様々な技術が、変換機構に用いられてもよい。本実施形態の原理は、変換機構の特定の構造に限定されない。 The shaft portion 233 includes a cylindrical portion 234 and a rotating shaft 235. The cylindrical portion 234 protrudes from the outer surface 266 of the ring wall 261. A space in the cylindrical portion 234 accommodates a conversion mechanism (not shown) that converts the rotational motion of the rotating shaft 235 into the swinging rotational motion of the swinging rotating body 240. Various techniques used for known scroll compressors may be used for the conversion mechanism. The principle of this embodiment is not limited to a specific structure of the conversion mechanism.
 回転シャフト235は、モータや他の駆動源が生成した駆動力を受ける。回転シャフト235は、円筒部234内で、上述の変換機構に接続される。 The rotating shaft 235 receives a driving force generated by a motor or other driving source. The rotating shaft 235 is connected to the conversion mechanism described above within the cylindrical portion 234.
 揺動回転体240は、第1円板241と、第2円板242と、可動スクロール243と、多数のフィン244と、を含む。第1円板241は、リング壁261の内面267の隣に配置される。第2円板242は、第1円板241との間に間隙を形成しつつ第1円板241と平行に配置される。第2円板242は、第1円板241と、蓋体250との間に配置される。渦巻き状の可動スクロール243は、第2円板242から蓋体250に向けて突出する。複数のフィン244は、第1円板241と第2円板242との間の空間を狭い断面を有する複数の流路に分割する。複数のフィン244間に形成された空間は、可動スクロール243を冷却するための冷却流路として機能する。 The rocking rotator 240 includes a first disk 241, a second disk 242, a movable scroll 243, and a large number of fins 244. The first disk 241 is disposed next to the inner surface 267 of the ring wall 261. The second disk 242 is disposed in parallel with the first disk 241 while forming a gap with the first disk 241. The second disk 242 is disposed between the first disk 241 and the lid body 250. The spiral movable scroll 243 protrudes from the second disk 242 toward the lid 250. The plurality of fins 244 divide the space between the first disk 241 and the second disk 242 into a plurality of flow paths having a narrow cross section. A space formed between the plurality of fins 244 functions as a cooling channel for cooling the movable scroll 243.
 第1円板241は、円筒部234内の変換機構に接続される。この結果、揺動回転体240の揺動回転は、回転シャフト235の回転によって引き起こされる。揺動回転体240の揺動回転の間、可動スクロール243の中心は、回転シャフト235の回転中心軸周りに周回する。 The first disc 241 is connected to a conversion mechanism in the cylindrical portion 234. As a result, the swinging rotation of the swinging rotator 240 is caused by the rotation of the rotating shaft 235. During the rocking rotation of the rocking rotator 240, the center of the movable scroll 243 rotates around the rotation center axis of the rotation shaft 235.
 流入壁264と蓋体250とによって規定された流入口から流入した冷却空気は、複数のフィン244によって細分化された空間を通過し、流出壁265と蓋体250とによって規定された流出口から排気される。この結果、揺動回転体240は、効果的に冷却される。 Cooling air that has flowed in from the inflow port defined by the inflow wall 264 and the lid body 250 passes through the space subdivided by the plurality of fins 244, and from the outflow port defined by the outflow wall 265 and the lid body 250. Exhausted. As a result, the swinging rotator 240 is effectively cooled.
 図7は、蓋体250の概略的な斜視図である。図3、図6及び図7を参照して、蓋体250が説明される。 FIG. 7 is a schematic perspective view of the lid body 250. The lid 250 will be described with reference to FIGS. 3, 6 and 7.
 図6に示される如く、蓋体250は、リング蓋板251と、収容壁252と、を含む。リング蓋板251及び収容壁252は、全体的に、円形断面を有する。リング蓋板251は、直径において、収容壁252より大きい。リング蓋板251は、内面253と、内面253とは反対側の外面254と、を含む。内面253は、上弧壁262及び下弧壁263の端面に密接される。 As shown in FIG. 6, the lid body 250 includes a ring lid plate 251 and an accommodation wall 252. The ring lid plate 251 and the accommodation wall 252 generally have a circular cross section. The ring lid plate 251 is larger in diameter than the receiving wall 252. The ring lid plate 251 includes an inner surface 253 and an outer surface 254 opposite to the inner surface 253. The inner surface 253 is in close contact with the end surfaces of the upper arc wall 262 and the lower arc wall 263.
 図6に示される如く、収容壁252は、周壁255と端壁256と、を含む。周壁255は、回転シャフト235の軸方向に、リング蓋板251の外面254から突出する。周壁255は、第2円板242及び可動スクロール243が収容される略円形の断面を有する収容空間を規定する。周壁255は、第2円板242を取り囲む。端壁256は、周壁255によって規定された収容空間の端部を閉じる。 As shown in FIG. 6, the housing wall 252 includes a peripheral wall 255 and an end wall 256. The peripheral wall 255 protrudes from the outer surface 254 of the ring lid plate 251 in the axial direction of the rotary shaft 235. The peripheral wall 255 defines an accommodation space having a substantially circular cross section in which the second disk 242 and the movable scroll 243 are accommodated. The peripheral wall 255 surrounds the second disc 242. The end wall 256 closes the end of the accommodation space defined by the peripheral wall 255.
 図7に示される如く、蓋体250は、端壁256から第2円板242に向けて突出する渦巻き状の固定スクロール257を含む。固定スクロール257は、可動スクロール243と相補的な渦巻き状の空間を形成する。可動スクロール243は、渦巻き状の空間に挿入され、固定スクロール257と噛み合う。揺動回転体240の揺動回転の間、空気は、固定スクロール257と可動スクロール243とによって圧縮され、圧縮空気になる。 7, the lid body 250 includes a spiral fixed scroll 257 that protrudes from the end wall 256 toward the second disk 242. The fixed scroll 257 forms a spiral space complementary to the movable scroll 243. The movable scroll 243 is inserted into the spiral space and meshes with the fixed scroll 257. During the rocking rotation of the rocking rotator 240, the air is compressed by the fixed scroll 257 and the movable scroll 243 to become compressed air.
 図7に示される如く、端壁256には、吐出口258が形成される。吐出口258は、固定スクロール257の略中心に位置する。スクロールコンプレッサ200C内で圧縮された圧縮空気は、吐出口258から排気される。 As shown in FIG. 7, a discharge port 258 is formed in the end wall 256. The discharge port 258 is located substantially at the center of the fixed scroll 257. The compressed air compressed in the scroll compressor 200 </ b> C is exhausted from the discharge port 258.
 図6に示される如く、蓋体250は、垂直壁271,272を含む。垂直壁271は、リング蓋板251の外周面から、リング蓋板251の径方向の外側に向けて突出し、流入壁264の2つの端面に密接される。これにより、揺動回転体240を冷却するために流入する冷却空気用の流入口が形成される。垂直壁272は、垂直壁271とは反対方向において、リング蓋板251の外周面から、リング蓋板251の径方向の外側に向けて突出する。垂直壁272は、流出壁265の2つの端面に密接される。これにより、揺動回転体240を冷却した後の冷却空気を排出させる流出口が形成される。 As shown in FIG. 6, the lid 250 includes vertical walls 271 and 272. The vertical wall 271 protrudes from the outer peripheral surface of the ring lid plate 251 toward the outer side in the radial direction of the ring lid plate 251, and is in close contact with the two end surfaces of the inflow wall 264. Thereby, an inflow port for cooling air that flows in to cool the swinging rotator 240 is formed. The vertical wall 272 protrudes from the outer peripheral surface of the ring lid plate 251 toward the outer side in the radial direction of the ring lid plate 251 in the direction opposite to the vertical wall 271. The vertical wall 272 is in close contact with the two end faces of the outflow wall 265. Thereby, the outflow port which discharges the cooling air after cooling the rocking | swiveling rotary body 240 is formed.
 図6に示される如く、蓋体250は、上境界壁273と、下境界壁274と、を含む。上境界壁273の下面は、第2空洞形成面210の第2上面210aとなっている。上境界壁273は、リング蓋板251の外面254及び端壁256から突出し、固定スクロール257を冷却するための冷却空気が流れる領域の上側境界を規定する。下境界壁274は、上境界壁273の下方に位置する。下境界壁274の上面は、第2空洞形成面210の第2下面210cとなっている。上境界壁273と同様に、下境界壁274は、リング蓋板251の外面254及び端壁256から突出する。下境界壁274は、固定スクロール257を冷却するための冷却空気が流れる領域の下側境界を規定する。 As shown in FIG. 6, the lid body 250 includes an upper boundary wall 273 and a lower boundary wall 274. A lower surface of the upper boundary wall 273 is a second upper surface 210 a of the second cavity forming surface 210. The upper boundary wall 273 protrudes from the outer surface 254 and the end wall 256 of the ring lid plate 251, and defines an upper boundary of a region through which cooling air for cooling the fixed scroll 257 flows. The lower boundary wall 274 is located below the upper boundary wall 273. The upper surface of the lower boundary wall 274 is a second lower surface 210 c of the second cavity forming surface 210. Similar to the upper boundary wall 273, the lower boundary wall 274 protrudes from the outer surface 254 and the end wall 256 of the ring lid plate 251. The lower boundary wall 274 defines the lower boundary of the region through which cooling air for cooling the fixed scroll 257 flows.
