[go: up one dir, main page]

WO2017021646A1 - Piece de moteur thermique, moteur thermique comprenant une telle piece, et procede de fabrication d'une telle piece - Google Patents

Piece de moteur thermique, moteur thermique comprenant une telle piece, et procede de fabrication d'une telle piece Download PDF

Info

Publication number
WO2017021646A1
WO2017021646A1 PCT/FR2016/052002 FR2016052002W WO2017021646A1 WO 2017021646 A1 WO2017021646 A1 WO 2017021646A1 FR 2016052002 W FR2016052002 W FR 2016052002W WO 2017021646 A1 WO2017021646 A1 WO 2017021646A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
metal coating
heat engine
manufacturing
engine
Prior art date
Application number
PCT/FR2016/052002
Other languages
English (en)
Inventor
Emile Thomas Di Serio
Guillaume MALHERBE
Original Assignee
Saint Jean Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Jean Industries filed Critical Saint Jean Industries
Publication of WO2017021646A1 publication Critical patent/WO2017021646A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • THERMAL MOTOR PIECE THERMAL MOTOR COMPRISING SUCH A PART
  • THERMAL MOTOR COMPRISING SUCH A PART AND METHOD FOR MANUFACTURING SUCH A PART
  • the present invention relates to a heat engine part, in particular a crankcase (also called cylinder block), in particular closed tablature.
  • the engine part may be a cylinder head, a connecting rod, a crankshaft, a camshaft, a piston or a segment.
  • the invention also relates to a heat engine comprising at least one such piece, and a method of manufacturing such a piece.
  • the field of the invention is that of thermal engines, for example for motor vehicles, special machines, industrial or marine equipment.
  • the engine parts such as crankcases and cylinder heads are cast in one piece, using a foundry process.
  • these parts can advantageously be made of aluminum alloy.
  • the friction behavior of aluminum alloys is not always satisfactory.
  • tubular inserts in English
  • tubular inserts aim to ensure the following functions: guiding the pistons in the cylinders, thermal connection between the inside of the cylinders (focus of the explosion) and the rest of the casing, resistance to friction, good lubrication at the interface between the pistons and cylinders.
  • These inserts are for example made of cast iron or hyper-eutectic aluminum alloy (Si> 13%).
  • such inserts increase the cost of manufacture and the weight of the housing.
  • the object of the present invention is to provide engine parts that overcome the above disadvantages.
  • the invention relates to a heat engine part, characterized in that it comprises at least one housing without insert, and a metal coating applied by projection on a surface of the housing.
  • the coating projected in the housing advantageously replaces the insert, which allows a weight saving and improves the compactness of the engine part.
  • the invention also reduces the friction and / or the difference in thermal expansion at the interface between the coating and a movable member in the housing.
  • the invention also relates to a heat engine comprising at least one part as mentioned above.
  • the engine can equip a motor vehicle, a special machine, industrial equipment or marine.
  • the heat engine may comprise several parts as mentioned above, for example both a crankcase, a cylinder head and a connecting rod.
  • the invention also relates to a method of manufacturing a heat engine part as mentioned above, comprising at least one housing without insert.
  • the method is characterized in that it comprises a step of projecting a metal coating on a surface of the housing.
  • the surface of the housing receiving the metal coating is cylindrical, and the metal coating has a machined cylindrical outer surface.
  • the surface of the housing receiving the metal coating is frustoconical.
  • the engine part is made of aluminum alloy, cast iron or steel.
  • the metal coating is made of alloy or metal matrix composite, added with hardening elements.
  • the hardening elements are chosen from the following: metals, alloys, oxides, nitrides, borides, carbides or carbonitrides.
  • the metal coating has the basic element aluminum.
  • the metal coating has a homogeneous composition between its inner surface and its outer surface (unlike a coating comprising different layers of different compositions).
  • the engine part is a crankcase.
  • crankcase has a closed tablature configuration.
  • the engine part is a cylinder head, a connecting rod, a crankshaft, a camshaft, a piston or a segment.
  • the metal coating is projected as a powder on the surface of the housing.
  • the powder is projected at an angle selected between 45 and 90 ° relative to the axis of the housing.
  • the powder is projected at an angle selected between 55 and 85 ° relative to the axis of the housing.
  • the metal coating comprises metal particles.
  • the metal particles have a size of between 1 and 50 microns.
  • the metal coating is projected at a speed between 300 to 1800 meters per second.
  • the metal coating is projected in the solid state on the surface of the housing.
  • the method comprises a preliminary machining step of the housing surface.
  • the method comprises a finishing machining step of the metal coating applied to the surface of the housing.
  • the engine part comprises different housing, and the projection step is to simultaneously project a metal coating on the surface of the different housing.
  • FIG. 1 is an elevational view of a heat engine part according to the invention, of the type motor housing, comprising a plurality of coated housing;
  • Figure 2 is a section on the line II-II in Figure 1, showing one of the coated housing
  • Figure 3 is an enlarged view of detail III in Figure 2, showing the coated housing; and Figure 4 is a view similar to Figure 3, showing a housing receiving an insert, according to the prior art known.
  • FIG. 1 to 3 a heat engine part according to the invention, specifically a motor housing 1 of a motor vehicle.
  • the casing 1 comprises a central portion 2 including three cylindrical 10, designed to receive the pistons of the engine. These pistons are not shown for simplification purposes.
  • the casing 1 comprises a water chamber 3 which extends around the cylinders 10.
  • the water chamber 3 constitutes a cooling system of the cylinders 10.
  • the housing 1 comprises a tablature 4 for receiving the cylinder head, not shown for simplification purposes.
  • the casing 1 has a configuration closed tablature ("closed deck” in English). In this configuration, the water chamber 3 is mostly closed at the tablature 4.
  • the tablature 4 comprises covering portions 5 at which the water chamber 3 is not open (tablature and closed chamber) ) and openings 6 at which the water chamber 3 is open (tablature and open chamber).
  • This configuration closed tablature is different, on the one hand, an open tablature configuration, for which the water chamber is fully open at the tab and on the other hand , a configuration of semi closed closed tablature, for which the water chamber is mostly open at the tablature.
