WO2016204003A1 - Glass article and method for producing same - Google Patents
Glass article and method for producing same Download PDFInfo
- Publication number
- WO2016204003A1 WO2016204003A1 PCT/JP2016/066677 JP2016066677W WO2016204003A1 WO 2016204003 A1 WO2016204003 A1 WO 2016204003A1 JP 2016066677 W JP2016066677 W JP 2016066677W WO 2016204003 A1 WO2016204003 A1 WO 2016204003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- particles
- glass
- glass article
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 245
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 230000003373 anti-fouling effect Effects 0.000 claims abstract description 198
- 239000002245 particle Substances 0.000 claims abstract description 123
- 239000011230 binding agent Substances 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 86
- 239000010410 layer Substances 0.000 claims description 396
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 180
- 239000002243 precursor Substances 0.000 claims description 70
- 239000000203 mixture Substances 0.000 claims description 69
- 239000000377 silicon dioxide Substances 0.000 claims description 61
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 46
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 34
- 239000011164 primary particle Substances 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 238000001179 sorption measurement Methods 0.000 claims description 10
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 8
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 7
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 6
- 239000004576 sand Substances 0.000 claims description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- 239000011241 protective layer Substances 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 61
- 229910004298 SiO 2 Inorganic materials 0.000 description 42
- 238000004544 sputter deposition Methods 0.000 description 33
- 238000007654 immersion Methods 0.000 description 28
- 239000003513 alkali Substances 0.000 description 25
- 235000012239 silicon dioxide Nutrition 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 19
- 229910010413 TiO 2 Inorganic materials 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 16
- -1 silane compound Chemical class 0.000 description 16
- 239000012298 atmosphere Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000004115 Sodium Silicate Substances 0.000 description 9
- 239000003729 cation exchange resin Substances 0.000 description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 9
- 229910052911 sodium silicate Inorganic materials 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000003377 acid catalyst Substances 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229910000077 silane Inorganic materials 0.000 description 6
- 239000005361 soda-lime glass Substances 0.000 description 6
- 229910001413 alkali metal ion Inorganic materials 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000005357 flat glass Substances 0.000 description 4
- 239000010954 inorganic particle Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910000484 niobium oxide Inorganic materials 0.000 description 4
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 229910003087 TiOx Inorganic materials 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000005354 aluminosilicate glass Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 2
- 229910052912 lithium silicate Inorganic materials 0.000 description 2
- 239000012702 metal oxide precursor Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- FMGBDYLOANULLW-UHFFFAOYSA-N 3-isocyanatopropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCN=C=O FMGBDYLOANULLW-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000005122 aminoalkylamino group Chemical group 0.000 description 1
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000005345 chemically strengthened glass Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000005340 laminated glass Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- DRRZZMBHJXLZRS-UHFFFAOYSA-N n-[3-[dimethoxy(methyl)silyl]propyl]cyclohexanamine Chemical compound CO[Si](C)(OC)CCCNC1CCCCC1 DRRZZMBHJXLZRS-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 125000005624 silicic acid group Chemical group 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
Definitions
- the present invention relates to a glass article and a manufacturing method thereof, and more particularly to a glass article having antireflection performance and a manufacturing method thereof.
- a functional film such as an antireflection film
- a glass substrate Various glass articles in which a functional film such as an antireflection film is provided on a glass substrate are known.
- a functional film such as an antireflection film
- it may be used such that the surface provided with a functional film is on the outdoor side. Since the glass article with an antireflection film has high permeability, it is expected to be applied to outdoor buildings such as a facade of a building, a store, and a courtyard.
- the glass with an antireflection film for example, a structure in which a laminated film having a TiO 2 layer, an Al-doped SiO 2 layer, a TiO 2 layer, and an Al-doped SiO 2 layer in this order on a glass substrate is known, The reflectance of the glass substrate is suppressed by the laminated film (see Patent Document 1).
- the uppermost layer of a single-layer or multilayer antireflection film is formed of an inorganic material film having at least one of pores and fine irregularities, and an inorganic material film.
- Articles composed of an antifogging film made of a hydrophilic substance fixed to pores and fine irregularities see Patent Document 2), and an antireflection film in which a high refractive index layer and a low refractive index layer are laminated
- Patent Document 3 in which a low refractive index layer is formed of an antifogging film made of a polymer layer obtained by curing a composition containing a hydrophilic polymer is known.
- the antireflection film described in Patent Document 3 a polymer layer obtained by curing a composition containing a hydrophilic polymer is provided as the uppermost layer. Since the surface of the polymer layer (the outermost surface of the antireflection film) is flat, hydrophilicity is likely to be lost due to organic contamination, and this tends to reduce the antifogging performance. Therefore, the antifogging film made of the polymer layer has a problem in durability.
- An object of the present invention is to provide a glass article with an antireflection film that has excellent antifouling performance with a simple structure and has improved durability, and a production method that can easily produce such a glass article.
- a glass substrate a laminated film that is disposed on the glass substrate and includes a plurality of layers having different refractive indexes, an agglomerate of particles that is disposed on the outermost layer of the laminated film,
- the second aspect of the present invention includes a step of forming a laminated film including a plurality of layers having different refractive indexes on a glass substrate, and an aggregate of particles and a binder precursor on the outermost layer of the laminated film.
- a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
- the term “process” is included in this term as long as the initial purpose of the process is achieved, even when the process is not clearly distinguishable from other processes.
- the glass article of the present invention includes a glass substrate, a laminated film that is disposed on the glass substrate and includes a plurality of layers having different refractive indexes, an agglomerate of particles and a binder that are disposed on the outermost layer of the laminated film.
- the glass article of the present invention comprises a glass substrate and a difference in visible light reflectance before and after the test which was provided on the glass substrate and immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours.
- the glass article of the present invention has antifouling properties against various stains.
- dirt inorganic dirt such as dust in the atmosphere, remaining alkali content from concrete walls (water dry spots), water stains, burns on the glass itself, atmospheric soot and automobile exhaust gas
- examples include organic stains such as cigarette smoke and oil.
- the glass article of the present invention has a better antifouling effect against dust and oil stains.
- the antifouling property of the antifouling article can be evaluated by, for example, a change in haze value measured by a “dirt adhesion test” in Examples described later.
- the change in haze value of the antifouling article is preferably 5% or less, more preferably 2% or less, and particularly preferably 1% or less, when measured by a “dirt adhesion test” in Examples described later. If the change in haze value exceeds 5%, there is a possibility that practical antifouling properties cannot be expressed.
- the haze value can be measured using a commercially available haze measuring device.
- FIG. 1 shows an example of the glass article of the present invention.
- a glass article 1 shown in FIG. 1 is disposed on a glass substrate 2, a laminated film 3 provided on the glass substrate 2 for imparting antireflection properties, and an outermost layer (34) of the laminated film 3.
- the antifouling film 4 is provided.
- the antifouling film 4 contains aggregates 6 of particles 5 and a binder 7, and has an uneven surface based on the aggregates 6 of particles 5.
- the glass substrate 2 has a function of maintaining the structure among the components of the glass article 1.
- the glass substrate 2 is a substrate having a haze value of 1% or less, and the thickness can be appropriately selected depending on the application.
- the glass substrate 2 is preferably colorless, but can be appropriately colored depending on the application.
- the composition of the glass is not particularly limited.
- the glass substrate 2 may be, for example, alkali-free glass, soda lime glass, aluminosilicate glass, or the like.
- the glass may be physically strengthened or chemically strengthened. If it is chemically strengthened glass, the plate thickness of the glass can be 1.5 mm or less.
- the composition of the glass substrate 2 is expressed in terms of mass percentage on the basis of oxide, SiO 2 is 60 to 75%, Al 2 O 3 is 2 to 12%, MgO is 2 to 11%, CaO 0-10%, SrO 0-3%, BaO 0-3%, Na 2 O 10-18%, K 2 O 0-8%, ZrO 2 0-4% (The total of the above components is 100% or less, and usually 95% or more).
- SiO 2 is 61 to 70%
- Al 2 O 3 is 1 to 18%
- MgO is 0 to 15%
- CaO is 0 to 5%
- SrO is expressed in terms of mole percentage based on oxide. 0-1%, BaO 0-1%, Na 2 O 8-18%, K 2 O 0-6%, ZrO 2 0-4%, B 2 O 3 0-8% May be.
- the laminated film 3 in the glass article 1 includes a first layer 31, a second layer 32, a third layer 33, and a fourth layer 34 in order from the glass substrate 2 side.
- the glass article 1 can exhibit antireflection properties.
- the first layer 31 and the third layer 33 can have a refractive index smaller than that of the second layer 32 and the fourth layer 34.
- the first layer 31 and the third layer 33 are referred to as “low refractive index layers”, and the second layer 32 and the fourth layer 34 are referred to as “high refractive index layers”.
- the refractive index of the first layer 31 and the third layer 33 is preferably 1.4 to 1.8, and more preferably 1.45 to 1.7.
- Examples of the material constituting the low refractive index layer include silicon oxide and aluminum oxide. Silicon oxide may be doped with other elements such as aluminum.
- the thickness of the first layer 31 is preferably 30 to 60 nm or 174 to 224 nm, and more preferably 35 to 55 nm or 189 to 209 nm.
- the thickness of the third layer 33 is preferably 20 to 80 nm, and more preferably 30 to 70 nm.
- the refractive index of the second layer 32 and the fourth layer 34 is preferably 2.0 or more, and more preferably 2.1 or more.
- Examples of the material constituting the high refractive index layer include titanium oxide, niobium oxide, zirconium oxide, cerium oxide, and tantalum oxide.
- the thickness of the second layer 32 is preferably 1 to 52 nm, and more preferably 3 to 45 nm.
- the thickness of the fourth layer 34 is preferably 1 to 39 nm, and more preferably 6 to 34 nm.
- the fourth layer 34 may be made of the same material as that of the second layer 32 and may have the same refractive index.
- the laminated film 3 may have a fifth layer, a sixth layer,... An nth layer (n is an integer of 5 or more) in addition to the first to fourth layers 31 to 34. .
- n is an integer of 5 or more
- the first layer 31 does not necessarily need to be a low refractive index layer, and the high refractive index layer It may be a rate layer.
- the outermost layer in the laminated film 3 is preferably composed of silica doped with zirconia.
- a silica layer doped with zirconia (hereinafter also referred to as “ZrO 2 -doped SiO 2 layer”) exhibits good resistance to alkali.
- the outermost layer is a ZrO 2 -doped SiO 2 layer
- the outermost layer of the laminated film 3 functions as a protective film against alkali. For this reason, even if the laminated film 3 comes into contact with moisture containing an alkali component, it is possible to significantly suppress the deterioration of the laminated film 3. Thereby, it is possible to provide a glass with an antireflection film that has significantly higher resistance to alkali than in the past.
- the silica layer is not arranged, that is, immediately below the ZrO 2 doped SiO 2 layer, it is preferable that a layer containing no silica is disposed.
- the term “outermost layer” means a layer arranged on the outermost side in the laminated film 3. Therefore, the “outermost layer” is not necessarily the outermost layer in the glass article 1 with an antireflection film. In the glass article 1 shown in FIG. 1, the antifouling film 4 is the outermost layer.
- a glass 100 with an antireflection film shown in FIG. 3 includes a glass substrate 120 and a laminated film 130.
- the glass substrate 120 has a first surface 122 and a second surface 124, and the laminated film 130 is disposed on the first surface 122 side of the glass substrate 120.
- the laminated film 130 includes three layers, that is, a first layer 140, a second layer 145, and an outermost layer 160.
- the first layer 140 has a higher refractive index than the second layer 145.
- the first layer 140 has a refractive index of 2.0 or more
- the second layer 145 has a refractive index in the range of 1.4 to 1.8.
- the second layer is composed of a layer other than silica.
- the outermost layer 160 is made of silica doped with zirconia, that is, a ZrO 2 -doped SiO 2 layer. Since the glass 100 with an antireflection film having such a configuration has a ZrO 2 -doped SiO 2 layer in the outermost layer 160, it can exhibit significantly improved alkali resistance characteristics as compared with the conventional glass with an antireflection film. Can do. Moreover, in the glass 100 with an antireflection film, it is preferable that a silica layer is not disposed immediately below the outermost layer 160, that is, the ZrO 2 -doped SiO 2 layer. In that case, it can suppress significantly that the tolerance with respect to the alkali of the glass 100 with an antireflection film falls with time.
- each constituent member will be further described by taking the glass 200 with an antireflection film shown in FIG. 4 as an example. Therefore, the reference numerals shown in FIG. 4 are used to represent each member. However, it will be apparent to those skilled in the art that the following description can be similarly applied to the glass article 1 shown in FIG. 1, the glass 100 with an antireflection film shown in FIG.
- the laminated film 230 includes a first layer 240, a second layer 245, a third layer 250, a fourth layer 255,... In this order from the glass substrate 220 side.
- the laminated film 230 preferably has an outermost layer 260 at the top, that is, a ZrO 2 -doped SiO 2 layer.
- the first layer 240 has a higher refractive index than the second layer 245. For this reason, the first layer 240 is referred to as a “high refractive index layer” 240, the second layer 245 is referred to as a “low refractive index layer” 245, and both are referred to as a “different refractive index layer set”.
- the number of different refractive index layer sets in the laminated film 130 is 1 (total of three layers), and in the example of FIG. 4, the number of different refractive index layer sets in the laminated film 230. Becomes 2 (5 layers in total).
- the number of different refractive index layer sets may be 3 or more (a total of 7 or more layers).
- the portion immediately below the outermost layer 260 is not necessarily a low refractive index layer (145, 255), and the portion immediately below the outermost layer 260 may be a high refractive index layer (for example, the third layer 250).
- the third layer 250 high refractive index layer
- the number of different refractive index layer sets can be expressed as 1.5. According to such a notation, the number of different refractive index layer sets in the laminated film 230 may be 2.5, 3.5, 4.5...
- the first layer 240 has a higher refractive index than the second layer 245 disposed immediately above.
- the first layer 240 may have a refractive index of 2.0 or more.
- the refractive index of the first layer 240 may be 2.1 or more, for example.
- the material constituting such a “high refractive index layer” 240 is not limited to this, and examples thereof include titania, niobium oxide, zirconia, ceria, and tantalum oxide.
- the thickness of the first layer 240 is, for example, in the range of 5 to 20 nm, and preferably in the range of 7 to 17 nm.
- the second layer 245 has a smaller refractive index than the first layer 240 disposed immediately below. When the number of different refractive index layer sets is 1.5 or more, the second layer 245 has a smaller refractive index than the third layer 250 disposed immediately above.
- the second layer 245 may have a refractive index in the range of 1.4 to 1.8, for example.
- the refractive index of the second layer 245 may be, for example, in the range of 1.45 to 1.7.
- the material constituting such a “low refractive index layer” 245 is not limited to this, and examples thereof include silica and alumina. Silica may be doped with other elements such as aluminum. However, when the number of different refractive index layer sets is 1.0, the second layer 245 is preferably a layer other than silica. The thickness of the second layer 245 is, for example, in the range of 15 to 45 nm, and preferably in the range of 20 to 40 nm.
- the third layer 250 In the laminated film 230, when the number of different refractive index layer sets is 1.5 or more, the third layer 250 is present.
- the third layer 250 has a higher refractive index than the second layer 245 disposed immediately below.
- the third layer 250 has a refractive index larger than that of the fourth layer 255 disposed immediately above.
- the third layer 250 may have a refractive index of 2.0 or more, for example.
- the refractive index of the third layer 250 may be 2.1 or more, for example.
- the thickness of the third layer 250 is, for example, in the range of 45 to 125 nm, and preferably in the range of 50 to 115 nm.
- the third layer 250 may be made of the same material as the first layer 240 and may have the same refractive index.
- the fourth layer 255 In the laminated film 230, when the number of different refractive index layer sets is 2.0 or more, the fourth layer 255 is present.
- the fourth layer 255 has a smaller refractive index than the third layer 250 disposed immediately below.
- the fourth layer 255 has a refractive index smaller than that of the fifth layer disposed immediately above.
- the fourth layer 255 may have a refractive index in the range of 1.4 to 1.8, for example.
- the refractive index of the fourth layer 255 may be, for example, in the range of 1.45 to 1.7.
- the material constituting the “low refractive index layer” 255 is not limited to this, and examples thereof include silica and alumina. Silica may be doped with other elements such as aluminum.
- the thickness of the fourth layer 255 is, for example, in the range of 0 to 110 nm, and preferably in the range of 0 to 100 nm.
- the fourth layer 255 may be made of the same material as the second layer 245 and may have the same refractive index. However, when the number of different refractive index layer sets is 2.0, the fourth layer 255 is preferably a layer other than silica.
- the fifth layer, the sixth layer,..., And the nth layer may form a mutually different refractive index layer set with an adjacent layer.
- the fifth layer has a higher refractive index than the fourth layer and the sixth layer.
- the sixth layer has a smaller refractive index than the fifth layer and the seventh layer.
- the description in the above-mentioned column of (first layer 240) and (second layer 245) can be referred to.
- the outermost layer 260 is preferably composed of a ZrO 2 -doped SiO 2 layer.
- the thickness of the outermost layer 260 is not particularly limited, but is in the range of 5 to 110 nm, for example, and may be in the range of 10 to 100 nm, for example.
- the amount of zirconia doped in the silica film doped with zirconia is not particularly limited, but for example, it is preferably in the range of 5 to 50 mol% in terms of mol% based on oxide.
- the lower limit of the zirconia doping amount is preferably, for example, 6 mol%, more preferably 7 mol%, further preferably 8 mol%, particularly preferably 9 mol%.
- the doping amount of zirconia is more preferably in the range of 10 to 33 mol%.
- the refractive index of the outermost layer 260 is about 1.50.
- the refractive index of the outermost layer 260 is about 1.54.
- the refractive index of the outermost layer 260 is about 1.69.
- the refractive index of the outermost layer 260 is about 1.79.
- Each layer constituting the laminated film 230 may be installed by any method.
- Each layer may be formed by, for example, an evaporation method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
- the antifouling film 4 is disposed on the outermost layer 34 of the laminated film 3 and contains an aggregate 6 of particles 5 and a binder 7.
- the antifouling film 4 may contain not only the aggregate 6 but also particles (non-aggregated particles) 5 that exist alone. Based on the shape of the aggregate 6 of the particles 5 in the antifouling film 4, the amount of the particles 5 in the antifouling film 4 (volume ratio of the particles 5 to the binder 7), particularly the amount of the aggregates 6 of the particles 5, etc. By making the surface of the dirty film 4 an uneven surface, the antifouling performance can be enhanced.
- the particles 5 are hydrophilic particles and the binder 7 is a hydrophilic binder because the antifouling film 4 can function as an antifogging film.
- the uneven surface of the antifouling film (antifogging film) 4 since the moisture adhering to the glass article 1 spreads on the uneven surface of the antifouling film (antifogging film) 4, it is possible to suppress the occurrence of fogging due to the formation of water droplets due to condensation of moisture. Furthermore, the uneven surface suppresses a decrease in hydrophilicity due to organic contamination or the like. Therefore, the antifogging durability of the antifouling film 4 is improved, and the antifogging performance can be maintained for a long time.
- the uneven surface of the antifouling film 4 includes a plurality of protrusions (protrusion regions) including aggregates 6 and binders 7 of particles 5 and other regions (for example, non-aggregated particles 5 and binders 7). It is preferable to have a convex portion or a region having only the hydrophilic binder 7). In that case, since the plurality of protrusions are aggregates of the aggregates 6 and the binders 7 of the particles 5 that are non-uniformly present on the surface of the outermost layer 34 of the laminated film 3, unevenness formed by the particles 5 alone. Compared to the above, more appropriate unevenness is formed. Therefore, the antifouling performance and antifogging performance of the glass article 1 can be further improved.
- the antifouling film 4 in the glass article 1 is sprinkled with two types of JIS test powder 1 (silica sand having a median diameter of 27 to 31 ⁇ m), left to stand for 10 seconds, tilted 135 °, and from a height of 3 cm to 10 cm / It is preferable that the value of subtracting the haze value before the test from the average value is within 1.0, by repeating a plurality of times of measuring the haze value by dropping the powder by touching the ground twice with the momentum of seconds.
- JIS test powder 1 silicon sand having a median diameter of 27 to 31 ⁇ m
- the antifouling film 4 has a plurality of protrusions including aggregates 6 of particles 5 and a binder 7 on the surface, and 90% or more based on the protrusions having the maximum height from the substrate surface in the protrusions.
- the ratio of the total covered area by the particles 5 to the area of the substrate on which the average distance between the vertices of adjacent protrusions T is 100 to 1000 nm and the antifouling film 4 is disposed. Is preferably 12 to 100%.
- the above-described protrusion is an aggregate of the aggregate 6 and the binder 7 that exists non-uniformly on the surface of the substrate, more appropriate unevenness is formed compared to the unevenness formed by the particles alone, and the There is a tendency for soiling to improve more. Since the dirt adhering to the glass article 1 first comes into contact with the convex portions present on the surface of the antifouling film 4, the dirt comes into contact with the protrusions in the glass article 1. Therefore, in the antifouling film 4, the area in contact with dirt can be further reduced, and the antifouling film 4 having better antifouling properties can be obtained.
- the shape of the protrusion is not particularly limited, and examples thereof include a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially cone.
- the radius of curvature of the partial spherical surface is not particularly limited, but is preferably 5 nm or more, and more preferably 5 to 15 nm.
- the height of the protrusion is not particularly limited, but is preferably 10 nm or more, and more preferably 30 to 200 nm.
- the height of the protrusion is the height from the base surface to the apex of the protrusion, and can be measured using a scanning electron microscope.
- the size of the bottom surface of the protrusion is not particularly limited, but is preferably 10 to 700 nm, and more preferably 30 to 200 nm.
- the average value of the angle between the bottom surface (surface parallel to the substrate) and the side surface of the protrusion is not particularly limited, but is preferably 10 to 90 °, more preferably 20 to 70 °. If the angle between the bottom surface and the side surface of the protrusion is 10 ° or more, a steeper protrusion is obtained.
- the size of the bottom surface of the protrusion is defined as the diameter of a circle in which the bottom shape of the protrusion is inscribed. The bottom size of the protrusion can be measured using a scanning electron microscope.
- the distance between the apexes of the adjacent protrusions T in the protrusion T having a height of 90% or more with reference to the protrusion having the maximum height from the base surface Is preferably 100 to 1000 nm, more preferably 100 to 800 nm, and even more preferably 100 to 500 nm. That the distance between the vertices is 100 to 1000 nm means that the unevenness formed by the protrusions T on the surface of the antifouling film 4 is large.
- the protrusion T includes two or more particles 5 and the binder 7
- a large convex structure is formed as compared with the surface irregularity of the antifouling film formed by the convex part including the single particle and the binder. Means. Accordingly, the antifouling film 4 having better antifouling properties can be obtained. Further, the antifouling film 4 is hardly soiled with oil, and even if it adheres, it can be easily removed by washing with water.
- the distance between vertices can be measured with a scanning electron microscope. Specifically, the distance between the vertices is the maximum height among the protrusions existing in a predetermined region in a direction parallel to the surface of the glass substrate 2 having the antifouling film 4 from the cross-sectional photograph of the glass article 1. Select the protrusions having 90% or more of the protrusions, select the protrusions T having a height of 90% or more, measure the distance between the vertices of the adjacent protrusions T (vertex interval), and calculate the average value. Can be obtained.
- the ratio of the total covered area by the particles 5 to the area of the glass substrate 2 on which the antifouling film 4 is disposed is preferably 12 to 100%.
- the convex portion coverage is 12% or more, the presence ratio of the aggregates 6 of the particles 5 that can come into contact with dirt in the antifouling film 4 and the protrusions including the binder 7 is increased, so that sufficient antifouling properties can be obtained.
- the convex portion coverage is more preferably 15 to 100%, further preferably 20 to 100%, and particularly preferably 50 to 100%.
- the convex portion coverage can be measured with a scanning electron microscope. Specifically, it can be measured by a measuring method of “convex portion coverage” which will be described later in Examples.
- the arithmetic average roughness (hereinafter also referred to as “Ra”) of the antifouling film 4 is not particularly limited, but is preferably 5 to 30 nm, more preferably 6 to 25 nm, and even more preferably 7 to 20 nm.
- Ra arithmetic average roughness
- Ra is 30 nm or less, the wear resistance is excellent. Ra can be measured with a scanning probe microscope.
- the thickness of the antifouling film 4 is not particularly limited, but is preferably 20 to 350 nm, more preferably 30 to 300 nm, and particularly preferably 50 to 300 nm. If the film thickness of the antifouling film 4 is 20 nm or more, the antifouling property tends to be sufficiently exhibited. When the film thickness of the antifouling film 4 is 350 nm or less, the mechanical strength is excellent and the economy is excellent. The film thickness of the antifouling film 4 can be determined by observing with a scanning electron microscope.
- the ratio of the particles 5 to the binder 7 in the antifouling film 4 is preferably set so that the volume ratio of the particles 5 to the binder 7 is 7/93 to 95/5. If the volume ratio between the particles 5 and the binder 7 is 7/93 or more, appropriate unevenness and protrusions can be formed on the surface of the outermost layer 34 of the laminated film 3, so that good antifouling properties can be obtained. When the volume ratio of the particles 5 to the binder 7 is 95/5 or less, the adhesion of the antifouling film 4 to the outermost layer 34 of the laminated film 3 can be obtained satisfactorily.
- the upper limit of the volume ratio between the particles 5 and the binder 7 is more preferably 80/20, and even more preferably 70/30.
- the lower limit of the volume ratio is more preferably 20/80 and even more preferably 30/70.
- the contact angle of the antifouling film 4 with water is preferably 10 ° or less, and more preferably 5 ° or less.
- the contact angle with water is 10 ° or less, moisture easily spreads on the surface of the antifogging film, and excellent antifogging properties are obtained.
- the contact angle with water can be measured by a static method described in JIS R 3257: 1999.
- the nitrogen adsorption amount of the antifouling film 4 reflects the ability of the antifouling film 4 to absorb organic contaminants that hinder the spread of moisture.
- Organic substances in the air tend to be adsorbed on the surface to increase the contact angle with water, suppress moisture from spreading and reduce antifogging properties. Therefore, when the amount of nitrogen adsorbed on the antifouling film 4 is large, the antifouling film 4 absorbs organic matter in the air, so that the tendency of moisture to spread can be secured, and the deterioration of the antifogging property can be suppressed. it can.
- the nitrogen adsorption amount is measured by the following method. That is, a laminated film and an antifouling film are formed on a smooth glass plate, cut into 5 mm ⁇ 30 mm strips, and the obtained 20 strips are put into a BET specific surface area measuring apparatus, and nitrogen gas is used. The BET specific surface area is measured.
- the nitrogen adsorption amount is preferably 1.5 to 5 times, preferably 2 to 4 times that in the case where the antifouling film 4 is not formed, that is, the case where only the laminated film 3 is formed and measured in the same manner. It is more preferable.
- the nitrogen adsorption amount is preferably 3.0 ⁇ 7.5m 2 / g, 4.5 ⁇ 6.5m 2 / g is more preferable.
- the particles 5 in the antifouling film 4 are not particularly limited as long as the aggregate 6 and the binder 7 form an aggregate and can form irregularities and further protrusions on the surface of the antifouling film 4.
- the particles 5 may be inorganic particles or organic particles, but inorganic particles are preferable, and hydrophilic inorganic particles are more preferable.
- examples of the hydrophilic inorganic particles include metal oxide particles such as silicon oxide (silica), aluminum oxide (alumina), titanium oxide (titania), and zirconium oxide (zirconia).
- the particles 5 are preferably silicon oxide particles. If the particles 5 are silicon oxide particles, light scattering is suppressed, and the color of the glass substrate 2 is not impaired, which is preferable.
- the particles 5 may be a single type or a combination of two or more types.
- the content of silicon oxide in the particle 5 is preferably 50% by mass or more, and more preferably 75% by mass or more.
- the aggregate 6 of the particles 5 may be either a primary aggregate in which the aggregation state of the particles is reversible or a secondary aggregate in which the aggregation state of the particles is irreversible. In adjusting, it is preferably a secondary aggregate.
- the shape of the aggregate 6 of the particles 5 is not particularly limited, but a chain shape or a pearl necklace shape is preferable. As the aggregate 6 of the particles 5, pearl necklace-like silica is particularly preferable. If the aggregate 6 is pearl necklace-like silica, when the antifouling film 4 is formed, protrusions capable of obtaining more appropriate irregularities are formed, and the antifouling property tends to be further improved.
- the pearl necklace-like silica is an elongated silica particle aggregate that may have either a linear shape or a branched shape in which a plurality of spherical silica particles having an average primary particle diameter of 5 to 300 nm are connected and secondary-aggregated. It is.
- the average primary particle diameter of the particles 5 constituting the aggregate 6 is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm, further preferably 10 to 50 nm, and particularly preferably 10 to 30 nm.
- the average primary particle diameter of the particles 5 is 5 nm or more, the particles 5 are more easily aggregated to easily form protrusions, and the antifouling property tends to be further improved.
- grains 5 is 300 nm or less, since it is sufficiently shorter than the wavelength of visible light, a haze value can be reduced more.
- Each of the chain particle aggregate and the pearl necklace particle aggregate has an elongated shape in which a plurality of particles 5 are connected (nicked).
- the chain particle aggregate is, for example, an average primary particle diameter d of 10 to 100 nm, an average length (L) of 50 to 500 nm, and a ratio of an average length to an average primary particle diameter of 3 to 20 (L / d). It is an elongated particle aggregate having the following structure.
- the pearl necklace-like particle aggregate is different from the chain particle aggregate in the existence ratio of the spherical portion.
- the pearl necklace-like particle aggregate is a pearl necklace in which a circular figure caused by a spherical portion has a roundness of 70% or more in a two-dimensional image obtained by an electron microscope, and the inscribed circle of each circular figure has a total area. It has a shape that occupies 70% or more of the total projected area of the particle-shaped aggregate and the inscribed circles of the circular figures do not overlap each other.
- the roundness is represented by the ratio of the radius of the inscribed circle to the radius of the circumscribed circle of the target figure outline, and is 100% for a perfect circle.
- the existence ratio of the spherical portion is smaller than that of the pearl necklace particle aggregate.
- the secondary particle diameter of the pearl necklace-like particle aggregate is preferably 40 to 200 nm, more preferably 50 to 100 nm, and still more preferably 60 to 90 nm.
- the pearl necklace-like silica is an elongated silica particle in which a plurality of spherical silica particles having an average primary particle diameter of 5 to 300 nm are connected and secondary-aggregated so as to have an average length of 50 to 500 nm. preferable.
- the connection state of the spherical silica particles may be either linear or branched.
- the average primary particle diameter of the particles is a value observed with a scanning electron microscope.
- the aggregate particle size is a value measured by a dynamic light scattering method.
- Examples of commercially available spherical silica include IPA-ST, IPA-STL, and IPA-STZL (all manufactured by Nissan Chemical Industries, Ltd.).
- Examples of commercially available pearl necklace-shaped silica include ST-PS-S, ST-PS-SO, ST-PS-M, and ST-PS-MO (all manufactured by Nissan Chemical Industries, Ltd.).
- Examples of commercial products of chain silica include ST-OUP and ST-U (both manufactured by Nissan Chemical Industries, Ltd.).
- the binder 7 is not particularly limited as long as it can adhere the particles 5 and the substrate, but an inorganic binder is preferable from the viewpoint of heat resistance, and a hydrophilic inorganic binder is more preferable.
- the hydrophilic inorganic binder include metal oxides such as silicon oxide (silica), aluminum oxide (alumina), titanium oxide (titania), zirconium oxide (zirconia), tantalum oxide, and tin oxide.
- the binder 7 preferably contains silicon oxide as a main component, and more preferably silicon oxide. When the binder 7 is silicon oxide, the antifouling property is further improved.
- the silicon oxide as the binder 7 is preferably a hydrolyzate of a silane compound having a hydrolyzable group, or a dehydrated or dehydrated condensate of silicic acid, and an alkoxysilane compound hydrolyzate or silicic acid alkali metal salt. More preferred is a dehydrated or dehydrated condensate of demineralized silicic acid obtained by removing at least a part of the alkali metal from These hydrolysates, dehydrates or dehydrated condensates may have unreacted silanol groups (Si—OH).
- a cured product of a binder precursor described later is used for the binder 7, a cured product of a binder precursor described later is used.
- the antifouling film 4 can contain further components as long as the effects of the present invention are not impaired. Further components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, pigments and the like. The content of further components is preferably 5% by mass or less in the antifouling film 4 and more preferably 1% by mass or less.
- the manufacturing method of the embodiment includes the following steps (I) to (III). Other steps may be performed before, between and after the steps (I) to (III) as long as each step is not affected.
- the method for producing a glass article of the embodiment includes a step of providing a plurality of layers on a glass substrate, a step of providing an outermost layer using a cylindrical magnetron sputtering method, and a step of providing an antifouling film using a sol-gel method. It is preferable to provide.
- the step of providing a plurality of layers on the glass substrate and the step of providing the outermost layer using a cylindrical magnetron sputtering method are included in the above-described step (I).
- the manufacturing method of a glass article is (1) forming a first layer on the first surface side of the glass substrate; (2) forming a second layer directly on the first layer; (3) a step of forming a third layer directly on the second layer, wherein the third layer includes a layer not containing silica; (4) A step of forming an outermost layer composed of silica doped with zirconia directly on the third layer, wherein the outermost layer composed of silica doped with zirconia is formed by cylindrical magnetron sputtering.
- Steps formed by the law (5) A step of forming an antifouling film directly on the outermost layer, wherein the antifouling film is formed by a sol-gel method in which an antifouling film forming composition (sol) is applied and cured.
- sol an antifouling film forming composition
- the step of forming the laminated film 3 is a step of forming the first layer 31, the second layer 32, the third layer 33, and the fourth layer 34 in this order on the glass substrate 2.
- the method for forming the first to fourth layers 31 to 34 is not particularly limited.
- the first to fourth layers 31 to 34 are formed by, for example, vapor deposition, sputtering, CVD (chemical vapor deposition), or the like. Further, a fifth layer or higher layers are formed as necessary.
- the antifouling film-forming composition coating step is performed by applying an antifouling film-forming composition containing an aggregate of particles and a binder precursor onto the uppermost layer 34 of the laminated film 3. This is a step of obtaining a coating film.
- the application method of the antifouling film forming composition is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferred.
- the coating thickness of the antifouling film forming composition is appropriately set according to the film thickness of the antifouling film 4.
- the manufacturing method of the glass with an antireflection film shown below is only an example, and the glass with an antireflection film according to the present invention may be manufactured by another method.
- the glass 200 with antireflection film shown in FIG. 4 a configuration in which the fourth layer 255 in the laminated film 230 is omitted (that is, an antireflection film having a laminated film having a four-layer structure).
- the manufacturing method will be described by taking glass with a film as an example.
- FIG. 5 an example of the flow of the manufacturing method of such glass with an antireflection film is shown roughly.
- this manufacturing method (hereinafter referred to as “first manufacturing method”) Forming a first layer on the first surface side of the glass substrate (step S110); Forming a second layer directly on the first layer (step S120); Forming a third layer directly on the second layer, wherein the third layer comprises a layer not containing silica (step S130); Forming a layer composed of silica doped with zirconia directly on the third layer, wherein the layer composed of silica doped with zirconia is formed by a cylindrical magnetron sputtering method; Step (step S140); After step S140, heat-treating the glass substrate (step S150); Applying an antifouling film-forming composition on the layer composed of silica doped with zirconia (step S160); Step of curing antifouling film forming composition to form antifouling film (step S170) Have However, step S150 may be omitted.
- a glass substrate 220 having first and second surfaces 222 and 224 is prepared.
- the composition of the glass substrate 220 is not particularly limited.
- the glass substrate 220 may be, for example, alkali-free glass, soda lime glass, aluminosilicate glass, or the like.
- the first layer 240 is formed on the first surface 222 side of the glass substrate 220.
- the first layer 240 is made of a material having a refractive index higher than that of the second layer 245 formed in the subsequent step S120.
- the first layer 240 may be, for example, titania, niobium oxide, zirconia, ceria, tantalum oxide, or the like.
- the method for forming the first layer 240 is not particularly limited.
- the first layer 240 may be formed on the first surface 222 of the glass substrate 220 by, for example, a vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
- the second layer 245 is formed immediately above the first layer 240.
- the second layer 245 is made of a material having a refractive index lower than that of the first layer 240 and having a refractive index lower than that of the third layer 255 formed in the subsequent step S130. Is done.
- the second layer 245 may be, for example, silica or alumina.
- the formation method of the second layer 245 is not particularly limited.
- the second layer 245 may be formed by, for example, a vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
- the third layer 250 is formed immediately above the second layer 245.
- the third layer 250 is made of a material having a higher refractive index than that of the second layer 245.
- the third layer 250 may be, for example, titania, niobium oxide, zirconia, ceria, tantalum oxide, or the like. Note that the third layer 250 is formed of a layer not containing silica.
- the method for forming the third layer 250 is not particularly limited.
- the third layer 250 may be formed by, for example, a vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
- a ZrO 2 -doped SiO 2 layer (so-called outermost layer) 260 is formed immediately above the third layer 250.
- the doping amount of zirconia in the outermost layer 260 is not particularly limited, but may be in the range of 5 to 50 mol%, for example.
- the outermost layer 260 can be formed by, for example, a sputtering method.