 蓋体250は、複数の第2フィン220Cを含む。複数のフィン220Cは、上境界壁273と下境界壁274との間で、リング蓋板251の外面254及び収容壁252の端壁256から突出する。すなわち、リング蓋板251の外面254及び収容壁252の端壁256は、第2空洞形成面210の第2側面210bとなっている。 The lid body 250 includes a plurality of second fins 220C. The plurality of fins 220 </ b> C protrude from the outer surface 254 of the ring lid plate 251 and the end wall 256 of the receiving wall 252 between the upper boundary wall 273 and the lower boundary wall 274. That is, the outer surface 254 of the ring lid plate 251 and the end wall 256 of the receiving wall 252 are the second side surface 210 b of the second cavity forming surface 210.
 <第6実施形態>
 設計者は、第4実施形態及び第5実施形態に関連して説明された技術原理に基づいて、様々な空気圧縮装置を設計することができる。第6実施形態において、例示的な空気圧縮装置が説明される。
<Sixth Embodiment>
The designer can design various air compressors based on the technical principles described in relation to the fourth and fifth embodiments. In the sixth embodiment, an exemplary air compressor is described.
 図8は、第6実施形態の空気圧縮装置100Dの概略的な展開斜視図である。図3、図4、図7及び図8を参照して、空気圧縮装置100Dが説明される。第4実施形態又は第5実施形態と共通する符号は、当該符号が付された要素が、第4実施形態又は第5実施形態と機能的に共通することを意味する。したがって、第4実施形態又は第5実施形態の説明は、共通の符号が付された要素に援用される。 FIG. 8 is a schematic exploded perspective view of an air compressor 100D of the sixth embodiment. The air compressor 100D will be described with reference to FIGS. 3, 4, 7 and 8. FIG. The code | symbol which is common in 4th Embodiment or 5th Embodiment means that the element to which the said code | symbol was attached | subjected is functionally in common with 4th Embodiment or 5th Embodiment. Therefore, description of 4th Embodiment or 5th Embodiment is used for the element to which the common code | symbol was attached | subjected.
 空気圧縮装置100Dは、第4実施形態に関連して説明された冷却器300Bを備える。第4実施形態の説明は、冷却器300Bに援用される。すなわち、冷却ダクト400は、冷却器300Bにおける第1空洞形成面310と、蓋体250のリング蓋板251の外面254及び端壁256と、上境界壁273の下面と、下境界壁274の上面とによって形成される。 The air compressor 100D includes the cooler 300B described in relation to the fourth embodiment. The description of the fourth embodiment is applied to the cooler 300B. That is, the cooling duct 400 includes the first cavity forming surface 310 in the cooler 300B, the outer surface 254 and the end wall 256 of the ring lid plate 251 of the lid 250, the lower surface of the upper boundary wall 273, and the upper surface of the lower boundary wall 274. And formed by.
 空気圧縮装置100Dは、第5実施形態に関連して説明されたスクロールコンプレッサ200Cを更に備える。第5実施形態の説明は、スクロールコンプレッサ200Cに援用される。 The air compressor 100D further includes the scroll compressor 200C described in relation to the fifth embodiment. The description of the fifth embodiment is applied to the scroll compressor 200C.
 空気圧縮装置100Dは、仕切壁410Dを更に備える。仕切壁410Dは、断熱部材によって構成されている。仕切壁410Dは、冷却器300Bの複数の第1フィン336の先端縁とスクロールコンプレッサ200Cの複数の第2フィン220Cの先端縁とに挟まれる。仕切壁410Dは、第1フィン336及び第2フィン220Cよりも低い熱伝導率を有するので、スクロールコンプレッサ200Cと冷却器300Bとの間の熱の往来は生じにくくなる。 The air compressor 100D further includes a partition wall 410D. The partition wall 410D is configured by a heat insulating member. The partition wall 410D is sandwiched between the leading edges of the first fins 336 of the cooler 300B and the leading edges of the second fins 220C of the scroll compressor 200C. Since the partition wall 410D has a lower thermal conductivity than the first fin 336 and the second fin 220C, it is difficult for heat to flow between the scroll compressor 200C and the cooler 300B.
 空気圧縮装置100Dは、供給パイプ420を更に備える。仕切壁410Dの略中心には、挿通孔413が形成される。供給パイプ420は、挿通孔413に挿入される。 The air compressor 100D further includes a supply pipe 420. An insertion hole 413 is formed substantially at the center of the partition wall 410D. The supply pipe 420 is inserted into the insertion hole 413.
 供給パイプ420は、上流端421と下流端422とを含む。上流端421は、スクロールコンプレッサ200Cの吐出口258(図7を参照)に挿入される。下流端422は、冷却器300Bの流入口338(図4を参照)に挿入される。したがって、圧縮空気は、供給パイプ420を通じて、スクロールコンプレッサ200Cから冷却器300Bへ供給される。供給パイプ420の両端は、スクロールコンプレッサ200C及び冷却器300Bによって保持されるので、吐出口258及び流入口338において過度に高い応力は生じない。 The supply pipe 420 includes an upstream end 421 and a downstream end 422. The upstream end 421 is inserted into the discharge port 258 (see FIG. 7) of the scroll compressor 200C. The downstream end 422 is inserted into the inlet 338 (see FIG. 4) of the cooler 300B. Therefore, the compressed air is supplied from the scroll compressor 200C to the cooler 300B through the supply pipe 420. Since both ends of the supply pipe 420 are held by the scroll compressor 200 </ b> C and the cooler 300 </ b> B, excessively high stress does not occur at the discharge port 258 and the inflow port 338.
 第5実施形態に関連して説明された如く、可動スクロール243を冷却するための冷却空気の流動経路は、保持枠体230と蓋体250との間で規定される。固定スクロール257(図7を参照)及び冷却器300B内の圧縮空気を冷却するための冷却空気の流動経路は、冷却器300Bに形成された第1空洞形成面310と蓋体250に形成された第2空洞形成面210とによって規定される。したがって、2つの流動経路の間に配置された可動スクロール243及び固定スクロール257は、効果的に冷却される。 As described in relation to the fifth embodiment, the flow path of the cooling air for cooling the movable scroll 243 is defined between the holding frame body 230 and the lid body 250. The flow path of the cooling air for cooling the compressed air in the fixed scroll 257 (see FIG. 7) and the cooler 300B is formed in the first cavity forming surface 310 and the lid 250 formed in the cooler 300B. Defined by the second cavity forming surface 210. Therefore, the movable scroll 243 and the fixed scroll 257 disposed between the two flow paths are effectively cooled.
 <第7実施形態>
 第6実施形態の技術原理によれば、2つの流動経路の間での固定スクロール及び可動スクロールの配置によって、固定スクロール及び可動スクロールは効果的に冷却される。共通の送風機が、2つの流動経路への冷却空気の供給に利用されてもよい。この場合、設計者は、空気圧縮装置に小さな寸法を与えることができる。第7実施形態において、共通の送風機を用いて、2つの流動経路へ冷却空気を供給する例示的な空気圧縮装置が説明される。
<Seventh embodiment>
According to the technical principle of the sixth embodiment, the fixed scroll and the movable scroll are effectively cooled by the arrangement of the fixed scroll and the movable scroll between the two flow paths. A common blower may be used to supply cooling air to the two flow paths. In this case, the designer can give the air compressor a small dimension. In the seventh embodiment, an exemplary air compressor that supplies cooling air to two flow paths using a common blower will be described.
 図9は、第7実施形態の空気圧縮装置100Eの概略的な斜視図である。図8及び図9を参照して、空気圧縮装置100Eが説明される。第6実施形態と共通する符号は、当該符号が付された要素が、第6実施形態と機能的に共通することを意味する。したがって、第6実施形態の説明は、共通の符号が付された要素に援用される。 FIG. 9 is a schematic perspective view of an air compressor 100E according to the seventh embodiment. The air compressor 100E is described with reference to FIGS. The code | symbol which is common in 6th Embodiment means that the element to which the said code | symbol was attached | subjected is functionally common in 6th Embodiment. Therefore, description of 6th Embodiment is used for the element to which the common code | symbol was attached | subjected.
 第6実施形態と同様に、空気圧縮装置100Eは、スクロールコンプレッサ200C(図9を参照)と、冷却器300B(図9を参照)と、仕切壁410D(図8を参照)と、供給パイプ420(図8を参照)と、を備える。第6実施形態の説明は、これらの要素に援用される。 Similar to the sixth embodiment, the air compressor 100E includes a scroll compressor 200C (see FIG. 9), a cooler 300B (see FIG. 9), a partition wall 410D (see FIG. 8), and a supply pipe 420. (See FIG. 8). The description of the sixth embodiment is incorporated in these elements.