  • This closed tablature configuration exhibits poorer cooling performance, but reduces cylinder deformations when the engine is in use. Thus, such a closed tablature configuration is very well suited for high performance engines.
  • the casing 1 is made of aluminum alloy.
  • the crankcase 1 can be made of cast iron or steel.
  • the material of the casing 1 depends in particular on the intended application.
  • Each cylinder 10 has a cylindrical surface 12 centered on a central axis X10.
  • a metal coating 20 is formed by projecting against the surface 12 of the cylinder 10.
  • the coating 20 has a cylindrical inner surface 22 conforming to the surface 12 of the cylinder 10, and a cylindrical outer surface 24 intended to receive the movable piston in the cylinder 10.
  • the surface 24 has a diameter D20 centered on the axis X10, which depends on the diameter of the pistons and therefore the dimensions of the engine thermal.
  • the coating 20 has a thickness e20 defined radially to the axis X10.
  • the thickness e20 may be of the order of 500 micrometers.
  • the thickness e20 may be of the order of 50 micrometers to 2 millimeters, preferably 50 to 800 micrometers.
  • the coating 20 is made of alloy or metal matrix composite, added with hardening elements (metals, alloys, oxides, nitrides, borides, carbides, carbonitrides).
  • the coating 20 is applied over the entire height of the cylinder 10, in a direction parallel to the axis X10.
  • the coating 20 is applied only over part of the height of the cylinder 10.
  • the method of manufacturing the casing 1 comprises successive steps detailed below.
  • the method preferably comprises a preliminary machining step, also called peeling, of machining the surface 12 of each cylinder 10.
  • a preliminary machining step also called peeling
  • the method comprises a step of projecting the metal coating 20 on the surface 12 of the cylinder 10.
  • the coating 20 is projected at high speed in powder form, comprising metal particles (alloys of aluminum, copper, cobalt , nickel, molybdenum, quasi-crystals ).
  • this powder comprises a majority base element (for example aluminum) and hardening elements (metals, alloys, oxides, nitrides, borides, carbides, carbonitrides).
  • the base element of the coating 20 is aluminum.
  • composition of the powder is carefully chosen according to the intended application and the corresponding specifications.
  • the powder particles may have a size of the order of 1 to 50 micrometers, especially between 25 and 45 micrometers, and be projected at a speed of the order of 300 to 1800 meters per second (Mach 1, 2 or 3), especially between 500 and 1300 meters per second.
  • Such speeds can be achieved by spraying the powder with a supersonic gas stream, including for example air and / or helium.
  • the powder is sprayed cold ("cold spray" in English), that is to say in the solid state and not liquid.
  • Cold spraying makes it possible to preserve the thermo-physical properties of the projected materials, with a rate oxidation very low during the deposition of the coating 20, unlike a hot projection in which the change of solid-liquid state alters the properties of the projected materials.
  • the hot projection does not achieve a level of quality as high as with cold projection.
  • it is sprayed at a temperature of between 20 and 1300 ° C.
  • the coating 20 is perfectly adherent without delamination / delamination on the surface 12.
  • the method finally comprises a finishing machining step of the coating 20, to obtain the final surface 24 and diameter D20, with the desired dimensions.
  • this finishing machining consists of a bore made according to the usual range.
  • the projection step consists in simultaneously projecting a metal coating 20 on the surface 12 of the various cylinders 10.
  • the projection step consists in projecting the powder at an optimized angle, between 45 and 90 °, relative to the axis X10 of the cylinder 10.
  • the projection angle is equal to at 90 °.
  • the projection step consists in projecting the powder at a projection distance of 5 to 90 mm from the surface 12, depending on the dimensions of the surface 12 and the projected materials.
  • FIG. 4 shows a casing 1 comprising a cylinder 10 lined by an insert 30, according to the known state of the art.
  • the insert 30 is generally made of cast iron or hyper-eutectic aluminum alloy (Si> 13%).
  • the insert 30 is attached in the cylinder 10 and has a tubular shape, with a cylindrical inner surface 32 disposed against the surface 12 of the cylinder 10, and a cylindrical outer surface 34 provided to receive the movable piston in the cylinder 10.
  • the insert 30 has a thickness e30 defined between the surfaces 32 and 34, and a diameter D30 defined by the surface 34.
  • the diameters D20 and D30 are identical.
  • the coating 20 can be made with a thickness e20 less than the thickness e30 of the insert 30.
  • the thickness e20 may be of the order of 500 micrometers, while the thickness e30 is of the order of 3 millimeters. More generally, for a diameter D20 or D30 of between 60 and 100 millimeters, the thickness e20 may be between 50 and 800 micrometers, compared with a thickness e30 of between 2 and 4 millimeters.
  • the weight gain per cylinder 10 provided with a coating 20 is 94 to 99% with respect to a cylinder 10 provided with an insert 30 (made of cast iron or aluminum hypersilicon).
  • the intercylinder distance can be reduced from 35 to 80%.
  • the heat transfer coefficient between the surface 24 of the coating 20 and the aluminum casing 1 can be improved by 10 to 30%.
  • the heat flux between the surface 24 and the casing 1 is 5 to 20 times greater.
  • the projection of the coating 20 in the cylinder 10 thus makes it possible to eliminate the insert 30, while guaranteeing the function of guiding the piston in the cylinder 10.
  • the use of the coating 20 makes it possible to improve:
  • FIGS. 1 to 3 relate to a heat engine part 1 of the crankcase type. Nevertheless, the part 1 may be shaped differently from Figures 1 to 3 without departing from the scope of the invention. In particular, the part 1 may be different from a crankcase without departing from the scope of the invention.
  • the part 1 may be a cylinder head, having housings 10 of the camshaft support type and / or valve seat.
  • the part 1 may be a connecting rod, having one or more housing 10 of the bore type, adapted to receive a shaft in pivot connection.
  • the connecting rod may comprise a first bore receiving a crankshaft, and a second bore receiving a shaft integral with a piston.
  • the part 1 can be a crankshaft, a camshaft, a piston or a segment.
  • the part 1 may comprise a housing 10 and a coating 20 having surfaces 12, 22, 24 non-cylindrical, for example frustoconical, or other.
  • the engine part 1 comprises at least one housing 10 without insert, and a metal coating 20 applied by projection on a surface 12 of the housing 10.
  • the engine part 1 can be adapted in terms of cost, functionality and performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