- the cylindrical magnetron sputtering method is preferable.
- a hollow cylindrical target is used instead of a normal flat target. Sputtering film formation is carried out while rotating the hollow cylindrical target in the direction of the stretching axis (see, for example, the specification of Japanese Patent No. 4636964).
- the outermost layer 260 is formed by a cylindrical magnetron sputtering method, adhesion of debris (foreign matter) to the laminated film is significantly suppressed. Therefore, it is possible to obtain a glass with an antireflection film with few defects.
- Step S150 Next, if necessary, the glass substrate 220 on which the stacked film 230 (the first layer 240, the second layer 245, the third layer 250, and the outermost layer 260) is formed on the first surface 222 is heat-treated.
- the heat treatment is performed for strengthening or bending the glass substrate 220. However, this step may be omitted.
- the heat treatment is performed, for example, in the air at a temperature range of 550 ° C. to 700 ° C.
- the heat treatment may be performed, for example, by rapidly cooling the glass substrate 220 heated to 650 ° C. by air blowing.
- the step of applying the antifouling film forming composition includes particles capable of forming protrusions and a binder precursor on the laminated film 230 formed on the substrate, and the particles capable of forming the protrusions and the binder precursor. And an antifouling film-forming composition having a mass ratio in terms of metal oxide of 7/93 to 95/5, to form an antifouling film-forming composition layer.
- step S160 includes a pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silicon oxide precursor, and the mass of the pearl necklace-like silica and the silicon oxide precursor in terms of silicon oxide.
- the antifouling film forming composition preferably contains an aggregate of particles and a binder precursor.
- the antifouling film forming composition is prepared by mixing an aggregate of particles and an aqueous solution of a binder precursor.
- the antifouling film-forming composition may contain water, a solvent, and the like, and may further contain other components.
- the aggregate of particles that can form protrusions is preferably pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm.
- an antifouling film-forming composition containing only spherical silica particles is applied to the surface of the substrate, the particles are easy to laminate relatively uniformly, so that the resulting coating forms irregularities sufficient to exhibit antifouling properties. Not.
- a binder precursor is a component which forms a binder, for example by heat processing.
- the binder precursor include inorganic binder precursors, and metal oxide precursors such as a silicon oxide precursor, an aluminum oxide precursor, a titanium oxide precursor, a zirconium oxide precursor, a tantalum oxide precursor, and a tin oxide precursor. Is preferred.
- the silicon oxide precursor include a silane compound having a hydrolyzable group and silicic acid.
- Examples of the binder precursor other than the silicon oxide precursor include a metal compound having a hydrolyzable group.
- the metal oxide precursor is a component that forms a metal oxide by a hydrolysis reaction.
- a silicon oxide precursor is preferable.
- silicon oxide precursor examples include silicic acid and a silane compound having a hydrolyzable group.
- the silicon oxide precursor desalted silicic acid obtained by removing at least a part of an alkali metal from an alkali metal salt of silicic acid described later, or an alkoxysilane compound or a partially hydrolyzed condensate thereof is preferable.
- the antifouling film-forming composition is formed by containing demineralized silicic acid obtained by removing at least a part of an alkali metal from an alkali metal salt of silicic acid and / or an alkoxysilane compound or a partial hydrolysis condensate thereof. The adhesion between the antifouling film and the laminated film can be further improved.
- silicic acid examples include orthosilicic acid, metasilicic acid, and metadisilicic acid, with metasilicic acid being preferred.
- the silicic acid is preferably demineralized silicic acid obtained by removing at least part of the alkali metal from the alkali metal salt of silicic acid (hereinafter also simply referred to as “demineralized silicic acid”).
- Desalted silicic acid is preferably obtained by a method of reducing alkali metal ions from an aqueous solution of an alkali metal salt of silicic acid using a cation exchange resin.
- the amount of the alkali metal ion of the desalted silicic acid is not particularly limited, but the alkali metal ion is preferably 0.001 to 1 part by mass, and 0.001 to 0.2 part by mass with respect to 100 parts by mass of silicic acid. More preferred is 0.001 to 0.15 parts by mass.
- the alkali metal ion concentration of silicic acid can be measured by ICP emission spectrometry.
- the cation exchange resin is not particularly limited, a strongly acidic cation exchange resin (RSO 3 H type), weakly acidic cation exchange resin (RCOOH type) and the like, a strongly acidic cation exchange resin is a reaction rate This is preferable.
- the amount of alkali metal ions to be reduced can be adjusted by controlling the amount of cation exchange resin used, the contact time, the contact method, and the like.
- alkali metal salt of silicate examples include sodium silicate, lithium silicate, potassium silicate and the like, sodium silicate and / or lithium silicate are preferable, and sodium silicate is particularly preferable.
- a silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule.
- the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, a halogen group, and the like, and an alkoxy group is preferable.
- an alkoxysilane compound is preferable.
- the alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolytically condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
- the alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule.
- Examples of the alkoxysilane compound include compounds represented by the following general formula (1). (R 1 O) p SiR 2 (4-p) (1)
- each R 1 independently represents an alkyl group having 1 to 4 carbon atoms
- each R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms.
- P represents a number from 1 to 4. When a plurality of R 1 or R 2 are present, they may be the same as or different from each other.
- R 1 is an alkyl group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group, and a methyl group and an ethyl group are preferable.
- the alkyl group having 1 to 10 carbon atoms in R 2 is linear or branched, and is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, hexyl group, decyl group. Groups and the like.
- R 2 is preferably an alkyl group having 1 to 6 carbon atoms.
- the substituent in R 2 is not particularly limited, but is an epoxy group, glycidoxy group, methacryloyloxy group, acryloyloxy group, isocyanato group, hydroxy group, amino group, phenylamino group, alkylamino group, aminoalkylamino group, ureido group And a mercapto group.
- the “alkyl group having 1 to 10 carbon atoms” in R 2 means that the alkyl group portion excluding the substituent has 1 to 10 carbon atoms.
- alkoxysilane compound examples include tetraalkoxysilane compounds having an alkoxy group bonded to four silicon atoms in one molecule such as tetramethoxysilane and tetraethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidide Xylpropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltri Methoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-a
- the antifouling film forming composition may contain water and an acid catalyst under the condition that a hydrolysis condensate of the binder precursor is obtained.
- the antifouling film-forming composition may contain water. Hydrolysis condensation reaction advances because antifouling film formation composition contains water.
- the amount of water is preferably 10 to 500 parts by weight and more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the binder precursor.
- the amount of the binder precursor is an amount in terms of metal oxide.
- the antifouling film forming composition may contain an acid catalyst.
- the reaction rate of the hydrolysis condensation of the binder precursor can be adjusted.
- the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid and the like.
- the amount of the acid catalyst is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 3.5 parts by mass with respect to 100 parts by mass of the binder precursor.
- the amount of the binder precursor is an amount in terms of metal oxide.
- the antifouling film forming composition may contain a solvent.
- the solvent is not particularly limited as long as it can disperse particles and binder precursors that can form protrusions and has low reactivity with these components.
- the solvent include alcohols (methanol, ethanol, 2-propanol, etc.), esters (acetic esters such as butyl acetate), ethers (diethylene glycol dimethyl ether, etc.), ketones (methyl ethyl ketone, etc.), and esters and alcohols are preferred. Alcohol is more preferred.
- the solvent may be used alone or in combination of two or more.
- the content of the solvent is not particularly limited, but is preferably 1000 to 100,000 parts by mass, more preferably 2000 to 50000 parts by mass with respect to 100 parts by mass in total of the particles and the binder precursor.
- the content of the solvent is 1000 parts by mass or more with respect to 100 parts by mass in total of the particles and the binder precursor, rapid progress of hydrolysis and condensation reaction can be prevented.
- content of a solvent is 100,000 mass parts or less, a hydrolysis and a condensation reaction will advance more.
- the amount of the particles and the binder precursor is a metal oxide equivalent amount.
- the antifouling film-forming composition can contain further components as long as the effects of the present invention are not impaired.
- examples of such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments.
- the content of further components in the antifouling film forming composition is not particularly limited, but is preferably 0.02 to 1 part by weight, preferably 0.02 to 0 parts per 100 parts by weight in total of the particles and the binder precursor. 0.5 part by weight is more preferable, and 0.02 to 0.3 part by weight is still more preferable.
- the amount of the particles and the binder precursor is a metal oxide equivalent amount.
- the application of the antifouling film-forming composition can be performed by a wet coating method.
- the wet coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, and die coating, and spin coating is preferable.
- the antifouling film forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate.
- the thickness of the antifouling film-forming composition layer is not particularly limited as long as it is an amount that provides a desired thickness of the antifouling film 4.
- the application amount of the antifouling film-forming composition applied on the substrate is not particularly limited as long as it is an amount that will be the thickness of the antifouling film 4 described above, and the solid content is 1.6 to 1600 g / m 2. And more preferably 8.0 to 800 g / m 2 .
- the content of the component in terms of solid content refers to the mass of the residue excluding volatile components such as water.
- the antifouling film 4 is formed by subjecting the coating film of the antifouling film forming composition to a treatment for curing the binder precursor, and forming the binder from the binder precursor, whereby the aggregates 6 of the particles 5 and the binder 7 are formed. Is a step of forming the antifouling film 4 containing Examples of the curing treatment of the binder precursor include heat treatment, but are not limited thereto.
- the antifouling film 260 is obtained by curing the antifouling film forming composition layer by heat treatment.
- the binder precursor By heat-treating the antifouling film forming composition layer, the binder precursor alone or reacts with the particles to become a binder, and the antifouling film 4 is formed.
- the silicon oxide precursor reacts to obtain a binder.
- the silicon oxide precursor is silicic acid and an alkoxysilane compound
- the silicic acid and the alkoxysilane compound are hydrolyzed and condensed to obtain silicon oxide that is a hydrolyzate of the silicic acid and the alkoxysilane compound.
- at least a part of the silicic acid and the alkoxysilane compound is hydrolyzed and condensed with silanol groups present in the pearl necklace-like silica particles.
- the heat treatment of the antifouling film forming composition layer can be performed by any heating means such as an electric furnace, a gas furnace, an infrared heating furnace set at a predetermined temperature.
- the heat treatment temperature is preferably 20 to 700 ° C, more preferably 80 to 500 ° C, and particularly preferably 100 to 400 ° C.
- the heat treatment time varies depending on the heat treatment temperature, but is preferably 1 to 180 minutes, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes.
- the heat treatment time is 1 minute or longer, the adhesion between the substrate and the antifouling film 4 is further improved.
- the heat treatment time is 180 minutes or less, deterioration of the base material due to heat is suppressed, and the productivity is excellent.
- a glass with an antireflection film constituted by the glass substrate 220 and the laminated film 230 can be manufactured. Furthermore, the glass article 1 having antireflection performance and antifouling performance, in which the antifouling film 260 is formed on the laminated film 230 (3), can be manufactured.
- the manufacturing method of the glass with an antireflection film according to an embodiment of the present invention described above is merely an example, and it is obvious to those skilled in the art that the glass with an antireflection film can be manufactured by other methods.
- the case where only the outermost layer 260 is formed by the cylindrical magnetron sputtering method has been described as an example.
- at least one of the first to third layers is formed by the cylindrical magnetron sputtering method. Also good.
- the manufacturing method has been described by taking as an example a configuration in which the fourth layer 255 in the laminated film 230 is omitted in the glass 200 with an antireflection film shown in FIG.
- the first manufacturing method can be similarly applied to a glass with an antireflection film having a laminated film having other configurations.
- Examples 1 and 2 are examples of glass articles having antifouling performance and antifogging performance of the present invention
- Examples 3 to 4 are comparative examples.
- a laminated film was formed on one surface of the glass substrate by the following method to produce a low reflection laminated structure sample.
- a glass substrate made of soda lime glass having a shape of 25 mm long ⁇ 50 mm wide ⁇ 2 mm thick was prepared.
- a total of four laminated films composed of the first to fourth layers were formed on one surface of the glass substrate by sputtering.
- the laminated film has the following layer structure from the side close to the glass substrate.
- First layer SiO 2 layer, thickness 198 nm
- Second layer TiO 2 layer, thickness 8 nm
- Third layer SiO 2 layer, thickness 66 nm
- Fourth layer TiO 2 layer, thickness 11 nm
- the first layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa.
- the second layer uses a TiO x target (x ⁇ 2) (product name: TXO target, manufactured by AGC Ceramics) as a target, and is formed by sputtering under an Ar + O 2 atmosphere (oxygen: 8% by volume). did.
- the sputtering pressure was 0.37 Pa.
- the third layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa.
- the fourth layer was formed by sputtering using the above-described TiO x target (x ⁇ 2) as a target under an Ar + O 2 atmosphere (oxygen: 8% by volume). The sputtering pressure was 0.37 Pa.
- Example 1 Preparation of binder precursor (1)
- sodium silicate 4 manufactured by Nippon Chemical Industry Co., Ltd., SiO 2 : 24.0 mass%, Na 2 O: 7.0 mass%, SiO 2 / Na 2 O 62.5 g of a molar ratio of 3.5 / 1
- a cation exchange resin Diaion SK1BH, manufactured by Mitsubishi Chemical Corporation
- a low-reflection laminate structure sample was set on a spin coater, and 2.0 g of the antifouling film forming composition was dropped on the surface of the low-reflection laminate structure sample and spin-coated.
- the coating film of the antifouling film-forming composition was heat-treated at 150 ° C. for 30 minutes to form an antifouling film on the low-reflective laminated structure sample to produce a glass article.
- the volume ratio of the pearl necklace-like silica as the hydrophilic particles to the silica as the hydrophilic binder was 57/43.
- Example 2 A dispersion of chain silica in which spherical silica particles having a primary particle size of 10 to 18 nm are bonded to a length of 80 to 120 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex ST-OUP, average primary particle size: 15 nm, average secondary particles)
- a glass article was produced by forming an antifouling film on a low reflection laminate structure sample in the same manner as in Example 1 except that the diameter was 88 nm), and subjected to the following evaluation.
- Example 3 Low reflection laminated structure in the same manner as in Example 1 except that a dispersion of spherical silica particles having a primary particle size of 10 to 18 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex IPA-ST, average primary particle size: 15 nm) is used. An antifouling film was formed on the sample to produce a glass article, which was subjected to the following evaluation.
- Example 4 A laminated film consisting of five layers was formed in the same manner as in Examples 1 to 3. However, the following layer structure was used from the side close to the glass substrate.
- First layer SiO 2 layer, thickness 52 nm
- Second layer TiO 2 layer, thickness 15 nm
- Third layer SiO 2 layer, thickness 29 nm
- Fourth layer TiO 2 layer, thickness 106 nm
- Fifth layer SiO 2 layer, thickness 85 nm
- the surface of the antifouling film of the glass article is observed from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and randomly obtained from the obtained image. 100 particles were extracted, and the average diameter of each particle was determined as the average primary particle diameter of the particles.
- Ra surface roughness (Ra)
- SI-DF40 with rear surface AL
- 256 XY data 256 XY data
- scanning area 10 ⁇ m ⁇ 10 ⁇ m.
- the cross section of the glass article is observed with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and the obtained image is randomly selected in a direction parallel to the surface of the laminated film having the antifouling film.
- the protrusion having the highest height from the surface of the laminated film is used as a reference, and the protrusion having a height of 90% or more of the height is between apexes of adjacent protrusions. All the distances were measured, and the average value of the distance between the vertices was calculated.
- the glass article was processed into a 5 mm ⁇ 30 mm strip, and 20 sheets were put into a specific surface area measuring device and measured, and the nitrogen adsorption amount was calculated.
- a sealable container having a vapor outlet formed at the top was prepared.
- a warm bath was placed inside the container and heated to 40 ° C. to generate steam.
- This evaluation apparatus was installed in an environment of 25 ° C. and 55% RH, and a glass article was placed at the vapor outlet to evaluate the time when it began to cloud visually.
- Example 1 As shown in Table 1, it can be seen that the glass articles of Examples 1 and 2 are excellent in antifouling performance and antifogging performance from the evaluation results of contact angle with water, nitrogen adsorption amount, and antifogging property.
- Example 3 using silica particles (non-aggregated particles) as hydrophilic particles, although the contact angle with water and the amount of nitrogen adsorption are slightly improved compared to Example 4 in which an antifouling film is not formed, sufficient protection is achieved. No haze performance was obtained.
- Example of glass with laminated film having alkali resistance Next, the Example of the glass with a laminated film provided with alkali resistance is described.
- Examples 5 to 8 are examples of the glass with a laminated film having alkali resistance of the present invention
- Example 9 is a comparative example.
- Example 5 A laminated film was formed on one surface of the glass substrate by the following method to produce a glass sample with an antireflection film (hereinafter referred to as “sample according to Example 5”).
- a glass substrate (soda lime glass) of 25 mm length ⁇ 50 mm width ⁇ 2 mm thickness was prepared.
- a total of four laminated films composed of the first to fourth layers were formed on one surface of the glass substrate by sputtering.
- the laminated film has the following layer structure from the side close to the glass substrate.
- First layer TiO 2 layer, thickness 11 nm
- Second layer SiO 2 layer, thickness 31 nm
- Third layer TiO 2 layer, thickness 99 nm
- Fourth layer 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 83 nm
- the first layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 8% by volume) using a TiOx target (x ⁇ 2) (product name: TXO target, manufactured by AGC Ceramics) as a target.
- the sputtering pressure was 0.37 Pa.
- the second layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume).
- the sputtering pressure was 0.17 Pa.
- the third layer was formed by sputtering using the above-described TiOx target (x ⁇ 2) as a target under an Ar + O 2 atmosphere (oxygen: 8% by volume).
- the sputtering pressure was 0.37 Pa.
- the fourth layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 10 atomic% Zr as a target.
- the sputtering pressure was 0.12 Pa.
- an antireflection treatment (roughening treatment) was performed on the surface of the glass substrate on which the laminated film is not disposed.
- Example 6 A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 6”) was produced in the same manner as in Example 5. However, in Example 6, the laminated film has the following layer configuration. First layer: TiO 2 layer, thickness 13 nm Second layer: SiO 2 layer, thickness 28 nm Third layer: TiO 2 layer, thickness 97 nm Fourth layer: 80 mol% SiO 2 -20 mol% ZrO 2 layer, thickness 68 nm Note that the fourth layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 20 atomic% Zr as a target. The sputtering pressure was 0.12 Pa.
- Example 7 A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 7”) was produced in the same manner as in Example 5. However, in Example 7, the laminated film had the following layer configuration. First layer: TiO 2 layer, thickness 16 nm Second layer: SiO 2 layer, thickness 25 nm Third layer: TiO 2 layer, thickness 65 nm Fourth layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer, thickness 76 nm Note that the fourth layer was formed by a sputtering method under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 33 atomic% of Zr as a target. The sputtering pressure was 0.12 Pa.
- Example 8 A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 8”) was produced in the same manner as in Example 5. However, in Example 8, the same laminated film was formed on both sides of the glass substrate. Therefore, the antireflection treatment (roughening treatment) is not performed on the glass substrate.
- Each laminated film had the following layer configuration. First layer: TiO 2 layer, thickness 12 nm Second layer: SiO 2 layer, thickness 30 nm Third layer: TiO 2 layer, thickness 99 nm Fourth layer: 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 81 nm
- Example 9 A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 9”) was produced in the same manner as in Example 5. However, in Example 9, the laminated film had the following layer configuration. First layer: TiO 2 layer, thickness 13 nm Second layer: SiO 2 layer, thickness 28 nm Third layer: TiO 2 layer, thickness 97 nm Fourth layer: SiO 2 layer, thickness 81 nm Note that the fourth layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa.
- each sample is irradiated with light from the side where the laminated film is disposed (one side in the sample according to Example 8), and the reflectance (initial reflectance) is measured by a spectrophotometer.
- each sample is immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours.
- the sample is removed from the aqueous solution, washed with pure water, and then dried. Using the sample after drying, the same measurement as before the immersion treatment is performed, and the reflectance (reflectance after treatment) is measured.
- the initial reflectance and the reflectance after treatment are compared to evaluate the alkali resistance.
- the uppermost layer preferably has a difference in visible light reflectance before and after the test immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours within 0, Is more preferably within 3 and particularly preferably within 0.1.
- the visible light reflectance of the glass with an antireflection film measured based on ISO 9050 (2003) is 1%. In the case of exceeding, the low reflection characteristics are insufficient.
- the visible light reflectance is preferably 1% or less.
- the visible light reflectance is preferably 2% or less, and more preferably 1% or less.
- the reflection color in the standard illuminant D65, 10-degree field of view is expressed by the color coordinates (a * , b * ) of the L * a * b * color system specified in ISO11664-2,
- the reflection color is inside the pentagon with 5 points (0,0), (20, -20), (-15, -20), (-15,10), and (0,10) as vertices It is preferable.
- the reflection color of the glass with an antireflection film is not red or orange, and the saturation is not too strong.
- Table 2 below shows the specifications of the laminated films according to Examples 5 to 9.
- Table 3 collectively shows the visible light reflectance, color coordinates a * , b * , and alkali resistance test results of the samples according to Examples 5 to 9 before and after the immersion treatment.
- the visible light reflectance is a value measured based on ISO9050 (2003).
- the color coordinates a * and b * are reflected colors in the standard illuminant D65, 10-degree field of view, and are based on the L * a * b * color system according to ISO11664-2 (2007).
- the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 5 exhibited a sufficiently low reflectance over a wavelength range of about 400 nm to about 650 nm both before and after the immersion treatment.
- the visible light reflectance before and after the immersion treatment of the sample according to Example 5 was 0.26% and 0.26%, respectively. That is, the visible light reflectance of the sample according to Example 5 was 1% or less before and after the immersion treatment. Thus, it was confirmed that the sample according to Example 5 has good alkali resistance.
- the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 5 were ( ⁇ 0.47, ⁇ 4.14), ( ⁇ 0.45, ⁇ 3.61). That is, the reflection color of the sample according to Example 5 before and after the immersion treatment was inside the pentagon described above.
- the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 6 exhibited a sufficiently low reflectance over a wavelength range of about 400 nm to about 650 nm both before and after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 6 was 0.87% and 0.90%, respectively. That is, the visible light reflectance of the sample according to Example 6 was 1% or less before and after the immersion treatment. Thus, it was confirmed that the sample according to Example 6 has good alkali resistance.
- the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 6 were ( ⁇ 3.35, 0.75), ( ⁇ 2.84, ⁇ 1.03), respectively. )Met. That is, the reflection color of the sample according to Example 6 was inside the above pentagon before and after the immersion treatment.
- the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 7 had a sufficiently low reflectance over a wavelength range of about 450 nm to about 650 nm both before and after the immersion treatment.
- the visible light reflectance before and after the immersion treatment of the sample according to Example 7 was 0.71% and 0.70%, respectively. That is, the visible light reflectance of the sample according to Example 7 was 1% or less before and after the immersion treatment. Thus, it was confirmed that the sample according to Example 7 has good alkali resistance.
- the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 7 were (9.98, ⁇ 15.44), (11.02, ⁇ 17. 86). That is, the reflection color of the sample according to Example 7 before and after the immersion treatment was inside the above pentagon.
- Examples 5 to 7 are compared.
- the outermost layers of Examples 5 to 7 are 90 mol% SiO 2 -10 mol% ZrO 2 layer, 80 mol% SiO 2 -20 mol% ZrO 2 layer and 67 mol% SiO 2 -33 mol% ZrO 2 layer, respectively.
- the 90 nm% SiO 2 -10 mol% ZrO 2 layer having the lowest refractive index is the outermost layer, and the visible light reflectance of Example 5 is the lowest and the low reflection characteristics are good.
- the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 8 had a sufficiently low reflectance over a wavelength range of about 450 nm to about 650 nm both before and after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 8 was 0.77% and 0.74%, respectively. Samples according to the Example 8, as with Example 5, a low refractive index as ZrO 2 doped SiO 2 layer 90 mole% SiO 2 -10 mol% ZrO 2 layer is the outermost layer.
- the laminated film is formed on both surfaces of the glass substrate, the visible light reflectance is 2% or less and 1% or less, and it can be seen that the low reflection characteristic is good. Thus, it was confirmed that the sample according to Example 8 has good alkali resistance.
- the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 8 were ( ⁇ 1.76, ⁇ 6.28) and ( ⁇ 1.18, 2.34), respectively. )Met. That is, the reflection color of the sample according to Example 8 was inside the above pentagon before and after the dipping treatment.
- the sample according to Example 9 a significant difference was observed in the reflectance characteristics before and after the immersion treatment. That is, it was found that the sample according to Example 9 showed good low reflection characteristics before the immersion treatment, but increased the reflectance over the wavelength range of about 400 nm to about 750 nm after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 9 was 0.27% and 10.35%, respectively. Thus, it was confirmed that the sample according to Example 9 does not exhibit good alkali resistance.
- the glass with an antireflection film has a four-layer laminated film similar to Example 5 on the first surface of a glass substrate (made of soda lime glass) having a vertical and horizontal dimension of 100 inches ⁇ 144 inches. It was.
- the constituent conditions of each layer are as follows. First layer: TiO 2 layer, thickness 12 nm Second layer: SiO 2 layer, thickness 35 nm Third layer: TiO 2 layer, thickness 105 nm Fourth layer (outermost layer): 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 84 nm
- the first layer was formed by a sputtering method using a normal flat TiOx target (x ⁇ 2).
- the second to fourth layers were formed by a cylindrical magnetron sputtering method using a cylindrical target.
- the glass with an antireflection film was continuously produced by causing a glass substrate having the above dimensions to be conveyed by a roller in a single coater.
- the atmosphere in the coater was Ar + O 2 atmosphere.
- a total of 290 glasses with an antireflection film were produced in about 1.5 days of the latter half of the continuous discharge for about 4 days including the thickness adjustment of each layer.
- the total number of each antireflection film-coated glass produced was visually observed for adhesion of surface debris and the presence or absence of defects in the laminated film. As a result, there was no product that was defective in production, and the defective product rate was 0 (zero).
- the glass with an antireflection film produced by the above-described method has few defects and a high yield can be obtained.
- the glass with an antireflection film having the vertical and horizontal dimensions of 100 inches ⁇ 144 inches manufactured in the above section was used.
- the glass with an antireflection film was heated to 650 ° C. in the air, and then cooled to room temperature by air blowing.
- the haze of the glass with an antireflection film before and after heating was measured with a haze measuring apparatus.
- the haze of the glass with an antireflection film before heat treatment was 0.09%.
- the haze of the glass with an antireflection film after heat treatment was 0.35%, and it was found that the increase in haze was significantly suppressed even when heat treatment was performed.
- the glass with an antireflection film manufactured by the above-described manufacturing method has good heat resistance.
- Example of glass article having antifouling performance Next, the Example of the glass article provided with the antifouling performance of this invention is described.
- Examples 10 to 12 and Example 25 are examples of glass articles having antifouling performance
- Examples 13 to 14 are reference examples
- Examples 15 to 24, and Examples 26 is a comparative example.
- Binder Precursor (1) (Desalted Sodium Silicate Solution)
- sodium silicate No. 4 manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 62.5 g of O molar ratio: 3.5 / 1)
- 180 g of cation exchange resin manufactured by Mitsubishi Chemical Co., Ltd., Diaion SK1BH
- a binder precursor (1) was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silicon oxide of 5% by mass.
- Example 10 A sample according to Example 5 kept at room temperature was set on a spin coater, 2.0 g of the antifouling film forming composition (A1) was dropped on the surface, spin-coated, and then baked at 300 ° C. for 30 minutes to obtain a glass article. Manufactured.
- Antifouling film-forming compositions A2 to A5 were prepared in the same manner as in Example 10 except that the mass ratio of particles to binder (particle / binder) was changed to the amount shown in Table 4. Subsequently, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A2 to A5.
- Example 15 to Example 19 The pearl necklace-like silica dispersion is changed to a spherical silica dispersion having an average primary particle size of 11 nm (manufactured by Nissan Chemical Co., Snowtex OS), and the mass ratio of the particles to the binder is changed to the amount shown in Table 4. Except for the above, antifouling film-forming compositions A6 to A10 were prepared in the same manner as in Example 10. Next, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A6 to A10.
- Example 20 to Example 24 The pearl necklace-like silica dispersion was changed to a spherical silica dispersion having a mean primary particle size of 30 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex O-40), and the mass ratio of the particles to the binder was adjusted to the amounts shown in Table 4.
- Antifouling film-forming compositions A11 to A15 were prepared in the same manner as in Example 10 except for changing. Next, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A11 to A15.
- Example 25 Preparation of binder precursor (2) (solution of partially hydrolyzed condensate of alkoxysilane compound)) While stirring 16.45 g of 2-propanol, 1.18 g of methyl silicate polymer (manufactured by Tama Chemical Industry Co., Ltd., M silicate 51, 51% solid content in terms of silica, methanol solvent), 2.26 g of distilled water. A 10% by mass aqueous nitric acid solution was added in order, and the mixture was stirred at 25 ° C. for 60 minutes to obtain a binder precursor (2) as a partially hydrolyzed condensate solution of an alkoxysilane compound having a silica-converted solid content concentration of 3% by mass. Got.
- An antifouling film-forming composition A16 was prepared in the same manner as in Example 10 except that the binder precursor (1) was changed to the binder precursor (2).
- a glass article was produced in the same manner as in Example 10 using the antifouling film-forming composition A16.
- Example 26 The sample according to Example 5 was evaluated as it was.
- Evaluation of the glass article in each example was performed as follows.
- Average primary particle size of particles From the image obtained by observing the surface of the antifouling film from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) with respect to the surface of the glass article having the antifouling film, randomly 100 particles were extracted, and the average diameter of each particle was defined as the average primary particle diameter of the particles.
- the antifouling film is sprinkled with the above-mentioned test powder, left still for 10 seconds, tilted 135 °, and brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm, dropping the powder.
- the value obtained by subtracting the haze value before the test from the average value is within 1.0, more preferably within 0.9, more preferably within 0.8. It is particularly preferred.
- Table 4 below shows the specifications of the glass articles according to Examples 10 to 26.
- Table 5 below shows the measurement evaluation results of the samples according to Examples 10 to 26.
- Example 10 to 12 and Example 25 are excellent in antifouling property.
- Example 26 having no antifouling film was not sufficiently antifouling.
- the glass articles of Examples 15 to 24 using spherical silica and having a distance between apexes of the antifouling film of less than 100 nm were not sufficiently antifouling.
- the glass article of the present invention can be used, for example, for glass with antireflection and antifouling films for buildings.
- the usage form is not limited to the form in which the antireflection and antifouling film is disposed only on one side of the glass substrate, and the form in which the antireflection and antifouling film is disposed on both sides of the glass substrate.
- two glass substrates having antireflection and antifouling films disposed on only one side may be prepared and used as laminated glass.
- two glass substrates having antireflection and antifouling films disposed on both sides may be prepared to form a multilayer glass. Or you may arrange
- window glass for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes, etc.
- walls for example, partitions, road walls, etc.
- refrigerated Showcases Showcases, mirrors (for example, vanity mirrors, bathroom mirrors, etc.), optical equipment, tiles, toilets, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucets, building boards, Can be used for lenses.
- lenses such as glasses and cameras, window glass, car windshields, helmet shields, underwater glasses, and bathroom use This is useful for mirrors.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
- Laminated Bodies (AREA)
Abstract
Provided is a glass article with an antireflection film having improved durability that obtains excellent antifouling performance by a simple structure. The glass article 1 is provided with a glass substrate 2, a laminated film 3 disposed on the glass substrate 2, and an antifouling film 4 disposed on the outermost layer of the laminated film 3, and the glass article 1 has an antireflection function. The antifouling film 4 contains particle aggregates and a binder.
Description
本発明は、ガラス物品およびその製造方法に関し、特に反射防止性能を有するガラス物品およびその製造方法に関する。
The present invention relates to a glass article and a manufacturing method thereof, and more particularly to a glass article having antireflection performance and a manufacturing method thereof.
ガラス基板に反射防止膜等の機能膜を付与した様々なガラス物品が知られている。例えば、建築用としてガラス物品を使用する形態において、機能膜を付与した面が屋外側になるように使用することがある。反射防止膜付きガラス物品は、高い透過性を有することから、建造物のファサード、店舗、坪庭等の屋外建築物への適用が期待されている。反射防止膜付きガラスとしては、例えばガラス基板上に、TiO2層、AlドープSiO2層、TiO2層、およびAlドープSiO2層をこの順に有する積層膜を配置した構造が知られており、積層膜によりガラス基板の反射率が抑制される(特許文献1参照)。
Various glass articles in which a functional film such as an antireflection film is provided on a glass substrate are known. For example, in a form in which a glass article is used for construction, it may be used such that the surface provided with a functional film is on the outdoor side. Since the glass article with an antireflection film has high permeability, it is expected to be applied to outdoor buildings such as a facade of a building, a store, and a courtyard. As the glass with an antireflection film, for example, a structure in which a laminated film having a TiO 2 layer, an Al-doped SiO 2 layer, a TiO 2 layer, and an Al-doped SiO 2 layer in this order on a glass substrate is known, The reflectance of the glass substrate is suppressed by the laminated film (see Patent Document 1).
反射防止性と防曇性とを備えるガラス物品としては、例えば、単層または多層の反射防止膜の最上層を、細孔および微細な凹凸の少なくとも一方を有する無機物質膜と、無機物質膜の細孔および微細な凹凸に固定された親水性物質とからなる防曇膜で構成した物品(特許文献2参照)や、高屈折率層と低屈折率層を積層した反射防止膜における最表面の低屈折率層を、親水性ポリマーを含む組成物を硬化させたポリマー層からなる防曇膜で構成した物品(特許文献3参照)が知られている。
As a glass article having antireflection properties and antifogging properties, for example, the uppermost layer of a single-layer or multilayer antireflection film is formed of an inorganic material film having at least one of pores and fine irregularities, and an inorganic material film. Articles composed of an antifogging film made of a hydrophilic substance fixed to pores and fine irregularities (see Patent Document 2), and an antireflection film in which a high refractive index layer and a low refractive index layer are laminated An article (see Patent Document 3) in which a low refractive index layer is formed of an antifogging film made of a polymer layer obtained by curing a composition containing a hydrophilic polymer is known.
しかしながら、従来の反射防止膜付きガラス物品は、積層膜の防汚特性が良好であるとは言い難い。このため、従来のガラス物品を屋外建築物等に適用した場合、ガラス物品表面の反射防止膜に砂等の汚れが付着することによって、反射防止性能が低下したり、ガラス物品の透光性が劣化したりするという問題がある。
However, it is difficult to say that conventional glass articles with an antireflection film have good antifouling properties of the laminated film. For this reason, when a conventional glass article is applied to an outdoor building or the like, dirt such as sand adheres to the antireflection film on the surface of the glass article, so that the antireflection performance is lowered or the translucency of the glass article is reduced. There is a problem of deterioration.
また、特許文献3に記載された反射防止膜においては、最上層として親水性ポリマーを含む組成物を硬化させたポリマー層を設けている。ポリマー層の表面(反射防止膜の最表面)は平坦であるため、有機物汚染により親水性が失われやすく、これにより防曇性能が低下しやすい。従って、ポリマー層からなる防曇膜は、耐久性に問題がある。
In the antireflection film described in Patent Document 3, a polymer layer obtained by curing a composition containing a hydrophilic polymer is provided as the uppermost layer. Since the surface of the polymer layer (the outermost surface of the antireflection film) is flat, hydrophilicity is likely to be lost due to organic contamination, and this tends to reduce the antifogging performance. Therefore, the antifogging film made of the polymer layer has a problem in durability.
本発明は、簡便な構造で優れた防汚性能が得られ、かつ耐久性を向上させた反射防止膜付きガラス物品、およびそのようなガラス物品を簡便に製造できる製造方法を提供することを目的とする。
An object of the present invention is to provide a glass article with an antireflection film that has excellent antifouling performance with a simple structure and has improved durability, and a production method that can easily produce such a glass article. And
本発明の第1の形態は、ガラス基体と、前記ガラス基体上に配置され、屈折率の異なる複数の層を含む積層膜と、前記積層膜の最外層上に配置され、粒子の凝集体とバインダとを含有する防汚膜とを具備する、反射防止機能を有するガラス物品である。
According to a first aspect of the present invention, there is provided a glass substrate, a laminated film that is disposed on the glass substrate and includes a plurality of layers having different refractive indexes, an agglomerate of particles that is disposed on the outermost layer of the laminated film, A glass article having an antireflection function, comprising an antifouling film containing a binder.
本発明の第2の形態は、ガラス基体上に屈折率の異なる複数の層を含む積層膜を形成する工程と、前記積層膜の最外層上に、粒子の凝集体とバインダ前駆体とを含有する防汚膜形成組成物を塗布し、前記防汚膜形成組成物の塗布膜を得る工程と、前記塗布膜に前記バインダ前駆体を硬化させる処理を施し、前記バインダ前駆体からバインダを形成することにより、前記粒子の凝集体と前記バインダとを含有する防汚膜を形成する工程とを具備するガラス物品の製造方法である。
The second aspect of the present invention includes a step of forming a laminated film including a plurality of layers having different refractive indexes on a glass substrate, and an aggregate of particles and a binder precursor on the outermost layer of the laminated film. Applying the antifouling film-forming composition to obtain a coating film of the antifouling film-forming composition, and applying the treatment for curing the binder precursor to the coating film to form the binder from the binder precursor. By this, it is the manufacturing method of the glass article which comprises the process of forming the antifouling film containing the aggregate of the said particle | grains and the said binder.