 図9に示される如く、空気圧縮装置100Eは、基台110を備える。保持枠体230の脚部231(図8を参照)は、基台110に規定される。冷却器300Bは、仕切壁410D(図8を参照)を介して、蓋体250に固定される。したがって、スクロールコンプレッサ200C及び冷却器300Bは、基台110上で安定的に据え付けられる。 As shown in FIG. 9, the air compression device 100 </ b> E includes a base 110. Legs 231 (see FIG. 8) of the holding frame 230 are defined on the base 110. The cooler 300B is fixed to the lid 250 via a partition wall 410D (see FIG. 8). Therefore, the scroll compressor 200 </ b> C and the cooler 300 </ b> B are stably installed on the base 110.
 空気圧縮装置100Eは、送風機430と第1案内枠440とを備える。送風機430は、冷却空気を生成する。第1案内枠440は、スクロールコンプレッサ200Cと冷却器300Bとから形成された組立体と送風機430との間に配置される。第1案内枠440は、送風機430が生成した冷却空気を、送風機430と、スクロールコンプレッサ200C及び冷却器300Bから形成された組立体と、の間で閉じ込める。つまり、第1案内枠440は、冷却空気を冷却ダクト400に案内する上流案内部を構成する。第1案内枠440によって、冷却空気は、図8を参照して説明された2つの流動経路に集中的に流入する。 The air compressor 100E includes a blower 430 and a first guide frame 440. The blower 430 generates cooling air. The first guide frame 440 is disposed between the blower 430 and the assembly formed by the scroll compressor 200C and the cooler 300B. The first guide frame 440 traps the cooling air generated by the blower 430 between the blower 430 and the assembly formed by the scroll compressor 200C and the cooler 300B. That is, the first guide frame 440 constitutes an upstream guide portion that guides cooling air to the cooling duct 400. By the first guide frame 440, the cooling air intensively flows into the two flow paths described with reference to FIG.
 図10Aは、第1案内枠440の概略的な斜視図である。図10Bは、第1案内枠440の概略的な背面図である。図8乃至図10Bを参照して、第1案内枠440が説明される。 FIG. 10A is a schematic perspective view of the first guide frame 440. FIG. 10B is a schematic rear view of the first guide frame 440. The first guide frame 440 will be described with reference to FIGS. 8 to 10B.
 図9に示される如く、第1案内枠440は、取付箱441とパッキン442とを含む。図10Aに示される如く、取付箱441は、周壁443と、第1取付壁444と、第2取付壁445と、を含む。 As shown in FIG. 9, the first guide frame 440 includes a mounting box 441 and a packing 442. As shown in FIG. 10A, the mounting box 441 includes a peripheral wall 443, a first mounting wall 444, and a second mounting wall 445.
 図10Aに示される如く、周壁443は、略矩形状の外周輪郭を規定する。図9に示される如く、送風機430は、第1取付壁444に取り付けられる。図10Aに示される如く、第1取付壁444には、略円形の開口部446が形成される。送風機430は、開口部446を通じて、第1案内枠440内に冷却空気を送り込む。図10Bに示される如く、第2取付壁445には、略矩形の開口部447が形成される。パッキン442は、第2取付壁445の外面に取り付けられ、開口部447を取り囲む。 As shown in FIG. 10A, the peripheral wall 443 defines a substantially rectangular outer peripheral contour. As shown in FIG. 9, the blower 430 is attached to the first attachment wall 444. As shown in FIG. 10A, a substantially circular opening 446 is formed in the first mounting wall 444. The blower 430 sends cooling air into the first guide frame 440 through the opening 446. As shown in FIG. 10B, the second mounting wall 445 is formed with a substantially rectangular opening 447. The packing 442 is attached to the outer surface of the second attachment wall 445 and surrounds the opening 447.
 図8に示される如く、冷却器300Bは、接続面333とは反対側の外面339を含む。図8は、点P01と点P02とを示す。点P01は、上流面331と外面339との間の角隅線の上端を指す。点P02は、上流面331と外面339との間の角隅線の下端を指す。 As shown in FIG. 8, the cooler 300 </ b> B includes an outer surface 339 opposite to the connection surface 333. FIG. 8 shows points P01 and P02. The point P01 indicates the upper end of the corner line between the upstream surface 331 and the outer surface 339. The point P02 indicates the lower end of the corner line between the upstream surface 331 and the outer surface 339.
 図8に示される如く、スクロールコンプレッサ200Cの流入壁264は、上流面281と、凹面282と、平坦面283と、を含む。冷却器300Bが、スクロールコンプレッサ200Cに組み付けられると、上流面281は、冷却器300Bの上流面331と略面一となる。凹面282は、上流面281から略直角に屈曲し、可動スクロール243を冷却するための冷却空気が流入する流入口の内周面となっている。平坦面283は、凹面282とは反対側において、上流面281から直角に屈曲し、略垂直に延びる。図8は、点P03と点P04とを示す。点P03は、平坦面283と上流面281との間の角隅線の下端を指す。点P04は、平坦面283と上流面281との間の角隅線の上端を指す。 8, the inflow wall 264 of the scroll compressor 200 </ b> C includes an upstream surface 281, a concave surface 282, and a flat surface 283. When the cooler 300B is assembled to the scroll compressor 200C, the upstream surface 281 is substantially flush with the upstream surface 331 of the cooler 300B. The concave surface 282 is bent at a substantially right angle from the upstream surface 281 and serves as an inner peripheral surface of an inflow port into which cooling air for cooling the movable scroll 243 flows. The flat surface 283 is bent at a right angle from the upstream surface 281 on the side opposite to the concave surface 282 and extends substantially vertically. FIG. 8 shows points P03 and P04. The point P03 indicates the lower end of the corner line between the flat surface 283 and the upstream surface 281. The point P04 indicates the upper end of the corner line between the flat surface 283 and the upstream surface 281.
 冷却器300Bが、スクロールコンプレッサ200Cに組み付けられると、点P01~点P04を角隅部とする矩形枠状の領域が形成される。第6実施形態に関連して説明された冷却空気の2つの流動経路は、点P01~点P04によって規定される矩形枠状の領域によって形成される開口を上流端として有することになる。点P01~点P04によって規定される矩形領域は、第1案内枠440の第2取付壁445に形成された矩形状の開口部447と相補的である。点P01~点P04によって規定される矩形領域は、開口部447に嵌め込まれてもよい。開口部447は、パッキン442によって囲まれるので、送風機430が生成した冷却空気は、第1案内枠440から漏れ出ることなく、2つの流動経路に流入することができる。 When the cooler 300B is assembled to the scroll compressor 200C, a rectangular frame region having corners at the points P01 to P04 is formed. The two flow paths of the cooling air described in relation to the sixth embodiment have an opening formed by a rectangular frame region defined by the points P01 to P04 as an upstream end. The rectangular area defined by the points P01 to P04 is complementary to the rectangular opening 447 formed in the second mounting wall 445 of the first guide frame 440. The rectangular area defined by the points P01 to P04 may be fitted into the opening 447. Since the opening 447 is surrounded by the packing 442, the cooling air generated by the blower 430 can flow into the two flow paths without leaking from the first guide frame 440.
 <第8実施形態>
 設計者は、コンプレッサを駆動するための様々な装置、配置及び構造を空気圧縮装置に組み込んでもよい。第8実施形態において、コンプレッサを駆動するための例示的な駆動技術が説明される。
<Eighth Embodiment>
The designer may incorporate various devices, arrangements and structures for driving the compressor into the air compression device. In an eighth embodiment, an exemplary drive technique for driving a compressor is described.
 図11は、第8実施形態の空気圧縮装置100Fの概略的な斜視図である。図7、図8及び図11を参照して、空気圧縮装置100Fが説明される。第7実施形態と共通する符号は、当該符号が付された要素が、第7実施形態と機能的に共通することを意味する。したがって、第7実施形態の説明は、共通の符号が付された要素に援用される。 FIG. 11 is a schematic perspective view of an air compressor 100F of the eighth embodiment. The air compression apparatus 100F will be described with reference to FIGS. The code | symbol which is common in 7th Embodiment means that the element to which the said code | symbol was attached | subjected is functionally common in 7th Embodiment. Therefore, description of 7th Embodiment is used for the element to which the common code | symbol was attached | subjected.
 第7実施形態と同様に、空気圧縮装置100Fは、基台110(図11を参照)と、スクロールコンプレッサ200C(図11を参照)と、冷却器300B(図11を参照)と、仕切壁410D(図8を参照)と、供給パイプ420(図8を参照)と、送風機430(図11を参照)と、第1案内枠440(図11を参照)と、を備える。第7実施形態の説明は、これらの要素に援用される。 Similar to the seventh embodiment, the air compressor 100F includes a base 110 (see FIG. 11), a scroll compressor 200C (see FIG. 11), a cooler 300B (see FIG. 11), and a partition wall 410D. (See FIG. 8), a supply pipe 420 (see FIG. 8), a blower 430 (see FIG. 11), and a first guide frame 440 (see FIG. 11). The description of the seventh embodiment is incorporated in these elements.