La présente invention concerneune pièce (1) de moteur thermique, caractérisée en ce qu'elle comporte au moins un logement (10) dépourvu d'insert, etun revêtement métallique (20) appliqué par projection sur une surface (12) du logement (10).L'invention concerne également un moteur thermique comprenant au moins une telle pièce (1), etun procédé de fabrication d'une telle pièce (1).

Description

PIECE DE MOTEUR THERMIQUE, MOTEUR THERMIQUE COMPRENANT UNE TELLE PIECE, ET PROCEDE DE FABRICATION D'UNE TELLE PIECE
La présente invention concerne une pièce de moteur thermique, en particulier un carter moteur (également appelé bloc-cylindres), notamment à tablature fermée. En alternative, la pièce de moteur thermique peut être une culasse, une bielle, un vilebrequin, un arbre à cames, un piston ou un segment. L'invention concerne également un moteur thermique comprenant au moins une telle pièce, ainsi qu'un procédé de fabrication d'une telle pièce.
Le domaine de l'invention est celui des moteurs thermiques, par exemple pour véhicules automobiles, machines spéciales, équipements industriels ou marins.
Classiquement, les pièces de moteur thermique telles que les carters et les culasses sont coulées en une seule pièce, en mettant en œuvre un procédé de fonderie. Afin de réduire leur coût de fabrication et leur poids, ces pièces peuvent avantageusement être réalisées en alliage d'aluminium. Toutefois, le comportement en frottement des alliages d'aluminium n'est pas toujours satisfaisant.
Pour des raisons de tenue thermomécanique et de résistance à la friction, il est ainsi connu d'agencer des inserts tubulaires (« liners » en Anglais) dans les cylindres d'un carter moteur en alliage d'aluminium, avant ou après la coulée. Ces inserts visent à assurer les fonctions suivantes : guidage des pistons dans les cylindres, liaison thermique entre l'intérieur des cylindres (foyer de l'explosion) et le reste du carter, résistance à la friction, bonne lubrification à l'interface entre les pistons et les cylindres. Ces inserts sont par exemple réalisés en fonte ou en alliage d'aluminium hyper-eutectique (Si > 13 %). Cependant, de tels inserts augmentent le coût de fabrication et le poids du carter.
Dans un contexte de réduction de taille des moteurs (« downsizing » en Anglais), leur géométrie se complexifie et les caractéristiques thermomécaniques imposées par les cahiers des charges atteignent des niveaux importants. La conception de moteurs de plus petites cylindrées, et de puissances égales ou supérieures à la génération précédente, implique une réduction du poids de leurs pièces constitutives, mais également un important travail de compacité.
Parmi les principaux travaux en cours figure la réduction de l'espace intercylindres, c'est-à-dire l'espace entre deux cylindres voisins. Or, dans le cas des carters moteurs en alliage d'aluminium, l'épaisseur des inserts agencés dans les cylindres limite la réduction de l'espace inter-cylindres. Le but de la présente invention est de proposer des pièces de moteur thermique remédiant aux inconvénients ci-dessus. A cet effet, l'invention a pour objet une pièce de moteur thermique, caractérisée en ce qu'elle comporte au moins un logement dépourvu d'insert, et un revêtement métallique appliqué par projection sur une surface du logement.
Ainsi, le revêtement projeté dans le logement remplace avantageusement l'insert, ce qui permet un gain de poids et améliore la compacité de la pièce de moteur thermique. En fonction de l'application visée, l'invention permet également de diminuer les frottements et/ou la différence de dilatation thermique à l'interface entre le revêtement et un organe mobile dans le logement. L'invention a également pour objet un moteur thermique comprenant au moins une pièce telle que mentionnée ci-dessus. A titre d'exemples, le moteur thermique peut équiper un véhicule automobile, une machine spéciale, un équipement industriel ou marin. Dans certains cas, le moteur thermique peut comporter plusieurs pièces telles que mentionnée ci-dessus, par exemple à la fois un carter moteur, une culasse et une bielle.
L'invention a également pour objet un procédé de fabrication d'une pièce de moteur thermique telle que mentionnée ci-dessus, comprenant au moins un logement dépourvu d'insert. Le procédé est caractérisé en ce qu'il comprend une étape de projection d'un revêtement métallique sur une surface du logement.
Selon d'autres caractéristiques avantageuses de l'invention, prises isolément ou en combinaison :
- La surface du logement recevant le revêtement métallique est cylindrique, et le revêtement métallique a une surface externe cylindrique usinée.
- La surface du logement recevant le revêtement métallique est tronconique.