以下、本発明の実施形態について説明する。なお、以下の説明において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の初期の目的が達成されれば本用語に含まれる。
Hereinafter, embodiments of the present invention will be described. In the following description, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. The term “process” is included in this term as long as the initial purpose of the process is achieved, even when the process is not clearly distinguishable from other processes.
[ガラス物品]
本発明のガラス物品は、ガラス基体と、該ガラス基体上に配置され、屈折率の異なる複数の層を含む積層膜と、該積層膜の最外層上に配置され、粒子の凝集体とバインダとを含有する防汚膜とを具備する、反射防止機能を有するガラス物品である。本発明のガラス物品は、反射防止性能と防汚性能とを有するので、メガネやカメラ等のレンズ、窓ガラス、車のフロントガラス、ヘルメットのシールド、水中メガネ、浴室用の鏡等に適用されるが、これらに限定されない。 [Glass articles]
The glass article of the present invention includes a glass substrate, a laminated film that is disposed on the glass substrate and includes a plurality of layers having different refractive indexes, an agglomerate of particles and a binder that are disposed on the outermost layer of the laminated film. A glass article having an antireflection function, comprising an antifouling film containing. Since the glass article of the present invention has antireflection performance and antifouling performance, it is applied to lenses such as glasses and cameras, window glass, car windshields, helmet shields, underwater glasses, bathroom mirrors, and the like. However, it is not limited to these.
本発明のガラス物品は、ガラス基体と、該ガラス基体上に配置され、屈折率の異なる複数の層を含む積層膜と、該積層膜の最外層上に配置され、粒子の凝集体とバインダとを含有する防汚膜とを具備する、反射防止機能を有するガラス物品である。本発明のガラス物品は、反射防止性能と防汚性能とを有するので、メガネやカメラ等のレンズ、窓ガラス、車のフロントガラス、ヘルメットのシールド、水中メガネ、浴室用の鏡等に適用されるが、これらに限定されない。 [Glass articles]
The glass article of the present invention includes a glass substrate, a laminated film that is disposed on the glass substrate and includes a plurality of layers having different refractive indexes, an agglomerate of particles and a binder that are disposed on the outermost layer of the laminated film. A glass article having an antireflection function, comprising an antifouling film containing. Since the glass article of the present invention has antireflection performance and antifouling performance, it is applied to lenses such as glasses and cameras, window glass, car windshields, helmet shields, underwater glasses, bathroom mirrors, and the like. However, it is not limited to these.
本発明のガラス物品は、ガラス基体と、該ガラス基体上に設けられ、90℃に加熱した濃度0.1kmol/m3のNaOH水溶液中に2時間浸漬させた試験前後の可視光反射率の差が0.4以内である保護層を有する積層膜と、該積層膜上に設けられ、JIS試験粉体1の2種(中位径が27~31μmのケイ砂)を振りかけて10秒静置し、135°傾け、3cmの高さから10cm/秒の勢いで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを複数繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である防汚膜と、を備えることが好ましい。
The glass article of the present invention comprises a glass substrate and a difference in visible light reflectance before and after the test which was provided on the glass substrate and immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours. A laminated film having a protective layer having a thickness of 0.4 or less, and two types of JIS test powder 1 (silica sand having a median diameter of 27 to 31 μm) provided on the laminated film and left to stand for 10 seconds. Then, tilting 135 °, touching the ground twice at a speed of 10 cm / second from a height of 3 cm, dropping the powder and measuring the haze value a plurality of times, and calculating the haze value before the test from the average value It is preferable to provide an antifouling film having a subtracted value of 1.0 or less.
本発明のガラス物品は、様々な汚れに対して、防汚性を有する。汚れとしては、大気中の砂塵、コンクリート壁由来のアルカリ分が残ったもの(水の乾きジミ)、水アカ、ガラス自体のヤケ等の無機系の汚れ、大気中の煤煙や自動車の排気ガス、たばこの煙、油等の有機系の汚れが挙げられる。本発明のガラス物品は、砂塵、油汚れに対して、より優れた防汚効果を有する。防汚性物品の防汚性は、例えば、後述の実施例における「汚れ付着試験」により測定されるヘイズ値変化で評価することができる。防汚性物品のヘイズ値変化は、後述の実施例における「汚れ付着試験」により測定された場合、5%以下が好ましく、2%以下がより好ましく、1%以下が特に好ましい。ヘイズ値変化が5%を超えると、実用上の防汚性を発現させることができないおそれがある。なお、ヘイズ値は、市販のヘイズ測定装置を用いて測定することができる。
The glass article of the present invention has antifouling properties against various stains. As dirt, inorganic dirt such as dust in the atmosphere, remaining alkali content from concrete walls (water dry spots), water stains, burns on the glass itself, atmospheric soot and automobile exhaust gas, Examples include organic stains such as cigarette smoke and oil. The glass article of the present invention has a better antifouling effect against dust and oil stains. The antifouling property of the antifouling article can be evaluated by, for example, a change in haze value measured by a “dirt adhesion test” in Examples described later. The change in haze value of the antifouling article is preferably 5% or less, more preferably 2% or less, and particularly preferably 1% or less, when measured by a “dirt adhesion test” in Examples described later. If the change in haze value exceeds 5%, there is a possibility that practical antifouling properties cannot be expressed. The haze value can be measured using a commercially available haze measuring device.
図1は、本発明のガラス物品の一例を示している。以下、図1に示すガラス物品1を例として、本発明のガラス物品の各構成について詳述する。図1に示すガラス物品1は、ガラス基体2と、該ガラス基体2上に配置され、反射防止性を付与するための積層膜3と、該積層膜3の最外層(34)上に配置された防汚膜4とを具備する。防汚膜4は、図2に示すように、粒子5の凝集体6とバインダ7とを含有し、粒子5の凝集体6に基づく凹凸表面を有している。
FIG. 1 shows an example of the glass article of the present invention. Hereinafter, taking the glass article 1 shown in FIG. 1 as an example, each configuration of the glass article of the present invention will be described in detail. A glass article 1 shown in FIG. 1 is disposed on a glass substrate 2, a laminated film 3 provided on the glass substrate 2 for imparting antireflection properties, and an outermost layer (34) of the laminated film 3. The antifouling film 4 is provided. As shown in FIG. 2, the antifouling film 4 contains aggregates 6 of particles 5 and a binder 7, and has an uneven surface based on the aggregates 6 of particles 5.
(ガラス基体)
ガラス基体2は、ガラス物品1の構成要素の中で構造を維持する機能を有する。ガラス基体2とは、ヘーズ値が1%以下の基板等であり、厚さは用途等により適宜選択することができる。ガラス基体2は無色が好ましいが、用途に応じて適宜着色することもできる。 (Glass substrate)
Theglass substrate 2 has a function of maintaining the structure among the components of the glass article 1. The glass substrate 2 is a substrate having a haze value of 1% or less, and the thickness can be appropriately selected depending on the application. The glass substrate 2 is preferably colorless, but can be appropriately colored depending on the application.
ガラス基体2は、ガラス物品1の構成要素の中で構造を維持する機能を有する。ガラス基体2とは、ヘーズ値が1%以下の基板等であり、厚さは用途等により適宜選択することができる。ガラス基体2は無色が好ましいが、用途に応じて適宜着色することもできる。 (Glass substrate)
The
ガラスの組成は、特に限られない。ガラス基体2は、例えば、無アルカリガラス、ソーダライムガラス、アルミノシリケートガラス等であっても良い。また、ガラスは、物理強化または化学強化されていても良い。化学強化されたガラスであれば、ガラスの板厚が1.5mm以下とすることができる。ガラス基体2の組成は、例えば、ソーダライムガラスの場合、酸化物基準の質量百分率表示で、SiO2を60~75%、Al2O3を2~12%、MgOを2~11%、CaOを0~10%、SrOを0~3%、BaOを0~3%、Na2Oを10~18%、K2Oを0~8%、ZrO2を0~4%含有しても良い(以上の成分の合計は100%以下であり、また通常95%以上である)。また、アルミノシリケートガラスの場合、酸化物基準のモル百分率表示で、SiO2を61~70%、Al2O3を1~18%、MgOを0~15%、CaOを0~5%、SrOを0~1%、BaOを0~1%、Na2Oを8~18%、K2Oを0~6%、ZrO2を0~4%、B2O3を0~8%含有しても良い。
The composition of the glass is not particularly limited. The glass substrate 2 may be, for example, alkali-free glass, soda lime glass, aluminosilicate glass, or the like. The glass may be physically strengthened or chemically strengthened. If it is chemically strengthened glass, the plate thickness of the glass can be 1.5 mm or less. For example, in the case of soda lime glass, the composition of the glass substrate 2 is expressed in terms of mass percentage on the basis of oxide, SiO 2 is 60 to 75%, Al 2 O 3 is 2 to 12%, MgO is 2 to 11%, CaO 0-10%, SrO 0-3%, BaO 0-3%, Na 2 O 10-18%, K 2 O 0-8%, ZrO 2 0-4% (The total of the above components is 100% or less, and usually 95% or more). In the case of an aluminosilicate glass, SiO 2 is 61 to 70%, Al 2 O 3 is 1 to 18%, MgO is 0 to 15%, CaO is 0 to 5%, and SrO is expressed in terms of mole percentage based on oxide. 0-1%, BaO 0-1%, Na 2 O 8-18%, K 2 O 0-6%, ZrO 2 0-4%, B 2 O 3 0-8% May be.
(積層膜)
ガラス物品1における積層膜3は、ガラス基体2の側から順に、第1の層31、第2の層32、第3の層33、第4の層34を有する。積層膜3を構成する層の数、各層の材質、および配置順等を適切に設計することによって、ガラス物品1に反射防止性を発現させることができる。 (Laminated film)
The laminatedfilm 3 in the glass article 1 includes a first layer 31, a second layer 32, a third layer 33, and a fourth layer 34 in order from the glass substrate 2 side. By appropriately designing the number of layers constituting the laminated film 3, the material of each layer, the order of arrangement, and the like, the glass article 1 can exhibit antireflection properties.
ガラス物品1における積層膜3は、ガラス基体2の側から順に、第1の層31、第2の層32、第3の層33、第4の層34を有する。積層膜3を構成する層の数、各層の材質、および配置順等を適切に設計することによって、ガラス物品1に反射防止性を発現させることができる。 (Laminated film)
The laminated
第1の層31および第3の層33は、第2の層32および第4の層34よりも小さい屈折率を有することができる。その場合、第1の層31および第3の層33を「低屈折率層」と称し、第2の層32および第4の層34を「高屈折率層」と称する。第1の層31および第3の層33の屈折率は、1.4~1.8が好ましく、1.45~1.7がより好ましい。低屈折率層を構成する材料としては、例えば酸化ケイ素、酸化アルミニウム等が挙げられる。酸化ケイ素には、アルミニウム等の他の元素がドープされていても良い。第1の層31の厚さは、30~60nmもしくは174~224nmが好ましく、35~55nmもしくは189~209nmがより好ましい。第3の層33の厚さは、20~80nmが好ましく、30~70nmがより好ましい。
The first layer 31 and the third layer 33 can have a refractive index smaller than that of the second layer 32 and the fourth layer 34. In this case, the first layer 31 and the third layer 33 are referred to as “low refractive index layers”, and the second layer 32 and the fourth layer 34 are referred to as “high refractive index layers”. The refractive index of the first layer 31 and the third layer 33 is preferably 1.4 to 1.8, and more preferably 1.45 to 1.7. Examples of the material constituting the low refractive index layer include silicon oxide and aluminum oxide. Silicon oxide may be doped with other elements such as aluminum. The thickness of the first layer 31 is preferably 30 to 60 nm or 174 to 224 nm, and more preferably 35 to 55 nm or 189 to 209 nm. The thickness of the third layer 33 is preferably 20 to 80 nm, and more preferably 30 to 70 nm.
第2の層32および第4の層34の屈折率は、2.0以上が好ましく、2.1以上がより好ましい。高屈折率層を構成する材料としては、例えば酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化セリウム、酸化タンタル等が挙げられる。第2の層32の厚さは、1~52nmが好ましく、3~45nmがより好ましい。第4の層34の厚さは、1~39nmが好ましく、6~34nmがより好ましい。第4の層34は、第2の層32と同じ材質で構成されていても良く、同じ屈折率を有していても良い。
The refractive index of the second layer 32 and the fourth layer 34 is preferably 2.0 or more, and more preferably 2.1 or more. Examples of the material constituting the high refractive index layer include titanium oxide, niobium oxide, zirconium oxide, cerium oxide, and tantalum oxide. The thickness of the second layer 32 is preferably 1 to 52 nm, and more preferably 3 to 45 nm. The thickness of the fourth layer 34 is preferably 1 to 39 nm, and more preferably 6 to 34 nm. The fourth layer 34 may be made of the same material as that of the second layer 32 and may have the same refractive index.
積層膜3は、第1ないし第4の層31~34に加えて、第5の層、第6の層、…第nの層(nは、5以上の整数)を有していても良い。この場合、高屈折率層と低屈折率層とが交互に積層され、最外層が高屈折率層であれば、第1の層31は、必ずしも低屈折率層である必要はなく、高屈折率層であっても良い。
The laminated film 3 may have a fifth layer, a sixth layer,... An nth layer (n is an integer of 5 or more) in addition to the first to fourth layers 31 to 34. . In this case, if the high refractive index layer and the low refractive index layer are alternately laminated and the outermost layer is the high refractive index layer, the first layer 31 does not necessarily need to be a low refractive index layer, and the high refractive index layer It may be a rate layer.
積層膜3における最外層は、ジルコニアがドープされたシリカで構成されることが好ましい。ジルコニアがドープされたシリカ層(以下、「ZrO2ドープSiO2層」とも称する)は、アルカリに対して良好な耐性を示す。最外層がZrO2ドープSiO2層である場合、積層膜3の最外層が、アルカリに対する保護膜としての機能を示すようになる。このため、積層膜3がアルカリ成分を含む水分と接触しても、積層膜3が劣化することを有意に抑制することができる。それによって、従来に比べてアルカリに対して有意に高い耐性を有する反射防止膜付きガラスを提供することができる。
The outermost layer in the laminated film 3 is preferably composed of silica doped with zirconia. A silica layer doped with zirconia (hereinafter also referred to as “ZrO 2 -doped SiO 2 layer”) exhibits good resistance to alkali. When the outermost layer is a ZrO 2 -doped SiO 2 layer, the outermost layer of the laminated film 3 functions as a protective film against alkali. For this reason, even if the laminated film 3 comes into contact with moisture containing an alkali component, it is possible to significantly suppress the deterioration of the laminated film 3. Thereby, it is possible to provide a glass with an antireflection film that has significantly higher resistance to alkali than in the past.
本願発明者等によれば、ZrO2ドープSiO2層の直下にシリカ層が配置された積層膜では、アルカリに対する耐性が低下しやすいことが見出されている。そのため、ZrO2ドープSiO2層の直下には、シリカ層が配置されないこと、すなわちZrO2ドープSiO2層の直下には、シリカを含まない層が配置されることが好ましい。
According to the present inventors, it has been found that in a laminated film in which a silica layer is disposed immediately below a ZrO 2 -doped SiO 2 layer, resistance to alkali is likely to be reduced. Therefore, immediately below the ZrO 2 doped SiO 2 layer, the silica layer is not arranged, that is, immediately below the ZrO 2 doped SiO 2 layer, it is preferable that a layer containing no silica is disposed.
なお、本願明細書において、「最外層」という用語は、積層膜3において、最も外側に配置される層を意味する。従って、「最外層」は、反射防止膜付きガラス物品1において、最も外側に位置する層とは限らない。図1に示すガラス物品1においては、防汚膜4が最も外側に位置する層である。
In the present specification, the term “outermost layer” means a layer arranged on the outermost side in the laminated film 3. Therefore, the “outermost layer” is not necessarily the outermost layer in the glass article 1 with an antireflection film. In the glass article 1 shown in FIG. 1, the antifouling film 4 is the outermost layer.
次に、図3を参照して、本発明における積層膜の耐アルカリ性に優れる構成例について説明する。図3に示す反射防止膜付きガラス100は、ガラス基板120と、積層膜130とを有する。ガラス基板120は、第1の表面122および第2の表面124を有し、積層膜130は、ガラス基板120の第1の表面122側に配置される。
Next, with reference to FIG. 3, a configuration example of the laminated film having excellent alkali resistance according to the present invention will be described. A glass 100 with an antireflection film shown in FIG. 3 includes a glass substrate 120 and a laminated film 130. The glass substrate 120 has a first surface 122 and a second surface 124, and the laminated film 130 is disposed on the first surface 122 side of the glass substrate 120.
図3に示す例では、積層膜130は3層で構成され、すなわち第1の層140、第2の層145、および最外層160を有する。第1の層140は、第2の層145よりも大きな屈折率を有する。例えば、第1の層140は、2.0以上の屈折率を有し、第2の層145は、1.4~1.8の範囲の屈折率を有する。第2の層は、シリカ以外の層で構成される。このような屈折率の異なる2つの層140、145を積層膜130に使用することによって、反射防止膜付きガラス100に低反射特性を発現させることができる。
In the example shown in FIG. 3, the laminated film 130 includes three layers, that is, a first layer 140, a second layer 145, and an outermost layer 160. The first layer 140 has a higher refractive index than the second layer 145. For example, the first layer 140 has a refractive index of 2.0 or more, and the second layer 145 has a refractive index in the range of 1.4 to 1.8. The second layer is composed of a layer other than silica. By using the two layers 140 and 145 having different refractive indexes for the laminated film 130, the glass 100 with the antireflection film can exhibit low reflection characteristics.
最外層160は、ジルコニアがドープされたシリカで構成され、すなわちZrO2ドープSiO2層である。このような構成の反射防止膜付きガラス100は、最外層160にZrO2ドープSiO2層を有するため、従来の反射防止膜付きガラスに比べて、有意に改善された耐アルカリ特性を発揮させることができる。また、反射防止膜付きガラス100では、最外層160、すなわちZrO2ドープSiO2層の直下に、シリカ層が配置されないことが好ましい。その場合、反射防止膜付きガラス100のアルカリに対する耐性が時間と共に低下することを有意に抑制することができる。
The outermost layer 160 is made of silica doped with zirconia, that is, a ZrO 2 -doped SiO 2 layer. Since the glass 100 with an antireflection film having such a configuration has a ZrO 2 -doped SiO 2 layer in the outermost layer 160, it can exhibit significantly improved alkali resistance characteristics as compared with the conventional glass with an antireflection film. Can do. Moreover, in the glass 100 with an antireflection film, it is preferable that a silica layer is not disposed immediately below the outermost layer 160, that is, the ZrO 2 -doped SiO 2 layer. In that case, it can suppress significantly that the tolerance with respect to the alkali of the glass 100 with an antireflection film falls with time.
次に、図4に示した反射防止膜付きガラス200を例として、各構成部材についてさらに説明する。従って、各部材を表す際には、図4に示した参照符号を使用する。ただし、以下の説明が、図1に示したガラス物品1、図3に示した反射防止膜付きガラス100等にも同様に適用できることは当業者には明らかであろう。
Next, each constituent member will be further described by taking the glass 200 with an antireflection film shown in FIG. 4 as an example. Therefore, the reference numerals shown in FIG. 4 are used to represent each member. However, it will be apparent to those skilled in the art that the following description can be similarly applied to the glass article 1 shown in FIG. 1, the glass 100 with an antireflection film shown in FIG.
(積層膜230)
積層膜230は、ガラス基体220の側から順に、第1の層240、第2の層245、第3の層250、第4の層255…を有する。積層膜230は、最上部に最外層260、すなわちZrO2ドープSiO2層を有することが好ましい。 (Laminated film 230)
Thelaminated film 230 includes a first layer 240, a second layer 245, a third layer 250, a fourth layer 255,... In this order from the glass substrate 220 side. The laminated film 230 preferably has an outermost layer 260 at the top, that is, a ZrO 2 -doped SiO 2 layer.
積層膜230は、ガラス基体220の側から順に、第1の層240、第2の層245、第3の層250、第4の層255…を有する。積層膜230は、最上部に最外層260、すなわちZrO2ドープSiO2層を有することが好ましい。 (Laminated film 230)
The
第1の層240は、第2の層245よりも大きな屈折率を有する。このため、第1の層240を「高屈折率層」240と称し、第2の層245を「低屈折率層」245と称し、両者を「異屈折率層組」と称する。
The first layer 240 has a higher refractive index than the second layer 245. For this reason, the first layer 240 is referred to as a “high refractive index layer” 240, the second layer 245 is referred to as a “low refractive index layer” 245, and both are referred to as a “different refractive index layer set”.
この場合、図3の例では、積層膜130中の異屈折率層組の数は、1であり(合計3層)、図4の例では、積層膜230中の異屈折率層組の数は、2となる(合計5層)。異屈折率層組の数は、3以上(合計7層以上)であっても良い。
In this case, in the example of FIG. 3, the number of different refractive index layer sets in the laminated film 130 is 1 (total of three layers), and in the example of FIG. 4, the number of different refractive index layer sets in the laminated film 230. Becomes 2 (5 layers in total). The number of different refractive index layer sets may be 3 or more (a total of 7 or more layers).
最外層260の直下は、必ずしも低屈折率層(145、255)である必要はなく、最外層260の直下は、高屈折率層(例えば第3の層250)であっても良い。なお、例えば、最外層260の直下が第3の層250(高屈折率層)である場合、異屈折率層組の数は、1.5と表記することができる。このような表記に従えば、積層膜230中の異屈折率層組の数は、2.5、3.5、4.5…等であっても良い。
The portion immediately below the outermost layer 260 is not necessarily a low refractive index layer (145, 255), and the portion immediately below the outermost layer 260 may be a high refractive index layer (for example, the third layer 250). For example, when the third layer 250 (high refractive index layer) is directly below the outermost layer 260, the number of different refractive index layer sets can be expressed as 1.5. According to such a notation, the number of different refractive index layer sets in the laminated film 230 may be 2.5, 3.5, 4.5...
(第1の層240)
第1の層240は、直上に配置される第2の層245よりも大きな屈折率を有する。第1の層240は、例えば、2.0以上の屈折率を有しても良い。第1の層240の屈折率は、例えば2.1以上であっても良い。そのような「高屈折率層」240を構成する材料としては、これに限られるものではないが、例えば、チタニア、酸化ニオブ、ジルコニア、セリア、および酸化タンタル等が挙げられる。第1の層240の厚さは、例えば5~20nmの範囲であり、7~17nmの範囲であることが好ましい。 (First layer 240)
Thefirst layer 240 has a higher refractive index than the second layer 245 disposed immediately above. For example, the first layer 240 may have a refractive index of 2.0 or more. The refractive index of the first layer 240 may be 2.1 or more, for example. The material constituting such a “high refractive index layer” 240 is not limited to this, and examples thereof include titania, niobium oxide, zirconia, ceria, and tantalum oxide. The thickness of the first layer 240 is, for example, in the range of 5 to 20 nm, and preferably in the range of 7 to 17 nm.
第1の層240は、直上に配置される第2の層245よりも大きな屈折率を有する。第1の層240は、例えば、2.0以上の屈折率を有しても良い。第1の層240の屈折率は、例えば2.1以上であっても良い。そのような「高屈折率層」240を構成する材料としては、これに限られるものではないが、例えば、チタニア、酸化ニオブ、ジルコニア、セリア、および酸化タンタル等が挙げられる。第1の層240の厚さは、例えば5~20nmの範囲であり、7~17nmの範囲であることが好ましい。 (First layer 240)
The
(第2の層245)
第2の層245は、直下に配置される第1の層240よりも小さな屈折率を有する。また、異屈折率層組の数が1.5以上の場合、第2の層245は、直上に配置される第3の層250よりも小さな屈折率を有する。第2の層245は、例えば、1.4~1.8の範囲の屈折率を有しても良い。第2の層245の屈折率は、例えば、1.45~1.7の範囲であっても良い。 (Second layer 245)
Thesecond layer 245 has a smaller refractive index than the first layer 240 disposed immediately below. When the number of different refractive index layer sets is 1.5 or more, the second layer 245 has a smaller refractive index than the third layer 250 disposed immediately above. The second layer 245 may have a refractive index in the range of 1.4 to 1.8, for example. The refractive index of the second layer 245 may be, for example, in the range of 1.45 to 1.7.
第2の層245は、直下に配置される第1の層240よりも小さな屈折率を有する。また、異屈折率層組の数が1.5以上の場合、第2の層245は、直上に配置される第3の層250よりも小さな屈折率を有する。第2の層245は、例えば、1.4~1.8の範囲の屈折率を有しても良い。第2の層245の屈折率は、例えば、1.45~1.7の範囲であっても良い。 (Second layer 245)
The
そのような「低屈折率層」245を構成する材料としては、これに限られるものではないが、例えば、シリカ、アルミナ等が挙げられる。シリカには、アルミニウム等の他の元素がドープされても良い。ただし、異屈折率層組の数が1.0の場合、第2の層245は、シリカ以外の層であることが好ましい。第2の層245の厚さは、例えば15~45nmの範囲であり、20~40nmの範囲であることが好ましい。
The material constituting such a “low refractive index layer” 245 is not limited to this, and examples thereof include silica and alumina. Silica may be doped with other elements such as aluminum. However, when the number of different refractive index layer sets is 1.0, the second layer 245 is preferably a layer other than silica. The thickness of the second layer 245 is, for example, in the range of 15 to 45 nm, and preferably in the range of 20 to 40 nm.
(第3の層250)
積層膜230において、異屈折率層組の数が1.5以上の場合、第3の層250が存在する。第3の層250は、直下に配置される第2の層245よりも大きな屈折率を有する。また、異屈折率層組の数が2.0以上の場合、第3の層250は、直上に配置される第4の層255よりも大きな屈折率を有する。 (Third layer 250)
In thelaminated film 230, when the number of different refractive index layer sets is 1.5 or more, the third layer 250 is present. The third layer 250 has a higher refractive index than the second layer 245 disposed immediately below. When the number of different refractive index layer sets is 2.0 or more, the third layer 250 has a refractive index larger than that of the fourth layer 255 disposed immediately above.
積層膜230において、異屈折率層組の数が1.5以上の場合、第3の層250が存在する。第3の層250は、直下に配置される第2の層245よりも大きな屈折率を有する。また、異屈折率層組の数が2.0以上の場合、第3の層250は、直上に配置される第4の層255よりも大きな屈折率を有する。 (Third layer 250)
In the
第3の層250は、例えば、2.0以上の屈折率を有しても良い。第3の層250の屈折率は、例えば2.1以上であっても良い。第3の層250の厚さは、例えば45~125nmの範囲であり、50~115nmの範囲であることが好ましい。第3の層250は、第1の層240と同じ材質で構成されても良く、同じ屈折率を有しても良い。
The third layer 250 may have a refractive index of 2.0 or more, for example. The refractive index of the third layer 250 may be 2.1 or more, for example. The thickness of the third layer 250 is, for example, in the range of 45 to 125 nm, and preferably in the range of 50 to 115 nm. The third layer 250 may be made of the same material as the first layer 240 and may have the same refractive index.
(第4の層255)
積層膜230において、異屈折率層組の数が2.0以上の場合、第4の層255が存在する。第4の層255は、直下に配置される第3の層250よりも小さな屈折率を有する。また、異屈折率層組の数が2.5以上の場合、第4の層255は、直上に配置される第5の層よりも小さな屈折率を有する。 (Fourth layer 255)
In thelaminated film 230, when the number of different refractive index layer sets is 2.0 or more, the fourth layer 255 is present. The fourth layer 255 has a smaller refractive index than the third layer 250 disposed immediately below. When the number of different refractive index layer sets is 2.5 or more, the fourth layer 255 has a refractive index smaller than that of the fifth layer disposed immediately above.
積層膜230において、異屈折率層組の数が2.0以上の場合、第4の層255が存在する。第4の層255は、直下に配置される第3の層250よりも小さな屈折率を有する。また、異屈折率層組の数が2.5以上の場合、第4の層255は、直上に配置される第5の層よりも小さな屈折率を有する。 (Fourth layer 255)
In the
第4の層255は、例えば、1.4~1.8の範囲の屈折率を有しても良い。第4の層255の屈折率は、例えば1.45~1.7の範囲であっても良い。そのような「低屈折率層」255を構成する材料としては、これに限られるものではないが、例えば、シリカ、アルミナ等が挙げられる。シリカには、アルミニウム等の他の元素がドープされても良い。第4の層255の厚さは、例えば0~110nmの範囲であり、0~100nmの範囲であることが好ましい。第4の層255は、第2の層245と同じ材質で構成されても良く、同じ屈折率を有しても良い。ただし、異屈折率層組の数が2.0の場合、第4の層255は、シリカ以外の層であることが好ましい。
The fourth layer 255 may have a refractive index in the range of 1.4 to 1.8, for example. The refractive index of the fourth layer 255 may be, for example, in the range of 1.45 to 1.7. The material constituting the “low refractive index layer” 255 is not limited to this, and examples thereof include silica and alumina. Silica may be doped with other elements such as aluminum. The thickness of the fourth layer 255 is, for example, in the range of 0 to 110 nm, and preferably in the range of 0 to 100 nm. The fourth layer 255 may be made of the same material as the second layer 245 and may have the same refractive index. However, when the number of different refractive index layer sets is 2.0, the fourth layer 255 is preferably a layer other than silica.
(第5の層以降)
もし存在する場合、第5の層、第6の層、…第nの層(nは、5以上の整数)は、隣接する層と、相互に異屈折率層組を構成しても良い。例えば、第5の層は、第4の層および第6の層よりも大きな屈折率を有する。第6の層は、第5の層および第7の層よりも小さな屈折率を有する。以下同様である。これらの層の仕様としては、前述の(第1の層240)および(第2の層245)の欄の記載を参照できる。 (5th and subsequent layers)
If present, the fifth layer, the sixth layer,..., And the nth layer (n is an integer of 5 or more) may form a mutually different refractive index layer set with an adjacent layer. For example, the fifth layer has a higher refractive index than the fourth layer and the sixth layer. The sixth layer has a smaller refractive index than the fifth layer and the seventh layer. The same applies hereinafter. For the specifications of these layers, the description in the above-mentioned column of (first layer 240) and (second layer 245) can be referred to.
もし存在する場合、第5の層、第6の層、…第nの層(nは、5以上の整数)は、隣接する層と、相互に異屈折率層組を構成しても良い。例えば、第5の層は、第4の層および第6の層よりも大きな屈折率を有する。第6の層は、第5の層および第7の層よりも小さな屈折率を有する。以下同様である。これらの層の仕様としては、前述の(第1の層240)および(第2の層245)の欄の記載を参照できる。 (5th and subsequent layers)
If present, the fifth layer, the sixth layer,..., And the nth layer (n is an integer of 5 or more) may form a mutually different refractive index layer set with an adjacent layer. For example, the fifth layer has a higher refractive index than the fourth layer and the sixth layer. The sixth layer has a smaller refractive index than the fifth layer and the seventh layer. The same applies hereinafter. For the specifications of these layers, the description in the above-mentioned column of (first layer 240) and (second layer 245) can be referred to.
(最外層260)
最外層260は、ZrO2ドープSiO2層で構成されることが好ましい。最外層260の厚さは、特に限られないが、例えば5~110nmの範囲であり、例えば10~100nmの範囲であっても良い。 (Outermost layer 260)
Theoutermost layer 260 is preferably composed of a ZrO 2 -doped SiO 2 layer. The thickness of the outermost layer 260 is not particularly limited, but is in the range of 5 to 110 nm, for example, and may be in the range of 10 to 100 nm, for example.
最外層260は、ZrO2ドープSiO2層で構成されることが好ましい。最外層260の厚さは、特に限られないが、例えば5~110nmの範囲であり、例えば10~100nmの範囲であっても良い。 (Outermost layer 260)
The
ジルコニアをドープしたシリカ膜中のジルコニアのドープ量は、特に限られないが、例えば、酸化物基準のモル%表示で5~50モル%の範囲が好ましい。ジルコニアのドープ量が5モル%以上の場合、積層膜230における耐アルカリ特性が向上する。ジルコニアのドープ量の下限値は、例えば6モル%が好ましく、7モル%がより好ましく、8モル%がさらに好ましく、9モル%が特に好ましい。ジルコニアのドープ量が50モル%以下の場合、酸に対する耐性が向上する。ジルコニアのドープ量は、10~33モル%の範囲がより好ましい。
The amount of zirconia doped in the silica film doped with zirconia is not particularly limited, but for example, it is preferably in the range of 5 to 50 mol% in terms of mol% based on oxide. When the doping amount of zirconia is 5 mol% or more, the alkali resistance property in the laminated film 230 is improved. The lower limit of the zirconia doping amount is preferably, for example, 6 mol%, more preferably 7 mol%, further preferably 8 mol%, particularly preferably 9 mol%. When the doping amount of zirconia is 50 mol% or less, resistance to acid is improved. The doping amount of zirconia is more preferably in the range of 10 to 33 mol%.
ジルコニアのドープ量が5モル%の場合、最外層260の屈折率は、約1.50程度である。ジルコニアのドープ量が10モル%の場合、最外層260の屈折率は、約1.54程度である。ジルコニアのドープ量が33モル%の場合、最外層260の屈折率は、約1.69程度である。ジルコニアのドープ量が50モル%の場合、最外層260の屈折率は、約1.79程度である。
When the doping amount of zirconia is 5 mol%, the refractive index of the outermost layer 260 is about 1.50. When the doping amount of zirconia is 10 mol%, the refractive index of the outermost layer 260 is about 1.54. When the doping amount of zirconia is 33 mol%, the refractive index of the outermost layer 260 is about 1.69. When the doping amount of zirconia is 50 mol%, the refractive index of the outermost layer 260 is about 1.79.
積層膜230を構成する各層は、いかなる方法で設置されても良い。各層は、例えば、蒸着法、スパッタリング法、CVD(化学気相成長)法等により成膜されても良い。
Each layer constituting the laminated film 230 may be installed by any method. Each layer may be formed by, for example, an evaporation method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
(防汚膜)
図1に示すガラス物品1において、防汚膜4は、積層膜3の最外層34上に配置され、粒子5の凝集体6およびバインダ7を含有する。防汚膜4は凝集体6のみならず、単独で存在する粒子(非凝集粒子)5を含有していても良い。防汚膜4における粒子5の凝集体6の形状、防汚膜4中における粒子5の量(バインダ7に対する粒子5の体積比)、特に粒子5の凝集体6の量等に基づいて、防汚膜4の表面を、凹凸表面とすることによって、防汚性能を高めることができる。 (Anti-fouling film)
In the glass article 1 shown in FIG. 1, theantifouling film 4 is disposed on the outermost layer 34 of the laminated film 3 and contains an aggregate 6 of particles 5 and a binder 7. The antifouling film 4 may contain not only the aggregate 6 but also particles (non-aggregated particles) 5 that exist alone. Based on the shape of the aggregate 6 of the particles 5 in the antifouling film 4, the amount of the particles 5 in the antifouling film 4 (volume ratio of the particles 5 to the binder 7), particularly the amount of the aggregates 6 of the particles 5, etc. By making the surface of the dirty film 4 an uneven surface, the antifouling performance can be enhanced.
図1に示すガラス物品1において、防汚膜4は、積層膜3の最外層34上に配置され、粒子5の凝集体6およびバインダ7を含有する。防汚膜4は凝集体6のみならず、単独で存在する粒子(非凝集粒子)5を含有していても良い。防汚膜4における粒子5の凝集体6の形状、防汚膜4中における粒子5の量(バインダ7に対する粒子5の体積比)、特に粒子5の凝集体6の量等に基づいて、防汚膜4の表面を、凹凸表面とすることによって、防汚性能を高めることができる。 (Anti-fouling film)
In the glass article 1 shown in FIG. 1, the
粒子5が親水性粒子であり、バインダ7が親水性バインダであると、防汚膜4を防曇膜として機能させることができるので好ましい。その場合、ガラス物品1に付着する水分は、防汚膜(防曇膜)4の凹凸表面を濡れ広がるため、水分の凝縮による水滴形成に基づく曇りの発生を抑制することができる。さらに、凹凸表面は有機物汚染等による親水性の低下を抑制する。従って、防汚膜4の防曇性の耐久性が向上し、防曇性能を長期間にわたって維持することができる。
It is preferable that the particles 5 are hydrophilic particles and the binder 7 is a hydrophilic binder because the antifouling film 4 can function as an antifogging film. In that case, since the moisture adhering to the glass article 1 spreads on the uneven surface of the antifouling film (antifogging film) 4, it is possible to suppress the occurrence of fogging due to the formation of water droplets due to condensation of moisture. Furthermore, the uneven surface suppresses a decrease in hydrophilicity due to organic contamination or the like. Therefore, the antifogging durability of the antifouling film 4 is improved, and the antifogging performance can be maintained for a long time.