 図9に示される如く、スクロールコンプレッサ200Cは、インテークダクト280を含む。インテークダクト280によって規定される流路は、固定スクロール257(図7を参照)及び可動スクロール243(図8を参照)が噛み合う空間(すなわち、保持枠体230と蓋体250とによって囲まれる空間)に繋がる。 As shown in FIG. 9, the scroll compressor 200C includes an intake duct 280. The flow path defined by the intake duct 280 is a space in which the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) mesh (that is, a space surrounded by the holding frame body 230 and the lid body 250). It leads to.
 図11に示される如く、空気圧縮装置100Fは、フィルタダクト120を備える。フィルタダクト120は、フィルタ部121とフレキシブルダクト122とを含む。フレキシブルダクト122の基端は、インテークダクト280(図9を参照)に接続される。フィルタ部121は、フレキシブルダクト122の先端部に取り付けられる。スクロールコンプレッサ200Cが駆動されると、インテークダクト280及びフレキシブルダクト122内に負圧環境が生ずる。この結果、フィルタ部121の周囲の空気は、フレキシブルダクト122及びインテークダクト280を通じて、固定スクロール257(図7を参照)及び可動スクロール243(図8を参照)が噛み合う空間に流入する。このとき、フィルタ部121は、流入した空気から異物を除去する。固定スクロール257及び可動スクロール243は、流入した空気を圧縮し、圧縮空気を生成する。 As shown in FIG. 11, the air compression apparatus 100F includes a filter duct 120. The filter duct 120 includes a filter part 121 and a flexible duct 122. The proximal end of the flexible duct 122 is connected to the intake duct 280 (see FIG. 9). The filter part 121 is attached to the tip part of the flexible duct 122. When the scroll compressor 200 </ b> C is driven, a negative pressure environment is generated in the intake duct 280 and the flexible duct 122. As a result, the air around the filter unit 121 flows into the space where the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) mesh with each other through the flexible duct 122 and the intake duct 280. At this time, the filter unit 121 removes foreign substances from the air that has flowed in. The fixed scroll 257 and the movable scroll 243 compress the air that flows in to generate compressed air.
 図11に示される如く、空気圧縮装置100Fは、枠体500を備える。枠体500は、第1支柱510と、第2支柱520と、第3支柱530と、第4支柱540と、第1桁材550と、第2桁材560と、底板570と、を含む。底板570は、略矩形状である。底板570は、基台110の下方で横たわる。第1支柱510、第2支柱520、第3支柱530及び第4支柱540は、底板570の4つの角隅部から上方へ延びる。第1支柱510及び第3支柱530は、底板570の1つの対角線上で並ぶ。第2支柱520及び第4支柱540は、底板570の他のもう1つの対角線上で並ぶ。第1桁材550は、第1支柱510と第2支柱520との間で略水平に延びる。第2桁材560は、第3支柱530と第4支柱540との間で略水平に延びる。第1桁材550は、第2桁材560と略平行に延びる。基台110は、第1桁材550及び第2桁材560上で固定される。 11, the air compression device 100F includes a frame body 500. The frame 500 includes a first column 510, a second column 520, a third column 530, a fourth column 540, a first beam member 550, a second beam member 560, and a bottom plate 570. The bottom plate 570 has a substantially rectangular shape. The bottom plate 570 lies below the base 110. The first column 510, the second column 520, the third column 530, and the fourth column 540 extend upward from the four corners of the bottom plate 570. The first support column 510 and the third support column 530 are arranged on one diagonal line of the bottom plate 570. The second support column 520 and the fourth support column 540 are arranged on another diagonal line of the bottom plate 570. The first beam member 550 extends substantially horizontally between the first column 510 and the second column 520. The second beam member 560 extends substantially horizontally between the third support column 530 and the fourth support column 540. The first beam member 550 extends substantially parallel to the second beam member 560. The base 110 is fixed on the first beam member 550 and the second beam member 560.
 図11に示される如く、空気圧縮装置100Fは、モータ610と、伝達機構620と、を備える。基台110は、上面111と、上面111とは反対側の下面112と、を含む。スクロールコンプレッサ200Cは、上面111に固定される一方で、モータ610は、下面112に固定される。スクロールコンプレッサ200C及びモータ610は、垂直に並ぶので、空気圧縮装置100Fを設計する設計者は、水平面上における枠体500の面積に小さな値を与えることができる。 As shown in FIG. 11, the air compression device 100F includes a motor 610 and a transmission mechanism 620. The base 110 includes an upper surface 111 and a lower surface 112 opposite to the upper surface 111. The scroll compressor 200 </ b> C is fixed to the upper surface 111, while the motor 610 is fixed to the lower surface 112. Since the scroll compressor 200C and the motor 610 are arranged vertically, the designer who designs the air compressor 100F can give a small value to the area of the frame 500 on the horizontal plane.
 伝達機構620は、上プーリ621と、下プーリ622と、テンションプーリ623と、無端ベルト624と、を含む。モータ610は、スクロールコンプレッサ200Cの回転シャフト235と略平行に延びるモータシャフト611を含む。上プーリ621は、回転シャフト235に取り付けられる。下プーリ622は、モータシャフト611に取り付けられる。無端ベルト624は、上プーリ621と下プーリ622とを取り巻く。テンションプーリ623は、無端ベルト624に適切な張力を与える。 The transmission mechanism 620 includes an upper pulley 621, a lower pulley 622, a tension pulley 623, and an endless belt 624. The motor 610 includes a motor shaft 611 extending substantially parallel to the rotation shaft 235 of the scroll compressor 200C. The upper pulley 621 is attached to the rotary shaft 235. The lower pulley 622 is attached to the motor shaft 611. Endless belt 624 surrounds upper pulley 621 and lower pulley 622. The tension pulley 623 gives an appropriate tension to the endless belt 624.
 モータ610が作動すると、モータシャフト611は、回転する。この結果、モータシャフト611に取り付けられた下プーリ622と噛み合う無端ベルト624は、周回し、上プーリ621を回転させる。上プーリ621が取り付けられた回転シャフト235が回転するので、固定スクロール257(図7を参照)及び可動スクロール243(図8を参照)は、スクロールコンプレッサ200C内の空気を圧縮し、圧縮空気を生成する。 When the motor 610 operates, the motor shaft 611 rotates. As a result, the endless belt 624 that meshes with the lower pulley 622 attached to the motor shaft 611 rotates and rotates the upper pulley 621. Since the rotary shaft 235 to which the upper pulley 621 is attached rotates, the fixed scroll 257 (see FIG. 7) and the movable scroll 243 (see FIG. 8) compress the air in the scroll compressor 200C and generate compressed air. To do.
 <第9実施形態>
 設計者は、第8実施形態に関連して説明された枠体を用いて、コンプレッサや他の機器を保護する様々な筐体を設計することができる。第9実施形態において、例示的な枠体構造が説明される。
<Ninth Embodiment>
The designer can design various housings that protect the compressor and other devices using the frame described in the context of the eighth embodiment. In the ninth embodiment, an exemplary frame structure is described.
 図12Aは、第9実施形態の空気圧縮装置100Gの概略的な斜視図である。図12Bは、空気圧縮装置100Gの他のもう1つの概略的な斜視図である。図8、図11乃至図12Bを参照して、空気圧縮装置100Gが説明される。第8実施形態と共通する符号は、当該符号が付された要素が、第8実施形態と機能的に共通することを意味する。したがって、第8実施形態の説明は、共通の符号が付された要素に援用される。 FIG. 12A is a schematic perspective view of an air compression device 100G of the ninth embodiment. FIG. 12B is another schematic perspective view of the air compression device 100G. The air compressor 100G will be described with reference to FIGS. 8 and 11 to 12B. The reference sign common to the eighth embodiment means that the element to which the reference sign is attached is functionally common to the eighth embodiment. Therefore, description of 8th Embodiment is used for the element to which the common code | symbol was attached | subjected.
 第8実施形態と同様に、空気圧縮装置100Gは、基台110(図11を参照)と、フィルタダクト120(図11を参照)と、スクロールコンプレッサ200C(図11を参照)と、冷却器300B(図11を参照)と、仕切壁410D(図8を参照)と、供給パイプ420(図8を参照)と、送風機430(図11を参照)と、第1案内枠440(図11を参照)と、モータ610(図11を参照)と、伝達機構620(図11を参照)と、を備える。第8実施形態の説明は、これらの要素に援用される。 Similar to the eighth embodiment, the air compressor 100G includes a base 110 (see FIG. 11), a filter duct 120 (see FIG. 11), a scroll compressor 200C (see FIG. 11), and a cooler 300B. (See FIG. 11), partition wall 410D (see FIG. 8), supply pipe 420 (see FIG. 8), blower 430 (see FIG. 11), and first guide frame 440 (see FIG. 11). ), A motor 610 (see FIG. 11), and a transmission mechanism 620 (see FIG. 11). The description of the eighth embodiment is incorporated in these elements.
 図12Aに示される如く、空気圧縮装置100Gは、筐体700を更に備える。図11を参照して説明された枠体500は、筐体700の一部として用いられる。 As shown in FIG. 12A, the air compressor 100G further includes a housing 700. The frame 500 described with reference to FIG. 11 is used as a part of the housing 700.