- La pièce de moteur thermique est en alliage d'aluminium, en fonte ou en acier.
- Le revêtement métallique est en alliage ou en composite à matrice métallique, additionné d'éléments durcissants.
- Les éléments durcissants sont choisis parmi les suivants : métaux, alliages, oxydes, nitrures, borures, carbures ou carbonitrures.
- Le revêtement métallique a pour élément de base l'aluminium. - Le revêtement métallique a une composition homogène entre sa surface interne et sa surface externe (à la différence d'un revêtement comprenant différentes couches de compositions différentes).
- La pièce de moteur thermique est un carter moteur.
- Le carter moteur présente une configuration à tablature fermée.
- La pièce de moteur thermique est une culasse, une bielle, un vilebrequin, un arbre à cames, un piston ou un segment.
- Le revêtement métallique est projeté sous forme de poudre sur la surface du logement.
- La poudre est projetée selon un angle choisi entre 45 et 90° par rapport à l'axe du logement.
- La poudre est projetée selon un angle choisi entre 55 et 85° par rapport à l'axe du logement.
- Le revêtement métallique comprend des particules métalliques.
- Les particules métalliques ont une taille comprise entre 1 et 50 micromètres.
- Le revêtement métallique est projeté à une vitesse comprise entre 300 à 1800 mètres par seconde.
- Le revêtement métallique est projeté à l'état solide sur la surface du logement.
- Avant l'étape de projection, le procédé comprend une étape d'usinage préliminaire de la surface du logement.
- Après l'étape de projection, le procédé comprend une étape d'usinage de finition du revêtement métallique appliqué sur la surface du logement.
- La pièce de moteur thermique comprend différents logements, et l'étape de projection consiste à projeter simultanément un revêtement métallique sur la surface des différents logements.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue en élévation d'une pièce de moteur thermique conforme à l'invention, du type carter moteur, comprenant plusieurs logements revêtus ;
la figure 2 est une coupe selon la ligne ll-ll à la figure 1 , montrant l'un des logements revêtus ;
la figure 3 est une vue à plus grande échelle du détail III à la figure 2, montrant le logement revêtu ; et la figure 4 est une vue analogue à la figure 3, montrant un logement recevant un insert, conformément à l'état de la technique connu.
Sur les figures 1 à 3 est représentée une pièce de moteur thermique conforme à l'invention, plus précisément un carter moteur 1 de véhicule automobile.
Le carter 1 comprend une partie centrale 2 incluant trois cylindriques 10, prévus pour recevoir les pistons du moteur. Ces pistons ne sont pas représentés dans un but de simplification.
Le carter 1 comprend une chambre d'eau 3 qui s'étend autour des cylindres 10. La chambre d'eau 3 constitue un système de refroidissement des cylindres 10.
Le carter 1 comprend une tablature 4 destinée à recevoir la culasse, non représentée dans un but de simplification. Le carter 1 présente une configuration à tablature fermée (« closed deck » en anglais). Dans cette configuration, la chambre d'eau 3 est majoritairement fermée au niveau de la tablature 4. En pratique, la tablature 4 comprend des parties couvrantes 5 au niveau desquelles la chambre d'eau 3 n'est pas débouchante (tablature et chambre fermées) et des ouvertures 6 au niveau desquels la chambre d'eau 3 est débouchante (tablature et chambre ouvertes).
Cette configuration à tablature fermée (closed deck) est différente, d'une part, d'une configuration à tablature ouverte (open deck), pour laquelle la chambre d'eau est entièrement débouchante au niveau de la tablature et, d'autre part, d'une configuration à tablature semi fermée (semi closed deck), pour laquelle la chambre d'eau est majoritairement débouchante au niveau de la tablature.
Cette configuration à tablature fermée présente de moins bonnes performances de refroidissement, mais réduit les déformations des cylindres 10 lorsque le moteur est en service. Ainsi, une telle configuration à tablature fermée est très bien adaptée pour les moteurs hautes performances.
De préférence, le carter 1 est réalisé en alliage d'aluminium. En alternative, le carter moteur 1 peut être réalisé en fonte ou en acier. Le matériau du carter 1 dépend notamment de l'application visée.