防汚膜4の凹凸表面は、粒子5の凝集体6とバインダ7とを含む複数の突起体(突起領域)と、それ以外の領域(例えば、凝集していない粒子5とバインダ7とを含む凸部や親水性バインダ7のみの領域)とを有することが好ましい。その場合、複数の突起体は、積層膜3の最外層34の表面に不均一に存在する、粒子5の凝集体6とバインダ7との集合体であるため、粒子5単独で形成される凹凸に比べて、より適切な凹凸が形成される。従って、ガラス物品1の防汚性能や防曇性能をより一層向上させることができる。
The uneven surface of the antifouling film 4 includes a plurality of protrusions (protrusion regions) including aggregates 6 and binders 7 of particles 5 and other regions (for example, non-aggregated particles 5 and binders 7). It is preferable to have a convex portion or a region having only the hydrophilic binder 7). In that case, since the plurality of protrusions are aggregates of the aggregates 6 and the binders 7 of the particles 5 that are non-uniformly present on the surface of the outermost layer 34 of the laminated film 3, unevenness formed by the particles 5 alone. Compared to the above, more appropriate unevenness is formed. Therefore, the antifouling performance and antifogging performance of the glass article 1 can be further improved.
ガラス物品1における防汚膜4は、JIS試験粉体1の2種(中位径が27~31μmのけい砂)を振りかけて10秒静置し、135°傾け、3cmの高さから10cm/秒の勢いで2回地面に接触させて粉体を落とし、ヘイズ値を測定することを複数繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内であることが好ましい。
The antifouling film 4 in the glass article 1 is sprinkled with two types of JIS test powder 1 (silica sand having a median diameter of 27 to 31 μm), left to stand for 10 seconds, tilted 135 °, and from a height of 3 cm to 10 cm / It is preferable that the value of subtracting the haze value before the test from the average value is within 1.0, by repeating a plurality of times of measuring the haze value by dropping the powder by touching the ground twice with the momentum of seconds.
防汚膜4は、粒子5の凝集体6およびバインダ7を含む複数の突起体を表面に有し、該突起体中、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う突起体Tの頂点間距離の平均値が100~1000nmであり、かつ防汚膜4が配置された基体の面積に対する粒子5による総被覆面積の割合が12~100%であることが好ましい。
The antifouling film 4 has a plurality of protrusions including aggregates 6 of particles 5 and a binder 7 on the surface, and 90% or more based on the protrusions having the maximum height from the substrate surface in the protrusions. The ratio of the total covered area by the particles 5 to the area of the substrate on which the average distance between the vertices of adjacent protrusions T is 100 to 1000 nm and the antifouling film 4 is disposed. Is preferably 12 to 100%.
上述の突起体は、基体の表面に不均一に存在する、凝集体6とバインダ7との集合体であるため、粒子単独で形成される凹凸に比べて、より適切な凹凸が形成され、防汚性がより向上する傾向がある。ガラス物品1に付着する汚れは、まず防汚膜4の表面に存在する凸部に接触するため、ガラス物品1において、汚れは突起体に接触する。そのため、防汚膜4において、汚れに接触する面積をより小さくすることができ、防汚性により優れる防汚膜4が得られる。一方、後述する頂点間距離が100nm以上であることで、汚れが油汚れの場合でも、毛管現象による吸着を抑制することができる。その結果、油汚れが付きにくく、また付着したとしても水洗により容易に除去することができる。
Since the above-described protrusion is an aggregate of the aggregate 6 and the binder 7 that exists non-uniformly on the surface of the substrate, more appropriate unevenness is formed compared to the unevenness formed by the particles alone, and the There is a tendency for soiling to improve more. Since the dirt adhering to the glass article 1 first comes into contact with the convex portions present on the surface of the antifouling film 4, the dirt comes into contact with the protrusions in the glass article 1. Therefore, in the antifouling film 4, the area in contact with dirt can be further reduced, and the antifouling film 4 having better antifouling properties can be obtained. On the other hand, when the distance between vertices described later is 100 nm or more, adsorption due to capillary action can be suppressed even when the dirt is oil dirt. As a result, oil stains are difficult to adhere, and even if they adhere, they can be easily removed by washing with water.
突起体の形状は、特に限定されず、例えば、略四角錐、略三角錐、略円錐等が挙げられる。突起体の頂点から高さ50%までの領域を部分球面に近似したとき、上記部分球面の曲率半径は、特に限定されないが、5nm以上が好ましく、5~15nmがより好ましい。また、突起体の高さは、特に限定されないが、10nm以上が好ましく、30~200nmがより好ましい。突起体の高さは、基体面から突起体の頂点までの高さであり、走査型電子顕微鏡を用いて測定することができる。
The shape of the protrusion is not particularly limited, and examples thereof include a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially cone. When a region from the top of the protrusion to the height of 50% is approximated to a partial spherical surface, the radius of curvature of the partial spherical surface is not particularly limited, but is preferably 5 nm or more, and more preferably 5 to 15 nm. The height of the protrusion is not particularly limited, but is preferably 10 nm or more, and more preferably 30 to 200 nm. The height of the protrusion is the height from the base surface to the apex of the protrusion, and can be measured using a scanning electron microscope.
突起体の底面のサイズは、特に限定されないが、10~700nmが好ましく、30~200nmがより好ましい。また、突起体の底面(基体に平行な面)と側面との角度の平均値は、特に限定されないが、10~90°が好ましく、20~70°がより好ましい。突起体の底面と側面との角度が10°以上であれば、より急峻な突起体が得られている。ここで、突起体の底面のサイズとは、突起体の底面形状が内接する円の直径とする。突起体の底面サイズは、走査型電子顕微鏡を用いて測定することができる。
The size of the bottom surface of the protrusion is not particularly limited, but is preferably 10 to 700 nm, and more preferably 30 to 200 nm. The average value of the angle between the bottom surface (surface parallel to the substrate) and the side surface of the protrusion is not particularly limited, but is preferably 10 to 90 °, more preferably 20 to 70 °. If the angle between the bottom surface and the side surface of the protrusion is 10 ° or more, a steeper protrusion is obtained. Here, the size of the bottom surface of the protrusion is defined as the diameter of a circle in which the bottom shape of the protrusion is inscribed. The bottom size of the protrusion can be measured using a scanning electron microscope.
防汚膜4の表面に存在する突起体中、基体面からの高さが最大の突起体を基準として、90%以上の高さを有する突起体Tにおいて、隣り合う突起体Tの頂点間距離の平均値(以下、単に「頂点間距離」ともいう。)は、100~1000nmが好ましく、100~800nmがより好ましく、100~500nmがさらに好ましい。頂点間距離が100~1000nmであるということは、防汚膜4の表面に、突起体Tにより形成される凹凸の間隔が大きいことを意味する。また、突起体Tが2以上の粒子5およびバインダ7を含むため、単独粒子およびバインダを含む凸部で形成される防汚膜の表面凹凸に比べて、大きな凸部構造が形成されていることを意味する。従って、防汚性により優れる防汚膜4が得られる。さらに、防汚膜4に油汚れが付きにくく、また付着したとしても水洗により容易に除去することができる。
Among the protrusions present on the surface of the antifouling film 4, the distance between the apexes of the adjacent protrusions T in the protrusion T having a height of 90% or more with reference to the protrusion having the maximum height from the base surface. Is preferably 100 to 1000 nm, more preferably 100 to 800 nm, and even more preferably 100 to 500 nm. That the distance between the vertices is 100 to 1000 nm means that the unevenness formed by the protrusions T on the surface of the antifouling film 4 is large. Moreover, since the protrusion T includes two or more particles 5 and the binder 7, a large convex structure is formed as compared with the surface irregularity of the antifouling film formed by the convex part including the single particle and the binder. Means. Accordingly, the antifouling film 4 having better antifouling properties can be obtained. Further, the antifouling film 4 is hardly soiled with oil, and even if it adheres, it can be easily removed by washing with water.
頂点間距離は、走査型電子顕微鏡により測定することができる。具体的には、頂点間距離は、ガラス物品1の断面写真から、ガラス基体2の防汚膜4を有する面と平行な方向に、所定の領域内に存在する突起体中、最大高さを有する突起体を選択し、その90%以上の高さを有する突起体Tを選択し、これら突起体Tについて、隣り合う突起体Tの頂点間距離(頂点間隔)を測定し、平均値を算出することにより求めることができる。
The distance between vertices can be measured with a scanning electron microscope. Specifically, the distance between the vertices is the maximum height among the protrusions existing in a predetermined region in a direction parallel to the surface of the glass substrate 2 having the antifouling film 4 from the cross-sectional photograph of the glass article 1. Select the protrusions having 90% or more of the protrusions, select the protrusions T having a height of 90% or more, measure the distance between the vertices of the adjacent protrusions T (vertex interval), and calculate the average value. Can be obtained.
防汚膜4が配置されたガラス基体2の面積に対する、粒子5による総被覆面積の割合(以下、「凸部被覆率」ともいう。)は、12~100%が好ましい。凸部被覆率が12%以上であると、防汚膜4において汚れに接触できる粒子5の凝集体6およびバインダ7を含む突起体の存在割合が大きくなるため、充分な防汚性が得られる。凸部被覆率は、15~100%がより好ましく、20~100%がさらに好ましく、50~100%が特に好ましい。凸部被覆率は、走査型電子顕微鏡により測定することができる。具体的には、実施例において後述する「凸部被覆率」の測定方法により測定することができる。
The ratio of the total covered area by the particles 5 to the area of the glass substrate 2 on which the antifouling film 4 is disposed (hereinafter also referred to as “convex portion coverage”) is preferably 12 to 100%. When the convex portion coverage is 12% or more, the presence ratio of the aggregates 6 of the particles 5 that can come into contact with dirt in the antifouling film 4 and the protrusions including the binder 7 is increased, so that sufficient antifouling properties can be obtained. . The convex portion coverage is more preferably 15 to 100%, further preferably 20 to 100%, and particularly preferably 50 to 100%. The convex portion coverage can be measured with a scanning electron microscope. Specifically, it can be measured by a measuring method of “convex portion coverage” which will be described later in Examples.
防汚膜4の表面の算術平均粗さ(以下、「Ra」ともいう。)は、特に限定されないが、5~30nmが好ましく、6~25nmがより好ましく、7~20nmがさらに好ましい。Raが5nm以上であれば、単独粒子およびバインダを含む凸部の頂点より膜厚が薄い部分と汚れとの接触が抑えられ、より優れた防汚性が得られる。Raが30nm以下であれば、耐摩耗強度に優れる。Raは走査型プローブ顕微鏡で測定することができる。
The arithmetic average roughness (hereinafter also referred to as “Ra”) of the antifouling film 4 is not particularly limited, but is preferably 5 to 30 nm, more preferably 6 to 25 nm, and even more preferably 7 to 20 nm. When Ra is 5 nm or more, contact between the portion having a smaller film thickness than the apex of the convex portion including single particles and a binder and dirt is suppressed, and more excellent antifouling property is obtained. When Ra is 30 nm or less, the wear resistance is excellent. Ra can be measured with a scanning probe microscope.
防汚膜4の膜厚は、特に限定されないが、20~350nmが好ましく、30~300nmがより好ましく、50~300nmが特に好ましい。防汚膜4の膜厚が20nm以上であれば、防汚性が充分に発揮される傾向がある。防汚膜4の膜厚が350nm以下であれば、機械的強度に優れ、また経済性に優れる。防汚膜4の膜厚は、走査型電子顕微鏡で観察することにより求めることができる。
The thickness of the antifouling film 4 is not particularly limited, but is preferably 20 to 350 nm, more preferably 30 to 300 nm, and particularly preferably 50 to 300 nm. If the film thickness of the antifouling film 4 is 20 nm or more, the antifouling property tends to be sufficiently exhibited. When the film thickness of the antifouling film 4 is 350 nm or less, the mechanical strength is excellent and the economy is excellent. The film thickness of the antifouling film 4 can be determined by observing with a scanning electron microscope.
防汚膜4における粒子5とバインダ7の比率は、バインダ7に対する粒子5の体積比が7/93~95/5になるように設定することが好ましい。粒子5とバインダ7との体積比が7/93以上であれば、積層膜3の最外層34の表面に適切な凹凸や突起体を形成できるため、良好な防汚性が得られる。粒子5とバインダ7との体積比95/5以下であれば、積層膜3の最外層34に対する防汚膜4の密着力を良好に得ることができる。粒子5とバインダ7との体積比の上限値は、80/20がより好ましく、70/30がさらに好ましい。体積比の下限値は、20/80がより好ましく、30/70がさらに好ましい。
The ratio of the particles 5 to the binder 7 in the antifouling film 4 is preferably set so that the volume ratio of the particles 5 to the binder 7 is 7/93 to 95/5. If the volume ratio between the particles 5 and the binder 7 is 7/93 or more, appropriate unevenness and protrusions can be formed on the surface of the outermost layer 34 of the laminated film 3, so that good antifouling properties can be obtained. When the volume ratio of the particles 5 to the binder 7 is 95/5 or less, the adhesion of the antifouling film 4 to the outermost layer 34 of the laminated film 3 can be obtained satisfactorily. The upper limit of the volume ratio between the particles 5 and the binder 7 is more preferably 80/20, and even more preferably 70/30. The lower limit of the volume ratio is more preferably 20/80 and even more preferably 30/70.
防汚膜4を防曇膜として利用する場合、防汚膜4の水との接触角は、10°以下が好ましく、5°以下がより好ましい。水との接触角が10°以下であると、防曇膜の表面を水分が濡れ広がりやすくなり、優れた防曇性が得られる。水との接触角は、JIS R 3257:1999に記載の静的法により測定することができる。
When using the antifouling film 4 as an antifogging film, the contact angle of the antifouling film 4 with water is preferably 10 ° or less, and more preferably 5 ° or less. When the contact angle with water is 10 ° or less, moisture easily spreads on the surface of the antifogging film, and excellent antifogging properties are obtained. The contact angle with water can be measured by a static method described in JIS R 3257: 1999.
防汚膜4の窒素吸着量は、水分が濡れ広がることを妨害する有機汚染物を防汚膜4が吸収できる能力を反映する。空気中の有機物は、表面に吸着して水との接触角を増加させ、水分が濡れ広がることを抑制し、防曇性を低下させる傾向がある。従って、防汚膜4の窒素吸着量が多い場合には、空気中の有機物を防汚膜4が吸収することによって、水分が濡れ広がる傾向が確保でき、防曇性の低下を抑制することができる。
The nitrogen adsorption amount of the antifouling film 4 reflects the ability of the antifouling film 4 to absorb organic contaminants that hinder the spread of moisture. Organic substances in the air tend to be adsorbed on the surface to increase the contact angle with water, suppress moisture from spreading and reduce antifogging properties. Therefore, when the amount of nitrogen adsorbed on the antifouling film 4 is large, the antifouling film 4 absorbs organic matter in the air, so that the tendency of moisture to spread can be secured, and the deterioration of the antifogging property can be suppressed. it can.
窒素吸着量は、以下の方法で測定するものとする。すなわち、平滑なガラス板上に積層膜および防汚膜を形成し、5mm×30mmの短冊状に切断して、得られた短冊20枚をBET比表面積測定装置に投入し、窒素ガスを用いてBET比表面積を測定する。窒素吸着量は、防汚膜4を形成しない場合、すなわち積層膜3のみを形成して同様に測定した場合と比較して1.5~5倍であることが好ましく、2~4倍であることがより好ましい。具体的には、窒素吸着量は3.0~7.5m2/gが好ましく、4.5~6.5m2/gがより好ましい。
The nitrogen adsorption amount is measured by the following method. That is, a laminated film and an antifouling film are formed on a smooth glass plate, cut into 5 mm × 30 mm strips, and the obtained 20 strips are put into a BET specific surface area measuring apparatus, and nitrogen gas is used. The BET specific surface area is measured. The nitrogen adsorption amount is preferably 1.5 to 5 times, preferably 2 to 4 times that in the case where the antifouling film 4 is not formed, that is, the case where only the laminated film 3 is formed and measured in the same manner. It is more preferable. Specifically, the nitrogen adsorption amount is preferably 3.0 ~ 7.5m 2 / g, 4.5 ~ 6.5m 2 / g is more preferable.
(粒子)
防汚膜4における粒子5は、その凝集体6とバインダ7とが集合体を形成し、防汚膜4の表面に凹凸、さらには突起体を形成できるものであれば特に限定されない。粒子5は、無機粒子でも有機粒子でも良いが、無機粒子が好ましく、親水性無機粒子がより好ましい。親水性無機粒子としては、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)等の金属酸化物の粒子が挙げられる。粒子5としては、酸化ケイ素の粒子が好ましい。粒子5が酸化ケイ素粒子であれば、光の散乱が抑制され、ガラス基体2の色味を損なわず、好ましい。 (particle)
Theparticles 5 in the antifouling film 4 are not particularly limited as long as the aggregate 6 and the binder 7 form an aggregate and can form irregularities and further protrusions on the surface of the antifouling film 4. The particles 5 may be inorganic particles or organic particles, but inorganic particles are preferable, and hydrophilic inorganic particles are more preferable. Examples of the hydrophilic inorganic particles include metal oxide particles such as silicon oxide (silica), aluminum oxide (alumina), titanium oxide (titania), and zirconium oxide (zirconia). The particles 5 are preferably silicon oxide particles. If the particles 5 are silicon oxide particles, light scattering is suppressed, and the color of the glass substrate 2 is not impaired, which is preferable.
防汚膜4における粒子5は、その凝集体6とバインダ7とが集合体を形成し、防汚膜4の表面に凹凸、さらには突起体を形成できるものであれば特に限定されない。粒子5は、無機粒子でも有機粒子でも良いが、無機粒子が好ましく、親水性無機粒子がより好ましい。親水性無機粒子としては、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)等の金属酸化物の粒子が挙げられる。粒子5としては、酸化ケイ素の粒子が好ましい。粒子5が酸化ケイ素粒子であれば、光の散乱が抑制され、ガラス基体2の色味を損なわず、好ましい。 (particle)
The
粒子5は、1種単独であっても良いし、2種以上の組み合わせであっても良い。粒子5が2種以上の組合せである場合、粒子5中の酸化ケイ素の含有率が、50質量%以上が好ましく、75質量%以上がより好ましい。酸化ケイ素の含有率を50質量%以上とすることによって、より容易に、より適切な形状を有する凹凸が形成され、防汚性がより向上する傾向がある。
The particles 5 may be a single type or a combination of two or more types. When the particle 5 is a combination of two or more, the content of silicon oxide in the particle 5 is preferably 50% by mass or more, and more preferably 75% by mass or more. By setting the content of silicon oxide to 50% by mass or more, unevenness having a more appropriate shape is more easily formed, and the antifouling property tends to be further improved.
(凝集体)
粒子5の凝集体6は、粒子の凝集状態が可逆的な一次凝集体、および粒子の凝集状態が不可逆的な二次凝集体のいずれであっても良いが、突起体の形状をより適切に調整する上で、二次凝集体であることが好ましい。粒子5の凝集体6の形状は、特に限定されないが、鎖状またはパールネックレス状等が好ましい。粒子5の凝集体6としては、パールネックレス状シリカが特に好ましい。凝集体6がパールネックレス状シリカであれば、防汚膜4を形成するときに、より適切な凹凸を得ることができる突起体が形成され、防汚性がより向上する傾向がある。パールネックレス状シリカは、平均一次粒子径が5~300nmの球状シリカ粒子が、複数個連結して二次凝集した、直線状および分岐状のいずれを有しても良い細長い形状のシリカ粒子凝集体である。 (Aggregate)
The aggregate 6 of theparticles 5 may be either a primary aggregate in which the aggregation state of the particles is reversible or a secondary aggregate in which the aggregation state of the particles is irreversible. In adjusting, it is preferably a secondary aggregate. The shape of the aggregate 6 of the particles 5 is not particularly limited, but a chain shape or a pearl necklace shape is preferable. As the aggregate 6 of the particles 5, pearl necklace-like silica is particularly preferable. If the aggregate 6 is pearl necklace-like silica, when the antifouling film 4 is formed, protrusions capable of obtaining more appropriate irregularities are formed, and the antifouling property tends to be further improved. The pearl necklace-like silica is an elongated silica particle aggregate that may have either a linear shape or a branched shape in which a plurality of spherical silica particles having an average primary particle diameter of 5 to 300 nm are connected and secondary-aggregated. It is.
粒子5の凝集体6は、粒子の凝集状態が可逆的な一次凝集体、および粒子の凝集状態が不可逆的な二次凝集体のいずれであっても良いが、突起体の形状をより適切に調整する上で、二次凝集体であることが好ましい。粒子5の凝集体6の形状は、特に限定されないが、鎖状またはパールネックレス状等が好ましい。粒子5の凝集体6としては、パールネックレス状シリカが特に好ましい。凝集体6がパールネックレス状シリカであれば、防汚膜4を形成するときに、より適切な凹凸を得ることができる突起体が形成され、防汚性がより向上する傾向がある。パールネックレス状シリカは、平均一次粒子径が5~300nmの球状シリカ粒子が、複数個連結して二次凝集した、直線状および分岐状のいずれを有しても良い細長い形状のシリカ粒子凝集体である。 (Aggregate)
The aggregate 6 of the
凝集体6を構成する粒子5の平均一次粒子径は、特に限定されないが、5~300nmが好ましく、10~100nmがより好ましく、10~50nmがさらに好ましく、10~30nmが特に好ましい。粒子5の平均一次粒子径が5nm以上である場合、より容易に凝集して突起体を形成しやすくなり、防汚性がより向上する傾向がある。また、粒子5の平均一次粒子径が300nm以下であれば、可視光の波長よりも十分に短いため、ヘーズ値をより低減させることができる。
The average primary particle diameter of the particles 5 constituting the aggregate 6 is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm, further preferably 10 to 50 nm, and particularly preferably 10 to 30 nm. When the average primary particle diameter of the particles 5 is 5 nm or more, the particles 5 are more easily aggregated to easily form protrusions, and the antifouling property tends to be further improved. Moreover, if the average primary particle diameter of the particle | grains 5 is 300 nm or less, since it is sufficiently shorter than the wavelength of visible light, a haze value can be reduced more.
鎖状粒子凝集体およびパールネックレス状粒子凝集体は、いずれも複数の粒子5が連結(ネッキクング)した細長い形状を有する。鎖状粒子凝集体とは、例えば10~100nmの平均一次粒子径d、50~500nmの平均長さ(L)、および3~20の平均一次粒子径に対する平均長さの比(L/d)を有する、細長い形状の粒子凝集体である。パールネックレス状粒子凝集体は、鎖状粒子凝集体と球状部分の存在割合が異なる。パールネックレス状粒子凝集体は、電子顕微鏡による二次元像において、球状部分に起因する円状図形が真円度70%以上を有し、かつ各円状図形の内接円の合計面積がパールネックレス状粒子凝集体の全投影面積の70%以上を占め、かつ各円状図形の内接円が互いに重ならない形状を有する。真円度とは、対象とする図形輪郭の外接円の半径に対する内接円の半径の比で表され、真円では100%となる。鎖状粒子凝集体は、球状部分の存在割合がパールネックレス状粒子凝集体より小さい。パールネックレス状粒子凝集体の二次粒子径は、40~200nmが好ましく、50~100nmがより好ましく、60~90nmがさらに好ましい。
Each of the chain particle aggregate and the pearl necklace particle aggregate has an elongated shape in which a plurality of particles 5 are connected (nicked). The chain particle aggregate is, for example, an average primary particle diameter d of 10 to 100 nm, an average length (L) of 50 to 500 nm, and a ratio of an average length to an average primary particle diameter of 3 to 20 (L / d). It is an elongated particle aggregate having the following structure. The pearl necklace-like particle aggregate is different from the chain particle aggregate in the existence ratio of the spherical portion. The pearl necklace-like particle aggregate is a pearl necklace in which a circular figure caused by a spherical portion has a roundness of 70% or more in a two-dimensional image obtained by an electron microscope, and the inscribed circle of each circular figure has a total area. It has a shape that occupies 70% or more of the total projected area of the particle-shaped aggregate and the inscribed circles of the circular figures do not overlap each other. The roundness is represented by the ratio of the radius of the inscribed circle to the radius of the circumscribed circle of the target figure outline, and is 100% for a perfect circle. In the chain particle aggregate, the existence ratio of the spherical portion is smaller than that of the pearl necklace particle aggregate. The secondary particle diameter of the pearl necklace-like particle aggregate is preferably 40 to 200 nm, more preferably 50 to 100 nm, and still more preferably 60 to 90 nm.
粒子5の凝集体6としては、鎖状シリカやパールネックレス状シリカが特に好ましい。凝集体6が鎖状シリカやパールネックレス状シリカであれば、防汚膜4の表面により適切な凹凸や突起体を形成でき、防汚性がより向上する傾向がある。パールネックレス状シリカは、平均一次粒子径が5~300nmの球状シリカ粒子が、平均長さが50~500nmとなるように、複数個連結して二次凝集した細長い形状のシリカ粒子であることが好ましい。球状シリカ粒子の連結状態は、直線状および分岐状のいずれでも良い。
As the aggregate 6 of the particles 5, chain silica or pearl necklace silica is particularly preferable. If the aggregate 6 is chain-like silica or pearl necklace-like silica, appropriate irregularities and protrusions can be formed on the surface of the antifouling film 4, and the antifouling property tends to be further improved. The pearl necklace-like silica is an elongated silica particle in which a plurality of spherical silica particles having an average primary particle diameter of 5 to 300 nm are connected and secondary-aggregated so as to have an average length of 50 to 500 nm. preferable. The connection state of the spherical silica particles may be either linear or branched.
粒子の平均一次粒子径は、走査型電子顕微鏡により観察した値である。凝集体粒径は、動的光散乱法により測定した値である。
The average primary particle diameter of the particles is a value observed with a scanning electron microscope. The aggregate particle size is a value measured by a dynamic light scattering method.
球状シリカの市販品としては、IPA-ST、IPA-STL、IPA-STZL(いずれも、日産化学工業社製)が挙げられる。
パールネックレス状シリカの市販品としては、ST-PS-S、ST-PS-SO、ST-PS-M、ST-PS-MO(いずれも、日産化学工業社製)が挙げられる。
鎖状シリカの市販品としては、ST-OUP、ST-U(いずれも、日産化学工業社製)が挙げられる。 Examples of commercially available spherical silica include IPA-ST, IPA-STL, and IPA-STZL (all manufactured by Nissan Chemical Industries, Ltd.).
Examples of commercially available pearl necklace-shaped silica include ST-PS-S, ST-PS-SO, ST-PS-M, and ST-PS-MO (all manufactured by Nissan Chemical Industries, Ltd.).
Examples of commercial products of chain silica include ST-OUP and ST-U (both manufactured by Nissan Chemical Industries, Ltd.).
パールネックレス状シリカの市販品としては、ST-PS-S、ST-PS-SO、ST-PS-M、ST-PS-MO(いずれも、日産化学工業社製)が挙げられる。
鎖状シリカの市販品としては、ST-OUP、ST-U(いずれも、日産化学工業社製)が挙げられる。 Examples of commercially available spherical silica include IPA-ST, IPA-STL, and IPA-STZL (all manufactured by Nissan Chemical Industries, Ltd.).
Examples of commercially available pearl necklace-shaped silica include ST-PS-S, ST-PS-SO, ST-PS-M, and ST-PS-MO (all manufactured by Nissan Chemical Industries, Ltd.).
Examples of commercial products of chain silica include ST-OUP and ST-U (both manufactured by Nissan Chemical Industries, Ltd.).
(バインダ)
バインダ7は、粒子5および基体を接着できるものであれば特に限定されないが、耐熱性の点から無機バインダが好ましく、親水性の無機バインダがより好ましい。親水性の無機バインダとしては、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化タンタル、酸化スズ等の金属酸化物が挙げられる。バインダ7は、酸化ケイ素を主成分として含むのが好ましく、酸化ケイ素がより好ましい。バインダ7が酸化ケイ素であれば、防汚性がより向上する。 (Binder)
The binder 7 is not particularly limited as long as it can adhere theparticles 5 and the substrate, but an inorganic binder is preferable from the viewpoint of heat resistance, and a hydrophilic inorganic binder is more preferable. Examples of the hydrophilic inorganic binder include metal oxides such as silicon oxide (silica), aluminum oxide (alumina), titanium oxide (titania), zirconium oxide (zirconia), tantalum oxide, and tin oxide. The binder 7 preferably contains silicon oxide as a main component, and more preferably silicon oxide. When the binder 7 is silicon oxide, the antifouling property is further improved.
バインダ7は、粒子5および基体を接着できるものであれば特に限定されないが、耐熱性の点から無機バインダが好ましく、親水性の無機バインダがより好ましい。親水性の無機バインダとしては、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)、酸化タンタル、酸化スズ等の金属酸化物が挙げられる。バインダ7は、酸化ケイ素を主成分として含むのが好ましく、酸化ケイ素がより好ましい。バインダ7が酸化ケイ素であれば、防汚性がより向上する。 (Binder)
The binder 7 is not particularly limited as long as it can adhere the
バインダ7としての酸化ケイ素は、加水分解性基を有するシラン化合物の加水分解物またはケイ酸の脱水物または脱水縮合物であるのが好ましく、アルコキシシラン化合物の加水分解物またはケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸の脱水物または脱水縮合物がより好ましい。これらの加水分解物や脱水物または脱水縮合物は、未反応のシラノール基(Si-OH)を有していても良い。バインダ7には、後述するバインダ前駆体の硬化物が用いられる。
The silicon oxide as the binder 7 is preferably a hydrolyzate of a silane compound having a hydrolyzable group, or a dehydrated or dehydrated condensate of silicic acid, and an alkoxysilane compound hydrolyzate or silicic acid alkali metal salt. More preferred is a dehydrated or dehydrated condensate of demineralized silicic acid obtained by removing at least a part of the alkali metal from These hydrolysates, dehydrates or dehydrated condensates may have unreacted silanol groups (Si—OH). For the binder 7, a cured product of a binder precursor described later is used.
(更なる成分)
防汚膜4は、本発明の効果を損なわない範囲内で、更なる成分を含有することができる。更なる成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。更なる成分の含有率は、防汚膜4中、5質量%以下が好ましく、1質量%以下がより好ましい。 (Further ingredients)
Theantifouling film 4 can contain further components as long as the effects of the present invention are not impaired. Further components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, pigments and the like. The content of further components is preferably 5% by mass or less in the antifouling film 4 and more preferably 1% by mass or less.
防汚膜4は、本発明の効果を損なわない範囲内で、更なる成分を含有することができる。更なる成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。更なる成分の含有率は、防汚膜4中、5質量%以下が好ましく、1質量%以下がより好ましい。 (Further ingredients)
The
[ガラス物品の製造方法]
本発明のガラス物品の製造方法は、特に限定されるものではないが、以下に示す実施形態の製造方法が好適に用いられる。実施形態の製造方法は、以下の(I)~(III)の各工程を備える。(I)~(III)の工程前、工程間、および工程後には、各工程に影響を及ぼさない限り、他の工程を行っても良い。
工程(I):ガラス基体上に屈折率の異なる複数の層を含む積層膜を形成する工程。
工程(II):積層膜の最外層上に、粒子の凝集体とバインダ前駆体(ゾル)とを含有する防汚膜形成組成物を塗布し、防汚膜形成組成物の塗布膜を得る工程。
工程(III):塗布膜にバインダ前駆体の硬化処理を施し、バインダ前駆体からバインダを形成することにより、粒子の凝集体とバインダを含有する防汚膜を形成する工程。 [Glass article manufacturing method]
Although the manufacturing method of the glass article of this invention is not specifically limited, The manufacturing method of embodiment shown below is used suitably. The manufacturing method of the embodiment includes the following steps (I) to (III). Other steps may be performed before, between and after the steps (I) to (III) as long as each step is not affected.
Step (I): A step of forming a laminated film including a plurality of layers having different refractive indexes on a glass substrate.
Process (II): The process of apply | coating the antifouling film forming composition containing the aggregate of particle | grains and a binder precursor (sol) on the outermost layer of a laminated film, and obtaining the coating film of an antifouling film forming composition .
Step (III): A step of forming an antifouling film containing agglomerates of particles and a binder by applying a binder precursor to the coating film and forming the binder from the binder precursor.
本発明のガラス物品の製造方法は、特に限定されるものではないが、以下に示す実施形態の製造方法が好適に用いられる。実施形態の製造方法は、以下の(I)~(III)の各工程を備える。(I)~(III)の工程前、工程間、および工程後には、各工程に影響を及ぼさない限り、他の工程を行っても良い。
工程(I):ガラス基体上に屈折率の異なる複数の層を含む積層膜を形成する工程。
工程(II):積層膜の最外層上に、粒子の凝集体とバインダ前駆体(ゾル)とを含有する防汚膜形成組成物を塗布し、防汚膜形成組成物の塗布膜を得る工程。
工程(III):塗布膜にバインダ前駆体の硬化処理を施し、バインダ前駆体からバインダを形成することにより、粒子の凝集体とバインダを含有する防汚膜を形成する工程。 [Glass article manufacturing method]
Although the manufacturing method of the glass article of this invention is not specifically limited, The manufacturing method of embodiment shown below is used suitably. The manufacturing method of the embodiment includes the following steps (I) to (III). Other steps may be performed before, between and after the steps (I) to (III) as long as each step is not affected.
Step (I): A step of forming a laminated film including a plurality of layers having different refractive indexes on a glass substrate.
Process (II): The process of apply | coating the antifouling film forming composition containing the aggregate of particle | grains and a binder precursor (sol) on the outermost layer of a laminated film, and obtaining the coating film of an antifouling film forming composition .
Step (III): A step of forming an antifouling film containing agglomerates of particles and a binder by applying a binder precursor to the coating film and forming the binder from the binder precursor.
実施形態のガラス物品の製造方法は、ガラス基体上に複数の層を設ける工程と、シリンドリカルマグネトロンスパッタリング法を用いて、最外層を設ける工程と、ゾルゲル法を用いて、防汚膜を設ける工程とを備えることが好ましい。この場合、ガラス基体上に複数の層を設ける工程と、シリンドリカルマグネトロンスパッタリング法を用いて最外層を設ける工程とは、上述の工程(I)に含まれる。
The method for producing a glass article of the embodiment includes a step of providing a plurality of layers on a glass substrate, a step of providing an outermost layer using a cylindrical magnetron sputtering method, and a step of providing an antifouling film using a sol-gel method. It is preferable to provide. In this case, the step of providing a plurality of layers on the glass substrate and the step of providing the outermost layer using a cylindrical magnetron sputtering method are included in the above-described step (I).
さらに、ガラス物品の製造方法は、
(1)ガラス基板の第1の表面の側に、第1の層を形成するステップと、
(2)前記第1の層の直上に、第2の層を形成するステップと、
(3)前記第2の層の直上に、第3の層を形成するステップであって、前記第3の層は、シリカを含まない層で構成されるステップと、
(4)前記第3の層の直上に、ジルコニアがドープされたシリカで構成される最外層を形成するステップであって、前記ジルコニアがドープされたシリカで構成される最外層は、シリンドリカルマグネトロンスパッタリング法により形成されるステップと、
(5)前記最外層の直上に、防汚膜を形成するステップであって、前記防汚膜は、防汚膜形成組成物(ゾル)を塗布して硬化する、ゾルゲル法によって形成されるステップと、
を有することが好ましい。 Furthermore, the manufacturing method of a glass article is
(1) forming a first layer on the first surface side of the glass substrate;
(2) forming a second layer directly on the first layer;
(3) a step of forming a third layer directly on the second layer, wherein the third layer includes a layer not containing silica;
(4) A step of forming an outermost layer composed of silica doped with zirconia directly on the third layer, wherein the outermost layer composed of silica doped with zirconia is formed by cylindrical magnetron sputtering. Steps formed by the law;
(5) A step of forming an antifouling film directly on the outermost layer, wherein the antifouling film is formed by a sol-gel method in which an antifouling film forming composition (sol) is applied and cured. When,
It is preferable to have.
(1)ガラス基板の第1の表面の側に、第1の層を形成するステップと、
(2)前記第1の層の直上に、第2の層を形成するステップと、
(3)前記第2の層の直上に、第3の層を形成するステップであって、前記第3の層は、シリカを含まない層で構成されるステップと、
(4)前記第3の層の直上に、ジルコニアがドープされたシリカで構成される最外層を形成するステップであって、前記ジルコニアがドープされたシリカで構成される最外層は、シリンドリカルマグネトロンスパッタリング法により形成されるステップと、
(5)前記最外層の直上に、防汚膜を形成するステップであって、前記防汚膜は、防汚膜形成組成物(ゾル)を塗布して硬化する、ゾルゲル法によって形成されるステップと、
を有することが好ましい。 Furthermore, the manufacturing method of a glass article is
(1) forming a first layer on the first surface side of the glass substrate;
(2) forming a second layer directly on the first layer;
(3) a step of forming a third layer directly on the second layer, wherein the third layer includes a layer not containing silica;
(4) A step of forming an outermost layer composed of silica doped with zirconia directly on the third layer, wherein the outermost layer composed of silica doped with zirconia is formed by cylindrical magnetron sputtering. Steps formed by the law;
(5) A step of forming an antifouling film directly on the outermost layer, wherein the antifouling film is formed by a sol-gel method in which an antifouling film forming composition (sol) is applied and cured. When,
It is preferable to have.
(工程(I))
積層膜3の形成工程は、ガラス基体2上に、第1の層31、第2の層32、第3の層33、および第4の層34を、この順に形成する工程である。第1ないし第4の層31~34の形成方法は、特に限定されない。第1ないし第4の層31~34は、例えば、蒸着法、スパッタリング法、CVD(化学気相成長)法等により成膜される。また、必要に応じて、第5の層もしくはそれ以上の層を形成する。 (Process (I))
The step of forming thelaminated film 3 is a step of forming the first layer 31, the second layer 32, the third layer 33, and the fourth layer 34 in this order on the glass substrate 2. The method for forming the first to fourth layers 31 to 34 is not particularly limited. The first to fourth layers 31 to 34 are formed by, for example, vapor deposition, sputtering, CVD (chemical vapor deposition), or the like. Further, a fifth layer or higher layers are formed as necessary.