 図12Aに示される如く、筐体700は、天板710を含む。天板710は、第1支柱510(図11を参照)、第2支柱520(図11を参照)、第3支柱530(図11を参照)及び第4支柱540(図11を参照)の上端に据え付けられる。したがって、天板710は、底板570(図12Bを参照)及び基台110(図11を参照)上で略水平に横たわる。 As shown in FIG. 12A, the housing 700 includes a top plate 710. The top plate 710 is an upper end of the first column 510 (see FIG. 11), the second column 520 (see FIG. 11), the third column 530 (see FIG. 11), and the fourth column 540 (see FIG. 11). Installed. Accordingly, the top plate 710 lies substantially horizontally on the bottom plate 570 (see FIG. 12B) and the base 110 (see FIG. 11).
 筐体700は、右パネル720(図12Aを参照)と左パネル730(図12Bを参照)とを含む。右パネル720は、底板570(図12Bを参照)、天板710(図12Aを参照)、第1支柱510(図11を参照)及び第4支柱540(図11を参照)によって囲まれた空間を塞ぐ。左パネル730は、底板570、天板710、第2支柱520(図11を参照)及び第3支柱530(図11を参照)によって囲まれた空間を塞ぐ。 The housing 700 includes a right panel 720 (see FIG. 12A) and a left panel 730 (see FIG. 12B). The right panel 720 is a space surrounded by a bottom plate 570 (see FIG. 12B), a top plate 710 (see FIG. 12A), a first column 510 (see FIG. 11), and a fourth column 540 (see FIG. 11). Block. The left panel 730 closes a space surrounded by the bottom plate 570, the top plate 710, the second support column 520 (see FIG. 11), and the third support column 530 (see FIG. 11).
 図12Aに示される如く、筐体700は、上カバー740と下カバー750とを含む。上カバー740は、天板710、第1桁材550(図11を参照)、第1支柱510(図11を参照)及び第2支柱520(図11を参照)によって囲まれた空間を塞ぐ。送風機430(図11を参照)及び第1案内枠440(図11を参照)は、上カバー740とスクロールコンプレッサ200Cとの間に配置される。下カバー750は、底板570(図11を参照)、第1桁材550(図11を参照)、第1支柱510(図11を参照)及び第2支柱520(図11を参照)によって囲まれた空間を塞ぐ。下カバー750は、保持枠751と複数の庇板752とを含む。保持枠751は、底板570、第1桁材550、第1支柱510及び第2支柱520に沿う板材から形成される。複数の庇板752は、保持枠751によって保持される。複数の庇板752それぞれは、保持枠751によって囲まれた空間内で略水平に延びる。複数の庇板752は、垂直方向に整列される。 As shown in FIG. 12A, the housing 700 includes an upper cover 740 and a lower cover 750. The upper cover 740 closes a space surrounded by the top plate 710, the first beam member 550 (see FIG. 11), the first support column 510 (see FIG. 11), and the second support column 520 (see FIG. 11). The blower 430 (see FIG. 11) and the first guide frame 440 (see FIG. 11) are disposed between the upper cover 740 and the scroll compressor 200C. The lower cover 750 is surrounded by a bottom plate 570 (see FIG. 11), a first beam member 550 (see FIG. 11), a first support column 510 (see FIG. 11), and a second support column 520 (see FIG. 11). Block the space. The lower cover 750 includes a holding frame 751 and a plurality of flange plates 752. The holding frame 751 is formed from a plate material along the bottom plate 570, the first beam member 550, the first support column 510, and the second support column 520. The plurality of ribs 752 are held by a holding frame 751. Each of the plurality of ribs 752 extends substantially horizontally in a space surrounded by the holding frame 751. The plurality of ribs 752 are aligned in the vertical direction.
 図11を参照して説明された如く、スクロールコンプレッサ200Cは、フィルタダクト120を通じて吸引する。筐体700の外の空気(外気)は、複数の庇板752の間に形成された空隙を通じて、フィルタダクト120に吸い込まれる。同様に、送風機430も、複数の庇板752の間に形成された空隙を通じて、外気を吸引し、冷却空気を生成する。 As described with reference to FIG. 11, the scroll compressor 200 </ b> C sucks through the filter duct 120. Air outside the casing 700 (outside air) is sucked into the filter duct 120 through a gap formed between the plurality of ribs 752. Similarly, the blower 430 also sucks outside air through a gap formed between the plurality of ribs 752 and generates cooling air.
 図12Bに示される如く、空気圧縮装置100Gは、冷却装置810と、除湿装置820と、制御盤830と、を備える。冷却装置810は、上カバー740の反対側で、筐体700に取り付けられる。除湿装置820及び制御盤830は、下カバー750の反対側で、筐体700に取り付けられる。 12B, the air compression device 100G includes a cooling device 810, a dehumidifying device 820, and a control panel 830. The cooling device 810 is attached to the housing 700 on the opposite side of the upper cover 740. The dehumidifying device 820 and the control panel 830 are attached to the housing 700 on the opposite side of the lower cover 750.
 スクロールコンプレッサ200C(図11を参照)が生成した圧縮空気は、冷却器300B(図11を参照)を通じて、冷却装置810へ供給される。冷却装置810は、筐体700の外に配置されるので、圧縮空気は、冷却装置810において、外気によって効果的に冷却される。その後、圧縮空気は、除湿装置820に供給される。除湿装置820は、圧縮空気を除湿する。除湿された圧縮空気は、圧縮空気を貯蔵するタンクや様々な空圧機器へ供給される。制御盤830は、モータ610(図11を参照)、送風機430(図11を参照)や他の装置の動作を制御する。 Compressed air generated by the scroll compressor 200C (see FIG. 11) is supplied to the cooling device 810 through the cooler 300B (see FIG. 11). Since the cooling device 810 is disposed outside the housing 700, the compressed air is effectively cooled by the outside air in the cooling device 810. Thereafter, the compressed air is supplied to the dehumidifier 820. The dehumidifier 820 dehumidifies the compressed air. The dehumidified compressed air is supplied to a tank for storing the compressed air and various pneumatic devices. The control panel 830 controls operations of the motor 610 (see FIG. 11), the blower 430 (see FIG. 11), and other devices.
 <第10実施形態>
 設計者は、送風機が生成した冷却空気を排気するための様々な構造を筐体に与えてもよい。第10実施形態において、排気機能を有する例示的な枠体構造が説明される。
<Tenth Embodiment>
The designer may provide the housing with various structures for exhausting the cooling air generated by the blower. In the tenth embodiment, an exemplary frame structure having an exhaust function will be described.
 図13は、第10実施形態の排気構造130の概略的な斜視図である。図8、図11、図12A及び図13を参照して、排気構造130が説明される。 FIG. 13 is a schematic perspective view of the exhaust structure 130 of the tenth embodiment. The exhaust structure 130 will be described with reference to FIGS. 8, 11, 12A and 13.
 図13に示される如く、排気構造130は、排気板760と、第2案内枠770と、を備える。排気板760は、底板570(図11を参照)、天板710(図12Aを参照)、第3支柱530(図11を参照)及び第4支柱540(図11を参照)によって囲まれた空間を部分的に閉じる。排気板760は、上カバー740(図12Aを参照)とは反対側に位置する。排気板760は、筐体700(図12Aを参照)の一部として用いられる。 As shown in FIG. 13, the exhaust structure 130 includes an exhaust plate 760 and a second guide frame 770. The exhaust plate 760 is a space surrounded by a bottom plate 570 (see FIG. 11), a top plate 710 (see FIG. 12A), a third support column 530 (see FIG. 11), and a fourth support column 540 (see FIG. 11). Close partly. The exhaust plate 760 is located on the side opposite to the upper cover 740 (see FIG. 12A). The exhaust plate 760 is used as a part of the housing 700 (see FIG. 12A).
 図13に示される如く、排気板760は、外面761と、外面761とは反対側の内面762と、を含む。外面761は、筐体700(図12Aを参照)の外面の一部を形成する。内面762は、スクロールコンプレッサ200C(図11を参照)が収容される収容空間を部分的に規定する。冷却装置810は、外面761に取り付けられる。第2案内枠770は、内面762に取り付けられる。 13, the exhaust plate 760 includes an outer surface 761 and an inner surface 762 opposite to the outer surface 761. The outer surface 761 forms a part of the outer surface of the housing 700 (see FIG. 12A). Inner surface 762 partially defines an accommodation space in which scroll compressor 200C (see FIG. 11) is accommodated. The cooling device 810 is attached to the outer surface 761. The second guide frame 770 is attached to the inner surface 762.
 図13に示される如く、第2案内枠770は、箱部771とパッキン772とを含む。箱部771は、周壁773と対向壁774とを含む。周壁773は、排気板760から内方に突出する。周壁773は、下流縁775と矩形縁776とを含む。下流縁775は、排気板760に隣接する。矩形縁776は、対向壁774を取り囲む。対向壁774は、排気板760に対向する。 As shown in FIG. 13, the second guide frame 770 includes a box portion 771 and a packing 772. Box portion 771 includes a peripheral wall 773 and an opposing wall 774. The peripheral wall 773 protrudes inward from the exhaust plate 760. The peripheral wall 773 includes a downstream edge 775 and a rectangular edge 776. The downstream edge 775 is adjacent to the exhaust plate 760. A rectangular edge 776 surrounds the opposing wall 774. The facing wall 774 faces the exhaust plate 760.