Chaque cylindre 10 comporte une surface cylindrique 12 centrée sur un axe central X10. Un revêtement métallique 20 est formé par projection contre la surface 12 du cylindre 10. Le revêtement 20 présente une surface interne cylindrique 22 épousant la surface 12 du cylindre 10, et une surface externe cylindrique 24 prévue pour recevoir le piston mobile dans le cylindre 10. La surface 24 présente un diamètre D20 centré sur l'axe X10, qui dépend du diamètre des pistons et donc des dimensions du moteur thermique. Entre les surfaces 22 et 24, le revêtement 20 présente une épaisseur e20 définie radialement à l'axe X10. A titre d'exemple non limitatif, pour un diamètre D20 de 80 millimètres, l'épaisseur e20 peut être de l'ordre de 500 micromètres. En alternative, l'épaisseur e20 peut être de l'ordre de 50 micromètres à 2 millimètres, de préférence de 50 à 800 micromètres.
Le revêtement 20 est en alliage ou en composite à matrice métallique, additionné d'éléments durcissants (métaux, alliages, oxydes, nitrures, borures, carbures, carbonitrures).
De préférence, le revêtement 20 est appliqué sur toute la hauteur du cylindre 10, suivant une direction parallèle à l'axe X10. En alternative, le revêtement 20 est appliqué seulement sur une partie de la hauteur du cylindre 10.
Selon l'invention, le procédé de fabrication du carter 1 comprend des étapes successives détaillées ci-après.
Le procédé comprend de préférence une étape d'usinage préliminaire, également appelée écroûtage, consistant à usiner la surface 12 de chaque cylindre 10. Ainsi, le revêtement 20 formé par projection présentera des dimensions plus proches des dimensions finales souhaitées.
Le procédé comprend une étape de projection du revêtement métallique 20 sur la surface 12 du cylindre 10. De préférence, le revêtement 20 est projeté à grande vitesse sous forme de poudre, comprenant des particules métalliques (alliages d'aluminium, de cuivre, de cobalt, de nickel, de molybdène, de quasi-cristaux ...). Encore de préférence, cette poudre comprend un élément de base majoritaire (par exemple l'aluminium) et des éléments durcissants (métaux, alliages, oxydes, nitrures, borures, carbures, carbonitrures). Encore de préférence, l'élément de base du revêtement 20 est l'aluminium.
La composition de la poudre est minutieusement choisie en fonction de l'application visée et du cahier des charges correspondant.
A titre d'exemple, les particules de poudre peuvent avoir une taille de l'ordre de 1 à 50 micromètres, notamment entre 25 et 45 micromètres, et être projetées à une vitesse de l'ordre de 300 à 1800 mètres par seconde (Mach 1 , 2 ou 3), notamment entre 500 et 1300 mètres par seconde. De telles vitesses peuvent être atteintes en projetant la poudre avec un flux gazeux supersonique, comprenant par exemple de l'air et/ou de l'hélium.
De préférence également, la poudre est projetée à froid (« cold spray » en anglais), c'est-à-dire à l'état solide et non liquide. La projection à froid permet de conserver les propriétés thermo-physiques des matériaux projetés, avec un taux d'oxydation très faible durant la déposition du revêtement 20, contrairement à une projection à chaud lors de laquelle le changement d'état solide - liquide altère les propriétés des matériaux projetés. Ainsi, la projection à chaud ne permet pas d'atteindre un niveau de qualité aussi élevé qu'avec la projection à froid. En fonction des matériaux constitutifs de la poudre, celle-ci est projetée à froid à une température comprise entre 20 et 1300 °C.
Grâce à la petite taille des particules et leur projection à froid à une vitesse supersonique, le revêtement 20 est parfaitement adhérent sans délamination/décollement sur la surface 12.
Le procédé comprend enfin une étape d'usinage de finition du revêtement 20, permettant d'obtenir la surface 24 et le diamètre D20 finals, avec les cotes souhaitées. Avantageusement, cet usinage de finition consiste en un alésage réalisé suivant la gamme habituelle. A ce stade, le cylindre 10 pourvu du revêtement 20 est prêt à recevoir le piston.
Lorsque le procédé ne comprend pas d'écroûtage de la surface 12, plus de matière doit être enlevée lors de l'usinage de finition pour obtenir les cotes souhaitées. Comme le coût de la matière utilisée pour le revêtement 20 est supérieur au coût de la matière utilisée pour couler le carter 1 , il est donc plus avantageux de réaliser un écroûtage avant de projeter le revêtement 20 dans le cylindre 10.
Selon un mode de réalisation particulier, l'étape de projection consiste à projeter simultanément un revêtement métallique 20 sur la surface 12 des différents cylindres 10.
Selon un autre mode de réalisation particulier, l'étape de projection consiste à projeter la poudre selon un angle optimisé, compris entre 45 et 90°, par rapport à l'axe X10 du cylindre 10. Généralement, l'angle de projection est égal à 90°. En alternative, il peut être avantageuse de choisir un angle de projection entre 55 et 85°.
Selon un autre mode de réalisation particulier, l'étape de projection consiste à projeter la poudre à une distance de projection de 5 à 90 mm de la surface 12, en fonction des dimensions de la surface 12 et des matériaux projetés.