積層膜3の形成工程は、ガラス基体2上に、第1の層31、第2の層32、第3の層33、および第4の層34を、この順に形成する工程である。第1ないし第4の層31~34の形成方法は、特に限定されない。第1ないし第4の層31~34は、例えば、蒸着法、スパッタリング法、CVD(化学気相成長)法等により成膜される。また、必要に応じて、第5の層もしくはそれ以上の層を形成する。 (Process (I))
The step of forming the
(工程(II))
防汚膜形成組成物の塗布工程は、積層膜3の最上層34上に、粒子の凝集体とバインダ前駆体とを含有する防汚膜形成組成物を塗布し、防汚膜形成組成物の塗布膜を得る工程である。防汚膜形成組成物の塗布法は、特に限定されないが、スピンコート、ディップコート、スプレーコート、フローコート、カーテンフローコート、ダイコート、スキージコート等が挙げられ、スピンコートが好ましい。防汚膜形成組成物の塗布厚は、防汚膜4の膜厚に応じて適宜に設定される。 (Process (II))
The antifouling film-forming composition coating step is performed by applying an antifouling film-forming composition containing an aggregate of particles and a binder precursor onto theuppermost layer 34 of the laminated film 3. This is a step of obtaining a coating film. The application method of the antifouling film forming composition is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferred. The coating thickness of the antifouling film forming composition is appropriately set according to the film thickness of the antifouling film 4.
防汚膜形成組成物の塗布工程は、積層膜3の最上層34上に、粒子の凝集体とバインダ前駆体とを含有する防汚膜形成組成物を塗布し、防汚膜形成組成物の塗布膜を得る工程である。防汚膜形成組成物の塗布法は、特に限定されないが、スピンコート、ディップコート、スプレーコート、フローコート、カーテンフローコート、ダイコート、スキージコート等が挙げられ、スピンコートが好ましい。防汚膜形成組成物の塗布厚は、防汚膜4の膜厚に応じて適宜に設定される。 (Process (II))
The antifouling film-forming composition coating step is performed by applying an antifouling film-forming composition containing an aggregate of particles and a binder precursor onto the
(本発明の一実施例による反射防止膜付きガラスの製造方法)
次に、前述のような特徴を有する本発明の一実施例による反射防止膜付きガラスの製造方法の一例について、簡単に説明する。 (Manufacturing method of glass with antireflection film according to one embodiment of the present invention)
Next, an example of a method for producing an antireflection film-coated glass according to an embodiment of the present invention having the above-described features will be briefly described.
次に、前述のような特徴を有する本発明の一実施例による反射防止膜付きガラスの製造方法の一例について、簡単に説明する。 (Manufacturing method of glass with antireflection film according to one embodiment of the present invention)
Next, an example of a method for producing an antireflection film-coated glass according to an embodiment of the present invention having the above-described features will be briefly described.
なお、以下に示す反射防止膜付きガラスの製造方法は、単なる一例であって、本発明による反射防止膜付きガラスは、別の方法で製造されても良い。また、以下の記載では、一例として、図4に示した反射防止膜付きガラス200において、積層膜230中の第4の層255が省略された構成(すなわち4層構成の積層膜を有する反射防止膜付きガラス)を例に、その製造方法について説明する。図5に、そのような反射防止膜付きガラスの製造方法のフローの一例を概略的に示す。
In addition, the manufacturing method of the glass with an antireflection film shown below is only an example, and the glass with an antireflection film according to the present invention may be manufactured by another method. In the following description, as an example, in the glass 200 with antireflection film shown in FIG. 4, a configuration in which the fourth layer 255 in the laminated film 230 is omitted (that is, an antireflection film having a laminated film having a four-layer structure). The manufacturing method will be described by taking glass with a film as an example. In FIG. 5, an example of the flow of the manufacturing method of such glass with an antireflection film is shown roughly.
図5に示すように、この製造方法(以下、「第1の製造方法」と称する)は、
ガラス基板の第1の表面の側に、第1の層を形成するステップ(ステップS110)と、
前記第1の層の直上に、第2の層を形成するステップ(ステップS120)と、
前記第2の層の直上に、第3の層を形成するステップであって、前記第3の層は、シリカを含まない層で構成されるステップ(ステップS130)と、
前記第3の層の直上に、ジルコニアがドープされたシリカで構成される層を形成するステップであって、前記ジルコニアがドープされたシリカで構成される層は、シリンドリカルマグネトロンスパッタリング法により形成されるステップ(ステップS140)と、
ステップS140後に、前記ガラス基板を熱処理するステップ(ステップS150)と、
ジルコニアがドープされたシリカで構成された層の上に、防汚膜形成組成物を塗布するステップ(ステップS160)と、
防汚膜形成組成物を硬化して防汚膜を形成するステップ(ステップS170)
を有する。ただし、ステップS150は、省略しても良い。 As shown in FIG. 5, this manufacturing method (hereinafter referred to as “first manufacturing method”)
Forming a first layer on the first surface side of the glass substrate (step S110);
Forming a second layer directly on the first layer (step S120);
Forming a third layer directly on the second layer, wherein the third layer comprises a layer not containing silica (step S130);
Forming a layer composed of silica doped with zirconia directly on the third layer, wherein the layer composed of silica doped with zirconia is formed by a cylindrical magnetron sputtering method; Step (step S140);
After step S140, heat-treating the glass substrate (step S150);
Applying an antifouling film-forming composition on the layer composed of silica doped with zirconia (step S160);
Step of curing antifouling film forming composition to form antifouling film (step S170)
Have However, step S150 may be omitted.
ガラス基板の第1の表面の側に、第1の層を形成するステップ(ステップS110)と、
前記第1の層の直上に、第2の層を形成するステップ(ステップS120)と、
前記第2の層の直上に、第3の層を形成するステップであって、前記第3の層は、シリカを含まない層で構成されるステップ(ステップS130)と、
前記第3の層の直上に、ジルコニアがドープされたシリカで構成される層を形成するステップであって、前記ジルコニアがドープされたシリカで構成される層は、シリンドリカルマグネトロンスパッタリング法により形成されるステップ(ステップS140)と、
ステップS140後に、前記ガラス基板を熱処理するステップ(ステップS150)と、
ジルコニアがドープされたシリカで構成された層の上に、防汚膜形成組成物を塗布するステップ(ステップS160)と、
防汚膜形成組成物を硬化して防汚膜を形成するステップ(ステップS170)
を有する。ただし、ステップS150は、省略しても良い。 As shown in FIG. 5, this manufacturing method (hereinafter referred to as “first manufacturing method”)
Forming a first layer on the first surface side of the glass substrate (step S110);
Forming a second layer directly on the first layer (step S120);
Forming a third layer directly on the second layer, wherein the third layer comprises a layer not containing silica (step S130);
Forming a layer composed of silica doped with zirconia directly on the third layer, wherein the layer composed of silica doped with zirconia is formed by a cylindrical magnetron sputtering method; Step (step S140);
After step S140, heat-treating the glass substrate (step S150);
Applying an antifouling film-forming composition on the layer composed of silica doped with zirconia (step S160);
Step of curing antifouling film forming composition to form antifouling film (step S170)
Have However, step S150 may be omitted.
以下、各ステップについて説明する。なお、以降の説明では、明確化のため、各部材を説明する際に、図4に示した参照符号を使用する。
Hereafter, each step will be described. In the following description, for the sake of clarity, the reference numerals shown in FIG. 4 are used when describing each member.
(ステップS110)
まず、第1および第2の表面222、224を有するガラス基板220が準備される。ガラス基板220の組成は、特に限られない。ガラス基板220は、例えば、無アルカリガラス、ソーダライムガラス、およびアルミノシリケートガラス等であっても良い。 (Step S110)
First, aglass substrate 220 having first and second surfaces 222 and 224 is prepared. The composition of the glass substrate 220 is not particularly limited. The glass substrate 220 may be, for example, alkali-free glass, soda lime glass, aluminosilicate glass, or the like.
まず、第1および第2の表面222、224を有するガラス基板220が準備される。ガラス基板220の組成は、特に限られない。ガラス基板220は、例えば、無アルカリガラス、ソーダライムガラス、およびアルミノシリケートガラス等であっても良い。 (Step S110)
First, a
次に、ガラス基板220の第1の表面222の側に、第1の層240が形成される。前述のように、第1の層240は、以降のステップS120で形成される第2の層245よりも屈折率の高い材料で構成される。第1の層240は、例えば、チタニア、酸化ニオブ、ジルコニア、セリア、酸化タンタル等であっても良い。
Next, the first layer 240 is formed on the first surface 222 side of the glass substrate 220. As described above, the first layer 240 is made of a material having a refractive index higher than that of the second layer 245 formed in the subsequent step S120. The first layer 240 may be, for example, titania, niobium oxide, zirconia, ceria, tantalum oxide, or the like.
第1の層240の形成方法は、特に限られない。第1の層240は、例えば、蒸着法、スパッタリング法、およびCVD(化学気相成長)法等により、ガラス基板220の第1の表面222に形成されても良い。
The method for forming the first layer 240 is not particularly limited. The first layer 240 may be formed on the first surface 222 of the glass substrate 220 by, for example, a vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
(ステップS120)
次に、第1の層240の直上に、第2の層245が形成される。前述のように、第2の層245は、第1の層240よりも屈折率が低い材料であって、以降のステップS130で形成される第3の層255よりも屈折率の低い材料で構成される。第2の層245は、例えば、シリカまたはアルミナ等であっても良い。 (Step S120)
Next, thesecond layer 245 is formed immediately above the first layer 240. As described above, the second layer 245 is made of a material having a refractive index lower than that of the first layer 240 and having a refractive index lower than that of the third layer 255 formed in the subsequent step S130. Is done. The second layer 245 may be, for example, silica or alumina.
次に、第1の層240の直上に、第2の層245が形成される。前述のように、第2の層245は、第1の層240よりも屈折率が低い材料であって、以降のステップS130で形成される第3の層255よりも屈折率の低い材料で構成される。第2の層245は、例えば、シリカまたはアルミナ等であっても良い。 (Step S120)
Next, the
第2の層245の形成方法は、特に限られない。第2の層245は、例えば、蒸着法、スパッタリング法、およびCVD(化学気相成長)法等により形成されても良い。
The formation method of the second layer 245 is not particularly limited. The second layer 245 may be formed by, for example, a vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
(ステップS130)
次に、第2の層245の直上に、第3の層250が形成される。前述のように、第3の層250は、第2の層245よりも屈折率の高い材料で構成される。第3の層250は、例えば、チタニア、酸化ニオブ、ジルコニア、セリア、および酸化タンタル等であっても良い。なお、第3の層250は、シリカを含まない層で形成される。 (Step S130)
Next, thethird layer 250 is formed immediately above the second layer 245. As described above, the third layer 250 is made of a material having a higher refractive index than that of the second layer 245. The third layer 250 may be, for example, titania, niobium oxide, zirconia, ceria, tantalum oxide, or the like. Note that the third layer 250 is formed of a layer not containing silica.
次に、第2の層245の直上に、第3の層250が形成される。前述のように、第3の層250は、第2の層245よりも屈折率の高い材料で構成される。第3の層250は、例えば、チタニア、酸化ニオブ、ジルコニア、セリア、および酸化タンタル等であっても良い。なお、第3の層250は、シリカを含まない層で形成される。 (Step S130)
Next, the
第3の層250の形成方法は、特に限られない。第3の層250は、例えば、蒸着法、スパッタリング法、およびCVD(化学気相成長)法等により形成されても良い。
The method for forming the third layer 250 is not particularly limited. The third layer 250 may be formed by, for example, a vapor deposition method, a sputtering method, a CVD (chemical vapor deposition) method, or the like.
(ステップS140)
次に、第3の層250の直上に、ZrO2ドープSiO2層(いわゆる最外層)260が形成される。最外層260におけるジルコニアのドープ量は、特に限られないが、例えば、5~50モル%の範囲であっても良い。 (Step S140)
Next, a ZrO 2 -doped SiO 2 layer (so-called outermost layer) 260 is formed immediately above thethird layer 250. The doping amount of zirconia in the outermost layer 260 is not particularly limited, but may be in the range of 5 to 50 mol%, for example.
次に、第3の層250の直上に、ZrO2ドープSiO2層(いわゆる最外層)260が形成される。最外層260におけるジルコニアのドープ量は、特に限られないが、例えば、5~50モル%の範囲であっても良い。 (Step S140)
Next, a ZrO 2 -doped SiO 2 layer (so-called outermost layer) 260 is formed immediately above the
最外層260は、例えば、スパッタリング法により形成することができる。特に、スパッタリング法の中では、シリンドリカルマグネトロンスパッタリング法が好ましい。このシリンドリカルマグネトロンスパッタリング法では、通常の平坦ターゲットの代わりに、中空円筒状ターゲットが使用される。中空円筒状ターゲットを延伸軸方向に回転させながら、スパッタリング成膜が実施される(例えば特許第4639764号明細書参照)。
The outermost layer 260 can be formed by, for example, a sputtering method. In particular, among the sputtering methods, the cylindrical magnetron sputtering method is preferable. In this cylindrical magnetron sputtering method, a hollow cylindrical target is used instead of a normal flat target. Sputtering film formation is carried out while rotating the hollow cylindrical target in the direction of the stretching axis (see, for example, the specification of Japanese Patent No. 4636964).
後に詳しく説明するように、最外層260をシリンドリカルマグネトロンスパッタリング法で成膜した場合、積層膜へのデブリ(異物)の付着が有意に抑制される。従って、欠陥の少ない反射防止膜付きガラスを得ることが可能となる。
As described in detail later, when the outermost layer 260 is formed by a cylindrical magnetron sputtering method, adhesion of debris (foreign matter) to the laminated film is significantly suppressed. Therefore, it is possible to obtain a glass with an antireflection film with few defects.
(ステップS150)
次に、必要な場合、第1の表面222に積層膜230(第1の層240、第2の層245、第3の層250、および最外層260)が形成されたガラス基板220が熱処理される。熱処理は、ガラス基板220を強化したり、曲げたりするために実施される。ただし、このステップは、省略されても良い。 (Step S150)
Next, if necessary, theglass substrate 220 on which the stacked film 230 (the first layer 240, the second layer 245, the third layer 250, and the outermost layer 260) is formed on the first surface 222 is heat-treated. The The heat treatment is performed for strengthening or bending the glass substrate 220. However, this step may be omitted.
次に、必要な場合、第1の表面222に積層膜230(第1の層240、第2の層245、第3の層250、および最外層260)が形成されたガラス基板220が熱処理される。熱処理は、ガラス基板220を強化したり、曲げたりするために実施される。ただし、このステップは、省略されても良い。 (Step S150)
Next, if necessary, the
熱処理は、例えば、大気下、550℃~700℃の温度範囲で実施される。熱処理は、例えば、650℃まで加熱されたガラス基板220を、空気ブローにより急冷することにより実施されても良い。
The heat treatment is performed, for example, in the air at a temperature range of 550 ° C. to 700 ° C. The heat treatment may be performed, for example, by rapidly cooling the glass substrate 220 heated to 650 ° C. by air blowing.
(ステップS160)
防汚膜形成組成物を塗布するステップは、基板上に形成された積層膜230上に、突起体を形成できる粒子とバインダ前駆体とを含み、該突起体を形成できる粒子と該バインダ前駆体との、金属酸化物換算での質量比が、7/93~95/5である防汚膜形成組成物を付与して、防汚膜形成組成物層を形成する工程を含むことができる。 (Step S160)
The step of applying the antifouling film forming composition includes particles capable of forming protrusions and a binder precursor on thelaminated film 230 formed on the substrate, and the particles capable of forming the protrusions and the binder precursor. And an antifouling film-forming composition having a mass ratio in terms of metal oxide of 7/93 to 95/5, to form an antifouling film-forming composition layer.
防汚膜形成組成物を塗布するステップは、基板上に形成された積層膜230上に、突起体を形成できる粒子とバインダ前駆体とを含み、該突起体を形成できる粒子と該バインダ前駆体との、金属酸化物換算での質量比が、7/93~95/5である防汚膜形成組成物を付与して、防汚膜形成組成物層を形成する工程を含むことができる。 (Step S160)
The step of applying the antifouling film forming composition includes particles capable of forming protrusions and a binder precursor on the
好ましくは、ステップS160は、平均一次粒子径が5~300nmであるパールネックレス状シリカと酸化ケイ素前駆体とを含み、該パールネックレス状シリカと該酸化ケイ素前駆体との、酸化ケイ素換算での質量比(パールネックレス状シリカ/酸化ケイ素前駆体)が、7/93~95/5である防汚膜形成組成物を付与して、防汚膜形成組成物層を形成する工程を含むことができる。
Preferably, step S160 includes a pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silicon oxide precursor, and the mass of the pearl necklace-like silica and the silicon oxide precursor in terms of silicon oxide. A step of applying an antifouling film-forming composition having a ratio (pearl necklace-like silica / silicon oxide precursor) of 7/93 to 95/5 to form an antifouling film-forming composition layer; .
(防汚膜形成組成物〉
防汚膜形成組成物は、粒子の凝集体とバインダ前駆体とを含むことが好ましい。防汚膜形成組成物は、粒子の凝集体とバインダ前駆体の水溶液等とを混合することにより調製される。防汚膜形成組成物は、これら以外に、水や溶剤等を含んでいても良く、さらに他の成分を含んでいても良い。 (Anti-fouling film forming composition)
The antifouling film forming composition preferably contains an aggregate of particles and a binder precursor. The antifouling film forming composition is prepared by mixing an aggregate of particles and an aqueous solution of a binder precursor. In addition to these, the antifouling film-forming composition may contain water, a solvent, and the like, and may further contain other components.
防汚膜形成組成物は、粒子の凝集体とバインダ前駆体とを含むことが好ましい。防汚膜形成組成物は、粒子の凝集体とバインダ前駆体の水溶液等とを混合することにより調製される。防汚膜形成組成物は、これら以外に、水や溶剤等を含んでいても良く、さらに他の成分を含んでいても良い。 (Anti-fouling film forming composition)
The antifouling film forming composition preferably contains an aggregate of particles and a binder precursor. The antifouling film forming composition is prepared by mixing an aggregate of particles and an aqueous solution of a binder precursor. In addition to these, the antifouling film-forming composition may contain water, a solvent, and the like, and may further contain other components.
(粒子および凝集体)
突起体を形成できる粒子の凝集体としては、平均一次粒子径が5~300nmであるパールネックレス状シリカが好ましい。球状のシリカ粒子のみを含む防汚膜形成組成物を基体表面に塗布したのでは、粒子が比較的均一に積層しやすいため、得られる被膜は防汚性を充分に発現させる程度の凹凸は形成されない。 (Particles and aggregates)
The aggregate of particles that can form protrusions is preferably pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm. When an antifouling film-forming composition containing only spherical silica particles is applied to the surface of the substrate, the particles are easy to laminate relatively uniformly, so that the resulting coating forms irregularities sufficient to exhibit antifouling properties. Not.
突起体を形成できる粒子の凝集体としては、平均一次粒子径が5~300nmであるパールネックレス状シリカが好ましい。球状のシリカ粒子のみを含む防汚膜形成組成物を基体表面に塗布したのでは、粒子が比較的均一に積層しやすいため、得られる被膜は防汚性を充分に発現させる程度の凹凸は形成されない。 (Particles and aggregates)
The aggregate of particles that can form protrusions is preferably pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm. When an antifouling film-forming composition containing only spherical silica particles is applied to the surface of the substrate, the particles are easy to laminate relatively uniformly, so that the resulting coating forms irregularities sufficient to exhibit antifouling properties. Not.
(バインダ前駆体)
バインダ前駆体とは、例えば加熱処理によりバインダを形成する成分である。バインダ前駆体としては、無機バインダ前駆体が挙げられ、酸化ケイ素前駆体、酸化アルミニウム前駆体、酸化チタン前駆体、酸化ジルコニウム前駆体、酸化タンタル前駆体、酸化スズ前駆体等の金属酸化物前駆体が好ましい。酸化ケイ素前駆体としては、加水分解性基を有するシラン化合物およびケイ酸が挙げられる。酸化ケイ素前駆体以外のバインダ前駆体としては、加水分解性基を有する金属化合物が挙げられる。金属酸化物前駆体は、加水分解反応により金属酸化物を形成する成分である。バインダ前駆体としては、酸化ケイ素前駆体が好ましい。防汚膜形成組成物が、酸化ケイ素前駆体を含有することにより、形成される防汚膜4と基体との密着性をより向上させることができる。バインダ前駆体は、1種単独であっても良く、2種以上の組み合わせであっても良い。 (Binder precursor)
A binder precursor is a component which forms a binder, for example by heat processing. Examples of the binder precursor include inorganic binder precursors, and metal oxide precursors such as a silicon oxide precursor, an aluminum oxide precursor, a titanium oxide precursor, a zirconium oxide precursor, a tantalum oxide precursor, and a tin oxide precursor. Is preferred. Examples of the silicon oxide precursor include a silane compound having a hydrolyzable group and silicic acid. Examples of the binder precursor other than the silicon oxide precursor include a metal compound having a hydrolyzable group. The metal oxide precursor is a component that forms a metal oxide by a hydrolysis reaction. As the binder precursor, a silicon oxide precursor is preferable. When the antifouling film-forming composition contains a silicon oxide precursor, the adhesion between theantifouling film 4 to be formed and the substrate can be further improved. The binder precursor may be one kind alone or a combination of two or more kinds.
バインダ前駆体とは、例えば加熱処理によりバインダを形成する成分である。バインダ前駆体としては、無機バインダ前駆体が挙げられ、酸化ケイ素前駆体、酸化アルミニウム前駆体、酸化チタン前駆体、酸化ジルコニウム前駆体、酸化タンタル前駆体、酸化スズ前駆体等の金属酸化物前駆体が好ましい。酸化ケイ素前駆体としては、加水分解性基を有するシラン化合物およびケイ酸が挙げられる。酸化ケイ素前駆体以外のバインダ前駆体としては、加水分解性基を有する金属化合物が挙げられる。金属酸化物前駆体は、加水分解反応により金属酸化物を形成する成分である。バインダ前駆体としては、酸化ケイ素前駆体が好ましい。防汚膜形成組成物が、酸化ケイ素前駆体を含有することにより、形成される防汚膜4と基体との密着性をより向上させることができる。バインダ前駆体は、1種単独であっても良く、2種以上の組み合わせであっても良い。 (Binder precursor)
A binder precursor is a component which forms a binder, for example by heat processing. Examples of the binder precursor include inorganic binder precursors, and metal oxide precursors such as a silicon oxide precursor, an aluminum oxide precursor, a titanium oxide precursor, a zirconium oxide precursor, a tantalum oxide precursor, and a tin oxide precursor. Is preferred. Examples of the silicon oxide precursor include a silane compound having a hydrolyzable group and silicic acid. Examples of the binder precursor other than the silicon oxide precursor include a metal compound having a hydrolyzable group. The metal oxide precursor is a component that forms a metal oxide by a hydrolysis reaction. As the binder precursor, a silicon oxide precursor is preferable. When the antifouling film-forming composition contains a silicon oxide precursor, the adhesion between the
(酸化ケイ素前駆体)
酸化ケイ素前駆体としては、ケイ酸および加水分解性基を有するシラン化合物が挙げられる。酸化ケイ素前駆体としては、後述するケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸、またはアルコキシシラン化合物もしくはその部分加水分解縮合物が好ましい。防汚膜形成組成物が、ケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸および/またはアルコキシシラン化合物もしくはその部分加水分解縮合物を含有することで、形成される防汚膜と積層膜との密着性をより向上させることができる。 (Silicon oxide precursor)
Examples of the silicon oxide precursor include silicic acid and a silane compound having a hydrolyzable group. As the silicon oxide precursor, desalted silicic acid obtained by removing at least a part of an alkali metal from an alkali metal salt of silicic acid described later, or an alkoxysilane compound or a partially hydrolyzed condensate thereof is preferable. The antifouling film-forming composition is formed by containing demineralized silicic acid obtained by removing at least a part of an alkali metal from an alkali metal salt of silicic acid and / or an alkoxysilane compound or a partial hydrolysis condensate thereof. The adhesion between the antifouling film and the laminated film can be further improved.
酸化ケイ素前駆体としては、ケイ酸および加水分解性基を有するシラン化合物が挙げられる。酸化ケイ素前駆体としては、後述するケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸、またはアルコキシシラン化合物もしくはその部分加水分解縮合物が好ましい。防汚膜形成組成物が、ケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸および/またはアルコキシシラン化合物もしくはその部分加水分解縮合物を含有することで、形成される防汚膜と積層膜との密着性をより向上させることができる。 (Silicon oxide precursor)
Examples of the silicon oxide precursor include silicic acid and a silane compound having a hydrolyzable group. As the silicon oxide precursor, desalted silicic acid obtained by removing at least a part of an alkali metal from an alkali metal salt of silicic acid described later, or an alkoxysilane compound or a partially hydrolyzed condensate thereof is preferable. The antifouling film-forming composition is formed by containing demineralized silicic acid obtained by removing at least a part of an alkali metal from an alkali metal salt of silicic acid and / or an alkoxysilane compound or a partial hydrolysis condensate thereof. The adhesion between the antifouling film and the laminated film can be further improved.
(ケイ酸)
ケイ酸としては、オルトケイ酸、メタケイ酸、メタ二ケイ酸が挙げられ、メタケイ酸が好ましい。ケイ酸は、ケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸(以下、単に「脱塩ケイ酸」ともいう。)が好ましい。脱塩ケイ酸は、陽イオン交換樹脂を用いて、ケイ酸のアルカリ金属塩の水溶液からアルカリ金属イオンを減らす方法により得るのが好ましい。脱塩ケイ酸のアルカリ金属イオンの量は、特に限定されないが、ケイ酸100質量部に対して、アルカリ金属イオンが0.001~1質量部が好ましく、0.001~0.2質量部がより好ましく、0.001~0.15質量部がさらに好ましい。ケイ酸のアルカリ金属イオン濃度は、ICP発光分析法により測定することができる。 (Silicic acid)
Examples of silicic acid include orthosilicic acid, metasilicic acid, and metadisilicic acid, with metasilicic acid being preferred. The silicic acid is preferably demineralized silicic acid obtained by removing at least part of the alkali metal from the alkali metal salt of silicic acid (hereinafter also simply referred to as “demineralized silicic acid”). Desalted silicic acid is preferably obtained by a method of reducing alkali metal ions from an aqueous solution of an alkali metal salt of silicic acid using a cation exchange resin. The amount of the alkali metal ion of the desalted silicic acid is not particularly limited, but the alkali metal ion is preferably 0.001 to 1 part by mass, and 0.001 to 0.2 part by mass with respect to 100 parts by mass of silicic acid. More preferred is 0.001 to 0.15 parts by mass. The alkali metal ion concentration of silicic acid can be measured by ICP emission spectrometry.
ケイ酸としては、オルトケイ酸、メタケイ酸、メタ二ケイ酸が挙げられ、メタケイ酸が好ましい。ケイ酸は、ケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸(以下、単に「脱塩ケイ酸」ともいう。)が好ましい。脱塩ケイ酸は、陽イオン交換樹脂を用いて、ケイ酸のアルカリ金属塩の水溶液からアルカリ金属イオンを減らす方法により得るのが好ましい。脱塩ケイ酸のアルカリ金属イオンの量は、特に限定されないが、ケイ酸100質量部に対して、アルカリ金属イオンが0.001~1質量部が好ましく、0.001~0.2質量部がより好ましく、0.001~0.15質量部がさらに好ましい。ケイ酸のアルカリ金属イオン濃度は、ICP発光分析法により測定することができる。 (Silicic acid)
Examples of silicic acid include orthosilicic acid, metasilicic acid, and metadisilicic acid, with metasilicic acid being preferred. The silicic acid is preferably demineralized silicic acid obtained by removing at least part of the alkali metal from the alkali metal salt of silicic acid (hereinafter also simply referred to as “demineralized silicic acid”). Desalted silicic acid is preferably obtained by a method of reducing alkali metal ions from an aqueous solution of an alkali metal salt of silicic acid using a cation exchange resin. The amount of the alkali metal ion of the desalted silicic acid is not particularly limited, but the alkali metal ion is preferably 0.001 to 1 part by mass, and 0.001 to 0.2 part by mass with respect to 100 parts by mass of silicic acid. More preferred is 0.001 to 0.15 parts by mass. The alkali metal ion concentration of silicic acid can be measured by ICP emission spectrometry.
陽イオン交換樹脂としては、特に限定されないが、強酸性陽イオン交換樹脂(RSO3H型)、弱酸性陽イオン交換樹脂(RCOOH型)等が挙げられ、強酸性陽イオン交換樹脂が反応速度の点で好ましい。使用する陽イオン交換樹脂の量、接触時間、接触方法等を制御することで、減らすアルカリ金属イオンの量を調節できる。
The cation exchange resin is not particularly limited, a strongly acidic cation exchange resin (RSO 3 H type), weakly acidic cation exchange resin (RCOOH type) and the like, a strongly acidic cation exchange resin is a reaction rate This is preferable. The amount of alkali metal ions to be reduced can be adjusted by controlling the amount of cation exchange resin used, the contact time, the contact method, and the like.
ケイ酸のアルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸リチウム、ケイ酸カリウム等が挙げられ、ケイ酸ナトリウムおよび/またはケイ酸リチウムが好ましく、特にケイ酸ナトリウムが好ましい。
Examples of the alkali metal salt of silicate include sodium silicate, lithium silicate, potassium silicate and the like, sodium silicate and / or lithium silicate are preferable, and sodium silicate is particularly preferable.
(加水分解性基を有するシラン化合物)
加水分解性基を有するシラン化合物は、1分子中にケイ素原子に結合する1~4個の加水分解性基を有する化合物である。加水分解性基としては、アルコキシ基、イソシアナト基、アシルオキシ基、アミノキシ基、ハロゲン基等が挙げられ、アルコキシ基が好ましい。また、加水分解性基を有するシラン化合物としては、アルコキシシラン化合物が好ましい。アルコキシシラン化合物は、少なくとも一部の分子同士が加水分解縮合している縮合物(以下、「アルコキシシラン化合物の部分加水分解縮合物」ともいう。)であっても良い。 (Silane compound having hydrolyzable group)
A silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule. Examples of the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, a halogen group, and the like, and an alkoxy group is preferable. Moreover, as a silane compound which has a hydrolysable group, an alkoxysilane compound is preferable. The alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolytically condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
加水分解性基を有するシラン化合物は、1分子中にケイ素原子に結合する1~4個の加水分解性基を有する化合物である。加水分解性基としては、アルコキシ基、イソシアナト基、アシルオキシ基、アミノキシ基、ハロゲン基等が挙げられ、アルコキシ基が好ましい。また、加水分解性基を有するシラン化合物としては、アルコキシシラン化合物が好ましい。アルコキシシラン化合物は、少なくとも一部の分子同士が加水分解縮合している縮合物(以下、「アルコキシシラン化合物の部分加水分解縮合物」ともいう。)であっても良い。 (Silane compound having hydrolyzable group)
A silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule. Examples of the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, a halogen group, and the like, and an alkoxy group is preferable. Moreover, as a silane compound which has a hydrolysable group, an alkoxysilane compound is preferable. The alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolytically condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
アルコキシシラン化合物は、1分子中にケイ素原子に結合する1~4個のアルコキシ基を有する化合物である。アルコキシシラン化合物としては、下記の一般式(1)で表される化合物が挙げられる。
(R1O)pSiR2 (4-p) …(1)
式中、R1は、それぞれ独立して炭素数が1~4のアルキル基を示し、R2は、それぞれ独立して、置換基を有していても良い炭素数1~10のアルキル基を示し、pは1~4の数を示す。R1またはR2が複数存在する場合、それらは互いに同一であっても良いし、異なっていても良い。 The alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule. Examples of the alkoxysilane compound include compounds represented by the following general formula (1).
(R 1 O) p SiR 2 (4-p) (1)
In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, and each R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms. P represents a number from 1 to 4. When a plurality of R 1 or R 2 are present, they may be the same as or different from each other.
(R1O)pSiR2 (4-p) …(1)
式中、R1は、それぞれ独立して炭素数が1~4のアルキル基を示し、R2は、それぞれ独立して、置換基を有していても良い炭素数1~10のアルキル基を示し、pは1~4の数を示す。R1またはR2が複数存在する場合、それらは互いに同一であっても良いし、異なっていても良い。 The alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule. Examples of the alkoxysilane compound include compounds represented by the following general formula (1).
(R 1 O) p SiR 2 (4-p) (1)
In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, and each R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms. P represents a number from 1 to 4. When a plurality of R 1 or R 2 are present, they may be the same as or different from each other.
R1は、炭素数が1~4のアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基が挙げられ、メチル基、エチル基が好ましい。R2における炭素数が1~10のアルキル基は、直鎖状または分岐状であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ヘキシル基、デシル基等が挙げられる。R2は、炭素数が1~6のアルキル基が好ましい。R2における置換基は、特に限定されないが、エポキシ基、グリシドキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、イソシアナト基、ヒドロキシ基、アミノ基、フェニルアミノ基、アルキルアミノ基、アミノアルキルアミノ基、ウレイド基、メルカプト基等が挙げられる。なお、R2における「炭素数が1~10のアルキル基」は、置換基を除いたアルキル基部分の炭素数が1~10であることを意味する。
R 1 is an alkyl group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group, and a methyl group and an ethyl group are preferable. The alkyl group having 1 to 10 carbon atoms in R 2 is linear or branched, and is methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, hexyl group, decyl group. Groups and the like. R 2 is preferably an alkyl group having 1 to 6 carbon atoms. The substituent in R 2 is not particularly limited, but is an epoxy group, glycidoxy group, methacryloyloxy group, acryloyloxy group, isocyanato group, hydroxy group, amino group, phenylamino group, alkylamino group, aminoalkylamino group, ureido group And a mercapto group. The “alkyl group having 1 to 10 carbon atoms” in R 2 means that the alkyl group portion excluding the substituent has 1 to 10 carbon atoms.
アルコキシシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン等の1分子中に4個のケイ素原子に結合するアルコキシ基を有するテトラアルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアナトプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン等の1分子中にケイ素原子に結合する1~3個のアルコキシ基を有するアルコキシシラン化合物が挙げられる。アルコキシシラン化合物としては、テトラアルコキシシラン化合物が好ましい。
Examples of the alkoxysilane compound include tetraalkoxysilane compounds having an alkoxy group bonded to four silicon atoms in one molecule such as tetramethoxysilane and tetraethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidide Xylpropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltri Methoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino 1 to 3 alkoxy bonded to a silicon atom in one molecule such as propylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane Examples thereof include alkoxysilane compounds having a group. As the alkoxysilane compound, a tetraalkoxysilane compound is preferable.
(水および酸触媒)
防汚膜形成組成物は、バインダ前駆体の加水分解縮合物等が得られる条件下において、水および酸触媒を含んでいても良い。 (Water and acid catalyst)
The antifouling film forming composition may contain water and an acid catalyst under the condition that a hydrolysis condensate of the binder precursor is obtained.
防汚膜形成組成物は、バインダ前駆体の加水分解縮合物等が得られる条件下において、水および酸触媒を含んでいても良い。 (Water and acid catalyst)
The antifouling film forming composition may contain water and an acid catalyst under the condition that a hydrolysis condensate of the binder precursor is obtained.
防汚膜形成組成物は、水を含んでいても良い。防汚膜形成組成物が、水を含有することで、加水分解縮合反応が進行する。水の量は、バインダ前駆体100質量部に対して、10~500質量部が好ましく、50~300質量部がより好ましい。ここで、バインダ前駆体の量は、金属酸化物換算の量である。
The antifouling film-forming composition may contain water. Hydrolysis condensation reaction advances because antifouling film formation composition contains water. The amount of water is preferably 10 to 500 parts by weight and more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the binder precursor. Here, the amount of the binder precursor is an amount in terms of metal oxide.
防汚膜形成組成物は、酸触媒を含んでいても良い。防汚膜形成組成物が、酸触媒を含有することで、バインダ前駆体の加水分解縮合の反応速度を調整することができる。酸触媒としては、塩酸、硝酸、硫酸等が挙げられる。酸触媒の量は、バインダ前駆体100質量部に対して、0.1~5.0質量部が好ましく、0.2~3.5質量部がより好ましい。ここで、バインダ前駆体の量は、金属酸化物換算の量である。
The antifouling film forming composition may contain an acid catalyst. When the antifouling film forming composition contains an acid catalyst, the reaction rate of the hydrolysis condensation of the binder precursor can be adjusted. Examples of the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid and the like. The amount of the acid catalyst is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 3.5 parts by mass with respect to 100 parts by mass of the binder precursor. Here, the amount of the binder precursor is an amount in terms of metal oxide.