 対向壁774には、略矩形状の開口部777が形成される。パッキン772は、開口部777を規定する縁部に沿って、対向壁774に取り付けられる。パッキン772が、図8を参照して説明された冷却空気の2つの流動経路の下流端を取り囲むように、第2案内枠770は、スクロールコンプレッサ200C及び冷却器300Bに接続される。 A substantially rectangular opening 777 is formed in the opposing wall 774. The packing 772 is attached to the opposing wall 774 along the edge that defines the opening 777. The second guide frame 770 is connected to the scroll compressor 200C and the cooler 300B so that the packing 772 surrounds the downstream ends of the two flow paths of the cooling air described with reference to FIG.
 図14は、空気圧縮装置100Gの概略的な斜視図である。冷却装置810は、図14に示される空気圧縮装置100Gから除去されている。図12B乃至図14を参照して、空気圧縮装置100Gが説明される。 FIG. 14 is a schematic perspective view of the air compressor 100G. The cooling device 810 has been removed from the air compression device 100G shown in FIG. The air compressor 100G will be described with reference to FIGS. 12B to 14.
 図14に示される如く、排気板760には、排気口769が形成される。排気口769は、水平方向に延びる。第2案内枠770の下流縁775(図13を参照)は、排気口769を取り囲む。 As shown in FIG. 14, an exhaust port 769 is formed in the exhaust plate 760. The exhaust port 769 extends in the horizontal direction. A downstream edge 775 (see FIG. 13) of the second guide frame 770 surrounds the exhaust port 769.
 図12Bに示される如く、冷却装置810は、圧縮空気が流入する蛇行状の管路811を備える。管路811は、水平方向に略真っ直ぐ延び、且つ、垂直方向に繰り返し曲がる。 As shown in FIG. 12B, the cooling device 810 includes a meandering pipe line 811 into which compressed air flows. The pipe line 811 extends substantially straight in the horizontal direction and bends repeatedly in the vertical direction.
 排気口769(図14を参照)は、管路811(図12Bを参照)の延設領域に向けて開口する。したがって、管路811は、第2案内枠770(図13を参照)の開口部777(図13を参照)及び排気板760(図14を参照)の排気口769(図14を参照)を通じて排気された冷却空気に曝される。この結果、蛇行管811に沿って流れる圧縮空気は、効果的に冷却される。 The exhaust port 769 (see FIG. 14) opens toward the extended region of the pipe line 811 (see FIG. 12B). Therefore, the pipe line 811 is exhausted through the opening 777 (see FIG. 13) of the second guide frame 770 (see FIG. 13) and the exhaust port 769 (see FIG. 14) of the exhaust plate 760 (see FIG. 14). Exposed to the cooled air. As a result, the compressed air flowing along the meandering pipe 811 is effectively cooled.
 <第11実施形態>
 低い剛性を有する管部材は、振動が発生する環境下において好適である。しかしながら、空気圧縮装置の筐体内で循環する強い空気流が生じているならば、可撓性の管部材は揺れ動くので、設計者は、高い剛性を有する管部材を選択することもある。第10実施形態に関連して説明された排気原理は、空気圧縮装置の筐体内で循環する強い空気流を生じさせないので、設計者は、可撓性を少なくとも部分的に有する管部材を利用してもよい。第11実施形態において、可撓性の樹脂管を用いて、圧縮空気を案内する例示的な枠体構造が説明される。
<Eleventh embodiment>
A pipe member having low rigidity is suitable in an environment where vibration occurs. However, if there is a strong air flow that circulates within the housing of the air compressor, the flexible tube member will swing, so the designer may select a tube member with high stiffness. The exhaust principle described in connection with the tenth embodiment does not create a strong air flow that circulates within the housing of the air compressor, so the designer utilizes a tube member that is at least partially flexible. May be. In the eleventh embodiment, an exemplary frame structure that guides compressed air using a flexible resin tube will be described.
 図15は、空気圧縮装置100Gの概略的な斜視図である。図12B及び図15を参照して、空気圧縮装置100Gが説明される。 FIG. 15 is a schematic perspective view of the air compressor 100G. The air compressor 100G will be described with reference to FIGS. 12B and 15.
 図15に示される如く、空気圧縮装置100Gは、樹脂管140を備える。樹脂管140は、冷却器300Bの逆止弁340と冷却装置810(図12Bを参照)の蛇行管811(図12Bを参照)とに接続される。したがって、圧縮空気は、樹脂管140によって、冷却器300Bから冷却装置810へ案内される。樹脂管140は、ポリテトラフルオロエチレンや他の適切な耐熱樹脂から形成されてもよい。樹脂管140は、冷却空気が流れる領域の外で延設される。したがって、樹脂管140は、冷却空気によって揺らされにくい。本実施形態の原理は、樹脂管140に用いられる特定の材料に限定されない。 15, the air compression device 100G includes a resin pipe 140. The resin pipe 140 is connected to the check valve 340 of the cooler 300B and the meandering pipe 811 (see FIG. 12B) of the cooling device 810 (see FIG. 12B). Therefore, the compressed air is guided from the cooler 300 </ b> B to the cooling device 810 by the resin tube 140. The resin tube 140 may be formed of polytetrafluoroethylene or other suitable heat resistant resin. The resin tube 140 is extended outside the region where the cooling air flows. Therefore, the resin tube 140 is not easily shaken by the cooling air. The principle of the present embodiment is not limited to a specific material used for the resin tube 140.
 設計者は、上述の様々な実施形態に関連して説明された設計原理にしたがって、様々な空気圧縮装置を設計することができる。上述の様々な実施形態のうち1つに関連して説明された様々な特徴のうち一部が、他のもう1つの実施形態に関連して説明された空気圧縮装置に適用されてもよい。 Designers can design various air compression devices according to the design principles described in relation to the various embodiments described above. Some of the various features described in connection with one of the various embodiments described above may be applied to the air compression apparatus described in connection with another other embodiment.
 [実施の形態の概要]
 ここで、前記実施形態について概説する。
[Outline of the embodiment]
Here, the embodiment will be outlined.
 本発明の一局面に係る空気圧縮装置は、圧縮空気を生成するコンプレッサと、前記圧縮空気が流入する内部空間を形成する冷却器と、を備える。前記冷却器は、第1フィンが設けられた第1空洞形成面を含む。前記コンプレッサは、第2フィンが設けられた第2空洞形成面を含む。前記第1空洞形成面及び前記第2空洞形成面は、前記コンプレッサと前記冷却器とから熱を奪う冷却空気の流動を許容する冷却ダクトを形成する。前記第1フィン及び前記第2フィンは、前記冷却ダクト内に突出している。 An air compression device according to one aspect of the present invention includes a compressor that generates compressed air, and a cooler that forms an internal space into which the compressed air flows. The cooler includes a first cavity forming surface provided with a first fin. The compressor includes a second cavity forming surface provided with second fins. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler. The first fin and the second fin protrude into the cooling duct.
 上記構成によれば、圧縮空気は、冷却器の内部空間へ流入する。冷却器の第1空洞形成面及びコンプレッサの第2空洞形成面は、冷却空気の流動を許容する冷却ダクトを形成するので、冷却器及びコンプレッサを冷却するための空間を確保すべく広い空間は必要ない。そして、第1空洞形成面に設けられた第1フィン及び第2空洞形成面に設けられた第2フィンはともに、前記冷却ダクト内に突出しているので、冷却ダクトに供給された冷却空気によって強制的且つ効率的に冷却される。第1フィン及び第2フィンは、共通の冷却ダクト内で流れる冷却空気によって冷却されるので、設計者は、空気圧縮装置に、冷却空気の複雑な流動経路を与えなくてもよい。 According to the above configuration, the compressed air flows into the internal space of the cooler. Since the first cavity forming surface of the cooler and the second cavity forming surface of the compressor form a cooling duct that allows the flow of cooling air, a large space is required to secure a space for cooling the cooler and the compressor. Absent. Since both the first fin provided on the first cavity forming surface and the second fin provided on the second cavity forming surface protrude into the cooling duct, the first fin is forced by the cooling air supplied to the cooling duct. And efficiently cooled. Since the first fin and the second fin are cooled by the cooling air flowing in the common cooling duct, the designer does not have to provide the air compressor with a complicated flow path of the cooling air.
 上記構成において、前記第1空洞形成面及び第2空洞形成面は、互いに対向する位置に配置されていてもよい。すなわち、この空気圧縮装置は、圧縮空気を生成するコンプレッサと、前記圧縮空気が流入する内部空間を形成する冷却器と、を備える。前記冷却器は、前記コンプレッサに対向する部位に位置する第1空洞形成面と、前記第1空洞形成面に設けられた第1フィンと、を含む。前記コンプレッサは、前記冷却器の前記第1空洞形成面に対向する第2空洞形成面と、前記第2空洞形成面に設けられた第2フィンと、を含む。前記第1空洞形成面及び前記第2空洞形成面は、前記コンプレッサと前記冷却器とから熱を奪う冷却空気の流動を許容する冷却ダクトを形成する。前記第1フィン及び前記第2フィンは、前記冷却ダクト内に突出している。 In the above configuration, the first cavity forming surface and the second cavity forming surface may be arranged at positions facing each other. That is, this air compression apparatus includes a compressor that generates compressed air and a cooler that forms an internal space into which the compressed air flows. The cooler includes a first cavity forming surface located at a portion facing the compressor, and a first fin provided on the first cavity forming surface. The compressor includes a second cavity forming surface facing the first cavity forming surface of the cooler, and a second fin provided on the second cavity forming surface. The first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler. The first fin and the second fin protrude into the cooling duct.