A ce stade, on remarque que le choix d'un carter 1 à tablature fermée et d'une projection de revêtement 20 à froid dans les cylindres 10 est très avantageux pour fabriquer un moteur hautes performances (vitesse de rotation élevée / température de fonctionnement élevée). La figure 4 montre un carter 1 comportant un cylindre 10 chemisé par un insert 30, conformément à l'état de la technique connu. L'insert 30 est généralement en fonte ou en alliage d'aluminium hyper-eutectique (Si > 13 %).
L'insert 30 est rapporté dans le cylindre 10 et présente une forme tubulaire, avec une surface interne cylindrique 32 disposée contre la surface 12 du cylindre 10, et une surface externe cylindrique 34 prévue pour recevoir le piston mobile dans le cylindre 10. L'insert 30 présente une épaisseur e30 défini entre les surfaces 32 et 34, et un diamètre D30 défini par la surface 34. Sur les figures 3 et 4, les diamètres D20 et D30 sont identiques. En revanche, grâce à la mise en œuvre du procédé selon l'invention, le revêtement 20 peut être réalisé avec une épaisseur e20 inférieure à l'épaisseur e30 de l'insert 30.
A titre d'exemple non limitatif, pour un diamètre D20 ou D30 de 80 millimètres, l'épaisseur e20 peut être de l'ordre de 500 micromètres, tandis que l'épaisseur e30 est de l'ordre de 3 millimètres. Plus généralement, pour un diamètre D20 ou D30 compris entre 60 et 100 millimètres, l'épaisseur e20 peut être comprise entre 50 et 800 micromètres, en comparaison avec une épaisseur e30 comprise entre 2 et 4 millimètres.
Ainsi, pour une même épaisseur de carter 1 de part et d'autre du cylindre 10, il est possible de réaliser un carter 1 plus compact avec le revêtement 20 qu'avec l'insert 30. Par conséquent, l'utilisation du revêtement 20 en remplacement de l'insert 30 permet un gain de poids et une diminution de l'espace intercylindres.
Plus précisément, le gain de poids par cylindre 10 muni d'un revêtement 20 est de 94 à 99% par rapport à un cylindre 10 muni d'un insert 30 (en fonte ou aluminium hypersilicié). De plus, la distance intercylindres peut être réduite de 35 à 80%.
Entre outre, le coefficient de transfert thermique entre la surface 24 du revêtement 20 et le carter 1 en aluminium peut être amélioré de 10 à 30%. Ainsi, le flux thermique entre la surface 24 et le carter 1 est 5 à 20 fois supérieur. En pratique, la projection du revêtement 20 dans le cylindre 10 permet donc de supprimer l'insert 30, tout en garantissant la fonction de guidage du piston dans le cylindre 10.
Egalement, l'utilisation du revêtement 20 permet d'améliorer :
le pouvoir lubrifiant (réduction des pertes par frottement) à l'interface entre le cylindre 10 et le piston ; les flux thermiques entre le cylindre 10 et le reste du carter 1 , et donc l'homogénéité thermique de l'ensemble du moteur ;
la fiabilité mécanique et thermique du carter 1 ;
la compacité du carter 1 , notamment en diminuant les dimensions des espaces intercylindres ;
le poids du carter 1 ;
et donc le rendement moteur, grâce aux différentes améliorations susmentionnées. L'exemple décrit ci-dessus en référence aux figures 1 à 3 concerne une pièce de moteur thermique 1 du type carter moteur. Néanmoins, la pièce 1 peut être conformée différemment des figures 1 à 3 sans sortir du cadre de l'invention. En particulier, la pièce 1 peut être différente d'un carter moteur sans sortir du cadre de l'invention.
En variante, la pièce 1 peut être une culasse, comportant des logements 10 du type support d'arbre à came et/ou siège de soupape.
Selon une autre variante non représentée, la pièce 1 peut être une bielle, comportant un ou plusieurs logements 10 du type alésage, prévu pour recevoir un arbre en liaison pivot. Par exemple, la bielle peut comporter un premier alésage recevant un vilebrequin, et un second alésage recevant un arbre solidaire d'un piston.
Selon une autre variante non représentée, la pièce 1 peut être un vilebrequin, un arbre à cames, un piston ou un segment.
Selon une autre variante non représentée, la pièce 1 peut comporter un logement 10 et un revêtement 20 ayant des surfaces 12, 22, 24 non-cylindriques, par exemple tronconiques, ou autres.
Quel que soit le mode de réalisation, la pièce de moteur thermique 1 comporte au moins un logement 10 dépourvu d'insert, et un revêtement métallique 20 appliqué par projection sur une surface 12 du logement 10.
En outre, les caractéristiques techniques des différents modes de réalisation et variantes mentionnés ci-dessus peuvent être, en totalité ou pour certaines d'entre elles, combinées entre elles. Ainsi, la pièce de moteur thermique 1 peut être adaptée en termes de coût, de fonctionnalités et de performance.