(溶剤)
防汚膜形成組成物は、溶剤を含有していても良い。防汚膜形成組成物が、溶剤を含有することで、作業性が向上する傾向がある。溶剤は、突起体を形成できる粒子およびバインダ前駆体の分散性が良好であり、かつこれらの成分に対する反応性が低い溶剤であれば特に限定されない。溶剤は、アルコール(メタノール、エタノール、2-プロパノール等)、エステル(酢酸ブチルのような酢酸エステル等)、エーテル(ジエチレングリコールジメチルエーテル等)、ケトン(メチルエチルケトン等)等が挙げられ、エステルおよびアルコールが好ましく、アルコールがより好ましい。溶剤は、1種単独であっても良く、2種以上の組み合わせであっても良い。 (solvent)
The antifouling film forming composition may contain a solvent. There exists a tendency for workability | operativity to improve because antifouling film forming composition contains a solvent. The solvent is not particularly limited as long as it can disperse particles and binder precursors that can form protrusions and has low reactivity with these components. Examples of the solvent include alcohols (methanol, ethanol, 2-propanol, etc.), esters (acetic esters such as butyl acetate), ethers (diethylene glycol dimethyl ether, etc.), ketones (methyl ethyl ketone, etc.), and esters and alcohols are preferred. Alcohol is more preferred. The solvent may be used alone or in combination of two or more.
防汚膜形成組成物は、溶剤を含有していても良い。防汚膜形成組成物が、溶剤を含有することで、作業性が向上する傾向がある。溶剤は、突起体を形成できる粒子およびバインダ前駆体の分散性が良好であり、かつこれらの成分に対する反応性が低い溶剤であれば特に限定されない。溶剤は、アルコール(メタノール、エタノール、2-プロパノール等)、エステル(酢酸ブチルのような酢酸エステル等)、エーテル(ジエチレングリコールジメチルエーテル等)、ケトン(メチルエチルケトン等)等が挙げられ、エステルおよびアルコールが好ましく、アルコールがより好ましい。溶剤は、1種単独であっても良く、2種以上の組み合わせであっても良い。 (solvent)
The antifouling film forming composition may contain a solvent. There exists a tendency for workability | operativity to improve because antifouling film forming composition contains a solvent. The solvent is not particularly limited as long as it can disperse particles and binder precursors that can form protrusions and has low reactivity with these components. Examples of the solvent include alcohols (methanol, ethanol, 2-propanol, etc.), esters (acetic esters such as butyl acetate), ethers (diethylene glycol dimethyl ether, etc.), ketones (methyl ethyl ketone, etc.), and esters and alcohols are preferred. Alcohol is more preferred. The solvent may be used alone or in combination of two or more.
溶剤の含有量は、特に限定されないが、粒子およびバインダ前駆体の合計100質量部に対して、1000~100000質量部が好ましく、2000~50000質量部がより好ましい。溶剤の含有量が、粒子およびバインダ前駆体の合計100質量部に対して、1000質量部以上であれば、加水分解、縮合反応の急激な進行を防ぐことができる。溶剤の含有量が100000質量部以下であれば、加水分解、縮合反応がより進行する。ここで、粒子およびバインダ前駆体の量は、金属酸化物換算の量である。
The content of the solvent is not particularly limited, but is preferably 1000 to 100,000 parts by mass, more preferably 2000 to 50000 parts by mass with respect to 100 parts by mass in total of the particles and the binder precursor. When the content of the solvent is 1000 parts by mass or more with respect to 100 parts by mass in total of the particles and the binder precursor, rapid progress of hydrolysis and condensation reaction can be prevented. If content of a solvent is 100,000 mass parts or less, a hydrolysis and a condensation reaction will advance more. Here, the amount of the particles and the binder precursor is a metal oxide equivalent amount.
(更なる成分)
防汚膜形成組成物は、本発明の効果を損なわない範囲内で、更なる成分を含有することができる。このような成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。防汚膜形成組成物中の更なる成分の含有量は、特に限定されないが、粒子およびバインダ前駆体の合計100質量部に対して、0.02~1重量部が好ましく、0.02~0.5重量部がより好ましく、0.02~0.3重量部がさらに好ましい。ここで、粒子およびバインダ前駆体の量は、金属酸化物換算の量である。 (Further ingredients)
The antifouling film-forming composition can contain further components as long as the effects of the present invention are not impaired. Examples of such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments. The content of further components in the antifouling film forming composition is not particularly limited, but is preferably 0.02 to 1 part by weight, preferably 0.02 to 0 parts per 100 parts by weight in total of the particles and the binder precursor. 0.5 part by weight is more preferable, and 0.02 to 0.3 part by weight is still more preferable. Here, the amount of the particles and the binder precursor is a metal oxide equivalent amount.
防汚膜形成組成物は、本発明の効果を損なわない範囲内で、更なる成分を含有することができる。このような成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。防汚膜形成組成物中の更なる成分の含有量は、特に限定されないが、粒子およびバインダ前駆体の合計100質量部に対して、0.02~1重量部が好ましく、0.02~0.5重量部がより好ましく、0.02~0.3重量部がさらに好ましい。ここで、粒子およびバインダ前駆体の量は、金属酸化物換算の量である。 (Further ingredients)
The antifouling film-forming composition can contain further components as long as the effects of the present invention are not impaired. Examples of such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments. The content of further components in the antifouling film forming composition is not particularly limited, but is preferably 0.02 to 1 part by weight, preferably 0.02 to 0 parts per 100 parts by weight in total of the particles and the binder precursor. 0.5 part by weight is more preferable, and 0.02 to 0.3 part by weight is still more preferable. Here, the amount of the particles and the binder precursor is a metal oxide equivalent amount.
(防汚膜形成組成物の付与方法)
防汚膜形成組成物の付与は、ウェットコーティング法により行うことができる。ウェットコーティング法としては、特に限定されないが、スピンコート、ディップコート、スプレーコート、フローコート、ダイコート等が挙げられ、スピンコートが好ましい。防汚膜形成組成物は、基体上の少なくとも一部の表面に付与され、基体の少なくとも1つの主面の全面に付与されるのが好ましい。 (Method for applying antifouling film forming composition)
The application of the antifouling film-forming composition can be performed by a wet coating method. The wet coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, and die coating, and spin coating is preferable. The antifouling film forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate.
防汚膜形成組成物の付与は、ウェットコーティング法により行うことができる。ウェットコーティング法としては、特に限定されないが、スピンコート、ディップコート、スプレーコート、フローコート、ダイコート等が挙げられ、スピンコートが好ましい。防汚膜形成組成物は、基体上の少なくとも一部の表面に付与され、基体の少なくとも1つの主面の全面に付与されるのが好ましい。 (Method for applying antifouling film forming composition)
The application of the antifouling film-forming composition can be performed by a wet coating method. The wet coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, and die coating, and spin coating is preferable. The antifouling film forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate.
防汚膜形成組成物層の厚さは、所望の防汚膜4が得られる厚さとなる量であれば特に限定されない。基体上に付与される防汚膜形成組成物の付与量は、前記した防汚膜4の厚さとなる量であれば特に限定されず、固形分として1.6~1600g/m2とすることが好ましく、8.0~800g/m2とすることがより好ましい。本発明において、成分の固形分換算の含有量とは、水等の揮発性成分を除いた残渣の質量をいう。
The thickness of the antifouling film-forming composition layer is not particularly limited as long as it is an amount that provides a desired thickness of the antifouling film 4. The application amount of the antifouling film-forming composition applied on the substrate is not particularly limited as long as it is an amount that will be the thickness of the antifouling film 4 described above, and the solid content is 1.6 to 1600 g / m 2. And more preferably 8.0 to 800 g / m 2 . In the present invention, the content of the component in terms of solid content refers to the mass of the residue excluding volatile components such as water.
(工程(III))
防汚膜4の形成工程は、防汚膜形成組成物の塗布膜にバインダ前駆体を硬化させる処理を施し、バインダ前駆体からバインダを形成することにより、粒子5の凝集体6とバインダ7とを含有する防汚膜4を形成する工程である。バインダ前駆体の硬化処理としては、加熱処理が挙げられるが、これに限定されるものではない。 (Process (III))
Theantifouling film 4 is formed by subjecting the coating film of the antifouling film forming composition to a treatment for curing the binder precursor, and forming the binder from the binder precursor, whereby the aggregates 6 of the particles 5 and the binder 7 are formed. Is a step of forming the antifouling film 4 containing Examples of the curing treatment of the binder precursor include heat treatment, but are not limited thereto.
防汚膜4の形成工程は、防汚膜形成組成物の塗布膜にバインダ前駆体を硬化させる処理を施し、バインダ前駆体からバインダを形成することにより、粒子5の凝集体6とバインダ7とを含有する防汚膜4を形成する工程である。バインダ前駆体の硬化処理としては、加熱処理が挙げられるが、これに限定されるものではない。 (Process (III))
The
(ステップ170)
防汚膜形成組成物層を加熱処理して硬化することによって、防汚膜260を得る。 (Step 170)
Theantifouling film 260 is obtained by curing the antifouling film forming composition layer by heat treatment.
防汚膜形成組成物層を加熱処理して硬化することによって、防汚膜260を得る。 (Step 170)
The
防汚膜形成組成物層を加熱処理することによって、バインダ前駆体が単独で、または粒子と反応して、バインダとなり、防汚膜4が形成される。防汚膜形成組成物が、パールネックレス状シリカおよび酸化ケイ素前駆体を含む場合、酸化ケイ素前駆体が反応して、バインダが得られる。酸化ケイ素前駆体が、ケイ酸およびアルコキシシラン化合物である場合、ケイ酸およびアルコキシシラン化合物が加水分解縮合して、ケイ酸およびアルコキシシラン化合物の加水分解物である酸化ケイ素が得られる。なお、ケイ酸およびアルコキシシラン化合物の少なくとも一部は、場合により、パールネックレス状シリカ粒子に存在するシラノール基と加水分解縮合する。
By heat-treating the antifouling film forming composition layer, the binder precursor alone or reacts with the particles to become a binder, and the antifouling film 4 is formed. When the antifouling film-forming composition contains pearl necklace-like silica and a silicon oxide precursor, the silicon oxide precursor reacts to obtain a binder. When the silicon oxide precursor is silicic acid and an alkoxysilane compound, the silicic acid and the alkoxysilane compound are hydrolyzed and condensed to obtain silicon oxide that is a hydrolyzate of the silicic acid and the alkoxysilane compound. In some cases, at least a part of the silicic acid and the alkoxysilane compound is hydrolyzed and condensed with silanol groups present in the pearl necklace-like silica particles.
防汚膜形成組成物層の熱処理は、所定温度に設定した電気炉、ガス炉、赤外加熱炉等の任意の加熱手段により行なうことができる。熱処理温度は、20~700℃が好ましく、80~500℃がより好ましく、100~400℃が特に好ましい。熱処理温度が20℃以上であると、積層膜と防汚膜との密着力がより向上する。熱処理温度が700℃以下であると、基材の熱による劣化が抑制され、また生産性に優れる。熱処理時間は、熱処理温度により異なるが、1~180分の間であることが好ましく、より好ましくは5~120分であり、特に好ましくは10~60分である。熱処理時間が1分以上であると、基体と防汚膜4との密着力がより向上する。熱処理時間が180分以下であると、基材の熱による劣化が抑制され、また生産性に優れる。
The heat treatment of the antifouling film forming composition layer can be performed by any heating means such as an electric furnace, a gas furnace, an infrared heating furnace set at a predetermined temperature. The heat treatment temperature is preferably 20 to 700 ° C, more preferably 80 to 500 ° C, and particularly preferably 100 to 400 ° C. When the heat treatment temperature is 20 ° C. or higher, the adhesion between the laminated film and the antifouling film is further improved. When the heat treatment temperature is 700 ° C. or lower, deterioration of the base material due to heat is suppressed, and the productivity is excellent. The heat treatment time varies depending on the heat treatment temperature, but is preferably 1 to 180 minutes, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes. When the heat treatment time is 1 minute or longer, the adhesion between the substrate and the antifouling film 4 is further improved. When the heat treatment time is 180 minutes or less, deterioration of the base material due to heat is suppressed, and the productivity is excellent.
以上の工程により、ガラス基板220および積層膜230により構成された、反射防止膜付きガラスを製造することができる。さらに、積層膜230(3)上に防汚膜260を形成した、反射防止性能および防汚性能を備えるガラス物品1を製造することができる。
Through the above steps, a glass with an antireflection film constituted by the glass substrate 220 and the laminated film 230 can be manufactured. Furthermore, the glass article 1 having antireflection performance and antifouling performance, in which the antifouling film 260 is formed on the laminated film 230 (3), can be manufactured.
なお、上記した本発明の一実施例による反射防止膜付きガラスの製造方法は、単なる一例に過ぎず、反射防止膜付きガラスがその他の方法で製造され得ることは当業者には明らかである。例えば、上記記載では、最外層260のみがシリンドリカルマグネトロンスパッタリング法で成膜される場合を例に説明したが、さらに第1ないし第3の層の少なくとも1つをシリンドリカルマグネトロンスパッタリング法で成膜しても良い。
In addition, the manufacturing method of the glass with an antireflection film according to an embodiment of the present invention described above is merely an example, and it is obvious to those skilled in the art that the glass with an antireflection film can be manufactured by other methods. For example, in the above description, the case where only the outermost layer 260 is formed by the cylindrical magnetron sputtering method has been described as an example. However, at least one of the first to third layers is formed by the cylindrical magnetron sputtering method. Also good.
また、上記記載では、図4に示した反射防止膜付きガラス200において、積層膜230中の第4の層255が省略された構成を例に、その製造方法について説明した。しかしながら、上記第1の製造方法が、その他の構成の積層膜を有する反射防止膜付きガラスについても、同様に適用し得ることは、当業者には明らかである。
Further, in the above description, the manufacturing method has been described by taking as an example a configuration in which the fourth layer 255 in the laminated film 230 is omitted in the glass 200 with an antireflection film shown in FIG. However, it will be apparent to those skilled in the art that the first manufacturing method can be similarly applied to a glass with an antireflection film having a laminated film having other configurations.
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[防汚性能および防曇性能を有するガラス物品の実施例]
まず、防汚性能および防曇性能を有するガラス物品の実施例について述べる。なお、以下の説明において、例1~2は本発明の防汚性能および防曇性能を有するガラス物品の実施例であり、例3~4は比較例である。 [Example of glass article having antifouling performance and antifogging performance]
First, examples of glass articles having antifouling performance and antifogging performance will be described. In the following description, Examples 1 and 2 are examples of glass articles having antifouling performance and antifogging performance of the present invention, and Examples 3 to 4 are comparative examples.
まず、防汚性能および防曇性能を有するガラス物品の実施例について述べる。なお、以下の説明において、例1~2は本発明の防汚性能および防曇性能を有するガラス物品の実施例であり、例3~4は比較例である。 [Example of glass article having antifouling performance and antifogging performance]
First, examples of glass articles having antifouling performance and antifogging performance will be described. In the following description, Examples 1 and 2 are examples of glass articles having antifouling performance and antifogging performance of the present invention, and Examples 3 to 4 are comparative examples.
(積層膜の形成)
以下の方法で、ガラス基板の一方の表面に積層膜を形成して、低反射積層構造試料を作製した。まず、縦25mm×横50mm×厚さ2mmの形状を有するソーダライムガラス製のガラス基板を準備した。次に、このガラス基板の一方の表面に、スパッタリング法により、第1ないし第4の層からなる、合計4層の積層膜を形成した。積層膜は、ガラス基板に近い側から、以下の層構成を有する。
第1の層:SiO2層、厚さ198nm
第2の層:TiO2層、厚さ8nm
第3の層:SiO2層、厚さ66nm
第4の層:TiO2層、厚さ11nm (Formation of laminated film)
A laminated film was formed on one surface of the glass substrate by the following method to produce a low reflection laminated structure sample. First, a glass substrate made of soda lime glass having a shape of 25 mm long × 50 mm wide × 2 mm thick was prepared. Next, a total of four laminated films composed of the first to fourth layers were formed on one surface of the glass substrate by sputtering. The laminated film has the following layer structure from the side close to the glass substrate.
First layer: SiO 2 layer, thickness 198 nm
Second layer: TiO 2 layer, thickness 8 nm
Third layer: SiO 2 layer, thickness 66 nm
Fourth layer: TiO 2 layer, thickness 11 nm
以下の方法で、ガラス基板の一方の表面に積層膜を形成して、低反射積層構造試料を作製した。まず、縦25mm×横50mm×厚さ2mmの形状を有するソーダライムガラス製のガラス基板を準備した。次に、このガラス基板の一方の表面に、スパッタリング法により、第1ないし第4の層からなる、合計4層の積層膜を形成した。積層膜は、ガラス基板に近い側から、以下の層構成を有する。
第1の層:SiO2層、厚さ198nm
第2の層:TiO2層、厚さ8nm
第3の層:SiO2層、厚さ66nm
第4の層:TiO2層、厚さ11nm (Formation of laminated film)
A laminated film was formed on one surface of the glass substrate by the following method to produce a low reflection laminated structure sample. First, a glass substrate made of soda lime glass having a shape of 25 mm long × 50 mm wide × 2 mm thick was prepared. Next, a total of four laminated films composed of the first to fourth layers were formed on one surface of the glass substrate by sputtering. The laminated film has the following layer structure from the side close to the glass substrate.
First layer: SiO 2 layer, thickness 198 nm
Second layer: TiO 2 layer, thickness 8 nm
Third layer: SiO 2 layer, thickness 66 nm
Fourth layer: TiO 2 layer, thickness 11 nm
第1の層は、ターゲットとしてSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.17Paとした。第2の層は、ターゲットとしてTiOxターゲット(x<2)(製品名:TXOターゲット、AGCセラミックス社製)を使用し、Ar+O2雰囲気(酸素:8体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.37Paとした。第3の層は、ターゲットとしてSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.17Paとした。第4の層は、ターゲットとして、上述のTiOxターゲット(x<2)を使用し、Ar+O2雰囲気(酸素:8体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.37Paとした。
The first layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa. The second layer uses a TiO x target (x <2) (product name: TXO target, manufactured by AGC Ceramics) as a target, and is formed by sputtering under an Ar + O 2 atmosphere (oxygen: 8% by volume). did. The sputtering pressure was 0.37 Pa. The third layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa. The fourth layer was formed by sputtering using the above-described TiO x target (x <2) as a target under an Ar + O 2 atmosphere (oxygen: 8% by volume). The sputtering pressure was 0.37 Pa.
(例1)
(バインダ前駆体(1)の調製)
蒸留水の237.5gを撹拌しながら、これにケイ酸ソーダ4号(日本化学工業社製、SiO2:24.0質量%、Na2O:7.0質量%、SiO2/Na2Oのモル比:3.5/1)の62.5g、陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK1BH)の180gとを、この順で加え、10分以上撹拌した後、吸引ろ過により陽イオン交換樹脂を分離し、シリカ換算の固形分濃度が5質量%の脱塩ケイ酸ソーダ液として、酸化ケイ素前駆体であるバインダ前駆体(1)を得た。 (Example 1)
(Preparation of binder precursor (1))
While stirring 237.5 g of distilled water, sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd., SiO 2 : 24.0 mass%, Na 2 O: 7.0 mass%, SiO 2 / Na 2 O 62.5 g of a molar ratio of 3.5 / 1) and 180 g of a cation exchange resin (Diaion SK1BH, manufactured by Mitsubishi Chemical Corporation) were added in this order, and the mixture was stirred for 10 minutes or more and then positively filtered by suction filtration. The ion exchange resin was separated, and a binder precursor (1), which is a silicon oxide precursor, was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silica of 5% by mass.
(バインダ前駆体(1)の調製)
蒸留水の237.5gを撹拌しながら、これにケイ酸ソーダ4号(日本化学工業社製、SiO2:24.0質量%、Na2O:7.0質量%、SiO2/Na2Oのモル比:3.5/1)の62.5g、陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK1BH)の180gとを、この順で加え、10分以上撹拌した後、吸引ろ過により陽イオン交換樹脂を分離し、シリカ換算の固形分濃度が5質量%の脱塩ケイ酸ソーダ液として、酸化ケイ素前駆体であるバインダ前駆体(1)を得た。 (Example 1)
(Preparation of binder precursor (1))
While stirring 237.5 g of distilled water, sodium silicate 4 (manufactured by Nippon Chemical Industry Co., Ltd., SiO 2 : 24.0 mass%, Na 2 O: 7.0 mass%, SiO 2 / Na 2 O 62.5 g of a molar ratio of 3.5 / 1) and 180 g of a cation exchange resin (Diaion SK1BH, manufactured by Mitsubishi Chemical Corporation) were added in this order, and the mixture was stirred for 10 minutes or more and then positively filtered by suction filtration. The ion exchange resin was separated, and a binder precursor (1), which is a silicon oxide precursor, was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silica of 5% by mass.
(防汚膜形成組成物の調製)
2-プロパノールの6.58gを撹拌しながら、これに一次粒子径が10~18nmの球状シリカが80~120nmの長さに結合したパールネックレス状シリカの分散液(日産化学社製、スノーテックスPS-SO、平均一次粒子径:15nm、平均二次粒子径:88nm)の1.19gと、バインダ前駆体(1)の2.18gとを、この順で加え、シリカ換算の固形分濃度が2.95質量%、パールネックレス状シリカと脱塩ケイ酸ソーダ液とのシリカ換算の固形分質量比率が60/40である防汚膜形成組成物を調製した。 (Preparation of antifouling film forming composition)
While stirring 6.58 g of 2-propanol, a dispersion of pearl necklace-like silica in which spherical silica having a primary particle diameter of 10 to 18 nm is bonded to a length of 80 to 120 nm (Snowtex PS, manufactured by Nissan Chemical Co., Ltd.) -SO, average primary particle size: 15 nm, average secondary particle size: 88 nm) and 2.18 g of the binder precursor (1) were added in this order, and the solid content concentration in terms of silica was 2. An antifouling film-forming composition having a solid content mass ratio in terms of silica of .95% by mass and pearl necklace-like silica and sodium desalted silicate solution was prepared.
2-プロパノールの6.58gを撹拌しながら、これに一次粒子径が10~18nmの球状シリカが80~120nmの長さに結合したパールネックレス状シリカの分散液(日産化学社製、スノーテックスPS-SO、平均一次粒子径:15nm、平均二次粒子径:88nm)の1.19gと、バインダ前駆体(1)の2.18gとを、この順で加え、シリカ換算の固形分濃度が2.95質量%、パールネックレス状シリカと脱塩ケイ酸ソーダ液とのシリカ換算の固形分質量比率が60/40である防汚膜形成組成物を調製した。 (Preparation of antifouling film forming composition)
While stirring 6.58 g of 2-propanol, a dispersion of pearl necklace-like silica in which spherical silica having a primary particle diameter of 10 to 18 nm is bonded to a length of 80 to 120 nm (Snowtex PS, manufactured by Nissan Chemical Co., Ltd.) -SO, average primary particle size: 15 nm, average secondary particle size: 88 nm) and 2.18 g of the binder precursor (1) were added in this order, and the solid content concentration in terms of silica was 2. An antifouling film-forming composition having a solid content mass ratio in terms of silica of .95% by mass and pearl necklace-like silica and sodium desalted silicate solution was prepared.
(ガラス物品の製造)
スピンコータに低反射積層構造試料をセットし、防汚膜形成組成物を低反射積層構造試料の表面に2.0g滴下してスピンコートした。次に、防汚膜形成組成物の塗布膜を150℃で30分間加熱処理することによって、低反射積層構造試料上に防汚膜を形成してガラス物品を製造した。形成した防汚膜において、親水性バインダとしてのシリカに対する親水性粒子としてのパールネックレス状シリカの体積比は、57/43であった。 (Manufacture of glass articles)
A low-reflection laminate structure sample was set on a spin coater, and 2.0 g of the antifouling film forming composition was dropped on the surface of the low-reflection laminate structure sample and spin-coated. Next, the coating film of the antifouling film-forming composition was heat-treated at 150 ° C. for 30 minutes to form an antifouling film on the low-reflective laminated structure sample to produce a glass article. In the formed antifouling film, the volume ratio of the pearl necklace-like silica as the hydrophilic particles to the silica as the hydrophilic binder was 57/43.
スピンコータに低反射積層構造試料をセットし、防汚膜形成組成物を低反射積層構造試料の表面に2.0g滴下してスピンコートした。次に、防汚膜形成組成物の塗布膜を150℃で30分間加熱処理することによって、低反射積層構造試料上に防汚膜を形成してガラス物品を製造した。形成した防汚膜において、親水性バインダとしてのシリカに対する親水性粒子としてのパールネックレス状シリカの体積比は、57/43であった。 (Manufacture of glass articles)
A low-reflection laminate structure sample was set on a spin coater, and 2.0 g of the antifouling film forming composition was dropped on the surface of the low-reflection laminate structure sample and spin-coated. Next, the coating film of the antifouling film-forming composition was heat-treated at 150 ° C. for 30 minutes to form an antifouling film on the low-reflective laminated structure sample to produce a glass article. In the formed antifouling film, the volume ratio of the pearl necklace-like silica as the hydrophilic particles to the silica as the hydrophilic binder was 57/43.
(例2)
一次粒子径が10~18nmの球状シリカ粒子が80~120nmの長さに結合した鎖状シリカの分散液(日産化学社製、スノーテックスST-OUP、平均一次粒子径:15nm、平均二次粒子径:88nm)を使用する以外は、実施例1と同様にして低反射積層構造試料上に防汚膜を形成してガラス物品を製造し、以下の評価に供した。 (Example 2)
A dispersion of chain silica in which spherical silica particles having a primary particle size of 10 to 18 nm are bonded to a length of 80 to 120 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex ST-OUP, average primary particle size: 15 nm, average secondary particles) A glass article was produced by forming an antifouling film on a low reflection laminate structure sample in the same manner as in Example 1 except that the diameter was 88 nm), and subjected to the following evaluation.
一次粒子径が10~18nmの球状シリカ粒子が80~120nmの長さに結合した鎖状シリカの分散液(日産化学社製、スノーテックスST-OUP、平均一次粒子径:15nm、平均二次粒子径:88nm)を使用する以外は、実施例1と同様にして低反射積層構造試料上に防汚膜を形成してガラス物品を製造し、以下の評価に供した。 (Example 2)
A dispersion of chain silica in which spherical silica particles having a primary particle size of 10 to 18 nm are bonded to a length of 80 to 120 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex ST-OUP, average primary particle size: 15 nm, average secondary particles) A glass article was produced by forming an antifouling film on a low reflection laminate structure sample in the same manner as in Example 1 except that the diameter was 88 nm), and subjected to the following evaluation.
(例3)
一次粒子径が10~18nmの球状シリカ粒子の分散液(日産化学社製、スノーテックスIPA-ST、平均一次粒子径:15nm)を使用する以外は、実施例1と同様にして低反射積層構造試料上に防汚膜を形成してガラス物品を製造し、以下の評価に供した。 (Example 3)
Low reflection laminated structure in the same manner as in Example 1 except that a dispersion of spherical silica particles having a primary particle size of 10 to 18 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex IPA-ST, average primary particle size: 15 nm) is used. An antifouling film was formed on the sample to produce a glass article, which was subjected to the following evaluation.
一次粒子径が10~18nmの球状シリカ粒子の分散液(日産化学社製、スノーテックスIPA-ST、平均一次粒子径:15nm)を使用する以外は、実施例1と同様にして低反射積層構造試料上に防汚膜を形成してガラス物品を製造し、以下の評価に供した。 (Example 3)
Low reflection laminated structure in the same manner as in Example 1 except that a dispersion of spherical silica particles having a primary particle size of 10 to 18 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex IPA-ST, average primary particle size: 15 nm) is used. An antifouling film was formed on the sample to produce a glass article, which was subjected to the following evaluation.
(例4)
例1~3と同様の方法で5層からなる積層膜を形成した。ただし、ガラス基板に近い側から、以下の層構成とした。
第1の層:SiO2層、厚さ52nm
第2の層:TiO2層、厚さ15nm
第3の層:SiO2層、厚さ29nm
第4の層:TiO2層、厚さ106nm
第5の層:SiO2層、厚さ85nm (Example 4)
A laminated film consisting of five layers was formed in the same manner as in Examples 1 to 3. However, the following layer structure was used from the side close to the glass substrate.
First layer: SiO 2 layer, thickness 52 nm
Second layer: TiO 2 layer, thickness 15 nm
Third layer: SiO 2 layer, thickness 29 nm
Fourth layer: TiO 2 layer, thickness 106 nm
Fifth layer: SiO 2 layer, thickness 85 nm
例1~3と同様の方法で5層からなる積層膜を形成した。ただし、ガラス基板に近い側から、以下の層構成とした。
第1の層:SiO2層、厚さ52nm
第2の層:TiO2層、厚さ15nm
第3の層:SiO2層、厚さ29nm
第4の層:TiO2層、厚さ106nm
第5の層:SiO2層、厚さ85nm (Example 4)
A laminated film consisting of five layers was formed in the same manner as in Examples 1 to 3. However, the following layer structure was used from the side close to the glass substrate.
First layer: SiO 2 layer, thickness 52 nm
Second layer: TiO 2 layer, thickness 15 nm
Third layer: SiO 2 layer, thickness 29 nm
Fourth layer: TiO 2 layer, thickness 106 nm
Fifth layer: SiO 2 layer, thickness 85 nm
(ガラス物品の評価)
例1~3のガラス物品および例4の積層膜試料の評価を、以下のようにして実施した。評価結果を表1に示す。 (Evaluation of glass articles)
Evaluation of the glass articles of Examples 1 to 3 and the laminated film sample of Example 4 was performed as follows. The evaluation results are shown in Table 1.
例1~3のガラス物品および例4の積層膜試料の評価を、以下のようにして実施した。評価結果を表1に示す。 (Evaluation of glass articles)
Evaluation of the glass articles of Examples 1 to 3 and the laminated film sample of Example 4 was performed as follows. The evaluation results are shown in Table 1.
(粒子の平均一次粒子径)
ガラス物品の防汚膜を有する面に対して、上方から防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、無作為に100個の粒子を抽出し、各粒子の直径の平均値を粒子の平均一次粒子径として求めた。 (Average primary particle size of particles)
The surface of the antifouling film of the glass article is observed from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and randomly obtained from the obtained image. 100 particles were extracted, and the average diameter of each particle was determined as the average primary particle diameter of the particles.
ガラス物品の防汚膜を有する面に対して、上方から防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、無作為に100個の粒子を抽出し、各粒子の直径の平均値を粒子の平均一次粒子径として求めた。 (Average primary particle size of particles)
The surface of the antifouling film of the glass article is observed from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and randomly obtained from the obtained image. 100 particles were extracted, and the average diameter of each particle was determined as the average primary particle diameter of the particles.
(表面粗さ(Ra))
走査型プローブ顕微鏡(SIIナノテクノロジー社製、型式:SPA400)を用いて、Raを測定した。
(顕微鏡の設定条件)
カンチレバーはSI-DF40(背面AL有)、XYデータ数256点、走査エリアは10μm×10μmで測定した。 (Surface roughness (Ra))
Ra was measured using a scanning probe microscope (SII Nanotechnology, Model: SPA400).
(Microscope setting conditions)
The cantilever was measured with SI-DF40 (with rear surface AL), 256 XY data, and scanning area of 10 μm × 10 μm.
走査型プローブ顕微鏡(SIIナノテクノロジー社製、型式:SPA400)を用いて、Raを測定した。
(顕微鏡の設定条件)
カンチレバーはSI-DF40(背面AL有)、XYデータ数256点、走査エリアは10μm×10μmで測定した。 (Surface roughness (Ra))
Ra was measured using a scanning probe microscope (SII Nanotechnology, Model: SPA400).
(Microscope setting conditions)
The cantilever was measured with SI-DF40 (with rear surface AL), 256 XY data, and scanning area of 10 μm × 10 μm.
(頂点間距離)
ガラス物品の断面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、積層膜の防汚膜を有する面に、平行な方向に無作為に抽出された1.5μmの範囲において、積層膜の表面からの高さが最も高い突起体を基準とし、その高さの90%以上の高さを有する突起体について、隣り合う突起体の頂点間の距離を全て測定し、頂点間距離の平均値を算出した。 (Vertex distance)
The cross section of the glass article is observed with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and the obtained image is randomly selected in a direction parallel to the surface of the laminated film having the antifouling film. In the extracted range of 1.5 μm, the protrusion having the highest height from the surface of the laminated film is used as a reference, and the protrusion having a height of 90% or more of the height is between apexes of adjacent protrusions. All the distances were measured, and the average value of the distance between the vertices was calculated.
ガラス物品の断面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、積層膜の防汚膜を有する面に、平行な方向に無作為に抽出された1.5μmの範囲において、積層膜の表面からの高さが最も高い突起体を基準とし、その高さの90%以上の高さを有する突起体について、隣り合う突起体の頂点間の距離を全て測定し、頂点間距離の平均値を算出した。 (Vertex distance)
The cross section of the glass article is observed with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and the obtained image is randomly selected in a direction parallel to the surface of the laminated film having the antifouling film. In the extracted range of 1.5 μm, the protrusion having the highest height from the surface of the laminated film is used as a reference, and the protrusion having a height of 90% or more of the height is between apexes of adjacent protrusions. All the distances were measured, and the average value of the distance between the vertices was calculated.
(被覆率)
ガラス物品の主面に対して上方から、防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、画像変換ソフト(image J)により、無作為に抽出された1μm×1μmの範囲内において、シリカ粒子が付着している部分の面積比率を算出した。 (Coverage)
The surface of the antifouling film is observed from above with respect to the main surface of the glass article with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and image conversion software (image J ) To calculate the area ratio of the portion where the silica particles are adhered within the randomly extracted range of 1 μm × 1 μm.
ガラス物品の主面に対して上方から、防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、画像変換ソフト(image J)により、無作為に抽出された1μm×1μmの範囲内において、シリカ粒子が付着している部分の面積比率を算出した。 (Coverage)
The surface of the antifouling film is observed from above with respect to the main surface of the glass article with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and image conversion software (image J ) To calculate the area ratio of the portion where the silica particles are adhered within the randomly extracted range of 1 μm × 1 μm.
(窒素吸着量)
ガラス物品を5mm×30mmの短冊状に加工し、20枚を比表面積測定装置に投入して測定し、窒素吸着量を算出した。 (Nitrogen adsorption amount)
The glass article was processed into a 5 mm × 30 mm strip, and 20 sheets were put into a specific surface area measuring device and measured, and the nitrogen adsorption amount was calculated.
ガラス物品を5mm×30mmの短冊状に加工し、20枚を比表面積測定装置に投入して測定し、窒素吸着量を算出した。 (Nitrogen adsorption amount)
The glass article was processed into a 5 mm × 30 mm strip, and 20 sheets were put into a specific surface area measuring device and measured, and the nitrogen adsorption amount was calculated.
(水との接触角)
有機汚染物による接触角への影響を評価するために、ガラス製の密閉容器内に、蓋のない容器に入れたオレイン酸と共に12時間放置し、その後に水との接触角を評価した。接触角はJIS R 3257に基づいて評価した。 (Contact angle with water)
In order to evaluate the influence of organic contaminants on the contact angle, the sample was left in a sealed glass container with oleic acid in a container without a lid for 12 hours, and then the contact angle with water was evaluated. The contact angle was evaluated based on JIS R 3257.
有機汚染物による接触角への影響を評価するために、ガラス製の密閉容器内に、蓋のない容器に入れたオレイン酸と共に12時間放置し、その後に水との接触角を評価した。接触角はJIS R 3257に基づいて評価した。 (Contact angle with water)
In order to evaluate the influence of organic contaminants on the contact angle, the sample was left in a sealed glass container with oleic acid in a container without a lid for 12 hours, and then the contact angle with water was evaluated. The contact angle was evaluated based on JIS R 3257.
(防曇性)
上部に蒸気排出口を形成した密閉可能な容器を準備した。この容器の内部に温浴を入れて40℃に加温して、蒸気を発生させた。この評価装置を25℃、55%RHの環境に設置し、ガラス物品を蒸気排出口に置いて、目視で曇り始める時間を評価した。 (Anti-fogging property)
A sealable container having a vapor outlet formed at the top was prepared. A warm bath was placed inside the container and heated to 40 ° C. to generate steam. This evaluation apparatus was installed in an environment of 25 ° C. and 55% RH, and a glass article was placed at the vapor outlet to evaluate the time when it began to cloud visually.
上部に蒸気排出口を形成した密閉可能な容器を準備した。この容器の内部に温浴を入れて40℃に加温して、蒸気を発生させた。この評価装置を25℃、55%RHの環境に設置し、ガラス物品を蒸気排出口に置いて、目視で曇り始める時間を評価した。 (Anti-fogging property)
A sealable container having a vapor outlet formed at the top was prepared. A warm bath was placed inside the container and heated to 40 ° C. to generate steam. This evaluation apparatus was installed in an environment of 25 ° C. and 55% RH, and a glass article was placed at the vapor outlet to evaluate the time when it began to cloud visually.
(反射率)
ガラス基板の積層膜が配置されない側の表面に、反射防止処理(粗表面化処理)を行った後、JIS R 3106に基づき、分光光度計(日立製作所社製、型式U-4100)を用いて波長400~700nmの範囲の分光反射率を測定し、この波長域での最大反射率を表1に記載した。 (Reflectance)
After performing antireflection treatment (roughening treatment) on the surface of the glass substrate on which the laminated film is not disposed, the wavelength is measured using a spectrophotometer (model U-4100, manufactured by Hitachi, Ltd.) based on JIS R 3106. The spectral reflectance in the range of 400 to 700 nm was measured, and the maximum reflectance in this wavelength region is shown in Table 1.