 上記構成によれば、前記第1空洞形成面及び第2空洞形成面は、互いに対向する位置に配置されているので、前記第1空洞形成面及び第2空洞形成面によって前記冷却ダクトの少なくとも2側面を構成することができ、この冷却ダクトを簡易に構成することができる。 According to the above configuration, since the first cavity forming surface and the second cavity forming surface are disposed at positions facing each other, at least two of the cooling ducts are formed by the first cavity forming surface and the second cavity forming surface. Side surfaces can be configured, and this cooling duct can be configured easily.
 上記構成において、空気圧縮装置は、前記第1フィンと前記第2フィンとの間に配置された仕切壁を更に備えてもよい。前記仕切壁は、前記冷却ダクト内の前記冷却空気の流動空間を、前記第1フィンが突出する第1流動空間と、前記第2フィンが突出する第2流動空間とに区画してもよい。 In the above-described configuration, the air compression device may further include a partition wall disposed between the first fin and the second fin. The partition wall may partition the cooling air flow space in the cooling duct into a first flow space from which the first fin protrudes and a second flow space from which the second fin protrudes.
 上記構成によれば、仕切壁が、第1フィンと第2フィンとの間に配置されるので、冷却ダクト内の冷却空気は、整流される。したがって、冷却ダクト内における冷却空気の流動抵抗を下げることができるので、冷却器内の圧縮空気及びコンプレッサは、効率的に冷却される。 According to the above configuration, since the partition wall is disposed between the first fin and the second fin, the cooling air in the cooling duct is rectified. Therefore, since the flow resistance of the cooling air in the cooling duct can be reduced, the compressed air and the compressor in the cooler are efficiently cooled.
 上記構成において、前記仕切壁は、前記第1フィン及び前記第2フィンよりも低い熱伝導率を有してもよい。 In the above configuration, the partition wall may have a lower thermal conductivity than the first fin and the second fin.
 上記構成によれば、仕切壁は、第1フィン及び第2フィンよりも低い熱伝導率を有するので、コンプレッサと冷却器との間で往来する熱量は小さくなる。 According to the above configuration, since the partition wall has a lower thermal conductivity than the first fin and the second fin, the amount of heat passing between the compressor and the cooler is reduced.
 上記構成において、空気圧縮装置は、前記冷却空気を生成する送風機と、前記冷却空気を前記冷却ダクトへ案内する上流案内部と、を更に備えてもよい。 In the above configuration, the air compression device may further include a blower that generates the cooling air and an upstream guide portion that guides the cooling air to the cooling duct.
 上記構成によれば、上流案内部は、送風機によって生成された冷却空気を、冷却ダクトへ案内するので、冷却器内の圧縮空気及びコンプレッサは、効率的に冷却される。 According to the above configuration, the upstream guide unit guides the cooling air generated by the blower to the cooling duct, so that the compressed air and the compressor in the cooler are efficiently cooled.
 上記構成において、前記コンプレッサは、固定スクロールと前記固定スクロールと協働して前記圧縮空気を生成する可動スクロールとを有するスクロールコンプレッサであってもよい。前記スクロールコンプレッサは、前記可動スクロールを冷却するための冷却流路を規定してもよい。前記固定スクロール及び前記可動スクロールは、前記冷却ダクトと前記冷却流路との間に配置されてもよい。前記上流案内部は、前記冷却ダクトの上流端と前記冷却流路の上流端とを取り囲む第1案内枠を含んでもよい。 In the above configuration, the compressor may be a scroll compressor having a fixed scroll and a movable scroll that generates the compressed air in cooperation with the fixed scroll. The scroll compressor may define a cooling flow path for cooling the movable scroll. The fixed scroll and the movable scroll may be disposed between the cooling duct and the cooling flow path. The upstream guide portion may include a first guide frame that surrounds an upstream end of the cooling duct and an upstream end of the cooling flow path.
 上記構成によれば、上流案内部は、冷却ダクトの上流端と冷却流路の上流端とを取り囲む第1案内枠を含むので、送風機によって生成された冷却空気は、冷却ダクト及び冷却流路に導入される。冷却ダクトと冷却流路との間に固定スクロール及び可動スクロールが配置されるので、冷却器内の圧縮空気、固定スクロール及び可動スクロールは、効率的に冷却される。 According to the above configuration, since the upstream guide portion includes the first guide frame that surrounds the upstream end of the cooling duct and the upstream end of the cooling flow path, the cooling air generated by the blower flows into the cooling duct and the cooling flow path. be introduced. Since the fixed scroll and the movable scroll are disposed between the cooling duct and the cooling flow path, the compressed air, the fixed scroll, and the movable scroll in the cooler are efficiently cooled.
 上記構成において、空気圧縮装置は、前記冷却空気が排気される排気口が形成された筐体と、前記排気口と前記スクロールコンプレッサとの間に配置され、前記冷却ダクトの下流端及び前記冷却流路の下流端から排気された前記冷却空気を前記排気口へ案内する第2案内枠と、を更に備えてもよい。前記第2案内枠は、前記冷却ダクト及び前記冷却流路の前記下流端を取り囲むパッキンと、前記排気口を取り囲む下流縁と、を含んでもよい。 In the above-described configuration, the air compressor is disposed between a casing formed with an exhaust port through which the cooling air is exhausted, the exhaust port and the scroll compressor, and a downstream end of the cooling duct and the cooling flow. And a second guide frame that guides the cooling air exhausted from the downstream end of the passage to the exhaust port. The second guide frame may include a packing that surrounds the cooling duct and the downstream end of the cooling flow path, and a downstream edge that surrounds the exhaust port.
 上記構成によれば、第2案内枠のパッキンは、冷却ダクトの下流端と冷却流路の下流端とを取り囲み、且つ、第2案内枠の下流縁は、排気口を取り囲むので、冷却空気は、筐体から効率的に排気される。 According to the above configuration, the packing of the second guide frame surrounds the downstream end of the cooling duct and the downstream end of the cooling flow path, and the downstream edge of the second guide frame surrounds the exhaust port. The air is efficiently exhausted from the housing.
 上記構成において、前記筐体は、第1壁と、前記第1壁とは反対側の第2壁と、を含んでもよい。前記送風機及び前記第1案内枠は、前記第1壁と前記スクロールコンプレッサとの間に配置されてもよい。前記第2案内枠は、前記第2壁に取り付けられてもよい。 In the above configuration, the housing may include a first wall and a second wall opposite to the first wall. The blower and the first guide frame may be disposed between the first wall and the scroll compressor. The second guide frame may be attached to the second wall.
 上記構成によれば、送風機及び第1案内枠は、第1壁とスクロールコンプレッサとの間に配置され、且つ、第2案内枠は、前記第2壁に取り付けられるので、送風機によって生成された冷却空気は、第1案内枠、冷却ダクト、冷却流路及び第2案内枠を通じて、排気口から効率的に排気される。 According to the above configuration, since the blower and the first guide frame are disposed between the first wall and the scroll compressor, and the second guide frame is attached to the second wall, the cooling generated by the blower. Air is efficiently exhausted from the exhaust port through the first guide frame, the cooling duct, the cooling flow path, and the second guide frame.
 上記構成において、空気圧縮装置は、前記排気口から排気された前記冷却空気に曝される管路を含む冷却装置と、前記冷却器から前記管路へ前記圧縮空気を案内する少なくとも部分的に可撓性の案内管と、を更に備えてもよい。 In the above configuration, the air compressor is at least partially capable of guiding the compressed air from the cooler including a pipe line exposed to the cooling air exhausted from the exhaust port and the cooler to the pipe line. And a flexible guide tube.
 上記構成によれば、案内管は、少なくとも部分的に可撓性であるので、空気圧縮装置に生じた振動に応じて変形することができるので、空気圧縮装置の振動は、案内管及び案内管に接続される部位に破壊的な負荷を与えにくくなる。 According to the above configuration, since the guide tube is at least partially flexible, the guide tube can be deformed according to the vibration generated in the air compression device. It becomes difficult to give a destructive load to the part connected to the.
 上述の空気圧縮装置は、冷却空気の複雑な流動経路を要することなく、冷却器及びコンプレッサをともに効果的に冷却することができる。 The above-described air compressor can effectively cool both the cooler and the compressor without requiring a complicated flow path of the cooling air.