Claims

REVENDICATIONS
Pièce (1 ) de moteur thermique, caractérisée en ce qu'elle comporte :
- au moins un logement (10) dépourvu d'insert, et
- un revêtement métallique (20) appliqué par projection sur une surface (12) du logement (10).
Pièce (1 ) de moteur thermique selon la revendication précédente, caractérisée en ce que la surface (12) du logement (10) recevant le revêtement métallique (20) est cylindrique, et le revêtement métallique (12) a une surface externe (24) cylindrique usinée.
Pièce (1 ) de moteur thermique selon l'une des revendications précédentes, caractérisée en ce que la pièce (1 ) est en alliage d'aluminium.
Pièce (1 ) de moteur thermique selon l'une des revendications précédentes, caractérisée en ce que le revêtement métallique (20) est en alliage ou composite à matrice métallique, additionné d'éléments durcissants.
Pièce (1 ) de moteur thermique selon la revendication 4, caractérisée en ce que les éléments durcissants sont choisis parmi les suivants : métaux, alliages, oxydes, nitrures, borures, carbures ou carbonitrures.
Pièce (1 ) de moteur thermique selon l'une des revendications 4 ou 5, caractérisée en ce que le revêtement métallique (20) a pour élément de base l'aluminium.
Pièce (1 ) de moteur thermique selon l'une des revendications 4 à 6, caractérisée en ce que le revêtement métallique (20) a une composition homogène entre sa surface interne (22) et sa surface externe (24).
Pièce (1 ) de moteur thermique selon l'une des revendications 1 à 7, caractérisée en ce que la pièce (1 ) est un carter moteur.
Pièce (1 ) de moteur thermique selon la revendication 8, caractérisée en ce que le carter moteur présente une configuration à tablature fermée.
10. Pièce (1 ) de moteur thermique selon l'une des revendications 1 à 7, caractérisée en ce que la pièce (1 ) est une culasse, une bielle, un vilebrequin, un arbre à cames, un piston ou un segment. 1 1 . Moteur thermique, caractérisé en ce qu'il comprend au moins une pièce (1 ) de moteur thermique selon l'une des revendications 1 à 10.
12. Procédé de fabrication d'une pièce (1 ) de moteur thermique, comportant au moins un logement (10) dépourvu d'insert, caractérisé en ce que le procédé comprend une étape de projection d'un revêtement métallique (20) sur une surface (12) du logement (10).
13. Procédé de fabrication selon la revendication 12, caractérisé en ce que le revêtement métallique (20) est projeté sous forme de poudre sur la surface (12) du logement (10).
14. Procédé de fabrication selon la revendication 13, caractérisé en ce que la poudre est projetée selon un angle choisi entre 55 et 85° par rapport à l'axe (X10) du logement (10).
15. Procédé de fabrication selon l'une des revendications 12 à 14, caractérisé en ce que le revêtement métallique (20) est projeté à l'état solide sur la surface (12) du logement (10). 16. Procédé de fabrication selon l'une des revendications 12 à 15, caractérisé en ce qu'avant l'étape de projection, le procédé comprend une étape d'usinage préliminaire de la surface (12) du logement (10).
17. Procédé de fabrication selon l'une des revendications 12 à 16, caractérisé en ce qu'après l'étape de projection, le procédé comprend une étape d'usinage de finition du revêtement métallique (20) appliqué sur la surface (12) du logement (10).
18. Procédé de fabrication selon l'une des revendications 12 à 17, caractérisé en ce que la pièce (1 ) de moteur thermique comprend différents logements (10), et en ce que l'étape de projection consiste à projeter simultanément un revêtement métallique (20) sur la surface (12) des différents logements (10).
PCT/FR2016/052002 2015-08-03 2016-08-02 Piece de moteur thermique, moteur thermique comprenant une telle piece, et procede de fabrication d'une telle piece WO2017021646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1557496 2015-08-03
FR1557496A FR3039875B1 (fr) 2015-08-03 2015-08-03 Piece de moteur thermique, moteur thermique comprenant une telle piece, et procede de fabrication d'une telle piece

Publications (1)

Publication Number Publication Date
WO2017021646A1 true WO2017021646A1 (fr) 2017-02-09

Family

ID=54207567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052002 WO2017021646A1 (fr) 2015-08-03 2016-08-02 Piece de moteur thermique, moteur thermique comprenant une telle piece, et procede de fabrication d'une telle piece

Country Status (2)