ガラス基板の積層膜が配置されない側の表面に、反射防止処理(粗表面化処理)を行った後、JIS R 3106に基づき、分光光度計(日立製作所社製、型式U-4100)を用いて波長400~700nmの範囲の分光反射率を測定し、この波長域での最大反射率を表1に記載した。 (Reflectance)
After performing antireflection treatment (roughening treatment) on the surface of the glass substrate on which the laminated film is not disposed, the wavelength is measured using a spectrophotometer (model U-4100, manufactured by Hitachi, Ltd.) based on JIS R 3106. The spectral reflectance in the range of 400 to 700 nm was measured, and the maximum reflectance in this wavelength region is shown in Table 1.
表1に示されるように、例1~2のガラス物品は、水との接触角、窒素吸着量、防曇性の評価結果から防汚性能と防曇性能に優れていることが分かる。親水性粒子としてシリカ粒子(非凝集粒子)を用いた例3は、防汚膜を形成していない例4より、水との接触角や窒素吸着量が若干向上しているものの、充分な防曇性能は得られなかった。
As shown in Table 1, it can be seen that the glass articles of Examples 1 and 2 are excellent in antifouling performance and antifogging performance from the evaluation results of contact angle with water, nitrogen adsorption amount, and antifogging property. In Example 3 using silica particles (non-aggregated particles) as hydrophilic particles, although the contact angle with water and the amount of nitrogen adsorption are slightly improved compared to Example 4 in which an antifouling film is not formed, sufficient protection is achieved. No haze performance was obtained.
[耐アルカリ性を備えた積層膜付きガラスの実施例]
次に、耐アルカリ性を備えた積層膜付きガラスの実施例について説明する。なお、以下の説明において、例5~例8は、本発明の耐アルカリ性を備えた積層膜付きガラスの実施例であり、例9は、比較例である。 [Examples of glass with laminated film having alkali resistance]
Next, the Example of the glass with a laminated film provided with alkali resistance is described. In the following description, Examples 5 to 8 are examples of the glass with a laminated film having alkali resistance of the present invention, and Example 9 is a comparative example.
次に、耐アルカリ性を備えた積層膜付きガラスの実施例について説明する。なお、以下の説明において、例5~例8は、本発明の耐アルカリ性を備えた積層膜付きガラスの実施例であり、例9は、比較例である。 [Examples of glass with laminated film having alkali resistance]
Next, the Example of the glass with a laminated film provided with alkali resistance is described. In the following description, Examples 5 to 8 are examples of the glass with a laminated film having alkali resistance of the present invention, and Example 9 is a comparative example.
(例5)
以下の方法で、ガラス基板の一方の表面に積層膜を構成して、反射防止膜付きガラス用サンプル(以下、「例5に係るサンプル」と称する)を製作した。 (Example 5)
A laminated film was formed on one surface of the glass substrate by the following method to produce a glass sample with an antireflection film (hereinafter referred to as “sample according to Example 5”).
以下の方法で、ガラス基板の一方の表面に積層膜を構成して、反射防止膜付きガラス用サンプル(以下、「例5に係るサンプル」と称する)を製作した。 (Example 5)
A laminated film was formed on one surface of the glass substrate by the following method to produce a glass sample with an antireflection film (hereinafter referred to as “sample according to Example 5”).
まず、縦25mm×横50mm×厚さ2mmのガラス基板(ソーダライムガラス)を準備した。次に、スパッタリング法により、ガラス基板の一方の表面に、第1ないし第4の層からなる、合計4層の積層膜を形成した。積層膜は、ガラス基板に近い側から、以下の層構成を有する。
第1の層:TiO2層、厚さ11nm
第2の層:SiO2層、厚さ31nm
第3の層:TiO2層、厚さ99nm
第4の層:90モル%SiO2-10モル%ZrO2層、厚さ83nm First, a glass substrate (soda lime glass) of 25 mm length × 50 mm width × 2 mm thickness was prepared. Next, a total of four laminated films composed of the first to fourth layers were formed on one surface of the glass substrate by sputtering. The laminated film has the following layer structure from the side close to the glass substrate.
First layer: TiO 2 layer, thickness 11 nm
Second layer: SiO 2 layer,thickness 31 nm
Third layer: TiO 2 layer, thickness 99 nm
Fourth layer: 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 83 nm
第1の層:TiO2層、厚さ11nm
第2の層:SiO2層、厚さ31nm
第3の層:TiO2層、厚さ99nm
第4の層:90モル%SiO2-10モル%ZrO2層、厚さ83nm First, a glass substrate (soda lime glass) of 25 mm length × 50 mm width × 2 mm thickness was prepared. Next, a total of four laminated films composed of the first to fourth layers were formed on one surface of the glass substrate by sputtering. The laminated film has the following layer structure from the side close to the glass substrate.
First layer: TiO 2 layer, thickness 11 nm
Second layer: SiO 2 layer,
Third layer: TiO 2 layer, thickness 99 nm
Fourth layer: 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 83 nm
第1の層は、ターゲットとしてTiOxターゲット(x<2)(製品名TXOターゲット、AGCセラミックス社製)を使用し、Ar+O2雰囲気(酸素:8体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.37Paとした。
The first layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 8% by volume) using a TiOx target (x <2) (product name: TXO target, manufactured by AGC Ceramics) as a target. The sputtering pressure was 0.37 Pa.
第2の層は、ターゲットとしてSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.17Paとした。
The second layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa.
第3の層は、ターゲットとして、前述のTiOxターゲット(x<2)を使用し、Ar+O2雰囲気(酸素:8体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.37Paとした。
The third layer was formed by sputtering using the above-described TiOx target (x <2) as a target under an Ar + O 2 atmosphere (oxygen: 8% by volume). The sputtering pressure was 0.37 Pa.
第4の層は、ターゲットとして10原子%のZrがドープされたSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.12Paとした。
The fourth layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 10 atomic% Zr as a target. The sputtering pressure was 0.12 Pa.
なお、ガラス基板の積層膜が配置されていない側の表面には、反射防止処理(粗表面化処理)を行った。
In addition, an antireflection treatment (roughening treatment) was performed on the surface of the glass substrate on which the laminated film is not disposed.
(例6)
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例6に係るサンプル」と称する)を製作した。ただし、例6では、積層膜は以下の層構成とした。
第1の層:TiO2層、厚さ13nm
第2の層:SiO2層、厚さ28nm
第3の層:TiO2層、厚さ97nm
第4の層:80モル%SiO2-20モル%ZrO2層、厚さ68nm
なお、第4の層は、ターゲットとして20原子%のZrがドープされたSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.12Paとした。 (Example 6)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 6”) was produced in the same manner as in Example 5. However, in Example 6, the laminated film has the following layer configuration.
First layer: TiO 2 layer, thickness 13 nm
Second layer: SiO 2 layer, thickness 28 nm
Third layer: TiO 2 layer, thickness 97 nm
Fourth layer: 80 mol% SiO 2 -20 mol% ZrO 2 layer, thickness 68 nm
Note that the fourth layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 20 atomic% Zr as a target. The sputtering pressure was 0.12 Pa.
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例6に係るサンプル」と称する)を製作した。ただし、例6では、積層膜は以下の層構成とした。
第1の層:TiO2層、厚さ13nm
第2の層:SiO2層、厚さ28nm
第3の層:TiO2層、厚さ97nm
第4の層:80モル%SiO2-20モル%ZrO2層、厚さ68nm
なお、第4の層は、ターゲットとして20原子%のZrがドープされたSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.12Paとした。 (Example 6)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 6”) was produced in the same manner as in Example 5. However, in Example 6, the laminated film has the following layer configuration.
First layer: TiO 2 layer, thickness 13 nm
Second layer: SiO 2 layer, thickness 28 nm
Third layer: TiO 2 layer, thickness 97 nm
Fourth layer: 80 mol% SiO 2 -20 mol% ZrO 2 layer, thickness 68 nm
Note that the fourth layer was formed by sputtering under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 20 atomic% Zr as a target. The sputtering pressure was 0.12 Pa.
(例7)
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例7に係るサンプル」と称する)を製作した。ただし、例7では、積層膜は以下の層構成とした。
第1の層:TiO2層、厚さ16nm
第2の層:SiO2層、厚さ25nm
第3の層:TiO2層、厚さ65nm
第4の層:67モル%SiO2-33モル%ZrO2層、厚さ76nm
なお、第4の層は、ターゲットとして33原子%のZrがドープされたSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.12Paとした。 (Example 7)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 7”) was produced in the same manner as in Example 5. However, in Example 7, the laminated film had the following layer configuration.
First layer: TiO 2 layer, thickness 16 nm
Second layer: SiO 2 layer, thickness 25 nm
Third layer: TiO 2 layer, thickness 65 nm
Fourth layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer, thickness 76 nm
Note that the fourth layer was formed by a sputtering method under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 33 atomic% of Zr as a target. The sputtering pressure was 0.12 Pa.
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例7に係るサンプル」と称する)を製作した。ただし、例7では、積層膜は以下の層構成とした。
第1の層:TiO2層、厚さ16nm
第2の層:SiO2層、厚さ25nm
第3の層:TiO2層、厚さ65nm
第4の層:67モル%SiO2-33モル%ZrO2層、厚さ76nm
なお、第4の層は、ターゲットとして33原子%のZrがドープされたSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.12Paとした。 (Example 7)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 7”) was produced in the same manner as in Example 5. However, in Example 7, the laminated film had the following layer configuration.
First layer: TiO 2 layer, thickness 16 nm
Second layer: SiO 2 layer, thickness 25 nm
Third layer: TiO 2 layer, thickness 65 nm
Fourth layer: 67 mol% SiO 2 -33 mol% ZrO 2 layer, thickness 76 nm
Note that the fourth layer was formed by a sputtering method under an Ar + O 2 atmosphere (oxygen: 60% by volume) using a Si target doped with 33 atomic% of Zr as a target. The sputtering pressure was 0.12 Pa.
(例8)
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例8に係るサンプル」と称する)を製作した。ただし、例8では、ガラス基板の両側に、同一の積層膜を形成した。従って、ガラス基板に対して、反射防止処理(粗表面化処理)は実施していない。各積層膜は、以下の層構成とした。
第1の層:TiO2層、厚さ12nm
第2の層:SiO2層、厚さ30nm
第3の層:TiO2層、厚さ99nm
第4の層:90モル%SiO2-10モル%ZrO2層、厚さ81nm (Example 8)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 8”) was produced in the same manner as in Example 5. However, in Example 8, the same laminated film was formed on both sides of the glass substrate. Therefore, the antireflection treatment (roughening treatment) is not performed on the glass substrate. Each laminated film had the following layer configuration.
First layer: TiO 2 layer, thickness 12 nm
Second layer: SiO 2 layer, thickness 30 nm
Third layer: TiO 2 layer, thickness 99 nm
Fourth layer: 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 81 nm
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例8に係るサンプル」と称する)を製作した。ただし、例8では、ガラス基板の両側に、同一の積層膜を形成した。従って、ガラス基板に対して、反射防止処理(粗表面化処理)は実施していない。各積層膜は、以下の層構成とした。
第1の層:TiO2層、厚さ12nm
第2の層:SiO2層、厚さ30nm
第3の層:TiO2層、厚さ99nm
第4の層:90モル%SiO2-10モル%ZrO2層、厚さ81nm (Example 8)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 8”) was produced in the same manner as in Example 5. However, in Example 8, the same laminated film was formed on both sides of the glass substrate. Therefore, the antireflection treatment (roughening treatment) is not performed on the glass substrate. Each laminated film had the following layer configuration.
First layer: TiO 2 layer, thickness 12 nm
Second layer: SiO 2 layer, thickness 30 nm
Third layer: TiO 2 layer, thickness 99 nm
Fourth layer: 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 81 nm
(例9)
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例9に係るサンプル」と称する)を製作した。ただし、例9では、積層膜は以下の層構成とした。
第1の層:TiO2層、厚さ13nm
第2の層:SiO2層、厚さ28nm
第3の層:TiO2層、厚さ97nm
第4の層:SiO2層、厚さ81nm
なお、第4の層は、ターゲットとしてSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.17Paとした。 (Example 9)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 9”) was produced in the same manner as in Example 5. However, in Example 9, the laminated film had the following layer configuration.
First layer: TiO 2 layer, thickness 13 nm
Second layer: SiO 2 layer, thickness 28 nm
Third layer: TiO 2 layer, thickness 97 nm
Fourth layer: SiO 2 layer, thickness 81 nm
Note that the fourth layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa.
例5と同様の方法で、反射防止膜付きガラス用サンプル(以下、「例9に係るサンプル」と称する)を製作した。ただし、例9では、積層膜は以下の層構成とした。
第1の層:TiO2層、厚さ13nm
第2の層:SiO2層、厚さ28nm
第3の層:TiO2層、厚さ97nm
第4の層:SiO2層、厚さ81nm
なお、第4の層は、ターゲットとしてSiターゲットを使用し、Ar+O2雰囲気(酸素:60体積%)下でのスパッタリング法により成膜した。スパッタリング圧力は、0.17Paとした。 (Example 9)
A glass sample with an antireflection film (hereinafter referred to as “sample according to Example 9”) was produced in the same manner as in Example 5. However, in Example 9, the laminated film had the following layer configuration.
First layer: TiO 2 layer, thickness 13 nm
Second layer: SiO 2 layer, thickness 28 nm
Third layer: TiO 2 layer, thickness 97 nm
Fourth layer: SiO 2 layer, thickness 81 nm
Note that the fourth layer was formed by sputtering using an Si target as a target and under an Ar + O 2 atmosphere (oxygen: 60% by volume). The sputtering pressure was 0.17 Pa.
(積層膜の評価)
前述の方法で作製した例5~例9に係る各サンプルを用いて耐アルカリ特性の評価を行った。耐アルカリ特性の評価は、以下の耐アルカリ特性試験により実施した。 (Evaluation of laminated film)
The alkali resistance characteristics were evaluated using the samples according to Examples 5 to 9 manufactured by the method described above. The evaluation of alkali resistance was performed by the following alkali resistance test.
前述の方法で作製した例5~例9に係る各サンプルを用いて耐アルカリ特性の評価を行った。耐アルカリ特性の評価は、以下の耐アルカリ特性試験により実施した。 (Evaluation of laminated film)
The alkali resistance characteristics were evaluated using the samples according to Examples 5 to 9 manufactured by the method described above. The evaluation of alkali resistance was performed by the following alkali resistance test.
(耐アルカリ特性試験)
各サンプルに対して、積層膜が配置された側(例8に係るサンプルではどちらか一方の側)から光を照射し、分光光度計により反射率(初期反射率)を測定する。次に、各サンプルを、90℃に加熱した濃度0.1kmol/m3のNaOH水溶液中に2時間浸漬させる。サンプルを水溶液から取り出し、純水で洗浄した後、乾燥させる。乾燥後のサンプルを用いて、浸漬処理前と同様の測定を行い、反射率(処理後反射率)を測定する。各サンプルにおいて、初期反射率と処理後反射率を比較し、耐アルカリ特性を評価する。 (Alkali resistance test)
Each sample is irradiated with light from the side where the laminated film is disposed (one side in the sample according to Example 8), and the reflectance (initial reflectance) is measured by a spectrophotometer. Next, each sample is immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours. The sample is removed from the aqueous solution, washed with pure water, and then dried. Using the sample after drying, the same measurement as before the immersion treatment is performed, and the reflectance (reflectance after treatment) is measured. In each sample, the initial reflectance and the reflectance after treatment are compared to evaluate the alkali resistance.
各サンプルに対して、積層膜が配置された側(例8に係るサンプルではどちらか一方の側)から光を照射し、分光光度計により反射率(初期反射率)を測定する。次に、各サンプルを、90℃に加熱した濃度0.1kmol/m3のNaOH水溶液中に2時間浸漬させる。サンプルを水溶液から取り出し、純水で洗浄した後、乾燥させる。乾燥後のサンプルを用いて、浸漬処理前と同様の測定を行い、反射率(処理後反射率)を測定する。各サンプルにおいて、初期反射率と処理後反射率を比較し、耐アルカリ特性を評価する。 (Alkali resistance test)
Each sample is irradiated with light from the side where the laminated film is disposed (one side in the sample according to Example 8), and the reflectance (initial reflectance) is measured by a spectrophotometer. Next, each sample is immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours. The sample is removed from the aqueous solution, washed with pure water, and then dried. Using the sample after drying, the same measurement as before the immersion treatment is performed, and the reflectance (reflectance after treatment) is measured. In each sample, the initial reflectance and the reflectance after treatment are compared to evaluate the alkali resistance.
ここで、最上層は、90℃に加熱した濃度0.1kmol/m3のNaOH水溶液中に2時間浸漬させた試験前後の可視光反射率の差が0.4以内であることが好ましく、0.3以内であることがより好ましく、0.1以内であることが特に好ましい。
Here, the uppermost layer preferably has a difference in visible light reflectance before and after the test immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours within 0, Is more preferably within 3 and particularly preferably within 0.1.
(可視光反射率)
反射防止膜付きガラスの可視光反射率は、低いほど低反射特性が良いと言える。 (Visible light reflectance)
It can be said that the lower the visible light reflectance of the glass with an antireflection film, the better the low reflection characteristics.
反射防止膜付きガラスの可視光反射率は、低いほど低反射特性が良いと言える。 (Visible light reflectance)
It can be said that the lower the visible light reflectance of the glass with an antireflection film, the better the low reflection characteristics.
ガラス基板の一方の表面のみに積層膜が形成され、もう一方の表面を粗表面化処理した状態において、ISO9050(2003)に基づいて測定される当該反射防止膜付きガラスの可視光反射率が1%を超える場合、低反射特性は不十分である。前記可視光反射率は、1%以下であることが好ましい。
When the laminated film is formed only on one surface of the glass substrate and the other surface is roughened, the visible light reflectance of the glass with an antireflection film measured based on ISO 9050 (2003) is 1%. In the case of exceeding, the low reflection characteristics are insufficient. The visible light reflectance is preferably 1% or less.
ガラス基板の両表面に積層膜が形成された状態において、ISO9050(2003)に基づいて測定される当該反射防止膜付きガラスの可視光反射率が2%を超える場合、低反射特性は不十分である。前記可視光反射率は、2%以下であることが好ましく、1%以下であることがより好ましい。
In the state where laminated films are formed on both surfaces of the glass substrate, when the visible light reflectance of the glass with antireflection film measured based on ISO 9050 (2003) exceeds 2%, the low reflection characteristics are insufficient. is there. The visible light reflectance is preferably 2% or less, and more preferably 1% or less.
(反射色)
一般に、反射色が赤色系やオレンジ色系の反射防止膜付きガラスは敬遠される傾向にあり、反射色が青色系や緑色系の反射防止膜付きガラスが好まれることが多い。ただし、反射色が青色系や緑色系であっても、彩度が強過ぎる場合はやはり敬遠される傾向にある。 (Reflective color)
In general, glass with an antireflection film whose reflection color is red or orange tends to be avoided, and glass with an antireflection film whose reflection color is blue or green is often preferred. However, even if the reflected color is blue or green, if the saturation is too strong, it tends to be avoided.
一般に、反射色が赤色系やオレンジ色系の反射防止膜付きガラスは敬遠される傾向にあり、反射色が青色系や緑色系の反射防止膜付きガラスが好まれることが多い。ただし、反射色が青色系や緑色系であっても、彩度が強過ぎる場合はやはり敬遠される傾向にある。 (Reflective color)
In general, glass with an antireflection film whose reflection color is red or orange tends to be avoided, and glass with an antireflection film whose reflection color is blue or green is often preferred. However, even if the reflected color is blue or green, if the saturation is too strong, it tends to be avoided.
標準イルミナントD65、10度視野での反射色を、ISO11664-2に規定されるL*a*b*表色系の色座標(a*,b*)で表したとき、反射防止膜付きガラスの反射色が、(0,0)、(20,-20)、(-15,-20)、(-15,10)、および(0,10)の5点を頂点とする五角形の内側にあることが好ましい。このような場合、反射防止膜付きガラスの反射色は、赤色系やオレンジ色系ではなく、彩度が強過ぎることもない。
When the reflection color in the standard illuminant D65, 10-degree field of view is expressed by the color coordinates (a * , b * ) of the L * a * b * color system specified in ISO11664-2, The reflection color is inside the pentagon with 5 points (0,0), (20, -20), (-15, -20), (-15,10), and (0,10) as vertices It is preferable. In such a case, the reflection color of the glass with an antireflection film is not red or orange, and the saturation is not too strong.
以下の表2に、例5~例9に係る積層膜の仕様を示す。
Table 2 below shows the specifications of the laminated films according to Examples 5 to 9.
以下の表3に、例5~例9に係るサンプルの浸漬処理前後における可視光反射率、色座標a*、b*、および耐アルカリ特性試験結果をまとめて示す。可視光反射率は、ISO9050(2003)に基づいて測定された値である。また、色座標a*、b*は、標準イルミナントD65、10度視野での反射色であり、ISO11664-2(2007)によるL*a*b*表色系に基づく。
Table 3 below collectively shows the visible light reflectance, color coordinates a * , b * , and alkali resistance test results of the samples according to Examples 5 to 9 before and after the immersion treatment. The visible light reflectance is a value measured based on ISO9050 (2003). Further, the color coordinates a * and b * are reflected colors in the standard illuminant D65, 10-degree field of view, and are based on the L * a * b * color system according to ISO11664-2 (2007).
例5に係るサンプルでは、浸漬処理前後において、反射率特性はほぼ一致しており、両者に顕著な差異は認められなかった。すなわち、例5に係るサンプルでは、浸漬処理前および後の何れの場合も、波長約400nm~約650nmの範囲にわたって、十分に低い反射率を示すことが分かった。表3に示すように、例5に係るサンプルの浸漬処理前後の可視光反射率は、それぞれ0.26%、0.26%であった。すなわち、浸漬処理前後の何れも、例5に係るサンプルの可視光反射率は1%以下であった。このように、例5に係るサンプルは、良好な耐アルカリ特性を有することが確認された。
In the sample according to Example 5, the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 5 exhibited a sufficiently low reflectance over a wavelength range of about 400 nm to about 650 nm both before and after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 5 was 0.26% and 0.26%, respectively. That is, the visible light reflectance of the sample according to Example 5 was 1% or less before and after the immersion treatment. Thus, it was confirmed that the sample according to Example 5 has good alkali resistance.
また、表3に示すように、例5に係るサンプルの浸漬処理前後の反射色(a*,b*)は、それぞれ(-0.47,-4.14)、(-0.45,-3.61)であった。すなわち、浸漬処理前後の何れも、例5に係るサンプルの反射色は、前述の五角形の内側にあった。
Further, as shown in Table 3, the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 5 were (−0.47, −4.14), (−0.45, − 3.61). That is, the reflection color of the sample according to Example 5 before and after the immersion treatment was inside the pentagon described above.
例6に係るサンプルにおいても、浸漬処理前後において、反射率特性はほぼ一致しており、両者に顕著な差異は認められなかった。すなわち、例6に係るサンプルでは、浸漬処理前および後の何れの場合も、波長約400nm~約650nmの範囲にわたって、十分に低い反射率を示すことがわかった。表3に示すように、例6に係るサンプルの浸漬処理前後の可視光反射率は、それぞれ0.87%、0.90%であった。すなわち、浸漬処理前後の何れも、例6に係るサンプルの可視光反射率は1%以下であった。このように、例6に係るサンプルは、良好な耐アルカリ特性を有することが確認された。
Also in the sample according to Example 6, the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 6 exhibited a sufficiently low reflectance over a wavelength range of about 400 nm to about 650 nm both before and after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 6 was 0.87% and 0.90%, respectively. That is, the visible light reflectance of the sample according to Example 6 was 1% or less before and after the immersion treatment. Thus, it was confirmed that the sample according to Example 6 has good alkali resistance.
表3に示すように、例6に係るサンプルの浸漬処理前後の反射色(a*,b*)は、それぞれ(-3.35,0.75)、(-2.84,-1.03)であった。すなわち、浸漬処理前後の何れも、例6に係るサンプルの反射色は、前述の五角形の内側にあった。
As shown in Table 3, the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 6 were (−3.35, 0.75), (−2.84, −1.03), respectively. )Met. That is, the reflection color of the sample according to Example 6 was inside the above pentagon before and after the immersion treatment.
例7に係るサンプルにおいても、浸漬処理前後において、反射率特性はほぼ一致しており、両者に顕著な差異は認められなかった。すなわち、例7に係るサンプルでは、浸漬処理前および後の何れの場合も、波長約450nm~約650nmの範囲にわたって、十分に低い反射率を有することが分かった。表3に示すように、例7に係るサンプルの浸漬処理前後の可視光反射率は、それぞれ0.71%、0.70%であった。すなわち、浸漬処理前後の何れも、例7に係るサンプルの可視光反射率は1%以下であった。このように、例7に係るサンプルは、良好な耐アルカリ特性を有することが確認された。
Also in the sample according to Example 7, the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 7 had a sufficiently low reflectance over a wavelength range of about 450 nm to about 650 nm both before and after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 7 was 0.71% and 0.70%, respectively. That is, the visible light reflectance of the sample according to Example 7 was 1% or less before and after the immersion treatment. Thus, it was confirmed that the sample according to Example 7 has good alkali resistance.
また、表3に示すように、例7に係るサンプルの浸漬処理前後の反射色(a*,b*)は、それぞれ(9.98,-15.44)、(11.02,-17.86)であった。すなわち、浸漬処理前後の何れも、例7に係るサンプルの反射色は、前述の五角形の内側にあった。
Further, as shown in Table 3, the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 7 were (9.98, −15.44), (11.02, −17. 86). That is, the reflection color of the sample according to Example 7 before and after the immersion treatment was inside the above pentagon.
ここで、例5~例7の可視光反射率を比較する。例5~例7の最外層は、それぞれ90モル%SiO2-10モル%ZrO2層、80モル%SiO2-20モル%ZrO2層、67モル%SiO2-33モル%ZrO2層であるが、屈折率が最も低い90モル%SiO2-10モル%ZrO2層を最外層とした、例5の可視光反射率が最も低く、低反射特性が良いことがわかる。
Here, the visible light reflectances of Examples 5 to 7 are compared. The outermost layers of Examples 5 to 7 are 90 mol% SiO 2 -10 mol% ZrO 2 layer, 80 mol% SiO 2 -20 mol% ZrO 2 layer and 67 mol% SiO 2 -33 mol% ZrO 2 layer, respectively. However, it can be seen that the 90 nm% SiO 2 -10 mol% ZrO 2 layer having the lowest refractive index is the outermost layer, and the visible light reflectance of Example 5 is the lowest and the low reflection characteristics are good.
例8に係るサンプルにおいても、浸漬処理前後において、反射率特性はほぼ一致しており、両者に顕著な差異は認められなかった。すなわち、例8に係るサンプルでは、浸漬処理前および後の何れの場合も、波長約450nm~約650nmの範囲にわたって、十分に低い反射率を有することが分かった。表3に示すように、例8に係るサンプルの浸漬処理前後の可視光反射率は、それぞれ0.77%、0.74%であった。この例8に係るサンプルは、例5と同じく、ZrO2ドープSiO2層として屈折率が低い90モル%SiO2-10モル%ZrO2層が最外層である。そのため、ガラス基板の両面に積層膜が形成されているにもかかわらず、可視光反射率は、2%はおろか1%以下であり、低反射特性が良いことが分かる。このように、例8に係るサンプルは、良好な耐アルカリ特性を有することが確認された。
Also in the sample according to Example 8, the reflectance characteristics were almost the same before and after the immersion treatment, and no significant difference was observed between the two. That is, it was found that the sample according to Example 8 had a sufficiently low reflectance over a wavelength range of about 450 nm to about 650 nm both before and after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 8 was 0.77% and 0.74%, respectively. Samples according to the Example 8, as with Example 5, a low refractive index as ZrO 2 doped SiO 2 layer 90 mole% SiO 2 -10 mol% ZrO 2 layer is the outermost layer. Therefore, although the laminated film is formed on both surfaces of the glass substrate, the visible light reflectance is 2% or less and 1% or less, and it can be seen that the low reflection characteristic is good. Thus, it was confirmed that the sample according to Example 8 has good alkali resistance.
表3に示すように、例8に係るサンプルの浸漬処理前後の反射色(a*,b*)は、それぞれ(-1.76,-6.28)、(-1.18,2.34)であった。すなわち、浸漬処理前後の何れも、例8に係るサンプルの反射色は、前述の五角形の内側にあった。
As shown in Table 3, the reflection colors (a * , b * ) before and after the immersion treatment of the sample according to Example 8 were (−1.76, −6.28) and (−1.18, 2.34), respectively. )Met. That is, the reflection color of the sample according to Example 8 was inside the above pentagon before and after the dipping treatment.
例9に係るサンプルでは、浸漬処理前後において、反射率特性に顕著な差異が認められた。すなわち、例9に係るサンプルは、浸漬処理前には良好な低反射特性を示すものの、浸漬処理後には、波長約400nm~約750nmの範囲にわたって、反射率が上昇することが分かった。表3に示すように、例9に係るサンプルの浸漬処理前後の可視光反射率は、それぞれ0.27%、10.35%であった。このように、例9に係るサンプルは、良好な耐アルカリ特性を示さないことが確認された。
In the sample according to Example 9, a significant difference was observed in the reflectance characteristics before and after the immersion treatment. That is, it was found that the sample according to Example 9 showed good low reflection characteristics before the immersion treatment, but increased the reflectance over the wavelength range of about 400 nm to about 750 nm after the immersion treatment. As shown in Table 3, the visible light reflectance before and after the immersion treatment of the sample according to Example 9 was 0.27% and 10.35%, respectively. Thus, it was confirmed that the sample according to Example 9 does not exhibit good alkali resistance.
以上のように、本発明による好ましい反射防止膜付きガラスの構成を採用した例5~例8に係るサンプルでは、耐アルカリ特性が有意に改善されることが確認された。
As described above, it was confirmed that the alkali resistance characteristics were significantly improved in the samples according to Examples 5 to 8 adopting the configuration of the glass with a preferable antireflection film according to the present invention.
(生産性評価)
次に、本発明の一実施例による反射防止膜付きガラスを連続製造し、その生産性を評価した。 (Productivity evaluation)
Next, the glass with an antireflection film according to one example of the present invention was continuously produced, and the productivity was evaluated.
次に、本発明の一実施例による反射防止膜付きガラスを連続製造し、その生産性を評価した。 (Productivity evaluation)
Next, the glass with an antireflection film according to one example of the present invention was continuously produced, and the productivity was evaluated.
反射防止膜付きガラスは、100インチ×144インチの縦横寸法を有するガラス基板(ソーダライムガラス製)の第1の表面上に、前述の例5と同様の、4層構成の積層膜を有する構成とした。ここで、各層の構成条件は、以下の通りである。
第1の層:TiO2層、厚さ12nm
第2の層:SiO2層、厚さ35nm
第3の層:TiO2層、厚さ105nm
第4の層(最外層):90モル%SiO2-10モル%ZrO2層、厚さ84nm The glass with an antireflection film has a four-layer laminated film similar to Example 5 on the first surface of a glass substrate (made of soda lime glass) having a vertical and horizontal dimension of 100 inches × 144 inches. It was. Here, the constituent conditions of each layer are as follows.
First layer: TiO 2 layer, thickness 12 nm
Second layer: SiO 2 layer, thickness 35 nm
Third layer: TiO 2 layer, thickness 105 nm
Fourth layer (outermost layer): 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 84 nm
第1の層:TiO2層、厚さ12nm
第2の層:SiO2層、厚さ35nm
第3の層:TiO2層、厚さ105nm
第4の層(最外層):90モル%SiO2-10モル%ZrO2層、厚さ84nm The glass with an antireflection film has a four-layer laminated film similar to Example 5 on the first surface of a glass substrate (made of soda lime glass) having a vertical and horizontal dimension of 100 inches × 144 inches. It was. Here, the constituent conditions of each layer are as follows.
First layer: TiO 2 layer, thickness 12 nm
Second layer: SiO 2 layer, thickness 35 nm
Third layer: TiO 2 layer, thickness 105 nm
Fourth layer (outermost layer): 90 mol% SiO 2 -10 mol% ZrO 2 layer, thickness 84 nm
このうち、第1の層は、通常の平坦TiOxターゲット(x<2)を使用したスパッタリング法により成膜した。また、第2ないし第4の層は、円筒状ターゲットを使用したシリンドリカルマグネトロンスパッタリング法により成膜した。
Among these, the first layer was formed by a sputtering method using a normal flat TiOx target (x <2). The second to fourth layers were formed by a cylindrical magnetron sputtering method using a cylindrical target.
反射防止膜付きガラスは、前記寸法のガラス基板を、単一コーター内にローラー搬送させることにより、連続的に製造した。コーター内の雰囲気は、Ar+O2雰囲気とした。
The glass with an antireflection film was continuously produced by causing a glass substrate having the above dimensions to be conveyed by a roller in a single coater. The atmosphere in the coater was Ar + O 2 atmosphere.
各層の厚さ調整等を含む約4日間の連続放電の後半約1.5日で、合計290枚の反射防止膜付きガラスが製造された。製造された各反射防止膜付きガラスの全数について、表面のデブリの付着および積層膜内の欠陥の有無を目視で観察した。その結果、製造不良となった製品は存在せず、不良品率は0(ゼロ)であった。
A total of 290 glasses with an antireflection film were produced in about 1.5 days of the latter half of the continuous discharge for about 4 days including the thickness adjustment of each layer. The total number of each antireflection film-coated glass produced was visually observed for adhesion of surface debris and the presence or absence of defects in the laminated film. As a result, there was no product that was defective in production, and the defective product rate was 0 (zero).
このように、上記した方法で製造した反射防止膜付きガラスは、欠陥が少なく、高い歩留まりが得られることが確認された。
Thus, it was confirmed that the glass with an antireflection film produced by the above-described method has few defects and a high yield can be obtained.
(耐熱性評価)
次に、本発明の一実施例による反射防止膜付きガラスの耐熱性の評価を行った。 (Heat resistance evaluation)
Next, the heat resistance of the glass with an antireflection film according to one example of the present invention was evaluated.
次に、本発明の一実施例による反射防止膜付きガラスの耐熱性の評価を行った。 (Heat resistance evaluation)
Next, the heat resistance of the glass with an antireflection film according to one example of the present invention was evaluated.
評価用のサンプルには、前述の(生産性評価)の項で製造した、100インチ×144インチの縦横寸法を有する反射防止膜付きガラスを使用した。この反射防止膜付きガラスを、大気中、650℃まで加熱した後、空気ブローにより、室温まで冷却した。加熱前後における反射防止膜付きガラスのヘイズを、ヘイズ測定装置で測定した。
As the sample for evaluation, the glass with an antireflection film having the vertical and horizontal dimensions of 100 inches × 144 inches manufactured in the above section (Productivity evaluation) was used. The glass with an antireflection film was heated to 650 ° C. in the air, and then cooled to room temperature by air blowing. The haze of the glass with an antireflection film before and after heating was measured with a haze measuring apparatus.
ヘイズ測定の結果、熱処理前の反射防止膜付きガラスのヘイズは、0.09%であった。一方、熱処理後の反射防止膜付きガラスのヘイズは、0.35%であり、熱処理を実施しても、ヘイズの上昇は有意に抑制されることが分かった。このように、前述の製造方法で製造された反射防止膜付きガラスは、良好な耐熱性を有することが確認された。
As a result of haze measurement, the haze of the glass with an antireflection film before heat treatment was 0.09%. On the other hand, the haze of the glass with an antireflection film after heat treatment was 0.35%, and it was found that the increase in haze was significantly suppressed even when heat treatment was performed. Thus, it was confirmed that the glass with an antireflection film manufactured by the above-described manufacturing method has good heat resistance.
[防汚性能を有するガラス物品の実施例]
次に、本発明の防汚性能を備えたガラス物品の実施例について説明する。以下の説明において、例10~例12、及び例25は、防汚性能を備えたガラス物品の実施例であり、例13~例14は、参考例であり、例15~例24、及び例26は、比較例である。 [Example of glass article having antifouling performance]
Next, the Example of the glass article provided with the antifouling performance of this invention is described. In the following description, Examples 10 to 12 and Example 25 are examples of glass articles having antifouling performance, Examples 13 to 14 are reference examples, Examples 15 to 24, and Examples 26 is a comparative example.
次に、本発明の防汚性能を備えたガラス物品の実施例について説明する。以下の説明において、例10~例12、及び例25は、防汚性能を備えたガラス物品の実施例であり、例13~例14は、参考例であり、例15~例24、及び例26は、比較例である。 [Example of glass article having antifouling performance]
Next, the Example of the glass article provided with the antifouling performance of this invention is described. In the following description, Examples 10 to 12 and Example 25 are examples of glass articles having antifouling performance, Examples 13 to 14 are reference examples, Examples 15 to 24, and Examples 26 is a comparative example.