Claims (9)

  1.  圧縮空気を生成するコンプレッサと、
     前記圧縮空気が流入する内部空間を形成する冷却器と、を備え、
     前記冷却器は、第1フィンが設けられた第1空洞形成面を含み、
     前記コンプレッサは、第2フィンが設けられた第2空洞形成面を含み、
     前記第1空洞形成面及び前記第2空洞形成面は、前記コンプレッサと前記冷却器とから熱を奪う冷却空気の流動を許容する冷却ダクトを形成し、
     前記第1フィン及び前記第2フィンは、前記冷却ダクト内に突出している
     空気圧縮装置。
    A compressor that generates compressed air;
    A cooler that forms an internal space into which the compressed air flows, and
    The cooler includes a first cavity forming surface provided with a first fin,
    The compressor includes a second cavity forming surface provided with a second fin,
    The first cavity forming surface and the second cavity forming surface form a cooling duct that allows a flow of cooling air that takes heat from the compressor and the cooler,
    The first fin and the second fin protrude into the cooling duct.
  2.  前記第1空洞形成面及び第2空洞形成面は、互いに対向する位置に配置されていることを特徴とする請求項1記載の空気圧縮装置。 The air compressing device according to claim 1, wherein the first cavity forming surface and the second cavity forming surface are arranged at positions facing each other.
  3.  前記第1フィンと前記第2フィンとの間に配置された仕切壁を更に備え、
     前記仕切壁は、前記冷却ダクト内の前記冷却空気の流動空間を、前記第1フィンが突出する第1流動空間と、前記第2フィンが突出する第2流動空間とに区画する
     請求項2に記載の空気圧縮装置。
    A partition wall disposed between the first fin and the second fin;
    The partition wall partitions the flow space of the cooling air in the cooling duct into a first flow space from which the first fin protrudes and a second flow space from which the second fin protrudes. The air compressor described.
  4.  前記仕切壁は、前記第1フィン及び前記第2フィンよりも低い熱伝導率を有する
     請求項3に記載の空気圧縮装置。
    The air compressor according to claim 3, wherein the partition wall has a thermal conductivity lower than that of the first fin and the second fin.
  5.  前記冷却空気を生成する送風機と、
     前記冷却空気を前記冷却ダクトへ案内する上流案内部と、を更に備える
     請求項1乃至4のいずれか1項に記載の空気圧縮装置。
    A blower for generating the cooling air;
    The air compressor according to any one of claims 1 to 4, further comprising an upstream guide portion that guides the cooling air to the cooling duct.
  6.  前記コンプレッサは、固定スクロールと前記固定スクロールと協働して前記圧縮空気を生成する可動スクロールとを有するスクロールコンプレッサであり、
     前記スクロールコンプレッサは、前記可動スクロールを冷却するための冷却流路を規定し、
     前記固定スクロール及び前記可動スクロールは、前記冷却ダクトと前記冷却流路との間に配置され、
     前記上流案内部は、前記冷却ダクトの上流端と前記冷却流路の上流端とを取り囲む第1案内枠を含む
     請求項5に記載の空気圧縮装置。
    The compressor is a scroll compressor having a fixed scroll and a movable scroll that generates the compressed air in cooperation with the fixed scroll,
    The scroll compressor defines a cooling flow path for cooling the movable scroll;
    The fixed scroll and the movable scroll are arranged between the cooling duct and the cooling flow path,
    The air compressor according to claim 5, wherein the upstream guide portion includes a first guide frame that surrounds an upstream end of the cooling duct and an upstream end of the cooling channel.
  7.  前記冷却空気が排気される排気口が形成された筐体と、
     前記排気口と前記スクロールコンプレッサとの間に配置され、前記冷却ダクトの下流端及び前記冷却流路の下流端から排気された前記冷却空気を前記排気口へ案内する第2案内枠と、を更に備え、
     前記第2案内枠は、前記冷却ダクト及び前記冷却流路の前記下流端を取り囲むパッキンと、前記排気口を取り囲む下流縁と、を含む
     請求項6に記載の空気圧縮装置。
    A housing formed with an exhaust port through which the cooling air is exhausted;
    A second guide frame that is disposed between the exhaust port and the scroll compressor and guides the cooling air exhausted from the downstream end of the cooling duct and the downstream end of the cooling flow path to the exhaust port. Prepared,
    The air compressor according to claim 6, wherein the second guide frame includes a packing that surrounds the cooling duct and the downstream end of the cooling flow path, and a downstream edge that surrounds the exhaust port.
  8.  前記筐体は、第1壁と、前記第1壁とは反対側の第2壁と、を含み、
     前記送風機及び前記第1案内枠は、前記第1壁と前記スクロールコンプレッサとの間に配置され、
     前記第2案内枠は、前記第2壁に取り付けられる
     請求項7に記載の空気圧縮装置。
    The housing includes a first wall and a second wall opposite to the first wall,
    The blower and the first guide frame are disposed between the first wall and the scroll compressor,
    The air compression device according to claim 7, wherein the second guide frame is attached to the second wall.
  9.  前記排気口から排気された前記冷却空気に曝される管路を含む冷却装置と、
     前記冷却器から前記管路へ前記圧縮空気を案内する少なくとも部分的に可撓性の案内管と、を更に備える
     請求項7又は8に記載の空気圧縮装置。

     
    A cooling device including a pipe line exposed to the cooling air exhausted from the exhaust port;
    The air compression device according to claim 7, further comprising at least a partially flexible guide tube that guides the compressed air from the cooler to the pipe line.

PCT/JP2016/074954 2015-08-28 2016-08-26 Air compression device WO2017038673A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680049963.8A CN107923379B (en) 2015-08-28 2016-08-26 air compressor
JP2017537831A JP6743030B2 (en) 2015-08-28 2016-08-26 Air compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169758 2015-08-28
JP2015-169758 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038673A1 true WO2017038673A1 (en) 2017-03-09

Family

ID=58187312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074954 WO2017038673A1 (en) 2015-08-28 2016-08-26 Air compression device

Country Status (4)

Country Link
JP (1) JP6743030B2 (en)
CN (1) CN107923379B (en)
TW (1) TWI627355B (en)
WO (1) WO2017038673A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126595A1 (en) * 2019-12-16 2021-06-24 Praxair Technology, Inc. Portable, cryogenic fluid pump apparatus with associated instrumentation, conduit legs and accessories

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261182A (en) * 1995-03-20 1996-10-08 Tokico Ltd Scroll type fluid machinery
JP2003090291A (en) * 2001-09-19 2003-03-28 Anest Iwata Corp Scroll fluid machine
JP2008157179A (en) * 2006-12-26 2008-07-10 Anest Iwata Corp Scroll fluid machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319966A (en) * 1995-05-24 1996-12-03 Tokico Ltd Scroll type fluid machinery
JP5422609B2 (en) * 2011-06-10 2014-02-19 株式会社日立産機システム Scroll type fluid machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261182A (en) * 1995-03-20 1996-10-08 Tokico Ltd Scroll type fluid machinery
JP2003090291A (en) * 2001-09-19 2003-03-28 Anest Iwata Corp Scroll fluid machine
JP2008157179A (en) * 2006-12-26 2008-07-10 Anest Iwata Corp Scroll fluid machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126595A1 (en) * 2019-12-16 2021-06-24 Praxair Technology, Inc. Portable, cryogenic fluid pump apparatus with associated instrumentation, conduit legs and accessories
US12215680B2 (en) 2019-12-16 2025-02-04 Praxair Technology, Inc. Portable, cryogenic fluid pump apparatus with associated instrumentation, conduit legs and accessories

Also Published As

Publication number Publication date
CN107923379A (en) 2018-04-17
CN107923379B (en) 2019-07-12
JP6743030B2 (en) 2020-08-19
TW201713856A (en) 2017-04-16
TWI627355B (en) 2018-06-21
JPWO2017038673A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP2014020245A (en) Cooling fan device
JP7113177B2 (en) Temperature conditioning unit, temperature conditioning system and vehicle
KR20180104936A (en) Structure of duct for cooling brake
JP2007317973A (en) Fan motor and electronic apparatus
TWI651497B (en) dehumidifier
CN101153592A (en) Packaged Compressor
WO2017038673A1 (en) Air compression device
JP7029593B2 (en) Temperature control unit
JP4912703B2 (en) Package type compressor
CN113597335A (en) Dehumidifier
JP6976000B2 (en) High-speed turbomachinery capable of cooling heat equilibrium
JP2004251276A (en) Compressor device for vehicle
EP2495849A2 (en) Rotating machine with heat exchanger
JP4735214B2 (en) Air conditioner outdoor unit
WO2018154838A1 (en) Dehumidifier
JP2008031956A (en) Fan device
JP2005095807A (en) Dehumidifier
JP6066833B2 (en) Air conditioner indoor unit and air conditioner equipped with the indoor unit
JP7208064B2 (en) Package type compressor
US11635089B2 (en) Propeller fan, outdoor unit, and refrigeration cycle apparatus
CN220874314U (en) Casing heat radiation structure of pump motor
KR20200128897A (en) Motor cooling structure of turbo blower using coanda effect
JP7626574B2 (en) Air conditioning
CN118601838B (en) Air compressor
JP7658711B2 (en) Air Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841705

Country of ref document: EP

Kind code of ref document: A1