Country Link
FR (1) FR3039875B1 (fr)
WO (1) WO2017021646A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843022A1 (fr) * 1996-11-14 1998-05-20 Ford Global Technologies, Inc. Siège de soupape revêtu d'un couche adhérente
WO2001044626A2 (fr) * 1999-12-17 2001-06-21 Daimlerchrysler Ag Procede d'application de revetement pour des zones sollicitees thermiquement et mecaniquement de moteurs a combustion interne
US20020073982A1 (en) * 2000-12-16 2002-06-20 Shaikh Furqan Zafar Gas-dynamic cold spray lining for aluminum engine block cylinders
FR2873942A1 (fr) * 2004-08-06 2006-02-10 Daimlerchrysler Ag Ag Procede d'usinage d'ensembles carter de villebrequin/bloc- cylindres, ayant des pistes de glissement de cylindre traitees par projection
FR2924365A1 (fr) * 2007-12-03 2009-06-05 Peugeot Citroen Automobiles Sa Procede de fabrication d'un revetement comportant des pores aptes a retenir un lubrifiant et piece comportant un tel revetement
FR2978065A3 (fr) * 2011-07-22 2013-01-25 Renault Sa Procede de fabrication de sieges de soupape et culasse de moteur integrant ces sieges de soupape
US20140004255A1 (en) * 2012-06-29 2014-01-02 Ford Global Technologies, Llc Method of determining coating uniformity of a coated surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906163B1 (fr) * 2006-09-25 2009-02-27 Peugeot Citroen Automobiles Sa Dispositif de projection de particules solides a froid
DE102014008909A1 (de) * 2014-06-14 2014-12-04 Daimler Ag Vorrichtung und Verfahren zum thermischen Beschichten einer Innenwand eines zylinderförmigen Lagerbereichs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843022A1 (fr) * 1996-11-14 1998-05-20 Ford Global Technologies, Inc. Siège de soupape revêtu d'un couche adhérente
WO2001044626A2 (fr) * 1999-12-17 2001-06-21 Daimlerchrysler Ag Procede d'application de revetement pour des zones sollicitees thermiquement et mecaniquement de moteurs a combustion interne
US20020073982A1 (en) * 2000-12-16 2002-06-20 Shaikh Furqan Zafar Gas-dynamic cold spray lining for aluminum engine block cylinders
FR2873942A1 (fr) * 2004-08-06 2006-02-10 Daimlerchrysler Ag Ag Procede d'usinage d'ensembles carter de villebrequin/bloc- cylindres, ayant des pistes de glissement de cylindre traitees par projection
FR2924365A1 (fr) * 2007-12-03 2009-06-05 Peugeot Citroen Automobiles Sa Procede de fabrication d'un revetement comportant des pores aptes a retenir un lubrifiant et piece comportant un tel revetement
FR2978065A3 (fr) * 2011-07-22 2013-01-25 Renault Sa Procede de fabrication de sieges de soupape et culasse de moteur integrant ces sieges de soupape
US20140004255A1 (en) * 2012-06-29 2014-01-02 Ford Global Technologies, Llc Method of determining coating uniformity of a coated surface

Also Published As

Publication number Publication date
FR3039875A1 (fr) 2017-02-10
FR3039875B1 (fr) 2018-05-11

Similar Documents

Publication Publication Date Title
EP2048389B1 (fr) Rotule légère d'articulation et procédé de fabrication d'une telle rotule
EP1864027B1 (fr) Bielle structurale creuse et procede de fabrication d'une telle bielle
EP1384539B1 (fr) Aube composite à matrice métallique et son procédé de fabrication
FR2979261A1 (fr) Procede de realisation d'une surface a asperites destinee a recevoir un revetement de pulverisation thermique et surface resultante
EP3027854B1 (fr) Carter de turbomachine et procédé de fabrication
JP6560219B2 (ja) ピストンピン及びピンに焼き付き防止コーティングを適用する方法
WO2017021646A1 (fr) Piece de moteur thermique, moteur thermique comprenant une telle piece, et procede de fabrication d'une telle piece
FR2993946A1 (fr) Procede de solidarisation de deux tubes coaxiaux
WO2013175094A1 (fr) Chemise de cylindre et bloc cylindres associe
FR2959145A1 (fr) Procede de realisation par moulage d'une piece mecanique comportant des formes complexes et evolutives, notamment d'une culasse de vehicule
FR2922280A1 (fr) Procede d'assemblage pour une articulation mecanique resistante a la fatigue
EP3466567A1 (fr) Procédé de fabrication d'une pièce comprenant deux superalliages différents
WO2018130779A1 (fr) Piston pour machine thermique, machine thermique comprenant un tel piston, et procedes
FR2899270A1 (fr) Aube de redresseur a amenagement de forme localise, secteur de redresseurs, etage de compression, compresseur et turbomachine comportant une telle aube
EP3586045B1 (fr) Dispositif de transmission de mouvement pour moteur thermique
FR3097785A1 (fr) Couche de contact à la surface d’un élément en métal en mouvement relatif contre un autre élément en métal, et liaison d’articulation pourvue d’une telle couche de contact
FR2971319A1 (fr) Procede de revetement d'un fut de carter cylindres sur chemise inseree a la coulee et vehicule correspondant
FR3105290A1 (fr) Ensemble pour turbomachine
FR3019614B1 (fr) Vanne a conduit tubulaire renforce
FR3094048A1 (fr) Elément de liaison, et procédé de fabrication d’une bague pour un tel élément de liaison
EP1439301B1 (fr) Piston comportant un insert en alliage d'aluminium et procédé pour sa fabrication
WO2011089329A1 (fr) Vilebrequin creux a plan de joint decale
FR2772847A1 (fr) Bielle a coussinet integre, son procede de fabrication et alliage pour la fabrication d'un tel coussinet integre
FR3147726A1 (fr) Procede de fabrication d’une piece et piece ainsi fabriquee
FR2959146A1 (fr) Vilebrequin allege et son procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16757315

Country of ref document: EP

Kind code of ref document: A1