(防汚膜の形成)
(バインダ前駆体(1)(脱塩ケイ酸ソーダ液)の調製)
蒸留水の237.5gを撹拌しながら、これにケイ酸ソーダ4号(日本化学工業社製、(SiO2:24.0質量%、Na2O:7.0質量%。SiO2/Na2Oのモル比:3.5/1)の62.5g、陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK1BH)の180gを順に加え、10分以上撹拌した後、吸引ろ過により陽イオン交換樹脂を分離し、酸化ケイ素換算の固形分濃度が5質量%の脱塩ケイ酸ソーダ液として、バインダ前駆体(1)を得た。 (Formation of antifouling film)
(Preparation of Binder Precursor (1) (Desalted Sodium Silicate Solution))
While stirring 237.5 g of distilled water, sodium silicate No. 4 (manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 62.5 g of O molar ratio: 3.5 / 1) and 180 g of cation exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., Diaion SK1BH) were added in order, and the mixture was stirred for 10 minutes or more and then cation exchange resin by suction filtration. And a binder precursor (1) was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silicon oxide of 5% by mass.
(バインダ前駆体(1)(脱塩ケイ酸ソーダ液)の調製)
蒸留水の237.5gを撹拌しながら、これにケイ酸ソーダ4号(日本化学工業社製、(SiO2:24.0質量%、Na2O:7.0質量%。SiO2/Na2Oのモル比:3.5/1)の62.5g、陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK1BH)の180gを順に加え、10分以上撹拌した後、吸引ろ過により陽イオン交換樹脂を分離し、酸化ケイ素換算の固形分濃度が5質量%の脱塩ケイ酸ソーダ液として、バインダ前駆体(1)を得た。 (Formation of antifouling film)
(Preparation of Binder Precursor (1) (Desalted Sodium Silicate Solution))
While stirring 237.5 g of distilled water, sodium silicate No. 4 (manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 62.5 g of O molar ratio: 3.5 / 1) and 180 g of cation exchange resin (manufactured by Mitsubishi Chemical Co., Ltd., Diaion SK1BH) were added in order, and the mixture was stirred for 10 minutes or more and then cation exchange resin by suction filtration. And a binder precursor (1) was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silicon oxide of 5% by mass.
(防汚膜形成組成物の調製)
2-プロパノールの6.58gを撹拌しながら、これにパールネックレス状シリカ分散液(日産化学社製、スノーテックスPS-SO、平均一次粒子径15nm、平均二次粒子径88nm)の1.19g、バインダ前駆体(1)の2.18gを順に加え、酸化ケイ素換算固形分が2.95質量%、粒子(パールネックレス状シリカ)とバインダ前駆体(脱塩ケイ酸ソーダ液)との酸化ケイ素換算固形分質量比率が60/40である防汚膜形成組成物(A1)を調製した。 (Preparation of antifouling film forming composition)
While stirring 6.58 g of 2-propanol, 1.19 g of a pearl necklace-like silica dispersion (manufactured by Nissan Chemical Co., Snowtex PS-SO, average primary particle size 15 nm, average secondary particle size 88 nm), 2.18 g of the binder precursor (1) was added in order, the solid content in terms of silicon oxide was 2.95% by mass, in terms of silicon oxide between the particles (pearl necklace-like silica) and the binder precursor (desalted sodium silicate solution) An antifouling film-forming composition (A1) having a solid content mass ratio of 60/40 was prepared.
2-プロパノールの6.58gを撹拌しながら、これにパールネックレス状シリカ分散液(日産化学社製、スノーテックスPS-SO、平均一次粒子径15nm、平均二次粒子径88nm)の1.19g、バインダ前駆体(1)の2.18gを順に加え、酸化ケイ素換算固形分が2.95質量%、粒子(パールネックレス状シリカ)とバインダ前駆体(脱塩ケイ酸ソーダ液)との酸化ケイ素換算固形分質量比率が60/40である防汚膜形成組成物(A1)を調製した。 (Preparation of antifouling film forming composition)
While stirring 6.58 g of 2-propanol, 1.19 g of a pearl necklace-like silica dispersion (manufactured by Nissan Chemical Co., Snowtex PS-SO, average primary particle size 15 nm, average secondary particle size 88 nm), 2.18 g of the binder precursor (1) was added in order, the solid content in terms of silicon oxide was 2.95% by mass, in terms of silicon oxide between the particles (pearl necklace-like silica) and the binder precursor (desalted sodium silicate solution) An antifouling film-forming composition (A1) having a solid content mass ratio of 60/40 was prepared.
(例10)
スピンコータに、室温に保持した例5に係るサンプルをセッティングし、防汚膜形成組成物(A1)を表面に2.0g滴下し、スピンコートした後、300℃で30分間焼成し、ガラス物品を製造した。 (Example 10)
A sample according to Example 5 kept at room temperature was set on a spin coater, 2.0 g of the antifouling film forming composition (A1) was dropped on the surface, spin-coated, and then baked at 300 ° C. for 30 minutes to obtain a glass article. Manufactured.
スピンコータに、室温に保持した例5に係るサンプルをセッティングし、防汚膜形成組成物(A1)を表面に2.0g滴下し、スピンコートした後、300℃で30分間焼成し、ガラス物品を製造した。 (Example 10)
A sample according to Example 5 kept at room temperature was set on a spin coater, 2.0 g of the antifouling film forming composition (A1) was dropped on the surface, spin-coated, and then baked at 300 ° C. for 30 minutes to obtain a glass article. Manufactured.
(例11~例14)
粒子とバインダとの質量比(粒子/バインダ)を表4に示す量に変更する以外は、例10と同様にして、防汚膜形成組成物A2~A5を調製した。次いで、防汚膜形成組成物A2~A5を用いて、例10と同様にして、ガラス物品を製造した。 (Example 11 to Example 14)
Antifouling film-forming compositions A2 to A5 were prepared in the same manner as in Example 10 except that the mass ratio of particles to binder (particle / binder) was changed to the amount shown in Table 4. Subsequently, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A2 to A5.
粒子とバインダとの質量比(粒子/バインダ)を表4に示す量に変更する以外は、例10と同様にして、防汚膜形成組成物A2~A5を調製した。次いで、防汚膜形成組成物A2~A5を用いて、例10と同様にして、ガラス物品を製造した。 (Example 11 to Example 14)
Antifouling film-forming compositions A2 to A5 were prepared in the same manner as in Example 10 except that the mass ratio of particles to binder (particle / binder) was changed to the amount shown in Table 4. Subsequently, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A2 to A5.
(例15~例19)
パールネックレス状シリカ分散液を、平均一次粒子径が11nmの球状シリカ分散液(日産化学社製、スノーテックスOS)に変更し、さらに粒子とバインダとの質量比を表4に示す量に変更する以外は、例10と同様にして、防汚膜形成組成物A6~A10を調製した。次いで、防汚膜形成組成物A6~A10を用いて、例10と同様にして、ガラス物品を製造した。 (Example 15 to Example 19)
The pearl necklace-like silica dispersion is changed to a spherical silica dispersion having an average primary particle size of 11 nm (manufactured by Nissan Chemical Co., Snowtex OS), and the mass ratio of the particles to the binder is changed to the amount shown in Table 4. Except for the above, antifouling film-forming compositions A6 to A10 were prepared in the same manner as in Example 10. Next, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A6 to A10.
パールネックレス状シリカ分散液を、平均一次粒子径が11nmの球状シリカ分散液(日産化学社製、スノーテックスOS)に変更し、さらに粒子とバインダとの質量比を表4に示す量に変更する以外は、例10と同様にして、防汚膜形成組成物A6~A10を調製した。次いで、防汚膜形成組成物A6~A10を用いて、例10と同様にして、ガラス物品を製造した。 (Example 15 to Example 19)
The pearl necklace-like silica dispersion is changed to a spherical silica dispersion having an average primary particle size of 11 nm (manufactured by Nissan Chemical Co., Snowtex OS), and the mass ratio of the particles to the binder is changed to the amount shown in Table 4. Except for the above, antifouling film-forming compositions A6 to A10 were prepared in the same manner as in Example 10. Next, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A6 to A10.
(例20~例24)
パールネックレス状シリカ分散液を、平均一次粒子径が30nmの球状シリカ分散液(日産化学社製、スノーテックスO-40)に変更し、さらに粒子とバインダとの質量比を表4に示す量に変更する以外は、例10と同様にして、防汚膜形成組成物A11~A15を調製した。次いで、防汚膜形成組成物A11~A15を用いて、例10と同様にして、ガラス物品を製造した。 (Example 20 to Example 24)
The pearl necklace-like silica dispersion was changed to a spherical silica dispersion having a mean primary particle size of 30 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex O-40), and the mass ratio of the particles to the binder was adjusted to the amounts shown in Table 4. Antifouling film-forming compositions A11 to A15 were prepared in the same manner as in Example 10 except for changing. Next, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A11 to A15.
パールネックレス状シリカ分散液を、平均一次粒子径が30nmの球状シリカ分散液(日産化学社製、スノーテックスO-40)に変更し、さらに粒子とバインダとの質量比を表4に示す量に変更する以外は、例10と同様にして、防汚膜形成組成物A11~A15を調製した。次いで、防汚膜形成組成物A11~A15を用いて、例10と同様にして、ガラス物品を製造した。 (Example 20 to Example 24)
The pearl necklace-like silica dispersion was changed to a spherical silica dispersion having a mean primary particle size of 30 nm (manufactured by Nissan Chemical Co., Ltd., Snowtex O-40), and the mass ratio of the particles to the binder was adjusted to the amounts shown in Table 4. Antifouling film-forming compositions A11 to A15 were prepared in the same manner as in Example 10 except for changing. Next, a glass article was produced in the same manner as in Example 10 using the antifouling film-forming compositions A11 to A15.
(例25)
(バインダ前駆体(2)(アルコキシシラン化合物の部分加水分解縮合物の溶液)の調製)
2-プロパノールの16.45gを撹拌しながら、これにメチルシリケート重合体(多摩化学工業社製、Mシリケート51、シリカ換算固形分51%、メタノール溶媒)の1.18g、蒸留水の2.26g、10質量%の硝酸水溶液を順に加えた後、25℃で60分撹拌し、シリカ換算固形分濃度が3質量%のアルコキシシラン化合物の部分加水分解縮合物の溶液として、バインダ前駆体(2)を得た。 (Example 25)
(Preparation of binder precursor (2) (solution of partially hydrolyzed condensate of alkoxysilane compound))
While stirring 16.45 g of 2-propanol, 1.18 g of methyl silicate polymer (manufactured by Tama Chemical Industry Co., Ltd., M silicate 51, 51% solid content in terms of silica, methanol solvent), 2.26 g of distilled water. A 10% by mass aqueous nitric acid solution was added in order, and the mixture was stirred at 25 ° C. for 60 minutes to obtain a binder precursor (2) as a partially hydrolyzed condensate solution of an alkoxysilane compound having a silica-converted solid content concentration of 3% by mass. Got.
(バインダ前駆体(2)(アルコキシシラン化合物の部分加水分解縮合物の溶液)の調製)
2-プロパノールの16.45gを撹拌しながら、これにメチルシリケート重合体(多摩化学工業社製、Mシリケート51、シリカ換算固形分51%、メタノール溶媒)の1.18g、蒸留水の2.26g、10質量%の硝酸水溶液を順に加えた後、25℃で60分撹拌し、シリカ換算固形分濃度が3質量%のアルコキシシラン化合物の部分加水分解縮合物の溶液として、バインダ前駆体(2)を得た。 (Example 25)
(Preparation of binder precursor (2) (solution of partially hydrolyzed condensate of alkoxysilane compound))
While stirring 16.45 g of 2-propanol, 1.18 g of methyl silicate polymer (manufactured by Tama Chemical Industry Co., Ltd., M silicate 51, 51% solid content in terms of silica, methanol solvent), 2.26 g of distilled water. A 10% by mass aqueous nitric acid solution was added in order, and the mixture was stirred at 25 ° C. for 60 minutes to obtain a binder precursor (2) as a partially hydrolyzed condensate solution of an alkoxysilane compound having a silica-converted solid content concentration of 3% by mass. Got.
(防汚膜形成組成物の調製)
バインダ前駆体(1)をバインダ前駆体(2)に変更する以外は、例10と同様にして、防汚膜形成用組成物A16を調製した。 (Preparation of antifouling film forming composition)
An antifouling film-forming composition A16 was prepared in the same manner as in Example 10 except that the binder precursor (1) was changed to the binder precursor (2).
バインダ前駆体(1)をバインダ前駆体(2)に変更する以外は、例10と同様にして、防汚膜形成用組成物A16を調製した。 (Preparation of antifouling film forming composition)
An antifouling film-forming composition A16 was prepared in the same manner as in Example 10 except that the binder precursor (1) was changed to the binder precursor (2).
(ガラス物品の製造)
防汚膜形成組成物A16を用いて、例10と同様にして、ガラス物品を製造した。 (Manufacture of glass articles)
A glass article was produced in the same manner as in Example 10 using the antifouling film-forming composition A16.
防汚膜形成組成物A16を用いて、例10と同様にして、ガラス物品を製造した。 (Manufacture of glass articles)
A glass article was produced in the same manner as in Example 10 using the antifouling film-forming composition A16.
(例26)
例5に係るサンプルについて、そのまま評価を行った。 (Example 26)
The sample according to Example 5 was evaluated as it was.
例5に係るサンプルについて、そのまま評価を行った。 (Example 26)
The sample according to Example 5 was evaluated as it was.
(防汚性能を有するガラス物品の評価)
各例におけるガラス物品の評価は以下のように行った。 (Evaluation of glass articles having antifouling performance)
Evaluation of the glass article in each example was performed as follows.
各例におけるガラス物品の評価は以下のように行った。 (Evaluation of glass articles having antifouling performance)
Evaluation of the glass article in each example was performed as follows.
(粒子の平均一次粒子径)
ガラス物品の防汚膜を有する面に対して、上方から防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、無作為に100個の粒子を抽出し、各粒子の直径の平均値を粒子の平均一次粒子径とした。 (Average primary particle size of particles)
From the image obtained by observing the surface of the antifouling film from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) with respect to the surface of the glass article having the antifouling film, randomly 100 particles were extracted, and the average diameter of each particle was defined as the average primary particle diameter of the particles.
ガラス物品の防汚膜を有する面に対して、上方から防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、無作為に100個の粒子を抽出し、各粒子の直径の平均値を粒子の平均一次粒子径とした。 (Average primary particle size of particles)
From the image obtained by observing the surface of the antifouling film from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) with respect to the surface of the glass article having the antifouling film, randomly 100 particles were extracted, and the average diameter of each particle was defined as the average primary particle diameter of the particles.
(表面粗さ(Ra))
走査型プローブ顕微鏡(SIIナノテクノロジー社製、型式SPA400)を用いて測定した。
(設定条件)
カンチレバーはSI-DF40(背面AL有)、XYデータ数256点、走査エリアは10μm×10μmで測定した。 (Surface roughness (Ra))
It measured using the scanning probe microscope (SII nanotechnology company make, type SPA400).
(Setting conditions)
The cantilever was measured with SI-DF40 (with rear surface AL), 256 XY data, and scanning area of 10 μm × 10 μm.
走査型プローブ顕微鏡(SIIナノテクノロジー社製、型式SPA400)を用いて測定した。
(設定条件)
カンチレバーはSI-DF40(背面AL有)、XYデータ数256点、走査エリアは10μm×10μmで測定した。 (Surface roughness (Ra))
It measured using the scanning probe microscope (SII nanotechnology company make, type SPA400).
(Setting conditions)
The cantilever was measured with SI-DF40 (with rear surface AL), 256 XY data, and scanning area of 10 μm × 10 μm.
(頂点間距離)
ガラス物品の断面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、ガラス板の防汚膜を有する面に平行な方向に無作為に抽出された1.5μmの範囲において、ガラス板表面からの高さが最も高い突起体を基準とし、その高さの90%以上の高さを有する突起体について、隣り合う突起体の頂点間の距離を全て測定し、平均値を算出した。 (Vertex distance)
Randomly extracted in a direction parallel to the surface of the glass plate having the antifouling film from an image obtained by observing a cross section of the glass article with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) In the range of 1.5 μm, with respect to the protrusion having the highest height from the surface of the glass plate, the distance between the vertices of adjacent protrusions is determined for the protrusion having a height of 90% or more of the height. All were measured and the average value was calculated.
ガラス物品の断面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、ガラス板の防汚膜を有する面に平行な方向に無作為に抽出された1.5μmの範囲において、ガラス板表面からの高さが最も高い突起体を基準とし、その高さの90%以上の高さを有する突起体について、隣り合う突起体の頂点間の距離を全て測定し、平均値を算出した。 (Vertex distance)
Randomly extracted in a direction parallel to the surface of the glass plate having the antifouling film from an image obtained by observing a cross section of the glass article with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) In the range of 1.5 μm, with respect to the protrusion having the highest height from the surface of the glass plate, the distance between the vertices of adjacent protrusions is determined for the protrusion having a height of 90% or more of the height. All were measured and the average value was calculated.
(凸部被覆率)
基体の主面に対し上方から防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、画像変換ソフト(image J)により、無作為に抽出された1μm×1μmの範囲で粒子が付着している部分の面積比率を算出した。 (Convex coverage)
From the image obtained by observing the surface of the antifouling film from above with respect to the main surface of the substrate with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), image conversion software (image J) The area ratio of the part to which particles adhered in the range of 1 μm × 1 μm extracted for the purpose was calculated.
基体の主面に対し上方から防汚膜の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、画像変換ソフト(image J)により、無作為に抽出された1μm×1μmの範囲で粒子が付着している部分の面積比率を算出した。 (Convex coverage)
From the image obtained by observing the surface of the antifouling film from above with respect to the main surface of the substrate with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), image conversion software (image J) The area ratio of the part to which particles adhered in the range of 1 μm × 1 μm extracted for the purpose was calculated.
(汚れ付着試験)
ガラス物品を5cm×5cmにカットし、初期ヘイズ値を測定した。その後、ガラス物品にJIS試験粉体1の2種(中位径が27~31μmのけい砂)0.5gを、茶漉しを使用して、均等に振りかけた。10秒静置後、ガラス物品を135°傾け、3cmの高さから基体の端部を10cm/秒の勢いで2回地面に接触させ、粉体を落とし、再度ヘイズ値を測定した。これを10回繰り返し、8、9、10回目のヘイズ値を平均した値から初期ヘイズ値を引いた値を、乾燥砂かけ試験後のヘイズ値変化(ΔHaze)とした。 (Stain adhesion test)
The glass article was cut into 5 cm × 5 cm, and the initial haze value was measured. Thereafter, 0.5 g of two types of JIS test powder 1 (silica sand having a median diameter of 27 to 31 μm) was sprinkled on the glass article evenly using a tea strainer. After standing for 10 seconds, the glass article was tilted 135 °, the edge of the substrate was brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm, the powder was dropped, and the haze value was measured again. This was repeated 10 times, and the value obtained by subtracting the initial haze value from the average value of the 8th, 9th and 10th haze values was defined as the change in haze value (ΔHaze) after the dry sanding test.
ガラス物品を5cm×5cmにカットし、初期ヘイズ値を測定した。その後、ガラス物品にJIS試験粉体1の2種(中位径が27~31μmのけい砂)0.5gを、茶漉しを使用して、均等に振りかけた。10秒静置後、ガラス物品を135°傾け、3cmの高さから基体の端部を10cm/秒の勢いで2回地面に接触させ、粉体を落とし、再度ヘイズ値を測定した。これを10回繰り返し、8、9、10回目のヘイズ値を平均した値から初期ヘイズ値を引いた値を、乾燥砂かけ試験後のヘイズ値変化(ΔHaze)とした。 (Stain adhesion test)
The glass article was cut into 5 cm × 5 cm, and the initial haze value was measured. Thereafter, 0.5 g of two types of JIS test powder 1 (silica sand having a median diameter of 27 to 31 μm) was sprinkled on the glass article evenly using a tea strainer. After standing for 10 seconds, the glass article was tilted 135 °, the edge of the substrate was brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm, the powder was dropped, and the haze value was measured again. This was repeated 10 times, and the value obtained by subtracting the initial haze value from the average value of the 8th, 9th and 10th haze values was defined as the change in haze value (ΔHaze) after the dry sanding test.
ここで、防汚膜は、前述の試験粉体を振りかけて10秒静置し、135°傾け、3cmの高さから10cm/秒の勢いで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを複数繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内であることが好ましく、0.9以内であることがより好ましく、0.8以内であることが特に好ましい。
Here, the antifouling film is sprinkled with the above-mentioned test powder, left still for 10 seconds, tilted 135 °, and brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm, dropping the powder. It is preferable that the value obtained by subtracting the haze value before the test from the average value is within 1.0, more preferably within 0.9, more preferably within 0.8. It is particularly preferred.
(ヘイズ値の測定条件)
ガラス部材のヘイズは、ヘイズ測定装置(ビックガードナー社製、型名:ヘイズガードプラス)で測定した。 (Measurement conditions of haze value)
The haze of the glass member was measured with a haze measuring device (Bic Gardner, model name: haze guard plus).
ガラス部材のヘイズは、ヘイズ測定装置(ビックガードナー社製、型名:ヘイズガードプラス)で測定した。 (Measurement conditions of haze value)
The haze of the glass member was measured with a haze measuring device (Bic Gardner, model name: haze guard plus).
以下の表4に、例10~例26に係るガラス物品の仕様を示す。
Table 4 below shows the specifications of the glass articles according to Examples 10 to 26.
以下の表5に、例10~例26に係るサンプルの測定評価結果を示す。
Table 5 below shows the measurement evaluation results of the samples according to Examples 10 to 26.
表5に示されるように、例10~例12、および例25のガラス物品は、防汚性に優れることが分かる。一方、防汚膜を有さない例26は、防汚性が充分ではなかった。防汚膜表面において粒子が存在する面積の割合が12%未満である例13のガラス物品、および7%未満である例14のガラス物品は、例10~例12、および例25に比べて防汚性が劣っていた。また、球状シリカを使用し、防汚膜の頂点間距離が100nm未満である例15~例24のガラス物品は、防汚性が充分ではなかった。
As shown in Table 5, it can be seen that the glass articles of Examples 10 to 12 and Example 25 are excellent in antifouling property. On the other hand, Example 26 having no antifouling film was not sufficiently antifouling. The glass article of Example 13 in which the proportion of the area where particles are present on the surface of the antifouling film is less than 12%, and the glass article of Example 14 in which the percentage of the area is less than 7% is more resistant than Examples 10 to 12 and Example 25. Dirty was inferior. Further, the glass articles of Examples 15 to 24 using spherical silica and having a distance between apexes of the antifouling film of less than 100 nm were not sufficiently antifouling.
本発明のガラス物品は、例えば、建築物用の反射防止および防汚膜付きガラス等に利用することができる。その利用形態は、ガラス基板の片面のみに反射防止および防汚膜が配置される形態、ガラス基板の両面に反射防止および防汚膜が配置される形態に限られない。例えば、片面のみに反射防止および防汚膜が配置されたガラス基板を2枚用意し、合わせガラスとしても良い。また、両面に反射防止および防汚膜が配置されたガラス基板を2枚用意し、複層ガラスとしても良い。あるいは、片面のみに反射防止および防汚膜が配置されたガラス基板のもう一方の面に、別の効果を有する膜を配置しても良い。
The glass article of the present invention can be used, for example, for glass with antireflection and antifouling films for buildings. The usage form is not limited to the form in which the antireflection and antifouling film is disposed only on one side of the glass substrate, and the form in which the antireflection and antifouling film is disposed on both sides of the glass substrate. For example, two glass substrates having antireflection and antifouling films disposed on only one side may be prepared and used as laminated glass. Alternatively, two glass substrates having antireflection and antifouling films disposed on both sides may be prepared to form a multilayer glass. Or you may arrange | position the film | membrane which has another effect in the other surface of the glass substrate in which the antireflection and antifouling film | membrane was arrange | positioned only on one side.
本発明のガラス物品は、防汚性能を備えていることから、窓ガラス(例えば、自動車、鉄道、船舶、飛行機等の輸送機器用窓ガラス)、壁(例えば、間仕切り、道路壁等)、冷蔵ショーケース、鏡(例えば、洗面化粧台用鏡、浴室用鏡等)、光学機器、タイル、便器、浴槽、浴室用壁、洗面化粧台、カーテンウォール、アルミサッシ、水栓金具、建築用ボード、レンズ等に使用できる。さらに、本発明のガラス物品が反射防止性能、防汚性能、および防曇性能を兼ね備えている場合、メガネやカメラ等のレンズ、窓ガラス、車のフロントガラス、ヘルメットのシールド、水中メガネ、浴室用の鏡等に有用である。
Since the glass article of the present invention has antifouling performance, window glass (for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes, etc.), walls (for example, partitions, road walls, etc.), refrigerated Showcases, mirrors (for example, vanity mirrors, bathroom mirrors, etc.), optical equipment, tiles, toilets, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucets, building boards, Can be used for lenses. Furthermore, when the glass article of the present invention has antireflection performance, antifouling performance, and antifogging performance, lenses such as glasses and cameras, window glass, car windshields, helmet shields, underwater glasses, and bathroom use This is useful for mirrors.
Claims (15)
- ガラス基体と、
前記ガラス基体上に配置され、屈折率の異なる複数の層を含む積層膜と、
前記積層膜の最外層上に配置され、粒子の凝集体とバインダとを含有する防汚膜と
を具備する、反射防止機能を有するガラス物品。 A glass substrate;
A laminated film disposed on the glass substrate and including a plurality of layers having different refractive indexes;
A glass article having an antireflection function, comprising an antifouling film disposed on the outermost layer of the laminated film and containing an aggregate of particles and a binder. - 前記積層膜の最外層は、ジルコニアがドープされたシリカで構成される、請求項1に記載のガラス物品。 The glass article according to claim 1, wherein the outermost layer of the laminated film is composed of silica doped with zirconia.
- 前記粒子の平均一次粒子径は、5nm以上300nm以下である、請求項1または請求項2に記載のガラス物品。 The glass article according to claim 1 or 2, wherein an average primary particle diameter of the particles is 5 nm or more and 300 nm or less.
- 前記凝集体は、複数の前記粒子が連結した鎖状粒子凝集体およびパールネックレス状粒子凝集体から選ばれる少なくとも1つを含む、請求項1ないし請求項3のいずれか一項に記載のガラス物品。 The glass article according to any one of claims 1 to 3, wherein the aggregate includes at least one selected from a chain-like particle aggregate in which a plurality of the particles are connected and a pearl necklace-like particle aggregate. .
- 前記防汚膜は、前記粒子の凝集体と前記バインダとを含む複数の突起体を有し、前記複数の突起体のうち、前記積層膜の最外層の表面からの高さが最大の突起体を基準として、90%以上の高さを有する突起体Tにおいて、隣り合う前記突起体Tの頂点間距離の平均値が、100nm以上1000nm以下である、請求項1ないし請求項4のいずれか一項に記載のガラス物品。 The antifouling film has a plurality of protrusions including the aggregates of the particles and the binder, and the protrusion having the maximum height from the surface of the outermost layer of the laminated film among the plurality of protrusions. 5, in the protrusion T having a height of 90% or more, the average value of the distance between the vertices of the adjacent protrusions T is 100 nm or more and 1000 nm or less. The glass article according to item.
- 前記積層膜の最外層の面積に対する前記粒子による総被覆面積の割合が、12%以上100%以下である、請求項1ないし請求項5のいずれか一項に記載のガラス物品。 The glass article according to any one of claims 1 to 5, wherein a ratio of a total covered area by the particles to an area of an outermost layer of the laminated film is 12% or more and 100% or less.
- 前記粒子は親水性粒子であり、前記バインダは親水性バインダである、請求項1ないし請求項6のいずれか一項に記載のガラス物品。 The glass article according to any one of claims 1 to 6, wherein the particles are hydrophilic particles, and the binder is a hydrophilic binder.
- 前記粒子は、酸化ケイ素、酸化アルミニウム、酸化チタン、および酸化ジルコニウムから選ばれる少なくとも1つを含み、
前記バインダは、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化タンタル、および酸化スズから選ばれる少なくとも1つを含む、請求項1ないし請求項7のいずれか一項に記載のガラス物品。 The particles include at least one selected from silicon oxide, aluminum oxide, titanium oxide, and zirconium oxide,
The glass article according to any one of claims 1 to 7, wherein the binder includes at least one selected from silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, tantalum oxide, and tin oxide. - 窒素吸着量が3.0m2/g以上7.5m2/g以下である、請求項1ないし請求項8のいずれか一項に記載のガラス物品。 The glass article according to any one of claims 1 to 8, wherein a nitrogen adsorption amount is 3.0 m 2 / g or more and 7.5 m 2 / g or less.
- 前記防汚膜は、JIS試験粉体1の2種(中位径が27~31μmのけい砂)を振りかけて10秒静置し、135°傾け、3cmの高さから10cm/秒の勢いで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを複数繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である、請求項1ないし請求項9のいずれか一項に記載のガラス物品。 The antifouling film is sprinkled with two types of JIS test powder 1 (silica sand with a median diameter of 27 to 31 μm), left to stand for 10 seconds, tilted 135 °, and from a height of 3 cm to a speed of 10 cm / second. The value obtained by dropping the powder twice in contact with the ground and measuring the haze value a plurality of times and subtracting the haze value before the test from the average value is within 1.0. The glass article according to any one of 9.
- 標準イルミナントD65、10度視野での反射色を、L*a*b*表色系の色座標(a*,b*)で表したとき、前記反射色は、(0,0)、(20,-20)、(-15,-20)、(-15,10)、および(0,10)の5点を頂点とする五角形の内側にある、請求項1ないし請求項10のいずれか一項に記載のガラス物品。 When the reflected color in the standard illuminant D65, 10 degree field of view is expressed by the color coordinates (a * , b * ) of the L * a * b * color system, the reflected color is (0, 0), (20 , −20), (−15, −20), (−15, 10), and (0, 10) are located inside a pentagon having 5 points as vertices. The glass article according to item.
- ガラス基体上に屈折率の異なる複数の層を含む積層膜を形成する工程と、
前記積層膜の最外層上に、粒子の凝集体とバインダ前駆体とを含有する防汚膜形成組成物を塗布し、前記防汚膜形成組成物の塗布膜を得る工程と、
前記塗布膜に前記バインダ前駆体を硬化させる処理を施し、前記バインダ前駆体からバインダを形成することにより、前記粒子の凝集体と前記バインダとを含有する防汚膜を形成する工程と
を具備するガラス物品の製造方法。 Forming a laminated film including a plurality of layers having different refractive indexes on a glass substrate;
Applying an antifouling film-forming composition containing an aggregate of particles and a binder precursor on the outermost layer of the laminated film to obtain a coating film of the antifouling film-forming composition;
Forming the antifouling film containing the aggregates of the particles and the binder by performing a treatment for curing the binder precursor on the coating film and forming a binder from the binder precursor. A method for producing a glass article. - 前記積層膜を形成する工程は、
前記ガラス基体上に前記複数の層を設ける工程と、
シリンドリカルマグネトロンスパッタリング法を用いて、前記複数の層上に、90℃に加熱した濃度0.1kmol/m3のNaOH水溶液中に2時間浸漬させた試験前後の可視光反射率の差が0.4以内である保護層を設ける工程と
を備える、請求項12に記載のガラス物品の製造方法。 The step of forming the laminated film includes
Providing the plurality of layers on the glass substrate;
Using a cylindrical magnetron sputtering method, the difference in visible light reflectance before and after the test immersed in an aqueous NaOH solution having a concentration of 0.1 kmol / m 3 heated to 90 ° C. for 2 hours on the plurality of layers was 0.4. The method for producing a glass article according to claim 12, further comprising: providing a protective layer that is within a range. - 前記粒子の平均一次粒子径は、5nm以上300nm以下であり、
前記凝集体は、複数の前記粒子が連結した鎖状粒子凝集体およびパールネックレス状粒子凝集体から選ばれる少なくとも1つを含む、請求項12または請求項13に記載のガラス物品の製造方法。 The average primary particle diameter of the particles is 5 nm or more and 300 nm or less,
The method for producing a glass article according to claim 12 or 13, wherein the aggregate includes at least one selected from a chain particle aggregate and a pearl necklace-like particle aggregate in which a plurality of the particles are connected. - 前記防汚膜形成組成物は、前記防汚膜における前記バインダに対する前記粒子の体積比が7/93以上95/5以下となるように、前記バインダ前駆体を含有する、請求項12ないし請求項14のいずれか一項に記載のガラス物品の製造方法。 The antifouling film forming composition contains the binder precursor so that the volume ratio of the particles to the binder in the antifouling film is 7/93 or more and 95/5 or less. The method for producing a glass article according to any one of 14.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015123299A JP2018127366A (en) | 2015-06-18 | 2015-06-18 | Glass article and method for producing the same |
JP2015-123299 | 2015-06-18 | ||
JP2016-003397 | 2016-01-12 | ||
JP2016003397 | 2016-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016204003A1 true WO2016204003A1 (en) | 2016-12-22 |
Family
ID=57545055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066677 WO2016204003A1 (en) | 2015-06-18 | 2016-06-03 | Glass article and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016204003A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018051958A1 (en) * | 2016-09-16 | 2018-03-22 | 旭硝子株式会社 | Antifouling article |
WO2019123877A1 (en) * | 2017-12-20 | 2019-06-27 | Agc株式会社 | Heat insulating glass |
CN112136063A (en) * | 2018-05-18 | 2020-12-25 | 吉奥马科技有限公司 | Method for forming surface microstructure and article having surface microstructure |
CN114942483A (en) * | 2022-04-12 | 2022-08-26 | 福耀玻璃工业集团股份有限公司 | Glass assembly and vehicle |
JP7532834B2 (en) | 2020-03-23 | 2024-08-14 | 住友金属鉱山株式会社 | Heat-shielding transparent substrate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124301A (en) * | 1981-01-27 | 1982-08-03 | Asahi Glass Co Ltd | Highly durable multilayered film containing silicon oxide film |
JPH03162943A (en) * | 1989-03-07 | 1991-07-12 | Asahi Glass Co Ltd | Lens with antireflection film |
JP2015011164A (en) * | 2013-06-28 | 2015-01-19 | キヤノン株式会社 | Optical member and imaging apparatus |
JP2015011163A (en) * | 2013-06-28 | 2015-01-19 | キヤノン株式会社 | Optical member and imaging apparatus |
WO2015041257A1 (en) * | 2013-09-18 | 2015-03-26 | 旭硝子株式会社 | Tempered glass plate with low reflective coating and production method therfor |
-
2016
- 2016-06-03 WO PCT/JP2016/066677 patent/WO2016204003A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57124301A (en) * | 1981-01-27 | 1982-08-03 | Asahi Glass Co Ltd | Highly durable multilayered film containing silicon oxide film |
JPH03162943A (en) * | 1989-03-07 | 1991-07-12 | Asahi Glass Co Ltd | Lens with antireflection film |
JP2015011164A (en) * | 2013-06-28 | 2015-01-19 | キヤノン株式会社 | Optical member and imaging apparatus |
JP2015011163A (en) * | 2013-06-28 | 2015-01-19 | キヤノン株式会社 | Optical member and imaging apparatus |
WO2015041257A1 (en) * | 2013-09-18 | 2015-03-26 | 旭硝子株式会社 | Tempered glass plate with low reflective coating and production method therfor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018051958A1 (en) * | 2016-09-16 | 2018-03-22 | 旭硝子株式会社 | Antifouling article |
WO2019123877A1 (en) * | 2017-12-20 | 2019-06-27 | Agc株式会社 | Heat insulating glass |
CN112136063A (en) * | 2018-05-18 | 2020-12-25 | 吉奥马科技有限公司 | Method for forming surface microstructure and article having surface microstructure |
JP7532834B2 (en) | 2020-03-23 | 2024-08-14 | 住友金属鉱山株式会社 | Heat-shielding transparent substrate |
CN114942483A (en) * | 2022-04-12 | 2022-08-26 | 福耀玻璃工业集团股份有限公司 | Glass assembly and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107533161B (en) | Curved substrate with film, method for producing the same, and image display device | |
JP6989650B2 (en) | A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device. | |
WO2016204003A1 (en) | Glass article and method for producing same | |
CN104508518B (en) | Photoelectric conversion device cover glass | |
JP7242720B2 (en) | Glass plate with coating film and method for producing the same | |
JP5157143B2 (en) | Base with antireflection film | |
EP2810924B1 (en) | Glass article provided with photocatalyst film | |
WO2001042155A1 (en) | Low-reflection glass article | |
CN102498073A (en) | Article having low-reflection film on surface of base material | |
JP5761346B2 (en) | Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same | |
JP7011584B2 (en) | Covered glass sheet | |
JP2018024240A (en) | Transparent substrate and method for producing the same | |
JP2001278637A (en) | Low reflection glass article | |
WO2011070714A1 (en) | Cover glass for photoelectric converter and process for producing same | |
WO2017073726A1 (en) | Stain-proof article and production method for stain-proof article | |
JP2015049319A (en) | Article having transparent base material and antifouling-antireflection film and manufacturing method thereof | |
WO2016010080A1 (en) | Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells | |
JP2018077260A (en) | Hydrophilic lens | |
JP2013160799A (en) | Manufacturing method of article with low reflection film | |
WO2007081025A1 (en) | Glass plate with film for vehicle and process for producing the same | |
JP2018127366A (en) | Glass article and method for producing the same | |
CN104955782A (en) | Glass plate with low reflection coating and method for manufacturing same | |
JP2007241177A (en) | Antireflection structure and structure | |
WO2018051958A1 (en) | Antifouling article | |
JP2011119626A (en) | Cover glass for solar panel covered with low reflecting coating and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16811478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16811478 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |